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ABSTRACT

A cohesive and detailed treatment of the theory and

engineering implications of trajectory sensitivity is pre-

sented. Fundamental results that provide insight into the

theoretical aspects of trajectory sensitivity analysis, in

both the frequency and time domains, are reviewed. Several

related methods for incorporating sensitivity considerations

in the design of systems are presented and used to solve a

meaningful fifth-order numerical example: a flexible space

vehicle in booster powered flight. Comparisons are made

between an optimal design and designs which include a sen-'

sitivity term in the performance measure and conclusions

orie d v> °ViTri ^bc^t the o'P'Pt^^qt of fcbes^ ^sc^ r, i rn,ot! in co 1^ -

trol system design.
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I. INTRODUCTION

During recent years, the search for solutions to op-

timal control system problems has been quite intensive.

In particular, optimal feedback control of linear dynamical

systems has been studied extensively. This attention to

feedback control is well placed. As Bode pointed out [1]

,

feedback control is particularly desirable in that it

1) tends to stablize systems, 2) reduces the effects on

the output due to extraneous noise or non-linear distor-

tion in the plant, and 3) tends to reduce the effects on

the system transfer characteristics caused by variation in'

plant parameters . The research in the area of optimal lin-

V^Ul i Lv-^.WUUl\. V^lll^x v>i. 1XUU X\_.OCi.-Lv>Ov* O-Ll <-C ^vllwXU^l J,ua.v fc^V^ -*.^ s^ X

knowledge about the theoretical aspects of the unconstrained

linear state regulator problem. The necessary and sufficient

conditions for the solution of this problem are well known

[2, 3j 4] • Despite apparently complete knowledge concerning

optimal linear state regulator control theory, its implemen-

tation in practical applications generally requires the use

of digital computers and may be limited in many instances

by cost considerations.

There are several other reasons why the optimal linear

state regulator solution may not be implemented. These

reasons are related to necessary conditions or assumptions

required for the theoretical solution of the problem (all

states available for feedback, control unconstrained and





time-varying) or engineering considerations concerned with

formulation of the system model and its controller. Among

the latter are considerations for the sensitivity of the

response of a dynamic system to variations in plant para-

meters .

Every control problem, modern or classical, begins

with the formulation of a system mcdel. Generally, this

model takes the form of one or more nonlinear time varying

differential equations. This nontrivial process of system

modelling, perhaps after much refinement, can ultimately

result in a system described by a set of first-order ordi-

nary differential state equations [5] of the form

x(t) = a[x(t),gi(t),u(t),t] (1.1)

where x_(t) is the state n-vector

q_(t) is the variable parameter r-vector

u(t) is the control input m-vector

t is the independent variable, usually time.

A physical system mathematically modelled by equations

of the form of (1.1) are the subject of extensive design

and analysis techniques. The results of these techniques

are generally assumed to be valid and applicable to the

physical system. The validity of this assumption requires

careful scrutiny.

No matter how careful and precise the engineer is in

establishing his model, there will always exist differences

between the behavior of the physical system and that pre-

dicted by equations like (1.1). The vector function, a( . )

,
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in (1.1) cannot, in general, be exactly determined. The

parameters q(t) are, for many meaningful systems, diffi-

cult to measure accurately and in any event will have tol-

erances associated with them. The solution of (1.1) will

generally yield only to the approximate techniques of the

digital or analog computer. Even if the modelling diffi-

culties mentioned above did not exist, the problem of

changes in system components due to aging, environmental

changes and repair part exchanges would introduce model-

ling inaccuracies. It is clear that even under the very

best of circumstances, differences will exist between the

system and its model.

In order to obtain the advantages of linear optimal

control th^or ,r ° nonl^^e 010 cucf om mow Ho sol^ ro d for its

optimal trajectory and then an approximate linear system

may be formulated relating small variations from the non-

linear optimal trajectory. The approximations involved

lead to model inaccuracies and again differences between

system behavior and modelled behavior will exist.

In many physical plants, all of the states are not

available for feedback. In this case, implementation of

the optimal linear state regulator problem may not be fea-

sible [3]- However, if the system is completely observ-

able, the states can be computed from the output [4].

Schemes for obtaining the system states from the system

output include the use of observers [6] and Kalman filters

[7]. However, these techniques use the system model in





their realizations and consequently introduce additional

variations into the system.

Assuming that the modelling process and the model's

solution is an accurate representation of the plant, trans-

lating the solution into controller signals or action is

subject to many of the variations discussed above. Hence,

implementation of the controller may introduce system in-

accuracies .

Ignoring all of these difficulties, the "perfectly"

modelled plant and "perfectly" implemented controller may

still be inadequate. This "perfect" system may be unable

to cope successfully with random or even deterministic

disturbance inputs to which the system may be subjected.

Over the years as classical feedback theory has been

developed, in recognition of the many uncertainties in-

herent in system design, a compatible theory for sensitiv-

ity analysis has also been developed [8] . This theory for

the most part is based on Bode's definition [1] of sensi-

tivity. Prom it developed a "Folk Theorem" [9] which

states in effect that the sensitivity of the transfer

characteristics of a system to parameter variations is re-

duced as the feedback gains are increased. This theorem

works in many cases, and is frequently the only tool ap-

plied to sensitivity reduction in the design of many clas-

sical controllers

.

Presently considerable research effort is being di-

rected at the problem of developing sensitivity analysis





and reduced sensitivity design techniques compatible with

modern control theory. In multiple-input multiple-output

systems cast as optimal control problems interest has been

concentrated in several system characteristics in addi-

tion to the system transfer function. These include the

sensitivities of state trajectories, performance measures,

system eigenvalues, and final states to variations of ini-

tial conditions and plant or controller parameters.

In this thesis, an historical review of sensitivity

theory compatible with modern control theory is presented.

Next a general theory for trajectory sensitivity analysis

is reviewed and applied to the optimal state regulator

problem. Then several current techniques proposed for

designing optimal linear regulators with reduced sensitiv-

ities are investigated. Finally some of these techniques

are applied to the solution of a flexible Saturn booster

problem and the resulting numerical solutions are compared





II. HISTORICAL REVIEW

A. CLASSICAL SENSITIVITY

The basic concepts that provide the foundation for

modern sensitivity theory appeared in the fundamental work

of Bode [1] which also marks the beginning of the modern

theory of feedback systems. Bode defined feedback in terms

of the return difference and at the same time established

several important relationships between feedback and sensi-

tivity. In the development of automatic control theory

that followed, analysis and design formulations should have

included sensitivity as an important adjunct. Such, how-

ever, was not the case. Until the beginning of the last

decade- little can b<^ found in the literature relatin°" con-

trol systems and sensitivity. In an important exception

[10] , Truxal briefly discussed return difference and sen-

sitivity within the context of signal flow graphs.

Horowitz [11] argued that the use of feedback loops

to reduce sensitivity of the system transfer function to

substantial plant parameter variations or random distur-

bances is as effective as the use of adaptive systems with-

out their added complexity. He concluded, by using the

classical sensitivity analysis techniques, that the inade-

quacies attributed to feedback systems by adaptive system

designers were unfounded. Indeed, given the same design

constraints, he demonstrated that whatever performance had

been claimed for adaptive systems could be matched with con-

siderably less complexity by feedback control systems. In

10





his book, Synthesis of Feedback Systems [12] , Horowitz

provided an excellent and complete treatment of classical

control system design with sensitivity considerations. He

applied the classical design techniques (root locus, Bode

plots, Nyquist criterion) to the design of systems with

reduced sensitivity to plant parameter variations and ran-

dom input disturbances.

It should be noted that almost all of these early

studies [1, 10, 11, 12] were confined to Laplace transform

and frequency domain analysis of sensitivity. These tech-

niques were applied mainly to determining the sensitivity

of the system transfer function to changes of a system pa-

rameter. Root locus techniques were applied also to deter-

mine the s'snsit/ivi'ty of ^ole— z?r^ locs.'fcions t° vsricitions

of a system parameter [12] . Horowitz pointed out [12]

that the desired system performance is generally a time

domain specification, and that any correlation that exists

between system frequency response and time response is ap-

proximate. If system time response is accurately required,

then a time domain synthesis technique must be used.

Miller and Murray [13] , in establishing a mathematical-

ly sound basis for error analysis for the solutions of ordi-

nary differential equations by machine methods, derived the

differential equation that describes the sensitivity coef-

ficients of the system. This same "sensitivity equation"

provided the time domain sensitivity analysis techniques

described by Tomovic [8]

.

11





Kokotovic [1*1] proposed his "sensitivity points"

method for linear systems by which the sensitivity of the

system scalar output to variations of each of the plant

parameters could be obtained. In fact, when implemented

on the analog computer all of these sensitivities could

be obtained simultaneously. This time domain method was

extended to provide an automatic analog computer parameter

minimization of the difference between a norm of the out-

put trajectory of an analog system and the output of a

specified standard model.

In a recent paper [15] , Wilkie and Perkins presented

a method of finding the sensitivities of all of the states

of a linear time-invariant system to each of the system

parameters simultaneously. The method r pr, uired modelling

the n-th order linear system in the companion canonic state

form, plus an additional n-th order sensitivity model and

a single-input n-th order system model for each input in

excess of 1. This led to the requirement of 2m- 1 n-th

order models independent of the number of parameters for

a system having m inputs. This was a considerable reduc-

tion in the number of models required over previous tech-

niques, where an n-th order sensitivity model was required

for each parameter considered. The Perkins-Wilkie method

assumed that the linear system could be transformed into

the companion canonic state form.

12





B. OPTIMAL CONTROL SENSITIVITY

It is interesting that the first published results

concerning the sensitivity of optimal control systems [16]

turned out to be a restatement of Lode's theorem relating

return difference and sensitivity. Kalman, in solving the

inverse problem of optimal control theory for linear state

regulator problems, established a necessary condition for

its solution. He showed that if a feedback control law is

optimal, then the magnitude of the return difference for

the feedback system must be greater than one. Additional

results are obtained that tend to bridge the gap, to some

extent, between classical and optimal control theory.

Kalman' s very complete discussion included important re-

sults concern^r * s^~ °b ^ lit w i_
,m'r\r>ovem^nt of ^e^siti^it^ and

frequency-domain criteria for this essentially time domain

problem.

In a development similar to that of [16], Perkins and

Cruz [17] developed a sensitivity matrix operator which

relates the open-loop and closed-loop system output varia-

tions. They established a sensitivity index which is a

measure of the weighted mean square output error. By ap-

plying Parseval's theorem to the sensitivity index, they

derived a frequency domain sufficiency condition that en-

sures sensitivity reduction. Additionally Perkins and Cruz

demonstrated that if a system is designed to satisfy the

sufficiency condition mentioned above, then the system is

optimal in the sense that the constant, linear control law

obtained minimizes an infinite-time quadratic performance

13





measure and at the same time transfers the states of a

linear time-invariant completely controllable system from

some initial state to the origin asymptotically.

Kreindler in [18] derived results similar to those of

[16] and [17]- He established sufficient conditions which

guarantee for multiple-input multiple-output linear regu-

lator systems that the integral of a certain quadratic form

of the closed-loop sensitivity is less than the correspond-

ing integral for the open-loop system. Additionally, for

single-input systems in the companion canonic form, the

sufficiency condition ensured that the integral of the

square of each closed-loop sensitivity trajectory will be

less than the corresponding open-loop integral. This was

a valuable result.

The analysis techniques discussed in the literature

cited above have not resulted in established design tech-

niques. Several authors [19, 20, 21, 22] defined a sensi-

tivity differential equation after Miller and Murray [13]

for each variable parameter, augmented the resulting dif-

ferential equations to the system state equations, defined

a performance measure with added quadratic terms measuring

sensitivity, and then solved the resulting system using

the Hamiltonian and Pontryagin's maximum principle to ob-

tain a reduced sensitivity design. The resulting feedback

control law was a linear combination of the system states

and the augmented state sensitivities.

Dompe and Dorf [21] demonstrated with a second-order

example, that Kahne ' s [19] design scheme does indeed result

1H





in a feedback control system with reduced sensitivity.

The control law did not result in the optimal solution of

the mathematical model defined because Kahne neglected the

effects of parameter variation on the feedback states.

Cassidy and Lee [22] included the terms excluded by

Kahne

.

D'Angelo, et.al., [20] proposed a reduced sensitivity

design technique with an infinite-time performance measure

resulting in constant feedback gains

.

Higginbotham [23] included an additional term in the

sensitivity differential equation that was neglected both

by Kahne [19] and Cassidy and Lee [22] . He presented a

comparison of [19] and [22] using a first-order example.

Bv use of the example- he demonstrated that the Cassidy

and Lee technique results in a lower "cost" than Kahne '

s

technique. No comparison was made of the resulting sensi-

tivity reduction, if any.

All of the above optimal sensitivity analysis and

design techniques were concerned with transfer function or

trajectory sensitivity. Considerable research has also

been directed at the so-called performance sensitivity

problem. The concern here is with variations in the per-

formance index resulting from parameter variations. In a

basic result, Pagurek [24] demonstrated that the performance

index sensitivity to plant parameter variations for open-

loop and closed-loop optimal linear state regulators are

equal. This is an astounding result that seemed to imply

the benefits of feedback with respect to plant parameter

15





variations were not available to optimal linear systems.

This result was extended to a large class of nonlinear op-

timal control problems by Witsenhausen [25].

Although the results of [24] and [25] hold for infin-

itesimal parameter variations, Sinha and Atluri [26] showed

that for finite but small variations the closed-loop per-

formance index sensitivity is less than the open-loop sen-

sitivity. Kreindler [18] made a similar argument in favor

of feedback systems

.

In a design procedure for minimizing performance mea-

sure sensitivity Rohrer and Sobral [27] introduced a "rela-

tive sensitivity" function. The procedure resulted in a

minimax solution that is applicable for large parameter

variations

.

Salmon [28] generalized the Rohrer and Sobral proce-

dure and proposed a new minimax algorithm for its solution.

Very recently Cassidy and Roy [29] described what ap-

pears to be a promising scheme for designing insensitive

linear output regulator systems . By modifying the usual

quadratic performance measure they were able to constrain

the feedback coefficients multiplying the unmeasured states

to zero. Thus output feedback was obtained. They defined

the state sensitivity differential equations, adjoined them

to the state equations to form an augmented state vector.

A sensitivity term was added to the performance measure and

their Specific Optimal Control (SOC) approach resulted in a

constant feedback controller that did not require knowledge

of the sensitivity variables nor the unmeasured states.

16





Much work in the area of sensitivity design remains to

be done. All of the proposed design techniques have severe

limitations that in general do not admit to practical ap-

plication. These limitations and some proposals for im-

proved techniques will be discussed subsequently.

