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ABSTRACT

The determination of the optimal distribution of aimpoints is

examined for weapons that fire fragmenting projectiles against mobile

targets. A finite difference approximation which reduces the problem

to a mathematical programming problem is developed. Computational

considerations for this nonlinear programming problem are discussed.
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I. NATURE OF THE PROBLEM

Consider a situation where an artillery battery or naval gunfire

support ship desires to fire at a moving land target. If the original

position, speed, and direction of the target were known, the guns

could be aimed so that the projectiles would impact at a calculated

future location of the target. This future location is fairly easily

calculated in this simple situation. The calculations become more

difficult whenever any of the factors of original position, speed and

direction are unknown. In these cases a probabilistic determination

of future target location becomes necessary. It is then possible to

state only that the target is more or less likely, in a probabilistic

sense, to be at a certain location than at another.

This paper will examine the problem of determining the optimal

distribution of aimpoints for a weapon which fires a projectile against

a moving target whose speed is known but whose original position and

the direction of movement are not.

A model for the location of a target under the above circumstances

was developed by B. Koopman in 194-6 (Ref. 1), and is described herein.

Although formulated in a Naval setting, Koopman's model equally well

applies to a moving target that has been detected by a forward observer;

the exact position of the target being unknown. All that is known is

that the target is more likely to be at a point than at any other

point. The target may not be "at 0, however, but only within a short

distance of 0, all points the same distance r from being equally





likely. The probability that the target is in an area dA at a distance

r from the target is defined as P(r)dA. Koopman assumed that the

situation could be approximated by the circular normal distribution,

P(r) = exp |-r /2s
j d)

2ns

2 .

where s is the variance in the original target location.

The speed of the target, u, is assumed to be known but the direction

of the target movement is unknown, all directions being equally likely.

After t units of time the situation may be as shown in Figure 1

.
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Figure 1 . Entry of target into dA

Koopman determined the distribution of moving targets about a point

to be
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where I is the modified Bessel function of the first kind and zero
. o

order. The graph of P(r,t) for different t is shown in Figure 2.





Observe that the probability spreads outward with time so that the

target is most likely to be in an expanding ring about 0.
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Figure 2. The distribution of moving targets about a point 0.





II. MATHEMATICAL MODELS OF WEAPONS FIRING

FRAGMENTING PROJECTILES

It was necessary to examine the mathematical formulation of a

weapon that fires fragmenting projectiles in order to determine the

distribution of aimpoints at a moving target. The basic models for

such weapons usually include four probability distributions.

The probability that a target located at coordinates x
, y is

killed by a round impacting at coordinates x,y is defined as P (x -x,y -y).

This probability may be considered as the lethality function. The

lethality function is the conditional probability that a target at x
,

y, , is killed given that a round impacts at x,y. It may take several

forms of which exponential, linear and "cookie-cutter" are familiar.

Reference 2 discusses lethality functions.

The distribution of impact points about the point of aim is defined

as P (x,y). This distribution is caused by meterological effects on

the projectile and ballistic effects inherent in the weapons system.

Some models have incorporated the distribution of impact points about

the point of aim into the lethality function. It is then possible to

define the probability of killing a target located at coordinates x, , y,

with a round aimed at coordinates x
, y . This probability is defined

a a

as Vw^-yJ*
The probability distribution of aimpoints for a target is dependent

upon the nature of the target, its movement and location, and the type

of weapons system employed. It is defined as P.(x ,y ).A a a





The probability distribution of the location of the target is

defined as P (x
t ,y ).

These distributions have been combined to model weapons systems.

This paper examines three of these models to illustrate the modeling

techniques and to provide background for examining the problem of

determining the distribution of aimpoints of a weapon firing fragmenting

projectiles against a moving target. Although a different notation is

used in each of the original source documents, a standard notation has

been adopted for purposes of presentation in this thesis.

A. THE GROVES MODEL

This model was developed by Groves in Ref. 3» I"t is a simple model

that does not consider a distribution of aimpoint; i.e. the aimpoint

is fixed. If P (x -x,y -y) is the lethality function representing the

probability that a target located at coordinates x
, y is killed by a

round impacting at coordinates x,y, and P
T
(x,y) is the distribution of

the impact points; then the probability of killing a target at x , y

by a round aimed at coordinates x , y is
a a

CO 00

P
K (W yry

a>
=

J* J*
P
L
(x

t
-x,y

t
-y)P (x,y) dx dy. (?)

