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ABSTRACT

Considering the case of one speed, steady state, iso-

tropic scattering in homogeneous media with plane symmetry,

this thesis developes the solution of the one-dimensional

neutron transport equation by three separate techniques

.

The method of K. M. Case which makes use of the theory of

generalized functions in forming a semi-classical eigenfunc-

tion expansion with both a continuous spectrum and a finite

discrete spectrum is developed. Converting the neutron

transport equation to an integral equation and then to a

singular integral equation, a solution is found in a method

due to T. W. Mullikin which has very useful convergence

properties. Applying the method due to N. Weiner and E.

Hopf to the integral equation form of the neutron transport

equation, a solution is developed which depends heavily on

complex variable theory. The similarities, differences,

advantages and disadvantages in the three methods are pointed

out, and specific example solutions are presented.
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I. INTRODUCTION

A. HISTORICAL SKETCH

The field of neutron transport deals primarily with

attempts to describe the migration of neutrons through bulk

media and utilization of these results in the designing of

nuclear reactors. Theoretically, in order to obtain a com-

plete description of the neutron population it is necessary

to specify the distribution of neutrons in space, time, and

velocity. This distribution function satisifies the lin-

earized Boltzmann transport equation. This equation has

been known for almost a century and until recently has been

studied primarily in connection with radiative transfer.

Only within the last thirty years have general methods been

developed to solve transport problems exactly, and only then

for linear one-dimensional problems with constant speed par-

ticles in homogeneous, isotropic scattering media. With the

advent of nuclear power, interest in solutions to the Boltzmann

equation shifted from problems in radiative transfer to neu-

tron transport. For this reason the linearized Boltzmann

equation is now generally referred to as the neutron trans-

port equation [2,8].

A great deal of mathematical theory had to be developed

before any of the methods for solving the Boltzmann equation

could be found. This involved significant advances in vari-

ous branches of mathematics. The work of N. I. Muskhelishvil

i

in the area of singular integral equations and solutions of





the Hilbert problem enters heavily in the developments of

these methods. The theory of distributions and generalized

functions developed by L. Schwartz made possible a method

employing a modified classical eigenf unction expansion.

Finally, a delicate use of analytic function theory made

possible a method based on the manipulation of Fourier

transforms

.

The form of the neutron transport equation which de-

scribes the class of one-velocity transport problems men-

tioned above is known as the "one- speed approximation" and

in the multi-dimensional form can be written

it

Scroti tv^irv) ar\j) JJrcr^'tjfc^-^v) f&
where

^(r,fi,t)d 3 r d 2
ft is the number of neutrons in the volume

d 3 r about r which move in the solid angle d 2
ft about ft at

time t;

v is the speed of the neutrons

;

vft is the velocity;

a(r,v) is the total macroscopic cross section;

c(r,v) is the average number of secondary neutrons pro-

duced by fission and scattering per collision;

— S(r,ft,t) i s the number of uncollided neutrons at posi

tion r, traveling in direction ft, at time t which have come

from some external or internal source other than scattering;

and





f (Q ' *ft,r ,v) dftdft ' is the scattering kernel and repre-

sents the probability that a neutron with initial direction

in dft ' about ft', when scattered at r, emerges from the col-

lision with a direction vector within the solid angle dft

about £2, [2,8] .

The directional unit vector ft is given by ft(9,<j>), (Ref.

Figure 1) . For the specific case of one-dimensional steady

state problems in a homogeneous, isotropic scattering media

with plane symmetry and constant values for c, and "iso-

tropic scattering" f, the one-speed approximation takes

the form [2]

Y j^pyo + crfw) =^£ ft(x >
v)J|x

/

+ S(X, v) > (1.2)
Ox z

/,

where

y = cos6, -co<x<«>, and -l<y<l. This is the form of the

neutron transport equation in which we will be primarily

interested.

In 1951 N. Weiner and E. Hopf developed a technique

for solving (1.2) using Fourier transforms and principles

of analytic continuation. Weiner and Hopf applied their

method to the one-dimensional (stellar) radiative trans-

port problem. For a couple of simple but important cases

they obtained elegant and useful answers, but as we shall

see it was clear that to tackle any further problems in

radiative transfer using this method would, present formi-

dable problems. For this reason there was relatively lit-

tle done along the lines of solving (1.2) for a number of

years

.
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In 1953 the first comprehensive summary of neutron

transport theory was written by K. M. Case, F. deHoffmann,

and G. Placzek. A few years later B. Davison extended some

of the efforts of Case, deHoffmann, and Placzek in a pub-

lished work on one-dimensional neutron transport theory.

Then K. M. Case [2] in 1960 developed a powerful eigen-

function expansion technique for solving exactly one-dimen-

sional, one-speed neutron transport problems based on the

form (1.2) of the transport equation using properties of a

Hilbert space. In order to devise a satisfactory theory

Case had to go beyond the classical eigenfunction ideas and

introduce both a continuous spectrum and a finite discrete

spectrum. To do this he needed the tools of generalized

functions developed by Schwartz and the theory of singular

integral equations developed by Muskhelishvili

.

In approximately 1963 A. Leonard and T. W. Mullikin [6]

developed an alternate method by converting (1.2) to an in-

tegral equation in a novel fashion. This method appears to

yield a more convenient solution for finite slab problems

than does Case's method. It leans heavily on the theory of

singular integral equations. In this thesis this integral

approach is referred to as Mullikin 's method.

There are various reasons for studying soluble one-

speed problems, even for cases of initial physical assump-

tions as restricted as those imposed on equation (1.2).

The physicist faced with solving a real physical problem

is interested in two things. First, he wants to find out





what are the significant parameters of the problem, what

factors influence the output, and how. For this type of

analysis analytical expressions for the answer, even to ap-

proximate problems, form an invaluable tool. Second, he

wants to be able to compute numerical results. For well

understood problems a straightforward, if very tedious,

numerical integration of the exact equations may be tried.

For the problems in neutron transport, until recently the

theory has been at the stage where it was much safer to try

to obtain numerical answers from the analytical solutions.

Unfortunately the analytical solutions are in the form of

series and/or integrals whose convergence properties are

minimal. Fortunately each of the methods mentioned above

and described in detail below has a different region in

which it gives satisfactory convergence for numerical, as

opposed to purely mathematical, calculations. Finally, since

the neutron transport equation is mathematically equivalent

to the linearized Boltzmann equation, conclusions derived by

studying it are directly applicable to transport problems in

a variety of other fields such as astro-physics, plasma

physics, radiation physics, and thermodynamics.

B. OBJECTIVES OF THE THESIS

In this thesis the methods of K. M. Case, T. W. Mullikin,

and N. Weiner and E. Hopf are developed for solving the one-

dimension, steady state, one-speed neutron transport equation

in a homogeneous, isotropic scattering media with plane sym-

metry. Similarities among these three different approaches

10





to solving the transport problem are revealed. It is also

shown how these three techniques eventually reduce to the

same problem of solving a singular integral equation.

The novel feature of this thesis is in its simultaneous

presentation of these three techniques and the comparison of

them. Each of them attacks the problem from an entirely dif-

ferent mathematical approach. It is hoped this approach

might enable the reader to choose the method that will yield

the most convenient solution to his problem. We will try to

make obvious the various advantages of one technique over

another for solving a particular problem in transport theory.

Finally, a knowledge of this material might provide insight

into solving problems relating to more general physical

models in neutron transport and other phenomena governed by

the Boltzmann transport equation.

C. OUTLINE OF THE CHAPTERS

In Chapter II the method due to Case is developed. The

existence of an eigenfunction expansion solution to the trans-

port equation is assumed and values for discrete and contin-

uum eigenvalues and eigenf unctions are determined. Using

the usual property of orthogonality and assuming complete-

ness of the eigenfunctions , the expansion coefficients are

isolated and evaluated. As an aid to solving infinite half-

space and finite slab problems a half-range orthogonality

and a half-range completeness theorem are proved. The theory

requires the use of the ideas of L. Schwartz and Plemelj , in

addition to classical eigenfunction theory.

11





The method due principally to Mullikin is presented in

Chapter III. Starting with the conventional integral equa-

tion form of (1.2) a reduction is made to a linear singular

integral equation in terms of a complex parameter. The

equation is then reduced to a Hilbert problem. The Hilbert

problem is solved, yielding a solution to the initial in-

tegral equation. An approximation form of this solution

using a truncated Neumann series is presented.

In Chapter IV the integral equation form of (1.2) is

solved using the Weiner-Hopf technique. Assuming the

existence of the Fourier transform of the functions con-

tained in the basic integral equation and applying the

principles of analytic continuation, the transform of the

total neutron density function is determined.

Some observations and conclusions obtained through a

study of the methods developed in Chapters II-IV are pre-

sented in Chapter V. Finally, example solutions by all

three methods to specific problems are presented in the

appendices

.

12





II. THE METHODDUE TO K. M. CASE

A. FORMULATIONOF THE PROBLEM

Our problem is to find a solution to the equation

<) X 2.
J

'

where distance x is measured in units of mean free path so

that a=l. In the spirit of the method of solving ordinary

differential equations we will first consider the properties

of solutions to the homogeneous form of (2.1). This ap-

proach is an example of the application of the Fredholm

Alternative Theorem where we investigate the form of solu-

tions to the homogeneous equation to determine a general

solution for the nonhomogeneous equation.

Let us look for solutions of the form

. -*/)

and refer to v and c|> as the eigenvalues and eigenfunctions

of the solution ty (x,y). The impetus for solutions of this

form comes from the usual eigenfunction expansion technique

of solving ordinary differential equations. In that case

exp(xp) is the form of the eigenfunction for ordinary dif-

ferential operators with constant coefficients. We also

observe that an eigenfunction expansion of the form (2.2) is

equivalent to taking the Laplace transform

L t'l - j
(-) e Jx

(
C2.3)

o

where Ave have s = l/v.

13





Substituting our proposed solution into (2.1) yields

(I- Vt)) ^ (p) = C.
| ^ Cy.') dp' . (2.4)

Since this is a linear homogeneous equation for <j> , we are

free to choose our normalization,

l

^ (y/) dp' - I .
(2.5)

'-I

Applying this to (2.4) yields the equation for
<J> ,

i

v

^(W = £i -J. (2.6)

In classical theory (2.6) is the only possible solution

for <j> (u) . However, if one allows the possibility of having

"distributions" ("generalized functions") in the sense of

L. Schwartz, this is not the complete solution. The van-

ishing coefficient in (2.4) occurring when v = y suggests the

use of generalized functions in forming a complete solution

for <$> (y) . With this in mind let us now write (2.6) as

ftw = ci_i_ + \(\M S (v? - h) (2.7)

where X(v) is an arbitrary function of v . To check the

validity of (2.7) we substitute it into (2.6) and find that

Since the Dirac delta function is defined so that x6(x)e0,

adding the term A(v)6(v-y) to (2.6) does not alter it as a

solution to (2.4). Since we will be interested in integrals

of <j> (u) over v and y, rather than
<J> (y) itself, we may also,

14





without loss of generality, make the term 1/v-u in (2.7)

the Cauchy principal value P —3—. The resulting solution

to (2.4) then becomes

&(H) = £l P -*— + kl*) SC^-JXJ . (2.9)

It is noted that since -1<u<1 when v takes on values

outside the real interval [-1,1], there is no possibility

that v will equal u and (2.9) reduces to (2.6). Also, the

eigenfunctions defined by (2.9) are not functions in the

usual sense, but are instead "distributions" in the sense

of Laurent Schwartz.