17





Ill . SENSITIVITY ANALYSIS

The objective of sensitivity s.nalysis is to quantita-

tively predict the effect of disturbances on the dynamic

behavior of a system. This implies the development of a

model of system sensitivity perhaps not unlike the system

model. In fact, this is the case. When the system model

is described by transform techniques, for example, generally

the sensitivity analysis is developed using the same tech-

niques [10, 11, 12]. Dynamical systems modelled in the time

domain are frequently analyzed for sensitivity by transform

operators [16, 17, 18] or in the time domain [13 3 1^, 15 5

19, 20, 22, 23, 29]. The remainder of this thesis will be

devoted to dynamical systems that can be described by si-

multaneous ordinary differential state equations of the form

of (1.1) .

A. NOTATION

The behavior of the plant is completely specified by

the differential system

x(t) = a[x(t) ,u(t),q(t),t]
(3.D

x(t ) = c

where x(t) is the real n-dimensional state vector, u(t) is

the real n-dimensional control vector, q(t) is the real r-

dimensional parameter vector, and a( . ) is an n-dimensional

vector function. In general, capital Roman letters will

denote matrices, lower-case Roman letters vectors, and

18





lower case Greek letters scalars. Exceptions may occur in

order to conform with general practice. These exceptions

will be obvious

.

B. TRANSFORM ANALYSIS

1 . Single—Input Systems

The completely controllable [3* 30] constant lin-

ear dynamical system to be considered is described by

x(t)=Ax(t)+Bu(t) (3-2)

x(t ) = c

which is optimized by the control law

u(t) = Fx(t) (3.3)

with respect to the performance measure

J = h f (x'Qx + u'Ru)dt (3-4)

where Q is a non-negative definite constant symmetric ma-

trix and R is a positive definite constant symmetric ma-

trix. The prime denotes the transpose.

The solution to this problem in the form of a con-

stant linear feedback control law (3. 3) has been demonstrated

by Kalman [3]. The matrix F is given by

F = -R
_1

B'K (3-5)

where K is the positive definite symmetric solution of the

Riccati matrix equation

KBR
_1

B'K -KA-A'K-Q=0. (3-6)

19





Kalman [16] considered such a system restricted

to a single input y(t), described by

x(t) = Ax(t) + by(t)

x(0) = c .

(3.7)

Figure 1 is a block diagram of the structure of this system.

This system can be represented in Laplace transform nota-

tion ignoring initial conditions, by

sX(s) = AX(s) + bU(s)

.

(3.8)

•

x

J

X

f
+

A

f

'

<

<

Figure 1. Linear single-input optimal control system.

From (3.8) one can obtain

X(s) = $(s.)bU(s), (3.9)

where $(s) = (sI-A)~ is the Laplace transform of the funda-

mental matrix. Multiplying both sides of (3-9) by f',

yields the scalar equation

f 'X(s) = f $(s)bU(s)

.

20





With N(s) = f 'X(s) , then

N(s)/U(s) = f'$(s)b (3-10)

is the open-loop transfer function.

The homogeneous, closed-loop form equation for

the system of Figure 1 is given by

x = (A+bf »)x. (3.H)

The fundamental matrix for system (3-11) is

$
k
(s) = (sI-A-bf '

)

_1
.

In the following development the open-loop and closed-loop

characteristic polynomials will be required. They are

y(s) = det(sI-A) and \(s) = det (sI-A-bf ' ) respectively.

Continuing the algebra as follows

\(s) = det(sI-A-bf ')

= det[ sI-A-(sI-A)(sI-A)
_1

bf ']

= det[(sI-A) (I-(sI-A)
_1

bf ' )]

= det [(sI-A)(I-$(s)bf • )]

= det (sI-A)det(I-$(s)bf ')

= Y(s)det(I-$(s)bf '

)

¥, (s) = Y(s)(l-f 'O(s)b)

finally yields

^
k
(s)/^(s) = (l-f«»(s)b), (3-12)

where the last step depends on a determinantal identity

proved in [31]. The quantity ( 1-f ' $ (s )b ) is the classical

21





return difference. Solving (3.12) for f'$(s)b and substi-

tuting into (3-10) yields

¥(s) - \ (s)
N(s)/U(s) =

y( s

*
(3.13)

Since Q is non-negative definite and symmetric

there is a matrix P such that P'P = Q. Using this fact

and letting the term u'Ru = u
2 (single-input system), equa-

tions (3.^)3 (3.5)3 and (3-6) can be written as:

J [(x'P'Px) + y
2 ]dt"2. (3.14)

and

f = -b'K (3.15)

Kbb'K - KA-A'K-P'P =0. (3-16)

Kalman [16] proves that the K which satisfies

(3.15) and (3-16) also satisfies

-ff '-K(A+bf ' ) - (A'+fb')K - P'P = (3-17)

and that

:

Theorem 1. Given a completely controllable con-

stant linear single-input system '(3-7) and the performance

measure (3.1*0 such that the pair [A,P] is completely ob-

servable [3j 30] j a necessary and sufficient condition for

f to be a constant stable optimal control law is that there

exist a matrix K which satisfies the algebraic relations

K = K' is positive definite (3-18)

f = - Kb (3.19)

- K(A+bf') - (A'+fb')K = P'P+ff'. (3-17)

22





Equation (3-17) together with K = K' is positive

definite implies f is a stable control law and that

(A + bf') is a stability matrix according to Lyapunov

stability theory [5]

.

Theorem 1 provides a relationship that connects

f and P. However the relationship is not easily inter-

preted and is certainly not very useful as a design tool.

Kalman continues his development and finds another rela-

tionship between f and P in which K has been eliminated.

Adding and subtracting sK in equation (3.16) gives

K(sl-A) + (-sI-A')K = P'P - Kbb'K,

and

K[$(s)]
_1

+ [<*>' (-s)]-
1

^ = P'P - Kbb'K. (3.20)

Premultiplying and post multiplying (3.20) by b'<I>'(-s) and

$(s)b respectively yields the scalar equation

b'<S>'(-s)Kb + b'K$(s)b = b'$'(-s)[P'P - Kbb ' K] $(s )b .

Substituting f = -Kb yields

-b'$'(-s)f - f'<l>(s)b = b'$'(-s)P , Pf(s)b - b ' $ ' (-s ) ff ' $(s)b .

which can be written

[1 - b'f'(-s)f] [l-f'$(s)b] = 1 + b , $ , (-s)P , P$(s)b.

Substituting s = jco gives the desired result.

|1 - f'^(jaO| 2 = 1 +
|

|P$(ju))b|
|

2 (3-21)

where the notation |Z|| 2 implies the quadratic form Z'Z.

Kalman' s result [16] can now be stated:

Theorem 2. Given a completely controllable con-

stant linear single-input system (3-7) and the performance

23





measure (3.1*0 such that the pair [A,P] is completely ob-

servable, a necessary and sufficient condition for f to be

a constant optimal control law is that f be stable and that

(3.21) hold for all u).

Equation (3.21) implies that for f to be a con-

stant optimal control law, the magnitude of the return dif-

ference must be greater than unity for all w a i.e.,

|T(ja))| = |1 - f'£(jw)b|>l. (3-22)

This result ensures that stable control laws satisfying

(3.22) will provide a feedback system with reduced sensi-

tivities to variations of parameters in the plant compared

to the same plant with an equivalent open-loop control. It

also implies that the larger the return difference, the less

sensitive the plant will be. This is shown by demanding

that the return difference Ti(joo) for control law fi be

greater in magnitude than T 2 (jw) for f 2 . That is

|Ti(jo))/T 2 (jo))|>l (3.23)

will ensure that the system with control law fi will be less

sensitive than the same system with control law f 2

.

This follows from

I

T j ( j co )
I

= |iMju))/>(jaO
I

(3.24)
|T 2 (jw)

I

= |iMjaOAKjw)
I

and equation (3-12).

Although this formulation provides a means of

evaluating various control lav/s , it does not appear to be

very useful as a design procedure. If a means of finding
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the matrix Q which satisfies the conditions of theorem 2

can be obtained, a design procedure of practical utility

could be established. It seems that further investigation

of this aspect of the problem might be fruitful.

Kalman's result guarantees that any constant op-

timal stable control law for a completely controllable con-

stant single-input plant which minimizes the performance

measure (3.1*0 subject to the constraints of (3-7) will

also satisfy (3-21). Therefore, such a control law satis-

fies (3«22) and the resulting closed-loop system will have

reduced sensitivity when compared to the same system with

an equivalent open-loop control. This is an important re-

sult and adds considerable meaning to the term "optimal"

fOT1 t".Vl 1 o 7~\r>o^l om

Approaching the problem of constructing a Q ma-

trix that results in an optimal control law f in the sense

that equation (3-22) is satisfied, from (3.12) and (3-22)

one can write

|1 - f'$(s)b| 2 =
|

^

k
(s)/^(s)

|

2 >1 (3-25)

and therefore, (3«26)
y (_ s )y ( s )

[1 _ f'(-Sl-A)
_1

b] [1 - f'tsI-Ar'b] = y(_ s )y( s )

>1,

or

Y.C-sjV.Cs) - Y(-s)ns)

S(-sM s)
>0 ' (3 ' 27)

In the above equations, the relation

|V(s)

|

2 = <F(s)Y(-s) (3-28)
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which holds for polynomials with real coefficients has been

used. In order to evaluate (3-27), using the fact that the

pair [A,b] is completely controllable, the system

x = Ax + by

can be transformed into the companion form by z = Tx. Pro-

ceeding as follows

Tx = TAT
-1

Tx + Tby

or

where

and

z = Cz + dy

f
1

1

\

c <

\ -oi -a 2

V

1

a
n /

d= { .}

^/
Since the characteristic polynomial is invariant

under the linear, non-singular transformation T, ¥(s) can

be written as
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Y(s) = det(sl - A) - det(sl - C)

and similarly for ¥, (s). The control law for this system

is

y = f'z

where

fi = { y y Y • • • y }•123 n

A well known method for finding the inverse is

expressed by

M
_i adJM

detM

Using this technique yields for (si - C) d

(si - C)
3

a
[adj(sl - C)]d

det(sl - C)

n \

vTsJM-

,n-J

Premultiplying by f f

3

f ' (si - C) d =

., c n-! n-2YS +y iS + • • • + y
' n ' n-1 '

1

n , n-1 , n-2, ,

s + a s + a ,s + • • • + a,
n n-1 i

(3.29)
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From the definition of d and f one can obtain

(

df ' = I .

Y Y
V 1 2

Y
n

and

r<

C + df' = < .

1

, y -a y -a
\ 1 1 2 2

. .

1 . .

Y -a
n n/

Since V, ( s ) = det(sl - C - df), it follows that

f '(si - C)~ d = ¥(s) - \(s)

ns)
(3-30)

This same result is determined directly from (3-12),

but in the present development T(s) - ^(s) is determined

from (3-29) and (3-30) to be

¥(s) - \(s) = Yn
s
n_1

+ Yn_ 1
s
n" 2

+ . . . + Y
1
-(3.3D

Inequality (3-26) can be rewritten as

H
/ (s) v

i
/ (-s)

> 0. (3-32)

The numerator polynomial of (3-32) can be factored as

\(s)¥
k
(-s) - Y(s)¥(-s) = <5(s)S(-s) (3.33)
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where 6(s) is a polynomial, of degree at most n-1, having all

its zeros in the left-half s-plane. Defining the Hurwitz

polynomial

<$(s) = gn
s
n_1

+ gn
_!s

n" 2
+ . . . + g 2 (3.34)

and the vector

^
•

>

S>

(3-35)

the inequalities (3.26) and (3-32) can be combined with (3-33)

to yield

(3-36)

[1 _ f.(_Bl _ a)"
1

*] [1 - f'(sl - cT'd] = ttiW l\ + 1Y(s)Y(-s)

Defining

(3-37)

' (si - C)
l

d =
Y(s) L6n

n-1 . n-2 . . t
[g s + g^ ..s + . . . + g- J a3n-l

l '!

analogous to (3.29) and substituting (3-37) into equation

(3-36) yields

[1 - f'(-sl - C) *d] [1 - f'(sl - C) d]

(3.38)
= [d'(-sl - C )gg'(sl - C)d] + 1.

Kalman has shown that a Q constructed from

Q = gg'

will yield the stable control law, f' s which satisfies

theorem 2 and is indeed optimal. That is, the pair [A,g]

is completely observable.
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In the above development, since the characteristic

polynomial is invariant under transformation T, A and b

can be substituted for C and d respectively in equation (3. 38)

Is the development useful as a design technique?

Clearly it is not since constructing the proper Q depends on

factoring ¥ ( s)V
k
(-s) - V(s)V(-s). Knowledge of \(s) re-

quires knowledge of f
*

, the vector the design is supposed

to yield. Hence this development has little practical util-

ity, but it does provide considerable insight into the com-

plexities of the problem.

2 . Multiple-Input Systems

The following discussion for multiple-input multi-

ple-output systems presents sufficient conditions which en-

sure that a feedback system will have reduced output

sensitivity compared to an equivalent open-loop system. In

one development Perkins and Cruz [17] determine the suffi-

ciency condition for finite output errors. In a similar

development, Kreindler [18] proves that the same sufficient

condition holds for an output sensitivity function. Be-

cause the derivations are quite similar, they are developed

simultaneously after appropriate definitions are presented.

The linear time-invariant system considered is

described by the state-variable differential equation.

x = A(q)x + B(q)u . (3-39)

The plant input, u, can be expressed as an open-loop control

or a closed-loop control law that is assumed to be linear in

x. In order that the following comparison be meaningful, it
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is assumed that initial conditions and external inputs, r,

to the system are the same for both the open and closed-

loop systems. Additionally, it is assumed that any varia-

tions in the plant parameters, q, are the same for both

systems. The objective here is to ensure that any varia-

tions in the system output result only from equivalent pa-

rameter variations. Open-loop and closed-loop systems that

satisfy these assumptions are considered equivalent systems

The equivalent closed and open-loop systems are shown in

Figure 2 and Figure 3 respectively.

u
B

•

>o " c

I
X
-c

-/
,, Af

,.

A *

tfF

Figure 2. Closed-loop system configuration.

Considering the case where the vector q has one

element q, the nominal parameter value is defined by q = qo

.

The plant input-output transfer function is

- i

T(s,q) = (si - A) B (3.40)

31





•

X

J
X
o

J

<A

Figure 3- Open-loop system configuration.

This definition holds for the identical plants of each of

the systems under consideration. Figure 2 and Figure 3 can

be represented in block diagram form by Figure 4 and Fig-

ure 5 respectively. The closed-loop outputs and open-loop

outputs are X and X respectively. The input notation is

analogous to this.

Figure k. Closed-loop block diagram.

U (s)
-o v J

Figure 5- Open-loop block diagram
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The controller G is constructed such that for-o

T = T(s,q ), X (s,q ) = X (s 3 q ). The problem then is to

study the effects of plant parameter variations on X (s,q)

and X (s,q) under the assumption that the variations are

identical.