_oo _co

The probability that a target survives one round is then 1-P (x,-x ,y,-y ),

and the probability of surviving N rounds all aimed at the same aimpoint

is (l-P (x -x ,y,-y )) . The probability that the target is killed by
K. t a ~t a

. N
any of the N rounds is 1-(1-P (x -x ,y,-y )) . This expression can then

Ji "c a T/ a

be integrated over the area of the target, T, to obtain the expected

fractional kill, K

K = JJ (l-(l-P
K
(x

t
-x

a ,yt
-y

a))
N
)dx

t
dy

t
- (4)

T
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The substitution of equation (j) into (4) yields

CO 00

,N>
K = J/Ci-Ci- J J p

L (xt
-Xj yt

~y)p
i
(Xjy) * ^ ) ^t ^t- (5)

•J
1 _oo _O0

Groves further reduces this expression to one that is more suitable for

hand-computing the expected fractional kill. It is noted that the

simplicity of this model is a result of the fixed aimpoint as seen by

comparing the Groves model with the Weiss and the Breaux-Mohler models.

B. THE BREAUX-MOHLER MODEL

This model was published by Breaux and Mohler in Ref, 4» The model

contains all of those distributions discussed earlier. It is used by

Breaux and Mohler to compute the expected fraction of a target damaged

by a salvo of fragmenting projectiles all aimed at the same aimpoint.

They define the probability that a target located at coordinates

x, , y, is damaged by a round impacting at coordinates x,y as P (x -x,y,-y),
X "t Lux

P (x,y) is the density function describing the distribution of impact

points x,y about the aimpoint x , y . It is assumed that all N rounds
a a

of a salvo are aimed at the same aimpoint. The probability a target

survives N rounds is

00 00

(1- J J P (x -x,y
t
-y)P (x,y) <k dy)

N
,

. (6)
_co _co

and the probability of damage over all impact points is

00 00

N
1- (1- J J P (x -x,y -y)P (x,y)dx dy)*. (7)

L v t
,J

t "' I
_00 00

Breaux and Mohler assume that the target is distributed over the target

area, T, as P (x ,y ) , and the aimpoint itself is a random variable





distributed as P (x ,y ), The expected fraction of the target damagedA v a 7 a

is determined to be

* - H J J LH1" J I P
L
(x

t
-x,y

t
-y)P

I (X,y)dx dy) Jp^^)

' P
A(

X
a»

y
a^

dX
t
dy

t ^a^a' ( 8 )

This expression is reduced using a binomial expansion to,

1 = I (-1)5
+1

(») ft
j" f [ f j" P

L
(x

t
-x,

yt
-y)P (x.y)*:^]

i=l d T -^ -00 -00 -00

•P
T
(x

t ,yt
)P
A
(x
a ,ya

)*
t

dsr
t

ax
a
d^. (9)

Breaux and Mohler further reduce equation (8) using Jacobi polynomials

to produce an expression that can be used for determining the expected

fractional kill.

C. THE WEISS MODEL

This model was developed by Weiss in Ref, 5» It will be discussed

more thoroughly than the Groves and Breaux-Mohler models because the

model is used later in the paper, Weiss assumes a target of n men that

is distributed as P (x, ,y,). The probability that a man is in the

small area dx dy, is P (x, ,y,)dx,dy and

00 00

J S P
T
(x

t ,yt
)dx

i;
d
yt

= i. (10)
_oo _co

The expected number of targets in a small area is nP (x ,y,)dx,dy ,

The probability that a round aimed at the aimpoint x
, y will kill a

a a

target is P (x -x ,y,-y ), Weiss assumes that N rounds are fired at
ix. ~c a x a

the target and the ith round has an aimpoint x . , y . , The probability
ai 3.1

10





that a target at x
, y survives all N rounds is

N

^(Xt-
X
a'

yt-ya } "." V^VV^i'^ai^'
i=l

and the probability that a target is killed is

(11)

(12)

