

Calhoun: The NPS Institutional Archive DSpace Repository

Identification of system dynamics using multiple integrations.

Hansell, William Richard.

Monterey, California ; Naval Postgraduate School
https://hdl.handle.net/10945/15748

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for

IDENTIFICATION OF SYSTEM DYNAMICS USING MULTIPLE INTEGRATIONS

William Richard Hansell

United States
 Naval Postgraduate School

THESIS

IDENTIFICATION OF SYSTEM DYNAMICS
 USING MUITTIPLE INTEGRATIONS

by

William Richard Hansel1

Thesis Advisor: George J. Thaler

June 1971

Approved for public release; distribution unlimited.

Identification of System Dynamics
 Using Multiple Integrations

by

William Richard Hansell Ensign, United States Navy B.E., Villanova University, 1970

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the
NAVAL POSTGRADUATE SCHOOL June 1971

ABSTRACT

A practical method for identifying linear time invariant systems on the basis of arbitrary input-output records is reviewed and extended to handle the case where the system is not initially in the zero state. The method is implemented using a digital computer program composed of a numerical integration subroutine and a subroutine for solving overdetermined sets of linear algebraic equations. Several examples are presented to demonstrate the accuracy and present capabilities of the procedure.

TABLE OF CONTENTS

I. INTRODUCTION 5
A. THE IDENTIFICATION PROBLEM 5
B. OBJECTIVES OF THIS PAPER 9
II. IDENTIFICATION BY MULTIPLE INTEGRATIONS 11
A. GENERAL APPROACH 11
B. IDENTIFYING INITIAL CONDITIONS 17
C. SIMPLIFICATIONS WITH ZERO INITIAL CONDITIONS 19
III. IMPLEMENTATION 21
A. NUMERICAL METHODS 21
B. CHARACTERISTICS OF GOOD INPUT-OUTPUT RECORDS 22
C. PROGRAM DESCRIPTION 24
D. EXAMPLES 26
IV. CONCLUSIONS 75
COMPUTER PROGRAM 77
BIBLIOGRAPHY 97
INITIAL DISTRIBUTION LIST 100
FORM DD 1473 101

ACKNOWLEDGEMENT

The author wishes to express his appreciation to Doctor George J. Thaler of the Electrical Engineering Department of the Naval Postgraduate School for the guidance and helpful suggestions in the preparation of this work.

I. INTRODUCTION

A. THE IDENTIFICATION PROBLEM

In order to apply any of the modern techniques of control system design one must first have a mathematical model of the system to be controlled. The form of this model will depend on the design methods to be employed as well as on the physical characteristics of the system. Since most of the theory on the analysis and design of control systems is based either on the state space or transform representation of systems the vast majority of mathematical models will consist of either a set of state equations or a transfer function.

Once it has been decided what basic form tho mathematical model should take the problem of determining the numerical values of the parameters arises. Parameter values can often be determined from the laws of physics and the data supplied by a manufacturer or obtained through testing. This is not always the case however. Occasionally the laws of physics become mathematically intractable or are not even applicable. Quite often the values of certain key parameters are not available. It is in these cases that the identification problem arises.

A common problem in engineering is that of determining the output of a system based on a knowledge of the system model, input, and initial conditions. The identification problem is similar to this but here the unknown quantity is
the system model. The input and output are assumed to be known. For the purposes of this thesis the identification problem can be stated as follows:

Given - a record of the input and output of a system over some finite period of time,

Find : a mathematical model and the numerical values of the model parameters in such a way that the model will accurately describe the behavior of the system.

It should be kept in mind that the problem of identifying a system solely on the basis of input and output data (the so called "black box" problem) is very rare in engineering. Even in the case where none of the model parameters are known one will more than likely have a fair idea of whether the system is linear or nonlinear, time varying or time invariant, what the order of magnitude of the dominant time constants is, and what types of inputs and outputs are to be expected. For this reason most engineering identification problems fall into the "grey box" category. This distinction may seem trivial but virtually all identification techniques rely heavily on knowledge of the characteristics and quantities mentioned above.

Although the control systems literature on system identification is quite vast there are no known identification schemes capable of handling all identification problems effectively. Choosing a method suitable for a given problem can become a formidable task. A paper summarizing
most of the common approaches to the problem of identifying lumped parameter systems has been published by Nieman, Fisher, and Seborg [1]. A good discussion of the industrial applications of various methods has been published by Eykhoff, et az. [2].

One common approach used in linear system identification is that of obtaining the impulse response of the system. Mishkin and Haddad [3] have developed a technique for finding the impulse response based on samples of the system output and its derivatives. A technique for estimating the impulse response on the basis of noisy input and output samples has been developed by Levin [4] and Kerr and Surber [5]. Turin [6] and Lichtenberger [7,8] have used a matched filter to obtain an identification. The use of a white noise or binary test signal and crosscorrelation has been suggested by Hill and McMurtry [9]. The noise limitations of the sample approximation, matched filter, and crosscorrelation identification techniques have been investigated by Lindenlaub and Cooper [10].

Another common approach to the identification problem is to determine the coéfficients of the differential or difference equation which describes the system. Kumar and Sridhar [11] have employed the method of quasilinearization with some success. -Nagumo and Noda [12] have developed a learning approach to the problem.' Bass [13] has developed a method which uses modulating functions and works well in the presence of noise. Astrom and Bohlin [14] have developed
a statistically optimal method of determining differential equation parameters known as the "maximum likelihood method." A similar method which is not optimal but is considerably simpler computationally has been developed by Peterka and Smuk [15,16]. It is known as the "prior knowledge fitting method." An algorithm for determining state variable models of sampled data systems has been proposed by Ho and Kalman [17]. The algorithm performs quite well in the presence of noise, and has been extended to continuously operating systems by Eldem [18].

Methods of identifying nonlinear and distributed parameter systems are usually limited to specific types of systems or to specific types of nonlinearities. This is undoubtedly due to the wide variety of nonlincarities encountered in physical systems and the difficulty of finding a model capable of characterizing them all. Shinbrot [19], Mowery [20], Fairman [21], and Bellman, et al. [22] have all approached the problem of identifying nonlinear systems by assuming a particular form of differential equation is capable of describing the system and then developing methods around the form of differential equation chosen. Another common approach to nonlinear system identification is that of representing a system by a suitable functional polynomial relating the input and output. Hsieh [23] uses this approach and a steepest descent algorithm to solve the identification problem. Similar approaches have been taken by Simpson [24], Bose [25,26], and Hubbell [27].

Identification methods vary widely with respect to how much must be known about the system before the method can be applied. Some identification techniques require that prior estimates of all system parameters be available. Many methods restrict the allowable system inputs to a family of testing functions such as steps or binary pulses. In general, the less that is known about a given system and the tighter the constraints on the kind of signals which may be applied as inputs the more difficult it is to find a method capable of accomplishing the identification.

B. OBJECTIVES OF THIS PAPER

This paper will present a study of an identification technique originally suggested by Diamessis [28]. It is designed to identify lumped linear time invariant systems but has been extended by Diamessis [29] and Wang [30] to handle certain types of nonlinearities. The technique requires a knowledge of the system input and output over some finite time interval as well as a rough estimate of the system order. The system input need not be restricted to a class of testing functions, it can be completely arbitrary. Unlike some identification techniques which require the calculation of derivatives of the input and output, the technique to be presented requires only integrals of the input and output. The advantages of numerical integration over differentiation are well known. Since any zero mean noise component on the input or the output tends to be
ne
attenuated greatly by the integration process the system identification can be more accurate than the raw data used to accomplish it.

The remainder of this thesis is divided into three major sections. In Chapter II the theoretical development of the identification technique is given. A method for identifying the initial conditions of the unknown system is also presented. Chapter III presents a method for implementing the techniques developed in Chapter II. Particular attention is given to the choice of numerical methods and to efficient programming techniques. Several examples are presented to demonstrate the capabilities of the method. In Chapter IV several recommendations for further study are made. Conciusions concerning the accuracy and present limitations of the technique under consideration are also discussed. Following the conclusions a complete listing of all computer programs used in the thesis is given.

II. IDENTIFICATION BY MULTIPLE INTEGRATIONS

A. GENERAL APPROACH

The development which follows is similar to the development given by Diamessis [28] in 1965. There are a few notable differences however. The development given by Diamessis is restricted to the case where all initial conditions are zero. This is a rather serious restriction since it may be difficult or impossible to find a point where the system is in the zero state if the systems operation is not to be disturbed. Zero initial conditions will not be assumed in the development which follows. A method for solving for the unknown initial conditions will be presented. Diamessis proposed the formulation of a uniqualy determined set of linear algebraic equations with the model parameters as unknowns. This development will make use of overdetermined sets of linear algebraic equations with the model parameters and initial conditions as unknowns. The overdetermined set of equations will then be solved using the method of least squares. It will be shown that this results in a more accurate identification when the accuracy of the available data is limited and the order of the system is unknown.

Any single input, single output, lumped parameter, linear, time-invariant system can be described by a linear ordinary differential equation with constant coefficients.

The basic form of this equation is given in Equation (1) along with a set of initial conditions.

$$
\begin{equation*}
\frac{d^{n} y(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} y(t)}{d t^{n-1}}+\cdots \cdots \cdot \cdots+a_{o} y(t) \tag{1}
\end{equation*}
$$

$=b_{m} \frac{d^{m} u(t)}{d t^{m}}+\cdots \cdots \cdot \cdots+b_{o} u(t)$
with initial conditions;

$$
\begin{aligned}
& \frac{d^{n-1} y(0)}{d t^{n-1}}=y_{o}^{n-1} \\
& \frac{d^{m-1} u(0)}{d t^{m-1}}=u_{o}^{m-1} \\
& y(0)=y_{0} \\
& u(0)=u_{0}
\end{aligned}
$$

where;
$u(t)=$ system input
$y(t)=$ system output
The identification problem to be treated here consists of determining n, m, and the various coefficients of the differential equation on the basis of input and output records taken over some arbitrary time interval. The initial conditions will be assumed to be unknown.

Taking the Laplace transform of Equation (1) yields Equation (2).

$$
\begin{equation*}
s^{n_{Y}}(s)+a_{n-1} s^{n-1} Y(s)+\cdots \cdots \cdots \cdot+a_{0} Y(s) \tag{2}
\end{equation*}
$$

$=b_{m} s^{m} U(s)+\cdots \cdots \cdot \cdot+b_{o} U(s)$
$+g_{n-1} s^{n-1}+\cdots \cdots \cdot \cdot \cdot+g_{0}$.

The g_{i} coefficients account for the contributions of the initial conditions. Dividing Equation (2) by s^{n+1} is equivalent to integrating $n+1$ times in the time domain.

$$
\begin{align*}
& \frac{Y(s)}{s}+a_{n-1} \frac{Y(s)}{s^{2}}+\cdots \cdots \cdot \cdots+a_{o} \frac{Y(s)}{s^{n+1}} \tag{3}\\
& =b_{m} \frac{U(s)}{s^{n-m+1}}+\cdots \cdots \cdots \cdots+b_{o} \frac{U(s)}{s^{n+1}} \\
& +g_{n-1} \frac{1}{s^{2}}+\cdots \cdots \cdots \cdots+g_{o} \frac{1}{s^{n+1}} .
\end{align*}
$$

Taking the inverse transform of Equation (3) results in Equation (4).

$$
\begin{align*}
& \int_{0}^{t_{k}^{k}} y(t) d t+a_{n-1} \int_{0}^{t_{k}^{k}} \int_{0}^{t_{k}^{k}} y(t) d t^{2}+ \tag{4}\\
& \cdots+a_{o} \int_{0}^{t_{k}} \cdots n+1 \cdots \int_{0}^{t_{k}} y(t) d t^{n+1} \\
& =b_{m} \int_{0}^{t_{k}^{k}} \cdots \cdot n-m+1 \cdots \int_{0}^{t} u(t) d t^{n-m+1}+\cdots \\
& \cdots+b_{0} \int_{0}^{t} \cdots \cdot n+1 \cdots \int_{0}^{t} u(t) d t^{n+1} \\
& +g_{n-1} \int_{0}^{t^{k}} \int_{0}^{t^{k}} d t^{2}+\cdots+g_{0} \int_{0}^{t^{k}} \cdots n+1 \cdot \int_{0}^{t^{k}} d t^{n+1} .
\end{align*}
$$

Rearranging terms in Equation (4) and placing all terms which depend on $u(t), y(t)$, or t in brackets results in Equation (5).
$a_{0} \int_{0}^{t_{k}} \cdots n+1 . \int_{0}^{t_{k}} y(t) d t^{n+1}+\cdots+a_{n-1} \int_{0}^{t_{k}}{ }_{0}^{t_{k}} y(t) d t^{2}$

$\cdots+b_{m} \int_{0}^{t_{k}} \cdots n-m+1 \cdots \int_{0}^{t_{k}} u(t) d t^{n-m+1}+g_{0} \int_{0}^{t_{k}} \cdots n+1 \cdot \int_{0}^{t_{k}} d t^{n+1}$
$\pm \cdots+g_{n-1} \int_{0}^{t_{k}} \int_{0}^{t_{k}} d t^{2}=-\int_{0}^{t_{k}} y(t) d t$.