B. EVALUATION OF DISCRETE EIGENVALUES AND EIGENFUNCTIONS

Let us initially consider ail v such that vp[-I,i].

The function (2.6) satisfies the equation (2.4) for arbi-

trary v. As usual, however, we expect only for certain

values v, possibly complex, will (2.6) satisfy the require-

ments of the problem, which include the normalization (2.5).

To find these values of v we integrate both sides of (2.6)

with respect to u and obtain the result

A(>M = °
} (2.10)

where

AWIS l-^j'^L.
, V complex. (2.11)

Therefore, to determine the eigenvalues v for which (2.10)

holds we need to find the zeros of A(v)

.

15





We initially note that A(v) may also be written in the

following forms:

A(V) = \- c± la fill) = 1-cV InfJLtM V/BQ ,
(2.iia)

or

A(M) = l-c\l tank >g \;^C-»,0 . (2.i lb)

We now state the following theorem about the properties of

A(v).

Theorem 2.1:

The function A(v) defined by (2.11) has the properties

a. A(v) is analytic in the complex v plane cut from

-1 to +1;

b. A(-v) = A(v);

c. If v is a zero of A(v) , so is the complex conjugate

v ; and

d. A(v) has only two zeros in the complex v plane cut

from -1 to +1, and they lie on the real or imaginary axes.

Proof:

The analyticity of A is apparent from the integral ex-

pression (2.11), [9]. The existence of a cut in the complex

v plane becomes obvious if we write (2.11a) in the form

e
'2.

I (6 —9 1

Aon = i-cv U file
;

}= i-cv | h H-cVi/<?,-e
2
W2.i2)

where v'+l = r 1 e ! and v-l = r 2 e 2
, and let v approach the cut

[-1,1] from above and below.

16





The second property may be verified directly by using

(2.11a). Therefore, if v is a zero of (2.11), so is -v.

The third property may be verified by taking the com-

plex conjugate of the expression A(v)=0.

Our final property is not as obvious as the others.

From the Argument Theorem [3] we know that

A
c

ar 9 A(V) = 2 7T(N Z -N
p ) j

(2.i3)

where N and N are the number of zeros and poles, respec-
z p r > v

tively, within any contour C. To find the number of zeros

in the entire plane, take the contour C as in Figure 2.

Since A(v) is analytic in the cut plane, N =0. Applying

equation (2.11b) and expanding tanh — in a Taylor series

yields

A(V) = l - CV O + 0(M 3

] }
(2.14)

which implies A(v)->l-c as v->°°. Therefore, A(v) is a con-

stant at infinity (i.e. no argument change at infinity), and

we need only consider the contour around the cut. We shall

need the following result due to Plemelj [12], which we will

not prove.

Theorem 2.2:

Let a function Q(a) be defined for any complex a not

on a cut Ci by

C W = _L ( ^ilL d S (2.15)

^1

17





Figure 2.2. ARGUMENTTHEOREM: A argA (v) =2tt TN -N )c ° v ' z p

18





where <t>(s) satisfies a Holder condition on Ci . Denote the

limiting value of Q(a) as a tends to a point t of Ci from

above by Q (t) , and from below by Q (t) . Then Q (t) and

Q (t) are given by

QV^X^+J-pfiSiLj,
( , 15a)

and

tf(S)aw B-^«*i pff^ds . (2 . 15 b)

Consider now the form of A(v) given by (2.11). If we

allow u to approach v on the cut from above and below and

apply the Plemelj formulas above we obtain

l

and

A (V) =
I

- C^ p ( <ly_ + Ci 7T I
(2.16a)

A (V) = l
- H. P (' JiL - £l TT i . (2.16b)

+
We see that as v varies from to 1 along the cut, A (v) de-

+
creases monotonically from 1 to - 00

, implying that argA (v)=0,

argA (1)=tt, and hence A ,i argA =tt . Repeating this process

around the cut we find that A argA (v) =4tt , so by the Argument

Theorem N =2.
z

We now attempt to draw some conclusions concerning the

location of these two zeros. A way of solving A(v)=0 amen-

able to graphical methods is to find the points where the

two functions f=l/c and g(v)=tanh — intersect. Properties

b and c above tend to suggest that we might initially look

19





for those zeros on the axes of the complex plane. There-

fore, we shall consider the following two cases.

Case 1: c<l; v restricted to real values. From Figure 3

we observe that ±v are solutions to A(v)=0, and

that v >l and -v <l.

Case 2: ol; v restricted to purely imaginary values.

Setting v=ix we find that

A(>>) = W - T tan' >t • (2.i7)

From Figure 4 we observe that when Ol, A(v) will

have two purely imaginary zeros, ±VQ=±iT<>.

For c=l we see that from Case 1 that Vo-^ 00 as c->l . From

Case 2' we conclude the same result since 1/to^O as c+1.

On the basis of the preceeding arguments we conclude

that A(v) has only two zeros in the complex plane cut at

[-1,1], and that having found two by inspection we have them

all. They are real when c<l, and they are purely imaginary

when Ol. When c=l there exists a double zero at infinity.

This completes our proof.

These zeros for A(v), ±v ^[-l,l], are called the DIS-

CRETE EIGENVALUES. The corresponding DISCRETE EIGENFUNC-

TIONS are denoted

o+ (vO - * ^k _i (2.18)

C. EVALUATION OF CONTINUUMEIGENVALUES AND EIGENFUNCTIONS

Let us now consider all v such that ve[-l,l]. The eigen

functions here take the form of (2.9). Integrating both

20





g<>»-\)Tav^h h

Figure 3. ZEROS OF A(v) FOR c<l, v REAL
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q (v>) = -T tan Vx

0, = i r.

Figure 4. ZEROS OF A(v) FOR ol, v PURELY IMAGINARY
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sides of (2.7) with respect to u and applying our normaliza-

tion , we have

1 = c4 pL t% +l( " ]

or

A.W) = l -Cl p
(' iv. (2.19)

*- r I, v-v

From (2.16a) and (2.16b) we obtain the alternate expression

X(V) = >2 [/UVj -rA(Vj]
, (2.19a)

Evaluation of the principal value integral in (2.19) gives

another expression for A(v),

\(v) = i - cv t anh v , (2.19b)

Since X(v) is defined for every value of v on [-1,1],

in constrast to (2.10) which holds only for two values of

A, a continuum of eigenfunctions is given by equation (2.9)

and any one of the equivalent forms for X(v) given above.

The values ve[-l,l] and the corresponding eigenfunctions

(2.9) are called the CONTINUUMEIGENVALUES and CONTINUUM

EIGENFUNCTIONS, respectively.

D. FULL-RANGE ORTHOGONALITY, NORMALIZATION, AND COM-
PLETENESS PROPERTIES

1 . Orthogonality of the Discrete Eigenfunctions

Having obtained the discrete and continuum eigen-

values and eigenfunctions we would like to employ the eigen-

functions in the "usual" way, i.e. to expand solutions to

the transport equation in terms of them. Before this is

2 3





possible, it is necessary to prove that the eigenfunctions

are orthogonal with some weight function, determine their

normalization constants, and prove that they form a complete

set, in the sense that an arbitrary function of y can be

expanded in terms of them. We shall first consider the

problem of orthogonality.

Theorem 2.3 (Orthogonality):

The functions <j> (y) are orthogonal with weight

function y in the sense that

f V 4>y,{h) </>*' Ch) dP z0 ,>>#V. (2.20)

Proof

Applying (2.3) for v and v' we have

(l- ^v>) ^<HJ =|-|^(h') V (2.2i)

and

M/ .'O- 5V;^i/(W=| (£/(**') V . (2.22)

If we multiply (2.21) by $ ' (y) , multiply (2.22) by <j> (y) ,

subtract the resulting equations, and integrate over y, we

find that

[>v>'
- V) [^jWWv'OO ^ :o -

This proves the orthogonality theorem.

2 . Normalization Constants

The next step is to compute the normalization inte-

gral when v ' =v in (2.21). For the discrete eigenfunctions

this becoires

24





I j I

M = ( v 4\ (v) d h = MA
f

v ^ (2.23)

Using equation (2.11) it is easy to obtain the alternate

expression

= C. ^f^— - -VI (2.24)

Setting v =-v we see that

- N# . = No + (2.25)

Evaluating the normalization integral for the con-

tinuum eigenfunctions is not as straightforward as that for

.the discrete eigenfunctions. Looking ahead, we know that

we want Lo use the normalization integials to evaluate the

coefficients in the expansion of an arbitrary function f (u)

,

f {y) i fA(\J') 4jM dvj'
, (2.26)

To evaluate the expansion coefficient A(v) , we multiply both

sides by u<J> (u) and integrate to obtain

( M/WfOAVdw - /m ^WJh (AC/i f\/M Jv'
C2 .27)

Evaluating the right hand side of (2.27) will not be straight-

forward since the distributions (generalized functions) are

not square-integrable and Fubini's theorem cannot be used to

change the order of integration. Defining the right side of

(2.27) as the product of A(v) with the normalization constant

N(v) , we have

25





N(V) S -j^ )
)_V<t> v (Y)<lv }A(/) ^'(HJ JV'

. (2.28)

Since the singularity of the functions <$> (u) prohibit changing

the order of integration in (2.28) we must evaluate (2.28)

in an alternate manner.

First let us define a function that we can evaluate

N(V) = AW }<Mfa'> j^^'W^iV) *V > (2.29)
"I -i

and attempt to relate it to the unknown function N(v) . Ap-

plying form (2.9) of
(f> (y) we have

»

WM~W\(.dv'Aofi [V <^ [X<Vy\(v>) S(H»V^')S<M-^ +

(2.30)

Applying the identity

to the fourth integral in (2.30), we obtain

nli v) p ( 4^ jv p (dv [^ - A]

.

Using (2.19) we see that the last integral in (2.32) is

P ( <^ [£p " "^] = -§" [XUI'I-XUO]
.

(2.33)
—i

Inserting (2.33) back into (2.32) reduces that equation to

N (\>) = -0 X (V) . (2.34)
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We are now faced with the problem of relating N(v)

to N(v). Applying (2.9) in (2.28) as we did above in (2.29),

we find that the resulting first three terms of A(v)N(v)

are identical to the first three terms of A(v)N(v) in (2.32).

