

Calhoun: The NPS Institutional Archive DSpace Repository

Determination of distribution of aimpoints against a moving target.

Hesser, William Andrew.

Monterey, California ; Naval Postgraduate School
https://hdl.handle.net/10945/15655

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for

DETERMINATION OF DISTRIBUTION OF AIMPOINTS AGAINST A MOVING TARGET

By
William Andrew Hesser

United States Naval Postgraduate School

THESIS

\square

Approved for public release; distribution unlimited.

Determination of Distribution of Aimpoints Against a Moving Target
by

William Andrew Hesser
Captain, United States Marine Corps
B.S., United States Naval Academy, 1962

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERAIICNS RESEARCH
from the
NAVAL POSTGRADUATE SCHOOL
March 1971

Abstract

The determination of the optimal distribution of aimpoints is examined for weapons that fire fragmenting projectiles against mobile targets. A finite difference approximation which reduces the problem to a mathematical programming problem is developed. Computational considerations for this nonlinear prograrming problem are discussed.

I. NATUPE OF THE PROBIEEM 4
II. MATHEMATICAL MODELS OF WEAPONS FIRING FRAGMENTING PROJECTILES 7
A. THE GROVES MODEL 8
B. THE BREAUX-MOHLER MODEL 9
C. THE WEISS MODEL 10
D. COMPARISON OF BREAUX-MOHLER AND WEISS MODELS 12
III. THE DETERMTNATION OF NECESSARY AND SUFFICIENT CONDITIONS 12
IV. THE SOLUTION 16
A. ANOTHER REPRESENTATION OF THE PROBLEM 16
B. THE COMPUTER SOLUTION TECHNIQUE 19
APPENDIX A Weiss' Development of Necessary and Sufficient Conditions- 21
LIST OF REFERENCES- 27
INITIAL DISTRIBUTION LIST 28
FORM DD 1473 29

I. NATURE OF THE PROBIEMM

Consider a situation where an artillery battery or naval gunfire support ship desires to fire at a moving land target. If the original position, speed, and direction of the target were known, the guns could be aimed so that the projectiles would impact at a calculated future location of the target. This future location is fairly easily calculated in this simple situation. The calculations become more difficult whenever any of the factors of original position, speed and direction are unknown. In these cases a probabilistic determination of future target location becomes necessary. It is then possible to state only that the target is more or less likely, in a probabilistic sense, to be at a certain location than at another.

This paper will examine the problem of determining the optimal distribution of aimpoints for a weapon which fires a projectile against a moving target whose speed is known but whose original position and the direction of movement are not.

A model for the location of a target under the above circumstances was developed by B. Koopman in 1946 (Ref. 1), and is described herein. Although formulated in a Naval setting, Koopman's model equally well applies to a moving target that has been detected by a forward observer; the exact position of the target being unknown. All that is known is that the target is more likely to be at a point 0 than at any other point. The target may not be-at 0 , however, but only within a short distance of 0 , all points the same distance r from 0 being equally
likely. The probability that the target is in an area $d A$ at a distance r from the target is defined as $P(x) d A$. Koopman assumed that the situation could be approximated by the circular normal distribution,

$$
\begin{equation*}
P(r)=\frac{1}{2 \pi s^{2}} \exp \left\{-r^{2} / 2 s^{2}\right\} \tag{1}
\end{equation*}
$$

where s^{2} is the variance in the original target location.
The speed of the target, u, is assumed to be known but the direction of the target movement is unknown, all directions being equally likely. After t units of time the situation may be as shown in Figure 1.

Figure 1. Entry of target into $d A$
Koopman determined the distribution of moving targets about a point 0 to be

$$
\begin{equation*}
P(x, t)=\frac{1}{2 \pi s^{2}} \exp \left\{-\left(x^{2}+u^{2} t^{2}\right) / 2 s^{2} \rho I_{0}\left(\frac{m u t}{2}\right)\right. \tag{2}
\end{equation*}
$$

where I_{0} is the modified Bessel function of the first kind and zero order. The graph of $P(r, t)$ for different t is shown in Figure 2.

Observe that the probability spreads outward with time so that the target is most likely to be in an expanding ring about 0 .

Figure 2. The distribution of moving targets about a point 0 .

It was necessary to examine the mathematical formulation of a weapon that fires fragmenting projectiles in order to determine the distribution of aimpoints at a moving target. The basic models for such weapons usually include four probability distributions.

The probability that a target located at coordinates x_{t}, y_{t} is killed by a round impacting at coordinates x, y is defined as $P_{L}\left(x_{t}-x, y_{t}-y\right)$. This probability may be considered as the lethality function. The lethality function is the conditional probability that a target at x_{y}, y_{t}, is killed given that a round impacts at x, y. It may take several forms of which exponential, linear and "cookie-cutter" are familiar. Reference 2 discusses lethality functions.

The distribution of impact points about the point of aim is defined as $P_{I}(x, y)$. This distribution is caused by meterological effects on the projectile and ballistic effects inherent in the weapons system. Some models have incorporated the distribution of impact points about the point of aim into the lethality function. It is then possible to define the probability of killing a target located at coordinates x_{t}, y_{t} with a round aimed at coordinates x_{a}, y_{a}. This probability is defined as $\dot{P}_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)$.

The probability distribution of aimpoints for a target is dependent upon the nature of the target, its movement and location, and the type of weapons system employed. It is defined as $P_{A}\left(x_{a}, y_{a}\right)$.

The probability distribution of the location of the target is defined as $P_{T}\left(x_{t}, y_{t}\right)$.

These distributions have been combined to model weapons systems. This paper examines three of these models to illustrate the modeling techniques and to provide background for examining the problem of determining the distribution of aimpoints of a weapon firing fragmenting projectiles against a moving target. Although a different notation is used in each of the original source documents, a standard notation has been adopted for purposes of presentation in this thesis.