Since records of the input and output are assumed to be known a linear algebraic equation with the system parameters and initial condition terms as unknowns can be formulated by performing the indicated multiple integrations from zero to some time t_{k}. A set of $2 n+m+1$ equations can be obtained by letting t_{k} take on $2 n+m+1$ different values. Assuming that the equations are linearly independent it will now be possible to solve for the $n+m+1$ differential equation coefficients and the n initial condition terms.

So far nothing has been said of how n and m are determined. Theoretically it should be possible to use any
n^{\prime} and m^{\prime} greater than the actual order of the system under study. If the order of the system is n with m input coefficients then one would expect the following:

$$
\begin{array}{ll}
a_{i}=0 & \text { for }\left(0 \leq i \leq n^{\prime}-n-1\right) \\
b_{i}=0 & \text { for }\left(0 \leq i \leq m^{\prime}-m-1\right) \\
& \text { with } n^{\prime}>n \text { and } m^{\prime}>m .
\end{array}
$$

The model should essentially reduce itself to the right order by setting nonessential terms equal to zero.

Unfortunately the situation is not quite this simple.
Due to the finite accuracy of all experimental data the linear equations will not have an exact solution. For certain types of inputs the linear equations will not even be linearly independent. These problems can be overcome to some extent by formulating more than $2 n+m+1$ equations which are required. The overdetermined set can then be solved using the method of least squares. If the limited accuracy of the experimental data can be attributed to round off errors then integrating the data over a time interval much greater than the sampling interval should remove much of the uncertainty in the linear equation coefficients. This is because the roundoff process can be modeled as a zero mean white noise process. The integral of the noise will approach zero as the period of integration increases.

Even the measures mentioned above will not solve the problem completely however. Due to the finite precision used to represent numbers in a computer and the iterative

nature of the numerical methods used to solve overdetermined sets of linear equations it is impossible to obtain zero as a solution for any parameter. If the parameter should be zero the numerical method will return a very small but nonzero value. Although this will result in an incorrect estimate of the system order the error will not be serious in most cases. This is because the small coefficients of the terms which should nonexistent will make their effect negligible. Examples in Chapter III will demonstrate this point.

Although the development in this section has assumed a differential equation model of the system the same results could have been obtained if a transfer function or state variable modcl had bcon assumed. A simpla roarrangoment of terms in Equation (2) results in Equation (6).

$$
\begin{equation*}
\frac{Y(s)}{U(s)}=\frac{b_{m} s^{m}+\cdots \cdots \cdots \cdot+b_{1} s+b_{o}}{s^{n}+a_{n-1} s^{n-1}+\cdots \cdot+a_{1} s+a_{o}} \tag{6}
\end{equation*}
$$

By defining a few new terms, Equation (7) results.

$$
\begin{gathered}
\frac{Y(s)}{U(s)}=\frac{K\left(s^{m}+c_{m-1} s^{m-1}+\cdots \cdots+c_{1} s+c_{o}\right.}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{o}} \\
\text { where } K=b_{m} \\
c_{i}=b_{i} / b_{m} \quad \text { for } 0 \leq i \leq m .
\end{gathered}
$$

A set of state equations may be formulated in a similar fashion. One convenient state variable representation is given in Equation (8). It is based on the phase variable form of system representation.

$$
\begin{aligned}
& y=\left[\begin{array}{lll}
c_{0} & c_{1} & \cdot \\
c_{m}
\end{array}\right. \\
& 0] \times\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]
\end{aligned}
$$

Note the simple correspondence between the terms in the transfer function and the terms in the state equations.

B. IDENTIFYING INITIAL CONDITIONS

In many identification problems it is desirable to compare..the system model with the actual system by exciting the system model with the same input data that was used in the identification. By comparing the output of the model with the output of the system a rough idea of the accuracy of the model can be obtained. This will not be possible however unless the initial conditions at the beginning of the inputoutput record are all known.

From Equation (5) it can be seen that when the linear algebraic equations are solved for the unknown model parameters
the g_{i} initial condition terms are also found. By taking the Laplace Transform of Equation (1) and specifically writing in the contributions of the individual initial conditions a relationship between the g_{i} terms and the initial conditions can be found.

Unfortunately Equation (9) requires the knowledge of $\mathrm{m}-1$ derivatives of the input function u. It may be necessary to calculate $m-1$ derivatives of the input using numerical techniques. This could cause the model and system output to differ slightly at the beginning of the output record but as the natural response dies out the records should converge. It may be possible to avoid this difficulty in many cases by choosing the beginning of the inputoutput record at a point where the input is relatively constant.
C. SIMPLIFICATIONS WITH ZERO INITIAL CONDITIONS

In many problems it will be possible to exercise complete control over the input to the system under study. If it is possible to obtain an input-output record beginning when the system is in the zero state it will be possible to simplify the identification procedure. Since the g_{i} terms will all be zero if the system is in the zero state they - need not be included in the formulation of the linear algebraic equations. This will reduce the number of unknowns from $2 n+m+1$ to $n+m+1$.

It should be noted that additional information can often be incorporated into the identification procedure in order to simplify the problem. For example if the steady state gain constant were known the number of unknowns could be reduced by one. It is usually a simple matter to tell whether a system has poles or zeroes at the origin. This
piece of information can easily be used to simplify the identification procedure still further. As a general rule, the fewer the unknowns the more accurate the identification.

III. IMPLEMENTATION

A. NUMERICAL METHODS

The identification technique presented in Chapter II can be broken into two basic steps. The first step consists of performing the multiple integrations of the input and output and forming the overdetermined set of linear algebraic equations. The second step consists of solving the linear equations for the unknown model parameters. It is a distinct advantage of the identification technique under study that each of these steps can be carried out by subprograms that are readily available in virtually all modern computer centers.

Step one can be handicd by any numerical integration subroutine. Although there are quite a few highly sophisticated numerical integration procedures available, trapezoidal integration will give better results in most applications. There are several reasons why this is true. First of all, most of the more complex integration techniques perform poorly when the function being integrated is discontinuous. Since control system inputs are often discontinuous and since such discontinuities are quite desirable from an identification standpoint, complex integration techniques are usually undesirable. Even when the functions to be integrated are continuous the slight improvement in accuracy offered by more advanced methods is not enough to justify the tremendous increase in computational load associated with their use.

Step two, the solution of the set of overdetermined linear equations, is a classical problem in several fields of mathematics and engineering. Unfortunately most of the classical techniques for solving such problems are not practical. They tend to magnify the errors introduced by the finite precision of the computer to the point where the solution is meaningless. Fortunately several modern methods are available that display more acceptable behavior. The method used in this paper was developed by Golub [31] in 1965. The basic approach is to triangularize the coefficient matrix by performing a Choleski decomposition. The decomposition is accomplished by applying repeated Householder transformations [32]. Once the coefficient matrix has been triangularized the unknowns can be ohtained by back substitution. The method is quite stable numerically and is capable of handling illconditioned coefficient matrices.
B. CHARACTERISTICS OF GOOD INPUT-OUTPUT RECORDS

The accuracy with which a system can be identified is strongly dependent on the input-output record used in the identification. Since parameters are identified on the basis of their effect on the output it will be impossible to identify a parameter unless its effect is measureable. If the input to a system has a frequency spectrum that is more or less uniform over the frequency range of interest the identification will probably be very good. If the
frequency spectrum of the input is confined to a narrow band of frequencies the identification will probably be very bad. It is well known that signals with sharp discontinuities have a broader bandwidth than slowly varying continuous signals. For this reason input-output records displaying discontinuities and rapid time variations should be chosen.

If step or ramp inputs are used in the identification the value of the initial conditions will have to be known and incorporated into the set of linear equations. Since the initial conditions will usually be zero when these types of inputs are used this should not cause any difficulties. The reason for this difficulty lies in the nature of the initial condition cuefficient tems. The integral coefficients of these terms are steps, ramps, and higher order polynomials in time. If the input is a step or a ramp the coefficients of several model parameters will also be steps, ramps, and higher order polynomials in time. There will therefore be a direct relationship between model parameter coefficients and initial condition term coefficients. This will result in the linear equations having an infinite number of solutions due to the linear dependence between all the individual equations in the set. Step and ramp inputs must therefore be avoided when the system initial conditions are unknown.

Since analog system data will have to be converted to digital form a suitable sampling interval will have to be

chosen. Experimental results have shown that a sampling rate ten to one hundred times shorter than the shortest system time constant works quite well. Lower sampling rates may introduce inaccuracies in the location of high frequency poles and zeroes.

C. PROGRAM DESCRIPTION

In order to evaluate experimentally the characteristics of the identification procedure under study a set of digital computer programs was developed. The main identification program is a direct implementation of the procedure developed in Chapter II. Subroutine SYSTEM is a simulation program that was written to generate input-output data for the main program to process.

In the beginning of the identification program several important parameters are defined. NP and NZ are rough estimates of the number of poles and the number of zeroes in the system to be identified. KPTMAX is the number of sample points available in the input-output record. Each sample point will consist of the time (T), the input amplitude (R), and the output amplitude (C). IPTS is the number of sample points that will separate successive linear equations. In other words, every time the total number of points read in is a multiple of IPTS a linear equation will be generated. The total number of linear equations that will be generated is equal to KPTMAX/IPTS. When all of the linear equations have been formed subroutine DLLSQ is called. This

subroutine is an implementation of the Golub algorithm for solving overdetermined sets of linear equations.

Subroutine DLLSQ returns the values of the system model parameters and initial condition parameters of Equation (2). In order to find the poles and zeroes of the system the output of DLLSQ is fed into RTPLSB. RTPLSB is a polynomial root finder which uses a combination of the Newton-Raphson and Bairstow methods to find the poles and zeroes of the system.

The remainder of the main identification program is devoted to output. The results of the identification are given in both transfer function and state variable form. The state variable form is referenced to the format used in Equation (8).

Subroutine SYSTEM reads in the transfer function of a system and computes the system output based on a set of arbitrary initial conditions and an arbitrary input waveform. Each time subroutine SYSTEM is called by the identification program it returns three numbers, the time T, the input waveform amplitude R, and the output waveform amplitude C. Subroutine SYSTEM prints out the transfer function and state variable representation of the system it is simulating so that the accuracy of the identification can be determined.

Input-output recrods obtained from physical systems are rarely accurate to more than three or four significant digits. The data generated by subroutine SYSTEM is therefore
rounded off by subroutine ROUND before being passed to the identification program. The number of significant digits in the data returned to the identification program may be varied by changing the value of the parameter $N A$ in the simulation subroutine.

D. EXAMPLES

The following examples demonstrate how the accuracy of an identification depends on the accuracy of the inputoutput record, the sampling period, and the input waveform. They also show how the order of the system can be determined from a trial identification run using an estimated order greater than the actual order of the system.

Example one illustrates the relationship between the accuracy of the input-output record data and the resulting identification. In order to minimize the effect of other factors all initial conditions were set equal to zero, a step input was used, and n^{\prime} and m^{\prime} were set equal to n and m. Example one demonstrates the fact that there is a direct (almost linear) relationship between the accuracy of input-output data and the accuracy of the identification. Note that even when the input-output record contained only two significant digits the identification of the system poles and zeroes was within about three percent of their exact values.

Example two illustrates the relationship between the sampling period used with the input-output records and the
the accuracy of the identification, input records containing discontinuities or rapid time variations should be chosen.

Examples four through ten demonstrate what happens when n^{\prime} and m^{\prime} are greater than n and m. In each example an identification is performed using an n^{\prime} and m^{\prime} greater than n and m. Using the information obtained from this identification a new value of n^{\prime} and m^{\prime} is determined. These new estimates are then used to perform a second identification.

In examples four and five the error in the estimate of m^{\prime} was made larger than the error in the estimate of n^{\prime}. As a result of the relative values of these two errors all the excess poles cancelled with cxcess zeroes but since there were more excess zeroes than excess poles some excess zeroes remained. Note however that for frequencies lower than the sampling rate the excess zeroes have little or no effect on the behavior of the identified system. Experiments have shown that excess zeroes that do not cancel with excess poles are always of a frequency comparable to or higher than the sampling rate. Using this principle and estimating new values for n^{\prime} and m^{\prime} results in an identification which has the correct number of poles and zeroes and is more accurate than the first identification.

In examples six, seven, and eight the error in the estimate of n^{\prime} was equal to the error in the estimate of m^{\prime}. As a result, all excess poles and zeroes cancelled
with each other leaving a system of the correct order.
Note that by repeating the identification with the correct value of n^{\prime} and m^{\prime} it was possible to improve the accuracy of the identification.

In examples nine and ten the error in the estimate of n^{\prime} was made greater than the error in the estimate of m^{\prime}. As a result, all excess zeroes cancelled with excess poles but some excess poles remained. Note that for frequencies lower than the sampling rate the excess poles have negligible effect. Experiments have shown that excess poles that do not cancel with excess zeroes are almost always of a frequency comparable to or greater than the sampling rate. Using this principle and estimating new values for n^{\prime} and m^{\prime} resulied in a correct identification of the simulated systems.

Experiments have shown that identifications involving uncancelled excess zeroes are generally more accurate than identifications involving uncancelled excess poles. For this reason it is best to set m^{\prime} close to n^{\prime} when identifying an unknown system.