The last term differs only in the order of integration. To

relate these last terms we shall need the following formula

due to Poincare-Bertrand, [9].

Theorem 2.4:

If an arbitrary function g(u,v T

) exists and satis-

fies a Holder condition on the cut [-1,1], then

3W)-t-|V jPpL- P^ JUV'jdfA. (2.35)-7T

Applying this result we obtain

ACV) t\|w = /Uv) N(^)+- C~H
Z

\)

?

/\(v)) (2.36)
4-

}

from which we get

(2.37)

If we use equations (2.16) and (2.17) we obtain the alternate

expression

N (\>) - V) A(^) A (N)) * (2.38)

Returning to (2.26) we see that

Acvi = -—
\ v ^ch) fiwdy. (2.39)
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3. Full-Range Completeness

Before proving any theorem on completeness it will

be necessary to define the class of expandable functions for

which the completeness theorem will hold. This is accom-

plished by referring to the results of N. I. Muskhelishvili

on singular integral equations.

Assume we have an integral equation for an unknown

function f(t) of the form

A C nf B( t') f(t') ,,*
cj(t) = Aw ret). + P

j t'-* dt
,

(2.40)

where g(t), A(t) , and B(t) are known. The sufficient con-

ditions for the existence of a solution are the following

Theorem 2.5:

Let g(t), A(t) , B(t) satisfy Holder conditions,

where for example
,

I
g(t] -gitM c (co^sxaht)

for a<t, t'<b and y>0 , and

t-t (2.41)

| 3 (t)-<j(C)| C ( COnstatlt ^t-cr ,(«'), (2.42)

for c an endpoint (a or b) and a<t<b . Also, if

A(t) ± iTiB(t) f in [a,b] , then solutions to

(2.40) exists, satisfy Holder conditions, and may

be found in a manner similar to that described in

the following completeness theorem.

We now have the following theorem, which we will prove.
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Theorem 2.6 (Full-Range Completeness):

The eigenfunctions
<J> ±(vO an ^ $ V M are complete

for arbitrary functions ip(y) of the above men-

tioned class on the full range -l<y<l in the sense

that

r(V) = \J of
( V) + a J /v) + f A(^» ^(v) Jh

,
(2.43)

o- '

where ao - , ao + , and A(v) are the expansion coef-

ficients .

To prove this theorem we shall show that these expansion

coefficients can be uniquely determined.

In proving this theorem we assume initially that

a f. .~\ 4~ -: -«- <- ~ t x „ „„„u ^ r +.1 — „,,,, „_j„t.T„ „i ~.c -c. ^-^ —en[vj ij a. », b v^ x x d iiit'iuuvjx ux Lno ^Apaiiuauxt/ s-xa-^i wx j.Um.Liuiii

described above, and hence it is possible to write a func-

tion ijj'(y) in the form

-i
(2.44)

If we can show that a solution to the singular integral equa'

tion (2.44) exists, then the expansion (2.43) does also. In

the course of this proof two necessary conditions will be

imposed on (2.44) for a solution to exist, and these condi-

tions will enable us to find ao± so that (2.43) will exist

also.

If we use equations (2.9) and (2.19a) in (2.44), we

find that the equation reduces to

f'm = |[/tcvi+A^A(v) +
f-Pj

/\Mu>)

\>-Y
dO. (2.45)

-i

29





Let us now define the following function

h(Z\ r -!-t (4- - ( — J ^ » z complex. (2.46)
v

' 2*n » )_ 2. \) - z

Under our assumption that A(v) was a member of the class of

expandable functions we see that n(z) has the following

properties

:

a. n(z) is analytic in the complex plane cuL

from -1 to 1;

u +
f ~\

- r \ 1 „ ( CV A(v) jb. n (z) + n (z) = —̂ P ) — v ' dvv * K J TT1 _< 2 V_Z

+ - cz
c. n (z) - n (z) = -j A(z) , ze[-l,l].

Using b and c in (2.45) we obtain

— 1

c ?a i*(V) - ^ ^Cia+Att^l^CVJ-nCplj-t-^-g —̂{rrcKl^ ^V)j . (2.47)

Returning to equations (2.16a) and (2.16b) we can obtain the

useful relationship

A(\» " A(v>| = Tfl C (2.48)

which will enable us to reduce (2.47) to

cjm t(H = A qui n\vO -A(W h'(p)
, ( 2 .49)

Let us now define a new function

J(2) r A(Z) H (Z) » (2.50)

Since A(z) and n(z) are analytic in the plane cut by [-1,1],

J(z) is also. Therefore, our initial problem of solving
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(2.44) for A(v) has reduced to solving the following non-

homogeneous Hilbert problem:

Find a function J(z) , analytic in the complex

plane cut from -1 to +1, such that

C1L ^\y) = J <JM -J2 -. . - <M> ; H^C-^Q ,
(2.51)

From the results due principally to Muskhelishvili the solu-

tion to this Hilbert problem is

"T - I C'cia V(VO_ J,,

From this we determine the following expression for n(z),

- "« ife lir O#? J " • "•«
Remembering that a requirement for this solution to exist

was that n(z) be analytic in the cut plane and the fact that

A(z) vanishes when z=±v > we see that a solution given by

(2.53) for n(z) will exist only if

Therefore, we must now impose a condition on the expansion

coefficients ao± so that (2.54) will hold.

Rewriting (2.43) in the following form

Y* w - V'o*) + a
c + i + ^> + a . ijF) ,

(2 - 55)

we see that (2.54) may be written

i

('cm. fiiA) j v ^
[ J^[a^cw+a^nj ^h (2.56)

-I l - v c -I
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At this point we recall that the discrete eigenfunctions are

given by

d> - c \)c

that the normalization constant is given by

i

N
Ci

= U^V^ d h ,
(2.58)

and that 4> + is orthogonal to <?o-- Applying these principles

we note that (2.56) will be satisfied if we define

»

\± - )h t^w+w ^/h. ±
(2 - 59)

Therefore, if a 0± is given by (2.59), (2.54) will be satis-

fied, n(z) will be analytic in the cut plane as desired,

and property c for n(z) yields A(v)

,

A Cvn - jj-[n + ^)- n"(v))J . (2.60)

The full-range completeness theorem is thus proved.

4 . Summary and Application

At this point let us summarize the results of sec-

tions A-D. Our problem is to find a solution to the homo-

geneous transport equation

]U ^U.M) + y> U/ ]U) = f fV'U,//) cJ^. (2.61)
?} X -'

We look for a solution of the form ty (x,u)=<{> (y)e ' and

determine that the discrete and continuum eigenfunctions are

given by equations (2.18) and (2.9) with the appropriate

definition for X(v). If the Laplace transform, iji(p) , of
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ip(x,y) is a member of the class of expandable functions,

we can expand it in terms of the eigenfunctions by (2.43),

where the expansion coefficients are given by equations

(2.59) and (2.60). The general solution to (2.61) is given

by superposition of the eigenfunctions,

rcx,M) = K^v\ e °+<L J iv)e. > jA<W
g

<H)e ^ (2.62)
-«

where the expansion coefficients a 0± and A(v) are determined

by boundary conditions.

Let us now return to the problem of solving the

inhomogeneous transport problem, given by equation (2.1),

in a homogeneous infinite medium. If we can transform this

problem into an equivalent homogeneous problem with appro-

priate boundary conditions, then the solution is given by

equation (2.62). In practice this boundary condition might

take the form of a "jump condition" at a neutron source,

q (x,u), distributed over a surface:

i\> and \p _ represent the angular density on opposite sides of

the surface over which the source q (x,u) is distributed.

In some problems q (x,u) may be constructed to be equivalent

to the combined effect of other distributed sources. In

Appendix A a solution to the nonhomogeneous transport equa-

tion is developed using this approach for a particular ex-

ample .
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Another problem to consider is that of solving for

the neutron distribution in a homogeneous half-space or a

slab. In this case it is necessary to expand a function of

u defined not on the entire range, -1<u<1, but rather on the

half-range, 0<u<l. Obviously, our previous conclusions on

orthogonality and completeness are not valid in this case,

so we must develop half-range orthogonality and completeness

properties to handle situations of this type. This is done

in the following section. As an example of the application

of these theorems the half-space albedo problem is solved

in Appendix B.

E. HALF-RANGE COMPLETENESSAND ORTHOGONALITYPROPERTIES

Let us first consider the problem ot halt- range com-

pleteness.

Theorem 2.7 (Half-range Completeness):

The functions <J>o + (u) and <$> (u) , 0<v<l, are complete

for functions iHvO of the expandable class of func-

tions defined on the half -range 0<u<l.

The initial phase of the proof is analogous to that of

full-range completeness in that we assume that a member

^'(u) of the expandable class of functions defined on the

half -range . 0<u<l, can be expanded by

Y'(M) = JAH) ^(y) dv) o£ p£ i, (2. 64)

We now attempt to solve this singular integral equation for

A(v).
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As before, substitution of the explicit form of
<J> (y)

yields

v>A(v>)
^'(

P )
r- ^(A

+
<f> +A^3A(H)+|P]^r L

dv)
)

o£^i, (2.65

We now introduce the function

ft(Z) - ETTl ) a o - z d\> (2.66)

Assuming that A(v) is a member of the expandable class of

functions, we see that n(z) has the following properties:

a. n(z) is analytic in the complex plane cut from

to 1;

i r 1

n
+

(z) +n"(z) =-P ~ A(v)
v- z

dv

;

+ .

c. n (z) - n (z) - cz/2 A(z);

d. n(z) ^ 1/z as
|

z
|

^°°
,

Again following a similar procedure as before we can obtain

the relation

A+
( WnV) -Awn>)= [

A
Virl^

Crt

] ^H "** '• (

2

' 6 7)

At this point "we note that this Hilbert problem differs

from the one in the previous theorem in that here n and A

arc not analytic over the same region. A is analytic in the

complex plane cut from -1 to +1, but n is analytic in the

complex plane cut from to 1

.

Rearranging equation (2.67),

riV> ~ Afy) n<W - rA^)--A(yi)1 ^(^
i

o<}\< \
}

(2.68)

AV) ^ 7Tl A^J
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it is apparent that before solving for n(z) we must first

solve the associated homogeneous Hilbert problem:

Find a function X(z) , analytic and nonzero in the com-

plex plane cut from to 1 , such that

X"(H) Km
However, for the sake of continuity we will postpone solving

for X(z) and proceed to solve for n(z) as though X(z) were

known.