From Figure 4

X (s,q) = T(s,q)[R(s) + FX (s)]

or

X
c
(q) = [I - T(q)F]

l

T(q)R. (3-41)

From Figure 5

X
o
(s,q) = T(s,q)G

o
(s)R(s)

or

X (q) = T(q)G^R. (3-42)

In (3-4l) and (3.42) and in the remainder of this develop-

ment the functional dependence on s will not be written for

notational convenience.

Assuming that the perturbed parameter q is given

by

q = q + Aq, (3-43)

then

T(q) = T(q
Q

+ Aq)

.

(3-44)

Clearly the variation of q will cause X and X to

be perturbed from their nominal values. Defining this per-

turbation as E and E for the closed and open-loop cases,
-c -o v

respectively, then.
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5C
- X

c
(qQ

) - X
c
(q o

+ Aq) ( 3 .4 5 )

g - X (qQ ) - X
Q (qo

+ Aq) . (3-46)

Using (3-42) E can be written as

E
Q

= [T(q
Q ) - T(q)]U

Q
. (3-47)

Recalling that U is not independent of q 3 one

writes

U
c
(q) = R + PX

c
(q)

= R + P[X
c
(q) - X

c
(q Q )] + FX

c
(q Q )

U
c
(q) = U

c
(q Q

) + F[X
c
(q) - X

c
(q Q )]. (3.48)

Using equations (3.41), (3-45), and (3-48), the

closed-loop output perturbation can be written as

E
c

= T(q
o
)U

c
(q o

) - T(q)U
c
(q)

= T(q )U (q ) - T(q)U (q )- ^o —c M o - —c ^o

- T(q)F[X
c
(q) - X

c (qQ )] (3-49)

= [T(q
Q

) - T(q)]U
c
(q Q

) + T(q)FE
c

-

1

- [I - T(q)P] [T(q
Q

) - T(q)]U
c
(q Q )

E = [I - T(q)F] *E
-c - - - -o

where (3-47) has also been used.

In equation (3-49), T(q) depends on the parameter

variation, however for differentially small plant-parameter

variations (3-49) can be approximated by

5 C
= C± " T(q

o
)P]

_1
E
o

. (3-50)
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This is the central result of [17] . Observing

that T(q
Q

) = [si - A(q
Q )

]~ 1

B(q
Q

) = $(s,q
Q
)B(q

o
) and substi-

tuting into (3.50) yields

E
c

= [I - !(s,q
o
)B(q

o
)F]

_1
E
o

. (3-5D

The term [I - $(s,q )B(q )F] in (3.51) is similar

to the scalar return difference and has an interpretation as

the generalized matrix-return difference [17]

•

Kreindler [18] , instead of defining an output error

function, defines a sensitivity function

X c
( t ) = 3x

c
(t)/3q = lim e_

c
(t)/Aq (3-52)

Aq+0
and

v (t) = 3x (t)/3q = lim e (t)/Aq (3-53)
~° Aq+0 °

where the Laplace transforms of v (t) and v (t) arc the vec-^ -c -o

tors V (s) and V (s) respectively. With these definitions,

the following relationship between V (s) and Yn ^ s ^ ^ s ol°~

tained

V
c
(s) = [I - !(s,q

o
)B(q

o
)F]

_1
V
o
(s) .

. ( 3 .
5 ^

)

Before expressing the conditions under which the

system sensitivity is reduced, it will be convenient to de-

fine a new sensitivity variable which under the proper con-

ditions represents either v(t) or e(t). The new output

sensitivity variable v_(t) with Laplace transform Y(s) is

defined such that

Y ( S ) = [I -»( B ,q n )B(q n )F]
_1

Y n (s) (3-55)

or

Y
c
(s) = S( 3> q o

)Y
o
(s)
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^

^
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slt ivity
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o _
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implies

foralli>°>
heorem ,

equation (3-5

._«,. Using Parseval

n^ <• I Y' (-3 u '5loU

f V C-J^-c"^ -

J
" °

— 00

. h , s
equivalent to

Which is eq
(^.57)

X^ualitY C3-5« "^^ ^
C3. 58)

, ls the inverse of the return daf

for all ., -re SU. - ^ (3 . 53) -

ferenee.
Pre.ultiP^ngan

J ^^^
IB-C-J.)!-

1 «* ««•)!
ru)BPl - Z >o- (3 ' 59)

11
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sult is that any feedtacK contro
^^

The result
(3 _ 59) wlll pr
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fies eitnei
n-ivity an
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design systems having reduced sensitivity. They might be

useful in trial-and-error design but that is not very sat-

isfying.

In a development similar to Kalman's [16], Perkins

and Cruz demonstrate that the control law P that satisfies

condition (3-58) is optimal for single-input linear time-

invariant regulator systems with respect to the performance

measure

{ [x'(t)Qx(t) + y
2 (t)]dt . (3.60)

Kreindler [18] proves the following:

Theorem 3. For the completely controllable single-

input linear plant in companion canonic form, for each com-

PO^Pnt Y i = 1.2.... .R. Of Y 1-h Q fnllnMinrr V.rs"l rf c<

yJ;(s) = [1 - f'$(s)b]Y^(s). (3.61)

If in addition f and x = Ax + by are optimal with respect to

(3-60), then, for all t x >0

/•^ 1 /*^ 1

f [yj(t)] 2 dt < F [yj(t)] 2 dt, (3.62)

i = 1 , 2 , . .
.
,n.

This is a useful result. However as Kreindler

[32] points out it is only applicable for systems in the

companion canonic form.

The analysis techniques discussed above are exempt

from a restriction that the analysis techniques discussed

subsequently have almost universally: there was no identi-

fication of the parameter q made, hence, any and all of the
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variable plant-parameters will exhibit reduced sensitivity

when the conditions for reduced sensitivity are met.

C. STATE TRAJECTORY SENSITIVITY

In general, a plant which is sensitive to perturbations

of its component values may be characterized in the form of

equations (3.1) • In the sensitivity analysis of such a sys-

tem, it is necessary to relate numerically the dispersion

of the solutions of (3.1) for varying values of the para-

meters, q.

Although a great deal of work has been done recently

in the area of state trajectory sensitivity, few important

general results have been discovered. Most of the design

techniques that are discussed in the literature result from

application of the sensitivity equation [8, 13] , obtained

by taking the partial derivative of equation (3-1) as fol-

lows :

3q
±

[dtj aq.
[ a(x(t),u(t),q(t),t)]

3_

3q.

r
dx^

dt

8a 3x 8a
,

3u 3a 3q
(3.63)

3x 3q. 3u 3q. 3q 3q.

The form of the matrix of partial derivatives, 3a/3q, is de-

fined by

w
i

8
*;

3a. i=l,2,...n
i 5 '

3q. J = 1,2, ...r.
(3.64)

The matrices 3a/3x and 3a/3u are dimensioned nXn and nXm

respectively and are defined in a manner analogous to (3-64).
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The form of the vector of partial derivatives, 3x/3q. , is

defined by

3x

^7

( dxA

dx
n

V 3qiy

(3.64a)

The vectors 3u/3q. and 3q/3q. are m and r-vectors respec-

tively and are defined in a manner analogous to (3- 64a).

If 3x/3q. 3 3x/3t, and 3x/3q. are all continuous func-

tions of q and t, the order of differentiation can be in-

terchanged and

(dx)

^ ±
,dt,

d

eft

dx.

I3q. J

(3-65)

The sensitivity function (influence coefficient) s.(t)
-l

is defined by

3x(t)
s. (t) = =
-l 3 q.

for all x and q . , (3.66)

Using equation (3-64) and definition (3-65) , equation

(3.63) can be written more compactly as

3a 3a 3u 3a 3q
s. + +

-i 3x -i 3u 3q. 3q 3q.
(3.67)

Since in section B it was shown that feedback control

frequently can provide reduced sensitivity over the equivalent

39





open-loop system, it is assumed that a control law of the

form

u(t) = u[x(t)] (3.68)

is specified. Under this assumption 3u/3q. can be written

as :

3u 3u 3x 3u
s .

3q. 3x 3q. 3x -i

Using (3-69), (3-67) can be written as

(3.69)

s .
=

-l

3a 3a 3u

3x 3u 3x

3a 3q
(3-70)

-l 3 q 3q. ' ' '

Rewriting (3-70), where the meaning of A x (t) and oo.(t) is
-l

CO 71 'I

obvious, yields

| ±
(t) = A 1 (t)s

i
(t) + m

±
(t) 9 i = l,...r.

Equation (3-71) is the vector notation for nr equations each

having the form

d_
dt

f3x.lN n 3a. 3x
k m 3a

i

E.
k = l 3x, 3q. k=l £=1 3u

3x
k

k

k

+ , £

£

3a. 3q
k

3q
±

k=l 3qk
Bq

±

3u

3x
k

(3.71a)

where 3q, /3q. =Mk ^i

1 if i = k

otherwise

In several equations above for convenience in notation,

function arguments were omitted. This practice will prevail

throughout this section.
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Since it is assumed that the parameter variations have

no effect on the initial conditions of (3*71) 9

s^to) = 0. (3.71b)

In order to obtain the sensitivity function defined by

(3.71)} the values for Ai(t) and to.(t) must be determined.

This amounts to evaluating the partial derivatives 8a/9x,

8a/3q, 8a/8u, 8u/8x, and 3q/9q. . This can be done for the

specific optimal control problem under consideration.

The optimal control is the admissible control, u*(t),

which causes the system

x(t) = a[x(t),u(t) ,q(t),t] (3-D

x(t ) = c

to follow an admissible trajectory, x(t) , that minimizes

the cost functional

/

fc

f

J = h[x(t
f
),t

f
] +J

f [x(t),u(t)]dt (3.72)

t

while transferring the state of the system from a given ini-

tial position x(to) = c to some final position x(t„) = x
f ,

that is restricted to some (n + 1) dimensional subset T of

state-time space. T is called the target set. Here, the

optimal control is constrained to the feedback form

u*(t) = u[x*(t)], (3-73)

where u* and x* are the optimal control and trajectory re-

spectively .
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Returning to consideration of the partial derivatives,

8a/8x, 8a/3u, and da/d^ are all functions of [x(t),u(t) 3

q(t),t]. However, using (3-73) » the explicit dependence on

u(t) can be eliminated and then the partial derivatives be-

come functions of [x(t) ,(j(t) ,t] . The value q(t) = q(t)

defines the point in parameter-time space at which the par-

tial derivatives are to be evaluated. Additionally, it is

noted that du/dx is also a function of x(t) and therefore,

because of feedback, implicitly a function of q(t). Upon

specification of q(t) the differential equations (3-71) with

their initial conditions (3- 71b) can be solved for the sen-

sitivity function, s.(t). If small parameter variations are

assumed the partial derivatives can be approximated by let-

tins o = q n where Q* represents the nominal value of n

It would be well at this point to summarize the devel-

opment .

For the dynamical system

x(t) = a[x(t),u(t) ,q(t),t] (3-D

x(t ) = c ,

the optimal control

u*(t) = u[x*(t)] (3-73)

minimizes

- K

v

f '
5 "f

L
t
/

fc

f
J = h[x(t f ),t f ] + ( f [x(t),u(t)]dt. (3-72)

'o
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The trajectory sensitivity with respect to the para-

meter q. is

8x(t)

*i
(t) = -15; for all x and q. , i = l,2 3 .'..,r (3.66)

and is the solution of

where

|±
(t) = A 1 (t)s i

(t) + u^Ct),

Ai(t) =
8a 8a 8u

8x
+

8u * 8x
q=q

(3.7D

(3.74)

and
8a 8q

tl). ( t ) = 7C— *7C
-l 8q 8q.

q=qo

(3.75)

Chan and Chuang in [33] obtain a similar result by

expanding the right-hand side of (3-1) about [x,q ,u(x) , t]

in a first order Taylor's expansion. They obtain

dz/dt = Ai(t)z + B(t)r(t) (3.76)

z(0) zo

where z. = x* - x* is the i^h component of the variation
1 1 10

along the optimal trajectory, and y. = q. - q. is the
J J J

variation of the parameter q. about its nominal value. The
J

matrix Ai(t) is defined as in (3.7*0, B(t) is

B(t) = 8a/8q, (3-77)

and the partial derivatives in (3.76) are evaluated alon^

the optimal trajectory.

Writing the i^h equation of (3.76) in expanded form

yields
^





dz . n—1=1
dt k=l

8a. 8a

8x
k

m

1=1
A
I

r 9a
+ , E —

^

Yik=l 8qk
'k

'

3u.

k
J

k

(3.78)

Dividing both sides of (3*78) by y. yields

d

dt

(x. - x. ) n 8a m 9a.
E

8a.

k=l 8q
k

Y

Y.

x

In the limit as y-^0 equation (3. 79) becomes

8u

8x
k £=1 8u

£
8x

k

(3-79)

dt

8x

8q.

n
E.

8a

L

k

m 9a
i

E —

^

A,— J- O U
I

8u

k

k

8x
k

°q.

+ !,£

r ^
L

8qk
k=l 8q, 8q.Mk M i

which is identical to equation (3-71a).

It is important to note that the sensitivity equation

derived above is always linear; this is true even though the

dynamic system (3.1) may be nonlinear; therefore, equation

(3.71) is always a system of linear ordinary differential

equations with constant or variable coefficients. It should

also be noted that (3-71) is not valid for the case in which

q can vary in such a manner as to change the order of the

state equations [8] . In most applications the parameter

vector, q(t), is assumed to be a slowly-varying time func-

tion that can be approximated by the constant parameter

vector, q
ill





1. Linear System State Trajectory Sensitivity

In this section the state trajectory analysis

above will be applied to a linear state regulator system.

The results of this development will be used extensively

in following chapters

.

The linear regulator system is described by the

state equations

x(t) = A(t,q)x(t) + B(t,q)u(t)

with a linear feedback control law of the form

(3.80)

u(t) = F(t)x(t) . (3.81)

A(t) is the real, time-varying, nXn system matrix.

B(t) is the real, time-varying, nXm distribution

matrix.

F(t) is the real, time-varying, mXn gain matrix.

u(t) is the control m-vector.

x(t) is the state n-vector.

2 is the constant parameter r-vector.

Assuming that the solutions to (3-80) are analytically de-

pendent on the parameters q, the partial derivative of

(3.80) with respect to parameter q. is

(3.82)
d

dt

3x

3q.

3A 3x 3B 3u
x + A 7T— + 7T— u + B

3q. - - 3q. 3q. - - 3q.

Defining, as before,

s .-1

3x

af7 > (3.83)
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and using (3.8l), the sensitivity equation (3.82) can be

written mere compactly as

3u
s. = 8A.x + 3B.u + As. + B ~ . (3.84)-1 -1- -1- —1 - tfq.

Taking the partial derivative of (3-8l), where it is assumed

that F is not a function of q., yields

3u

^7 - PSl . (3.85)

Using (3.85) another useful form of (3.82) is obtained,

B
±

= [3A
±

+ 3B
±
F]x + [A + BF]s

i , (3-86)

where the meaning of 3A. and 3B. is clear from (3-67) and

(3-82).