Using the experimental findings described above a simple procedure for determining n and m can be formulated. First, guess an n^{\prime} which is greater than the order of the system to be identified. This should not be too difficult in most engineering identification problems. Let m' be equal to n^{\prime} or $m^{\prime-1}$. This will guarantee complete cancellation of all excess poles and zeroes or partial cancellation
4en
In를
$3=$
-
4aly
of excess poles and zeroes with excess zeroes remaining. After making a trial identification with the values of n ' and m' mentioned above, estimate new values for n^{\prime} and m' based on the reasoning in the examples. The new values of n^{\prime} and m^{\prime} should now be correct. By performing the identification with these values of n^{\prime} and m^{\prime} a good identification should result.

(antsen

EXAMPLE 1.

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-1.0000000000	0.0	J
2	-10.0000000000	0.0	J
3	-100.0000000000	0.0	J

ZEROES	REAL	IMAGINARY	
1	-3.0000000000	0.0	J
2	-30.0000000000	0.0	J

GAIN CONSTANT $=10.0000000000$

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR
11000.0000000000
21110.0000000000
3111.0000000000

B VECTOR
$3 \quad 10.0000000000$

C VECTOR
1
90.0000000000

2
3
33. 1000000000

1. 0000000000

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-100.0001690225	0.0	J
2	-0.9999970711	0.0	J
3	-9.9999884241	0.0	J
ZEROES	REAL		
1	-2.9999937654	0.0	JMAGINARY
2	-30.0000138488	0.0	J

SYSTEM STATE VARIABLES (PHASE FGRM)

A VECTOR
1
999.9976037596
21110.0003679024
3111.0001545177

B VECTOR
3
10.0000038147

C VECTOR
1
89.9998545091
233.0000076143
$3 \quad 1.0000000000$

```
PROGRAM PARAMETERS
    RECORD LEGNTH = 0.60000 SEC
    SAMPLING PERICD = 0.20000 MSC
    EQUATIONS FORMED = 120
    PRECISION OF DATA = 8 DECIMAL PLACES
    INPUT FUNCTION = UNIT STEP
```


 nint
 $1+5=-2$

Thl
\square

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-100.0000291125	0.0	J
2	-1.0000011522	0.0	J
3	-10.0000016550	0.0	J
ZEROES	REAL		
1	-3.0000028353	0.0	
2	-30.0000250480	0.0	J

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	1000.0016088045
2	1110.0006141285
3	111.0000319197

B VECTOR
3

$$
\text { 9. } 9999933243
$$

C VECTOR

1
$2 \quad 33.0000278833$
31.0000000000
90.0001602028

PROGRAM PARAMETERS
RECORD LEGNTH $=0.60000 \mathrm{SEC}$

SAMPLING PERIOD $=0.20000$ MSC
EQUATIONS FORMED = 120
PRECISION OF DATA $=7$ DECIMAL PLACES
INPUT FUNCTION $=$ UNIT STEP

\qquad

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-100.0000683416	0.0	J
2	-1.0000118079	0.0	J
3	-10.0000329083	0.0	J
ZEROES	REAL		
1	-3.0000272949	0.0	JMAGINARY
2	-30.0000668753	0.0	J

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	$10 C 0.0157822215$
2	1110.0053743721
3	111.0001130579

B VECTOR
$3 \quad 9.9999847412$

C VECTOR

1	90.0010194754
2	33.0000941702
3	1.0000000000

PROGRAM PARAMETERS

RECORD LEGNTH	$=0.60000 \mathrm{SEC}$
SAMPLING PERIOD	$=0.20000 \mathrm{MSC}$
EQUATIONS FORMED	$=120$
PRECISIGN OF DATA	$=6$ DECIMAL PLACES
INPUT FUNCTION	$=$ UNIT STEP

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-99.9968491528	0.0	J
2	-1.0000017165	0.0	J
3	-9.9998390264	0.0	J
ZEROES	REAL		
1	-2.9999754422	0.0	IMAGINARY
2	-29.9992863605	0.0	J

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	999.9541111369
2	1109.9492716708
3	110.9966898958

B VECTOR
3

$$
9.9998254776
$$

C VECTOR

1	89.9971223661
2	32.9992618027
3	1.0000000000

PROGRAM PARAMETERS

14t

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-99.9927835443	0.0	J
2	-0.9991304951	0.0	J
3	-9.9980805636	0.0	J
ZEROES	REAL	IMAGINARY	
1	-2.9981092090	0.0	J
2	-29.9981888298	0.0	J

GAIN CONSTANT $=9.9994869232$

```
SYSTEM STATE VARIABLES (PHASE FORM)
```

A VECTOR

1	998.8666303721
2	1109.6311321656
3	110.9899946030

B VECTOR
3

$$
9.9994869232
$$

C VECTOR

1	89.9378461845
2	32.9962980388
3	1.0000000000

```
PROGRAII PARAMETERS
RECORD LEGNTH = C.6U000 SEC
SANPLING PERIOD = 0.2000C MSC
EQUATIONS FORMED = 120
PRECISION OF DATA = 4 DECIMAL PLACES
INPUT FUNCTION = UNIT STEP
```


IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-99.9937910594	0.0	J
2	-0.9996622783	0.0	J
3	-10.0015833055	0.0	J
ZEROES	REAL		
1	-2.9996507024	0.0	J
2	-30.0061026888	0.0	J
GAIN CONSTANT $=$	9.9986057281		

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR
$1 \quad 999.7584771470$
$2 \quad 1110.0544578539$
$3 \quad 110.9950366432$

B VECTOR
3
9. 9986057281

C VECTOR
1
90.0078270058

2
33. CC57533912

3
1.0000000000

```
PROGRA:M PARAMETERS
    RECORD LEGNTH = 0.60000 SEC
    SANPLING PERIOD = 0.20000 MSC
    EQUATIONS FORMED = 120
    PRECISION OF DATA = 3 DECIMAL PLACES
    INPUT FUNCTION = UNIT STEP
```


IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-98.8004578528	0.0	J
2	-0.9763637189	0.0	J
3	-9.8862584052	0.0	J
ZEROES	REAL		
1	-2.9406610975	0.0	JMAGINARY
2	-29.6497245014	0.0	J

```
SYSTEM STATE VARIABLES (PHASE FORM)
```

A VECTOR

1
953.6797208413
$2 \quad 1082.8846233636$
$3 \quad 109.6630799769$

B VECTOR
3

$$
9.9451894760
$$

C VECTOR
1
87.1897013926

2
3
32. 5903855989
1.0000000000

```
PRCGRAM PARAMETERS
    RECORD LEGNTH = 0.60000 SEC
    SAMPLING PERIOD = 0.20000 MSC
    EQUATIONS FORMED = 120
    PRECISION OF DATA = 2 DECIMAL PLACES
    INFUT FUNCTION = UNIT STEP
```


EXAMPLE 2.

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-1.0000000000	0.0	J
2	-10.0000000000	0.0	J
3	-100.0000000000	0.0	J

ZEROES	REAL	IMAGINARY	
1	-3.0000000000	0.0	J
2	-30.0000000000	0.0	J

GAIN CONSTANT $=10.0000000000$

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR
$1 \quad 1000.0000000000$
21110.0000000000
3111.0000000000

B VECTOR
$3 \quad 10.0000000000$

C VECTOR
1
90. $\operatorname{coc} 0000000$

2
33.0000600000

3
1.0000000000

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-101.0610717819	0.0	J
2	-1.0000331312	0.0	J
3	-10.0017011716	0.0	J
ZEROES	REAL	IMAGINARY	
1	-3.0002183624	0.0	J
2	-30.0553440030	0.0	J

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	1010.8161234948
2	1121.8490926385
3	112.0628060847

B VECTOR
$3 \quad 10.0887174606$

C VECTOR

1	90.1725949663
2	33.0555623654
3	1.0000000000

```
PROGRAM PARAMETERS
RECORD LEGNTH = 0.60000 SEC
SAMPLING PERIOD = 0.10000 MSC
EQUATIONS FORMED = 120
PRECISION OF DATA = 3 DECIMAL PLACES
INPUT FUNCTION = UNIT STEP
```


TH

4n

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-105.3244028971	0.0	J
2	-1.0000069733	0.0	J
3	-10.0258525504	0.0	J
ZEROES	REAL	IMAGINARY	
1	-3.0005906385	0.0	J
2	-30.4710561855	0.0	J

GAIN CONSTANT $=10.3944911957$

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOQ

1	1055.9742969792
2	1171.3179932211
3	116.3502624208

B VECTOR
3

$$
10.3944911957
$$

C VECTOR
1

$$
91.4311659362
$$

2
33.4716468241

3
1.0000000000

PROGRAM PARAMETERS
RECORD LEGNTH $=1.20000 \mathrm{SEC}$
SANPLING PERIOD $=0.200 C 0$ MSC
EQUATIONS FORMED $=120$
PRECISION OF DATA $=3$ DECIMAL PLACES
INPUT FUNCTICN $=$ UNIT STEP

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-107.6394221979	0.0	J
2	-1.0000162038	0.0	J
3	-10.0077785631	0.0	J
ZEROES	REAL	IMAGINARY	
1	-3.0001692900	0.0	J
2	-30.3047449110	0.0	J

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	1077.2489572831
2	1194.8806091150
3	118.6472169649

B VECTOR
$3 \quad 10.6635513306$

C VECTOR
1
90.9193650 .217

2
33.3049142009

3

1. 0000000000

PROGRAM PARAMETERS
RECORD LEGNTH $=3.00000 \mathrm{SEC}$
SANPLING PERIOD $=0.50000 \mathrm{MSC}$
EQUATIONS FORMED $=120$
PRECISION OF DATA $=3$ DECIMAL PLACES
INPUT FUNCTION $=$ UNIT STEP

14

$\mathrm{m}=$

- $-\sqrt{2}$
$\square=$
$=$
$=$

EXAMPLE 3.

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAG INARY	
1	-1.0000000000	0.0	J
2	-10.0000000000	0.0	J
3	-100.0000000000	0.0	J
ZEROES	REAL	IMAGINARY	
1	-3.0000000000	0.0	J
2	-30.0000000000	0.0	J

GAIN CONSTANT $=10.0000000000$

SYSTFM STATE VARIABLES (PHASE FORM)
A VECTOR

1	1000.0000000000
2	1110.0000000000
3	111.0000000000

B VECTOR
3
10.0000000000

C VECTOR

1

2
3
90.0000000000
33.0000000000
1.0000000000

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-99.6074714180	0.0	J
2	-1.0627466213	0.0	J
3	-10.0526991957	0.0	J
ZEROES	REAL		
1	-3.1100954642	0.0	JMAG INARY
2	-29.8941214051	0.0	J

```
SYSTEM STATE VARIABLES (PHASE FORM)
```

A VECTOR

1	1064.1536423652
2	1117.8649236164
3	110.7229172350

B VECTOR
3
9. 9883327484

C VECTOR

1	93.0004760964
2	33.0051168692
3	1.0000000000

```
PROGRAM PARAMETERS
    RECORD LEGNTH = 0.60000 SEC
    SAMPLING PERIOD = 0. }10000\mathrm{ MSC
    EQUATIONS FORMED = 120
    PRECISION OF DATA = 3 DECIMAL PLACES
    INPUT FUNCTION = GAUSSIAN- SIGMA=0.010 SEC
```


SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAG INARY	
1	-98.9033657608	0.0	J
2	-0.9389787239	0.0	J
3	-9.8317762550	0.0	J
ZEROES	REAL		
1	-2.8677895731	0.0	IMAGINARY
2	-29.6513565567	0.0	J

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	913.0589327259
2	1074.4957479197
3	109.6741207397

B VECTOR
$3 \quad 9.9508285522$

C VECTOR
1

$$
\begin{array}{r}
85.0338511612 \\
32.5191461297 \\
1.0000000000
\end{array}
$$

2

PROGRAM PARAMETERS

RECORD LEGNTH	$=0.60000 \mathrm{SEC}$
SAMPLING PERIOD	$=0.100 G 0 \mathrm{MSC}$
EQUATIONS FORMED	$=120$
PRECISION OF DATA	$=3$ DECIMAL PLACES
INPUT FUNCTION	$=$ GAUSSIAN - SIGMA $=0.030 \mathrm{SEC}$

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAG INARY	
1	-99.1859265460	0.0	J
2	-0.7535004508	0.0	J
3	-9.5204582353	0.0	J
ZEROES	REAL		
1	-2.5186589038	0.0	JMAGINARY
2	-29.4122032416	0.0	J

SYSTEM STATE VARIABLES (PHASE FORM)
A VECTOR
$1 \quad 711.5270631979$
$2 \quad 1026.2057811417$
$3 \quad 109.4599852321$

B VECTOR
3
9.9813451767

C VECTOR
1
2

$$
31.9308621454
$$

3

$$
74.0793075760
$$

1.0000000000

```
PROGRAM PARAMETERS
    RECORD LEGNTH = 0.60COO SEC
    SANPLING PERIOD = 0.100CO MSC
    EQUATIONS FORMED = 120
    PRECISION OF DATA = 3 DECIMAL PLACES
    INPUT FUNCTION = GAUSSIAN- SIGMA =0.050 SEC
```


SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-5.0000000000	0.0	J
2	-20.0000000000	0.0	J

ZEROES
REAL
I MAG INARY

GAIN CONSTANT $=300.000 C O 00000$

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	100.0000000000
2	25.0000000000