If we substitute our expression (2.69) into (2.68) we

obtain after multiplying through by X (u)

(2.70)

In a similar manner as before we see that the solution to

this Hilbert problem becomes

and our solution for n(z) is

n(Z) =
xk -rkr (txVx>>J^ <fc • c 2 . 72 )

From property c we obtain the expression for A(v) as

We now pause to investigate the explicit form of X(z)

before proceeding to ensure that n(z) has the desired prop-

erties. Expanding the right hand side of (2.69) we obtain

AVi) - X^ItT C7TJH _ e
;0 ^ )

}
(2.74)

K<\x) \<p) ~ y err \y

™





where

6(H) = Z argAV) :
2. tan' c7

£f
z
)

( 2 - 75 >

A function which satisfies the ratio condition in (2.69)

is

The function X(z) A^e are seeking must also be analytic

and nonzero in the plane cut from to 1. From the form of

Xo(z) we can conclude that the only points where these prop-

erties might not hold are at the endpoints of integration

when z = or z = l. Since lim ^ ' = err we need only invest!

-

y
y->o

gate the endpoint at z=l.

Rewriting (2.76)

X.CZ) = exp ft, f £ff V + InSJ-]
,

yields

(2.7 7)

(2.7 8)

Since

L • -

Xo(z) has a zero at z=l. Therefore,

X<Z)=-L rex pfef'^V]

(2.79)

(2.80)

satisfies all the required conditions.

We now proceed to ensure that n(z) satisfies all the

required properties . Using the explicit form (2.80) for
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X(z) in (2.72), it is apparent that n(z) will satisfy all

the properties except d. Since X(z)^l/z as |z|+°°, d will

be satisfied only if

fCXV.-XV)]^dp ^ yz 2 as |z|-»«.(2.8i)

Since 1/y-z can be expanded to the form

= -i[> + ^ + -<-]
»

(2.82)

we see that relation (2.81) will be satisfied if

fDC<VO ~XV)]^ (Vj d^ =0, (2.83)
c

Remembering that we are attempting to expand a function ty(v)

by

V'CM) = ^'(p) * a
ct 9^(H , (2.84)

we see that (2.83) will be satisfied if we choose
i

The theorem is thus proved. Summarizing, we observe

that an arbitrary function ^(y) of the class of expandable

functions for 0<y<l can be expanded. in the form

Y'(M) = 2
tf+ ^c+

CTA) + lA(U) ^(H d\)
, (2.86)

where ao+ is given by (2.85) and A(v) is given by (2.73).

The orthogonality relation (2.20) of the previous sec-

tion is not valid when the region of integration is restricted

to 0<y<l. Hence, to develop a half-range orthogonality





relation we must find a new weight function W(y) such

that

)
o

W(fO ^W h'W dp = Oj O^V1

;
(2.87)

where 0<v, v'<l or v,v'=+v .

Following the general procedure used to prove the

full-range orthogonality theorem in the previous section,

we take the defining equations for v (y) and <f>o + (u)

D - %] A) W= ^Z
)

0+\)±\
)

(2.88)

and

[ l - ^J ^o +W= H ) (2.89)

multiply (2.88) by W(y)<J> '(y)/y, multiply the corresponding

equation for $ ' (y) by W(y)cJ> (y)/u, subtract the two, and

integrate the result over y to get the relation

i

Z%>' " VJ [ W(H) ^/P> </
u ' CpJ dp =

Similarly

,

The orthogonality relation (2.87) will then be true only if

and if

—r»Ti-r i p
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Since (2.92) and (2.93) are to hold for all eigenvalues v

and v 1

, we can conclude that

f
'

<f>^Y) d^u = Ay***** °r \)=\) C) (2.94)
J

4

where A' is a constant independent of v If we now sub-

stitute our explicit eigenfunction forms given by (2.18)

and (2.9), we find that W(y) must satisfy the singular in-

tegral equation

CO VvUm)
2 r )H(^-H) ^

X(0) W(tf)

\)

1 A
1

- = /I
;

0«£ l^< I, (2.95)

and the equation

^ f'^Ha ^ '- A'
-

(2.96)2~ Jj*<V -F)

Multiplying (2.95) by v and (2.96) by v anc ^ applying the

identity

to the resulting form of (2.95) and similarly for the re-

sulting form of (2.96), we obtain the following relations

*F Pfe JHt X.(«)WW)= CTT.'V/I (2.98)

and

(2.99)

where

A = ' r A' - f
Win)

- dp (2.100)
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As we did in the full-range completeness theorem, let us now

define the function

and rewrite equation (2.98) as

A~(v) m1"^) -jfcwmM == A (A+
- A") ,0^1.(2.102)

Equation (2.99) then reduces to the auxiliary condition

mcvV) = - A . (2.io3)

We note again that the problem of finding the weight

function W(p) has reduced to that of solving the nonhomo-

geneous Hilbert problem (2.101) for m(z) such that

rV\v>) - ~^ m\v) = /UA^vi-A'tvQ (2.io4)
ACv>y A~(s>)

where, by (2.101), m(z) is analytic in the complex plane cut

from to 1 . We observe that since A(v) is analytic in the

cut plane from -1 to 1 and not to 1 , we must first solve

the associated homogeneous Hilbert problem:

Find a function Y(z), analytic in the complex plane

cut from to 1 , such that

Y%! = A"o». AUi\,
(2 . 105)

Let us assume such a function Y(z) exists. Substituting

(2.105) into (2.104) and multiplying by Y
+

(z) we obtain

\\z\ rr\\z) -Y(2) YYUZ) = A JY'c2) -\\z)\ ,
(2.106)
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Temporarily disregarding the auxiliary condition (2.105)

to be satisfied, we see after comparing this Hilbert problem

to the one in the half-range completeness theorem that the

functions Y(z) and X(z) are related in some manner similar

to

Y(Z) ~ !/X(2) (2.107)

In order to satisfy the auxiliary condition let us try a

Y(z) of the form

Y«> = TGS -ZFT '
(2 - 108)

Thus Y(z) will be analytic in the cut plane with the excep-

tion of a simple pole at z=v .

From (2.106) we conclude that

Yw m<n = -^ (' Yj*^ </,', (2 . 109J

Consider

ECZ) H YU) m<Z) +^J f %™L̂ <V
,

(2.109a)

where E(z) is some entire function (except for the simple

pole at v ) and by Liouville's theorem vanishes at infinity.

Therefore, E(z) has the form

where C is some constant to be determined. Equation (2.109)

now becomes
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If we now apply Cauchy's integral formula to evaluate the

integral of Y in (2.111), we obtain

Cmca) = YW^~^ + xJ<v.-a)Yu) ' yWJ •
(2 - 112)

Considering now our auxiliary condition given by (2.103) we

can determine C from (2.110) as

- -A_c= X(v<!) • (2 - 113)

Solving now for m(z) and W(u) we obtain

nruz) = A[jy^) *" Q (2.H4)

and

- (y .M-^rv^ri _ V~ 1,71W(h» ~ A CVd-jlO I X W f o 1 1 r "\

/\ v/^/J j
^4 .XXDJ

where A is an arbitrarily chosen constant. This establishes

the orthogonality relation (2.87). Appendix B gives an ex-

ample of how half-range orthogonality relations can be con-

veniently used to compute the expansion coefficients.

Reference Note:

The results of this chapter are due primarily to the

work of K. M. Case and P. F. Zweifel [2].
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III. THE METHODDUE TO T. W. MULLIKIN

A. FORMULATIONOF THE PROBLEM

Consider a homogeneous slab of thickness x, with a

total macroscopic cross section a, and emitting c secondary

neutrons per collision. The slab is infinite in the trans-

verse directions and is surrounded by a non-reflecting me-

dium, such as a vacuum or pure absorber. We assume that

the one speed, steady state, and isotropic scattering con-

ditions hold.

If we now define the total neutron density in the one-

dimensional case as

^ / v \
~ ( Y t v u \ a u ( 3 ] )/O \ r\ I j

<• '
) i

'
)

K ~ - -

,

' -I

the one-dimension transport equation (with a = l)

M ,<H'U,H) + fttjH) =-§- f V^W -r-ScX^j (3.2)
c)x z L\

may be transformed to a Fredholm integral equation of the

form
r

>OU) = ^ ) E/tX-x'O/OU') c/x' •+ S (X) . (3.3)

Here the assumption that no diffuse neutrons are reflected

back into the slab becomes the boundary condition

TKo^m) - ^cr.-^) =o
;

o^ ijl< \ ,
(3.4)

Using this condition we have applied the integrating "actor

-x' /u
e 'to the differential equation (3.2) and have integrated
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the resulting terms with respect to x' and u. The kernel of

integration is defined in the usual way as

E.Ox-x'O^ e % . (3.5)
• c n

Physically, the first term on the right side of equa-

tion (3.3) represents the neutron density due to neutrons

scattered at least once before reaching point x. S(x)

represents the neutron density due to uncollided neutrons

from some external and/or internal source S(x,u). For

simplicity we consider the case of no internal sources, but

an external source due to a unidirectional beam of neutrons

incident at the x=0 surface with initial direction y = cos9

measured from the normal (ref . Figure 5) . In this case

S(x,y) takes the form

and S (x) becomes

b U) = e
,

(3.7)

Thus, we have reduced the problem of solving the dif-

ferential equation (3.2) to the equivalent problem of solving

the integral equation

/OCX) =5 §-
J

E,(lX-x' D/OCx'idx' 4- e
m

(3.8)

We might initially consider solving this Fredholm integral

equation by a standard Neumann series approach. However,

we observe that if the norm of the integral operator is

45





vac uurn
or

pure absorber

um'd
bea

o^- neutrons

cr

pare

absorber

x^r

Figure 5. UNIDIRECTIONAL BEAM SOURCEOF NEUTRONSINCIDENT
ON A BARE HOMOGENEOUSSLAB.
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to the value 1, convergence will be quite slow. In practice

this is usually the case for thick or near-critical (c~l)

slabs. Thus, while the Neumann series solution to (3.8)

often converges rapidly enough in the case of thin slabs to

be desirable, it is usually undesirable for thick slab

problems due to slow convergence. We shall see that an

alternate solution of (3.8) due to Mullikin removes this

difficulty

.

B. REDUCTION TO A LINEAR SINGULAR INTEGRAL EQUATION

At this point to simplify notation we will rewrite

equation (3.8) in the operator form

/J - c I (/» t e
}

(3.9)

where T is a compact, positive definite, self -adjoint in-

tegral operator in L 2 [0,x] and c=c/2.

We observe from (3.9) that p depends not only on x

through the operator T but also on the parameter y • Let

us write (3.9) in a form (3.10) below which explicitly

points out this dependence. For convenience in comparison

with Mullikin' s original paper we shall use the letter J

for p and the complex number z for y . We shall need the

following result.

Theorem 3.1:

If T is the integral operator given above, and if

c^l/X., where A. is an eigenvalue of T, then there

exists a unique solution J(x,z) to the equation
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JU,Z) = cT(J ) <X,Z) -h e
;

(3 .10)

which is analytic in the complex plane |z|>0.