The probability that there is a target at x
, y and that is killed is

The expected number killed (k) is

_oo _co

CO 00 CO 00

- n S I VV^t^t ~n
I J P

T(
X
t'yt^(xt-Xa' yt-ya)c^tdyt'

—CO CO

\

CO CO

CO _co

n
L
1- I I P

T
(x

t'
y
t
)q(x

t-
X
a' yt-ya

)dx
t
dy

tJ' (14)
_co _co

The expected fraction surviving $ is
n-K
n

or

n n
00 CO

$ - 5 - n L
1" I J"

P
T
(x

t' yt) qK-X
a'

yt-ya) ^t^tl
.CO _co

CO CO

B I J P
T(vyt)q(VXafyt

-y
a )
&

t ^f (l5)
_co _co

If each round has the same aimpoint, then

CO CO N

K.O=I J P
TK.yt

)(i-P
K(^-^.yt-yJ

dx
t
*r

t .a a
_co _co

(16)

and using a binomial expansion

CO CO JJ

_co _co
j
=

(17)
_co _co
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Assuming that the aimpoints themselves are distributed as P.(x ,y ),A a a'

the expected fraction of targets surviving is

CO CO

- I I VV^V'^K. *a> (18 )
Jri. Si Si ci ct 3, 3/

—CO —CO

* - f f Vv^ .V-
1)" (? f f Vv^vvW

_co _co 1=0 —°° —°°

' dx
t
dy

t ^a^a' ^
D. COMPARISON OF BREAUX-MOHLER AND WEISS MODELS

It is easily shown that the Breaux-Mohler and Weiss models give the

same results. Substituting equation (3) into equation (8) gives the

expected fraction damaged as

CO CO

f = JT I I [i-(i-P
E
(x

t
-Xa,yt

-y
a)f]pT

(x ,y )p (x ,y )ax ay ax ay (20)
(p _CO —CO

Substituting equation (16) into equation (18) gives the expected fraction

of targets surviving as

CO CO CO CO JJ

1 " J" J PA<Vy
a> J" J"

P
T (*t.yt>(

1^K<I
t-
a
a'
yt^a» ^iM^V1^ 21 )

_CO _CO _CO _CO

It is clear that these models are simply complements of each other.

III. THE DETERMINATION OF NECESSARY AND

SUFFICIENT CONDITIONS

The mathematical models described in chapter II can be used to

determine necessary and sufficient conditions for determining the

aimpoint distribution that maximizes the expected fraction of the

12





target destroyed or minimizes the expected fraction of survivors,

depending upon the model used. Reference 6 discusses mathematical models

of hit probabilities and the techniques of maximizing salvo kill

probabilities. Weiss (Ref. 7) attacks this problem using techniques of

Svesnikov (Ref. 8) and Morse and Kimball (Ref. 9). His approach to the

problem of maximizing the salvo kill probability (or minimizing the

fraction of survivors) required the application of the calculus of

variations. This application of the calculus of variations can be

understood by examining the problem considered by Morse and Kimball in

Ref. 9* Their treatment is presented herein to facilitate the under-

standing of Weiss' development of the necessary and sufficient conditions

contained in Appendix A.

A. THE MORSE AMD KIMBALL PROBLEM

Morse and Kimball (Ref. 9 ) examined the problem of determining the

firing pattern that maximizes the probability of at least one hit on a

target when N rounds are fired in a single salvo. An approximate

solution is determined for large patterns.

Morse and Kimball define the probability that a projectile will hit

the small area element dxdy as f(x,y)dxdy. Then

00 00

J J f(x,y)dxdy = N, (22)
_co _oo

where N is the number of rounds fired. The function f(x,y) is considered

to be the pattern density function. Extensive changes in the hit

probability can be obtained by changing the firing pattern. The expected

number of lethal hits on a target located at coordinates x,y is L f(x,y),

13





where L is the lethal area of the target. Morse and Kimball approximate

the expected number of hits on the target using the Poisson probability

distribution. The probability of at least one hit is 1-expJLf (x,y) [, (23)

which is the probability of destroying the target. The total probability

of destroying the target is then

P = f f (l-e-
Lf (X ' y))f (x,y)dxdy, (24)

where f is the probability density for aiming the pattern, usually the

normal density. The problem then is to determine the function f(x,y)

which maximizes P subject to equation (22), The problem is maximize

P - f f (l-e-
Lf (X ' y))f (*,y)cbcdy,

_00 __00 *

00 00

Subject to J J f(x,y)dxdy = N, (25)
_00 _00

f(x,y) * 0.