B VECTOR
$2 \quad 307.0030000000$

C VECTOR
11.0000000000

INITIAL STATE VECTOR
$1 \quad 1.0000000000$
2

$$
0.0
$$

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-20.1020603504	0.0	J
2	-0.4280895557	-6.7540893481	J
3	-0.4280895557	6.7540893481	J
4	1.0489471395	0.0	J
5	-4.9974142741	0.0	J
ZEROES	REAL		
1	21168.5357639489	0.0	JMAGINARY
2	-0.4681078779	-6.7682935708	J
3	-0.4681078779	0.7682935708	J
4	1.0470216652		J
GAIN CONSTANT $=$	-0.0141926892		

SYSTEM STATE VARIABLES (PHASE FORM)
A VECTOR

1	-4826.300213
2	3305.020433
3	1050.6311 .50
4	140.5228441
5	24.90670660

B VECTOR
5
$-0.1419268921 E-01$

C VECTOR

$$
1020181.159
$$

$2 \quad-953662.8857$

Hinin

IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION (G) VECTOR	
1	C. 9983029652
2	25.01148179
3	37.55868385
4	1118.728299
5	-1523.539669

PROGRAM PARAMETERS

RECORD LEGNTH	$=3.00000 \mathrm{SEC}$
SAMPLING PERIOD	$=0.50000 \mathrm{MSC}$
EQUATIONS FORMED	$=120$
PRECISION OF DATA	$=3$ DECIMAL PLACES
INPUT FUNCTION	$=$ PIECEWISE CONSTANT

4

148
$=$
nim

inity
+15

```
IDENTIFICATION OF UNKNOWN SYSTEM
```

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-4.9994757762	0.0	J
2	-20.0118644519	0.0	J
ZEROES	REAL		
IMAGINARY			

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	100.0488316
2	25.01134023

B VECTOR
$2 \quad 300.1457520$

C VECTOR
11.000000000

INITIAL CONDITION (G) VECTOR
1
1.001249200
2
25. C0380377

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-2.0000000000	3.0000000000	J
2	-2.0000000000	-3.0000000000	J
3	-20.0000000000	0.0	J
ZEROES	REAL		
1	-8.0000000000	0.0	JMAGINARY

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR
1
2
3

> 260.0000000000
> 93.0000000000
> 24.0000000000

B VECTOR
3
160.0000000000

C VECTOR
18.0000000000

2
1.0000000000.

INITIAL STATE VECTOR

1
2

3
2.0000000000
1.0000000000
0.0

[^0]SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-20.3839954707	0.0	J
2	1.0012938647	-8.8128722093	J
3	1.0012938647	8.8128722093	J
4	-1.9998854338	-3.0017839895	J
5	-1.9998854338	3.0017839895	J
ZEROES			
1	-7.6038902797	0.0	JMAGINARY
2	447.1906330529	0.0	J
3	1.292226696	-9.0382447685	J
4	1.292226696		
		-0.3623618484	

SYSTEM STATE VARIABLES (PHASE FORM)
A VECTOR

1	20863.16713
2	6906.430945
3	1994.127061
4	124.3802348
5	22.38117861

B VECTOR
$5 \quad-0.3623618484$

C VECTOR

1	-283455.3928
2	-27855.73425
3	-2180.940891
4	-442.1711881
5	1.000000000

IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION (G) VECTOR	
1	16.99753824
2	388.4269451
3	1684.166654
4	30704.56626
5	95381.34774

PROGRAM PARAMETERS
RECORD LEGNTH $=3.00000 \mathrm{SEC}$
SAMPLING PERIOD $=0.50000 \mathrm{MSC}$
EQUATIONS FORMED $=120$
PRECISION OF DATA $=3$ DECIMAL PLACES
INPUT FUNCTION $=$ PIECEWISE CONSTANT

SYSTEM TRANSFER FUNCTION
$\left.\begin{array}{cccc}\text { POLES } & \text { REAL } & \text { IMAGINARY } \\ 1 & -20.1316142373 & 0.0 & \mathrm{~J} \\ 2 & -1.9997989237 & -3.0011201212 & \mathrm{~J} \\ 3 & -1.9997989237 & 3.0011201212 & \mathrm{~J} \\ \text { ZEROES } & \text { REAL } & & \\ 1 & -8.0335677123 & 0.0 & \mathrm{JMAGINARY}\end{array}\right]$

SYSTEM STATE VARIABLES (PHASE FORM)
A VECTOR
$1 \quad 261.8301183$
293.52427869
$3 \quad 24.13121208$

B VECTOR
3
160.4525452

C VECTOR
$1 \quad 8.033567712$
21.000000000

INITIAL CONDITION (G) VECTOR •

1	16.99920347
2	418.2532176
3	1168.376804

0

18

EXAMPLE 6

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-3.0000000000	0.0	J
2	-45.0000000000	0.0	J
ZEROES	REAL		
1	-15.0000000000	0.0	J
GAIN CONSTANT $=$	10.0000000000		

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1
2
135.0000000000
48.0000000000

B VECTOR
2
10.0000000000

C VECTOR
1
15.0000000000
1.0000000000

INITIAL STATE VECTOR
1
1.0000000000

2
0.0

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-44.9825756448	0.0	J
2	0.8248831729	-16.8802782130	J
3	0.8248831729	16.8802782130	J
4	-2.9985948695	0.0	J
5	-4.9057021934	0.0	J
ZEROES	REAL		
1	0.8362974237	-16.8739835601	J
2	0.8362974237	16.8739835601	J
3	-15.0390073803	0.0	J
4	-4.9017160580	0.0	J

GAIN CONSTANT = 9.9892787933

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	189152.5939
2	104719.1699
3	15157.98857
4	568.8244217
5	51.24110636

B VECTOR
5
9.989278793

C VECTOR

1	21041.07999
2	5568.396359
3	325.7949073
4	18.26812859
5	1.000000000

IDENTIFICATION OF UNKNCWN SYSTEM

INITIAL CONDITICN (G) VECTOR

1	14.99958219
2	633.6563568
3	6068.388958
4	183314.0231
5	819995.9356

PROGRAM PARAMETERS

RECORD LEGNTH	$=1.33333 \mathrm{SEC}$
SAMPLING PERIOD	$=0.22222 \mathrm{MSC}$
EQUATIONS FORMED	$=120$
PRECISION OF DATA	$=4$ DECIMAL PLACES
INPUT FUNCTION	$=$ PIECEWISE CONSTANT

SYSTEM TRANSFER FUNCTION
POLES
REAL
1
-2.9998001615
-44.9468936931
zEROES
REAL
IMAG INARY
1
-14.9948012787
0.0
J
GAIN CONSTANT $=$
9.9912204742

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR
1
134.8316990

2
47.94669385

B VECTOR
2
9.991220474

C VECTOR
$1 \quad 14.99480128$
2
1.000000000

INITIAL CONDITION (G) VECTOR
114.99876932
2584.3008098

EXAMPLE 7

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-1.0000000000	-1.0000000000	J
2	-1.0000000000	1.0000000000	J
3	-50.0000000000	0.0	J
ZEROES	REAL		
1	-5.0000000000	0.0	JMAGINARY
2	-20.0000000000		
GAIN CONSTANT		5.0000000000	

SYSTEM STATE VARIABLES (DHASE FORM)

A VECTOR.

1	100.0000000000
2	102.0000000000
3	52.0000000000

B VECTOR
3
5.0000000000

C VECTOR

1	100.0000000000
2	25.0000000000
3	1.0000000000

INITIAL STATE VECTOR	
1	2.0000000000
2	1.0000000000
3	0.0

$=-$

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-49.9911920718	0.0	J
2	1.1558667717	-23.4137133914 J	
3	1.1558667717	23.4137133914 J	
4	$-0.99972239 C 9$	-0.9974653718 J	
5	-0.9997223909	0.9974653718 J	
ZERDES	REAL		
1	1.2179838023	-23.3753514222 J	
2	1.2179838023	23.3753514222 J	
3	-19.8075068598	0.0	J
4	-5.1152815779	0.0	J

GAIN CONSTANT $=\quad 4.9560489655$

SYSTEM STATE VARIABLES (PHASE FORM)
A VECTOR

1	54789.78240
2	55794.37204
3	28434.85333
4	531.2985138
5	49.67890331

B VECTOR
5
4.956048965

C VECTOR

1	55512.80354
2	13408.14537
3	588.5004083
4	22.48682083
5	1.000000000

Coll

\qquad

IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION	(G) VECTOR
1	225.0001273
2	10975.84397
3	117558.8284
4	6270060.545
5	11259586.57

PROGRAM PARAMETERS
RECORD LEGNTH $=1.20000 \mathrm{SEC}$
SAMPLING PERIOD $=0.20000 \mathrm{MSC}$
EQUATIONS FORMED $=120$
PRECISION OF DATA $=4$ DECIMAL PLACES
INPUT FUNCTICN $=$ PIECEVISE CONSTANT

SYSTEM TRANSFER FUNCTION

POLES	REAL	I MAG INARY	
1	-49.9862042435	0.0	J
2	-0.9995303000	-1.00c 7669686	J
3	-0.9995303000	1.0007669686	J
Z EROES	REAL	IMAG INARY	
1	-4.9622611725	0.0	J
2	-20.2677062457	0.0	J
GAIN CONSTANT	$=\quad 4.9685173035$		
YStEM State variables (PHASE form)			
A VECTOR			
1	100.0021676		
2	101.9260468		
3	51.98526484		

B VECTOR
$3 \quad 4.968517303$

C VECTOR

1	100.5736518
2	25.22996742
3	1.000000030

INITIAL CONDITION (G) VECTOR

1	225.0005829
2	11494.69251
3	20485.03332

aeil $-\sqrt{2+1}+$

$14-2$ -2

C-2

$\sqrt{4}$ \qquad
1 $=$

EXAMPLE 8

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAG INARY	
1	-3.0000000000	0.0	J
2	-8.0000000000	0.0	J
3	-40.0000000000	-5.0000000000	J
4	-40.0000000000	5.0000000000	J
ZEROES	REAL	I MAG INARY	
1	-20.0000000000	0.0	J
GAIN CONSTANT	160.0000000000		

SYSTEM STATE VARIAELES (PHASE FORM)

A VECTOR
139000.0030000060
219795.0000000060
$3 \quad 2529.0000000000$
$4 \quad 91.0000060000$

B VECTOR
$4 \quad 160.0000000000$

C VECTOR
$1 \quad 20.0000000000$
21.0000000000

INITIAL STATE VECTOR

1	3.0000000000
2	2.0000000000
3	1.0000000000
4	0.0

$+m=$

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-40.0576848888	-4.8648939727	J
2	-40.0576848888	4.8648939727	J
3	-8.0002609098	0.0	J
4	-1.4530133153	0.0	J
5	-2.9998483817	0.0	J
ZEROES	-1.4492282436		IMAGINARY
1	-20.3685768935		
2		0.0	J

GAIN CONSTANT $=157.7509613037$

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	56781.06779
2	67897.28681
3	23515.35114
4	2665.954710
5	92.56849238

B VECTOR
$5 \quad 157.7509613$

C VECTOR

1	29.51871692
2	21.81780514
3	1.000000000

INITIAL CONDITION (G) VECTOR	
1	62.00108720
2	5780.206688
3	169108.2337
4	1409764.537
5	1708815.026

PROGRAM PARAMETERS	
RECORD LEGNTH	$=1.48842 \mathrm{SEC}$
SAMPLING PERIOD	$=0.24807 \mathrm{MSC}$
EQUATIONS FORMED	$=120$
PRECISION OF DATA	$=5$ DECIMAL PLACES
INPUT FUNCTICN	$=$ PIECEWISE CONSTANT

$\pi=$

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	I MAG INARY
1	-40.0840542053	-4.7409985601 J
2	-40.0840542053	4.7409985601 J
3	-3.0000451598	0.0 J
4	-7.9997100.927	0.0 J
ZEROES	REAL	IMAG INARY
1	-19.9584019372	0.0 J
GAIN CONSTANT	$=160.7285003662$	
SYSTEM STATE VARIABLES (PHASE FORM)		
A VECTOR		
1	30100.17487	
2	19844.88825	
3	2535.C37532	
4	91.16786366	
B VECTOR		
4	160.7285004	
C VECTOR		
1	19.95840194	
2	1.000000000	

INITIAL CONDITION (G) VECTOR	
1	$62 . C O 114277$
2	5693.349573
3	160935.4623
4	1176687.962

EXAMPLE 9

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-1.0000000000	0.0	
2	-5.0000000000	0.0	J
ZEROES	REAL		
GAIN CONSTANT $=$	10.0000000000		

SYSTEM STATE VARIABLES (PHASE FORM)
A VECTOR

1	5.0000000000
2	5.0000000000

B VECTOR
2
10.0000300000

C VECTOR
11.0000003000

INITIAL STATE VECTOR

1	1.0000000000
2	0.0

*

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-5.0110029817	0.0	J
2	-2874.4029427054	0.0	J
3	0.0094513173	-2.4186034399	J
4	0.0094513173	2.4186034399	J
5	-0.9999781363	0.0	J
ZEROES	REAL		
1	0.0096691675	-2.4198473522	J
2	0.0096691675	2.4198473522	J
GAIN CONSTANT $=$	28777.0156250000		

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1

$$
\begin{aligned}
& 84255.60063 \\
& 100828.6134 \\
& 30926.28200 \\
& 17234.39503 \\
& 2880.395021
\end{aligned}
$$

