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ABSTRACT

A practical method for identifying linear time in-

variant systems on the basis of arbitrary input-output

records is reviewed and extended to handle the case where

the system is not initially in the zero state. The method

is implemented using a digital computer program composed

of a numerical integration subroutine and a subroutine for

solving overdetermined sets of linear algebraic equations.

Several examples are presented to demonstrate the accuracy

and present capabilities of the procedure.
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I. INTRODUCTION

A. THE IDENTIFICATION PROBLEM

In order to apply any of the modern techniques of

control system design one must first have a mathematical

model of the system to be controlled. The form of this

model will depend on the design methods to be employed as

well as on the physical characteristics of the system.

Since most of the theory on the analysis and design of

control systems is based either on the state space or

transform representation of systems the vast majority of

mathematical models will consist of either a set of state

equations or a transfer function.
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matical model should take the problem of determining the

numerical values o-f the parameters arises. Parameter

values can often be determined from the laws of physics

and the data supplied by a manufacturer or obtained through

testing. This is not always the case however. Occasionally

the laws of physics become mathematically intractable or

are not even applicable. Quite often the values of certain

key parameters are not available. It is in these cases

that the identification problem arises.

A common problem in engineering is that of determining

the output of a system based on a knowledge of the system

model, input, and initial conditions. The identification

problem is similar to this but here the unknown quantity is





the system model. The input and output are assumed to be

known. For the purposes of this thesis the identification

problem can be stated as follows:

Given - a record of the input and output of a system

over some finite period of time,

Find - a mathematical model and the numerical values

of the model parameters in such a way that the

model will accurately describe the behavior

of the system.

It should be kept in mind that the problem of identi-

fying a system solely on the basis of input and output data

(the so called "black box" problem) is very rare in engi-

neering. Even in the case where none of the model parame-

ters are known one will more than likely have a fair idea

of whether the system is linear or nonlinear, time varying

or time invariant, what the order of magnitude of the domi-

nant time constants is, and what types of inputs and out-

puts are to be expected. For this reason most engineering

identification problems fall into the "grey box" category.

This distinction may seem trivial but virtually all iden-

tification techniques rely heavily on knowledge of the

characteristics and quantities mentioned above.

Although the control systems literature on system

identification is quite vast there are no known identifica-

tion schemes capable of handling all identification prob-

lems effectively. Choosing a method suitable for a given

problem can become a formidable task. A paper summarizing





most of the common approaches to the problem of identifying

lumped parameter systems has been published by Nieman,

Fisher, and Seborg [1] . A good discussion of the indus-

trial applications of various methods has been published

by Eykhoff, et al . [2].

One common approach used in linear system identifica-

tion is that of obtaining the impulse response of the sys-

tem. Mishkin and Haddad [3] have developed a technique

for finding the impulse response based on samples of the

system output and its derivatives. A technique for esti-

mating the impulse response on the basis of noisy input and

output samples has been developed by Levin [4] and Kerr and

Surber [5]. Turin [6] and Lichtenberger [7,8] have used a

matched rixter to outain an iuentiiication. iiic use Ox a

white noise or binary test signal and crosscorrelation has

been suggested by Hill and McMurtry [9]. The noise limita-

tions of the sample approximation, matched filter, and

crosscorrelation identification techniques have been in-

vestigated by Lindenlaub and Cooper [10].

Another common approach to the identification problem

is to determine the coefficients of the differential or

difference equation which describes the system. Kumar and

Sridhar [11] have employed the method of quasilinearization

with some success. -Nagumo and Noda [12] have developed a

learning approach to the problem.' Bass [13] has developed

a method which uses modulating functions and works well in

the presence of noise. Astrom and Bohlin [14] have developed





a statistically optimal method of determining differential

equation parameters known as the "maximum likelihood method."

A similar method which is not optimal but is considerably-

simpler computationally has been developed by Peterka and

Smuk [15,16]. It is known as the "prior knowledge fitting

method." An algorithm for determining state variable models

of sampled data systems has been proposed by Ho and Kalman

[17] . The algorithm performs quite well in the presence

of noise, and has been extended to continuously operating

systems by Eldem [18]

.

Methods of identifying nonlinear and distributed param-

eter systems are usually limited to specific types of sys-

tems or to specific types of nonlinearities . This is

unuoubtculy uue to tjie wiu.e variety Oi nonlinearities en-

countered in physical systems and the difficulty of finding

a model capable of characterizing them all. Shinbrot [19],

Mowery [20], Fairman [21], and Bellman, et al . [22] have

all approached the problem of identifying nonlinear systems

by assuming a particular form of differential equation is

capable of describing the system and then developing methods

around the form of differential equation chosen. Another

common approach to nonlinear system identification is that

of representing a system by a suitable functional polyno-

mial relating the input and output. Hsieh [23] uses this

approach and a steepest descent algorithm to solve the iden-

tification problem. Similar approaches have been taken by

Simpson [24], Bose [25,26], and Hubbell [27].
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Identification methods vary widely with respect to how

much must be known about the system before the method can

be applied. Some identification techniques require that

prior estimates of all system parameters be available.

Many methods restrict the allowable system inputs to a

family of testing functions such as steps or binary pulses.

In general, the less that is known about a given system and

the tighter the constraints on the kind of signals which

may be applied as inputs the more difficult it is to find

a method capable of accomplishing the identification.

B. OBJECTIVES OF THIS PAPER

This paper will present a study of an identification

technique originally suggested by Diamessis [28]. It is

designed to identify lumped linear time invariant systems

but has been extended by Diamessis [29] and Wang [30] to

handle certain types of nonlinearities . The technique re-

quires a knowledge of the system input and output over some

finite time interval as well as a rough estimate of the sys

tern order. The system input need not be restricted to a

class of testing functions, it can be completely arbitrary.

Unlike some identification techniques which require

the calculation of derivatives of the input and output, the

technique to be presented requires only integrals of the

input and output. The advantages of numerical integration

over differentiation are well known. Since any zero mean

noise component on the input or the output tends to be





attenuated greatly by the integration process the system

identification can be more accurate than the raw data used

to accomplish it.

The remainder of this thesis is divided into three

major sections. In Chapter II the theoretical development

of the identification technique is given. A method for

identifying the initial conditions of the unknown system

is also presented. Chapter III presents a method for im-

plementing the techniques developed in Chapter II. Par-

ticular attention is given to the choice of numerical

methods and to efficient programming techniques. Several

examples are presented to demonstrate the capabilities of

the method. In Chapter IV several recommendations for

further study are made. Conclusions concerning the accu-

racy and present limitations of the technique under con-

sideration are also discussed. Following the conclusions

a complete listing of all computer programs used in the

thesis is given.
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II. IDENTIFICATION BY MULTIPLE INTEGRATIONS

A. GENERAL APPROACH

The development which follows is similar to the devel-

opment given by Diamessis [28] in 1965. There are a few

notable differences however. The development given by

Diamessis is restricted to the case where all initial con-

ditions are zero. This is a rather serious restriction

since it may be difficult or impossible to find a point

where the system is in the zero state if the systems opera-

tion is not to be disturbed. Zero initial conditions will

not be assumed in the development which follows. A method

for solving for the unknown initial conditions will be

presented. Diamessis proposed the formulation of a uniquely

determined set of linear algebraic equations with the model

parameters as unknowns. This development will make use of

overdetermined sets of linear algebraic equations with the

model parameters and initial conditions as unknowns. The

overdetermined set of equations will then be solved using

the method of least squares. It will be shown that this

results in a more accurate identification when the accuracy

of the available data is limited and the order of the sys-

tem is unknown.

Any single input, single output, lumped parameter,

linear, time-invariant system can be described by a linear

ordinary differential equation with constant coefficients.
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The basic form of this equation is given in Equation (1)

along with a set of initial conditions

.

§*XlH a .

dn'V(t) + + a y(t) (1)
dt

n n_1
dt

n_1 °

= b dVtl + + b u
m j . m oat

(t)

with initial conditions

;

d^yCO) - y
n-l d

m " 1
u(0) _ m-1

dt
n-l >o

dt
m-l o

y(0) = yo
u(0) = u

q

where

;

u(t) = system input

y(t) = system output

The identification problem to be treated here consists

of determining n, m, and the various coefficients of the

differential equation on the basis of input and output

records taken over some arbitrary time interval. The ini-

tial conditions will be assumed to be unknown.

Taking the Laplace transform of Equation (1) yields

Equation (2)

.

s
n
Y(s) + a

n _ 1
s
n_1

Y(s) * + a
o
Y(s) (2)

bm s
m
U(s) + + b

Q
U(s)

n-l
n-l*' B o

+
g.-i s + + g
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The g- coefficients account for the contributions of the

initial conditions. Dividing Equation (2) by s is

equivalent to integrating n+1 times in the time domain.

mi a . H*l + a m.n-1 * o n+1
s s s

(3)

= b —nisi * b -m>m n-m+1 o n+1
s s

+ Vi — + 6 o n+1
s

Taking the inverse transform of Equation (3) results in

Equation (4)

.

t
k

t
k £k

J
y(t)dt + a

n _ 1 J J
y(t)dt 2 +

h
+ a

o

n+l«" I y(t)dt

o

n+1

(4)

= b
m

o

n-m+1 • -

•

r *.\ j*n-m+lu(t)dt + •

+ gn-1

+ b

\k *k

n+l»«- / u(t)dt

o

n+1

Sk *k

dt 2 + • • • + g
n+1

• «n+l» •

oo oo
Since the system is time invariant nothing has been lost by

setting the lower limit on the integrals equal to zero.
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Rearranging terms in Equation (4) and placing all terms which

depend on u(t) , y(t) , or t in brackets results in Equation

(5).
(5)

r
tk

r
tk

j^k *k
L

o / ..n+1../ y(t)dtn+1 +•-•+ a
n _ 1 / y(t

*^ o o

r^k r^k
+ b

Q
/ . .n+1. . / u(t)dtn+1 + •-•

)dt

+ b
m

r
t
k f *k r

t
k r\

I ..n-m+1../ u(t)dtn
" m+1

+ g Q
/ ..n + l.J dt

n+1

+ "' + g n-l
J J

dt 2
= - / y(t)dt

o *o o

Since records of the input and output are assumed to

be known a linear algebraic equation with the system param-

eters and initial condition terms as unknowns can be formu-

lated by performing the indicated multiple integrations

from zero to some time t-, . A set of 2n+m+l equations can

be obtained by letting t, take on 2n+m+l different values.

Assuming that the equations are linearly independent it

will now be possible to solve for the n+m+1 differential

equation coefficients and the n initial condition terms.

So far nothing has been said of how n and m are de-

termined. Theoretically it should be possible to use any

14





n' and m' greater than the actual order of the system under

study. If the order of the system is n with m input coef-

ficients then one would expect the following:

a. = for ( < i < n'-n-l )

b. = for ( < i < m'-m-l )

with n'>n and m'>m.

The model should essentially reduce itself to the right order

by setting nonessential terms equal to zero.

Unfortunately the situation is not quite this simple.

Due to the finite accuracy of all experimental data the lin-

ear equations will not have an exact solution. For certain

types of inputs the linear equations will not even be lin-

early independent. These problems can be overcome to some

extent by formulating more than 2n+m+l equations which are

required. The overdetermined set can then be solved using

the method of least squares. If the limited accuracy of

the experimental data can be attributed to round off errors

then integrating the data over a time interval much greater

than the sampling interval should remove much of the uncer-

tainty in the linear equation coefficients. This is be-

cause the roundoff process can be modeled as a zero mean

white noise process. The integral of the noise will ap-

proach zero as the period of integration increases.

Even the measures mentioned above will not solve the

problem completely however. Due to the finite precision

used to represent numbers in a computer and the iterative

15





nature of the numerical methods used to solve overdeter-

mined sets of linear equations it is impossible to obtain

zero as a solution for any parameter. If the parameter

should be zero the numerical method will return a very

small but nonzero value. Although this will result in an

incorrect estimate of the system order the error will not

be serious in most cases. This is because the small co-

efficients of the terms which should nonexistent will make

their effect negligible. Examples in Chapter III will

demonstrate this point.

Although the development in this section has assumed

a differential equation model of the system the same results

could have been obtained if a transfer function or state

terms in Equation (2) results in Equation (6)

.