It is the method of solution of this problem by Morse and Kimball that

is interesting. They consider a pertubation of the function f(x,y); that

is, an increase of f(x,y) by a small amount 6 at the point x.. ,y , and a

decrease of f(x,y) by the same amount 6 at x ,y„. The constraint remains

satisfied while the objective function changes by an amount

(e-
Lf(vVf

p
(V y.,) - e-

Lf (x2 ,y2)f
p
(x

2
,y2)> tody.

Suppose f(x.,y. ) and f(x ,y ) are > 0; then if

e
-if(Xl ,yi)yvyi) > e-

Lf(vy
2>f

p
(x

2 ,y2 ),

P can be increased by a 6 > 0. Conversely, if

e
-Lf(x

1>yi )
( f }

< ^(Wf (x
2
,y

2 ),

14





then P can be increased by 6 < 0. Hence, for that function f(x,y)

which maximizes P, it must be the case that

e-
Lf (x1'yl)f

p(Xl ,y
1
)- e

-M(x2'y2)f
p

(X2 ,y2) (26)

for all points x,y where f(x,y) > 0. For all such points

e
-Lf(x,y)

(x>y) =c >Qt (2?)

Now, instead of x ,y a point x ,y, where f(x,y)=0 is considered. If

f(x
1
,y

1
) is decreased by 6 (which now must be positive) and f(x ,y^) is

increased by 6, then the increase in the objective function is

(f
p
(x

5
,y

3
) - e-^V^fpCx^)) 6 dxdy, (28)

which equals ff (x ,y.,) - c) 6 dxdy. This implies a positive increase in

P is possible if f (x ,y^) > c. Hence, f(x,y) cannot equal unless

f (x >y) ^ c » l"t 1S seen that the solution is

, ,f (x,y),

6(x,y) = ± Ln (-£-£
)

if f
p
(x,y) > c,

=0 if f
p
(x,y) ^ c.

The unknown constant c is determined from the constraint

(29)

1 /
f (x »y)\

N = JJ , I
Ln(—c—) ^ **• (30)

f
p
lx,y)>c

The set of conditions of equations (29) form a set of necessary and

sufficient conditions for determining that pattern that maximizes the

total probability of destroying the target.

Weiss' analysis of the problem of minimizing the fraction of targets

surviving a salvo of N rounds is presented in detail in Appendix A. The

original paper (Ref. 7) is greatly condensed and the entire development is

presented in this paper to facilitate the understanding of the techniques

used in the solution.

15





IV. THE SOLUTION

A. ANOTHER REPRESENTATION OF THE PROBLEM

Weiss' coverage problem discussed in Appendix 1 can be written as

00 CO

Minimize $ = J J P (x ,y ) e"
U^Xt ,yt ; dx dy

;

_00 _00

Subject to oo oo

J" J" VV 5^ ta
a

dy
a = N C 1

)
_oo _oo

PA<Vy
a>

k
°

where
00 00

^x
t' yt } =11 P

A
(x
a ' ya

)Ln ^X
t-

X
a' yt-ya

)dx
a
dy

a'
«..CO —CO

P (x, ,y.) and P,(x ,y ) are the target and aimpoint distributions

described earlier. It is noted that in addition to the constraints

above, it is trivially true that

OO 00

! I P
T
(«

t
.yt ) -i. (52)

_00 _00

The solution to this problem is determined in Appendix 1 to be

«_00 _00

>c if P
A
(x
a ,ya

)=o

where q(x -x ,y -y .) relates to the lethality function. It is not

possible to simply substitute other than trivial target distributions or

lethality functions into the necessary and sufficient conditions of

equations (33) and determine the distribution of aimpoint s that

16





minimizes the number of survivors. However, a solution to these

equations may be obtained by using a finite difference approximation to

the integrals. This paper assumes that the solution to the finite

difference approximation Converges to the solution of the original

problem. The proof of this convergence, however, is beyond the scope

of this paper. It is realized that finite difference techniques may

guarantee solution for specific values but usually preclude the seeing

of relationships between equation parameters.