D. PERFORMANCE SENSITIVITY

In a design procedure in which the ideal controller is

optimal for a wide range of parameter variations, Rohrer

and Sobral [27] define a new sensitivity function, the

"relative sensitivity" of u(q,t) at parameter "operating

point" q. This relative sensitivity is expressed by

J(u,q) - J*(u*,q)
S <S.fl)

-
j»(u«,q)" (3 - 87)

where u*(q,t) is the optimal control such that

J*(u*,q) =minJ(u,q), (3-88)
u

subject to constraints

x(t) = a[x(t),u(t),q,t] . (3-D
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Among the advantages cited for the use of such a per-

formance sensitivity is that it is always positive. Addi-

tionally when the parameters q are such that u=u* , S (u,q)=0

This provides a measure against which system performance can

be compared.

The design technique proposed consists of a minimaxi-

mization of the relative sensitivity with respect to u and

q. The procedure consists of assuming a design criteria

which defines the plant sensitivity SP(u). Two suggested

plant sensitivities are

SP(u) = max
q

S
r
(u,q) (3.89)

and

CD f „ \Or ^Uy

q .

Q r /
\ ^ a -l /
J (3-90)

where E [•] indicates expected value. The design procedure

then consists of choosing u such that

SP(u) = min
u

SP(u) (3.9D

In a second-order example with a single variable parameter,

Rohrer and Sobral demonstrate that the use of "relative

sensitivity" in conjunction with (3.89) yields a system that

has reduced sensitivity and remains close to the optimal

over the entire range of parameter variations.

Salmon [28] presents a new algorithm for the global

solution of a minimax problem. The algorithm converges to

the global solution in the presence or absence of saddle

H7





points. The class of optimization problems for which the

algorithm applies includes those having quadratic perfor-

mance measures with linear time-invariant state equations

and a constant gain linear control law (the infinite inter-

val problem described by Kalman [3])-

In two examples, Salmon applies the algorithm using

the Rohrer and Sobral "relative sensitivity" and the "abso-

lute sensitivity,"

S
a
(u,q) = J(u,q) - J*(u*,q), (3-92)

in each.

In the first example, which is the same as that used

by Rohrer and Sobral, the performance using "relative sen-

sitivity" exceeded the optimal performance by less than 1.9

percent for all allowable values of q. The performance

using "absolute sensitivity" exceeded the optimal perfor-

mance by about 50 percent for q = 0, the minimum allowable

value of q

.

In the second example, the control objective is to

maintain the spacing among a string of three electronically

coupled vehicles. The five state variables are the three

vehicle velocities, and the two spacings between the center

and end vehicles. The performance measure Is the infinite-

time integral of a quadratic form involving vehicle spacing

deviations and control. In this example with nine variable

parameters, the "absolute sensitivity" technique provided

performance closer to optimal than did the "relative sensi-

tivity" technique. This was to be expected since it is more
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important that the controller be close to ideal when the

performance measure, J(u,q), is large.

Another feature of design techniques using "absolute"

or "relative" sensitivity is that the structure of the con-

troller must be specified by the designer. Hence, the

technique is amenable to solution of the de-sensitized out-

put regulator problem.

The minimax design technique, whether using "relative

sensitivity" or "absolute sensitivity" apparently has ad-

vantages of considerable value to the designer. However,

there are also disadvantages. Minimax algorithms are dif-

ficult to implement except for restricted classes of prob-.

lems . Additionally, the solutions obtained are dependent

on the initia.1 condition: hence, the solution is only

valid for that initial condition. In general, the solution

obtained by minimax design will be optimal for only one

initial condition.

Ozer [34] applies a minimax algorithm to the solution

of the output regulator problem. He defines an auxiliary

performance measure which takes the forms (3- 87) and (3-92)

among others. With a second-order example he demonstrates

that the controllers obtained by the two methods differ

widely. The problem is solved for several initial condi-

tions and is used in an excellent discussion of the effects

of initial conditions on performance for several auxiliary

performance measures.
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E. SUMMARY

In Kalman's development, it was shown that for the

completely controllable single input plant

x(t) = Ax(t) + by(t) (3.7)

and performance measure

c

/J(V0 = hi [x'Qx + y
2 ]dt (3.1*0

o

the optimal control law

u*(t) = f'x(t) (3.93)

satisfies the condition

|1 - f'£(jw)b|>l. (3-22)

He also proved the inverse theorem: if a stable control

law f satisfies (3.22), then it is optimal for a perfor-

mance measure (3.1*0 with some Q. Given the f one can find

a Q by spectral factorization of a rational function.

An important result is that every optimal system of

the form of (3-7), (3.1^) 5 and (3-93) will exhibit reduced

sensitivity compared to an equivalent open-loop system.

Perkins and Cruz defined a sensitivity matrix

S(s,q) = [I -$(s,q)B(q)F]
_1

.

The inverse of this matrix was interpreted as the generalized

matrix-return difference . Their central result was that con-

stant feedback control laws, F, for linear state regulator

systems (3-39) that satisfy the condition
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S'(-jo))ZS(jco) - Z < (3-58)

for all a), will provide reduced output error compared to

the equivalent open-loop system in the sense that an inte-

gral inequality of the type (3-56) will hold, for t > 0.

Kreindler with parameters restricted to differentially

small variations obtained the same result for the output

sensitivity function (3-52) and (3-53). He also showed

that for systems in the companion canonic form satisfying

(3-58), the sensitivity measure (3-56) reduced to the form

of (3-62). This result implies that the sensitivity of each

state trajectory in the closed-loop system was less than the

sensitivity of the corresponding open-loop state trajectory.

State trajectory sensitivity analysis was approached

by means of the sensitivity function defined by Miller and

Murray. A sensitivity differential equation was derived

which was linear even though the system model could be non-

linear. The sensitivity differential equation was made

explicit for linear state regulator systems as

8u
s. = 9A.x + 8B.u + As. + B * . (3-84)-1 -1- -1- — 1 - 3q.

Rohrer and Sobral introduced a new "relative sensi-

tivity" performance measure that defines a minimax problem.

The technique is applicable with large parameter variations.

Salmon provided a minimax algorithm that could be used to

solve problems using "relative sensitivity." However, by

means of an example he demonstrated that for some problems,

better results are obtained by using "absolute sensitivity"
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for the performance measure than was obtained using "rela-

tive sensitivity." It was pointed out that the dependence

on initial conditions severely limits the utility of these

minimax schemes.
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IV. TRAJECTORY SENSITIVITY DESIGN

A. GENERAL PROCEDURE

In the previous chapter, an expression for the tra-

jectory sensitivity of a general feedback system to plant-

parameter variations was developed. In this chapter that

expression will be used in the development of an optimiza-

tion problem that includes sensitivity constraints

.

The objective is to use the trajectory sensitivity

analysis technique previously established in formulating an

optimization problem that will result in the design of con-

trollers that are optimal in some sense and at the same

time provide trajectory Insensitivity to plant parameter

disturbances

Equations (3-66), (3-71), (3-74), and (3-75) are re-

peated here for convenience:

9x(t)

^i
(t) = ^ , i = 1,2, . .

.
,r

S
±
(t) = A 1 (t)s

j
_(t) + 03

i
(.t)

(3-66)

(3-71)

s
±
(t ) =

8a 8a 8u

^ l(t) =
87

+ H * 87
q=qo

(3.74)

w
±
(t)

8a

8q

8q

8a"
q=Qo

(3-75)
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By adjoining equation (3-71) to equation (3.1) the n(r+l)

augmented state vector z is

/x(t) ^

s
x
(t)

z(t)
<

Ur^V .

(4.1)

The corresponding initial condition vector is

z(t )
=

<
' >

^
The augmented system then is defined by

(4.2)

fa[x(t),u(t),g(t),t]^

Ai(t)si(t) + ui(t)

<

z(t) =

>

(^Ai(t)s (t) + u (t) )

(4.3)

or more compactly as
(4.4)

z(t) = d[x(t),s 1 (t) s
r
(t),u(t),g(t),wi(t).-..wr

(t),t].

Following the procedure of Kahne [19] a new performance

measure that includes a scalar sensitivity term
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- vf » f' /
t (1.5)
r
f

J = h[x(t
f
),t

f
)]+ [f(x(t) a u(t)) + g(si(t)...s

r
(t))]dt

'o

is defined.

Applying Pontryagin's minimum principle [2], the

Hamiltonian is given by

H[z(t) 9 u(t),p(t),q(t),t] = f(.) + g(-) + p»d(.), (4.6)

where p(t) are the Lagrange multipliers.

The necessary conditions for unconstrained u(t) to

minimize the performance measure (4.5) are

z*(t) = f£ [z»(t),u«(t),E*(t),2(t) J t]dp

P*(t) = - || [z«(t),u»(t),g»(t),g(t),t](4.7)

2 f£ [z*(t),u*(t),p*(t),q(t) a t]

for all t <t<t
f , where t

f
is fixed and x(t

f ) is free. The

superscript (*) denotes optimal.

There is no guarantee that a solution to the above

problem exists.

Considering the performance index (3-72), the con-

troller obtained above will be suboptimal. A tradeoff be-

tween optimality with respect to (3-72) and sensitivity

reduction will actually occur.

B. LINEAR REGULATOR SENSITIVITY DESIGN

In the preceeding section an optimization problem was

defined and a method of solution outlined that resulted in
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a control that was optimal In the sense that a performance

measure which included sensitivity terms was minimized.

There is some question concerning the existence of the solu-

tion proposed. In this section the procedure will be ap-

plied to the linear regulator problem. The solution to

this problem exists and can be obtained following the for-

mulation of Athans and Palb [4]

.

The linear time-varying state regulator system is de-

fined by

x(t) = A(t,q)x(t) + B(t,q)u(t)

x(t ) = c .- o

(4.8)

Rewriting equations (3-83) and (3-84) here for convenience

3x

-i 3q. 3

M i

= i o

3u
s. = 3A.x + 3B.u + As. + B t^1-
-l -l- -l- ---i - 3q.

(3.84)

s. (t ) =
-i v o

The rn vector s is defined by

s =
<

.

(1.9)

S

The partial derivatives are evaluated at q , the nominal

value of q. (Function arguments have been dropped for no-

tational convenience.) Referring to (3.82) and (3-84),

the matrices 3A. and 3B. are defined by
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3A.
-l

3A

(^.10)

and

3B.
-l

3B

3q!
(4.11)

Higginbotham [23] writes the partial derivative of

u = u(x,s i ,S2 , . . . s ,t ) with respect to q. as

3u 3u 3x r 3u 3s .

_zJL
3x 3 q . j = 13s. 3 q

.

(4.12)

Substituting equation (4.12) into (3.84) yields

s. = 3A.x +
-l -l-

3u

4
+

5 37

3u
s. + 3B. u + B .E- * •

-l -l- - j =1 3s . 3q
-J

3s .^ (4.13)

or

s. = 3A. x + As . + 3B.u + e.
-l -l- --i -l- -l

(4.14)

It has been assumed that the resulting controller will

be a feedback controller of the states and sensitivity

functions. This result will be demonstrated. It has been

further assumed that the partials 3u/3x and 3u/3s. are

evaluated at q=q .

Proceeding as before, equations (4.14) are adjoined

to equations (4.8) to form the augmented system

f n
Sl

< _!! } = <

-

2 -

f A . ... 0_\ (- }

3Aj A .
• • 2 2i

3A„ A . . . S „

'b\

3gi

(o\

Si

^ S-r)

}Lzi> J't-Au Uh

\?*r 2 . A
J ^ S

-r) K
dB
-rJ

\ (4.15)

\*rJ
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which can be written more compactly as

z = AjZ + B u + e (4.16)

z(t ) = z =
- o -o

<

&
where the meanings of z, A 13 B , and e are clear from (4.15)

The quadratic performance measure, J, is

J = ^x'(t
f
)Dx(t

f
) + %s'(t

f
)Es(t

f )

•1

(4.17)

[x'(t)Q(t)x(t) + s'(t)W(t)s(t) + u'(t)R(t)u(t)]dt

where the terminal time t^ is specified and

E is a constant rnXnr positive semidefinite matrix

D is a constant nXn positive semidefinite matrix

Q(t) is an nXn positive semidefinite matrix

W(t) is an nrXnr positive semidefinite matrix

and R(t) is an mXm positive definite matrix.

The performance measure (4.17) can be rewritten in terms of

z as

where

J = *§z'(t
f
)Diz(t

f
) + h/'

f
(4.18)

[z'Qiz + u'Rujdt

D =
-l , (r+l)nX(r+l)n (4.19)
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and

Qi = (r+l)nX(r+l)n. (4.20)

W

By applying Pontryagin's minimum principle, the neces-

sary and sufficient conditions for the optimal control are

obtained.

The Hamiltonian, H, for (4.16) and (4.18) is defined

as follows

H - \ [z'QjZ + u'Ru] + p' [A
x
z + B

L
u + e] (4.21)

where p(t), the (r+l)n costate vector, satisfies the dif-

ferential equation

P = ~ T^
9H
3z

(h.22)

or

p = - QjZ - A|p (4.23)

The unconstrained optimal control must satisfy the

equation

9JH

or

Ru* + B'p = .

l

Solving (4.25) for the optimal control yields

u* = - R BJp .

(4.24)

(4.25)

(4.26)

In order to express u* in the specified form of equa-

tion (3-81) substituting (4.26) into (4.16) yields

_i
5

= A.z - BR BJp + e
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which when combined with (4.23) forms the augmented system

*i -b^"
1

?;
-----

+

P 1-9! -41 p

+

o

(4.28)

This is a system of 2(r+l)n differential equations. In

order to solve them, 2(r+l)n boundary conditions are re-

quired. The first (r+l)n boundary conditions are defined

by equation (4.16)

c

z(t ) = <- : (4.29)

The remaining boundary conditions required are final

conditions for the co-state equations. They are obtained

from the transversality conditions (see Table 5-1 of [4]),

with fixed terminal time, t
f , and z(t

f ) free

p(t
f

) = ~ ( fcz'DjZ)
z=z(t

f ) (4.30)

or

p(t
f

) = D
1
z(t

f
) . (4.3D

The solution of (4.28) at time t
f

can be written as

/

z(t )1 z(t)
(t-,t)

p(t
f )l lp(t)

(t,T)
e(T)

(4.32)

dT,

where <J>(t f3 t)
is the transition matrix for the system (4.28).

Partitioning <Kt f
,t) into four (r+l)nX(r+l)n submatrices

yields
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*(t f
.,t) = <

^ 11
(t

f
,t)j $ 12

(t
f
,t)

1

* 21
(t

f
,t)

; $22
(t

f
,t)

Substituting (4. 3D into (4.32) yields

)

(4.33)

(4.34)

$21 (t,T) i f 22
(t 3 T)

V.