Y(s) b s
m

+ + b-.s + b (6)_ _ m 1 o—
i ill,..

B

U(s) s + a ,s + + a n s + av * n-1 1 o

By defining a few new terms, Equation (7) results.

Y(s) K ( s
m

+ c tS
1 " 1

+ + c,s + c (7)v J

\
m- 1 1 o v *

ii r \ n n-1
U(s) s + a ,s + + a, s + a

n-1 1 o

where K = b
m

c. = b. / b for < i < m.
i i m - -

A set of state equations may be formulated in a similar

fashion. One convenient state variable representation is

given in Equation (8) . It is based on the phase variable

form of system representation.
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(8)

[ u ]

• • c
m

n

Note the simple correspondence between the terms in the trans-

fer function and the terms in the state equations.

B. IDENTIFYING INITIAL CONDITIONS

In many identification problems it is desirable to com-

pare»..the system model with the actual system by exciting the

system model with the same input data that was used in the

identification. By comparing the output of the model with

the output of the system a rough idea of the accuracy of the

model can be obtained. This will not be possible however

unless the initial conditions at the beginning of the input-

output record are all known.

From Equation (5) it can be seen that when the linear

algebraic equations are solved for the unknown model parameters

17





the g- initial condition terms are also found. By taking

the Laplace Transform of Equation (1) and specifically-

writing in the contributions of the individual initial

conditions a relationship between the g. terms and the ini

tial conditions can be found.

(9)

^o

8l

gn-2

gn-l

a
l

a
2

a
2

a
3

a . 1
n-1

/

/
/

/
a , 1
n-1

X

y.

y,

y<
n-2

o

n-1

X

C-. C n • • • C 1 112 m-

1

c
2

C
3 '

/
/

/ '

'm-1 1

. .

. .

. .

X

u

u

u

11

m-2

m-1
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Unfortunately Equation (9) requires the knowledge of

m-1 derivatives of the input function u. It may be neces-

sary to calculate m-1 derivatives of the input using numer-

ical techniques. This could cause the model and system

output to differ slightly at the beginning of the output

record but as the natural response dies out the records

should converge. It may be possible to avoid this diffi-

culty in many cases by choosing the beginning of the input-

output record at a point where the input is relatively

constant

.

C. SIMPLIFICATIONS WITH ZERO INITIAL CONDITIONS

In many problems it will be possible to exercise com-

plete control over the input to the system under study. If

it is possible to obtain an input-output record beginning

when the system is in the zero state it will be possible to

simplify the identification procedure. Since the g. terms

will all be zero if the system is in the zero state they

need not be included in the formulation of the linear alge-

braic equations. This will reduce the number of unkno\^ns

from 2n+m+l to n+m+1.

It should be noted that additional information can

often be incorporated into the identification procedure in

order to simplify the problem. For example if the steady

state gain constant were known the number of unknowns could

be reduced by one. It is usually a simple matter to tell

whether a system has poles or zeroes at the origin. This

19





piece of information can easily be used to simplify the

identification procedure still further. As a general rule,

the fewer the unknowns the more accurate the identification.

20





III. IMPLEMENTATION

A. NUMERICAL METHODS

The identification technique presented in Chapter II

can be broken into two basic steps. The first step con-

sists of performing the multiple integrations of the input

and output and forming the overdetermined set of linear

algebraic equations. The second step consists of solving

the linear equations for the unknown model parameters. It

is a distinct advantage of the identification technique

under study that each of these steps can be carried out by

subprograms that are readily available in virtually all

modern computer centers.

Step one can be handled by any numerical integration

subroutine. Although there are quite a few highly sophis-

ticated numerical integration procedures available, trape-

zoidal integration will give better results in most

applications. There are several reasons why this is true.

First of all, most of the more complex integration tech-

niques perform poorly when the function being integrated

is discontinuous. Since control system inputs are often

discontinuous and since such discontinuities are quite

desirable from an identification standpoint, complex inte-

gration techniques are usually undesirable. Even when the

functions to be integrated are continuous the slight im-

provement in accuracy offered by more advanced methods is

not enough to justify the tremendous increase in computation-

al load associated with their use.
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Step two, the solution of the set of overdete mined

linear equations, is a classical problem in several fields

of mathematics and engineering. Unfortunately most of the

classical techniques for solving such problems are not

practical. They tend to magnify the errors introduced by

the finite precision of the computer to the point where

the solution is meaningless. Fortunately several modern

methods are available that display more acceptable behavior

The method used in this paper was developed by Golub [31]

in 1965. The basic approach is to triangularize the coef-

ficient matrix by performing a Choleski decomposition. The

decomposition is accomplished by applying repeated House-

holder transformations [32] . Once the coefficient matrix

has been triangularized the unknowns can be obtained by

back substitution. The method is quite stable numerically

and is capable of handling illconditioned coefficient ma-

trices .

B. CHARACTERISTICS OF GOOD INPUT-OUTPUT RECORDS

The accuracy with which a system can be identified is

strongly dependent on the input-output record used in the

identification. Since parameters are identified on the

basis of their effect on the output it will be impossible

to identify a parameter unless its effect is measureable.

If the input to a system has a frequency spectrum that is

more or less uniform over the frequency range of interest

the identification will probably be very good. If the

22





frequency spectrum of the input is confined to a narrow

band of frequencies the identification will probably be

very bad. It is well known that signals with sharp dis-

continuities have a broader bandwidth than slowly varying

continuous signals. For this reason input-output records dis

playing discontinuities and rapid time variations should

be chosen.

If step or ramp inputs are used in the identification

the value of the initial conditions will have to be known

and incorporated into the set of linear equations. Since

the initial conditions will usually be zero when these

types of inputs are used this should not cause any diffi-

culties. The reason for this difficulty lies in the nature

of the initial condition coefficient terms. The integral

coefficients of these terms are steps, ramps, and higher

order polynomials in time. If the input is a step or a

ramp the coefficients of several model parameters will also

be steps, ramps, and higher order polynomials in time.

There will therefore be a direct relationship between model

parameter coefficients and initial condition term coeffi-

cients. This will result in the linear equations having an

infinite number of solutions due to the linear dependence

between all the individual equations in the set. Step and

ramp inputs must therefore be avoided when the system ini-

tial conditions are unknown.

Since analog system data will have to be converted to

digital form a suitable sampling interval will have to be

23





chosen. Experimental results have shown that a sampling

rate ten to one hundred times shorter than the shortest

system time constant works quite well. Lower sampling

rates may introduce inaccuracies in the location of high

frequency poles and zeroes.

C. PROGRAM DESCRIPTION

In order to evaluate experimentally the characteristics

of the identification procedure under study a set of digital

computer programs was developed. The main identification

program is a direct implementation of the procedure develop-

ed in Chapter II. Subroutine SYSTEM is a simulation program

that was written to generate input-output data for the main

program to process.

In the beginning of the identification program several

important parameters are defined. NP and NZ are rough es-

timates of the number of poles and the number of zeroes in

the system to be identified. KPTMAX is the number of sam-

ple points available in the input-output record. Each sam-

ple point will consist of the time (T) , the input amplitude

(R) , and the output amplitude (C) . IPTS is the number of

sample points that will separate successive linear equa-

tions. In other words, every time the total number of points

read in is a multiple of IPTS a linear equation will be gen-

erated. The total number of linear equations that will be

generated is equal to KPTMAX/ IPTS. When all of the linear

equations have been formed subroutine DLLSQ is called. This

24





subroutine is an implementation of the Golub algorithm for

solving overdetermined sets of linear equations.

Subroutine DLLSQ returns the values of the system

model parameters and initial condition parameters of Equa-

tion (2) . In order to find the poles and zeroes of the

system the output of DLLSQ is fed into RTPLSB. RTPLSB is

a polynomial root finder which uses a combination of the

Newton-Raphson and Bairstow methods to find the poles

and zeroes of the system.

The remainder of the main identification program is

devoted to output. The results of the identification are

given in both transfer function and state variable form.

The state variable form is referenced to the format used

in Equation (8)

.

Subroutine SYSTEM reads in the transfer function of a

system and computes the system output based on a set of

arbitrary initial conditions and an arbitrary input wave-

form. Each time subroutine SYSTEM is called by the iden-

tification program it returns three numbers, the time T,

the input waveform amplitude R, and the output waveform

amplitude C. Subroutine SYSTEM prints out the transfer

function and state variable representation of the system

it is simulating so that the accuracy of the identification

can be determined.

Input-output recrods obtained from physical systems

are rarely accurate to more than three or four significant

digits. The data generated by subroutine SYSTEM is therefore

25





rounded off by subroutine ROUND before being passed to the

identification program. The number of significant digits

in the data returned to the identification program may be

varied by changing the value of the parameter NA in the

simulation subroutine.

D. EXAMPLES

The following examples demonstrate how the accuracy of

an identification depends on the accuracy of the input-

output record, the sampling period, and the input waveform.

They also show how the order of the system can be deter-

mined from a trial identification run using an estimated

order greater than the actual order of the system.

Example one illustrates the relationship between the

accuracy of the input-output record data and the resulting

identification. In order to minimize the effect of other

factors all initial conditions were set equal to zero, a

step input was used, and n' and m' were set equal to n and

m. Example one demonstrates the fact that there is a di-

rect (almost linear) relationship between the accuracy of

input-output data and the accuracy of the identification.

Note that even when the input-output record contained only

two significant digits the identification of the system

poles and zeroes was within about three percent of their

exact values

.

Example two illustrates the relationship between the

sampling period used with the input-output records and the
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the accuracy of the identification, input records contain-

ing discontinuities or rapid time variations should be

chosen.

Examples four through ten demonstrate what happens

when n' and m' are greater than n and m. In each example

an identification is performed using an n' and m' greater

than n and m. Using the information obtained from this

identification a new value of n' and m' is determined.

These new estimates are then used to perform a second iden-

tification.

In examples four and five the error in the estimate of

m' was made larger than the error in the estimate of n'. As

a result of the relative values of these two errors all the

excess poles csnccuSu with excess zeroes but since tucre

were more excess zeroes than excess poles some excess zeroes

remained. Note however that for frequencies lower than the

sampling rate the excess zeroes have little or no effect

on the behavior of the identified system. Experiments have

shown that excess zeroes that do not cancel with excess

poles are always of a frequency comparable to or higher

than the sampling rate. Using this principle and estima-

ting new values for n' and m* results in an identification

which has the correct number of poles and zeroes and is

more accurate than the first identification.

In examples six, seven, and eight the error in the

estimate of n' was equal to the error in the estimate of

m'. As a result, all excess poles and zeroes cancelled
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with each other leaving a system of the correct order.

Note that by repeating the identification with the correct

value of n' and m' it was possible to improve the accuracy

of the identification.

In examples nine and ten the error in the estimate

of n' was made greater than the error in the estimate of

m'. As a result, all excess zeroes cancelled with excess

poles but some excess poles remained. Note that for fre-

quencies lower than the sampling rate the excess poles

have negligible effect. Experiments have shown that excess

poles that do not cancel with excess zeroes are almost al-

ways of a frequency comparable to or greater than the sam-

pling rate. Using this principle and estimating new values

for n ' and m 1 resulted in a correct identification of the

simulated systems.

Experiments have shown that identifications involving

uncancelled excess zeroes are generally more accurate than

identifications involving uncancelled excess poles. For

this reason it is best to set m' close to n' when identi-

fying an unknown system.

Using the experimental findings described above a

simple procedure for determining n and m can be formulated.

First, guess an n' which is greater than the order of the

system to be identified. This should not be too difficult

in most engineering identification problems. Let m' be

equal to n' or m'-l. This will guarantee complete cancel-

lation of all excess poles and zeroes or partial cancellation
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of excess poles and zeroes with excess zeroes remaining.

After making a trial identification with the values of n'

and m' mentioned above, estimate new values for n' and m'

based on the reasoning in the examples. The new values

of n' and m' should now be correct. By performing the

identification with these values of n' and m' a good iden-

tification should result.
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EXAMPLE 1.