A. THE GROVES MODEL

This model was developed by Groves in Ref. 3. It is a simple model that does not consider a distribution of aimpoint; i.e. the aimpoint is fixed. If $P_{I}\left(x_{t}-x, y_{t}-y\right)$ is the lethality function representing the probability that a target located at coordinates x_{t}, y_{t} is killed by a round impacting at coordinates x, y, and $P_{I}(x, y)$ is the distribution of the impact points; then the probability of killing a target at x_{t}, y_{t} by a round aimed at coordinates x_{a}, y_{a} is

$$
\begin{equation*}
P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{L}\left(x_{t}-x, y_{t}-y\right) P_{I}(x, y) d x d y \tag{3}
\end{equation*}
$$

The probability that a target survives one round is then $\operatorname{l-} P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)$, and the probability of surviving \mathbb{N} rounds all aimed at the same aimpoint is $\left(I-P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)\right)^{N}$. The probability that the target is killed by any of the N rounds is $l-\left(l-P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)\right)^{\dot{N}}$. This expression can then be integrated over the area of the target, T, to obtain the expected fractional kill, $\overline{\mathrm{K}}$

$$
\begin{equation*}
\bar{K}=\iint_{T}\left(1-\left(1-P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)\right)^{N}\right) d x_{t} d y_{t} \tag{4}
\end{equation*}
$$

The substitution of equation (3) into (4) yields

$$
\begin{equation*}
\bar{K}=\iint_{T}\left(1-\left(I-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{L}\left(x_{t}-x, y_{t}-y\right) P_{I}(x, y) d x d y\right)^{N}\right) d x_{t} d y_{t} \tag{5}
\end{equation*}
$$

Groves further reduces this expression to one that is more suitable for hand-computing the expected fractional kill. It is noted that the simplicity of this model is a result of the fixed aimpoint as seen by comparing the Groves model with the Weiss and the Breaux-Mohler models.
B. THE BREAUX-MOHLEFR MODEL

This model was published by Breaux and Mohler in Ref. 4. The model contains all of those distributions discussed earlier. It is used by Breaux and Mohler to compute the expected fraction of a target damaged by a salvo of fragmenting projectiles all aimed at the same aimpoint. They define the probability that a target located at coordinates x_{t}, y_{t} is damaged by a round impacting at coordinates x, y as $P_{L}\left(x_{t}-x, y_{t}-y\right)$. $P_{I}(x, y)$ is the density function describing the distribution of impact points x, y about the aimpoint x_{a}, y_{a}. It is assumed that all N rounds of a salvo are aimed at the same aimpoint. The probability a target survives N rounds is

$$
\begin{equation*}
\left(1-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{L}\left(x_{t}-x, y_{t}-y\right) P_{I}(x, y) d x d y\right)^{N} \tag{6}
\end{equation*}
$$

and the probability of damage over all impact points is

$$
\begin{equation*}
1-\left(1-\int_{-\infty}^{\infty} \int_{\infty}^{\infty} P_{I}\left(x_{t}-x, y_{t}-y\right) P_{I}(x, y) d x d y\right)^{N} \tag{7}
\end{equation*}
$$

Breaux and Mohler assume that the target is distributed over the target area, T, as $P_{T}\left(x_{t}, y_{t}\right)$, and the aimpoint itself is a random variable
distributed as $P_{A}\left(x_{a}, y_{a}\right)$. The expected fraction of the target damaged is determined to be

$$
\begin{gather*}
\bar{f}=\iint_{T} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[1-\left(1-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{L}\left(x_{t}-x, y_{t}-y\right) P_{I}(x, y) d x d y\right)^{N_{-}} P_{T}\left(x_{t}, y_{t}\right)\right. \\
\cdot P_{A}\left(x_{a}, y_{a}\right) d x_{t} d y_{t} d x_{a} d y_{a} . \tag{8}
\end{gather*}
$$

This expression is reduced using a binomial expansion to.

$$
\begin{gather*}
\bar{f}=\sum_{j=1}^{N}(-1)^{j+1}\binom{N}{j} \iint_{T} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{L}\left(x_{t}-x, y_{t}-y\right) P_{I}(x, y) d x d y\right]^{j} \\
\cdot P_{T}\left(x_{t}, y_{t}\right) P_{A}\left(x_{a}, y_{a}\right) d x_{t} d y_{t} d x_{z} d y_{a} \cdot \tag{9}
\end{gather*}
$$

Breaux and Mohler further reduce equation (8) using Jacobi polynomials to produce an expression that can be used for determining the expected. fractional kill.

C. THE WEISS MODEL

This model was developed by Weiss in Ref. 5. It will be discussed more thoroughly than the Groves and Breaux-Mohler models because the model is used later in the paper. Weiss assumes a target of n men that is distributed as $P_{T}\left(x_{t}, y_{t}\right)$. The probability that a man is in the small area $d x_{t} d y{ }_{t}$ is $P_{T}\left(x_{t}, y_{t}\right) d x_{t} d y_{t}$ and

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) d x_{t} d y_{t}=1 . \tag{10}
\end{equation*}
$$

The expected number of targets in a small area is $n P_{T}\left(x_{t}, y_{t}\right) d x_{t} d y_{t}$. The probability that a round aimed at the aimpoint x_{a}, y_{a} will kill a target is $P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)$. Weiss assumes that N rounds are fired at the target and the ith round has an aimpoint $\mathrm{x}_{\mathrm{ai}}, \mathrm{y}_{\mathrm{ai}}$. The probability
that a target at x_{t}, y_{t} survives all N rounds is

$$
\begin{equation*}
q\left(x_{t}-x_{a}, y_{t}-y_{a}\right)=\prod_{i=1}^{N}\left(1-P_{K}\left(x_{t}-x_{a i}, y_{t}-y_{a i}\right)\right) \tag{11}
\end{equation*}
$$

and the probability that a target is killed is

$$
\begin{equation*}
1-q\left(x_{t}-x_{a}, y_{t}-y_{a}\right) \tag{12}
\end{equation*}
$$