As a sketch of the proof of Theorem 3.1 we observe

that in (3.10) the operator (I-T) operates on J. By the

Fredholm Alternative Theorem we see that if c is not equal

to the reciprocal of an eigenvalue then a solution exists

and can be written as the inverse operator (I-T) opera-

ting on the exponential
t

function . The solution is linear

and thus obviously unique. Since the inverse operator is

an operator in x only, then the only dependence of the solu-

tion on z is the explicit dependence, and hence the solution

is analytic in the complex plane jz|>0.

We shall make full use of the analytic dependence of J

in (3.10) upon the parameter z and show that T(J) can be

expressed in terms of integrals in the parameter z in J. We

shall see that this result and the analyticity of J in the

variable z lead to singular integral equations.

To obtain the. equation for T(J) we apply the operator

T to (3.10) and get

-i c c ^^r

We shall also need the two relations

e
/z

=(l-T)(e v-) + T(e V
*)

C3 . 12 ;
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and

T«,zi= e
X/2

+ (I-T)"T(e"
Vv

) .
(3-i3)

Combining (3.11), (3.12), and (3.13), we obtain the fol-

lowing result.

Theorem 3.2:

For c"/l/X., the unique solution to (3.10) also satis-

fies

Ju/z) = e +yzJ(x
(
2) ]

t
z-t rzlz-^t

-T/ x— j.k* (3.14)

Equation (3.14) can also be written in the form

-x/z

2. ** c
i K + tr i

(3.15)

where

At this point we observe that we have reduced the prob-

lem of solving (3.3) for the total neutron density in terms

of position x to that of finding a function J dependent upon

x as a parameter and a complex variable z that satisfies the

singular integral equation in z mentioned above.

C. SOLUTION OF THE SINGULAR INTEGRAL EQUATION

Instead of trying to solve equation (3.15) for J(x,z),

we shall find that it will be simplier to solve two equations
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for two auxiliary functions f + connected to J by the fol-

lowing theorem.

Theorem 3.3:

If J(x,z) is a solution to equation (3.15), then the

function f, + ->(x,z) defined by

"f (M
(X,2) = Jc*,Z) . * JCZ-XtZ) (3.17)

is a solution to the equation

(

_/ 4-1

where

Assuming we can find f, + .(x,z), we can obtain J(x,z) by

the simple relation

J<x,'Z^ = T jjf+ (x,2) + -(L (x,z\]
.

(5.20)

We now make use of the analyticity of the functions in

(3.18) in the variable z. Note that the first term on the

right hand side of (3.18) is an entire function, the second

is analytic everywhere in the complex plane except on (0,1),

and the third is analytic everywhere except on (-1,0). If

we let J^ + >.(x,z) be the function consisting of the members

of the right hand side of (3.18) that are analytic every-

where except on (-1,0), we obtain the expression

eTI <*,Z> - $M-i<\Z)-tt)e czjlkir^jt. (3.21)
K-) t- u ) 2 ' t + Z
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Let us now make use of the following theorem from the

theory of functions of complex variables [5,6,9].

Theorem 3.4:

If f r+ ^(x,t) satisfies a Holder condition in the com-

plex plane cut by (0,1), then the function

$C) (X,X> " gJFT £ f 'fyff' dt (3.22)

is analytic everywhere in the complex plane cut by (0,1)

As in the derivation of Case's method, if we let §7 + -x denote

the limit of $/• + -* as z approaches the cut (0,1) from above

and below and apply the Plemelj conditions, we obtain [12]

ttl

where z+se(0,l). From (3.18), (3.21), and (3.22) we obtain

the expression

£,«.««* t fc^^^pf^^*. <»«>

A (a ^u.^i -aniz <| + c* jZ ) = ^,^/z)
;

(3.24)

ich due to the analyticity of
<^f + >, and f^ + ^ on (0,1) bewh

come

± t
A (S) T£j(X,S^ - Z7f\S £ (x,S) = c/^ (X,5V S£(o,l)

#
(3.25)

Applying the Plemelj conditions to A we find

A* (si = I - fs \n (i±§.) t <LEi s
j

S£(0)0
( (3 . 26)

From (3.23) we observe that

l^CX.S) " I^jU.S) ~% fm(K,S)
,

S£(SU. (3.27)
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Using (3.26) and (3.27) in (3.25) yields the following re-

sult.

Theorem 3.5:

If f, + . (x,z) is a solution to (3.18), then $,
±

. (x,z)

defined by (3.22) is a solution to

ACS) I^U.S) -A(S)^
t)

(S) ~ f C^X.S), ^ic,*), (3.2 8)

+
where A (s) is given by equation (3.26).

Thus, we have reduced our problem (3.18) to that of

attempting to solve the nonhomogeneous Hilbert problem:

For x fixed, find a function $/• + >, (x,z) analytic in the

complex z plane cut by (0,1) and satisfying

-r + A^) X ~ — C ~T- /

We observe that since A(z) is analytic in the complex

plane cut from -1 to 1, and $, + .(x,z) is analytic in the

complex plane cut from to 1, it will first be necessary

to solve the associated homogeneous Hilbert problem:

Find a function X(z) , analytic in the complex z plane

cut by (0,1) with no zeros or poles, and satisfying

the boundary condition

A CS) _ A lM
j SSC<V> - (3.30)

We first determine the form of the right side of (3.30)

by

A*ia .

; e < s ^

= e
A"«i 0~fs ln£|)~^

(5.31)
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where

-I /C 7TS/2

2 ,n
l-Si

0c-s) =2 argA^) =z tan" (f^pfEl) ,s*< »»V. (3.32)

Let us now look for a possible solution of the form

V 1/
Az>)aw - r\ (^ e (3.33)

where K(z) is a quotient of algebraic functions in z. The

right side of equation (3.30) will now take the form

A <- s ) _ 3 . = e SC(o
l O

J
(3.34)

and we are now faced with finding <Kz) such that

<fi\<>)
~ 0**CS) - \6iS)

,
SZ(o,\). (3.35)

We now apply a theorem due to the results of Muskhelishvili

[9].

Theorem 3.6:

If a complex function <J)(z) satisfies the condition (3.55)

on the cut (0,1) , then the function is given by the

equation

o

where Pi(z) is an arbitrary entire function of z.

<f>( z ) is analytic in the complex plane cut by (0,1).

From Theorem 3.6 we now observe that X(z)/K(z) as defined

by (3.33) and (3.36) will have no poles or zeros except pos-

sibly on the cut (0,1) or at the endpoints of the cut i:hen

approached from within the cut. Letting z approach the left
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endpoint results in 9 approaching zero and we are left only

with the right endpoint to investigate.

From (3.32) we notice that as z approaches 1 we will

develop problems with our proposed form of X(z) . Let us then

write <J>(z) as

We now observe that the first term on the right hand side of

(3.37) is well behaved at both endpoints of the cut (0,1).

Equation (3.33) will now become

Therefore, to avoid the possibility of a zero in X(z) at

z=l we let K(z) take the form

and we have established the following theorem.

Theorem 3.7:

If a function X(z) satisfies the conditions of the

homogeneous Hilbert problem (3.30), then the function

is given by

Xm= ^7 expfj^f l^t]
,

(3.40)

where we have taken Pi=0.

Having found a function X(z) satisfying (3.30) we sub-

+
stitute (3.30) into (3.29), divide through by X (s) and ob-

tain
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JWx/n _ $ tt
,-».s) _ _c &fe) (x,s) seCo,!). (3 4i)

From the results of Theorem 3.6 we know that the solution to

this equation takes the form

$tt) C *' Z>
= -L £-

f

'

«£>"'*> Jt + &-.,<».«, (3.42)

where P2/- + ^( x > z ) is a polynomial in z with coefficients as

functions of x.

By investigating the behavior of the functions in the

left side of (3.42) as
|

z
|

->-<» we determine that P 2 , + Jx,z)

will be a zeroHL order polynomial in z and hence only a

function of x. If we write P 2r + ^(x,z) as

we have the following result.

Theorem 3.8:

If a function <*> , + >. (x , z) satisfies the conditions of the

nonhomogeneous Hilbert problem (3.29), then the func-

tion is given by

c A"tOX*<*>

At this point we can substitute (3.44) into (3.27) to obtain

an expression for f, + .(x,z) in terms of ^
r + ->(x,z) or use

another approach.

From (3.22) and (5.21) we have

2TTl*Z $W(«,-2I =-(--^e PSjt^J-^+jWiaTj.

55





Substituting this equation into (3.44) we get

where -z^(0,l). Equation (3.46) is a Fredholm integral equa

tion for «7( + ^(x,z) whose Neumann series solution can be

shown to converge rapidly.

To express f, + . (x,z) in terms of Jf + > (x,z) we sub-

stitute (3.45) into (3.24) and obtain

Aonf^cx.z) - e^jCx,^ + (-)e <^prZ)-^
t) <^). (3.47)

Therefore, from (3.46) and (3.47) we can obtain a complete

solution to equation (3.18). However, by proceeding a lit-

tle further Ave can simplify the task of finding this solu-

tion.

Let us define the Fredholm integral operator L as

i -Va w

I (-.] = (J. eJitiii dt (3.48)^ -
)

a x (t)A (t) t+.-z

Equation (3.46) now becomes

cfepW = -WZ [eg)] <X,Z^ + %,^) + e ZX(-2)Q
±)

W(3.49)

Using the linear properties of L we can write J , + ^{x ,z) as

C/^CX,*)- h |W CX,X^ + C^<X> hwtj
tZ)

;
(3.50)

where hi and h 2 are defined by the Fredholm equations

h t u,zi - -wZ Cfy^w,^ + $ t)
<x/z) (3.51)
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and

-V*
(3.52)

Substituting (3.50) into (3.47) now yields an expression for

f( + 1 in terms of hw + . and h 2( - + ^

53)

Let us now designate by-zo a zero of the function A(z). Com-

paring equation (3.16) with the definition of A in the de-

velopment of Case's method we discover that the two functions

'are identical and hence zo corresponds to a discrete eigen-

v 9 1 lie in •«- V> i »- vr>^4-\^ r^A T-C . - ~ niii"! , »--i-»i"Iv ( 7 r 7 ^ .»- v _ „ , i, i, » r ~ ~\

and then use the fact that z is a zero for A(z) we get an

expression for C^ + ^
(x)

3.54)

From definition (3.4 8) one can show [5,7] the Neumann

series solutions to equations (3.51) and (3.52) will con-

- -r

verge like e for large values of t, and hence convergence

is quite rapid for thick slab problems. Applying these solu-

tions for hw + s and h 2 , + s and equation (3.54), we see that

(3.53) gives a complete solution for equation (3.18).