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -1,0000000000

2 -10.0000000000

3 -100.C000000000

ZEROES REAL

1 -3.0003000000

2 -30.0000COOOCO

GAIN CONSTANT = 10.0000000000

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 ICOO.OGOOOOOOOO

2 111C.C0000000C0

3 lll.OCOOOOOOOO

B VECTOR

3 10.0000000000

C VECTOR

1 90.0000000000

2 33.C0000000C0

3 l.COOOCOOOCD

IMAGINARY

0.0 J

0.0 J

0.0 J

IMAGINARY

0.0 J

0.0 J
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL I MAGilNARY

1 -100.0001690225 0.0 J

2 -0.9999970711 0.0 J

3 -9.9999884241 0.0 J

ZEROES REAL IMAGINARY

1 -2.9999937654 0.0 J

2 -30.0000138488 0.0 J

GAIN CONSTANT = 10. CC00038147

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 999.9976037596

2 1110.CC03679024

3 111.0001545177

B VECTOR

3 10.0000038147

C VECTOR

1 89.9998545091

2 33.0000076143

3 1.0000000000

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

0.60000 SEC

0.20000 MSC

120

8 DECIMAL PLACES

UNIT STEP
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -ICO. 0000291125 0.0 J

2 -1.0000011522 0.0 J

3 -10.0000016550 0.0 J

ZEROES REAL IMAGINARY

1 -3.0000028353 0.0 J

2 -30.0000250480 0.0 J

GAIN CONSTANT = 9.9999933243

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 1C00.0016C88045

2 1110.0006141285

3 111.0000319197

B VECTOR

3 9.9999933243

C VECTOR

1 90.0001602028

2 33.0000278833

3 l.COOGOCOCOO

PROGRAM PARAMETERS

RECORD LEGNTH = 0.60000 SEC

SAMPLING PERIOD = C. 20000 MSC

EQUATIONS FORMED = 120

PRECISION OF DATA = 7 DECIMAL PLACES

INPUT FUNCTION = UNIT STEP
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES

1

2

3

REAL

-100.000C683416

-1.0000118079

-10.0000329083

IMAGINARY

0.0 J

0.0 J

0.0 J

ZEROES

1

2

REAL

-3.0000272949

-30.0000668753

IMAGINARY

0.0 J

0.0 J

GAIN CONSTANT = 9.99998*7412

SYSTEM STATE VAPIABLES (PHASE FORM)

A VECTOR

1 10C0. 0157822215

2 1110.0053743721

3 111.0001130579

B VECTOR

3 9.9999 847412

C VECTOR

1 90.0010194754

2 33.0000941702

3 l.OOCCOCOOOO

PROGRAM PARAMETERS

RECORO LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

0.60000 SEC

0.20000 MSC

120

6 DECIMAL PLACES

UNIT STEP
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -99.9968491528 0.0 J

2 -1.CG00017165 0.0 J

3 -9.9998390264 0.0 J

ZEROES REAL IMAGINARY

1 -2.9999754422 0.0 J

2 -29.9992863605 0.0 J

GAIN CONSTANT = 9.9998254776

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 999.9541111369

2 1109.9492716708

3 110.9966898958

B VECTOR

3 9.9998254776

C VECTOR

1 89.9971223661

2 32.9992618027

3 1,0000 000000

PROGRAM PARAMETERS

RECORD LEGNTH = 0.60000 SEC

SAMPLING PERIOD = 0.20000 MSC

EQUATIONS FORMED = 120

PRECISION OF DATA = 5 DECIMAL PLACES

INPUT FUNCTION = UNIT STEP
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -99.9927835443 0.0 J

2 -0.9991304951 0.0 J

3 -9.9980805636 0.0 J

ZEROES REAL IMAGINARY

1 -2.9981092090 0.0 J

2 -29.9981888298 0.0 J

GAIN CONSTANT = 9.99 94869232

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 998.8666303721

2 1109.6311321656

3 11C. 9899946030

B VECTOR

3 9.9994869232

C VECTOR

1 89.9378461845

2 32.9962980388

3 1.0000000000

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

C.6U00C SEC

0.20000 MSC

120

4 DECIMAL PLACES

UNIT STEP
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES

1

2

3

REAL

-99.9937910594

-0.9996622783

-10.0015833055

IMAGINARY

0.0 J

0.0 J

0.0 J

ZEROFS

1

2

REAL

-2.9996507024

-30.0061026888

IMAGINARY

0.0 J

0.0 J

GAIN CONSTANT = 9.9986057281

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 999.7584771470

2 1110.0544578539

3 110.9950366432

B VECTOR

3 9.9986057281

C VECTOR

1 90.0078270058

2 33.0057533912

3 1 .0000 000000

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

0.60000 SEC

0.20000 MSC

120

3 DECIMAL PLACES

UNIT STEP
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -98.8004578528 0.0 J

2 -0.9763637189 0.0 J

3 -9.8862584052 0.0 J

ZEROES REAL IMAGINARY

1 -2.9406610975 0.0 J

2 -29.6497245014 0.0 J

GAIN CONSTANT = 9.9451894760

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 953.6797208413

2 1082.8846233636

3 109. 6630799769

B VECTOR

3 9.9451894760

C VECTOR

1 87.1897913926

2 32. 5903855989

3 1.0000000000

PROGRAM PARAMETERS

RECORD LEGNTH = 0.60000 SEC

SAMPLING PERIOD = 0.20000 MSC

EQUATIONS FORMED = 120

PRECISION OF DATA = 2 DECIMAL PLACES

INPUT FUNCTION = UNIT STEP
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EXAMPLE 2.

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -1,0000000000 0.0 J

2 -10,0000000000 0.0 J

3 -100.0000000000 0.0 J

ZEROES REAL IMAGINARY

1 -3. OOOOCOOOOO 0.0 J

2 -30.0000000000 0.0 J

GAIN CONSTANT = 10. OOOOCOOOOO

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 1000.0000000000

2 1110.C00000000C

3 111.0000000000

B VECTOR

3 10.0000000000

C VECTOR

1 90.COCOCOOOOO

2 33. OOOOCOOOOO

3 1.0000000000
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -101.0610717819 0.0 J

2 -1.0000331312 0.0 J

3 -10.0017011716 0.0 J

ZEROES REAL IMAGINARY

1 -3.0002183624 0.0 J

2 -30.0553440030 0.0 J

GAIN CONSTANT = 10.0887174606

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 1010.8161234948

2 1121.8490926385

3 112.0628060847

B VECTOR

3 10.0887174606

C VECTOR

1 90.1725949663

2 33.0555623654

3 1.0000000000

PROGRAM PARAMETERS

RECORD LE(SNTH = 0.6COOO SEC

SAMPLING !PERIOD = 0.10000 MSC

EQUATIONS FORMED = 120

PRECISION QP DATA = 3 DECIMAL PLACES

INPUT FUNCTION UNIT STEP

40





IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM. TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -1G5. 3244028971 0.0 J

2 -1.000006 9733 0.0 J

3 -10.0258525504 0.0 J

ZEROES REAL IMAGINARY

1 -3.0005906385 0.0 J

2 -30.4710561855 0.0 J

GAIN CONSTANT = 10.3944911957

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 1055.9742969792

2 1171.3179932211

3 116.3502624208

B VECTOR

3 10.3944911957

C VECTOR

1 91.4311659362

2 33.4716468241

3 l.GOOOGOCOCO

PROGRAM PARAMETERS

RECORD LEGNTH = 1.20000 SEC

SAMPLING PERIOD 0.200C0 MSC

EQUATIONS FORMED = 120

PRECISION OF DATA 3 DECIMAL PLACES

INPUT FUNCTION = UNIT STEP
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -107.6394221979 0.0 J

2 -1.0000162038 0.0 J

3 -10.0077785631 0.0 J

ZEROES REAL IMAGINARY

1 -3.0001692900 0.0 J

2 -30.3047449110 0.0 J

GAIN CONSTANT = 10.6635513306

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 1C77. 2489572831

2 1194.8806091150

3 118.6472169649

B VECTOR

3 10.6635513306

C VECTOR

1 90. 9193650217

2 33.3C49142C09

3 1.0000000000

PROGRAM PARAMETERS

RECORD LEGNTH = 3.00000 SEC

SAMPLING PERIOD = 0.50000 MSC

EQUATIONS FORMED = 120

PRECISION OF DATA = 3 DECIMAL PLACES

INPUT FUNCTION = UNIT STEP
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EXAMPLE 3.

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -1.0000000000

2 -10.0000000000

3 -100.0000000000

ZEROES REAL

1 -3.0000000000

2 -30.0000000000

IMAGINARY

0.0 J

0.0 J

0.0 J

IMAGINARY

0.0 J

0.0 J

GAIN CONSTANT = 10.0000000000

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 1000.COOCOOOOCO

2 1110.0000000000

3 111.0000000000

B VECTOR

3 10.0000000000

C VECTOR

1 90.0000000000

2 33.OCO0O0O000

3 l.OOOOOOOOCO
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES

1

2

3

REAL

-99.6074714180

-1.0627466213

-10.0526991957

IMAGINARY

0.0 J

0.0 J

0.0 J

ZEROES

1

2

REAL

-3.1109954642

-29.8941214051

IMAGINARY

0.0 J

0.0 J

GAIN CONSTANT = 9.9883327484

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 1C64. 1536423652

2 1117.8649236164

3 110.7229172350

B VECTOR

3 9.9883327484

C VECTOR

1 93.0004760964

2 33.0051168692

3 1.0000000000

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORCED

PRECISION OF DATA

INPUT FUNCTION

0.60000 SEC

C. 10000 MSC

120

3 DECIMAL PLACES

GAUSSIAN- SIGMA=U.010 SEC
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -98.9033657608

2 -0.9389787239

3 -9.8317762550

ZEROES REAL

1 -2.8677895731

2 -29.6513565567

IMAGINARY

0.0 J

0.0 J

0.0 J

IMAGINARY

0.0 J

0.0 J

GAIN CONSTANT = 9.9508285522

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 913.0589327259

2 1074.4957479197

3 109.6741207397

B VECTOR

3 9.9508285522

C VECTOR

1 85.0338511612

2 32.5191461297

3 1.0000000000

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

0.60COO SEC

C. 10000 MSC

120

3 DECIMAL PLACES

GAUSSIAN- SIGMA=0.030 SEC
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES

1

2

3

REAL

-99.1859265460

-0.7535004508

-9.5204582353

IMAGINARY

0.0 J

0.0 J

0.0 J

ZEROES

1

2

REAL

-2.5186589038

-29.4122032416

IMAGINARY

CO J

0.0 J

GAIN CONSTANT = 9.9813451767

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 711.5270631979

2 1C26. 2057811417

3 109.4598852321

B VECTOR

3 9.9813451767

C VECTOR

1 74.0793075760

2 31.9308621454

3 l.OOOOOCCOGO

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

0.6CC00 SEC

0.100C0 MSC

120

3 DECIMAL PLACES

GAUSSIAN- SIGMA=0.050 SEC
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EXAMPLE 4

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES

1

2

REAL

-5.0000000000

20.00C00C00C0

IMAGINARY

0,0 J

0.0 J

ZEROES REAL IMAGINARY

GAIN CONSTANT = 300.0CCOOOOOOO

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1

2

100.0000000000

25.0000000000

B VECTOR

2 300.000C00C000

C VECTOR

1 l.OOOOOCOGOO

INITIAL STATE VECTOR

1 1.0000000000

2 0.0
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -20.1020603504

2 -0.4280895557

3 -0.4280895557

4 1.0489471395

5 -4.9974142741

ZEROES REAL

1 21168. 5357639489

2 -0.4631078779

3 -0.4681078779

4 1.0470216652

GAIN CONSTANT = -0.0141926892

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 -4826.300213

2 3305.020433

3 1059.631159

4 140,5228441

5 24.90670660

B VECTOR

5 -0. 1419268921

C VECTOR

1 102C181.159

2 -953662.8857

3 2390.647541

4 -21168. 64657

5 l.CCOOOOOOO

IMAGINARY

CO J

•6.7540893481 J

6.7540893481 J

0.0 J

0.0 J

IMAGINARY

0.0 J

6.7682935708 J

6.7682935708 J

0.0 J
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IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION (G) VECTOR

1 0.9963029652

2 25.01148179

3 37.55868385

4 1118.728299

5 -1523.539669

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

3.00000 SEC

0.50000 MSC

120

3 DECIMAL PLACES

PIECEWISE CONSTANT
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -4.9994757762 0.0 J