Equation (3l) can be approximated as

k k
- ( )

Minimize 2 2 P (x ,y )e
U ^Xt ,yt',

x =1 y, =1
1 *

(5i

)

k k

Subject to E 2 P (x ,y ) = N,
-, -, I\. cl clV1 ya

=1

PA<V ya> * °>

k k
where u(x.,y

t
) = 2 2 P

A
(x
a ,ya

)Lnq(x
t
~x

a , yt
-y

a )

x =1 y =1
a J a

and the upper limit of summation, k, is the number of increments in the

approximation. Equations (33) can similiarly be approximated by

x
t
=1 yt

=1
(35)

>C if P
A
(x
a ,ya

)=0.

The corresponding finite approximation to equation (32) is

k k

2 2 P
T
(x

t
,y

t
) - 1. (36)

x
t
=1 yt

=1

It is noted that equations (35) are the derivatives with respect to

P (x ,y ) of the objective function of equation (3*+) when the expression
A ci £t

17





for u(x ,y ) is substituted into the objective function. Equations (35)

can be written as

3* = if P
A
(x
a ,ya

) >
( }VW >C if P

A
(x

a>
ya) =

It is noted that the objective function is convex in P.(x ,y ) and
a a a

A

that equations (35) and. (37) are simply the results of Gibbs Lemma

as applied to equations (34).

A solution to equations (35) can be obtained with a computer by

dividing the target area into cells sufficiently small for approximation

of the small areas dx dy and dx dy . To simplify the computer procedure,XT a a

the following notations will be used:

P. = The expected fraction of the target in cell i; it is

analogous to the target distribution,

y. = The proportion of the total rounds aimed at cell j; it is
J

analogous to the aimpoint distribution P
A
(x ,y );A a a

b. . = The probability that a target in cell i is killed by a

round aimed at cell j ; it is analogous to the lethality

function q(x
t
-x

a ,yt
-y

a).

The problem in equation (34) can then be rewritten as

k k
k -Z Z y b

Minimize $ = S P.e i=1 j=1 J 1J
.

i=1
X

k
Subject to E P. = 1, (38)

i=1
X

k
2 y • = 1

0=1
J

P., y., b. . ^
1 10

Gibbs Lemma is discussed in Ref. 10.
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= c if
*i*

o,

> c if yr o,

if y
3
>o,

if yi-
- 0,

The solution is in terms of the y.'s and k is the total number of cells.

Equations (35) and (37) can he rewritten as

If" = "p
i

b
ij

e
"y^ij - c if ^ > °> (59)

J

or, equivalently,

P b e^j ij = Y
J

(40)
< Y

where Y = -C.

The problem thus presented is similar to one presented by Professor

John M. Danskin to his Games of Strategy class at the U. S. Naval

Postgraduate School in December, 1970*

B. THE COMPUTER SOLUTION TECHNIQUE

A solution technique is to divide an area of one Kilometer square

into cells of twenty meters square. The P.'s are then determined for

each of the 2,500 cells from the target distribution. To solve the

problem of firing at targets obeying Koopmans 1 moving target distribution

described earlier, values of time of impact and speed of the target are

inputs and. the P.'s are determined from equation (2) for each cell of

the simulated target area. The b. .'s are determined from the lethality

functions for the weapon system being investigated. For an artillery

weapon it is the case that the b. .'s = for all cells j more than,

say, 60 meters from cell i. This means the number of machine calculations

required for solving the problem in equations (40) would be reduced

considerably as the sum over j would be limited to the 48 cells

immediately surrounding cell i and, of course, cell i itself.

19





It is noted that if b. . =0 for all j ^ i; that is, the probability

that targets outside the aimpoint cell are killed is zero, the solution

is
P.b

y. = ~- Ln
1 J if P.b. . > Y

,

= if P.b. . ^ V .

Y is determined from the equation

k , P. b. .

E _L Ln _L__AI . !

i=1
b
ij Y

which is analyzed in Ref. 10.