Summarizing, we see that we reduced the problem of

finding the total neutron density p(x) in equation (5.8) to

the problem of solving a singular integral equation (3.15)
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for a function J(x,z), where z is an arbitrary complex valued

parameter. Solving this singular integral equation was

dependent upon solving a nonhomogeneous Hilbert problem. The

solution to this Hilbert problem turned out to be very similar

to that found in the proof of the half-range completeness

theorem in the development of Case's method. The resulting

solution to the singular integral equation was found in terms

of Fredholm integral equations whose Neumann series solutions

converge rapidly for large values of t.

Having found a solution J(x,z) for the singular integral

equation, cur desired solution p(x) to the integral equation

(3.8) immediately follows by setting z=y -

58





IV. SOLUTION BY THE WEINER-HOPF TECHNIQUE

A. FORMULATIONOF THE PROBLEM

To solve neutron transport problems by the Weiner-Hopf

technique we initially look at a modified form of the inte-

gral equation (3.8),

where p(x) and S(x) are the familiar total neutron density

and uncollided source functions. The function -g(x) will

represent the total neutron density due to sources .and dif-

fused neutrons on the negative side of some point x=0 if we

'restrict p(x), S (x) , and g(x) as

I 3<k^ = o
, x>o J

^' ZJ

Equation (4.1) now reduces to the pair of equations

X>C>0 = S(X) -V ) E^U-x'O/OCxScJx'
;

X>o (4.3)

oc

Or: cjOO * [£ |
OX-X'l)

/
O(x ,

) dx\ *<0
. (4>4)

Therefore, equation (4.3) is exactly the original equation

(3.8), and (4.4) extends (4.3) to the domain (-°°,°°). In the

slab problem equation (4.3) gives the total neutron density

to the right of the x=0 face of the slab. The value of

-g(x) will be the total density to the left side of the x=0

face of the slab.

Assuming, a priori, that p(x), S(x), and k(x) are in Li

,

we now list the following Fourier transforms
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Pw = mL/ ,( * ie ^'-mv {K)e h (4 - 5)

K(5) = Vf^r ) k(x> e dx (4.7)

as the Fourier transforms of the total neutron density, of

the uncollided source, and of the kernel function k(x) which

is defined by

k(x-x') =*f
L cE.dx-x'o .

(4 - 8)

Since S and k are known functions, the assumption on p is

the only one which we must verify. This we shall do later,

defined by

CO

tu) = ^ff ) k(X-x')/»(x'j d/ (
4 - 9 )

the convolution theorem gives the familiar result,

T<$) = Ku) Pon (4 - 10)

where T ( ^) is the Fourier transform of t(x),

T(*j) =vfw f -t^ie'
5

dx .ZTK
(4.11)

With the same assumptions as above, we now take the

Fourier transform of (4.1) and obtain

where
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.CD •

? +
(H

>>
=

". tfh 1
Su) e

-

X
dx (4,13)

and

G,(S) = y# )

co
3 (M e d * •

(4 ' 14)

By investigating the transform functions P(?), $(?), and

G(?) we obtain the following result.

Theorem 4.1:

P(?) and $ (?) are_ analytic in the upper half complex

plane, Im(?)>a, and G (?) is analytic in the lower

half-plane, Im(?)<3. Equation (4.12) will in general

hold in the strip a<Im(?)<$.

r i OliL yn . j. c j ivc nave

[i - Y\^)~] P(^) = $+ 0?) + G_(S)
,

«*Im(€,)<P,(4.15)

where 1-K(?) is found to be given by

l-Ku) = 1 - fr Cretan 5 ,
(4.i6)

using standard tables to compute K(?) from (4.7). Unfor-

tunately, (4.15) is one equation for two unknown functions

P and G. In the Weiner-Hopf technique if we can find func-

tions K (?) and K_(?), analytic in the upper half-plane,

Im(?)>a, and lower half-plane, Im(?)<$, respectively, such

that

j ~ K(?;) ~
K,«*> '

(4 - 17)

we can write (4.15) as
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K+w Poo = K_on #+cs) + K (s,) G_<s> (4.i8)

If in addition we can find two functions R (?) and Q (£) ,

analytic in the upper half-plane, Im(£)>a, and lower half-

plane, Im(£;)<3, respectively, such that

K_C£.) ^ + (F,) = R+ U) + QjS)
#

(4.19)

we would be able to write (4.18) as

K+ U) P(t,) -F^uu =K_c«;>G«i) + Q_<5). (4. 20)

Since the functions

E+ (F,) - K+ CF.) P(.FJ -R 00 (4.21)

and

E_(51 = K„(F,) G_<5> + Q_<?)
( 4 .22)

provide the analytic continuation of each other to the whole

complex plane and are equal on the strip a<Im(£)<6, then

there is an entire . function E(£) equal to both (4.21) and

(4.22). If we can determine the form of E(£) we would be

able to solve (4.21) for P(£) and (4.22) for G_(£), and the

inversions of these two transforms would result in expres-

sions for cur desired functions p(x) and g(x). We will need

the following result from complex function theory [3]

.

Theorem 4.2:

A function that is analytic in a domain D is uniquely

determined over D by its values along an arc interior to

D.
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Being an entire function, E(£) is then uniquely deter-

mined by its behavior on some large circle. We shall de-

termine this behavior.

B. DETERMINATION OF K+ , K_ , R
+ , Q_

In order to apply the ideas of A we must first deter-

mine the functions K+ (£), K_(£), R+ (£)> an ^ Q_(£)« Let us

first attack the problem of finding K (£) and K_(£)> analy-

tic in the upper half-plane, Im(£)>a, and lower half-plane,

Im(£)<$, respectively, such that

K_cs,)
= I

- K(£.) = I - J tan ^ ," (4.23)

Since the branch lines for c/£ tan £ are [i,i°°) and

[-i,-i«), wc see that 1-K(£) is not analytic in either half-

plane. In order to solve our problem we will have to take

the natural logarithm of (4.23). We will then obtain

In K+CS) -lnK.W= ln(i-K(?0=ln(t-|tang), C4.24)

This introduces another pair of singularities, namely the

zeros of l-K(C) , since at these points the function ln(l-K(£))

fails to be analytic. Therefore, we look for a function

K*(£) which does not have these zeros, is basically the same

as K(£) at or °° and is otherwise analytic. Consider

^ - [ jfel < I * K<*0 C4.2S)

where ±iz are the (simple) zeros of 1-K(£) . The numerator

of the right hand side of (4.25) has zeros at the branch
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points of l-K(C) and thus does not add anything. I f we

take the natural logarithm of both sides of (4.25) we obtain

In K%) ~ In Kj?) = k[(f^)0-ft3h*|
}

(4.2 6)

which has been constructed so that the logarithm of both

sides is analytic in the strip -l<Im(^)<l. Therefore, if we

take a real number y such that 0<y<l and apply the Cauchy

integral formula to (4.26), we find that

In K*«0 - In K?«) = drT [ H^X'-ltan'sJs^
-°°"* Y (4.27)

oo + i¥ .

The first integral on the right hand side of (4.27) is ana-

lytic for Im(£)>~Y» and the second is analytic for Im(£)<Y.

If we now set a in the above discussion equal to -y

and 3 equal to y, separate the functions in (4.27) and take

their exponential values, and finally relate these results

to K+ (£) and K_(0 by (4.23) and (4.25), we obtain the desired

forms
,<D-|'Y

Ir

cc-iY

and

K+ (E,)= (f+Z
l

) expj^r f K^Mtjn-'sJ^] (4 . 28)

ds)
K.«) = O^i-O expjflll ^[('5v?')0-ftan

,

sj]^(o<y<i
j

(4.29;

the first of which is analytic in the upper half-plane,

Im(£)>-Y, and the second of which is analytic in the lower

half-plane, Im(£)<y.
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We are now ready to determine the functions R+ (£) and

Q (O such xhat equation (4.19) holds. Since K_(0 2 + (£)

is analytic in the strip [-im,i], where -im is the singu-

larity in $ +
(note m>l) we can apply the Cauchy integral

formula again and get

I ( K-CS) £<*) i

^r ,,Y ^^>as (4 - 30)

From this equation we see that R+ U) is given by

R (e)= rir
(*' X

\<**+« }
Js

• (4.31)

and is analytic in the upper half-plane, Im(5)>-Y, and that

Q_ (£) is given by
CUT" ' a\

a -L- f K-l«Lfti!l Jc

and is analytic in the lower half -plane, Im(£)<Y.

C. EVALUATION OF THE ENTIRE FUNCTION E

Our problem now is to determine the form of E(£) ,
given

by (4.20), in the upper half -plane, Im(5)>-Yi and in the

lower half-plane, Im(0<Y- BY equations (4.21), (4.28) and

(4.31) we observe that E(0 for the upper half-plane is

given by

-oo-ii
t

^4 . jjJ

-OD-I-IV
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We observe that as £>°° in the upper half-plane the exponential

term in (4.32) goes to constant 1, and R (5) goes to zero

like l/£. For the function P(Q defined by equation (4.5)

we find that if p(x) has a Taylor series expansion near zero,

/OCX} = a + bX + • o o
j

(4.34)

and calculate the Fourier transform of p from (4.34), P(£)

will act like

POO =
-f-

+ -{?r = \(& + \) (4.35)

as £>°°. Therefore, we conclude that in the upper- half -plane

,

Im(£)>-Y, E(£) will act like

CL Vfc> ) - rt F t- b I 4 - ^ 5 j

as £><».

From the conclusions of the above discussion we may

conclude that the entire function E(£) will act like

E (^ = b+2f,+ ce |^(F,) (4.37)

as |£|-*«>, where c and n are constants, and P, (£) is a poly-

nomial in £.

We now investigate the action of E(£) in the lower

half-plane, Im(^)<y, from equation (4.22). We notice that

like R (£) in the upper half-plane, Q_(£) will act like 1/5

as £>°° in the lower half -plane. Also, the exponential term

in K_(£) will act like the constant 1 and £-*°° in the lower

half -plane. Therefore, as ?^-°° in the lower half -plane we have
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E (*1 = K_0OG«5) M^+0 Gj%)
. (4.38)

Comparing (4.38) with (4.37) for Re£<0 and observing that due

to the monotonic properties of the Ex kernel the term

K (O G (O in the lower half-plane does not act like an ex-

ponential term, we may conclude that cEO in (4.37).

Therefore, we have concluded that E(0 in the entire

complex plane acts like

EL oo = b+ 35 . (4.39)

From (4.20) and (4.39) we now obtain the equations

p _ b-i-35 -v- R+(5 )
( 4.40)

and

r <c^ - k + ae, - a„(5)
b.<5> -

K (0
(4.41)

In summary, we have taken our original equation (4.1)

with the defining condition (4.2) and have reduced it to the

pair of equations (4.5) and (4.4). From these equations we

have applied Fourier transforms, the general Weiner-Hopf

technique, and the principle of analytic continuation to ob-

tain the entire function E(S) in equation (4.33). Evaluating

this function we have obtained explicit expressions for P(0

and G_U), given by (4.40) and (4.41). At this point we will

need to know enough information to determine P(£) and G_U)

at two specific values of K without using (4.40) and (4.41).
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This will enable us to solve for the constants a and b.