2 -20.0118644519 0.0 J

ZEROES REAL IMAGINARY

GAIN CONSTANT = 300.1457519531

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 100.0488316

2 25.01134023

B VECTOR

2 300.145752C

C VECTOR

1 1.000000000

INITIAL CONDITION (G) VECTOR

1 1.001249200

2 25.C0380377
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EXAMPLE

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -2.00000CG000

2 -2.0000000000

3 -20,0000000000

ZEROES REAL

1 -8.0000000000

IMAGINARY

3.0000000000 J

3.0000000000 J

0.0 J

IMAGINARY

0.0 J

GAIN CONSTANT = 160.0000000000

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 260.0000000000

2 93.0000000000

3 24.0000000000

B VECTOR

3 160.0000000000

C VECTOR
•

1 8.0000000000

2 1.0000000000*

INITIAL STATE VECTOR

1 2.0000000000

2 1.0000000000

3 0.0
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -20.3839954707

2 1.0012938647

3 1.0012938647

4 -1.9998854338

5 -1.9998854338

ZEROES REAL

1 -7.6038902797

2 447.1906330529

3 1.2922226696

4 1.2922226696

GAIN CONSTANT = -0.3623618484

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 20863. 16713

2 6906.430945

3 1994.127061

4 124.3802348

5 22.38117861

B VECTOR

5 -0.3623618484

C VECTOR

1 -283455.3928

2 -27855.70425

3 -2180.940891

4 -442.1711881

5 1.000000000

IMAGINARY

0.0 J

8.8128722093 J

8.8128722093 J

3.0C17839895 J

3.0017839895 J

IMAGINARY

0.0 J

0.0 J

9.0382447685 J

9.0382447685 J
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IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION (G) VECTOR

1 16,99753824

2 388.4269451

3 1684.166654

4 307C4. 56626

5 95381.34774

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

3.00000 SEC

0.50000 MSC

120

3 DECIMAL PLACES

PIECEWISE CONSTANT
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -20.1316142373 CO J

2 -1.9997989237 -3.0011201212 J

3 -1.9997989237 3.C011201212 J

ZEROES REAL IMAGINARY

1 -8.0335677123 0.0 J

GAIN CONSTANT = 160.4525451660

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 261.8301183

2 93. 52427*69

3 24.13121208

B VECTOR

3 160.4525452

C VECTOR

1 8.033567712

2 1.000000000

INITIAL CONOITIGN (G) VECTOR

1 16.99920347

2 418.2532176

3 1168.376804
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EXAMPLE 6

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -3.0000000000

2 -45.000000CC0C

ZEROES REAL

1 -15.0000000000

GAIN CONSTANT = 10.0000000000

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 13 5.0 000000000

2 48.0000000000

B VECTOR

2 10.0000000000

C VECTOR

1 15.0000000000

2 l.OOOCOOCOOO

INITIAL STATE VECTOR

1 1.0000000000

2 0.0

IMAGINARY

0.0 J

0.0 J

IMAGINARY

0.0 J
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -44.9825756448

2 0.8248831729

3 0.8248831729

4 -2.9985948695

5 -4.9097021934

ZEROES REAL

1 0.8362974237

2 0.8362974237

3 -15.0390073803

4 -4.901716C580

GAIN CONSTANT = 9.9892787933

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 189152.5939

2 104719.1699

3 15157.98857

4 568.8244217

5 51.24110636

B VECTOR

5 9.989278793

C VECTOR

1 21041.07999

2 5568.396359

3 325.7949073

4 18.26812859

5 l.OCOOCOOOC

IMAGINARY

0.0 J

16.8802782130 J

16.8802782130 J

0.0 J

0.0 J

IMAGINARY

16.8739835601 J

16.8739835601 J

0.0 J

0.0 J
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IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION (G) VECTOR

1 14,99958219

2 633.6563568

3 6068.388958

4 183314.0231

5 819995.9356

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

1.33333 SEC

0.22222 MSC

120

4 DECIMAL PLACES

PIECEWISE CONSTANT
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -2,9998001615 0.0 J

2 -44,9468936931 0.0 J

ZEROES REAL IMAGINARY

1 -14.9948012787 0.0 J

GAIN CONSTANT = 9.9912204742

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 134.8316990

2 47.94669385

B VECTOR

2 9.991220474

C VECTOR

1 14.99480128

2 1.000000000

INITIAL CONDITION (G) VECTOR

1 14.99876932

2 584.3008098 »
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EXAMPLE

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -1.0000000000

2 -1.0000000000

3 -50.0C000C0000

ZEROES REAL

1 -5.0CCO00C0CO

2 -2O.00CCOO0000

IMAGINARY

l.COCCOOCOOO J

1.0000000000 J

0.0 J

IMAGINARY

0.0 J

0.0 J

GAIN CONSTANT = 5.0000000COC

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 100.0000000000

2 102.0000000000

3 52.0C00C0CCC0

B VECTOR

3 5.0000000000

C VECTOR

1 100.00000CG00C*

2 25.0000000000

3 l.OOCOOCOOOO

INITIAL STATE VECTOR

1 2.0000000000

2 1.0000000000

3 G.O
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -49,9911920718

2 1.1558667717

3 1.1558667717

4 -C. 9997223909

5 -0.9997223909

ZEROES REAL

1 1.2179838023

2 1.2179838023

3 -19.8075068598

4 -5.1152815779

GAIN CONSTANT = 4.9560489655

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 54789.78240

2 55794.37204

3 28434. 85333

4 531.2985138

5 49.67890331

B VECTOR

5 4.956048965

C VECTOR

1 55512. 80354

2 13408. 14537

3 588.5004083

4 22.48682083

5 l.CCOO 00000

IMAGINARY

0.0 J

23.4137133914 J

23.4137133914 J

-C. 9974653718 J

0.9974653718 J

IMAGINARY

23.3753514222 J

23.3753514222 J

0.0 J

0.0 J
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IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION (G) VECTOR

1 225.0001273

2 10975.84397

3 117558.8284

4 6270060.545

5 11259586.57

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTICN

1.20000 SEC

0.20000 MSC

120

4 DECIMAL PLACES

PIECEWISE CONSTANT
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -49,9862042435

2 -0.9995303000

3 -0.9995303C00

ZEROES REAL

1 -4.9622611725

2 -20.2677062457

GAIN CONSTANT = 4.9685173035

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 100.0021676

2 101.9260468

3 51.98526484

B VECTOR

3 4.968517303

C VECTOR

1 100.5736518

2 25.22996742

3 l.OOOCOOGOC

INITIAL CONDITION (G) VECTOR

1 225.00G5829

2 11494.69251

3 20485.03332

IMAGINARY

0.0 J

1.0007669686 J

1.0007669686 J

IMAGINARY

0.0 J

0.0 J.
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EXAMPLE 8

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -3.0000000000

2 -8,0000000000

3 -40.0000000000

4 -40.0000000000

ZEROES REAL

1 -20.0000G0CC00

IMAGINARY

0.0 J

0.0 J

5.0000000000 J

5.00C00C0G00 J

IMAGINARY

0.0 J

GAIN CONSTANT = 160.0000000000

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 39000. OOOOOCOOCO

2 19795. OOOOOCOOCO

3 2529.00000C0000

4 91. OOOOOCOOCO

B VECTOR

4 160.0000000000

C VECTOR

1 20.0000000U00

2 l.OOOOOOOOUO

INITIAL STATE VECTOR

1 3.0000000000

2 2.0000000000

3 1.0000000000

4 0.0
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -40.0576848888

2 -40.0576848888

3 -8.0002609098

4 -1.4530133153

5 -2.9998483817

ZEROES REAL

1 -1.4492282436

2 -20.3685768935

GAIN CONSTANT = 157.7509613037

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 56781.06779

2 67897.28681

3 23515.35114

4 2665.954710

5 92.56849238

B VECTOR

5 157.7509613

C VECTOR

1 29.51871692

2 21.81780514

3 l.COOOOOOOO

IMAGINARY

4.8648939727 J

4. 8648939727 J

0.0 J

0.0 J

0.0 J

IMAGINARY

0.0 J

0.0 J
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IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION (G) VECTOR

1 62.00108720

2 5780.206688

3 169108.2337

4 1409764.537

5 1708815.026

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

1.48842 SEC

0.24807 MSC

120

5 DECIMAL PLACES

PIECEWISE CONSTANT
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL IMAGINARY

1 -40.0840542053 -4.7409985601 J

2 -40.0840542053 4.7409985601 J

3 -3.0000451598 0.0 J

4 -7.99971C0927 0.0 J

ZEROES REAL IMAGINARY

1 -19.9584019372 0.0 J.

GAIN CONSTANT = 160.7285003662

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 39100.17487

2 19844.88825

3 2535.037532

4 91.16786366

B VECTOR

4 160.7285004

C VECTOR

1 19.95840194

2 l.OOOOCOOOO

INITIAL CONDITION (G) VECTOR

1 62.00114277

2 5693.349573

3 160935.4623

4 1176687.962
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EXAMPLE 9

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -1.0000000000

2 -5.0000000000

ZEROES REAL

GAIN CONSTANT = 10.000000000C

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 5.0000000000

2 6.0000000000

B VECTOR

2 10.0000000000

C VECTOR

1 l.OOQOOCOOOO

INITIAL STATE VECTOR

1 l.OOOOOGOOOO

2 0.0

IMAGINARY

0.0 J

0.0 J

IMAGINARY

67





IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -5.C110029317

2 -2874.4029427054

3 0.C094513173

4 C. 0094513173

5 -0.9999781363

ZEROES REAL

1 0.009 6691675

2 0.0096691675

GAIN CONSTANT = 28777.0156250000

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 84255.60063

2 100828.6134

3 30926.28200

4 17234.39503

5 2880.395021

B VECTOR

5 28777.01563

C VECTOR

1 5.855754701

2 -0. 1933833505D-01

3 1.000000000

IMAGINARY

0.0 J

0.0 J

-2.4186034399 J

2.4186034399 J

0.0 J

IMAGINARY

-2.4198473522 J

2.4198473522 J
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IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION (G) VECTOR

1 1,450317645

2 2876.228032

3 17252.85740

4 16462.65716

5 101232.6568

PROGRAM PARAMETERS

RECORD LEGNTH = 12.00000 SEC

SAMPLING PERIOD = 2.000C0 MSC

EQUATIONS FORMED = 120

PRECISION OF DATA = 5 DECIMAL PLACES

INPUT FUNCTION = PIECEWISE CONSTANT
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -0,9999961462

2 -5.0000869786

ZEROES REAL

GAIN CONSTANT = 10.0001306534

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 5.000067709

2 6.000083125

B VECTOR

2 10.00013065

C VECTOR

1 1.000000000

INITIAL CONDITION (G) VECTOR

1 1.000025784

2 6.000036891

IMAGINARY

0.0 J

0.0 J

IMAGINARY
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EXAMPLE 10

SYSTEM TO BE IDENTIFIED

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -5,0000000000

2 -5.0000000000

3 -100.0000000000

ZEROES REAL

1 -20.0000000000

GAIN CONSTANT = 100. OCOOOOOOOO

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 50O0.0OOCOCO000

2 1050.0000000000

3 110.0000000000

B VECTOR

3 100.0000000000

C VECTOR

1 20.00C00C0000

2 U0000000000»

INITIAL STATE VECTOR

1 2. OCOOOOOOOO

2 1.0000000000

3 0.0

IMAGINARY

5.0000000000 J

5.0000000000 J

0.0 J

IMAGINARY

CO J
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 3533,8075084749

2 -25.9614103219

3 -100.0395044818

4 -4.9998977161

5 -4.9998977161

ZEROES REAL

1 -19.5630088534

2 -26.9189879242

GAIN CONSTANT =-348 534.3750000000

SYSTEM STATE VARIABLES ( PHASE FORM)

A VECTOR

1 -458893162.9

2 -113910225.2

3 -13774844.37

4 -476693.1811

5 -3397.806798

B VECTOR

5 -348534.3750

C VECTOR

1 526.6163991

2 46.48199678

3 1.000000000

IMAGINARY

0.0 J

0.0 J

0.0 J

5.0000893933 J

5.000G893933 J

IMAGINARY

CO J

0.0 J
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IDENTIFICATION OF UNKNOWN SYSTEM

INITIAL CONDITION (G) VECTOR

1 40.97649863

2 -139289.1252

3 -19623611.76

4 -535751377.4

5 -3138782043.