After the values for the P.'s have been initialized and the lethality

function formulas are determined for the cells surrounding each cell i,

a beginning set of values for each y . is initialized. A possible set of
J

y. 's is y
1
=1, y,->=...= y „ =0. It is then necessary to determine if that

initialized set of y.'s give a minimum value of $ and, if not, in which
J

direction to move (i.e. what other vector of y.'s) to produce a lower $,
j

An algorithm has been developed by Professor Danskin that will cause

convergence to a vector of y.'s that produce a minimum §. The computer
J

program for this algorithm as well as the application of the algorithm

to the problem discussed in this paper are presented as a separate thesis

for Professor Danskin by Major Paul T. Zmuida, USA.
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APPENDIX A

Weiss desires to minimize
oo oo JJ

|s! J J P
T (xt' yt) " qK-X

ai' yt-yai^tdy
t' <A~1 )

_oo _oo i=1

Subject to

_oo _oo

P
T
(x

t
,yt

) * 0,
. .

where $ is the expected fraction of the target surviving, P (x ,y.) is

N
the target distribution, and tt q(x -x . ,y,-j .) is the probability a

1=1

target at coordinates x, ,y, survives a salvo of N rounds when the ith

round is aimed at aimpoint x . ,y .. Weiss wishes to minimize $ by a
ax ai

proper choice of x . ,y .

,

ax ax

A new function is defined such that

N
u(xt'yt }

= ~Ln A q(VX
ai' yt-yai } '

x=i

" "Ln [^t^al^t^al^-'-'^V^^t-y* 5 ]'

- -[^ l(xt"
X
al»yryal)

+'" + Ln ^(xt-
X
aN'

yt-ya^]»

N
/-"^ Lnq K^ai^t'^'

N
or -u(x

t
,y

t
) -£ Ln q (^-x^^^y^). (A-2)

The objective function can then be rewritten as

* - f f Vx
t'^t)

e
-u(x

t'yt) to+ dy+ .
(A-5)

CO —°° V"V
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Weiss then makes an approximation that a distribution function for the

aimpoints can he substituted for the exact knowledge of x . ,y . so that

the number of rounds aimed at area dx dy is P,(x ,y )dx dy . The total
a a A v a a' a a

number of rounds is

00 CO

_oo _co

and since negative rounds cannot be fired,

Equation (A-2) can then be written as

-u(x
t
,y

t ) . J J p
A (xa »ya ) Ln 1 (xt

-X
a'yt"ya

)dX
a
dy

a'
(A"6)

_00 _CD

The complete problem was minimize
CO CO

* = I J P
T
(x

t>
y
t

) e-^t^t)dx
t
,dy

t ,

_CD _C0

subject to

CO CO

_C0 _co

CO CO

J J Vv."1.*.-"'
_CO _co

P
T
(x

t
,yt

) * o, P
A
(x
a ,ya

) * o

Weiss continues his solution using techniques similar to those of Morse

and Kimball described earlier. For any arbitrary P.(x ,y ) add a small
a a a

increment 6 to P.(x ,y ) over the interval Ax at x and Ay at y . .
A a a a al aL

Now examine the change in $. The procedure can be illustrated as shown

in Figure 3»
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te{
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Figure 3» Illustration of small increment 6

added to P.(x ,y ) over interval Ax at x . and Ay at y ,
A ci cL 3, cL-L ci cl_L

The change in $ can be expressed as

$ -$ , = A§
PA<W + 'VW ^'^

From equation (A-3)

,

(A-7)

—co _co

_co —CO

A
* = J J VxfV expW J (pA («a .ya

)+*
A ( xa'yaJ)to

'1 (
x
t^a'yt-= ra )

_00 _CG>

-exp{-J J P
A
(x .ya

)Ln q(x -x^
f y -y ) dx

dy
J dx dy

—CO —CO u u

CO CO CO CO

A$ =J J P
T (Vyt)

exp {"I I P
A
(x

a'
ya

)Ln q(x
t-

X
al' yt-yal

)dX
a
dy

a
—CO —CO _co _co

00 CO CO CO

-I I APA
(x

a' ya } Ln q(x
t-

X
al' yt-yal

)dX
a
dyJ-eXp {"I I P

A
(x

a' ya }

—CO —CO —CO —CO

•Ln q(*
t
-x
al ,yt

-y
al

)ta
a
ayJ ax

t
<Jyv

-co _co
L t t -00 "^

CO CO

r - 1 X ^A ("B .ya^ ^Val'^al^a^a .1 , .