Performing the indicated matrix multiplication yields

z(t
f )|

lpi
z(t

f )

^11- + ^12^

*21^ + * 22£

it f r
(4.35)

$11
(t ,T)e(i)

$ 21
(t ,T)e(T)

dx

Performing additional algebra

SiHiiS +
^i 22

+
[

ti
D

1 cf) 11 (t J x)e(T)dT

i
= ^ 21

z + <{>

22p +j ^ 21
(t,x)e(T)dT

[^22 " -1^12^
=

[ 2l^ll " ^21^-

i
t
f

P 1 ^ 11
(t,T)e( T )dT

J t

-I $21
(t, x)e(x)dT
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yields

p(t) = [$ 22
(t

f
,t) - D

1^ 12
(t fa t)]"

1

•

tf
(4.36)

<[D
1$ 11

(t
f
,t)-$

21
(t

f
,t)]z(t)+

J
[D

1$ 11
(t,T)-$

21
(t,T)]e(T)dT\

Equation (4.36) is the desired result; it relates p(t)

and z(t), and with (4.26) yields the optimal feedback con-

troller. Kalman [3] has proved the existence of the in-

verses in (4.36) for all t, t <t<t
f

.

Writing (4.36) more compactly

p(t) = K(t)z(t) + v(t) (4.37)

and substituting into (4.26) yields the optimal control

u*(t) = -R
_1

(t)B{(t)[K(t)z(t) + v(t)] (4.38)

where
(4.39)

K(t) = [* 22
(t

f
,t) - D

1$ 12
(t

f
,t)]~

1

[D
1^ 11

(t
f3

t)-$
21

(t
f
,t)]

and

v(t) = [$ 22
(t

f
,t) - D

1$ 12
(t

f
,t)]"

1

.

1

(4.40)
fc

f
[g1J 11

(t,T) - * 21
(t,T)]e(T)dT.

Since (4.39) and (4.40) are extremely difficult to

evaluate, a simpler expression would be helpful. Again fol-

lowing [4] the time derivative of (4.37) yields

p = Kz + Kz + v . (4.41)
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From (4.27)

where

and from (4.23)

z = AjZ - Mp + e (4.42)

iR
1

B' (4.43)

p = - QjZ - AJg. (4.23)

Substituting (4.37) into (4.4l) yields

z = [A j - MK] z - Mv + e. (4.44)

Substituting (4.43) into (4.40) yields"

2 - [K + KA - KMK] z - KMv + Ke + v . (4.45)

Substituting (.4.37) into (4.23) yields

A - r„n „ A'Kl v - A'v f h h£)
£ L ^l iiit^J — -l- *

Subtracting (4.46) from (4.45) yields

(4.47)
[K + KAi - KMK + A{K + Qjz + V + [AJK -KM] v + Ke =

If the optimal solution exists, equation (4.47) must

hold for all z(t), y(t), e(t) and t. Therefore

K(t) = - K(t)A
x
(t) - AJ(t)K(t) + K(t)M(t)K(t) - Q 1

(4.48)

and

v(t) = - [A'
1
(t)K(t) - K(t)M(t)]y(t) - K(t)e(t) . (4.49)

The boundary conditions for (4.48) and (4.49) are found

as follows. Equation (4.37) evaluated at t=t
f

yields

p(t
f

) = K(t
f
)z(t

f
) + y(t

f
) . (4.50)

Equation (4.31) is repeated

p(t
f

) = D
1
z(t

f
). (4.3D
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Since (4. 3D and (4.50) must hold for all z(t ), it

follows that

K(t
f

) = Dj

and

v(t
f ) = 0. (4.52)

Having obtained the desired control law (4.38), the

partial derivatives of (4.12) can be further evaluated.

Performing the multiplication indicated in (4.38) yields

u* = - R^BJtKjX + K
2 sj + . ..Kr+1s

r
+ v] (4.53)

where the matrix K. is the i^h (r+l)nXn column partition of

K. The partials of u with respect to x and s. are

9u/3x = -R"'
1

B{K
1

(4.54)

and

du/ds. = -R
1

B;K
j
.

+ 1
(4.55)

respectively

.

It should be noted that this result implies that the

matrix A
:
(t) in the Riccati-type differential equation (4.48)

contains elements of K(t). That is from (4.15)

A(t) = A - BR"
1

^'^

.

(4.56)

Thus the optimal controller utilizes state variable

and sensitivity function feedback. An additional forcing

function, v(t), that might be considered the sensitivity of

the sensitivity function is also an input.

Figure 6 is a block diagram of the system with its feed-

back controller that results from the sensitivity-constrained
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1
K
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B'

-R SB' ,-r+1

v

V^2
v generator

Figure 6. Block Diagram of Sensitivity Constrained
Linear Regulator System.
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design procedure derived above. It is clear that the deriva-

tion yields an extremely complex control strategy and any

simplifications that can be made would be extremely desirable.

Figure 6 assumes v(t) and s(t) are available, they must, of

course, be synthesized.

The sensitivity vectors can be generated from the vec-

tor differential equation (4.13) with the state vector and

control vector as forcing functions. However, the open-loop

input v(t) is not so easily generated because the initial

conditions for equation (4.49) are unknown. These functions

depend on the partial derivatives of the sensitivity vec-

tors with respect to q., the unknown parameters. The solu-

tion of (4.49) then depends on x(t) and hence is dependent

on initial conditions. Consequently v(t) must be computed

off line for the desired trajectory, x(t), and can be used

only for that trajectory .

The controller described cannot be implemented in the

linear regulator system in which the initial conditions are

unknown. In order to implement It for a system with the

trajectory, x(t), v(t) must be determined off-line by solving

a two-point boundary-value problem consisting of (2r+3)n

first order differential equations. Even though the equa-

tions are all linear, this is not a trivial task.

In the following sections, two design techniques that

are simplifications of the above are considered. The first

due to Cassidy and Lee [22] neglects the e.(t) term of equa-

tion (4.14). The second due to Kahne [19] assumes the matrix
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B(t) is not a function of q. Kahne also completely neglects

the entire term 8u/3q. in equation (3-34).

C. THE CASSIDY AND LEE CONTROL STRATEGY

Cassidy and Lee [22] presented a new control strategy

derived from an optimization problem that considered the

reduction of trajectory dispersion due to plant parameter

variations. Their development was much the same as that of

section B except that they neglected the effects of the

term e(t) in equation (4.16) and considered only the case

where there is a single input. Their results, extended to

multiple inputs, are presented here as a variation of the

development of section B.

The linear time-varying state regulator system is de-

fined by equation (4.8) with its accompanying definitions

x(t) = A(t,q)x(t) + B(t,q)u(t) (4.8)

The sensitivity functions and equations of chapter

III are repeated here for convenience,

and

s. = dx/dq.

s. (t ) =-10

(3-83)

s. = 9A.(qJx + A(q_)s. + 9B.(q_)u + B 9u/8q
i

(3-84)

where

9A. = 9A/9q.

9B. = 9B/9q.

q = q- -o

q=q
i lo

(4.57)

(4.58)
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Anticipating the resultant controller, u(t) is defined

by

u(t) = F(t)x(t) +
ig1

F
i
(t)s

i
(t). (4.59)

Writing the partial of u(t) with respect to q. and

ignoring second partials , yields

8u/8
qi

= F(t)s
±
(t), (4.60)

where P(t) is not a function of q.

.

Substituting equation (4.60) into (3.84) yields the

sensitivity equation used by Cassidy and Lee

s. = dA.x + (A + BP)s. + 8B.u (4.6l)

s
i
(t ) = 0.

Again function arguments, once specified, are dropped

for notational convenience

.

Proceeding as in section B- adjoining the sensitivity

equations to the plant equations yields the augmented sys-

tem (4.15) except that the last term has been eliminated

and A •= A + BP. Rewriting equation (4.16) with the vector

e(t) eliminated yields

z = A i z + BiU

(4.62)
z(t ) = (c' : o'}

where the meanings of z,Ai, and Bi are clear from equation

(4.15) and the definition for A above.

The performance measure for this problem is identical

to the performance measure (4.18)
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f
tf

+ h \ [z'Q z + u'RuJ = ^z'(t
f
)D z(t

f
) + hi [z'Q.z + u'Rujdt (4.18)

to

where D 2i Q
x

, and R are as defined in section B.

The solution to the optimal control problem defined by

dynamic system (4.62) and the performance measure (4.18) is

well known. It can be obtained in a straightforward manner

following the derivation of section B. The result is stated

here

.

The optimal control for (4.18) constrained by (4.62) is

u*( t ) = -R"
1

(t)B
1
'(t)K(t)z(t) (4.63)

where K(t) is the symmetric positive definite solution to

the Riccati matrix equation

K = -A'K - KA + KB R
_1

B'K - Q (4.64)

K(t
f

) = Dj.

The matrix K(t) is an n(r+l)X(r+l)n square matrix. If K(t)

is partitioned into (r+1) matrices each of dimension

^th

column partition. Using this notation

n(r+l)Xn, then K.,i = l,...,(r+l), is the i th n(r+l)Xn

U'
,-i r

-5 2J E5i5 +
ill 5 1+ i Si]- (4.65)

It should be noted that F = -R BjKj and consequently the

matrix A in (4.64) is a function of elements of K.

Equation (4.65) is identical to the feedback term of

equation (4.53), the optimal controller for the problem of

section B. The elimination of the open-loop term is an Im-

portant simplification; this controller can be implemented
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more easily. The block diagram of Figure 6, with the open-

loop eliminated, shows the structure such a controller could

take

.

Kalman [3] has shown that if the pair [A la B 1 ] in (4.62)

is completely controllable, if D
1

= in (4.18), and if

A 15 B p Q p and R are constant matrices, then K(t)->K (a con-

stant matrix) as t
f
-*». Clearly if these conditions are met

the Cassidy and Lee result can be extended to include the

infinite-time constant feedback controller. This is an

important engineering result since the matrices P and F.,

j=l,...,r, in equation (4.59) are constant matrices, con-

sequently their implementation would be very simple.

Under the conditions above, K = and equation (4.64)

becomes

= - AJK - KA + KI^lf^BJK - Q^. (4.66)

D. THE KAHNE CONTROL STRATEGY

In his paper "Low Sensitivity Design of Optimal Linear

Control Systems" [19] , Kahne has proposed a design technique

for the linear regulator problem that Is similar to that of

the previous section. As a further simplification however,

Kahne treats the problem in which the distribution matrix,

Bi(t), is not a function of the parameters, q. Additionally

Kahne neglects the term 8u/9q. entirely. He evaluates all

partial derivatives at q=q , the nominal parameter values.

With these assumptions, the system and sensitivity constraints

are defined by
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x(t) = A(t,q)x(t) + B(t)u(t) (4.67)

and

x(t ) = c

s
±
(t) = 3A

1
(t,q)x(t) + A(t,q)s

i
(t) (4.68)

s
i
(t ) =

The sensitivity equation (4.68) is obtained by taking

the partial derivative of (4.67) with respect to q., under

the assumptions stated above. Kahne ' s development con-

sidered only a scalar parameter qi. He hinted that exten-

sion to multiparameters is only a notational problem. The

extension to r parameters is indicated here.

The vector s.(t) is defined by equation (3-83); the

matrix ^a f t . n ) is ^^fin^^ bv

3A
±
(t,q) = SA(t,q)/9q

1
. (4.69)

The vectors, x(t) and u(t) 3 and the matrices A(t,q) and

B(t) are the same as those previously defined for (4.8).

The augmented system is defined as

r • ^
X

S 1

s-r

r
A . . .

<
• - {

-:

s i(t )

s (t )

\ ( \

3A, A . . . §1

• ><

fs)

dk ... A
-r - - /

r \
x(t )

+

c

u

> <
°->
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which can be written more compactly as

z = Ai z + BiU

(4.7D
z( t o ) = Zo .

Kahne defines the problem for low sensitivity design

as follows:

Find the admissible u*(t) that minimizes

I
t
f

(4.18)

J = 1^z'(t
f
)D

i
z(t

f ) + h \ [z'(t)Q
1
(t)z(t) + u'(t)R(t)u(t)]dt

'o

subject to the constraints of (4.71) > where D .Q , and R are

as defined in section B.

This optimization problem has the same form as that of

section A. Again the solution is well known.

The optimal controller is

u*(t) = -R
_1

(t)B;(t)K(t)z(t) (4.72)

where K(t) is the symmetric positive definite solution to

the Riccati matrix differential equation

K(t) = - AJ(t)K(t) - K(t)A
i
(t)

(4.73)

+ K(t)B
i

(t)R~ 1

B' (t)K(t)-Q (t)

K(t
f

) = D t

Performing the matrix multiplication to form BJK of

equation (4.72) indicates that
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f

B'(t)K(t)
f?'2'2'---2') i

5ii

£21

K

K

12

22

-l,r+l

^2,r+l

A

>

K
* * ' -r+l,r+lV^-r+1,1

={B'Kn B'K
12

. . . B'K
ljr+1] .

Using (4.74) in (4.72) yields the form of the control

(4.74)

law

In 1u*(t) = -R xB'[K nn x + .Z., K_ ,_ s.] . (4.75)- v - - L -ll- 1=1 -l,r+l -i J

Note that in this formulation the matrix A, in equation

(4.73) is not a function of K(t).

As in the Cassidw and Lee formulation if the condi-

tions mentioned at the end of section A are met, then as

t f+«j K(t)-*K (a constant matrix). Then again K =
3 and

equation (^.73) reduced to [(r+l)n] 2 nonlinear algebraic

equations. However, because K is symmetric only

[(r+l)n + l][(r+l)n]/2 of the equations need to be solved.

The structure of the low sensitivity control system

resulting from Kahne ' s approach is illustrated in Figure J.
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Figure 7. Block Diagram of Kahne ' s Low Sensitivity
Linear Regulator.
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V. APPLICATIONS OF SENSITIVITY DESIGN TECHNIQUES TO A
FLEXIBLE SATURN BOOSTER PROBLEM

A. THE PROBLEM

In order to investigate some of the proposed low-

sensitivity design strategies, a realistic problem was

studied. The problem was to find a feedback control sys-

tem for a large flexible booster and to apply several

techniques in desensitizing its performance to parameter

variations. The equations of motion and control theory

applicable to the stability and response analysis for a

large flexible launch vehicle were presented in detail by

Garner [35] and modelled by Rillings (Saturn V-Apollo con-

figuration) [36]. The dynamics of the Saturn V-Apollo

launch vehicle was formulated and several constant-gain

feedback controllers were obtained and evaluated.

It is well known that a long slender rod, unconstrained

at its ends, when excited by a radial force pulse will vi-

brate in bending modes and at frequencies determined by its

structural characteristics. The Saturn V-Apollo configura-

tion of a launch vehicle can be characterized as a long

slender rod having a length to diameter ratio of about 10:1.

The flexible character of this booster system must be taken

into account when designing the control system.

The large size of the Saturn V-Apollo configuration,

shown in Figure 8, makes determination of the parameters

describing its bending modes and frequencies extremely dif-

ficult. The parameters are generally determined by dynamic
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testing, and the resulting inaccuracies must be considered.

Therefore, the control system must not be sensitive to these

uncertain parameters

.