PROGRAM PARAMETERS

RECORD LEGNTH

SAMPLING PERIOD

EQUATIONS FORMED

PRECISION OF DATA

INPUT FUNCTION

0.600CC SEC

G.10CC0 MSC

120

5 DECIMAL PLACES

PIECEWISE CONSTANT
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IDENTIFICATION OF UNKNOWN SYSTEM

SYSTEM TRANSFER FUNCTION

POLES REAL

1 -99.9959669612

2 -4,9999968528

3 -4,9999968528

ZEROES REAL

1 -19.9960841378

GAIN CONSTANT = 100,0136718750

SYSTEM STATE VARIABLES (PHASE FORM)

A VECTOR

1 4999.83C647

2 1049.959363

3 109.9959607

B VECTOR

3 100.0136719

C VECTOR

1 19.99608414

2 l.COOOOOOOO

INITIAL CONDITION (G) VECTOR

1 40.99999105

2 4529.827485

3 34198. 6335C

IMAGINARY

0.0 J

5.0000354476 J

5.0000354476 J

IMAGINARY

0.0 J
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IV. CONCLUSIONS

The method of multiple integrations is a practical

and flexible method for identifying lumped parameter,

linear, time invariant systems. Complete and accurate

identifications can be made on the basis of arbitrary in-

put-output records taken over a short time interval and

accurate to only three or four significant figures. The

computational requirements of the method are not exces-

sive. The procedure can be implemented by relying en-

tirely on subroutines which are available in most computer

center libraries.

At present the technique is limited to comparatively

low order systems. When the input-output records are good

to three or four significant digits the method will be

capable of identifying systems up to about fifth order.

This limitation is due primarily to the algorithm used to

solve the overdetermined set of linear equations. As

better algorithms become available it will be possible to

identify higher order systems.

The accuracy of an identification is usually compar-

able to the number of significant digits in the input-

output data. Accuracy depends to a lesser extent on the

sampling rate, the nature of the input function driving

the system, and the order of the system.

There are several areas where additional research

might prove fruitful. Since the input-output records must

75





be in sampled data form for the computer it might be prof-

itable to reformulate the identification procedure from a

sampled system standpoint. Standard techniques could be

used to convert the sampled system representation obtained

from the identification to a continuous system representa-

tion. The ability to identify sampled systems would be a

worthwhile extension of this method.

The method of multiple integrations may prove very

useful as a tool for approximating high order systems with

low order systems. Research could be done to determine

the quality of the approximations obtained using this

method.
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C DIGITAL COMPUTER PROGRAMS
C
C
c
c
C MAIN PROGRAM - LINEAR SYSTEM IDENTIFICATION
C
C PURPOSE
C TO IDENTIFY LINEAR TIME INVARIANT SYSTEMS ON
C THE BASIS OF IN^UT-OUTPUT RECORDS
C
C DESCRIPTION OF PARAMETERS
C INPUT
C NP ESTIMATED NUMBER OF POLES
C NZ ESTIMATED NUMBER OF ZEROES
C KPTMAX - NUMBER OF DATA POINTS
C IPTS - DATA POINTS INTEGRATED PER LINEAR EQ.
C T TIME
C R INPUT AMPLITUDE AT TIME T
C C OUTPUT AMPLITUDE AT TIME T
C
C REMARKS
C (1) OUTPUT WILL CONSIST OF A TRANSFER FUNCTION
C AND STATE VARIABLE REPRESENTATION OF SYSTEM
C (2) PROGRAM IS PRESENTLY CONFIGURED TO IDENTIFY
C SYSTEMS SIMULATED BY SUBROUTINE SYSTEM. IF
C IT IS DESIRED TO IDENTIFY A PHYSICAL SYSTEM
C REPLACE SUBROUTINE SYSTEM CALLS WITH APPROP-
C RIATE READ STATEMENTS.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C WHEN IDENTIFY/ING PHYSICAL SYSTEMS
C (1) DLLSQ
C (2) RTPLSB
C WHEN IDENTIFYING SIMULATED SYSTEMS
C (1) DLLSQ
C (2) RTPLSB
C (3) SYSTEM
C (A) EXPAND
C (5) SUMM
C (6) DIFF
C (7) PROD
C (8) GAUSS3
C (9) ARRAY
C (10) MINV
C (11) ROUND
C
C METHOD
C MULTIPLE INTEGRALS OF THE INPUT AND OUTPUT DATA
C ARE USED TO FORMULATE A SET OF OVERDETE RMI NED
C LINEAR EQUATIONS. THESE EQUATIONS ARE THEN SOLVED
C FOR THE UNKNOWN MODEL PARAMETERS USING THE METHOD
C OF LEAST SQUARES.
C
C
c

REAL*8 T0,TN(11) , R0U1 ),RN<11) , CO ( 1 1 ) »CN( 11) ,DT2
REAL* 8 A(26C0) ,8(2 00)iX(26),AUX(52) ,C0NV(9)
REAL*8 APIlt ), AZ(10),PRA(9),PIA(9),ZRA(8) , ZIA(8)
INTEGER IPIV(26)
KPTMAX=5C02
IPTS=5C
NP = 4
NZ=NP-1

5 CONTINUE
MEQS=KPTMAX/IPTS
T0=-1.C0
EPS=10«0**<-35)
K=l
M=0
NP1=NP+1
NP2=NP+2
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NZ1=NZ+1
N=NP+NZ+1
NI=N+NP

C
C SET CUMULATIVE INTEGRAL VALUES TO ZERO
C

C

C

DO 10 I=2,NP2
RO(I)=0.00

10 CO(I)=O.OC
c
C READ IN INITIAL DATA POINT (T,R,C)

CALL SYSTEM(T0,R0(1) ,C0(1)

)

TOFF=TO
15 K=K+1

C
C READ IN NEW DATA POINT (T,R,C)
C

CALL SYSTEM(TNd) tRN(l) iCN(l) )

C
C UPCATE MULTIPLE INTEGRATIONS
C

DT2=(TN( 1)-T0)*0.5
DO 20 INT=1,NP1
RN(INT+1 )=(R0( INT)+RN( INT) )*DT2+R0( INT+1

)

20 CN( INT+1 ) = ( CO ( INT)+CN( INT) )*DT2+C0( INT+1)
C
C FORM A LINEAR EQUATION
C

IF (K.NE.(K/IPTS)*IPTS) GO TO 35
M = M+1
B(M)=CN(2)
TN(2)=(TN(1 )-TOFF)
DO 25 1=1, NP
I A=( NP-I )*MFOS+M
IC=(N+I-1)*MEQS+M
TN( I+2)=TN( 1+1 )*TN(2)/FL0AT( 1+1)
A( IA)=-CN( 1+2)

25 A( IC)=TN(I+1)
DO 30 1=1, NZ1
IA=(NP+I-1 )*MEQS+M
IRN=NP+3-I

30 A( IA)=RN(IRN)
C
C RESET OLD VALUES
C

35 T0=TN(1

)

DO 40 1=1, NP2
R0( I )=RN( I

)

40 COU ) = CN(I )

IF (M.LT.MEQS) GO TO 15
C
C SOLVE FOR PARAMETERS BY METHOD OF LEAST SQUARES
C

CALL DLLSQ(A,B,M,NI,1,X,IPIV,EPS, IER,AUX)
C
C CALCULATE POLES
C

AP(1)=1.C0
DO 45 1=1, NP
J=NP+2-I

45
CALL

J

RTPLSB(NP,AP,PRA,PIA,CONV,IERPZ)
C
C CALCULATE ZEROES

GAINI=X(N)
DO 50 I=NP1,N

50 X( I )=X( I )/X(N)
DO 55 1=1, NZ1
J=N+1-I
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c
c
c

55

60

65

70
75

80

85

90

900
901
902
903
904
905
906
907
9C8
909
910
911

912
913
914
915
916
917
918
919
920
921

AZ(I)=X( J)
IF (NZ.EQ.O) GO TO 60
££LL RTPLSB<NZ,AZ,ZRA t ZIA,CONV,IERPZ)
CONTINUE

1

OUTPUT

WRITE(6
WRITE(6
WRITE(6
WRITE(6
WRITE(6
WRITE(6
WRITE(6
WRITE(6
WRITE(6
WRITE(6
WRITE(6
DO 65 I

WRITE(6
CONTINU
WRITE(6
IF (NZ.
DO 70 I

WRITER
CONTINU
CONTINU
WRITE(6
WRITE(6
WRITE(6
DO 80 I

II=NP+2
WRITE(6
CCNTINU
WRITE(6
WRTJE (

*

WRITE (6
DO 85 I

II=NZ+2
WRITE(6
CCNTINU
WRITE(6
DO 90 I

II=N+I
WRITE(6
CONTINU
GO TO 5
FORMAT

(

FORMAT(
FORMAT

(

FORMAT

(

FORMAT

(

FORMAT

(

FORMAT(
FORMAT

(

FORMAT(
FORMAT(
FORMAT

(

FORMAT

(

E16.8,/
FORMAT!
FORMAT

(

FORMAT

(

FORMAT(
FORMAT(
FORMAT

(

FORMAT

(

FORMAT(
FORMAT

(

FORMAT(
STOP
END

914)
915)
916)
917)
918)
919)
920)
921)
900)
901 )

902)
1,NP
903)

K
M
IPTS
EPS
AUX(l)
IER
( IPIV( I) ,I=1,NI

)

I,PRA( I) ,PIA(I )

904)
Q.O) GO TO 75
ltNZ
903) I,ZRA(I) ZIA(I)

905) GAINI
906)
907)
1,NP
•I

910) I , AP( I I

)

90 8)
910) NP. GAINI
909)

: 1,NZ1
•I

910) I , AZ( I I

)

913)
: 1,NP

,^10)
E

I » X( I I )

1H1,
///t
//tl
17X T

//tl
//tl
////
//tl
//tl
//,1
17X,
1H ,

t9X T

//t5
//,1
////
15X»
15X,
15X,
15X,
15X,
15X,
15X,

///t
12X,
5X,'
12,7
5X, •

5X,'
tl2X
5X, '

5X,'
5X,«
12,7
9X, '

1118
X,4(
5X,'
//tl
» NUM
•NUM
•DAT
'EPS
•RMS
' IER
• IPI

25X,
'SYS
POLE
X,G1
ZERO
GAIN
, 'SY
A VE
b VE
C VE
X,G1
IER'
)

E20.
INIT
2X, '

BER
BER
A PO

ERR

V( I )

t/
t/

•IDENTI
TEM TRA
S' , 12X,
5.8,6X,
ES' ,11X
CONSTA
STEM ST
CTOR',/
CTOR'
CTOR'
5.8,/)
tI5,5X,

9,5X) ,/
IAL STA
PROGRAM
OF DATA
OF EOUA
INTS PE

= t

OR ='
= i

= i

FICATION OF UNKNOWN SYSTEM')
NSFER FUNCTION'

)

'REAL', 13 X,

•

IMAGINARY' ,/)
G15.8,1X, 'J',/)
, 'REAL' ,13X,' IMAGINARY' ,/)
NT =',G15.8,/)
ATE VARIABLES (PHASE FORM)')
)

)

)

•EPS' ,E15.8,5X, «AUX«,

/, 5X,4(E20.9,5X) ,//)
TE VECTOR' ,/)
PARAMETERS' ,/)
POINTS =',I6,/)