Having done this we can obtain expressions for our density-

functions p(x) and g(x) by inversion of the transforms

P(0 and G_U) .

This transform inversion of P(?) and G_(£) often poses

considerable difficulties. For example, in attempting to

invert P(£) to obtain p(x) we find that the integrals K .(£)

and R+ (£) are themselves not easy to evaluate. The total

density function p given by

/° U) "4irL k ?( *> )h (4.42)
CO

is itself another integral which must be evaluated. The only

feasible way to proceed to evaluate (4.42) is to first eval-

uate K (£) explicitly since it is in the denominator in equa-

tion (4.40). We then would try to interchange the order of

integration in (4.42) to hopefully reduce p(x) to a singular

integral. The work of Case and Mullikin tend to imply that

this can be done, but the details are at the best not obvious

A specific case where some of the integrals are evaluated is

presented in Appendix D.

Since the Weiner-Hopf method was the first devised, at-

tempts were made to actually solve problems this way [12].

It is the most elegant method and, given a certain under-

standing of complex function theory, is the easiest to get

most of the way through -- up to the evaluation of the entire

function E. The difficulties encountered from that point on

make it the least popular method, now that other approaches

are available.
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V. CONCLUSIONS

Under the assumptions of one speed, steady state, iso-

tropic scattering, and homogeneous media with plane sym-

metry, this thesis developes the complete solution of the

one-dimensional neutron transport equation by three separate

techniques. At first glance these methods appear to be en-

tirely different, but are instead closely related.

The method of K. M. Case attacks the integro-dif feren-

tial equation directly. He considers an analog to the clas-

sical differential equation approach and uses a semi-classical

eigenfunction expansion with both a continuous spectrum and

a finite discrete spectrum. The former requires use of

"generalized functions."

The method of T. W. Mullikin attacks the integral equa-

tion form of the neutron transport equation. He temporarily

sacrifices information about the angular density, which he

is able to regain after obtaining a solution for the total

neutron density. In developing his solution he realizes that

he cannot obtain a satisfactory solution by a straight

Neumann series approach due to poor convergence properties

of the series for this case. Instead, he does something

which is not an obvious course of action. He converts his

elementary integral equation to a singular integral equation

and obtains a final result which does have good convergence

properties and lends itself well to machine computation.

The Weiner-Hopf technique also attempts to solve the

integral fo^m of the transport equation. It separate?





solution into two parts, one corresponding to a solution

within the medium and another corresponding to a solution

outside it. Both parts of the solution are necessary to

imbed the problem within a fully infinite medium in order to

apply Fourier transforms. This technique depends heavily

on complex variable theory from beginning to end, whereas

in the others the complex variable theory enters into the

solution only at the end when a Hilbert problem is solved.

The mathematics involved in obtaining these three solu-

tions are different but interrelated. All three methods

begin with entirely different approaches, but all' eventually

reduce to solving a Hilbert problem in the complex plane.

Similar and sometimes identical functions appear within the

separate developments. This is especially noticeable in the

Case and Mullikin developments. The A and X functions are

examples. At the end these two methods also have the same

homogeneous and inhomogeneous Hilbert problems and essen-

tually the same steps, though not in the same order. In

the Weiner-Hopf method the similarities between it and the

other two are not so noticeable. Here the A and X functions

are concealed within other functions like R+ (£), Q (£) and

Appendix C gives an example of how Mullikin's and Case's

method can be shown to yield identical solutions. The solu-

tion due to the Weiner-Hopf technique is the same as the

others, but the verification of this fact is beyond the scope

of this thesis.
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The principal advantage of Case's method lies in its

versatility. This is due to the fact that when solving any

problem this way you are essentially setting up a basis for

a Hilbert Space. Therefore, any problem with a proper set

of boundary conditions can be theoretically solved this way.

Also, since it is a method derived from classical differen-

tial equation theory, there are many classical problems from

which information may be drawn. Solutions by this method

are most applicable to infinite or semi-infinite media, such

as full-space or half-space problems. Solutions to finite

slab problems become more difficult to obtain due to the

existence of multiple sets of boundary conditions.

The primary disadvantage of this method comes from the

fact that it is often very tedious and requires a proper

guess of the form of the eigenfunctions in order to obtain

a complete set. Once these eigenfunctions are known, how-

ever, the method is not difficult to develop. Another dis-

advantage to this method arises from the fact that you are

automatically dealing with an infinite series, whose con-

vergence properties are often poor from a numerical point

of view. For these two reasons this method is usually con-

sidered as an academic solution to the problem and is not

usually desirable for obtaining actual numerical answers.

Due to its desirable numerical convergence properties

Mullikin's method is the best for obtaining numerical solu-

tions and is especially desirable for finite slab problems.

It can in fact be used for solving a variety of problems
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whose solutions can be obtained in terms of solutions to

slab problems. As it must, this method will generate the

eigenfunctions , perhaps disguised, which have to be guessed

when using Case's method (Ref. Appendix C) . Thus, this

method has the convenient property of providing information

about the spectrum of the operator more directly than can

be readily obtained by investigating Case's method.

The principal disadvantage of this method is that it

is somewhat limited in scope. It is useful mainly for sol-

ving problems in finite media. Also, a frequent requirement

for a solution by this method is the existence of a somewhat

special type of scattering kernel. Finally, the actual alge-

braic manipulations about halfway through the development be-

come somewhat involved.

The primary value of the Weiner-Hopf method lies in its

historical significance, since it is a somewhat difficult

method to use in practice. It was the first method developed

and mathematically the most elegant. It paved the way for

the development of later methods. This method convinced

mathematicians and physicists of the necessity of transform-

ing the problem into the complex plane. It also pointed out

the importance of the Hilbert problem in obtaining actual

solutions. This historical value of this method is being

shown again as current investigations of possible methods

of solving quarter-space problems are being centered first
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around this technique. 1 It therefore provides valuable in-

sight into possible approaches which might be physically

more practical.

The method itself is straightforward, until it is time

to evaluate some of the significant transform functions and

to invert the total density transform function. At this

point the method becomes very involved and hence is a dif-

ficult method from which to obtain solutions. For this

reason it is unpopular as a practical tool for solving

specific problems.

1

Lam, S. K. and Leonard, A., Milne's Problem for
Two-Dimensional Transport in a Quarter Space, Nuclear
Engineering Division, Stanford University, Stanford

,

California, 1970.
Leonard, A., Two -Dimensiona l Quarter Space Problems

in One-Speed Transport Theory , Nu c 1 ear Engineering Division
,

Stanford University, Stanford, California, 1970.
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APPENDIX A: SOLUTION FOR THE INFINITE MEDIUM GREEN'S FUNC-
TION BY THE METHODOF CASE

In this problem we assume we have a plane source located

at x=0 and emitting in direction y • We are looking for the

Green's function solution to the transport equation,
«

^
"0X

G<X;M) + G<X' M)= |-f B(X '^V+5 ,

(x,V«)
/ (A.l)

where S(x,u) is given by

S(X,H) - ^l,^"^ , (A. 2)

This inhomogeneous equation reduces to an equivalent form

consisting of the homogeneous equation,

plus the boundary condition,

Gio\h) - GCo- u) = -A- to±) (a. 4)

Here G(0 ,y) and G(0 ,u).are the values of the Green's func-

tion as we approach the plane source from the right and left

sides respectively.

To solve this problem we look for solutions of the form

n/ /
XV

To <*,h) = %We .
(A.s)

Therefore, applying the half-range completeness theorem,

[Theorem 2.7], we wish to write the Green's function solution

as
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0+ 'C+

and

GU.M) = -Zc-iiJW) -)^t^,V) 44, X<0.(A.7)
7 -I

Since the right hand sides of (A. 6) and (A. 7) are just linear
- x / vcombinations of elementary solutions 6 e ' , they satisfy

the transport equation (A.l).

To ensure that the boundary condition is satisfied we

let x approach zero in (A. 6) and (A. 7) and obtain

-v

Gio+.v) = <i £ Jv) + I Au>i ^(p) <!* (a. 8)
» v T T C

and

6(0" V0 = -2, 2> (V) -
) Acv) ^ V (H) dv)

, (a. 9)

We now combine (A. 4), (A. 8), and (A. 9) to get

If we now solve (A. 10) for a 0± , <j>o±(v0> A(v) and
(J) (y) by

the formulas obtained in II we have as our infinite medium

Green's function solution

.

f
^^> ^ itf (K) e. dv (A. li)

ot N(t^)
where the principle of translational invariance allows us to

shift the source to Xo , and the upper signs apply for x>Xo

,

the lower for x<x .
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APPENDIX B: SOLUTION OF THE ALBEDO PROBLEMBY CASE'S METHOD

The physical problem usually referred to as the "albedo

problem" is that of obtaining the angular neutron density

everywhere in an internally source-free half-space, CKx<°°,

if a parallel beam of neutrons is incident on the surface

at x=0.

Let ip (x,y) be the solution for the albedo problem.
a

The mathematical interpretation of a parallel beam of neu-

trons incident on the surface at x=0 takes the form of the

boundary condition

^(o.^ -Sl^-ho) j JHc^ >o . (B.l)

Another boundary condition common to almost all infinite

half-space problems comes from the fact that at x=°° it is

desired that the neutron angular density be negligible, or

in other words

lirtt T3 (X./O =0 . (B.2)
X->cc <*

As before we look for solutions of the form

%(x,w = A>w e
,

(B - 3)

and hence applying half-range completeness the most general

solution to the homogeneous transport equation becomes

%(k v.)
= a„. t jx,p) +(A(W %<x,p\ do. (

B - 4 )

Setting x equal to zero and applying (B.l) and (B.3) yields
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C+ Of o

Multiplying (B.5) by W(y) $ (y) and integrating over y>0, we

obtain the equation

i
i

c o

By the principle of half-range orthogonality [equation (2.87)],

the first integral on the right hand side of (B.6) vanishes.

Evaluation of the normalization integral within the second

right hand term gives

^Wfc^KV) &t (y) <lh = Ww~7T S<\>V), (b.7)
o

Therefore, equation (B.6) can be reduced to

W<H.l &(He) = W(VJ ^Mv), (B.8)

from which we obtain an expression for A(v)

A(V) = \> WCUc) ^y; (Mc) , (B.9)
N t») Wcv*

Multiplying (B.5) by W(y) •

(f> + (y) an d integrating over

y>0, we get

I W(M) fi (h) S(V-Vc) ^V -
I 2

fl+ <^.(K> W(VO ^,(W J^
«

f
l (B.10)

+
) ) Aw1

) <j>AU)\tJw\6 (W dv'd-u, c<uVii
.