The problem is to design a constant-gain feedback con-

troller that gives adequate control when the uncertain pa-

rameters differ from the nominal values by as much as 20%.

105 —

Mk gimballed engines

(meters

)

Figure 8. Vehicle Configuration.

Assuming exact knowledge of all of the states, a con-

trol that consists of gimballing the engines producing the

thrust for the booster, and two frames of reference,

Rillings [36] developed the following linear differential

equations that describe the motion of the vehicle

76





rR T

(j,
= -

a = -

R'l

T

T-D
mv

"eg
CN'l

3 -
cp

a

N
<J>+ <f>

- I
— + -|a
'mv v [mvj

n =
R'Y(x )

•2^ajri - co
2
n + — — 3m

<f» d
= cj) + Y'(x

d )n

4»

r
=

d>
+ Y'(x

r )n

(5.D

(5.2)

(5.3)

(5.4)

(5.5)

where the variables are defined in Table 1. The state vari-

ables are defined as follows

H h
x 2 i

X3 =
>

a

x 4 n

U, U /

(5.6)

By substituting (5.4) and (5-5) into (5.1) and (5-2)

the following state equations are obtained.

„-< + [Y'(x,) - Y»(x )]nd Yr

N'l
y^ a-Y'(x

r
)a)

2 n-2ca)Y'(x
r
)n

(5.7)

R'l
eg

R*Y(x
R )

Y'(x )
£-

r m 6 (5.8)

a=- V
mv v
T-D

*a Y r
EL + Y_

mv v
a + Y'(x

d )

fT-D
mv
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- Y'(x )f\ - — 3r mv (5.9)

n = ri

R'Y(x )

n = - 03
2
n - 2cwn + —-^-R- 3

(5.10)

(5.11)

Making the notation compatible with that of chapter

IV, the control angle is defined by

y = 3 (5.12)

The uncertain parameters to which the system is gener-

ally very sensitive are co and Y'(x ). In the following

development only the single parameter, w, will be considered

in order to limit the size of the problem.

By defining the coefficients of the matrix A and the

matrix B as

a
1

= Y'(x
d ) a

2
= Y'(x

r )

N'l
a
3

=
"CD

2C

R'l
b
l

" eg

T-D v
a c = - —
5 mv v

K R '

" a
2
b
3

b
2

=
mT

N v
6 mv v

b
3

R'Y(x
3

)

m

equations (5-7) - (5.11) can be written in state variable

form as

x = Ax + by (5-13)

(5.14)
x
i

r
1 a -,

— a „
N

=

.

X
5,

—

a
5

1 -

a. -a
?
w -a^a^oo

"6 ^5

-to

V

-a,

-a^a)

( ,\
'1

> <

f \
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+

X
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TABLE I

Nomenclature

(f>
pitch angle

a angle of attack

n bending mode deflection

T thrust

D drag

m mass

I moment of inertia about C.G. (center of
gravity

1 distance from gimbal to C.G.eg

1 distance from C.G. to C.P. (center of
cp

pressure

v • vehicle velocity

R' thrust of gimballed engine

N' normal aerodynamic force coefficient

Y(x„) deflection mode shape at the gimbal
p

C bending mode damping

w bending mode frequency

Y'(x,)n displacement at the pitch angle gyro due
to the bending mode

•

Y'(x )n angular rate at the pitch angle rate gyro
due to the bending mode

<{>, pitch angle gyro output

<j> pitch angle rate gyro output

$ gimball engine angular deflection
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B. OPTIMAL SOLUTION

All of the parameters in A and b vary considerably

during the launch phase as functions of time. However, in

order to simplify the example a frozen-time-point model of

the vehicle was used. The control system for the time-

invariant system should be designed for the most critical

time of the launch phase. For this problem the time t = 80

seconds was chosen. At this time the vehicle is subjected

to extreme aerodynamic forces and wind disturbances. Zero

problem time in subsequent solutions corresponds to flight

time, t = 80 seconds. At t = 80 seconds the coefficients

a. have the numerical values [36]'.

a = 1.5X10
-2

a
2

= 7.0X10
-3

a^ = -2.03X10
-1

a^ = 2.00X10 a, = 1.37X10
5

-2
a
6

= 4.07X10
-2

b, =-6.15X10
-1

b
2

= 3.3^X10
-2

b^ = 2.55X10
.

The A matrix of equation (5-13) becomes

-1

1.

2.03x10

-< -1.37X10
-2

1. -4.07x10

V

-3 13X10

2 05X10

-4 .47X10

1

(5.15)

8.0X10
-3

-9.36X10"
11

-7.0X10" 3
>

1

-1.34X10 ,

where w = 6.68.
o

b =

The b vector becomes

-1
6.15X10

/-3- 34X10"^ V

^ 2.55X10
+2
y

(5.16)

80





The pair [A,b] above are completely controllable;

therefore, the optimal control

y «(t) = - ^b'Kx(t) (5.17)

or

y*(t) = f'x(t)

that minimizes the performance measure

(5.18)

i
CO

[x'Qx + py
2 ]dt (5-19)

has a constant gain vector f '

.

The optimal control for this system was obtained by

integrating the Riccati equation

K=-A'K-KA+KB-B'K-Q (5-20)

backwards in time until a steady state solution was ob-

tained using a 4^h-order Runge-Kutta 1 integration scheme.

Although K is a 5X5 matrix, only 15 equations were solved

due to symmetry. The constant-gain vector is given by

ft - _ I b t K
p

(5.21)

The matrix Q and weighting factor used in the optimal

solution were

f \
.75

.01

3-5Q - < >

V J

(5.22)

Subroutine RKLDEQ, NPS Computer Facility.
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and

P = 1. (5.23)

The optimal control with oa = o) was found to be
(5.24)

f' = {1.23 1.98 .976 -.0229 -.0153).

The optimal trajectories, with to = oo , for xi, X2,

X3, and Xi, versus time are shown in Figure 9. These curves

were obtained using an initial condition pitch angle rate

of 5°/sec. to simulate a severe wind gust. The pitch angle,

xi is seen to damp out quite rapidly, however there is con-

siderable oscillation at the natural bending mode frequency.

The bending mode deflection, xi» a measured at the gimbal

station, is large but damps out quite rapidly. The angle

of attack stays small and returns close to zero in about

three seconds. The angle of attack then remains at a small

acceptable negative value for quite a long time.

In order to observe the effects of parameter varia-

tions on the system, the normalized trajectory error was

defined as follows. Let x. be the trajectory determined

using the perturbed parameter, 00, and let x. be the tra-

jectory determined using the nominal parameter, ooo , then

the normalized error, e., is defined by

x. - x.

e. = -i 12
. (5-25)

1 03 - 00

In determining sensitivity in this way, there is no ques-

tion about sensitivity model approximations, or concern

about excluded terms.
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2 -

t'\

:, - Pitch angle (deg)

A
Vw' «»

(sec)

5 J

x
2

- Pitch angle rate (deg/sec)

+-A ^>v ,-—v- _v^ ^.^
(sec)

N
x^ - Angle of attack (deg)

\

(sec)

2 -

Xk - Bending mode deflection (m)

(sec)

Figure 9. Optimal Control: u = co ; Y = Y
o 3

o
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Error trajectories for pitch angle, e.. , and bending

mode deflections, e^, along with the control, y, are shown

in Figure 10 . These curves were generated by using an ini-

tial condition of 5°/sec. for pitch rate. The perturbed

parameter was a) = . 8 oo . The pitch angle error trajectory

e. , is oscillatory at the frequency, to. It reaches a peak

value of about 1.2 and decays slowly to about 0.4 after 6

seconds. The bending mode deflection error trajectory, e^.,

was observed to have about the same general characteristics.

The control history had a large initial value of about 10°

which decayed rapidly to a small value. The coupling of

the bending mode frequency onto the control was small but

noticable

.

These normalized error results were difficult to

analyze meaningfully. They indicated that if parameter

variations were increased, that the error would be in-

creased also, but this was already known from (5-25).

In order to establish a measure for the sensitivity

of a system which provided a meaningful basis for compari-

son, the following integral squared errors were defined,

j
X

f x'xdt (5-26)

*t

J =f s'sdt (5-27)
s J - -
~

and

t

u J

f

py
2 dt. (5-28)
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e., - Normalized pitch error (sec)

J.
r\

g vŷ
X

8 (sec)

e^. - Normalized bending mode deflection

(m-sec/deg)

10

.

u - Gimbal angle (deg)

' 2V ,-

(sec)

Figure 10. Optimal Control: Aoo=o) - 0.8-U) ; Y = Y
O
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The vector, s } in (5.27) was the same as that defined by-

equation (3.83). For the optimal controller, and nominal

plant, with t
f

= 20 seconds, the values were

and

J = 41.0
x

J
s

= 1,550

J = .0393.
y

In order to obtain more information about the sensi-

tivity of the system to variations in w , the response of

the optimal system was obtained for 00 = . 8w . The re-^ J o

suiting trajectories for xj, x 2 3 x 3 , and Xi» versus time

are shown in Figure 11. Additionally, J , J , and J

were computed for this case. The result with t .
= 2n

seconds was

J =66.1
x

J = 146.4
s

J = 0.0392.
y

The system was excessively sensitive to a 20% variation in

a) . Additionally, the maximum bending mode deflection of

about 2.0 meters was excessive.

In order to reduce the sensitivity several proposed

techniques were utilized. The results are reported in the

following sections

.
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2 _ x_ - Pitch angle (deg)

J__
(sec)

x - Pitch angle rate (deg/sec)

^\-^
\y s (sec)

2 -

\
x - Angle of attack (deg)

JL-- _6

—

—st(sec)

A

Xk - Bending mode deflection (m)

/-\
"N

_/

-V; ^ X * -=t
(sec)

Figure 11. Optimal Control: w = 0.8 u : Y = Y
o 3 o
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C. KAHNE'S METHOD

By augmenting the system equation (5-13) with the sen-

sitivity equation

Sl (t) = 3A
1
(o))x(t) + A(u)s

1
(t) (5-29)

the augmented system

z(t) = A
1
(co)z(t) + bjy(t) (5.30)

was obtained. The matrix 9Aj = 3A/3o) a was defined by

/

iA
1

= <

-2a
?
w -apa^,

-2w -a,,

\

(5-31)

where the matrix A was defined by (5.1*0. The vector b

was defined by

b

b, (5.3?)

The matrix A, of equation (5-30) was defined by the parti-

tioned matrix (

a :

Si
=

8 ^i
:

h.

)
(5.33)

The numerical values for A and b were defined by (5-15) and

(5.16). The numerical values for the matrix 8A n were the-1

following
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8A
1

=
<

-9.36x10'

-1.34X10
+1

\

-i.4xio
-i|

>

-2.0X10
-2

, •

(5.34)

The pair [A . b
1

] were not completely controllable for

this case. Under these circumstances , the problem could not

be cast as an infinite-interval process, hence there was no

guarantee that a solution with constant-gain feedback existed

Following a suggestion by Kirk [2] , the problem was cast as

a finite time problem of long duration. The problem was de-

fined to find u(t) = f'(t)z(t) such that the performance

measure

fc

f

J + 1^z'(t,)D
1
z(t„) + hi [x'Qx + s'Ws + pu

2 ]dt (5-35)
f f

was minimized. The final time t
f

was chosen to be 200 sec-

onds and the value of the weighting matrix was D = 0.

The weighting matrix Q and scalar p were defined by

(5.22) and (5.23) respectively. The matrix W was defined

by

w = <

.01

.01
V

(5.36)

J

The Riccati equations were integrated backwards in time

and a nearly steady state solution was reached. Since t„ =
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200 seconds was much longer than the interval of interest,

the time-varying gains were approximated by

f
f = _ 1 b{K(0) . (5.37)

It should be noted that obtaining the above solution re-

quired the solution of 55 nonlinear differential equations

,

where the advantage of the symmetry of K(t) was used.

The numerical values thus obtained for the feedback

gains were

f = {1.25 2.5^ 1.06 -.287 -.0526
(5.38)000 -.494 -.0636}.

The trajectories for pitch angle, x. , pitch angle rate,

x
p , angle of attack, x„, and bending mode deflection, x^

,

for co = co , are show 1
"

1 on Fi^ur^ 12. Tho oscillations which
o 5 " Q

were present in Figure 9 are gone. The peak value of pitch

angle has increased to about 3° . The over-shoot of angle of

attack is also increased. The maximum bending mode deflec-

tion however has been reduced to about half of the value

obtained with the optimal controller, and the oscillations

at the bending mode frequency have almost been eliminated.

Figure 13 shows the sensitivity functions, s., = 8X../90),

Sj, = 9xj./9o) and the control history, u, for w = u . These

sensitivity terms were reduced considerably compared to the

optimal solution with no sensitivity considerations included

The values of J , J , and J , with t~ = 20 sec. and
x £ u f

a) = 03 were
o
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1

- Pitch angle (deg)

= t

(sec)

x
2

- Pitch angle rate (deg/sec)

(sec)

Z 2

x^ - Angle of attack (deg)

(sec)

1 x^ - Bending mode deflection (m)

(sec)

Figure 12. Kahne Control: oj=o) : Y = Y
o 3

o
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s - Pitch angle sensitivity (sec)

o > (sec)
/

s^ - Pitch angle rate sensitivity (-)

(sec)

s^ - Bending mode deflection sensitivity
[ (m-sec) /deg ] __ ,

2 * 6 8 (sec)

1,
-

-

y - Gimbal angle (deg)

8 , N t
(sec)

Figure 13. Kahne Control: cd = to : Y = Y
o o
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J = 2.64
x

J = .423
s

and

J = .0596.
P

Figure 14 shows the trajectories with the parameter,

a) = . 800 . The trajectories x n and x» changed less than
o ° 13

10$ from nominal at their maximum value, however, x^, in-

creases by almost 65$. This was a greater percentage change

than the approximately 45% change that occurred with the

same parameter variation for the optimal system. However,

in this case even with a parameter change of 20$, the maxi-

mum bending mode deflection was about 1.2 meters which is

considerably less than the 2 meters for the optimal case.

The values of J , J , and J , with t„ = 20 sec. and
x' s/ u* f

= . 800 were
o

J = 3.82
x J

and

J = .538
s

>J

J = .0591 ••

Figure 15 shows the sensitivity functions, s.. = 3x.V8w,

s h
= ^x^/Boo, and the control history, y, for w = O.800 .

The system with Kahne's controller was considerably

less sensitive than the optimal system. In order to improve

the sensitivity a trade-off between the variations of x., , x„,

and x and the variations of x,. and x_ and the sensitivity

trajectories occurred. There was large variation in the control
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2 —x
XsecT

1_
Xk - Bending mode deflection (m)
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Figure 1*1. Kahne Control: co=0.8a) ; Y = Yto o o
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- Pitch angle sensitivity (sec)

*

h-

8 (sec)

s
2

- Pitch angle rate sensitivity (-)

O"
(sec)

t

h\

_,

s i,
-

"'Z

/

Bending mode deflection sensitivity
— —-====*--. [ ( mjr.Se c ) /degj t

(sec)

5 i

A
V.

u - Gimbal angle (deg)

0-
8 (sec)

Figure 15 . Kahne Control: oj =
. 8co : Y = Y

o 3 o
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magnitudes. Kahne's controller also resulted in a con-

siderable change in the oscillation frequency and magnitude

of the bending mode deflection which was a desired result.