TIONS =',I6,/)
R EQUATION =• ,16,/)
16.8,/)
16.8,/)
4,/)

tE
tE
t I

,15( 12, IX) ,/)
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c
c

,

c
C SUBROUTINE SYSTEM
C
C PURPOSE
C GENERATES INPUT-OUTPUT RECORDS FOR IDENTIFICA-
C TION PROGRAM BY SIMULATING A SYSTEM DESCRIBED
C BY A TRANSFER FUNCTION THAT IS READ IN
C
C USAGE
C CALL SYSTEM(T,R,C)
C
C DESCRIPTION OF PARAMETERS
C INPUT
C NP NUMBER OF POLES
C P(I) - THE VECTOR OF POLES
C NZ NUMBER OF ZEROES
C Z(I) - THE VECTOR OF ZEROES
C GAIN - THE GAIN CONSTANT
C OUTPUT
C T TIME
C R INPUT AMPLITUDE AT TIME T
C C OUTPUT AMPLITUDE AT TIME T
C
C REMARKS
C (1) INPUT FUNCTION MAY BE CHANGED BY
C CHANGING ONE CARD IN PROGRAM
C (2) R AND C ARE ROUNDED TO MA DIGITS
C (3) ALL FLOATING POINT VARIABLES ARE DECLARED
C DOUBLE PRECISION (REAL*8).
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C (1) SUMM
C (2) DIFF
C (3) PPOD
C (4) EXPAND
C (5) GAUSS3
C (6) ARRAY
C (7) MINV
C (8) ROUND
C
C METHOD
C TRANSFER FUNCTION IS CONVERTED TO STATE
C VARIABLE REPRESENTATION AND INTEGRATED USING
C TRAPEZOIDAL INTEGRATION
C
C
c

c

SUBROUTINE SYSTEM( T , R, C

)

C
REAL*8 AA( 1G),CC(1C) ,A(9,9) ,R(9,1) ,XXX(9,9)
REAL*8 PHI (9,9) ,DEL(9, 1) , XX ( 9 , 1 ) , UU( 1 , 1 )

REAL* 8 T,R,C,U,DT,AI(9,9),ZZZ(9,9)
CCMPLEX#16 P(9) ,Z( 8)

C
IF (T.GE.O.OO) GO TO 55

C
C INPUT POLES, ZEROES, AND GAIN CONSTANT

READ(5,899,END=999) NP
READ(5,898) ( P ( I ) ,

I =1 , NP

)

CALL EXPAND (NP,P,AA)
DO 5 1=1, NP
CC( I )=0.00

5 CONTINUE
READ(5,899) NZ
IF (NZ.EQ.O) GO TO 10
READ(5,898) ( Z ( I ) , 1=1 , NZ

)

CALL EXPAND <NZ,Z,CC)
10 CONTINUE

READ(5,898) GAIN
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c
C SET NA
C

c
c
c

NA=3
C
C FIND SHORTEST TIME CONSTANT AND CALCULATE DT

DT=O.OC
DO 15 1=1, NP
IF (DT.LT.CDABS(Pd) )) DT =CDABS ( P ( I ) )

15 CONTINUE
IF (NZ. EQ.C) GO TO 25
DO 20 1=1, NZ
IF (DT.LT.CDABS(ZU) )) DT =CDABS ( Z ( I ) )

20 CONTINUE
25 DT=1.0/(DT*10C.O)

IF (DT.EQ.O.CO) DT=G.00C01
C
C FORM A, B, AND C MATRICES
C

DO 35 1=1, NP
DO 30 J=1,NP
Aid, J) -0.00
A( I, J)=0.00

30 CONTINUE
B(I ,1)=0.00

35 CONTINUE
DO 40 I=2,NP
AU I, I) = 1.00
A( 1-1, I )=DT/2.00
A(NP, I )=-AA( I >*DT/2.00

40 CONTINUE
AI ( 1 , 1 ) = 1.00
A(NP,1 )=-AA(l)*DT/2.00
B(NP, 1)=GAIN*DT/2.0C
CCINZ+1 1 = 1.CO

C
C CALCULATE PHI MATRIX
C

CALL DIFF(AI,A,ZZZ,NP,MP)
CALL GAUSS3(NP, EPSS ,ZZZ , XXX , KER ,9

)

CALL SUMM(AI,A,ZZZ,NP,NP)
CALL PROD ( XXX, ZZZ, PHI ,NP,MP,NP)

C
C CALCULATE DEL MATRIX
C

CALL PRODtXXX, B, DEL ,NP, NP, 1

)

C
C DEFINE INITIAL CONDITIONS
C

K = l
DO 45 1=1, NP
XX( 1,1 )=FLOAT( NP-I

)

45 CONTINUE
UU(lt 1) =0.00
T=0.00
R=0.00
C=0.00
DO 50 1=1, NP
C=CC( I )*XX( I,l)+C

50 CONTINUE
GO TO 65

C
C CALCULATE NEW DATA POINT (T,R,C)
C

55 CONTINUE
T=DT#FLOAT(K)

C
C INPUT FUNCTION

U= +0.1*FL0AT<K/53)+FL0AT(K/4C3)+FL0AT(K/60 3)
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UU(1,1 )=UU(1,1 )+U
CALL PR0D(PHI,XX,XXX,NP,NP,1)
CALL PR0D(DEL,UU,ZZZ,NP,1,1)
C=0.00
DO 60 1=1, NP
XX(I,1)=XXX( I,1)+ZZZU ,1)
C=CC( I )*XX( 1,1 J+C

60 CONTINUE
R=U

C
C ROUND OFF R AND C
C

CALL ROUND(R,NA)
CALL ROUND(CtNA)

UU(1,1)=U
K=K + 1

C
RETURN

C
C OUTPUT
C

65 CONTINUE
WRITE(6,900)
WRITE(6 f 901)
WRITE(6,902)
DO 70 1=1, NP
WRITE<6,903) I,P(I)

70 CONTINUE
WRITE(6,904)
IF (NZ.EQ.O) GO TO 80
DO 75 1=1, NZ
WRITE(6,903J I , Z ( I )

75 CONTINUE
80 CONTINUE

WRITE (6, 905) GAIN
WRITE(6,906)
WRITE(6,907)
DO 85 1=1, NP
WRITE(6,910J I,AA(I)

85 CONTINUE
WRITE(6,908)
WRITE(6,?10) NP,GAIN
WRITE(6,909)
NZ1=NZ+1
DO 90 1=1, NZ1
WRITE(6,910) I,CC(I)

90 CONTINUE
WRITE(6,913)
DO 95 1=1, NP
WRITE(6,910) I,XX(I,1)

95 CONTINUE

898 FORMAT(2F10.5)
899 FORMAT(Il)
900 FORMAT* 1H1 ,////, 25X , 'SYSTEM TO BE IDENTIFIED')
901 FCRMAT(///, 12X, ' SYSTEM TRANSFER FUNCTION')
902 FORMAT (//,15X, • POLES' , 12X, • REAL • , 13X ,

• IMAGINARY' ,/)
9 03 F0RMAT(17X,I2,7X,F]4.7,6X,Fl^ e 7,lX,'J',/)
904 FORMAT (//,15X, ' ZEROES «, 1 IX ,« R EAL ', 1 3X ,

•

IMAGINARY' ,/)
905 FORMAT ( //,15X, 'GAIN CONSTANT =',F14.7,/)
906 F0RMAT(////,12X, 'SYSTEM STATF VARIABLES (PHASE FORM)')
907 FCRMAT(//,15X, ' A VECTOR',/)
908 FCRMAT( //,15X, »B VECTOR',/)
909 FGRMAT(//, 15X, «C VECTOR',/)
910 F0RMAT(17X,I2,7X,F14.7,/)
913 F0RMAT(//,15X,

•

INITIAL STATE VECTOR',/)

RETURN
999 CONTINUE

STOP
END
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c
c
c
C SUBROUTINE DLLSQ
C
C PURPOSE
C TO SOLVE LINEAR LEAST SQUARES PROBLEMS, I.E. TO
C MINIMIZE THE EUCLIDEAN NORM OF B-A*X, WHERE A IS
C A M BY N MATRIX WITH M NOT LESS THAN N. IN THE
C SPECIAL CASE M=N SYSTEMS OF LINEAR EQUATIONS MAY
C BE SOLVED.
C
C USAGE
C CALL DLLSQ( A ,B ,M ,N , L , X, I PI V, EPS, I ER, AUX

)

C
C DESCRIPTION OF PARAMETERS
C A DOUBLE PRECISION M BY N MATRIX
C (DESTROYED).
C B DOUBLE PRECISION M BY L RIGHT HAND SIDE
C MATRIX (DESTROYED).
C M ROW NUMBER OF MATRICES A AND B
C N COLUMN NUMBER OF MATRIX A, ROW NUMBER OF
C MATRIX X
C L COLUMN NUMBER OF MATRICES B AND X
C X DOUBLE PRECISION N BY L SOLUTION MATRIX
C IPIV - INTEGER OUTPUT VECTOR OF DIMENSION N
C WHICH CONTAINS INFORMATION CN COLUMN
C INTERCHANGES IN MATRIX A.
C EPS - SINGLE PRECISION INPUT PARAMETER WHICH
C SPECIFIES A RELATIVE TOLERANCE FOR
C DETERMINATION OF RANK OF A.
C IER - A RESULTING ERROR PARAMETER
C AUX - A DOUBLE PRECISION AUXILIARY STORAGE
C ARRAY OF DIMENSION MAX(2*N,L). ON RETURN
C FIRST L LOCATIONS OF AUX CONTAIN THE
C RESULTING LEAST SQUARES.
C
C REMARKS
C (1) NO ACTION BESIDES ERROR MESSAGE IER=-2 IN
C CASE M LESS THAN N.
C (2) NO ACTION BESIDES ERROR MESSAGE IER=-1 IN
C CASE OF A ZERO MATRIX A.
C (3) IF RANK K OF MATRIX A IS FOUND TO BE LESS
C THAN N BUT GREATER THAN 0, THE PROCEDURE
C RETURNS WITH ERROR CODE IEP = K INTO CALLING
C PROGPAM. THE LAST N-K ELEMENTS OF VECTOR IPIV
C DENOTE THE USELESS COLUMNS IN MATRIX A.
C (4) IF THE PROCEDURE WAS SUCCESSFUL, ERROR
C PARAMETER IER IS SET TO ZERO.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C METHOD
C HOUSEHOLDER TRANSFORMATIONS ARE USED TO TRANSFORM
C MATRIX A TO UPPER TRIANGULAR FORM. AFTER HAVING
C APPLIED THE SAME TRANSFORMATIONS TO MATRIX B, AN
C APPROXIMATE SOLUTION OF THE PROBLEM IS COMPUTED
C BY BACK SUBSTITUTION. FOR REFE^ANCE, SEE
C GOLUB, G., NUMERICAL METHODS FOR SOLVING LINEAR
C LEAST SQUARES PROBLEMS, NUMEPISCHE MATHEMATIK,
C VOL. M, ISS.3 (1965), PP. 206-216.
C
C
r

SUBROUTINE DLL SQ(A,B,M,N,L,X, IPIV, EPS, IER, AUX)

DIMENSION A(1),B(1) ,X(l),IPiy(l),AUX(l)
DOUBLE PRECISION A , B , X , AUX, P I V, H, S IG, BETA, TOL

C
C ERROR TEST
C
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IF(M-N)30,1,1
C
C GENERATICN OF INITIAL VECTOR S(K) ( K=l , 2 , . . . , N)
C IN STORAGE LOCATIONS AUX(K) ( K= 1 , 2, . . . , N)

1 PIV=C.D0
IEND=0
DC 4 K=1,N
IPIV(K)=K
H=O.DO
IST=IEND+1
IEND=IEND+M
DO 2 1= 1ST, I END

2 H=H+A(I )*A(I)
AUX(K)=H
IF(H-PIV)4,4,3

3 PIV=H
KPIV=K

4 CONTINUE
C
C ERROR TEST
C

IF(PIV)31,3L,5
C
C DEFINE TOLERANCE FOR CHECKING RANK OF A

5 SIG=DSQRT(PIV)
TOL=SIG*ABS(EPS)

C
C
C DECOMPCSITICN LOOP

LP=L*M
IST=-M
DO 21 K=1,N
IST=IST+M+1
IEND=IST+M-K
T ~KP P'-i^
IF (1)8, 8,

6

C
C INTERCHANGE K-TH COLUMN OF A WITH KPIV-TH IN CASE
C KPIV.GT.K.