• e -» -00

-1
J dx^ay^,
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-J S W yi> ^_00 _00 *-

•dxdy (A-8)
-l|dx

t
dy

t
.

Since P.(x ,y ,)=6 and Ln q (x-x ,y-y ) is approximately constant overA U T/ an 3

1

a very small area dx dy ,a a

A* "J J
P
T^

x
t'yt^

e
L
S "1

J
dx

t'^
rf ' ^

_00 _O0

If the "bracketed term is now expanded in a Taylor's expansion of e and

a first order approximation is applied, then

00 ro -u(x
t
,yt )

A$ -
J J

P
T
(x

t
,y

t
)e '

L-
6Ax

a
Aya

Ln *(Vx
al '^al) J

dx
t
dy

t

00 °° -ii(x
t
,y

t )

-6Ax
a
Ay
a J J P

T
(x

t
,y

t
)e ' Ln ^'^7^^)^^

Weiss defines

oo oo -u(x
t
,y

t )

-IS P
TK' y

t
)e ' Ln ^(xt-

x
al'yt-yal

)dx
t
dy

t
=

P(xal'yal}

and then

A$ «- P(x
al ,yal

)6Ax
a
Ay

a
. (A-10)

Now either P (x ,y ) > or P.(x ,y ) =0. That is, either some rounds
A a a A a a

or no rounds are aimed at the immediate vicinity of x ,y . If
a a

P (x ,y ) > 0, 6 can be added or subtracted from it; if P (x ,y ) = 0,
A a a a a a

6 can only be added to it.

Weiss considers two points x , ,y and x
a2 ,ya2

where P
A (xa >ya) > 0:

6 is added to P.(x ,y ) at one point and subtracted from the other. The
XX SL 9*

change in $ can be determined from equation (A-10).
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a$ -a$ (xaV y
a1 ) -a* (*

a2 ,ya2 ),

- p (x
a1

,y
a1

) 6Ax
a
Ay

a
- p (xa2fya2

)aAr
a
Aarai

~
_

P (x
a1

' ya1^ p (Xa2' ya2>]
6Ax

a
Ay

a' (A"11 )

If (A-11) is positive then $ can "be reduced further by changing the sign

of 6, which it is permissible to do since P.(x ,y ) > at both points.
a cL cl

It is clear that if

P (x
a1

,ya1^
< P ^Xa2'ya2^

then A$ < ° if 6 > °»

P (x
a1

,ya1^
>

P ^Xa2 ,ya2^
then A$ < ° if 6 < °'

The conditions for an optimum exists when

p (xa1 ,ya1^
=

p ^Xa2 ,ya2^
= constant c » (A-12)

for all points where P.(x ,y ) > 0,
Jx Sit cl

Weiss then examines a point x ?J y _ where P.(x ,y ) = 0. P.(x ,y )* a3 ,J a3 A v a* a' A v a* a y

can only be added to at this point. Comparing x -,,y , to the point

where P
A(*a »ya ) > 0,

A* =
[ p (x

a3 ,ya3 ) - p(x
a1

,y
a1 )j 6^^,

which is negative if and only if

p(=c
a3 ,ya3

) <
P (x

a1 ,ya1
) =c. (a-15)

That is to say $ can be decreased only if
p
(x ,,y ,) < C. At the

optimum solution $ can no longer be decreased.

The original problem is now reduced to solving the following conditions:

P (xa1' yal) " C if P
A<

X
a'
ya)

>0

< c if P
A(*a ,ya) " °»
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00 °° -u(x
t
,y )

where
p (x fya1 ) = - J J Wyt> e *n ^x

t"
X
a1 '^a^t^i

_00 _00

and u(x ,y.) is as defined in equation (A-6),

Weiss has determined necessary and sufficient conditions for the

aimpoint distribution to be positive. The problem now has been reduced

to solving equations (A-14) which is a difficult problem and to which

there exists no general solution in closed form.
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