D. CASSIDY AND LEE'S METHOD

In this case the system equation (5-13) was augmented

with the sensitivity equation

Sj(t) = 3Ai(oj)x(t) + A(a))si(t) + 9Bi(u)y(t)

s
x
(0) = 0.

The augmented system equation was

z(t) = A
1
(w)z(t) + bjy(t)

.

(5-39)

(5.^0)

The matrix A.(a)) was defined by the partitioned matrix

A =
-

1

»&,

.1

(5.4D
A

where A and 3A X
were defined by (5.14) and (5.31)* respec-

tively. In this case the vector b was not a function of

oo, therefore 3Bj = and

b

b,- { > (5-42)

J

The matrix A from equation (4.61) was A = A + bf'. Ex-

pressing A in terms of elements of K instead of f, A =

A - 1/p bb'K..- which is the applicable expression obtained

from (4.65). The nXn matrix K . was defined by the parti-

tioned matrix
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£ll

K =
K
21

^12

K
22

(5.43)

The numerical values for A, 3A 3 and b were defined by

(5.15)} (5.16), and (5.3*0 respectively. The numerical

values for A remain to be determined.

The problem was to find the u* = f'z that minimized the

performance measure (5-35) with weighting matrices Q and W

and the weighting scalar p defined by (5-22), (5. 36), and

(5.23).

The modified 2nX2n matrix Riccati equation

K =
d&{

A' -K-.-.bb'

K '. K-11 : -12

K ' K
-21 ! -22

^llj ^12

K * K-21 : -22

0-44;

+ Kbb'K-
A-bb 'K

K(t
f

) =

was integrated backward in time until a steady-state solu-

tion was obtained.

1
The numerical values obtained from f = - — b'K nn were

p - -11

f' = { 1.23 2.28 1.03 -.124 -.0352

1.33 2.28 1.07 -.272 -.0092} .

(5-45)

In this case with the numerical values of A determined,

the pair [A, b] were completely controllable, therefore the

conditions for the infinite-interval regulator problem to

have a steady state solution were satisfied.
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Figures 16 and 17 show the Cassidy and Lee control sys-

tem trajectories x
]

, x„, x~, Xk, s. , s~, Sk, and y versus

time for 00 = oj . Comparing them to Figures 12 and 13

(Kahne control system) showed small differences. Figures

18 and 19 for the Cassidy and Lee control system, with

a) = O.800 , when compared with Figures 14 and 15, the com-

parable trajectories for the Kahne control system, also

showed small differences. One concludes that the two

methods were approximately equivalent in sensitivity reduc-

tion and control. Comparing J , J , and J between the two
x s

• V

systems indicated that the Cassidy and Lee controller led

to a less sensitive system but at a greater cost in J .

The values J , J , and J , with t^ = 20 sec. and oj =oj
x s ' y '

1

wore

J = 3-785
x

and

J = .2909
s

J = .0^91
y

For oj = . 800 the values were
o

J
x

= 5.727

J = .^758
s

and

J = .0488.
y

Of course, all of the results obtained above were di-

rectly related to the weighting matrices Q and W used in the

problem solutions. Both of these matrices were obtained by

trial-and-error techniques.
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x - Pitch angle (deg)

8 (sec)

x„ - Pitch angle rate (deg/sec)

(sec)

x - Angle of attack (deg)

(sec)

x^ - Bending mode deflection (m)

(sec)

Figure 16. Cassidy and Lee Control co = w ; Y
o 3

= Y
o
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h s
1

- Pitch angle sensitivity (sec)

8 (sec)

s^ - Pitch angle rate sensitivity (-)

8 (sec)

V

s^ - Bending mode deflection sensitivity
[(m-sec)/deg]

T (sec)
•t

y - Gimbal angle (deg)

8 (sec)

Figure 17. Cassidy and Lee Control: to = w ; Y = Y
o o
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x
1

- Pitch angle (deg)

(sec

)

2
- Pitch angle rate (deg/sec)

. V ,
8 (sec)

2 .

-o--

x^ - Angle of attack (deg)

_e t

(sec)

x^ - Bending mode deflection (m)

s (sec)

Figure 18. Cassidy and Lee Control: w=0.8u : Y = Y
o 3

o
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k~\

o „
s - Pitch angle sensitivity (sec)

y (sec)

/

s 9
- Pitch angle rate sensitivity (—

)

(sec)

-

Sji - oending mode deflection sensitivity

[ (m-sec)/deg]

(sec)

-.

y - Gimbal angle (deg)

(sec)

Figure 19- Cassidy and Lee Control: to = to \ Y = Y
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The weighting matrix, Q, was obtained by guessing a

suitable form, solving the Riccati equation, and obtaining

the resulting system trajectories. The values in Q were

perturbed until a system that was sensitive to variations

in oj was obtained. In addition to the sensitivity re-

quirement, the maximum control magnitude was to be less

than 10° and pitch angle, angle of attack and the maximum

magnitude of bending mode deflection were to be small.

These criteria were partially achieved.

The weighting matrix, W, was selected from considera-

tions of control, trajectory and sensitivity dispersions as

indicated by the integral measures J , J , and J . A para-J to
u x s ^

meter, X, was defined such that

° 1

The Kahne solution was obtained for various values of X.

The values of J , J , and J were obtained, for each system
u x s ' J

determined by the values of X, by integrating (5.26), (5.27)

>

and (5.28) with u) = u) and t
f

= 20 sec. The integrations

were repeated for w = . 8co . Two additional integral mea-^ o

sures J~ and J Tr were defined by
IqJX WS

I £'9^ (J
Qx

= I x'Qxdt (5.47)
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and t„

/
J
Ws

=
j sdt . (5.48]

The values of these integrals for w = cj and oo = . 8wto o o

with t
f

= 20 seconds were determined. Table II contains

the values of J . J n . J , J,
r , and J determined for the

x i^jx s w s y

Kahne control system with w = to . Values were determinedJ o

corresponding to a range of values for X from X = (the

optimal control) to A = 1. The Cassidy and Lee solution

for X=.01 is also included. Table III contains the same

information for to = . 8a) .

o

From the data in Tables II and III the trade-off

curves of Figures 20 - 23 were obtained. Figure 20 shows

the dispersion of J versus the dispersion of J ; this^ x ^ s

result is contrary to that obtained by Cassidy and Lee as

shown in Figure 10 of [22]. The results indicated by Fig-

ure 20 were as expected for this problem, however, since

the weighting matrix Q used in the performance measure in-

dicated a lack of concern about states x,. and x,_. It was

expected that they would contribute heavily to J as they

did for the optimal case. The weighting matrix W on the

other hand was such that emphasis was placed on states x^.

and x r .

Figures 21 and 22 indicate the cost in terms of control

required to obtain a measured value of state and sensitivity

trajectory dispersion respectively. Figure 23 indicates the

optimal cost J* = J„ + J , as a function of sensitivity tra-
Qx \i

3

jectory dispersion.
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TABLE II

INTEGRAL MEASURE VALUES

03 = CO

X J
X

J
Qx

J
s Ws

J

1

41.0 3.4X10
-3

1,550 0.0 .0393

ID"
6 20.1 3.4X10" 3 153 1.53X10"

14

.0401

10-5 12.4 3.6X10" 3 32 3.l6X10
-i]

.0414

-4
10 7.4 4.1X10

-3
6.5 6.5X10"

11

.0438

10~ 3 4.4 5.3X10" 3 1.5 1.5X10" 3 .0487

lO"
2

2.6 8.1X10
-3

.42 4.2X10" 3 .0596

10" 1
1.5 1.7X10"

2
• 15 1.5X10

-2
.0881

10"°
• 99 4.3X10

-2
.063 6.3X10"

2
.1176

C&L
2

3.8 5.4X10" 3 .29 2.9X10" 3 .0491

1 Optimal Solution

2 Cassidy and Lee Solution with X = .01

TABLE III

INTEGRAL MEASURE VALUES

w = . 8u>

X J
X Qx

J
s Ws

J

66.0 3-9X10" 3 146 .0392

lO"
6

33.5 4.0X10
-3

80 8.0X10" 5 .040

lO" 5 19.7 4.4X10
-3

30
-4

2.9X10 .0412

lO'
4

11.5 5.4X10
-3

7.2
-4

7.2X10 .0436

10" 3 6.7 7.7X10" 3 1.8 1.8X10" 3 .0484

-2
10 3.8 1.4X10"

2
• 54 5.4X10

-3
.0591

lO"
1

2.1 3.4X10"
2

.20 2.0X10"
2

.0875
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TABLE III (continued)

10° 1.4 1.1x10 -1
.094 9.4X10'

C&L 5-7 8.0X10" 3 .476 4.8X10'

-2

-3

.1774

.0488

By studying the trade-offs indicated by Figures 21, 22,

-2 -3and 23, a choice of X = 10 or 10 J becomes obvious. A

_2
value for X = 10 was chosen. Figure 20 was checked with

this value and the choice was further confirmed.

This was the method used for choosing the weighting

matrix W; a trial-and-error method with added performance

curves to aid in the design.

The Kahne solution for X = .01 was chosen to be compared

with the Cassidy and Lee solution for the same value of X.

This was done and the results indicated previously further

confirmed the choice of X

.

E. USE OF Q MATRIX FOR REDUCED SENSITIVITY

Kalman [16] proved that the optimal feedback control

law u* that minimizes the performance

t

/
f

[yx'Qx + y
2 ]dt (5-49)

and satisfies the constraints of a completely controllable

linear single-input plant can be desensitized by the ap-

propriate choice of y. The assertion is that as y increases

the return difference increases and sensitivity to plant

parameter decreases. The example of this chapter was solved

for y = 2.0 and for y = 10.0.
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Figure 20. J vs . J , trade-off data
x s

X=l

y

151

.10

5.

0J = O3

X = 10 5

—BK
A = 10"

10 15 20

Figure 21. J vs . J , trade-off data.°
y x'

10 7





II

.15

.10 = 0.8to

05

0J =W

—i

—

10
—i

—

15 20

Figure 22. J vs . J , trade-off data,
y —

—r~

15 20
J

Figure 23. J* vs. J . trade-off data
s
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The solutions were obtained in exactly the same way

that the optimal solution was obtained except that the

weighting matrix Q was multiplied by y.

The gains obtained for y = 2.0 were
(5.50)

f' = { 1.77 2.36 1.29 -.0346 -.0186}.

Figure 24 shows the trajectories x. , x
? , x..., and x^

versus time for to = co . The trajectories were almost

identical with those of Figure 9, the optimal case, y = 1.0;

the maximum value of x^ was larger, 1.55 compared to 1.4.

The trajectories of Figure 24 were slightly more damped

than those of Figure 9-

Figure 25 shows trajectories x., , x
? , x~, and x^. versus

time for a) = . 800 . These trajectories were substantially

the same as the comparable optimal trajectories of Figure

11.

Although the maximum control amplitude increased by

about 1.2°, there was not a significant improvement in the

sensitivity of the system, as indicated by Figure 26.

The gains for y = 10.0 were
(5.51)

f' = (3-97 3.74 2.69 -.0886 -.0303}.

With a maximum control value of 19
°

s twice that for the

optimal solution, a system with considerably more damping

was obtained. However, the maximum bending mode deflection

was also increased. The results are shown in Figures 27,

28, and 29. As predicted by Kalman, the resulting system

was less sensitive with y = 10.0 than for y = 2.0 or

y = 1.0

109





A
x
1

- Pitch angle (deg)

V

V 2
V^ = t

(sec)

-

x
2

- Pitch angle rate (deg/sec)

/X^^V
(sec)

x^ - Angle of attack (deg)

/ \\

jx.
:: t

(sec)

2 -

-f

x^ - Bending mode deflection (m)

\ J
A

S—X / \ r^= _ 1.^-"^6
8 (sec)

Figure 24. Optimal Control (y=2) :: co=co ; Y=Y
o

'

o
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2 -

-

x, - Pitch angle (deg)

C\ /v .
J-

o -

l

( sec)

x
2

- Pitch angle rate (deg/sec)

^1_

V

^-3- —

t

(sec)

/ "\ x - Angle of attack (deg)

(sec)

x^ - 3ending mode deflection (m)

-t
8 (sec)

Figure 25- Optimal Control (y = 2) : to = . 8oo : Y=Y
o J o
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2 -

e - Normalized pitch angle error (sec)

A " A
t •^- s—-^=

\J (sec)

Normalized bending mode deflection error
[(m-sec)/deg]

_, .

«-' ^.—/c—

^

\_X V,^ — t
8 (sec)

10

y - Gimbal angle (deg)

7S '7 ^3^

—

(sec)

Figure 26. Optimal Control (y=2): Aw=w-0.8co ; Y=Y
o o* o
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x
1

- Pitch angle (deg)

.

(sec)

5 .

x
2

- Pitch angle rate (deg/sec)

.

(sec)

x^ - Angle of attack (deg)

\ — t

(sec)

x^ - Bending mode deflection (m)

J Y X_^
77V./ (sec)

Figure 27. Optimal Control (v=10) : u)=a) ; Y=Y
o o
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2-

0-

x - Pitch angle (deg)

*y (sec)

—

x^ - Pitch angle rate (deg/sec)

(sec)

1 -

J

x - Angle of attack (deg)

™-2-

(sec)

-

ending mode deflection (m)

8 (sec)

Figure 28. Optimal Control (y = 10): o>=0 . 8u> ; Y=Y
o ' o
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1

e^ - Normalized pitch angle error (sec)

r\
8 (sec)

e^ - Normalized bending mode deflection
[(m-sec)/deg]

(sec)

15

10

M - Gimbal angle (deg)

8 (sec)

Figure 29. Optimal Control (y=10) Aw=w -.08o) : Y=Y
o o o
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F. DISCUSSION OF RESULTS

All of the methods used resulted in a system with re-

duced sensitivity compared to the optimal solution. The

Kahne and Cassidy and Lee solutions were obtained by con-

siderably increasing the size of the problem (55 Riccati

equations versus 15 for the optimal solution) . The com-

plexity of the problem increases enormously as additional

parameters are considered. For example, if the parameters

q = fii) Y'(x )}' in the example had been used then 120

Riccati equations would have been integrated to obtain the

solution. Application of these methods to a system in

which the product n(r+l)>10 results in almost prohibitive

computational difficulties. Integration of the 55 Riccati

equations for the example with t r
= 100 sec. and using the

largest possible time step that gave a stable solution, re-

quired 19 minutes of computer 2 time. This amount of com-

puter time is quite large when compared with the two minutes

required for the solution of the optimal control.