Due to half-range orthogonality the second term on the right

hand side of (B.10) vanishes. The first term on the right

hand side is the normalization integral
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Therefore, equation (B.10) reduces to

W(fV> 4+ CfO = -(xfXcVci 3 0+ (

(B.12)

from which we obtain an expression for a +

• 2L = -A* Wend &+<m fB 13 ,

Our complete solution to the albedo problem now becomes

/ j 1 -* (B - 14)
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APPENDIX C: SOLUTION OF THE ALBEDO PROBLEMBY MULLIKIN'S
METHOD

For the albedo problem, as described in Appendix B, the

only source of neutrons is due to a unidirectional beam of

neutrons incident at the x=0 surface of a half -space. Since

this description of the source of neutrons corresponds ex-

actly with that used in III to develop Mullikin's method,

we can take as our uncollided source function S(x) for the

albedo problem the same as that used in III, namely

S U) = e , (c.i)

We conclude that the solution for the albedo problem will be

given by the results of III if we let the slab thickness t

become infinitely large. Therefore, if we truncate the

Neumann series solutions for the functions hw + ^(x,z) and

h2/ + Jz) in equations (3.51) and (3.52), we can apply these

results to determine an approximate solution for J(x,z).

The Neumann series solutions for h lf+ .(x,z) and h 2f+ .(z)

are given by the operator equations

h,
(

^(x,z) = (I+(±>Zf'# (+)
<x ; z)

= (X-(i)Z +(±>Z*-(tiZ+...")#
(+>

(x,z)

h r+1 <zi = (I +(±)£)"'e"
/z

z X(-'z) (c- 3 )

. = e
r/z

z Xc-zi -®L(i r/z
z X«d + • .

.

To simplify calculations let us take the following approxima-

tions for hw+ -,(x,z) and h 2( -.
( > (z) by truncating the Neumann

series expressions (C.2) and (C.3):
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and

-Vz
h 2(t) a) = e

z
z X i-z)

,
(C.5)

where H(z,t) is the kernel of the integral operator L,

We now ask the question, for what values of c will we

have subcritical results. Referring to equation (3.53) we

see that as x becomes infinitely large the criticality con-

dition for the half-space will be that the denominator of

C, + v (x) approach zero. If we use the approximation of

n 2/- + ^(zo) given by (C.5), we see that the denominator of

C( + >,(x) will vanish when the following equation is satis-

fied,

However, this will in fact happen only when Zo^ 00
, where Zo

is real, or in other words when c-KL , if c is less than 1

(ref . Chapter II)

.

When c is taken as greater than one, we know from

Chapter II that zo will have the form Zo=iwo. If we apply

the defining relation

_ ! = - e (c.8)

the criticality condition then takes the form
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«/» %u*
- e i

r -* cc
,

(C9)

or

2 € i- T = 7T <^
,

T-*co
, (CIO)

Considering the last term in (C.7) and the above equation

(C.9), we obtain the equation

-J7T+ «

Z
^Â ,

(C.ll)

which we can solve for e to determine the following result,

I i on 6 < CO
C-H :

(C.12)

Therefore, the condition for criticality, (C.10), when

c>l is that wo^°° as t-^, which implies that c+1 . There-

fore, we conclude that, unlike the finite slab case when

c>l, it is impossible to have a subcritical result in the

case of the half-space when c>l. For this reason we will

proceed with our solution to the albedo problem considering

c<l and hence Zo a real number (ref. Chapter II).

From equation (3.53) we see that f, + ^(x,z) takes the

-2

form

fecx,z> S i» (-WfHa^^Jt-^W^'^

-J J ;

and from (3.54) we determine C, .(x) as
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i

Q^u) - - Ce^*z>M-«*.X(* 'A

(C14)

/" 2>.+ ,U,t)

where zo is a real zero of A(z) and c<l. If we now intro-

duce the explicit form of H(z,t) given by (C.6) into (C.7)

and (C.8) and take the limit of f. + v(x,z) as x approaches

positive infinity, we obtain

$&«•* - tJ*™ - ^ U ZHS^ A
+ e

x/l ,\ -x*/t
(C.15)

dt +
-^-

To determine our solution for .T (x ,11 o) = p (x) from (C.15) we

must let z approach Uo on the cut from below, yielding f
,

and from above, yielding f , and apply the relation

flX\ = T(X,^ r i[VW + {Jw]. (C - 16)

Our solution then takes the form

/>^- z e La*<m A^J 1 7^7^ 2)XA^V^)
(C.17)

where we have set z =v to conform to the notation used in

Chapter II

.

Let us now compare this solution (C.17) with that ob-

tained by Case's method, (B.14). If we substitute the
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appropriate definitions for the functions W, N, and § 0+ into

(B.14), integrate over p, and apply our normalization (2.5),

we obtain the following result,

/ ^XnA\w (c - 18)

(
h- Xtm A%(U-Po) ^cyvi e*do

c v yr(Hc) a^'v» x\\>\ Wt-vic

We observe that the third term in Mullikin's solution (C.17)

corresponds exactly with the first term in Case's solution

(C.18). We recall that <£ (u ) in (C.18) has a principal

value term and a delta function term. If we combine the

second and fourth term of (C.17) by applying the identity

!— - —[— = JUp -Vk (C.19)

and interpreting the integration as principal value inte-

gration, we obtain the principal value integral part of the

second term in (C.18). We can integrate the delta function

part directly to obtain the first term of (C.17). We con-

clude that the two solutions for the albedo problem are in

fact different expressions for the same functions.
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APPENDIX D: SOLUTION OF THE ALBEDO PROBLEMBY THE WEINER-
HOPF TECHNIQUE

As shown in Appendices B and C, for the albedo problem

the uncollided source function S(x) in equation (4.3) takes

the form

Sex) = e:
x/p<

j
(D.l)

where u = cos9 and 6 is the angle that the beam makes with

the surface normal at x=0. Using (D.l), the Fourier trans-

form for the uncollided source exists and takes the form

t + v&>' l- i fc, Vx, )

using residue theory to compute the integral. We notice

from (D.2) that the singularity of 3 + (£) is at £=-i/u .

Our problem now is to evaluate K (£) , K (£) and R (£) >

given by (4.28), (4.29) and (4.31), respectively. Having

done this and having previously determined values for the

constants a and b, we can find an exact expression for P(£)

by (4.40). We then can determine p(x) using (4.42), the

standard inverse integral.

To evaluate K (£) let us first investigate the function

lnK + *(0 given by (4.27) ,

' Y

From the form of the function (l-K(s)) given by (4.16) in

terms of logarithms, we observe that the integrand of (D.3)

has branch lines [i,i°°) and [-i,-i°°), due to the branches
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of K(s) . The integrand being itself a logarithm has branches

from its zeros, which are again [i,i°°) and [-i,-i°°), since

its only zeros are at ±i. Let us now apply Cauchy's inte-

gral formula to (D.3), where we have closed up the integral

of (D.3) for the upper half -plane in the usual manner. Hence

our integration contour is composed of the original line

(-°°-iY> °°-iy) , two half-arcs at °° , an integral down the

positive side of the upper branch line, and an integral up

the negative side of the upper branch line. Applying the

Cauchy integral formula we obtain the result

lhKt«0= in[(^)0-M^elnI p

"-

tlFiI M
(D.4)

where 1^ and I M are the integrals up the positive and nega

tive sides of the branch line, respectively, given by
#

iOD
d

I--lln[( s%V>-|tan- , s)]^ .
(P.sj

Let us now attempt to evaluate I
p

and 1^. Into I
p

let

us substitute the identity

l-ftarf's = v-kl In(-^f-) (D.6)

and the change of variable

SH i+lt)
.

(D.7)

Our resulting equation takes the form

^
?

~ {^[i^Tz^^
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where we have used

To determine an expression for 1^ we need only recall the

fact that the value of the logarithm on the negative side

of the branch line equals the value on the positive side

plus 2-rri and use (D.8),

1
N

=
J

ln [(i^^i-^JVzlH ^V7f/ ~z{^) T,
4 I^nTfe, (D.io)

If we now perform the subtraction indicated by (D.4)

we obtain

n- . -r =(
<

r.r i-^)in(^)-*-^'7n" ) J K
I - J ) hm —

—

p r- (~ t;. CD' 11 )

or

where 4>i(n) and ^2 Cm) are the arguments of the numerator and

denominator, respectively, in the logarithm term of the inte-

grand. Taking the exponential of both sides of CD. 4) we now

have a simplified expression for K
+ (£)

,

K*K) - f££(\ - K<«) ?* P {± $,«0 - ^ Jg$
. ( d. is)

From C 4 . 2 8) and (4.17) we can obtain simplified expressions

for K+ CO and K_(Q
,
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Jn.

K*«j) = (t;V0O-%tan <*?\k ((W^T^ft} < D - 14)

V
K.U) = (^0 e*?{k (K"v> -^) ,7^} •

(D " 15)

To evaluate R+ (£) we refer to its defining equation

(4.31). We recall that the singularity of $ + (s) is at

s=-i/y and that K_ (s) is analytic in the lower half-plane.

Therefore, if we close this integral in the lower half-

plane and evaluate the residue at the pole -i/yo, we obtain

a simplified form for R+ ,

rs K . (- XO

The function P(£) now becomes

PfcA = b^a^ + C ^^X^'y^ (D.17)

Let us now evaluate p(x) from (4.42). If- we take x

negative and close the contour for (4.42) in the upper half-

plane, we see that the integrand is analytic in this half-

plane and hence p(x) will equal zero, the result we expect.

If x is positive we close the integral in the lower half-

plane where R+ (£) has a simple pole at £=-i/y 05 K+ (£) has a

zero at £ = -iz, and K+ (£) has the branch line [-i,-ioo). If

we investigate the similarities among the zeros of the func-

tions (l-K(S)) and A(v) from Chapter II, we find that in the

notation of Case
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Z r *" ^VL (D.18)

Applying the Cauchy integral formula again we see that the

contribution to p at the pole £=-i/uo is

The contribution to p at the zero, -iz, of K^ is

(D.19)

D-WlflexpgjpAotf-^i^}
e

In a similar manner to (D.10) above we can reduce the two

branch integrals to integrals from 1 to °° with respect to

e if we set £=-ie. Denoting these integrals on the positive

and negative sides of the branch line by Ii and I 2 , re-

spectively, we obtain the resulting expression for p,

K^rrr^ ra- ~^V^ (D.20)

+ X - X
Referring to the results of Appendices B and C we notice

that the format of (D.20) is quite similar to the results

from the other two methods since (D.20) contains an expo-
—"V / \ \ —"V* / 1 f

nential term in e ° , an exponential term in e '^, and

a pair of principal value integrals from to 1 (remembering

that 0<v<l corresponds to l<e<°°) . We expect that with further
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manipulation the form (D.20) can be shown to correspond to

the previous forms. To do this, however, involves techniques

beyond the scope of this paper and the talents of the author.
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