The probability that there is a target at x_{t}, y_{t} and that is killed is

$$
\begin{equation*}
P_{T}\left(x_{t}, y_{t}\right)\left(1-q\left(x_{t}-x_{a}, y_{t}-y_{a}\right)\right) \tag{13}
\end{equation*}
$$

The expected number killed (K) is

$$
\begin{align*}
K & =n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right)\left(1-q\left(x_{t}-x_{a}, y_{t}-y_{a}\right)\right) d x_{t} d y_{t}, \\
& =n \int_{-\infty}^{\infty} \int_{\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) d x_{t} d y_{t}-n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) q\left(x_{t}-x_{a}, y_{t}-y_{a}\right) d x_{t} d y_{t}, \\
& =n\left[1-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) q\left(x_{t}-x_{a}, y_{t}-y_{a}\right) d x_{t} d y_{t}\right] \tag{14}
\end{align*}
$$

The expected fraction surviving Φ is $\frac{n-K}{n}$, or

$$
\begin{align*}
\Phi & =\frac{n}{n}-\frac{n}{n}\left[1-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) q\left(x_{t}-x_{a}, y_{t}-y_{a}\right) d x_{t} d y_{t}\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) q\left(x_{t}-x_{a}, y_{t}-y_{a}\right) d x_{t} d y_{t} . \tag{15}
\end{align*}
$$

If each round has the same aimpoint, then

$$
\begin{equation*}
\Phi\left(x_{a}, y_{a}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right)\left(1-P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)^{N} d x_{t} d y_{t}\right. \tag{16}
\end{equation*}
$$

and using a binomial expansion

$$
\begin{align*}
\Phi\left(x_{a}, y_{a}\right) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) \sum_{j=0}^{N}(-1)^{N}\binom{N}{j} P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)^{j} d x_{t} d y_{j}, \\
& =\sum_{j=0}^{N}(-1)^{N}\binom{N}{j} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)^{j} d x_{t} d y_{t} \tag{17}
\end{align*}
$$

Assuming that the aimpoints themselves are distributed as $\mathrm{P}_{\mathrm{A}}\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right)$, the expected fraction of targets surviving is
$\Phi=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right) \Phi\left(x_{a}, y_{a}\right) d x_{a} d y_{a}$,
$\Phi=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right) \sum_{j=0}^{N}(-1)^{N}\binom{\mathbb{N}}{j} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)^{j}$

- $d x_{t} \mathrm{dy}_{t} \mathrm{dx}_{\mathrm{a}} \mathrm{dy}_{a}$.
D. COMPARISON OF BREAUX-MOHLER AND WEISS MODELS

It is easily shown that the Breaux-Mohler and Weiss models give the same results. Substituting equation (3) into equation (8) gives the expected fraction damaged as
$\bar{f}=\iint_{T} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[1-\left(1-P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)\right)^{N T} P_{T}\left(x_{t}, y_{t}\right) P_{A}\left(x_{a}, y_{a}\right) d x_{t} d y_{t} d x_{a} d y_{a} \cdot(20)\right.$
Substituting equation (16) into equation (18) gives the expected fraction of targets surviving as
$\Phi=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right)\left(1-P_{K}\left(x_{t}-x_{a}, y_{t}-y_{a}\right)\right)^{N} d x_{t} d y_{t} d x_{a} d y_{a}(21)$
It is clear that these models are simply complements of each other.

III. THE DETERMINATION OF NECESSARY AND
 SUFFICIENT CONDITIONS

The mathematical models described in chapter II can be used to determine necessary and sufficient conditions for determining the aimpoint distribution that maximizes the expected fraction of the
target destroyed or minimizes the expected fraction of survivors, depending upon the model used. Reference 6 discusses mathematical models of hit probabilities and the techniques of maximizing salvo kill probabilities. Weiss (Ref. 7) attacks this problem using techniques of Svesnikov (Ref. 8) and Morse and Kimball (Ref. 9). His approach to the problem of maximizing the salvo kill probability (or minimizing the fraction of survivors) required the application of the calculus of variations. This application of the calculus of variations can be understood by examining the problem considered by Morse and Kimball in Ref. 9. Their treatment is presented herein to facilitate the understanding of Weiss' development of the necessary and sufficient conditions contained in Appendix A.
A. THE MORSE AND KIMBALL PROBLEM

Morse and Kimball (Ref. 9) examined the problem of determining the firing pattern that maximizes the probability of at least one hit on a target when N rounds are fired in a single salvo. An approximate solution is determined for large patterns.

Morse and Kimball define the probability that a projectile will hit the small area element dxdy as $f(x, y) d x d y$. Then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=N \tag{22}
\end{equation*}
$$

where N is the number of rounds fired. The function $f(x, y)$ is considered to be the pattern density function. Extensive changes in the hit probability can be obtained by changing the firing pattern. The expected number of lethal hits on a target located at coordinates x, y is $L f(x, y)$,
where L is the lethal area of the target. Morse and Kimball approximate the expected number of hits on the target using the Poisson probability distribution. The probability of at least one hit is $\operatorname{l-exp}\{\operatorname{Lf}(x, y)\}$, which is the probability of destroying the target. The total probability of destroying the target is then

$$
\begin{equation*}
P=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(1-e^{-L f(x, y)}\right) f_{p}(x, y) d x d y \tag{24}
\end{equation*}
$$

where f_{p} is the probability density for aiming the patterm, usually the normal density. The problem then is to determine the function $f(x, y)$ which maximizes P subject to equation (22). The problem is maximize

$$
\begin{gather*}
P=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(1-e^{-\operatorname{Lf}(x, y)}\right) f_{p}(x, y) d x d y \\
\text { Subject to } \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=N \tag{25}\\
f(x, y) \geq 0
\end{gather*}
$$