One of the advantages cited for using a technique that

includes sensitivity in the performance measure is that it

provides analytical control over the degree of insensitivity

obtained. Figure 20 and Figure 21 show that this is true;

however, one must add that obtaining the weighting matrix

W that provides the degree of sensitivity required is a

trial-and-error procedure. The data in Tables II and III

2

IBM - 360/67.
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were obtained by solving the Kahne problem seven times and

the Cassidy and Lee problem and the optimal problem each

once. This required over 160 minutes of computer time, a

very great cost for most designs. The point is that these

techniques were trial-and-error techniques as was finding

the optimal solution, because no method of determining the

weighting matrices Q and W was available.

As stated earlier, there were two parameters to which

the system was sensitive. The parameter q = w was chosen

for the example because it did not appear in the b matrix

and therefore Kahne's technique was applicable. Desensi-

tization of the system was achieved with respect to the

parameter, oo , but what of the parameter, Y'(x )? There was

nothing in the analysis technique that indicated how the "de-

sensitized" system would respond to variations of a para-

meter not explicitly included in the performance measure.

In fact it could very well happen that desensitizing with

respect to one parameter might increase the sensitivity

with respect to another. A designer having obtained a

tentative solution to his control problem must check the

sensitivity of the system to variations of the other plant

parameters. In this example a check on sensitivity to

Y'(x ) only was made.

The optimal control, the Kahne control, and the Cassidy

and Lee control were each applied to the plant model with

the parameters Y'(x ) = 1.2Y'(x ) (increasing Y'(x ) pro-

duced the greatest sensitivity) . The optimal system was
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unstable in this case as indicated by trajectories x 3 x ,

x , and Xk shown in Figure 30. The values of the integral

measures for Y = 1.2Y were
o

J = 1794
x '

J

and

J
s

= 52,350

J = .0429.
y

The Kahne system response with Y = 1.2Y_ was very

nearly identical to the nominal system as shown in Fig-

ure 31 and Figure 32. The values for the integral measures

for Y = 1.2Y were

J =2.79
x

J =0.44 3

and

J = 0.0596.
y

These values were very little different from those

obtained for go = w and Y = Y shown in Table II. In fact
o o

the system was less sensitive to variations in Y than it

was for variations in u.

The Cassidy and Lee system response with Y = 1.2Y

was also close to the nominal system as shown in Figure 33

and Figure 34. The variation was only a little larger than

that noted for the Kahne controller. The values for the

integral measures for Y = 1.2Y were
o
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r\

- Pitch angle rate (deg/$ec)

1 J x - Angle of attack (deg)

X
- t

(sec)

-1

Xj, - Bending mode deflection A(m)

Figure 30. Optimal Control: a> = u) : Y = 1.2Y° -> f j
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2 -
x

n
- Pitch angle (deg)

(sec)

5
"

x
p

- Pitch angle rate (deg/sec)

t

(sec

)

\
/ \ x - Angle of attack (deg)

%

(sec)

-

-

c

*n

'

"V

2

x ,,
- Bending mode deflection

t

(sec)

Figure 31- Kahne Control: to = u) : Y = 1.2Y
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s, - Pitch angle sensitivity (deg-m)

(sec)

„

s
2

- Pitch angle rate sensitivity
[ (deg-m)/sec]

V

s^ - Bending mode deflection sensitivity (m 2
)

-^ -J

( sec)

10 -

5 -

y - Gimbal angle (deg)

( sec)

Figure 32. Kahne Control: w=03 ; Y = 1.2Y
o o
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X.. - Pitch angle (cleg)

"5"' = t

(sec)

x^ - Pitch angle rate (deg/sec)

8 (sec)

j.

x - Angle of attack (deg)

\

2 (sec)

2 -

^
-

f\
-
1 V.

~2

Xj. - Bending mode deflection (m)

8 (sec)

Figure 33. Cassidy and Lee Control: to =co ; Y = 1.2Y
o o
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s, - Pitch angle sensitivity (deg-ra)

(sec)

s
2

- Piti

o -

Tr
\ f

2

Pitch angle rate sensitivity
[ (deg-m)/sec]

(sec)

-

Si. - Bending mode deflection sensitivity
4 /„2 \

(mi-X

(sec)

10

u - Gimbal angle (cleg)

_

1

A

5 -

l/\

n .

•-v^^
-^2 8 (sec)

Figure 3^- Cassidy and Lee Control 03=00 ; Y = 1.2YJ o
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J =4.16
x

J = 0.28
s

and

J = 0.049.
y

It is interesting to note that the system sensitivity with

respect to w for Y = 1 . 2Y was slightly less than for

the nominal case, J =0.28 compared to J =0.29. As

was true for the Kahne controller, the Cassidy and Lee

controller was less sensitive to variations in Y'(x ) than it

was to variations in w.

For this problem, the Kahne control system and the

Cassidy and Lee control system provided very similar results

in terms of sensitivity reduction as measured by the inte-

gral measure J . The Kahne controller provided this result

with a less complex controller and with less computational

difficulty (A was not a function of elements of K for the

Kahne solution)

.

Since the methods discussed were all essentially trial-

and-error methods, perhaps more effort should have been put

into finding a weighting matrix, Q, for the optimal case

that gave results similar to those of Cassidy and Lee and

Kahne. It is not at all clear how one obtains weighting

matrices that provide the desired result. For example, in

the case of the problem presented in this chapter an at-

tempt was made to solve the Riccati equation with Q = I.

A solution could not be obtained because the integration

quickly became numerically unstable.
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A second optimal solution with weighting matrix

\

.75

Q = <

.01

3.5

.01

01

(5-52)

J

was obtained. The feedback gains were

f' = {1.25 2.98 1.16 -.246 -.116} (5-53)

This control law resulted in a system with greatly improved

sensitivity and performance, compared with the previous op-

timal solution, as indicated in Figures 35 - 38.
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x- - Pitch angle (deg)

(sec)

5-

..

\ x - Pitch angle rate (deg/sec)
V c.

8 (sec)

2 -

J.

r\ Augle of attack (deg)

..^6-

(sec)

Xu - Bending mode deflection (m)

(sec)

Figure 35. Optimal Control II: u)=w : Y=Y
o o
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(sec)

\
\
\ x

2
- Pitch angle rate (deg/sec)

\

\

(sec)

\ x^ - nngie or attack (deg)

6 ^___ « .t

-""" (sec)

1

-1

x^ - Bending mode deflection (ra)

8 (sec)

Figure 36. Optimal Control II: to=0 . 8w : Y=Y
o ' o
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x
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/' \
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8 (sec)
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o -:
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Figure 37. Optimal Control II: w=w ; Y=1.2Y
o
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Figure 38. Optimal Control II: Aco=o)-0 ta ; Y=Y
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o
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VI. CONCLUSIONS

A . SUMMARY

In this thesis several sensitivity analysis and design

techniques as applied to optimal control systems have been

evaluated. Of the methods of sensitivity analysis examined

none provided a clear direction for extension to design

techniques

.

The basic results of Kalman, Perkins and Cruz, and

Kreindler, applicable to linear regulator systems, provided

an important bridge between optimal control theory in the

time domain to classical control theory in the frequency

domain. The direct relationship between stability and in-

sensitive ty demonstrated in the discussion of Kalman'? work

may contain a key to methods for applying some of the clas-

sical design techniques to the solution of desensitized

linear regulators. This possibility will be discussed in

the next section.

A sensitivity analysis model for optimal feedback sys-

tems was developed following well known methods. The re-

sulting sensitivity equation was specialized to the linear

regulator problem. The main disadvantage of this approach

is that an independent analysis is required for each para-

meter considered. The Perkins and Wilkie analysis method

eliminates this disadvantage for completely controllable

linear regulators by solving for trajectory sensitivity to

all parameters simultaneously. This is accomplished by

transforming the state equations to the companion canonic
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form, in which all of the parameters of the original system

combine to form the coefficients of the open-loop character-

istic equation.

Utilizing the sensitivity equation

du
s. = 9A.x + BB.u + As. + B tc (3-84)
-l -l- -l- — l - 3q.

an optimization problem with sensitivity constraints was

formulated and solved for the linear case. The resulting

control law, due to Higginbotham, proved to be very diffi-

cult if not impossible to implement. Two simplified tech-

niques, resulting from simplifying assumptions and neglected

terms in the sensitivity equation, as proposed by Cassidy

and Lee, and Kahne were introduced. These schemes required

augmenting the n^h-order system equation with r n^-order

sensitivity equations, and including a quadratic sensitivity

term in the performance measure. The increase in size and

computational difficulty of the resulting optimization prob-

lem severely limits the utility of these techniques.

In order to apply some of the techniques discussed, a

^th_order linearized model of a flexible Saturn V-Apollo

launch vehicle during booster powered flight was presented.

An optimal (intentionally sensitive) solution to the re-

sulting linear regulator problem was generated. The state

equations were then augmented with the Kahne sensitivity

equations and the resulting 10th_ order optimization problem

was solved. The Cassidy and Lee solution was also obtained.
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Both of these methods yield control laws that provide con-

siderably reduced sensitivity compared to the optimal sys-

tem.

Kalman suggested that sensitivity could be decreased

by solving the modified optimization problem obtained by

multiplying the trajectory weighting matrix, Q, by a scalar

y. Solutions to the resulting problem with y = 2 and

Y = 10 were obtained. The resulting systems were indeed

less sensitive than the optimal with y = 1, but at a cost

of considerably more control effort.

The problem was also solved as an unconstrained optimal

control problem with a different trajectory weighting ma-

trix, Q. The resulting system had sensitivity characteristics

similar to those obtained by the Cassidy and Lee, and Kahne

methods

.

With these results one is forced to ask "why bother with

these extremely complex techniques, if the same result can

be obtained by solving the much simpler unconstrained optimal

control problem"? The answer is not at all clear since both

approaches are trial-and-error with respect to determining

weighting matrices. It was clear, however, that a better

unconstrained design would be obtained if sensitivity were

considered at each iterative step in the design process.

Generating the data for the design curves of Figures 20-23,

once the feedback gains were obtained, required much less

computational effort than solving the Riccati equation.

Similar design aids could be generated and used in obtaining

the "best" unconstrained optimal solution.
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B. RECOMMENDATIONS

A design technique for reduced sensitivity optimal

controls which does not require augmenting the state equa-

tions or adding a term to the performance measure would be

a highly desirable result. An area for further work with

this in mind was found in Kalman's result for the inverse

problem [16]

.

The basis for the design algorithm to be outlined is

contained in the following ideas

:

1) A completely controllable linear single-input sys-

tem can be transformed into the companion canonic form.

2) The system characteristic equation is invariant

under such a linear transformation.

3^ A " "h ^V~i ^ P n^v-.f vinl Iot.t -P fAv> a n r^mr\ 1 of ol \t r> n n t" 1° "1 —

lable linear single-input system is an optimal control law

if and only if

|
1 - f'<D( s )b| 2 = |Y (s)/¥(s)

|

2 >1 (3.25)
k

or

ik (ju.)
|

2 - |ip(jo))
|

2 >0. (6.1)
k

^t) The polynomials ik anc^ ^ are the closed-loop and

open-loop system characteristic polynomials

.

5) For a system in companion canonic form, if the

open-loop characteristic polynomial is

V(s) = s
n

+ a s
n_1

+ ... + ai (6.2)
n

then the closed loop characteristic polynomial can be written

as

133





¥
k
(s) = s

n
+ (a

n
- Yn )s

n X
+ ... (ax - Yl ) (6.3)

where the y. are the elements of the feedback gain vector

f T = (Ti Y2 ... Yn
>. (6.4)

6) The control law in the companion canonic form is

given by

y = f'z (6.5)

where z is the phase-variable state vector. Since

z = Tx , (6.6)

because of the linear transformation to companion canonic

form, the feedback gains in the original coordinate system

are given by

k' = f'T (6.7)

A design procedure that results from consideration of

the listed ideas is the following:

1) Transform the completely controllable constant

single-input system

x = Ax + by (6.8)

into the companion canonic form using the Leverrier-Faddeeva

algorithm [37] • This algorithm yields the characteristic

polynomial, ¥(s) and the linear transformation, T.

2) Obtain starting values for all y. in equation (6.4).

3) Using a search routine, find a set of y., i=l,2,...n,

that make (6.3) Hurwitz. An eigenvalue finding routine and a

scheme that reduces the real part of the largest eigenvalue

would work well here. A design constraint on the location of
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the largest eigenvalue can also be included here. The value

of (oil - Yi) must be constrained to be greater than ai as

will be seen.

4) Having obtained a stable control law, f =

{Yi Y2 ••• Y }> test condition (6.1) as follows:

a) |^k
(ja))| 2 = Jk

(a3
2

)

and similarly

|*(Ju)

|

2 = J(w 2
).

Therefore, condition (6.1) is reduced to

^k
(u)

2
) - ^(ca

2 )> 0. (6.9)

b) Since i(j, (co
2

) and ip(oo
2

) are nonnegative for all

03, and since in step 3 the constraint

\(0) > ip(0) (6.10)

was imposed by requiring the condition (aj - Yi ) > a i> then

condition (6.9) holds for all co if and only if the equation

ip

k
(a3

2
) - J(w 2

) = (6.11)

has no real roots

.

c) The test then is to find the roots of (6.11),

if none are real, then (6.9) is satisfied and f is an opti-

mal control law. If (6.11) has real roots, the process must

be repeated until a suitable f' is found.

5) Having found f', obtain k' from

k' = f'T. (6.7)
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A variation to the procedure which limits the minimum

value of the return difference is obtained by modifying

condition (6.9) such that

i|;

k
(a)

2
) - p

2
iKoo

2
) > (6.12)

where

p > 1.

Such a procedure will ensure that the return difference is

greater than p for all u. That is condition (3-25) be-

comes

|1- f'$(s)b|
2

= |\(s)/y(s)| 2
> P

2 (6.13)

There is a connection between the magnitude of p and

the system sensitivity but it is not clear at this point.

The choice of p, therefore, remains a problem to be solved.

This procedure, which could incorporate classical tech-

niques for determining constraints for the eigenvalues of

the closed-loop system, provides a simple bridge between

optimal control systems and classical control systems. If,

for example, consideration is limited to a range of fre-

quencies, oj < a) i , the control resulting would not be optimal

but would satisfy the closed-loop requirements of a clas-

sical system.

It is very likely that this technique can be extended

to multiple-input completely controllable systems using the

arguments of Wilkie and Perkins [15] • Since the systems

are linear, it follows from superposition that
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x = x
1

+ x
2

+ ... + x
m

(6.14)

where x is the response to control y., 1 = 1, ... m. The

control laws for the decoupled single-input systems could

be determined and recombined to form an optimal nXm gain

matrix, P. The nXm matrix P would have the form

F = { k
1

k
2 _ _

_
km } (6.15)

where each k. is determined from
-l

k. = f.T. . (6.16)
-l -i-i

The f. of (6.16) are obtained using the above procedure.
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