B VECTOR
5
28777.01563

C VECTOR
1
5.855754701

2
3
-0.19338335050-0.1
1.000000000

$$
18
$$

4

IDENTIFICATION OF UNKNOWIN SYSTEM

```
INITIAL CONDITION (G) VECTOR
    1
        1.450317645
        2876.228032
        17252.85740
        16462.65716
        101232.6568
PROGRAM PARAMETERS
    RECORD LEGNTH = 12.00000 SEC
    SAMPLING PERIOD = 2.000CO MSC
    EQUATIONS FORMED = 120
    PRECISION OF DATA = 5 DECIMAL PLACES
    INPUT FUNCTION = PIECEWISE CONSTANT
```


IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-0.9999961462	0.0	J
2	-5.0000869786	0.0	J
ZEROES	REAL		
GAIN CONSTANT $=$	10.0001306534		

SYSTEM STATE VARIABLES (PHASE FORM)
A VECTOR
1
2
5.000067709
6.000083125

B VECTOR 2
10.C0013065

C VECTOR
1
1.000000000

INITIAL CONDITION (G) VECTOR
$1 \quad 1.000025784$
$2 \quad 6.000036891$

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-5.0000 .000000	-5.0000000000	J
2	-5.0000000000	5.0000000000	J
3	-100.0000000000	0.0	J
ZEROES	REAL		
1	-20.0000000000	0.0	JMAGINARY
GAIN CONSTANT $=$	100.0000000000		

SYSTEM STATE VARIABLES (PHASE FORM)
A VECTOR
$1 \quad 5000.0000000000$
21050.0000000000
3110.0000000000

8 VECTOR
3
100.0000000500

C VECTOR
1
2

> 20.0000000000
> 1.0000000000

INITIAL STATE VECTOR

1	2.0000000000
2	1.0000000000
3	0.0

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	I MAG INARY	
1	3533.8075084749	0.0	J
2	-25.9614103219	0.0	J
3	-100.0395044818	0.0	J
4	-4.9998977161	-5.0000893933	J
5	-4.9998977161	5.0000893933	J
ZEROES	REAL	IMAGINARY	
1	-19.5630088534	C. 0	J
2	-26.9189879242	0.0	J

GAIN CONSTANT $=-348534.3750000000$

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1	-458893162.9
2	-113910225.2
3	-13774844.37
4	-476693.1811
5	-3397.806798

B VECTOR
5
-348534.3750

C VECTOR

1

2
3
526.6163991
46.48199678

1. 000000000

IDENTIFICATION OF UNKNOWN SYSTEM

IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES	REAL	IMAGINARY	
1	-99.9959669612	0.0	J
2	-4.9999968528	-5.0000354476	J
3	-4.9999968528	5.0000354476	J
ZEROES	REAL		
1	-19.9960841378	0.0	J
GAIN CONSTANT		100.0136718750	

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1
4999.830647

2
1049.959363

3
109.9959607

B VECTOR
3
100.0136719

C VECTOR
$1 \quad 19.99608414$
2

1. 000000000

INITIAL CONDITION (G) VECTOR
1
2
40.99999105
4529.827485
34198.63350

IV. CONCLUSIONS

The method of multiple integrations is a practical and flexible method for identifying lumped parameter, linear, time invariant systems. Complete and accurate identifications can be made on the basis of arbitrary in-put-output records taken over a short time interval and accurate to only three or four significant figures. The computational requirements of the method are not excessive. The procedure can be implemented by relying entirely on subroutines which are available in most computer center libraries.

At present the technique is limited to comparatively low order systems. When the input-output records are good to three or four significant digits the method will be capable of identifying systems up to about fifth order. This limitation is due primarily to the algorithm used to solve the overdetermined set of linear equations. As better algorithms become available it will be possible to identify higher order systems.

The accuracy of an identification is usually comparable to the number of significant digits in the inputoutput data. Accuracy depends to a lesser extent on the sampling rate, the nature of the input function driving the system, and the order of the system.

There are several areas where additional research might prove fruitful. Since the input-output records must

be in sampled data form for the computer it might be profitable to reformulate the identification procedure from a sampled system standpoint. Standard techniques could be used to convert the sampled system representation obtained from the identification to a continuous system representation. The ability to identify sampled systems would be a worthwhile extension of this method.

The method of multiple integrations may prove very useful as a tool for approximating high order systems with low order systems. Research could be done to determine the quality of the approximations obtained using this method.

Hinn
(
$1=$

14

MAIN PROGRAM - LINEAR SYSTEM IDENTIFICATION
PURPOSE
TO IDENTIFY LINEAR TIME INVARIANT SYSTEMS ON THE $8 A S I S$ OF INPUT-OUTPUT RECORDS

DESCRIPTION OF PARAMETERS
INPUT
$\begin{array}{ll}\text { NP } & \text { ESTIMATED NUMBER OF POLES } \\ \text { NZ }\end{array}$
KPTMAX - NUMBER OF DATA POINTS
IPTS - DATA POINTS INTEGRATED PER LINEAR EQ.
T - TIME
R
C - INPUT AMPLITUDE AT TIME T

REMARKS
(1) OUTPUT WILL CONSIST OF A TRANSFER FUNCTION
(2) PROGRAM IS PRESENTLY CONFIGURED TO IDENTIFY SYSTEMS SIMULATED BY SUBROUTINE SYSTEM. IF IT IS DESIRED TO IDENTIFY A PHYSICAL SYSTEM REPLACE SUBROUTINE SYSTEM CALLS WITH APPROPRIATE READ STATEIUENTS.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
WHEN IDENTIFYING PHYSICAL SYSTEMS
(1) DLLSQ

WHEN IDENTIFYING SIMULATED SYSTEMS
(1) DLLSQ
(2) RTPLSB
(3) SYSTEM
(4) EXPAND
(5) SUMM
(6) DIFF
(7) PROD
(8) GAUSS
(9) ARRAY
(10) MINV

METHOD
MULTIPLE INTEGRALS OF THE INPUT AND OUTPUT DATA ARE USED TO FORMULATE A SET OF OVERDETERMINED LINEAR EQUATIONS. THESE EQUATIONS ARE THEN SOLVED FOR THE UNKNOWN MODEL PARAMETERS USING THE METHOD OF LEAST SQUARES.

REAL*8 TO,TN(11), RO(11), RN(11), CO(11), CN(11),DT2
REAL*8 A(26CG), B(200), X(26), AUX(52), CONV (9)
REAL*8 AP(1C), AZ(10), PRA(9), PIA(9), ZRA(8), ZIA(8)
INTEGER IPIV(26)
$K P T M A X=5 C: 02$
IPTS=5C
$N P=4$
$N Z=N P-1$
5 CCNTINUE
MEQS =KPTMAX/IPTS
TO = - 1.00
$E P S=10 \cdot 0 *(-35)$
$\mathrm{K}=1$
$M=0$
$N P 1=N P+1$
$N P 2=N P+2$

AZ(I)=x(J)
IF (NZ.EQ.O) GO TO 60
CALL RTPLSB(NZ,AZ,ZRA,ZIA,CONV,IERPZ)

```

\section*{60}
```

OUTPUT
WRITE $(6,914)$
WRITE $(6,915)$
WRITE $(6,916)$
WRITE 6,917$)$
WRITE $(6,918)$
WRITE 6,919$)$
WRITE $(6,920)$
WRITE 6,921$)$
WRITE $(6,921)$
WRITE 6,900$)$
WRITE (6,901)
WRITE (6,902)
DO $65 I=1$, NP
WRITE (6,903) I, PRA(I), PIA(I)
CONTINUE
WRITE (6,904)
IF (NZ.EQ.O) GO TO 75
DO $70 \quad I=1, N Z$
WRITE (6,903) I, ZRA(I), ZIA(I)
CONTINUE
75 CONTINUE
WRITE 6,905$)$ GAINI
WRITE $(6,906)$
WRITE $(6,907)$
DO $8 C \quad I=1, N P$
$I I=N P+2-I$
WRITE 6,910$)$ I, AP(II)

```

80

85
CCNTINUE
WRITE 6,908\()\)
WRITE ( \(6: 910)\)
WRITE 6,910\()\)
WRITE 6,909\()\)
\(0085 \quad I \stackrel{1}{=} 1, N Z 1\)
\(I I=N Z+2-1\)
WRITE 6,910\()\) I, AZ(II)
CDNTINUE
WRITE \((6,913)\)
DO \(90 \mathrm{I}=1, N P\)
\(I I=N+I\)
WRITE (6,910) I, X(II)
CONTINUE
GOTO 5
901 FORMAT (1H1,///,25X,'IDENTIFICATION OF UNKNCWN SYSTEM')
902 FORMAT (//, \(15 \times\), 'POLES', \(12 X\), 'REAL', \(13 X, 1\) MMAGINARY', /)
903 FORMAT ( \(17 X, I 2,7 X, G 15,8,6 X, G 15,8,1 X, J 1,1)\)
904 FORMAT ( \(/ 1,15 X\), 'ZEROLS', \(11 X, 1 R E A L \prime, 13 X\), 'IMAGINARY', /)
905 FORMAT \((/ /, 15 X\), GAIN CONSTANT \(=1, G 15.8, / 1\)
906 FORMAT (////,12X, 'SYSTEM STATE VARIABLES (PHASE FORM)')
907 FORMAT \(9 / 1,15 \bar{X}\), 'A VECTOR , \(/ 1)\)
908
909
910
911 FORMAT (IH, 9X,' IER', I5, 5X, 'EPS', E15.8,5X, 'AUX',
1E16.8./ 9X, 11 I 8)
912
913
914
915
916
917
918
919
920
921


1

I

1
-

er

SUBROUTINE SYSTEM
```

PURPOSE
GENERATES INPUT-OUTPUT RECORDS FOR IDENTIFICATION PROGRAM BY SIMULATING A SYSTEM DESCRIBED by a transfer function that is read in

```

USAGE
CALL SYSTEM(T,R,C)
DESCRIPTION OF PARAMETERS
INPUT
NP - NUMBER OF POLES
P(I) - THE VECTOR OF POLES
NZ - NUMBER OF ZEROES
Z(I) - THE VECTOR OF ZEROES
GAIN - THE GAIN CONSTANT
QUTPUT
T
R
C
- TIME
- INPUT AMPLITUDE AT TIME \({ }^{\top}\)

REMARKS
(1) INPUT FUNCTION MAY BE CHANGED BY

CHANGING ONE CARD IN PROGRAM
(2) R AND C ARE ROUNDED TO NA DIGITS
(3) ALL FLOATING POINT VARIABLES ARE DECLARED DOUBLE PRECISION (REAL*8).

SUBROUTINES AND FUNCTION SUBFROGRAMS REQUIRED
(1) SUMM
(3) PRRO
(4) EXPAND
(5) GAUSS3
(6) ARRAY
(7) MINV
(8) ROUND

METHOD
TRANSFER FUNCTION IS CONVERTED TO STATE VARIABLE REPRESENTATION AND INTEGRATED USING TRAPEZOIDAL INTEGRATION

SUBROUTINE SYSTEM(T,R,C)
REAL* 8 AA(10), CC(10), \(A(9,9), B(9,1), X X X(9,9)\)
REAL.*8 PHI \((9,9), D E L(9,1), \times \times(9,1), U U(1,1)\)
REAL * 8 T, R, C, U, DT, AI \((9,9), Z Z Z(9,9)\)
IF (T.GE.O.OO) GO TO 55
INPUT POLES, ZEROES, AND GAIN CONSTANT
READ (5,809, END \(=999\) ) NP
READ (5,898) (P(I), I=1,NP)
CALL EXPAND (NP,P,AA)
DO \(5 \mathrm{I}=1, \mathrm{NP}\)
\(C C(I)=0.00\)

5
READ (5,899) NZ
IF (NZ.EQ.0) GO TO 10
READ ( 5,898 ) ( \(2(1), I=1, N Z)\)
CALL EXPAND (NZ,Z,CC)
CONTINUE
READ \((5,898)\) GAIN
```

$0015 \mathrm{I}=1$, NP

```
\(0015 \mathrm{I}=1\), NP
IF (DT.LT:CDABS(P(I))) DT=CDABS(P(I))
DO 20 I=1,NZ
IF (DT.LT.CDABS(Z(I))) DT=CDABS(Z(I))
20 CONT INUE
IF (DT.EQ.O.COi DT \(=0.00001\)
FORM A, B, AND C MATRICES
\(\begin{array}{lll}\text { DO } 35 & 1=1, N P \\ \text { DO } 30 & j=1, N P\end{array}\)
AI \((I, j)=0 . C 0\)
A \((1, j)=0.000\)
CONTINU
\(B(I, I)=0.00\)
CONT INUE
DO 40 I =2, NP
AI (I, I) \(=1.00\)
\(A(I-1, I)=D T / 2.00\)
A \(1(1,1)=1\). \(\cap\)
\(A\left(N^{1}, 1\right)=-\dot{A} \dot{A}(1) * D T / 2.00\)
B(NP,1)=GAIN*DT/2.00
CC(NZ + 1 ) \(=1\), (: \(n\)
CALCULATE PHI MATRIX
CALL DIFF (AI, A, ZZZ, NP,NP)
CALL GAUSS3(NP, EPSS,ZZZ, XXX,KER,9)
CALL SUMM (AI,A,ZZZ, NP,NP)
CALL PROD (XXX,ZZZ,PHI,NP,NP,NP)
CALCULATE DEL MATRIX
CALL PROD (XXX,B,DEL,NP,NP,1)
DEFINE INITIAL CONDITIONS
```