It is the method of solution of this problem by Morse and Kimball that is interesting. They consider a pertubation of the function $f(x, y)$; that is, an increase of $f(x, y)$ by a small amount δ at the point x_{1}, y_{1}, and a decrease of $f(x, y)$ by the same amount δ at x_{2}, y_{2}. The constraint remains satisfied while the objective function changes by an amount

$$
\left(e^{\left.\left.-L f\left(x_{1}, y_{1}\right)_{f}\left(x_{1}, y_{1}\right)-e^{-L f\left(x_{2}\right.}, y_{2}\right)_{f_{p}}\left(x_{2}, y_{2}\right)\right) \delta d x d y .}\right.
$$

Suppose $f\left(x_{1}, y_{1}\right)$ and $f\left(x_{2}, y_{2}\right)$ are >0; then if

P can be increased by a $\delta>0$. Conversely, if

$$
e^{\left.-\operatorname{Lf}\left(x_{1}, y_{1}\right)_{f_{p}}\left(x_{1}, y_{1}\right)<e^{-\operatorname{Lf}\left(x_{2}\right.}, y_{2}\right)_{f_{p}}\left(x_{2}, y_{2}\right), ~}
$$

then P can be increased by $\delta<0$. Hence, for that function $f(x, y)$ which maximizes P, it must be the case that

$$
\begin{equation*}
e^{-\operatorname{Lf}\left(x_{1}, y_{1}\right)_{f_{p}}\left(x_{1}, y_{1}\right)}=e^{-\operatorname{Lf}\left(x_{2}, y_{2}\right)_{f_{p}}\left(x_{2}, y_{2}\right)} \tag{26}
\end{equation*}
$$

for all points x, y where $f(x, y)>0$. For all such points

$$
\begin{equation*}
e^{-L f(x, y)_{f}(x, y)=c>0 . ~} \tag{27}
\end{equation*}
$$

Now, instead of x_{2}, y_{2} a point x_{3}, y_{3} where $f(x, y)=0$ is considered. If $f\left(x_{1}, y_{1}\right)$ is decreased by δ (which now must be positive) and $f\left(x_{3}, y_{3}\right)$ is increased by δ, then the increase in the objective function is

$$
\begin{equation*}
\left(f_{p}\left(x_{3}, y_{3}\right)-e^{\left.-L f\left(x_{1}, y_{1}\right)_{f_{p}}\left(x_{1} y_{1}\right)\right)} \delta d x d y\right. \tag{28}
\end{equation*}
$$

which equals $\left(f_{p}\left(x_{3}, y_{3}\right)-c\right) \delta d x d y$. This implies a positive increase in P is possible if $f_{p}\left(x_{3}, y_{3}\right)>c$. Hence, $f(x, y)$ cannot equal 0 unless $f_{p}(x, y) \leq c$. It is seen that the solution is

$$
\begin{align*}
\delta(x, y) & =\frac{1}{L} \operatorname{Ln}\left(\frac{f_{p}(x, y)}{c}\right) & & \text { if } f_{p}(x, y)>c, \tag{29}\\
& =0 & & \text { if } f_{p}(x, y) \leq c .
\end{align*}
$$

The unknown constant c is determined from the constraint

$$
\begin{equation*}
N=\iint_{f_{p}}(x, y)>\frac{1}{\frac{1}{c}} \operatorname{Ln}\left(\frac{f(x, y)}{c}\right) d x d y . \tag{30}
\end{equation*}
$$

The set of conditions of equations (29) form a set of necessary and sufficient conditions for determining that pattern that maximizes the total probability of destroying the target.

Weiss' analysis of the problem of minimizing the fraction of targets surviving a salvo of N rounds is presented in detail in Appendix A. The original paper (Ref. 7) is greatly condensed and the entire development is presented in this paper to facilitate the understanding of the techniques used in the solution.

IV. THE SOLUTION

A. ANOTHER REPRESENTATION OF THE PROBLEM

Weiss' coverage problem discussed in Appendix 1 can be written as
Minimize $\Phi=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)} d x_{t} d y_{t} ;$
Subject to

$$
\begin{array}{r}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right) d x_{a} d y_{a}=N \tag{31}\\
P_{A}\left(x_{a}, y_{a}\right) \geq 0
\end{array}
$$

where

$$
u\left(x_{t}, y_{t}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right) \ln q\left(x_{t}-x_{a}, y_{t}-y_{a}\right) d x_{a} d y_{a}
$$

$P_{T}\left(x_{t}, y_{t}\right)$ and $P_{A}\left(x_{a}, y_{a}\right)$ are the target and aimpoint distributions described earlier. It is noted that in addition to the constraints above, it is trivially true that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right)=1 \tag{32}
\end{equation*}
$$

The solution to this problem is determined in Appendix 1 to be

$$
\begin{aligned}
-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)} \operatorname{Lnq}\left(x_{t}-x_{a 1}, y_{t}-y_{a 1}\right) d x_{t} d y_{t} & =C \text { if } P_{A}\left(x_{a}, y_{a}\right)>0(33) \\
>C & \text { if } P_{A}\left(x_{a}, y_{a}\right)=0
\end{aligned}
$$

where $q\left(x_{t}-x_{a 1}, y_{t}-y_{a 1}\right)$ relates to the lethality function. It is not possible to simply substitute other than trivial target distributions or lethality functions into the necessary and sufficient conditions of equations (33) and determine the distribution of aimpoints that
minimizes the number of survivors. However, a solution to these equations may be obtained by using a finite difference approximation to the integrals. This paper assumes that the solution to the finite difference approximation converges to the solution of the original problem. The proof of this convergence, however, is beyond the scope of this paper. It is realized that finite difference techniques may guarantee solution for specific values but usually preclude the seeing of relationships between equation parameters.