6 H=AUX(K)
AUX(K)=AUX(KPIV)
AUX(KPIV)=H
ID=I*M
DO 7 I=IST,IEND
J=I+ID
H=A( I

)

A(I )=A( J)
7 A(J)=H

C
C COMPUTATION OF PARAMETER SIG

8 IF(K-1)11,11,9
9 SIG^O.DO

DO 10 I=IST,IEND
10 SIG=SIG+A( I)*A( I)

SIG=DSQRT(SIG)
C
C TEST ON SINGULARITY

IF( SIG-T0L)32,32,11
C
C GENERATE CORRECT SIGN OF PARAMETER SIG

11 H=A(IST)
IF(H)12,13,13

12 SIG=-SIG
C
C SAVE INTERCHANGE INFORMATION

13 IPIV(KPIV)=IPIV(K)
IPIV(K)=KPIV

C
C GENERATION OF VECTOR UK IN K-TH COLUMN OF MATRIX
C A AND OF PARAMETER BETA

BETA=H+SIG
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c
c

c
c

c
c

c
c
c
c

A(IST)=BETA
BETA=1.D0/(SIG*BETA)
J = N+K
AUX(J)=-SIG
IF(K-N) 14,19,19

TRANSFORMATION OF MATRIX A
14 PIV=O.DO

ID=C
JST=K+1
KPIV=JST
DO 18 J=JST,N
ID=ID+M
H=0.D0
DO 15 I=IST,IEND
I 1 = 1 + 1

D

15 H=H+A( I )*A( II)
H=BETA*H
DO 16 I=IST,IEND
II=I+ID

16 A(II)=A( II )-A( I)*H

UPDATING OF ELEMENT S(J) STORED IN LOCATION AUX(J)
I 1= IST + ID
H=AUX(J)~A( II)*A(II )

AUX( J)=H
IF(H-PIV)18, 18,17

17 PIV=H
KPIV=J

18 CONTINUE

TRANSFORMATION OF RIGHT HAND SIDE MATRIX B
19 DO 21 J=K,LM,M

H=O.DO
IEND=J+M-K
I I=IST
DO 20 I=J,IEND
H=H+A( I I )#B( I)

20 11=11+1
H=BETA*H
II=IST
DO 21 I=J,I END
B(I ) = B( I )-A( II )*H

21 11=11+1
END OF DECOMPOSITION LOOP

BACK SUBSTITUTION AND BACK INTERCHANGE
IER=0
I = N
LN=L*N
PIV*1«D0/AUX(2*N)
DO 22 K=N,LN,N
X(K)=PI V*B(I )

22 I=I+M
IF(N-1 )26, 26,23

23 JST=(N-1)*M+N
DO 2 5 J=2,N
JST=JST-M-1
K=N+N+1-J
PIV=1.D0/AUX(K)
KST=K-N
ID=IPIV(KST)-KST
IST=2-J
DO 25 K=1,L
H=B(KST)
IST=IST+N
IEND=IST+J-2
II=JST
DO 24 I=IST,IEND
II-II+M

24 H = H-A( I I )*X( I)

85





I=IST-1
1 1 = 1 + 1

D

X( I) = X( II)
X( II)=PIV*H

25 KST=KST+M
C
c
C COMPUTATION OF LEAST SQUARES

26 IST=N+1
IEND=0
DO 29 J=1,L
IEND=IEND+M
H=O.DO
IF(M-N)29,29,27

27 DO 28 I=IST T IEND
28 H=H+B( I )*B(I)

IST=IST+M
29 AUX(J)=H

RETURN
C
C ERROR RETURN IN CASE M LESS THAN N

30 IER=-2
RETURN

C
C ERROR RETURN IN CASE OF ZERO-MATRIX A

31 IER=-1
RETURN

C
C ERROR RETURN IN CASE OF RANK OF MATRIX A LESS THAN N

32 IER=K-1
RETURN
END

C
c
c
C SUBROUTINE ROUND
C
C PURPOSE
C TO ROUND OFF A NUMBER TO A SPECIFIED NUMBER OF
C SIGNIFICANT DIGITS
C
C USAGE
C CALL ROUND(A,N)
C
C DESCRIPTION OF PARAMETERS
C A NUMBER TO BE ROUNDED
C N SIGNIFICANT DIGITS TO BE RETAINED
C
C REMARKS
C NONE
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C
c

SUBROUTINE ROUND(A,N)
REAL*8 A
X = A
IF (X.EQ.O.O) GO TO 1

SI6N-+1.0
IF (X.LT.O.C) SIGN=-1.0
L=AL0G10(A3S(X) )+l.CO
Y=X*10.0**(N-L )

I = Y
Z=I
IF ( (Y-Z).GT.0.5) 1=1+1
Z = I

A=SIGN*Z*10.0**(L-N)
1 CONTINUE

RETURN
END
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c .

c
C SUBROUTINE RTPLSB
C
C PURPOSE
C TO FIND THE ROOTS, BOTH REAL AND COMPLEX, OF A
C POLYNOMIAL WITH REAL COEFFICIENTS USING BOTH
C BAIRSTOW AND NEWTON-RAPHSON METHODS.
C
C USAGE
C CALL RTPLSB(N,A,U,V,CONV,IER)

C DESCRIPTION OF PARAMETERS
C INPUT
C N DEGREE CF POLYNOMIAL
C A COEFFICIENT VECTOR OF POLYNOMIAL
C OUTPUT
C U VECTOR OF REAL PARTS OF ROOTS
C V VECTOR OF IMAGINARY PARTS OF ROOTS
C CONV - CONVERGENCE INDICATORS FOR EACH ROOT
C IER - ERROR INDICATOR
C =0 t N IS WITHIN BOUNDS
C =1 , N IS LESS THAN ONE
C
C REMARKS
C (1) FOR PROBLEMS WITH NONMULTIPLE ROOTS, THE
C APPROXIMATE NUMBER OF SIGNIFICANT DIGITS OF
C EACH PART OF EACH ROOT WILL APPEAR AS THE
C EXPONENT OF THE CORRESPONDING ENTRY IN CONV
C (2) ACCURACY MAY BE LESS THAN INDICATED BY CONV
C IF THERE ARE MULTIPLE ROOTS
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
c .,

c
SUBROUTINE RTPLSB ( N, A , U, V, CONV , I ER

)

IMPLICIT REAL*8 (A-H), REAL*8 (O-Z)
DIMENSION A(l) ,U(1 ) ,V(1 ) ,CONV( 1) , B( 53)
DIMENSION C( 53) ,D( 53) ,E( 53) ,H( 53)
KF=10
L = 25
IER =
NN = N
K=0
N1=N+1
IZF=0
IF(NN) 51,51,52

52 DO 11 1=1, Nl
IF(AU)) 15,12,15

15 CONTINUE
IZF=1
GO TO 11

12 CONTINUE
IF (IZF-1) 13,14,13

13 NN=NN-1
K = K+1

11 CONTINUE
14 NP3=NN+3

N3=NP3
DO 10 1=1, N3
CCNV( I )=0.
U( I )=0.

10 V(I)=0.
B(2)=0.0
B(1)=0.0
C(2)=C.O
C(1)=0.0
D(2)=0.0
E(2)=0.0
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H(2)=0.0
DO 101 J=3,NP3
H( J)=A( J+K-2)

101 CONTINUE
T=1.0
SK=10.C**KF

150 IF(H(NP3)I 200,151,200
151 U(NP3)=0.0

V(NP3)=0.
C0NV(NP3)=SK
NP3=NP3-1
IF(NP3J 51,51,150

200 IF(NP3-3) 54,54,201
201 PS=0.0

QS=0.0
PT=0.0
QT=0.0
S=0.0
REV=1.0
SK=10.0**KF
IF(NP3-4) 51,202,203

202 R=-H(4)/H(3)
GO TO 500

2C3 DO 207 J=3,NP3
IF(H( J) )204,207,204

204 S = S+DLOG(DABS(H( J) ) )

207 CONTINUE
FPN1=N+1
S=DEXP( S/FPN1 )

DO 208 J=3,NP3
H( J)=H( J)/S

208 CONTINUE
IF(DABS(H(4)/H(3) ) -DABS ( H ( NP3-1 ) /H( NP3 ) ) ) 2 5C , 2 52 , 252

2 50 CONTINUE
T=-T
N-(NP3-4)/2 + 3
DO 251 J = 3.M
S=H( J)
JJ=NP3-J+3
H( J)=H( JJ)

251 H(JJ)=S
252 IF(QS) 253,254,253
253 CONTINUE

P=PS
Q-QS
GO TO 300

254 HH?=H(NP3-2)
IF(HH2) 256,255,256

255 Q=1.0
P=-2.0
GG TO 257

256 Q=H(NP3)/HH2
P=(H(NP3-1 )-Q*H(NP3-3) )/HH2

257 IF(NP3-5)258,55C,258
258 R=0.0
300 CONTINUE

DO 490 1=1,

L

DO 351 J=3,NP3
B< J)=H( J)-P*B<J-l)-Q*BU-2)
C( J) = B( J)-P*C( J-1)-Q*C( J-2)

351 CONTINUE
IF(H(NP3-1) )352, 400,352

3 52 CONTINUE
IF (3(NP3-1>) 353,400,353

3 53 AVHB1=DABS(H(NP3-1) /B(NP3-1 )

)

IF (AVHB1-SK) 45 0,354,354
354 B(NP3)=H(NP3)-Q*B(NP3-2)
400 IF(B(NP3) )401,550,401
401 AVHB2=DABS(H(N D3)/B(NP3) )

IF(SK-AVHB2) 55 0,450,450
450 DO 451 J=3,NP3

D( J)=H( J ) + R*D( J-l)
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E(J)=D( J)+R*E( J-l)
451 CONTINUE

IF(D(NP3))452,50O,452
452 CONTINUE

AVHD3=DA3S(H(NP3)/D(NP3) )

IF (SK-AVHD3) 500,453,453
453 CC2=C(NP3-2)

CC3=C(NP3-3)
C(NP3-1 )=-P*CC2-Q*CC3
CC1=C(NP3-1 )

S=CC2*CC2-CC1*CC3
IF(S)455,454,455

454 CONTINUE
P=P-2.00
Q=Q*(Q+1.0)
GO TO ^56

4 55 P=P+(B (NP3-1)*CC2-B(NP3)*CC3)/S
Q=Q+(-B(NP3-l)~CCl+B(NP3)*CC2)/S

456 IF(E(NP3-1) )453,457,'
457 R=R~1.C

GO TO 490
458 R=R-D(NP3)/E(NP3-1)
490 CONTINUE

PS = PT
QS=QT
PT = P
QT = Q
IF(REV)49l,492,492

491 SK=SK/10.0
492 REV=-REV

GO TO 250
500 IF(T) 501,502,502
501 R=1.0/R
502 NP=NP3-3

U(NP)=R
\MNP)*C ,0
CGNV(NP)=SK
NP3=NP3-1
DO 503 J=3,NP3

503 H< J)=D( J)
IF(NP3-3)300,51,300

5 50 IF(T) 551,552,552
551 P=P/Q

Q=1.0/Q
552 PP2=P/2.0

0^PS0=Q-PP2*PP2
IF(OMPSO) 554, 554,553

5 53 NP=NP3-3
U(NP)=-PP2
U(NP-1)=-PP2
S=DSQRT( CMPSQ)
V(NP)=S
V(NP-1)=-S
GO TO 561

5 54 S=DSQRT(-CMPSQ)
NP=NP3-3
IF(P)555,556,556

555 U(NP)=-PP2+S
GO TO 557

556 U(NP)=-PP2-S
557 U(NP-1)=0/U(NP)

V(NP)=0.P
V(NP-1)=0.0

561 CONV(NP)=SK
C0NV(NP-1)=SK
NP3=NP3-2
DO 558 J=3,NP3

558 H( J)=B( J)
GO TO 200

51 IER=1
54 RETURN

END
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c ,

c
C SUBROUTINE ARRAY
C
C PURPOSE
C CONVERT DATA ARRAY FROM SINGLE TO DOUBLE DIMEN-
C SION OR VICE VERSA. THIS SUBROUTINE IS USED TO
C LINK THE USER PROGRAM WHICH HAS DOUBLE DIMENSION
C ARRAYS AND THE SSP SUBROUTINES WHICH OPERATE
C ON ARRAYS OF DATA IN A VECTOR FASHION.
C
C USAGE
C CALL ARRAY ( MODE , I , J , N, M, S , D

)