$K=1$
$\mathrm{DO} 45 \mathrm{I}=1, \mathrm{NP}$
$\times \times(1,1)=F L O A T(N P-I)$
45 CONTINUE
$\mathrm{UU}(1,1)=0.00$
$R=0.00$
$C=0.00$
DO $50 \mathrm{I}=1$, NP
$\mathrm{C}=\mathrm{CC}(1) * \times X(I, 1)+C$
CONTINUE
GOTO 65
CALCULATE NEW DATA POINT (T, R, C)
55 CONTINUE
$T=D T * F L O A T(K)$
INPUT FUNCTION
$U=\quad+0.1 * F L O A T(K / 53)+F L O A T(K / 403)+F L O A T(K / 6 C 3)$

4


```
    UU(1,1)=UU(1,1)+U
    CALL PROD(PHI, XX,XXX,NP,NP,1)
    CALL PROD(DEL,UU,ZZZ,NP,I,I)
    C=0.00
    DO 60 I = 1,NP
    XX(I,1)=XXX(I,1)+ZZZ(I,1)
    C=CC(I)*XX(I,1)+C
    CCNTINUE
    ROUND OFF R AND C
    CALL ROUND(R,NA)
    CALL ROUND(C,NA)
C
C
UU=K+1
RETURN
    6 5 ~ C O N T I N U E ~
    WRITE (6,900)
    WRITE (6,001)
    WRITE(6,002)
    OO 70 I = 1,NP
    WRITE(6,903) I,P(I)
    WRITE(6,904)
    IF (NZ.EQ.O) GO TO 80
    OO 75 I=1,N
    WRITE(6,903) I,Z(I)
    7 5
```

```
898 FORMAT(2F10.5)
    FORMAT (II)
    9OO FORMAT(IHI,/////,25X,'SYSTEM TO BE IDENTIFIED')
    901 FORMAT(///,12X, SYSTEM TRANSFER FUNCTION')
    902 FCRMAT (//,15X,'POLES',12X,'REAL',13X,'IMAGINARY',/1
    903 FORMAT ( }17\textrm{TX,I
    904 FORMAT(//,I5X,'ZEPOES',11X,'REAL', 13X,'IMAGINARY',/)
    905 FORMAT(///15X,'GAIN CONSTANT =',FI4.7:/')
    GC6 FORMAT(////, 12X,'SYSTEM STA
    908 FCRMAT(//,15X,'B VECTOR',/)
    909 FGRMAT(//,15x,'C VECTOR:,/
    910 FORMAT(17X,I2,7X,F14.7,/)
```



```
RETURN
    9 9 9
```


8

SUBROUT INE DLLSQ
PURPOSE
TO SOLVE LINEAR LEAST SQUARES PROBLEMS, I.E. TO MINIMIZE THE EUCLIDEAN NORM OF B-A*X, WHERE A IS A M BY N MATRIX WITH M NOT LESS THAN N. IN THE SPECIAL CASE M=N SYSTEMS OF LINEAR EQUATIONS MAY BE SOLVED.

USAGE
CALL DLLSQ(A,B,M,N,L,X,IPIV,EPS,IER,AUX)
DESCRIPTION OF PARAMETERS

- DOUBLE PRECISION M BY N MATRIX (DESTROYED).
DOUBLE PRECISION M BY L RIGHT HAND SIDE MATRIX (DE STROYED) O OES A AND B
- ROW NUMBER OF MATRICES A AND B MATRIX X
L - COLUMN NUMBER OF MATRICES B AND X
X - DOUBLE PRECISION N BY L SOLUTION MATRIX
IPIV - INTEGER OUTPUT VECTOR OF DIMENSION N WH ICH CONTAINS INFORMATION CN COLUMN INTERCHANGES IN MATRIX A.
EPS - SINGLE PRECISION INPUT PARAMETER WHICH SPECIFIES A RELATIVE TOLERANCE FOR DETERMINATION OF RANK DFA.
IER - A RESULTING ERROR PARAMETER
AUX - A DOUBLE PRECISION AUXILIARY STORAGE ARRAY OF DIMENSION MAX $(2 \% \mathrm{~N}, \mathrm{~L})$. ON RETURN FIRST L LOCATIONS OF AUX CGNTAIN THE RE SULTING IEAST SQULIAES.

REMARKS
(1) NO ACTION BESIDES ERROR. MESSAGE IER=-2 IN CASE M LESS THAN N.
(2) NO ACTION BESIDES ERROR MESSAGE IER=-1 IN
(3) IASE OF A ZEROMATRIX Å FOUND TO BE LESS THAN N BUT GREATER THAN C, THE PRCCEDURE RETURNS WITH ERROR CODE IER=K INTO CALLING PROGRAM. THE LAST N-K ELEMENTS OF VECTCR IPIV DENOTE THE USELESS COLUMNS IN MATRIXA.
(4) IF THE PROCEDURE WAS SUCCESSFUL, ERROḰ PARAMETER IER IS SET TO ZERO.

SUBROUTINES AND FUNCTION SUBPRIOGRAMS REQUIRED NONE

METHOD
HOUSEHOLDER TRANSFORMATIONS ARE USED TO TRANSFORM MATRIX A TO UPPER TRIANGULAR FGRM. AFTER HAVING APPLIED THE SAME TRANSFORMATIONS TO MATRIX B, AN APPROXIMATE SOLUTIUN OF THE PROBLEM IS COMPUTED BY BACK SUBSTITUTIDN。 FCR REFEPANCE, SEE GOLUB, G., NUMEPIC AL METHODS FOR SOLVING LINEAR LEAST' SQUARES PROBLEMS, NLMMEP ISCHE MATHEMATIK, VOL. M, ISS. 3 (1965), PP. 206-216.

SUBROUT INE DLLSQ(A,B,M,N,L,X,IPIV,EPS,IER,AUX)
DIMENSION $A(1), B(1), X(1), I P I V(1), A U X(1)$
DOUBLE PRECISION A,B,X,AUX,PIV,H,SIG,BETA,TOL
ERROR TEST

$\operatorname{IF}(M-N) 30,1,1$
GENERATICN OF INITIAL VECTOR $S(K)(K=1,2, \ldots, N)$ IN STORAGE LOCATIONS AUX(K) $(K=1,2, \ldots, N)$

1 PIV=0.DO
I END $=0$
DC $4 K=1, N$
$\operatorname{IPIV}(K)=K$
$\mathrm{H}=0 . \mathrm{DO}$
$I S T=I E N D+1$
$I E N D=I E N D+M$
DO 2 I =IST, IEND
2
$H=H+A(I) * A(I)$
$A \cup X(K)=H$
$\operatorname{IF}(\mathrm{H}-\mathrm{PIV}) 4,4,3$
3 PIV $=\mathrm{H}$
KPIV=K
4 CONTINUE
ERROR TEST
IF(PIV) 31,31,5
5 SIG=DSQRT (PIV)
$T O L=S I G * A B S(E P S)$
DECOMPOSITICN LOOP
$L N=L * M$
I $S T=-M$
DO $21 \mathrm{~K}=1, \mathrm{~N}$
$I S T=I S T+M+1$
I END $=$ IST $+M-K$
I-KPIVーK
IF(I) $8,8,6$
INTERCHANGE K-TH COLUMN OF A WITH KPIV-TH IN CASE
KPIV.GT. K
$6 H=A \cup X(K)$
$A U X(K)=A U X(K P I V)$
$A \cup X(K P I V)=H$
$I D=I * M$
DO 7 I = I ST, I END
$J=I+I D$
$\mathrm{H}=\mathrm{A}(\mathrm{I})$
$A(I)=A(J)$
$7 \mathrm{~A}(\mathrm{~J})=\mathrm{H}$
8 IF(K-1)11,11,9
9 SIG=O.DO
DO 10 I = IST, IEND
10 SIG=SIG+A(I)*A(I)
SIG=DSQRT(SIG)
TEST ON SINGULARITY
IF(SIG-TOL) 32,32,11
GENERATE CORRECT SIGN OF PARAMETER SIG
$11 \mathrm{H}=\mathrm{A}(\mathrm{IST})$
IF (H)12,13,13
12
SAVE INTERCHANGE INFORMATION
$13 \operatorname{IPIV}(K P I V)=I P I V(K)$
$\operatorname{IPIV}(K)=K P I V$
GENERATION OF VECTOR UK IN K-TH CCLUMN OF MATRIX A AND OF PARA!fETER BETA
BETA $=\mathrm{H}+\mathrm{S}$ IG
II

```
A(IST)=BETA
BETA=1.DU/(SIG*BETA)
J=N+K
A\cupX(J)=-SIG
IF(K-N)14,19,19
TRANSFORMATION OF MATRIX A
    14 PIV=0.DO
    I D=C
    JST=K+1
    KPIV=JST
    DO 18 J=JST,N
    ID=ID+M
    H=0.00
    DO 15 I = IST,IEND
    II=I+ID ( I * * (II)
    H=BETA*H
    DO 16 I = IST,IEND
    II=I+ID
    16
UPDATING OF ELEMENT S(J) STORED IN LOCATION AUX(J)
    I I=IST+ID
    H=AUX(J)-A(II)*A(II)
    AUX(J)=H
    IF(H-PIV)18,18,17
    17 PIV=H
    KPIV=J
    18 CONTINUE
C
    1 9
    TRANSFORMATION
        OF
    DO 21 J=K,LM,M
    H=O.DO
    I END=J+M-K
    II=IST
    DO 20 I =J, I END
    H=H+A(II)*B(I)
    20 II =I I + I
    H=BETA*H
    II=IS
    DO 21 I =J,IEND
    B(I)=B(I)-A(II)*H
    21 II=II+1
    END OF DECOMPOSITION LOOP
    BACK SUBSTITUTION AND BACK INTERCHANGE
    I ER=0
    I=N
    L\Lambda=L*N
    PIV=1.DU/AUX(2*N)
    DO 22•K=N,LN,N
    X(K)=PIV*B(I)
    I=I+M
    JST}=(N-1)*M+
    DO 25 J=2,N
    DO25 J=2,N
    K=N+N+1-J
    PIV=1.DU/AUX(K)
    KST=K-N
    ID=IPIV(KST)-KST
    IST=2-J
    H=B(KST)
    IST=IST+N
    I END =IST +J -2
    I I=JST
    DO 24 I = IST, IEND
    II=I I +M
    H=H-A(II)*X(I)
```

```
        I=IST-1
        II =I +ID
        X(I)=X(II)
        X(II)=PIV*H
    25
KST=KST+M
CCMPUTATION OF LEAST SQUARES
    26 IST=N+1
I END=O
DO 29 J=1,L
IEND=IEND+M
H=O.DO
IF(M-N)29,29,27
    27 DO 28 I=IST,IEND
    H=H+B(I)*B(I)
    IST=IST+M
    29 AUX(J)=H
    RETURN
    30 IER=-2
            RETURN
    ERROR RETURN IN CASE OF ZERO-MATRIX A
    31 IER=-1
            32 IER=K-1
        RETURN
            END
```

```
SUBROUTINE ROUND
PURPOSE
                                    TO ROUND OFF A NUMBER TO A SPECIFIED NUMBER OF
        SIGNIFICANT DIGITS
USAGE
        CALL ROUND(A,N)
    DESCRIPTICN OF PARAMETERS
        A - NUMBER TO BE ROUNDED BE RETAINED
    REMARKS
        NONE
    SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
        NONE
    SUBROUTINE ROUND(A,N)
    REAL*8 A
    X=A
    IF (X.EQ.D.O) GO TO 1
    SIGN=+1.O
    IF (X.LT.0.0) SIGN=-1.1)
    L=ALOG10(ASS(X))+1.CO
    Y=X*10.0**(N-L)
    I=Y
    Z=I
    IF ((Y-Z).GT.0.5) I=I+1
    Z=1
    A=SIGN*Z*10.0**(L-N)
1 CONTIPUE
    RETURN
    END
```

SUBROUTINE RTPLSB
PURPOSE
TO FIND THE ROOTS, BOTH REAL AND COMPLEX, OF A POLYNOMIAL WITH REAL COEFFICIENTS USING BOTH BAIRSTOW AND NEWTON-RAPHSON HETHODS.