Equation (31) can be approximated as
Minimize $\sum_{x_{t}=l}^{k} \sum_{y_{t}=l}^{k} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)}$,
k k
Subject to $\sum_{x_{a}=1}^{\sum} \sum_{y_{a}=1} P_{A}\left(x_{a}, y_{a}\right)=N$,
where $u\left(x_{t}, y_{t}\right)=\sum_{x_{a}=1}^{k} \sum_{y_{a}=1}^{P_{A}\left(x_{a}, y_{a}\right) \geq 0,}$
and the upper limit of summation, k, is the number of increments in the approximation. Equations (33) can similiarly be approximated by

$$
\begin{align*}
-\sum_{x_{t}=l}^{k} \sum_{y_{t}=1}^{k} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)_{\operatorname{Lnq}}\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right)} & =C \text { if } P_{A}\left(x_{a}, y_{a}\right)>0 \tag{35}\\
& >C \text { if } P_{A}\left(x_{a}, y_{a}\right)=0 .
\end{align*}
$$

The corresponding finite approximation to equation (32) is

$$
\begin{equation*}
\sum_{x_{t}=l}^{k} \sum_{y_{t}^{\prime}=l}^{k} P_{T}\left(x_{t}, y_{t}\right)=1 \tag{36}
\end{equation*}
$$

It is noted that equations (35) are the derivatives with respect to $\dot{P}_{A}\left(x_{a}, y_{a}\right)$ of the objective function of equation (34) when the expression
for $u\left(x_{t}, y_{t}\right)$ is substituted into the objective function. Equations (35) can be written as

$$
\begin{array}{lll}
\frac{\partial \Phi}{\partial P_{A}\left(x_{a}, y_{a}\right)} & =C & \text { if } P_{A}\left(x_{a}, y_{a}\right)>0 \tag{37}\\
>C & \text { if } P_{A}\left(x_{a}, y_{a}\right)=0
\end{array}
$$

It is noted that the objective function is convex in $P_{A}\left(x_{a}, y_{a}\right)$ and that equations (35) and (37) are simply the results of Gibbs Lemma ${ }^{1}$ as applied to equations (34).

A solution to equations (35) can be obtained with a computer by dividing the target area into cells sufficiently small for approximation of the small areas $d x_{t} d y_{t}$ and $d x_{a} d y_{a}$. To simplify the computer procedure, the following notations will be used:
$P_{i}=$ The expected fraction of the target in cell i; it is analogous to the target distribution.
$y_{j}=$ The proportion of the total rounds aimed at cell j; it is analogous to the aimpoint distribution $P_{A}\left(x_{a}, y_{a}\right)$;
$b_{i j}=$ The probability that a target in cell i is killed by a round aimed at cell j; it is analogous to the lethality function $q\left(x_{t}-x_{a}, y_{t}-y_{a}\right)$.
The problem in equation (34) can then be rewritten as
Minimize $\Phi=\sum_{i=1}^{k} P_{i} e^{-\sum_{i=1}^{k}} \sum_{j=1}^{k} y_{j} b_{i j}$,
Subject to $\sum_{i=1}^{k} P_{i}=1$,

$$
\sum_{j=1}^{k} y_{j}=1
$$

$$
P_{i}, y_{j}, b_{i j} \geq 0
$$

${ }^{1}$ Gibbs Lemma is discussed in Ref. 10.

The solution is in terms of the y_{j} 's and k is the total number of cells. Equations (35) and (37) can be rewritten as

$$
\begin{align*}
\frac{\partial \Phi}{\partial y_{j}}=-P_{i} b_{i j} e^{-y_{j} b_{i j}} & =c \quad \text { if } y_{j}>0 \tag{39}\\
& >c \quad \text { if } y_{j}=0,
\end{align*}
$$

or, equivalently,

$$
\begin{array}{rll}
P_{i} b_{i j} e^{-y_{j} b_{i j}} & =\gamma & \text { if } y_{j}>0 \tag{40}\\
& <\gamma & \text { if } y_{j}=0
\end{array}
$$

where $\gamma=-C$.
The problem thus presented is similar to one presented by Professor John M. Danskin to his Games of Strategy class at the U. S. Naval Postgraduate School in December, 1970.
B. THE COMPUTER SOLUTION TECHNIQUE

A solution technique is to divide an area of one Kilometer square into cells of twenty meters square. The P_{i} 's are then determined for each of the 2,500 cells from the target distribution. To solve the problem of firing at targets obeying Koopmans' moving target distribution described earlier, values of time of impact and speed of the target are inputs and. the P_{i} 's are determined from equation (2) for each cell of the simulated target area. The $b_{i j}$'s are determined from the lethality functions for the weapon system being investigated. For an artillery weapon it is the case that the $b_{i j} ' s=0$ for all cells j more than say, 60 meters from cell i. This means the number of machine calculations required for solving the problem in equations (40) would be reduced considerably as the sum over j would be limited to the 48 cells immediately surrounding cell i and, of course, cell i itself.

It is noted that if $b_{i j}=0$ for all $j \neq i$; that is, the probability that targets outside the aimpoint cell are killed is zero, the solution is

$$
\begin{aligned}
y_{j} & =\frac{1}{b_{i j}} \operatorname{Ln} \frac{P_{i} b_{i j}}{Y} & & \text { if } P_{i} b_{i j}>\gamma \\
& =0 & & \text { if } P_{i} b_{i j} \leq Y
\end{aligned}
$$

γ is determined from the equation

$$
\sum_{i=1}^{k} \frac{1}{b_{i j}} \operatorname{Ln} \frac{P_{i} b_{i j}}{\gamma}=1
$$

which is analyzed in Ref. 10.
After the values for the P_{i} 's have been initialized and the lethality function formulas are determined for the cells surrounding each cell i, a beginning set of values for each y_{j} is initialized. A possible set of y_{j}^{\prime} 's is $y_{1}=1, y_{2}=\ldots=y_{2500}=0$. It is then necessary to determine if that initialized set of y_{j}^{\prime} s give a minimum value of Φ and, if not, in which direction to move (i.e. what other vector of y_{j}^{\prime} s) to produce a lower Φ.