C
C DESCRIPTION OF PARAMETERS
C MODE - CODE INDICATING TYPE OF CONVERSION
C =1 - FROM SINGLE TO DUUBLE PRECISION
C =2 - FROM DOUBLE TO SINGLE PRECISION
C I - NUMBER OF ROWS IN ACTUAL DATA MATRIX
C J NUMBER OF COLUMNS IN ACTUAL DATA MATRIX
C N NUMBER OF ROWS SPECIFIED FOR THE MATRIX
C D IN DIMENSION STATEMENT
C S - IF MODE=l, THIS VECTOR IS INPUT WHICH
C CONTAINS THE ELEMENTS OF A DATA MATRIX
C OF SIZE I BY J. COLUMN 1+1 OF DATA
C MATRIX FOLLOWS COLUMN I t ETC. IF MODE=2
C THIS VECTOR IS OUTPUT REPRESENTING A
C DATA MATRIX OF SIZE I BY J CONTAINING
C ITS COLUMNS CONSECUTIVELY. THE LEGNTH
C OF S IS IJ=I*J.
C D - IF MODE=l, THIS MATRIX OF SIZE N BY M
C IS OUTPUT, CONTAINING A DATA MATRIX OF
C SIZE I BY J IN THE FIRST I ROWS AND J

C COLUMNS. IF MODE=2, THIS N BY M MATRIX
C IS INPUT CONTAINING A DATA MATRIX OF
C SIZE I BY J IN THE FIRST I RUWS AND J

C COLUMNS
C
C REMARKS
C VECTOR S CAN BE IN THE SAME LOCATION AS MATRIX
C D. VECTOR S IS REFERANCED AS A MATRIX IN OTHER
C SSP ROUTINES, SINCE IT CONTAINS A DATA MATRIX.
C THIS ROUTINE CONVERTS ONLY GENERAL DATA MATRICES
C ( STORAGE MODE )

C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
c

SUBROUTINE ARRAY(MODE T I,J,N,M,S,D)
C

DIMENSION S(l) ,D(1

)

REAL*8 StD
C

NI-N-1
r

C TEST TYPE OF CONVERSION
C

C
C
C

IF(MODE-l) 100,100,120

CONVERT FROM SINGLE TO DOUBLE DIMENSION

100 IJ=I*J+1
NM=N*J+1
DO 110 K=1,J
NM=NM-NI
DO 110 L = l, I

IJ=IJ-1
NM=NM-1

110 D(NM)=S(IJ)
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GO TO 140
C
C CONVERT FROM DOUBLE TO SINGLE DIMENSION

120 IJ=0
NM=0
DO 130 K =1,J
DO 125 L = 1,I
1J=IJ+1
NM=NM+1

125 S( IJ)=D(NM)
130 NM=NM+NI
140 RETURN

C
END

C
c
c
C SUBROUTINE GAUSS3
C
C PURPOSE
C INVERT A DOUBLE PRECISION MATRIX BY THE GAUSS-
C JORDAN METHOD. THIS ROUTINE IS A DOUBLE PRECIS-
C ION VERSION OF SSP ROUTINE MINV USING Fl-NPGS-
C GAUSS3 (F-63) CALLING SEQUENCE
C
C USAGE
C
C DESCRIPTION OF PARAMETERS
C N ORDER OF MATRIX
C EPS - DUMMY PARAMETER NOT USED BY GAUSS3
C A TWO DIMENSIONAL ARRAY CONTAINING MATRIX
C TO BE INVERTED
C X TWO DIMENSIONAL ARRAY CONTAINING INVERTED
C MATRIX
C KER - ERROR FLAG
C =1 INDICATES NO ERRORS
C =2 INDICATES MATRIX IS SINGULAR
C K ROW AND CCLUMN DIMENSION OF A AND X IN
C USERS PROGRAM
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C (1) MINV
C (2) ARRAY
C
C REMARKS
C ALL FLOATING POINT VARIABLES ARE DOUBLE PRECISION
C (RFAL*8). IF N IS GREATER THAN 50, THE DIMENSION
C OF ARRAYS L,M, AND Y MUST BE CHANGED TO BE
C GREATER THAN OR EQUAL TO N.
C
c
c

SUBROUTINE GAUSS3 ( N t EPS , A, X, KER , K

)

DIMENSION M i) ,X<1) ,L(50) ,M(50) ,Y(50,5C)
DO 1 1 = 1, N
DO 1 J=1,N
IND=( I-1)*K+J

1 Yd, J) = A(IND)
KER=1
N2=2*N
CALL ARRAY(2,N,N,5O,50,Y,Y)
CALL MINV(Y,N,D,L,M)
CALL APRAY( 1,N,N, 50,50, Y,Y)
IFtD.EQ.O.) KER=2
DO 2 I=1,N
DO 2 J=1,N
IND=( 1-1 )*K+J

2 X( IND)=Y( I, J)
RETURN
END

91





c
c ,

c
C SUBROUTINE MINV
C
C PURPOSE
C INVERT A DOUBLE PRECISION MATRIX BY THE GAUSS-
C JORDAN METHOD.
C
C USAGE
C CALL MINV(A,N,D,L,M)
C
C DESCRIPTION OF PARAMETERS
C A INPUT MATRIX, DESTRGYED IN COMPUTATION
C AND REPLACED BY RESULTANT INVERSE.
C N ORDER OF MATRIX A
C D RESULTANT DETERMINANT
C L - WORK VECTOR OF LEGNTH N
C M - WORK VECTOR OF LEGNTH N
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C REMARKS
C NONE
C
C
c

SUBROUTINE MI NV ( A, N , D, L , M

)

DIMENSION A(l) ,L(1) ,M( 1)
DOUBLE PRECISION A , D ,B I GA, HOLD

C
C SEARCH FOR LARGEST ELEMENT
C

D = 1.0

DO 80 K = 1,N
NK=NK+N
L(K)=K
M(K)=K
KK=NK+K
BIGA=A(KK)
DO 20 J = K

T
N

IZ=N*( J*l)
D0_20 I=K,N

10 IF(DABS(BIGA)-DABS( A(IJ) ) ) 15,20,20
15 BIGA=A( IJ)

L(K)=I
M(K)=J

20 CONTINUE
C
C INTERCHANGE ROWS
C

J=L(K)
IF(J-K) 35,35,25

25 KI=K-N
DO 30 1=1,

N

KI=KI+N
HOLD=-A(KI

)

JI=KI-K+J
A(KI)=A( JI

)

30 AUI) =HOLD

C INTERCHANGE COLUMNS
C

35 I=M(K) r ^ n
IF(I-K) 45,45,38

38 JP=N*(I-1)
DO 40 J=1,N
JK=NK+J
JI=JP+J
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HOLD=-A( JK)
A( JK)=A( JI

)

40 A(JI) =H0LD
C
C « DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT
C ELEMENT IS CONTAINED IN BIGA)
C

45 IF(BIGA) 48,46,48
46 D=0.0

RETURN
48 DO 55 1=1,

N

IF(I-K) 50,55,50
50 IK=NK+I

A(IK)=A( IK)/(-BIGA)
55 CONTINUE

C
C REDUCE MATRIX
C

DO 65 1=1,

N

IK=NK+I
HOLD=A( IK)
IJ=I-N
DO 65 J=1,N
IJ=IJ+N
IF(I-K) 60,65,60

60 IF(J-K) 62,65,62
62 KJ=IJ-I+K

A( IJ)=HOLD*A(KJ )+A( IJ)
65 CONTINUE

C
C DIVIDE ROW BY PIVOT
C

KJ=K-N
DO 7 5 J=1,N
KJ=KJ+N
IF(J-K) 70 T 7^,70

70 A(KJ)=A(KJ l/BIGA
75 CONTINUE

D=D*BIGA
C
C REPLACE PIVOT BY RECIPROCAL
C

A(KK)=1.0/3IGA
80 CONTINUE

C FINAL ROW AND COLUMN INTERCHANGE
C

K=N
100 K=(K-1)

IF(K) 150,150,105
105 I=L(K)

IF(I-K) 120,120,108
108 JC=N*(K-1)

JR=N*( 1-1)
DO 110 J=1,N
JK=JQ+J
HOLD=A( JK)
JI=JR+J
A(JK)=-A( JI

)

110 A(JI) =HOLD
120 J=M(K)

IF(J-K) 100,100,125
125 KI=K-N

DO 130 1=1 tN
K1=KI+N
H0LD=A(KI)
JI=KI-K+J
A(KIJ=-A(JI )

130 A(JI) =HCLO
GO TO ICC

150 RETURN
END
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c
c
c
C SUBROUTINE PROD
C
C PURPOSE
C TO COMPUTE THE PRODUCT OF TWO MATRICES
C
C USAGE
C CALL PROD(A,B,C,N,M,L)
C
C DESCRIPTION OF PARAMETERS
C A - FIRST INPUT MATRIX
C B - SECOND INPUT MATRIX
C C PRODUCT OF A AND B
C N NUMBER OF ROWS IN A AND C
C M NUMBER OF COLUMNS IN A AND ROWS IN B
C L NUMBER OF COLUMNS IN B AND C
C
C REMARKS
C NONE
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
c
c

SUBROUTINE PROD ( A, B , C, N, M, L

)

REAL*8 A(9,9) ,B(9,9) ,C(9,9)
DO 1 1=1 »N
DO 1 J-1,L
C(I, J)=0.00
DO 1 K=1,M

1 C( I

,

J)=C(I ,J)+A( I,K)*B(K, J)
RETURN
END

C
c
c
c ,

c
C SUBROUTINE SUMM
C
C PURPOSE
C ADD TWO MATRICES
C
C USAGE
C CALL SUMM(A,B,C T M,N)
C
C DESCRIPTION OF PARAMETERS
C A NAME OF FIRST INPUT MATRIX
C B NAME OF SECOND INPUT MATRIX
C C NAME OF OUTPUT MATRIX
C M NUMBER OF ROWS IN A,B, AND C
C N NUMBER OF COLUMNS IN A,B, AND C
C
C REMARKS
C NONE
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
c
c

SUBROUTINE SUMM( A , B t C » M, N)
REAL*8 A(9,9) ,B(9,9),C(9,9)
DO 1 1=1,

M

DO 1 J=1,N
1 C(I, J)=A(I, J)+B( I, J)

RETURN
END
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c
c
c
C SUBROUTINE DIFF
C
C PURPOSE
C SUBTRACT ONE MATRIX FROM ANOTHER
C
C USAGE
C CALL DIFF(A f B,Cf M,N)
C
C DESCRIPTION OF PARAMETERS
C A FIRST INPUT MATRIX
C B SECOND INPUT MATRIX
C C OUTPUT MATRIX EQUALS A - B
C M NUMBER OF ROWS IN A T B, AND C
C N NUMBER OF COLUMNS IN A»B, AND C
C
C REMARKS
C NONE
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
c
c

SUBROUTINE DIF F ( A, B , Ct M,N )

REAL*8 A(9 f 9) , B(9,9J ,0(9,9)
DO 1 1=1,

M

DO 1 J=1,N
1 C( It J)=A( I, J)-B( I, J)

RETURN
END

C
c
c
c • ,

c
C SUBROUTINE EXPAND
C
C PURPOSE
C TO COMPUTE THE REAL COEFFICIENTS OF AN N-TH
C DEGREE POLYNOMIAL GIVEN N COMPLEX ROOTS
C
C USAGE
C CALL EXPAND(N,R, A)
C
C DESCRIPTION OF PARAMETERS
C N DEGREE OF POLYNOMIAL
C R VECTOR C(= COMPLEX ROOTS
C A COEFFICIENT VECTOR
C
C REMARKS
C NONE
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C
c

SUBROUTINE EXPAND(

N

T R» A

)

REAL*8 A(10)
CCMPLEX*16 R(9 ) ,Q(9)
IF (N-l) 1,2»3
A(l)=1.00
RETURN
A(1)=-REAL(R(1 )

)

A(2)=1.00
RETURN
Q(l)=-R(l)
Q(2)=1.00
DO 5 J=2,N
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Q(J+1)=1.00
JJ=J-1
DO 4 I=1»JJ
K = J-I

4 Q(K+1)=Q(K)-Q(K+1)*R(J)
5 Q(1)=-Q(1)*R(J)
6 N1=N+1

DO 7 L=1,N1
7 A(U=REAL(Q(L) )

RETURN
END
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