USAGE
CALL RTPLSB(N,A,U,V,CONV,IER)
DESCRIPTION OF PARAMETERS
INPUT
N - DEGREE CF POLYNOMIAL
A - COEFFICIENT VECTOR OF POLYNOMIAL
OUTPUT - VECTOR OF REAL PARTS OF ROOTS
V - VECTOR OF IMAGINARY PARTS OF ROOTS
CONV - CONVERGENCE INDICATORS FOR EACH ROOT IER

- ERROR INDICATOR
$=0, N$ IS WITHIN BOUNDS
$=1 ; N$ IS LESS THAN ONE

REMARKS
(1) FOR PROBLEMS WITH NONMULTIPLE ROOTS, THE APPROXIMATE NUMSER DF SIGNIFICANT DIGITS OF EACH PART OF EACH ROOT WILL APPEAR AS THE
(2) EXPONENT CF THE CORRESPONDING ENTRY IN CONV IF THERE ARE MULTIPLE ROOTS

SUBROUT INES AND FUNCTION SUBPROGRAIAS REQUIRED NONE

SUBROUTINE RTPLSB ($N, A, U, V, C O N V, I E R)$
IMPLICIT REAL*8 (A-H), REAL*8 (O-Z)
DIMENSION A(1), U(1), V(1), CONV(1), B(53)
DIMENSION C(53), D(53), E(53), H(53)
$K F=10$
$L=25$
I $E R=0$
$\mathrm{N} N=\mathrm{N}$
$K=0$
$\mathrm{Nl}=\mathrm{N}+1$
I $2 F=0$
IF(NN) 51,51,52
DO $11, I=1, N 1$
IF(A)II) $15,12,15$
15
CONTINUE
$12 F=1$
CONTONUE
IF (I2F-1) 13,14,13
$K=K+1$
11
14
$N P 3=N N+3$
N3 $=$ NP 3
DO $10 \quad \mathrm{I}=1$, N3
$\operatorname{CCNV}(I)=0$.
10
$V(I)=0$.
$B(2)=0.0$
$B(1)=0.0$
$C(2)=0.0$
$C(1)=0.0$
$D(2)=0.0$
$E(2)=0.0$
\qquad

$$
34
$$

1
II
暑

1


```
H(2)=0.0
00 101 J=3,NP3
H(J)=A(J+K-2)
1 0 1
CONTINUE
T=1.0
SK=10.C**KF
150 IF(H(NP3)) 200,151,200
151 U(NP3)=0.0
V(NP3)=0.
CONV (NP3)=SK
NP3=NP3-1
IF(NP3) 51,51,15C
200
PS=0.0
QS=0.0
PT=0.0
QT=0.0
S=0.0
REV=1.0
SK=10.0**KF
IF(NP3-4) 51, 202,203
202
203 DO 207 J=3,NP3
GO TO 500
    IF(H(J))204,207,204
204S=S+DLOG(DABS(H(J)))
CONT INUE
FPN1=N+1
    S=DEXP(S/FPN1i
    DO 208 J=3,NP3
    H(J)=H(J)/S
20゙8
    CONTINUE
    IF(DABS(H(4)/H(3))-DABS(H(NP3-1)/H(NP3)))25C,252,252
    NTINUE
    T=-T
    N=(NP3-4)/2 + - 
    DO 251 J=3,M
    S=H(J)
    JJ=NP3-J+3
    H(J)=H(JJ)
251 H(JJ)=S
252 IF(QS) 253,254,253
    CONTINUE
    P=PS
    Q=QS
    GO TO 300
254 HH2=H(NP3-2)
    IF(HH2) 256,255,256
255
    Q=1.0
    P=-2.0
    GO TO 257
256 Q=H(NP3)/HH2
    P=(H(NP3-1)-Q*H(NP3-3))/HH2
257 IF(NP3-5)258,550,258
258 R=0.0
    CONT INUE
    DO 490 I= 1,L
    DO 351 J=3,NP3
    B(J)=H(J)-P*B (J-1)-Q*B(J-2)
    C(J)=B(J)-P*C}(J-1)-Q*C(J-2
351 CONTINUE
    IF(H(NP3-1)) 352,40C,352
353 FHRNP3-1, 353,40,353
353 AVHB1=DABS(H(NP3-1)/B(NP3-1))
    IF(AVHB1-SK)455,354,354
354 B(NP3)=H(NP3)-Q*B(NP3-2)
400 IF(B(NP 3)) 401,550,401
401 AVHB2=DABS(H(NO3)/B(NP3))
    IF(SK-AVHB2)55U,450,450
450 DO 451 J=3,NP3
    D(J)=H(J)+R*D(J-1)
```

```
                            \(E(J)=D(J)+R * E(J-1)\)
451
                            CONTINUE
                                ) \(452,500,452\)
452
    IFIDINPZ
    AVHD 3=DABS (H(NP3)/D(NP3))
    IF (SK-AVHD3) 500,453,453
453
    \(C C 2=C(N P 3-2)\)
    CC3 \(=C(N P 3-3)\)
    \(C(N P 3-1)=-P * C C 2-Q * C C 3\)
    \(C C 1=C(N P 3-1)\)
    \(\mathrm{S}=\mathrm{CC} 2 * \mathrm{CC} 2-\mathrm{CCl} * \mathrm{CC} 3\)
    IF (S) 455,454,455
454
    \(P=P-2.00\)
    \(Q=Q *(Q+1.0)\)
    GOTO 456
\(455 P=P+(B(N P 3-1) * C C 2-B(N P 3) * C C 3) / S\)
    \(\mathrm{Q}=\mathrm{Q}+(-\mathrm{B}(N P 3-1) \div \mathrm{CC} 1+\mathrm{B}(N P 3) * \mathrm{C} C 2) / \mathrm{S}\)
456 IF \((E(N P 3-1)) 458,457,458\)
457
    \(R=R-1.0\)
\(G O T O \quad 490\)
\(458 R=R-D(N P 3) / E(N P 3-1)\)
490 CONTINUE
    \(P S=P T\)
    \(Q S=Q T\)
    \(P T=P\)
    \(Q T=Q\)
    IF(REV) 491,492,492
491 SK=SK / 10.U
492 REV \(=-\) REV
    GO TO 259
500 IF (T) \(5 \mathrm{C} 1,502,502\)
\(501 R=1.0 / R\)
502 NP = NP3-3
    \(U(N P)=R\)
    \(\because(N P)=C\)
    CÓNV(NP)=SK
    NP3=NP3-1
    DO \(503 \mathrm{~J}=3\), NP3
\(503 \mathrm{H}(J)=\mathrm{D}(J)\)
    IF (NP3-3) 3C0,51,300
550 IF(T) \(551,552,552\)
\(551 P=P / Q\)
    \(Q=1.0 / Q\)
\(552 P P 2=P / 2.0\)
    QNPSQ \(=Q-P P 2 * P P 2\)
    IF (QMP SQ) \(554,554,553\)
\(553 N P=N P 3-3\)
    \(U(N P)=-P P 2\)
    \(U(N P-1)=-P P 2\)
    \(S=D S Q R T(G M P S Q)\)
    \(V(N P)=S\)
    \(V(N P-1)=-S\)
    GO TO 561
\(554 S=D S Q R T(-G M P S Q)\)
    \(N P=N P 3-3\)
    IF (P) \(555,556,556\)
\(555 \mathrm{U}(N P)=-P P 2+S\)
    GO TO 557
\(556 \cup(N P)=-P P 2-S\)
557 U(NP-1) \(=0 / U(N P)\)
    \(V(N P)=0.0\)
    \(V(N P-1)=0.0\)
\(561 \operatorname{CONV}(N P)=S K\)
    CONV \((N P-1)=S K\)
    NP3 \(=N P 3-2\)
    DO \(558 \quad \mathrm{~J}=3\),NP3
\(558 \quad H(J)=B(J)\)
        GOTO 200
51 IER=1
54 RETURN
        END
```

DIMENSION S(1), D(1)
REAL* 8 S,D
$N I=N-I$
TEST TYPE OF CONVERSION
IF(MODE-1) 100,100,120

CCNVERT FROM SINGLE TO DOUBLE DIMENSION
$100 \begin{aligned} & I J=I * J+1 \\ & N M=N * J+I\end{aligned}$
NM $=N * J+1$
$D O 110$ K $=1, J$
$N M=N M-N I$
DO $110 \mathrm{~L}=1$, I
$1 J=1 J-1$
NM=NM-1
110
SUBROUT INE ARRAY
PURPOSE
CONVERT DATA ARRAY FROM SINGLE TO DOUBLE DIMENSION OR VICE VERSA. THIS SUEROUTINE IS USED TO LINK THE USER PRDGRAM WHICH HAS DOUBLE DIMENSION ARRAYS AND THE SSP SUBROUTINES WHICH OPERATE ON ARRAYS OF DATA IN A VECTOR FASHION.
USAGE
CALL ARRAY (MODE,I,J,N,M,S,D)
DESCRIPTION OF PARAMETERS
MODE - CODE INDICATING TYPE OF CONVERSION $=1$ - FROM SINGLE TO DUUBLE PRECISION
1 - $=2$ - FUMOM DOUBLE TO SINGLE PRECISION
J - NUMBER OF COLUMNS IN ACTUAL DATA MATRIX

- NUMBER CF ROWS SPECIFIED FOR THE MATRIX
D IN DIMENSION STATEMENT
S - IF MODE=I, THIS VECTOR IS INPUT WHICH CONTAINS THE ELEMENTS OF A DATA MATRIX MATRIX FOLLOWS COLUMN I, ETC. IF MODE=2 THIS VECTOR IS OUTPUT REPRESENTING A DATA MATRIX OF SIZE BY J CONTAINING ITS COLUMNS CONSECUTIVELY. THE LEGNTH
D - IF MODE=1, THIS MATRIX OF SIZE N BYM IS OUTPUT, CONTAINING A DATA MATRIX OF SIZEI BY J IN THE FIRST I ROWS AND J IS INPUT CRNTAINING A DATA MATRIX OF SIZE I BY J IN THE FIRST I ROWS ANU J COLUMNS
REMARKS
VECTOR S CAN BE IN THE SAME LOCATION AS MATRIX D. VECTOR S IS REFERANCED AS A MATRIY IN OTHER SSP ROUTINES, SINCE IT CONTAINS A DATA MATRIX. THIS ROUTINE CONVERTS ONLY GENERAL DATA MATRICES (STORAGE MODE 0)
SUBRIUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE

```
SUBROUTINE \(\triangle R R A Y(M O D E, I, J, N, M, S, D)\)
```


GO TO 140

CONVERT FROM DOUBLE TO SINGLE DIMENSION
120 I J=0
NM $=0$
$\begin{array}{lll}\text { DO } & 130 & K=1, J \\ \text { DO } & 125 & L=1, I\end{array}$
$I J=I J+1$
$N M=N M+1$
$N M=N M+1$
$\begin{array}{ll}125 & S(I J)=D(N M) \\ 130 & N M=N M+N I\end{array}$
130 NM $=N M+N I$
140 RETURN
END

SUBROUTINE GAUSS3
PURPOSE
INVERT A OOUBLE PRECISION MATRIX BY THE GAUSS-
JORDAN METHOD. THIS ROUTINE IS A DOUBLE PRECIS-
ION VERSION OF SSP ROUTINE MINV USING FI-NPGS-
GAUSS3 (F-63) CALLING SEQUENCE
usage
DESCRIPTION OF PARAMETERS

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED (1) MINV

REMARKS

SUBROUT INE GAUSS3(N,EPS,A, $X, K E R, K)$
REAL*: $A, X, Y, D, X(1), L(50), M(50), Y(50,50)$
DIMENSIONA(i),
DO $1 \quad \mathrm{I}=1, \mathrm{~N}$
DO $1 \quad j=1, N$
IND $=(I-1) * K+J$

KER=1 $=A(I N D)$
$K E R=1$
$\mathrm{N} 2=2 \% \mathrm{~N}$
CALL ARRAY $(2, N, N, 50,50, Y, Y)$
CALL MINV(Y,N,D,L,M)
CALL ARRAY (I,N,N,50,50,Y,Y)
IF(D.EQ.O.) KER=2
DO $2 \mathrm{I}=1, \mathrm{~N}$
$002, j=1, N$
IND = (I-1 $1 \neq K+J$
2
X(IND) $=Y(I, J$
RETURN

END

15

```
\(\mathrm{D}=1.0\)
\(\mathrm{~N} K=-\mathrm{N}\)
    DO \(80 \quad \mathrm{~K}=1, \mathrm{~N}\)
    \(N K=N K+N\)
    L(K) \(=K\)
    M(K) =K
    \(K K=N K+K\)
    BIGA \(=A(K K)\)
    \(0020 \quad J=K, N\)
\(1 Z=N *(J=1)^{2}\)
    \(0020 \quad I=K, N\)
    I \(J=12+1\)
    IF (DABS (BIGA)-DABS(A(IJ))) 15,20,20
    BIGA=A(IJ)
    \(L(K)=I\)
    \(M(K)=J\)
    20 CONTINUE
        INTERCHANGE ROWS
    \(J=L(K)\)
    IF(J-K) 35,35,25
    25
    \(0030 \quad \mathrm{I}=1, \mathrm{~N}\)
    \(\mathrm{KI}=\mathrm{K} \mathrm{I}+\mathrm{N}\)
    HOLD \(=-A(K I)\)
    \(J I=K I-K+J\)
    \(A(K I)=A(J I)\)
        30 A(JI) \(=\) HOLD
            INTERCHANGE COLUMNS
\(35 I=M(K)\)
    IF (I-K) 45,45,38
38
    \(J P=N *(I-1)\)
    DO 4 \(5, J=1, N\)
    \(J K=N K+J\)
    \(J I=J P+J\)
```

```
        A(JK)=A(JI)
    4 0
nのกด
    45 IF(BIGA) 48,46,48
    D=0.0
    RETURN
    48 DO 55 IF I-K) I= = 50,N,55,50
    50 IK=NK + I
    A(IK)=A(IK)/(-BIGA)
    5 5 \text { CONTINUE}
C
@\capO
    60 IF(J-K) 62,65,62
    \epsilon2 KJ=IJ J-I +K
    A(IJ)=HOLD*A(KJ)+A(IJ)
    65 CONTINUE
        DIVIDE ROW BY PIVOT
    KJ=K-N
    M S=KJ+N
    70 A(KJ)=A(KJ)/BIGA
    75 CONTINUE
C REPLACE PIVOT BY RECIPROCAL
    A(KK)=1.C/BIGA
    80 CONT INUE
            FINAL RON AND COLUMN INTERCHANGE
    K=N
    100 K=(K-1)
    IF(K) 150,15:%,105
    105 I=L(K)
    IF(I-K) 120, 120,108
    108 JG=N* (K-1)
    JR=N*(I-1)
    DO 110 J=1,N
    JK=JQ+J
    HOLD=A(JK)
    JI= JR+J
    A(JK)=-A(JI)
    110 A(JI) = HOLD
    120 J=M(K)
    IF(J-K) 100,100,125
    DO 130 I=1,N
    KI=KI+N
    HOLD=A(KI)
    JI=KI-K+J
    A(KI) =- A(JI)
    130 A(JI) =HOLD
    GO TO 1CO
    150 RETURN
    END
```