An algorithm has been developed by Professor Danskin that will cause convergence to a vector of y_{j}^{\prime} s that produce a minimum Φ. The computer program for this algorithm as well as the application of the algorithm to the problem discussed in this paper are presented as a separate thesis for Professor Danskin by Major Paul T. Zmuida, USA.

APPENDIX A

Weiss desires to minimize

$$
\begin{equation*}
\Phi=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) \prod_{i=1}^{N} q\left(x_{t}-x_{a i}, y_{t}-y_{a i}\right) d x_{t} d y_{t} \tag{A-1}
\end{equation*}
$$

Subject to

$$
\begin{array}{r}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) d x_{t} d y_{t}=1 \\
P_{T}\left(x_{t}, y_{t}\right) \geq 0
\end{array}
$$

where Φ is the expected fraction of the target surviving, $P_{T}\left(x_{t}, y_{t}\right)$ is the target distribution, and $\prod_{i=1}^{N} q\left(x_{t}-x_{a i}, y_{t}-y_{a i}\right)$ is the probability a target at coordinates X_{t}, y_{t} survives a salvo of N rounds when the ith round is aimed at aimpoint $\mathrm{x}_{\mathrm{ai}}, \mathrm{y}_{\mathrm{ai}}$. Weiss wishes to minimize Φ by a proper choice of $x_{a i}, y_{a i}$.

A new function is defined such that

$$
\begin{aligned}
u\left(x_{t}, y_{t}\right) & =-\operatorname{Ln} \prod_{i=1}^{N} q\left(x_{t}-x_{a i}, y_{t}-y_{a i}\right) \\
& =-\operatorname{Ln}\left[q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right) \cdot \ldots \cdot q^{\prime}\left(x_{t}-x_{a N}, y_{t}-y_{a N}\right)\right] \\
& =-\left[\ln q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right)+\ldots+\operatorname{Ln} q\left(x_{t}-x_{a N}, y_{t}-y_{a N}\right)\right], \\
& =-\sum_{i=1}^{N} \operatorname{Ln} q\left(x_{t}-x_{a i}, y_{t}-y_{a i}\right),
\end{aligned}
$$

$$
\begin{equation*}
\text { or }-u\left(x_{t}, y_{t}\right)=\sum_{i=1}^{N} \operatorname{Ln} q\left(x_{t}-x_{a i}, y_{t}-y_{a i}\right) \tag{A-2}
\end{equation*}
$$

The objective function can then be rewritten as

$$
\begin{equation*}
\Phi=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)} d x_{t} d y_{t} . \tag{A-3}
\end{equation*}
$$

Weiss then makes an approximation that a distribution function for the aimpoints can be substituted for the exact knowledge of $x_{a i}, y_{a i}$ so that the number of rounds aimed at area $d x_{a} d y_{a}$ is $P_{A}\left(x_{a}, y_{a}\right) d x_{a} d y_{a}$. The total number of rounds is

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right) d x_{a} d y_{a}=N, \tag{A-4}
\end{equation*}
$$

and since negative rounds cannot be fired,

$$
\begin{equation*}
P_{A}\left(x_{a}, y_{a}\right) \geq 0 \tag{A-5}
\end{equation*}
$$

Equation (A-2) can then be written as

$$
\begin{equation*}
-u\left(x_{t}, y_{t}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{A}\left(x_{a}, y_{a}\right) \operatorname{Ln} q\left(x_{t}-x_{a}, y_{t}-y_{a}\right) d x_{a} d y_{a} . \tag{A-6}
\end{equation*}
$$

The complete problem was minimize

$$
\Phi=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)} d x_{t}, d y_{t}
$$

subject to

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, x_{a}\right) d x_{t} d y_{t}=1 \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right) d x_{a} d y_{a}=N . \\
& P_{T}\left(x_{t}, y_{t}\right) \geq 0, P_{A}\left(x_{a}, y_{a}\right) \geq 0
\end{aligned}
$$

Weiss continues his solution using techniques similar to those of Morse and Kimball described earlier. For any arbitrary $P_{A}\left(x_{a}, y_{a}\right)$ add a small increment δ to $P_{A}\left(x_{a}, y_{a}\right)$ over the interval Δx_{a} at $x_{a l}$ and Δy at $y_{a l}$. Now examine the change in Φ. The procedure can be illustrated as shown in Figure 3.

Figure 3. Illustration of small increment δ added to $P_{A}\left(x_{a}, y_{a}\right)$ over interval Δx_{a} at $x_{a l}$ and Δy_{a} at $y_{a l}$.

The change in Φ can be expressed as
Φ

$$
\begin{equation*}
P_{A}\left(x_{a}, y_{a}\right)+\Delta P_{A}\left(x_{a}, y_{a}\right)^{-\Phi} P_{A}\left(x_{a}, y_{a}\right)=\Delta \Phi \tag{A-7}
\end{equation*}
$$

From equation ($\mathrm{A}-3$),

$$
\begin{aligned}
& \Delta \Phi= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) \exp \left\{-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(P_{A}\left(x_{a}, y_{a}\right)+\Delta P_{A}\left(x_{a}, y_{a}\right)\right) \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right)\right. \\
&\left.\cdot d x_{a} d y_{a}\right\} \\
&-\exp \left\{-\int_{-\infty}^{-\infty} \int_{-\infty}^{-\infty} P_{A}\left(x_{a}, y_{a}\right) \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right) d x_{a} d y_{a}\right\} d x_{t} d y_{t} \cdot \\
& \Delta \Phi= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) \exp \left\{-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right) \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right) d x_{a} d y_{a}\right. \\
&\left.-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta P_{A}\left(x_{a}, y_{a}\right) \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right) d x_{a} d y_{a}\right\}-\exp \left\{-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right)\right. \\
&\left.\cdot \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right) d x_{a} d y_{a}\right\} d x_{t} d y_{t}, \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-\int} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{A}\left(x_{a}, y_{a}\right) \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right) d x_{a} d y_{a} \\
& \cdot\left[e^{\left.-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta P_{A}\left(x_{a}, y_{a}\right) \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right) d x_{a} d y_{a}{ }_{-1}\right] d x_{t} d y_{t},}\right.
\end{aligned}
$$

$$
\begin{gather*}
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)}\left[e^{-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta P_{A}\left(x_{a}, y_{a}\right) \ln q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right)}\right. \\
\left.\cdot d x_{a} d y_{a_{1}}\right] d x_{t} d y_{t} \tag{A-8}
\end{gather*}
$$

Since $P_{A}\left(x_{t}, y_{t}\right)=\delta$ and $\ln q\left(x-x_{a l}, y-y_{a l}\right)$ is approximately constant over a very small area $d x_{a} d y_{a}$,
$\Delta \Phi \approx \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)}\left[e^{-\delta \Delta x_{a} \Delta y_{a} \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right)}-1\right] d x_{t} d y_{t} \cdot(A-9)$
If the bracketed term is now expanded in a Tayylor's expansion of e and a first order approximation is applied, then

$$
\begin{aligned}
\Delta \Phi & \approx \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)}\left[-\delta \Delta x_{a} \Delta y_{a} \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right)\right] d x_{t} d y_{t} \\
& \simeq-\delta \Delta x_{a} \Delta y_{a} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)} \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right) d x_{t} d y_{t} .
\end{aligned}
$$

Weiss defines

$$
-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)} \operatorname{Ln} q\left(x_{t}-x_{a l}, y_{t}-y_{a l}\right) d x_{t} d y_{t}=\rho\left(x_{a l}, y_{a l}\right)
$$

and then

$$
\begin{equation*}
\Delta \Phi \simeq \rho\left(\mathrm{x}_{\mathrm{al}}, \mathrm{y}_{\mathrm{al}}\right) \delta \Delta \mathrm{x}_{\mathrm{a}} \Delta \mathrm{y}_{\mathrm{a}} \tag{A-10}
\end{equation*}
$$

Now either $P_{A}\left(x_{a}, y_{a}\right)>0$ or $P_{A}\left(x_{a}, y_{a}\right)=0$. That is, either some rounds or no rounds are aimed at the immediate vicinity of x_{a}, y_{a}. If $P_{A}\left(x_{a}, y_{a}\right)>0, \delta$ can be added or subtracted from it; if $P_{A}\left(x_{a}, y_{a}\right)=0$, δ can only be added to it.

Weiss considers two points $x_{a 1}, y_{a 1}$ and $x_{a 2}, y_{a 2}$ where $P_{A}\left(x_{a}, y_{a}\right)>0$: δ is added to $P_{A}\left(x_{a}, y_{a}\right)$ at one point and subtracted from the other. The change in Φ can be determined from equation ($\mathrm{A}-10$).

$$
\begin{align*}
\Delta \Phi & \simeq \Delta \Phi\left(\mathrm{x}_{\mathrm{a} 1}, \mathrm{y}_{\mathrm{a} 1}\right)-\Delta \Phi\left(\mathrm{x}_{\mathrm{a} 2}, \mathrm{y}_{\mathrm{a} 2}\right), \\
& \simeq \rho\left(\mathrm{x}_{\mathrm{a} 1}, \mathrm{y}_{\mathrm{a} 1}\right) \delta \Delta \mathrm{x}_{a} \Delta \mathrm{y}_{\mathrm{a}}-\rho\left(\mathrm{x}_{\mathrm{a} 2}, \mathrm{y}_{\mathrm{a} 2}\right) \delta \Delta \mathrm{x}_{\mathrm{a}} \Delta \mathrm{y}_{\mathrm{a}}, \\
& \simeq\left[\rho\left(\mathrm{x}_{\mathrm{a} 1}, \mathrm{y}_{\mathrm{a} 1}\right)-\rho\left(\mathrm{x}_{\mathrm{a} 2}, \mathrm{y}_{\mathrm{a} 2}\right)\right] \delta \Delta \mathrm{x}_{\mathrm{a}} \Delta \mathrm{y}_{\mathrm{a}} . \tag{A-11}
\end{align*}
$$

If (A-11) is positive then Φ can be reduced further by changing the sign of δ, which it is permissible to do since $P_{A}\left(x_{a}, y_{a}\right)>0$ at both points. It is clear that if

$$
\begin{aligned}
& \rho\left(x_{a 1}, y_{a 1}\right)<\rho\left(x_{a 2}, y_{a 2}\right) \text { then } \Delta \Phi<0 \quad \text { if } \delta>0, \\
& \rho\left(x_{a 1}, y_{a 1}\right)>\rho\left(x_{a 2}, y_{a 2}\right) \text { then } \Delta \Phi<0 \quad \text { if } \delta<0 .
\end{aligned}
$$

The conditions for an optimum exists when

$$
\begin{equation*}
\rho\left(\mathrm{x}_{\mathrm{a} 1}, \mathrm{y}_{\mathrm{a} 1}\right)=\rho\left(\mathrm{x}_{\mathrm{a} 2}, \mathrm{y}_{\mathrm{a} 2}\right)=\text { constant } \mathrm{C} \tag{A-12}
\end{equation*}
$$

for all points where $P_{A}\left(x_{a}, y_{a}\right)>0$.
Weiss then examines a point $x_{a 3}, y_{a \zeta}$ where $P_{A}\left(x_{a}, y_{a}\right)=0 . P_{A}\left(x_{a}, y_{a}\right)$ can only be added to at this point. Comparing $x_{a 3}, y_{a 3}$ to the point where $P_{A}\left(x_{a}, y_{a}\right)>0$,

$$
\Delta \Phi=\left[\rho\left(x_{a 3}, y_{a 3}\right)-\rho\left(x_{a 1}, y_{a 1}\right)\right] \delta \Delta x_{a} \Delta y_{a},
$$

which is negative if and only if

$$
\begin{equation*}
\rho\left(x_{a 3}, y_{a 3}\right)<\rho\left(x_{a 1}, y_{a 1}\right)=c \tag{A-13}
\end{equation*}
$$

That is to say Φ can be decreased only if $\rho\left(x_{a 3}, y_{a 3}\right)<C$. At the optimum solution Φ can no longer be decreased.

The original problem is now reduced to solving the following conditions:

$$
\begin{array}{rlr}
\rho\left(x_{a 1}, y_{a 1}\right) & =c & \tag{A-14}\\
<c & \text { if } P_{A}\left(x_{a}, y_{a}\right)>0 \\
& \text { if } P_{A}\left(x_{a}, y_{a}\right)=0
\end{array}
$$

where $\rho\left(x_{a 1}, y_{a 1}\right)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{T}\left(x_{t}, y_{t}\right) e^{-u\left(x_{t}, y_{t}\right)} \operatorname{Ln} q\left(x_{t}-x_{a 1}, y_{t}-y_{a 1}\right) d x_{t} d y_{t}$ and $u\left(x_{t}, y_{t}\right)$ is as defined in equation ($A-6$).

Weiss has determined necessary and sufficient conditions for the aimpoint distribution to be positive. The problem now has been reduced to solving equations (A-14) which is a difficult problem and to which there exists no general solution in closed form.

1. Operations Evaluations Group Report No. 56, Search And Screening, by B. O. Koopman, p. 16-17, 1946.
2. Taylor, J. G., Class Notes for Mathematical Models of Combat I, notes presented to students at the U. S. Naval Postgraduate School, Monterey, California, July, 1970.
3. Ballistic Research Laboratories Memorandum Report No. 1544, A Method for Hand-combuting the Expected Fractional Kill of an Area Target with a Salvo of Area Kill Weapons, by A. D. Groves, January, 1964.
4. Ballistic Research Laboratories Report No. 1397, A Computational Procedure for a Coverage Problem for Multiple Shots, by H. J. Breaux and I. S. Mohler, August, 1968.
5. Ballistic Research Laboratories Report No. 879, Methods For Computing the Effectiveness of Area Weapons, by H. K. Weiss, 1953.
6. Denney, S. H., A Review of Literature on the Theory of Hit and Kill Probabilities, M.S. Thesis, U. S. Naval Postgraduate School, Monterey, California, 1970.
7. Ballistic Research Laboratories Report No. 800, Methods for Computing the Effectiveness of Fragmenting Weapons Against Targets on the Ground, by H. K. Weiss, January, 1952.
8. Kolmogorov, A. N., Editor and Hewill, Dr. Eảwin, Translator, Collection of Articles on the Theory of Firing, The Rand Corporation, T-14.
9. Morse, P. M. and Kimball, G. E., METHODS OF OPFRATIONS RESEARCH, lst ed. revised, The Technology Press of Massachusetts Institute of Technology and John Wiley and Sons, Inc., 1951.
10. Danskin, J. M., THE THEORY OF MAX-MIN, Springer-Verlag, 1967.
11. Defense Documentation Center Cameron Station Alexandria, Virginia 27314 2
12. Library Code 0212 2
Naval Postgraduate School
Monterey, Califormia 93940
13. Department of Operations Analysis 1
Naval Postgraduate School
Monterey, California 93940
14. Asst. Professor J. G. Taylor, Code 55Tw 1
Department of Operations Analysis
Naval Postgraduate School
Monterey, California 93940
15. Captain W. A. Hesser USMC 1
Headquarters, U. S. Marine Corps Washington, D. C.

DOCUMENT CONTROL DATA.R \& D*
Securtly classification of pille, body of abstract and indexing annotafion must be entered when the overall report is classified)

1 ORIGINATING ACTIVITY (Corporate author) Naval Postgraduate School Monterey, California 93940	2. REFORT SECURITY CLASSIFICATION Unclassified
	2b. GROUP

REDORT TITLE
Determination of Distribution of Aimpoints Against a Moving Target

4 DESCRIPTIVE NOTES (Type of report and, inclusive dates)
Master's Thesis; March 1971
5. AUTHOR(S) (First name, middle initial, last name)

William Andrew Hesser

6. REPORT DATE March 1971	7a. TOTAL NO. OF PAGES 7b. NO. OF REFS 30 10
BA. CONTRACT OR GRANT NO b. PROJECTNO.	94. ORIGINATOR'S REPORT NUMBER(S)
c.	9b. OTHER REPORT NO(S) (Any other numbera that may be astigned this report)
d.	

10. OISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.
11. SUPPLEMENTARY NOTES

Naval Postgraduate School
Monterey, California 93940

The determination of the optimal distribution of aimpoints is examined for weapons that fire fragmenting projectiles against mobile targets. A finite difference approximation which reduces the problem to a mathematical programming problem is developed. Computational considerations for this nonlinear programming problem are discussed.

Aimpoint Distribution
Moving Target
Fragmenting Projectiles
Lethality Function
Mathematical Models of Weapons

$$
21024
$$

$\begin{array}{ll}\text { Thesis } & \text { Hesser } \\ H 525 & \text { Determination of }\end{array}$
H 525 determination of aim-
c. 1 distribution
points against a mow-
ing target
$95 E 87^{3}$

The is
H525 Hesser
c. 1 Determination of
distribution of aim-
points against a mow-
ing target.

32768000992416 DUDLEY KNOX LIBRARY