SUBROUTINE PROD
PURPOSE
TO COMPUTE THE PRODUCT OF TWO MATRICES
USAGE
CALL PROD(A,B,C,N,M,L)
DESCRIPTION OF PARAMETERS

| A | FIRST INPUT MATRIX | |
| :--- | :--- | :--- | :--- |
| B | SECONO INPUT MATRIX | |
| C | PRODUCT OF A AND B AND C | |
| N | - NUMBER OF ROWS IN A AND C | |
| M | NUMBER OF COLUMNS IN A AND ROWS IN B | |
| L | -NUMBER OF COLUMNS IN B AND C | |

REMARKS NDNE

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE

SUBROUTINE PROD (A,B,C,N,M,L)
REAL* $\%$ A $(9,9), B(9,9), C(9,9)$
DO $1 \mathrm{I}=1, N$
$\begin{array}{ll}D O \\ C(I, J) & =1, L \\ 0.00\end{array}$
DO $1, K=1, M$
1

```
RETURN
```

ENO

SUBROUTINE SUMM
PURPOSE
ADD TWO MATRICES
USAGE
CALL $\operatorname{SUMM}(A, B, C, M, N)$
DESCRIPTION OF PARAMETERS

REMARKS NONE

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE
$\operatorname{SUBROUT} \operatorname{INE} \operatorname{SUMM}(A, B, C, M, N)$
REAL*8 A $(9,9), B(9,9), C(9,9)$
$\begin{array}{lll}\text { DO } & 1 \\ \text { DO } & 1 & J=1, M\end{array}$
$1 C(I, J)=A(I, J)+B(I, J)$

RETURN

END

SUBROUTINE DIFF
PURPOSE
SUBTRACT ONE MATRIX FROM ANOTHER
USAGE
CALL $\operatorname{DIFF}(A, B, C, M, N)$
DESCRIPTICN OF PARAMETERS

A	FIRST INPUT MATRIX
B	SECOND INPUT MATRIX
C	OUPUT MATRIX EQUALS A B B
M	NUMBER OF ROWS IN A,B, AND C
N	-NUMBER OF COLUMNS IN A, B, AND C

REMARKS
NONE
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE

SUBROUTINE DIFF (A, B, C, M, N)
REAL* 8 A $(9,9), B(9,9), C(9,9)$
DO $1 \quad I=1, M$
1 C(ITU)=A(I,J)-B(I,J)
RETURN

SUBROUTINE EXPAND

PURPOSE

> TO COMPUTE THE REAL COEFFICIENTS OF AN N-TH DEGRE PGLYNOMIAL GIVEN N COMPLEX ROOTS

USAGE
CALL EXPAND (N,R,A)

```
DESCRIPTION OF PARAMETERS
\begin{tabular}{ll}
\(N\) \\
\(R\) & - DEGREE OF POLYNOMIAL \\
A & VETOR CF COMPLEX RCOTS \\
- COEFFICIENT VECTDR
\end{tabular}
```

REMARKS NONE
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NONE

```
SUBROUTINE EXPAND ( \(N, R, A\) )
REAL* 8 A(10)
CCMPLEX*16 R(9),Q(9)
IF (N-1) 1,2,3
\(1 A(1)=1.00\)
RETURN
\(2 A(1)=-\operatorname{REAL}(R(1))\)
\(A(2)=1.00\)
RETURN
\(3 Q(1)=-R(1)\)
\(Q(2)=1.00\)
DO \(5 \mathrm{~J}=2\), \(N\)
```


3

```
    \(Q(J+1)=1.00\)
    \(\mathrm{JJ}=\mathrm{J}-1=1\), J
    \(K=J-I\)
\(4 Q(K+1)=Q(K)-Q(K+1) * R(J)\)
\(5 Q(1)=-Q(1) * R(J)\)
\(6 \mathrm{~N} 1=\mathrm{N}+1\)
DO \(7 L=1\), N1
\(7 A(L)=R E A L(Q(L))\)
RETURN
END
```

-

BIBLIOGRAPHY

1. Nieman, R. E., Fisher, D. G., and Seborg, D. E., "A Review of Process Identification and Parameter Estimation Techniques," International Journal of Contro1, V. 13, No. 2, p. 209-264, May 1971.
2. Eykhoff, P., van der Grinten, M., Kwakernaai, H., and Veltman, B., "Survey-Systems Modeling and Ídentification," Third Congress of I.F.A.C., London, June 1966.
3. Mishkin, E., and Haddad, R. A., "Identification and Command Problems in Adaptive Systems, " IRE Trans. $\frac{\text { on Automatic Control }}{\text { November 1959. V. AC-4, No. } 2 \text {, p. 121-131, }}$
4. Levin, M. J., "Optimum Estimation of Impulse Response in the Presence of Noise," IRE Trans. on Circuit Theory, V. CT-7, No. 1, p. 50-56, March 1960.
5. Kerr, R. B., and Surber, Jr., N. H., "Precision of Impulse Response Identification Based on Short, Normal Operating Records," IRE Trans. on Automatic Control, V. AC-6, No. 2, p. $173-182$, May 1961.
6. Turin, G. L., "On the Estimation in the Presence of Noise of the Impulse Response of a Random, Linear Filter," IRE Trans. on Information Theory, V. IT-3, No. 1, p. 5-10, March 1957.
7. Lichtenberger, W. W., "On the Identification of Linear Processes," IRE Trans. on Circuit Theory, V. CT-7, No. 1, p. 78-79, March 1960.
8. Lichtenberger, W. W., "A Technique of Linear System Identification Using Correlating Filters," IRE Trans. on Automatic Control, V. AC-9, No. 2, p. 183-199, May 1961.
9. Hill, J. D., and McMurtry, "An Application of Digital Computers to Linear System Identification," IEEE Trans. on Automatic Control, V. AC-9, No. 5, p. $536-$ 538, October 1964.
10. Lindenlaub, J. C., and Cooper, G. R., "Noise Limitations of System Identification Techniques," IEEE Trans. on Automatic Control, V. AC-10, No. 1, p. 4348, January 1963.
11. Kumar, K. S. P., and Sridhar, R., "On the Identification of Control Systems by the Quasi-Linearization Method," IEEE Trans. On Automatic Control, V. AC-9, No. 2, p. 151-154, April 1964.
12. Nagumo, J., and Noda, A., "A Learning Method for System Identification," IEEE Trans. on Automatic Control, V. AC-12, No. 3, p. 282-287, June 1967.
13. Bass, R., Testing Function Techniques in System Iden-
tification, Ph.D. Dissertation, University of California, Berkeley, March 1969.
14. Astrom, K. J., and Bohlin, T., "Numerical Identification of Linear Dynamic Systems from Normal Operating Records," IFAC Symposium - Theory of Self-Adaptive Systems, Teddington, 1965.
15. Peterka, V., "New Approach to the Identification of Discrete Dynamic Systems," Kybernetika, V. 4, No. 5, 1968.
16. Peterka, V., and Smuk, K., "On-Line Estimation of Dynamic Model Parameters from Input-Output Data," IFAC Congress, Warsaw, 1969.
17. Ho, B. L., and Kaiman, R. E., "Effective Construction of Linear State Variable Models from Input/Output Functions," Sonderdruck aus Regelungstechnik, V. 14, No. 12, p. 545-548, 1966.
18. Eldem, I., Identification of Plant Dynamics Using Ho's Algorithm, MS Thesis, United States Naval Postgraduate School, Monterey, California, 1969.
19. Shinbrot, M., "On the Analysis of Linear and Nonlinear Systems," Trans. of the ASME, V. 79, No. 3, p. 547-552,
20. Mowery, V. 0., "Least Squares Recursive DifferentialCorrelation Estimation in Nonlinear Problems," IEEE $\frac{T r a n s . ~ o n ~ A u t o m a t i c ~ C o n t r o l, ~ V . ~ A C-10, ~ N o . ~ 4, ~ p . ~}{499-}$ 407, October 1965.
21. Fairman, F. W., Process Parameter Estimation by the $\frac{\text { Moment Function Method, Ph.D. Dissertation, University }}{\text { of Pennsylvania, 1968. }}$
22. Bellman, R. E., Kagiwada, H., and Kalaba, R. E., "Quasi-Linearization, System Identification and Prediction," Rand Corp. Report RM-3821-PR, August 1963.

23. Hsieh, H. C., "Adaptive Control Systems," Advances in Control Systems, V. 2, Academic Press Inc., New York, New York, 1965.
24. Simpson, H. R., "A Sampled Data Nonlinear Filer," Proc. of the IEEE, V. 112, No. 6, p. 1187-1196, June $19 \overline{65 .}$
25. Bose, A. G., "A Theory for the Experimental Determination of Optimum Nonlinear Systems," IRE National Convention Record, Part 4, p. 21-30, 1956.
26. Bose, A. G., "Nonlinear System Characterization and Optimization," IRE Trans. on Circuit Theory, Special Supplement, p. 30-40, 1959.
27. Hubbell, P. C., Digital Identification and Simulation of Nonlinear Systems with Physiological Applications, Ph.D. Dissertation, University of Pennsylvania, Philadelphia, Pennsylvania, 1967.
28. Diamessis, J. E., "A New Mthod for Determining the Parameters of Physical Systems, Proc. of the IEEE, V. 53, No. 2, p. 205-206, February 1965.
29. Diamessis, J. E., "On the Determination of the Parameters of Physical Systems," Proc. of the IEEE, V. 53, No. 3, p. 319-320, March i9ó5.
30. Wang, P. P., "On the Evaluation of the Parameters of a Nonlinear System," Proc. of the IEEE, V. 55, No. 3, p. 468-469, March 1967.
31. Golub, G., "Numerical Methods for Solving Linear Least Squares Problems," Numerische Mathematik, V. 7, p. 206-216, 1965.
32. Businger, P., and Golub, G., "Linear Least Squares Solutions by Householder Transformations," Numerische Mathematik, V. 7, p. 269-276, 1965.

HIT Hin

in
tis
$+$

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2 Cameron Station Alexandria, Virginia 22314
2. Library, Code 0212
Naval Postgraduate School
Monterey, California 93940
3. Professor George J. Thaler, Code 52 Tr Department of Electrical Engineering Naval Postgraduate School
Monterey, California 93940
4. Mr. Joseph Rubis
Naval Ships Research \& Development Center
Annapolis, Maryland 21402
5. Mr. Hal Stephens 1
International Business Machines
Bui1ding 014
Monterey \& Cottle Roads
San Jose, California 95114
6. Doctor Ken Deckert
1
International Business Machines
Monterey \& Cottle Roads
San Jose, California 95114
7. ENS William R. Hansell USN
1
44 Ann Road
Broomall, Pennsylvania 19008
en
iSecurity classilication of tiffe, body of abstract and indexing annotation must be ontered when fhe overall reporf is classified)
Naval Postgraduate School
Monterey, California 93940

UNCLASSIFIED
2b. GROUP

IDENTIFICATION OF SYSTEM DYNAMICS USING MULTIPLE INTEGRATIONS

- DESCRIPTIVE NOTES (TYP ol Peport end.inclirsive dates)

Master's Thesis; June 1971
5. AUTMOR(S) (First name, middle inifial, last namo)

William R. Hansell

$\begin{aligned} & \text { 6. REPORT OATE } \\ & \text { JUNE } 1971 \end{aligned}$	7a. TOTAL NO. OFPAGES 7b. NO. OF REFS 102 32
12. CONTAACTOAGRANTNO.	Qa. ORIGINATOR'S REPORT NUMBER(S)
b. PROJECTNO.	
c.	9b. OTHER REPORT NO(S) (Any other numbere thet may be asalgned this rofiorl)
d.	

Approved for public release; distribution unlimited.
11. SUPPLEMENTAAY NOTES
12. SPONSOAING MILITAAY ACTIVITY

Naval Postgraduate School
Monterey, California 93940

A practical method for identifying linear time invariant systems on the basis of arbitrary input-output records is reviewed and extended to handle the case where the system is not initially in the zero state. The method is implemented using a digital computer program composed of a numerical integration subroutine and a subroutine for solving overdetermined sets of linear algebraic equations. Several examples are presented to demonstrate the accuracy and present capabilities of the procedure.

UNCLASSIFIEN

Linear Systems
Identification
Multiple Integrals
Modeling
.

32768001017759
DUDLEY KNOX LIBRARY

[^0]:

