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ABSTRACT

It occasionally happens in economic analyses that the correctly

specified model contains variables for which no observed data has been

collected. When the data in a linear regression model are cross-

sectional it is possible, under certain conditions on the nature of the

variables, to estimate the independent effects of a specific set of

explanatory variables on the dependent variable. A procedure for doing

this is presented.

A commonly used model of reenlistment behavior, for which the data

base is cross-sectional, satisfies the requisite conditions. This

permits the estimation of the independent effect of the military wage

on reenlistment rate, as an illustration of the proposed procedure.
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I. INTRODUCTION

A. PRELIMINARY

There is currently some concern about the enlistment and retention of

men to serve in the armed forces in a draft-free environment. In defining

the problem to be resolved, a number of studies (notably [1]) have attempt-

ed to describe the factors which affect enlistment and reenlistment

behavior. A large part of this interest is directed toward the determina-

tion of a military wage structure which will ensure that civilians will

enlist, and that servicemen will reenlist, in sufficient numbers to meet

service manpower requirements. This paper will concentrate on a part of

this latter problem. Specifically, the purpose here is to estimate the

elasticity of reenlistment rate with respect to military wage for first-

term reenlistees in the Navy. Though studies of this kind have already

been conducted, there are a number of reasons for additional study. Among

them is that a new source of data (previously unused data in the form of

BuPers Report ED198A for fiscal years 1964 through 1970) is used here,

which is more complete than that used in prior studies. As a consequence

of the availability of the new data, some omissions of previous studies

may be corrected. But, most importantly, a somewhat novel procedure is

used to estimate the parameter of interest in what will later be introduced

as the reenlistment model.

B. BACKGROUND; DESCRIPTION OF THE DATA

In the past, extensive reliance has been placed in the technique of

gathering information about reenlistment behavior by the use of surveys

over potential reenlistees. This technique depends on before-the-fact

information, which is in the form of the stated intentions of men facing
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the decision to reenlist. Typically these surveys seek to determine, by

means of a question and response approach to the subjects, the factors

which affect the reenlistment decision, and thus have value in indicating

the lines along which quantitative research should be performed. That is,

they serve primarily to identify those factors which should enter into an

analytic model of reenlistment behavior. But once such a model is

constructed, reliable quantitative results can only be obtained by investi-

gating the observed behavior of potential reenlistees. This after-the-fact

information, the revealed reenlistment behavior, is provided by the newly

available data used in this paper.

Data extracted from BuPers Report ED198A for use here have the form of

pooled time series and cross-sectional information. In particular, the

numbers of men eligible to reenlist and the numbers of these that do in

fact reenlist are provided for each combination of

(1) Pay grade: E-l through E-9

(2) Rate (a Navy skill or job specialty classification): BM, QM, ST, TM,

FT, MT, ET, DS, AT, AX, AQ, TD, SM, RD, RM, CT, AC, PT, HM, DT, DM, MU,

EA, AG, PH, YN, PN, DP, SK, DK, JO, PC, AK, AZ, GM, MN, IM, OM, EN, BT,

EM, IC, CM, AD, AO, AB, AE, AM, PR, LI, MR, SF, DC, PM, ML, CE, EO, BU,

SW, MT, CS, SH, SD, MM, AV, SP, BR, EQ, CU, SO, AW, AS.

(3) Mental Group: I, II, upper III, lower III, IV.

(4) Fiscal year of reenlistment: 1964 through 1970. First-term reenlist-

ments only dre considered. (First-term reenlistments are those of

servicemen completing their initial term of active obligated service.)

Reenlistments beyond the first term are considerably less interesting,

since these advanced-term reenlistments typically involve personnel already

committed (psychologically) to a Navy career.





"Mental Group," a designation akin to IQ that is applied to enlisted

personnel, is determined by testing as is intelligence quotient. As such

it is not likely to be highly reliable. Aside from the facility with

which personnel in the higher mental groups may enter certain more tech-

nical Rates, and the fact that it may be significant for an enlisted man

who wishes to become an officer candidate, there is no special advantage

or disadvantage accrued by designation as a member of any particular men-

tal group. On the contrary, there is possibly even a tendency on the

part of a certain group of men to score poorly, purposely, in the testing.

This group would consist of some of the personnel of better than average

education who have enlisted in the Navy, during the past few years of a

high level of military activity in Vietnam, to fulfill military service

obligation and to avoid more hazardous duties. It is likely that some

part of this group, in merely wishing to serve their required time in the

armed forces, would seek to escape prominence in their enlisted service.

There is, as a consequence, seemingly little general incentive to score

well in Mental Group testing. In addition, testing for Mental Group clas-

sification is subject to the same criticisms that have recently been

directed at classical IQ testing: some minority groups may be put at a

disadvantage by the biased (toward comprehensibil ity by white mid-Americans)

nature of the test. In any case, classification by Mental Group is cer-

tainly less reliable than cross-sectional classification by pay grade or

Rate, or time series classification by fiscal year of reenlistment. As a

consequence, the Mental Group classification will not be of primary interest

here.

Certain of the Rates included in the above report are unsuitable for

inclusion in the analysis. Those Rates that are discarded from the data

base are AV, SP, BR, EQ, CU, SO, AW, AS, MT, DS and SD. Any Rate not
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included in the study was disallowed for one of the following reasons:

1. The Rate consisted of pay grades E-7 through E-9 only;

2. The Rate's membership consisted in large part of foreign nationals

who could be expected to reenlist with high probability;

3. Data for the Rate were not available for each of the fiscal years

1964 through 1970.

The fact that the data consists of a time series of cross-sections of

revealed reenlistment behavior allows the correction of an omission of

previous research. To date little effort has been made to establish a

relationship between the variation over time of reenlistment behavior and

the variation over time of pecuniary considerations facing the potential

reenlistee. The time series of cross-sectional data provides a basis on

which such a relationship can be constructed. The term "constructed" is

used advisedly, since the pecuniary factors considered here are those

imbedded in a particular model of reenlistment behavior.

Another disadvantage of previous research has been that pecuniary

factors for potential reenlistees have only been considered in coarse de-

tail. The minuteness of the new cross-sectional data, on the other hand,

permits a more precise formulation of the economic factors that face the

individual potential reenlistee. These factors vary from man to man; they

are dependent on the individual's level of proficiency (pay grade), job

specialty (Rate), and fiscal year in which the reenlistment decision is

made.
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II. THEORY UNDERLYING THE REENLISTMENT MODEL

A. FOUNDATION

The aim in this paper is to determine the rate of change of first-

term Navy reenlistments with respect to the rate of change in military

compensation. Toward this end a model is presented to describe

reenlistment behavior, quantitatively represented by reenlistment rate,

in terms of those variables which affect the reenlistment decision.

Then, using the model as a basis the pure effect of the military wage

on reenlistment rate is determined. Necessarily, the influence of all

other variables must be removed in order to estimate the independent

effect of the military wage.

B. TASTE AND OPPORTUNITY FACTORS.

Consider an individual who is eligible to reenlist. The variables

which affect his decision may be aggregated into three broad categories:

pecuniary, personal non-pecuniary and general non-pecuniary. The first

two of these categories are of interest in this section (the final

category is discussed later). Within the first category are all

factors which reflect opportunity (monetary) considerations. It

includes such variables as expected basic military wage, benefits to

servicemen which may be expressed equivalently in monetary terms, and

the alternative civilian wage. Elements in the personal non-pecuniary

class include such factors as military job satisfaction, agreeability

with the quality of home life offered by Navy service, adaptability

to the military hierarchy, and attitude towards sea or shipboard

duty. Variables which are described as non-pecuniary are difficult to
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quantify. However, by employing the concept of reservation wage (for

a more complete discussion, see, for example, Gray [2]), the effect of

these purely individual non-pecuniary factors on the reenlistment deci-

sion can be incorporated in a variable with analytic expression. The

qualifying phrase "purely individual" is to be stressed. Just as

factors which affect the reenlistment decision and which are unique to

each individual can be identified, so can be recognized non-pecuniary

factors affecting the reenlistment decision which are unique to each

Rate, or to each pay grade, or to each year. Variables of this sort

are the general non-pecuniary factors and will be introduced and

treated later. This is accomplished by considering the pecuniary

compensation that will just induce an individual to reenlist. The

variables in the class of personal non-pecuniary factors can be viewed

as elements which contribute to the determination of the value of

compensation required to induce reenlistment. Knowledge of this level

of compensation for an individual makes knowledge of the personal non-

pecuniary factors affecting his reenlistment behavior redundant (at

least in a study where interest centers on macroscopic reenlistment

behavior). As a consequence, the personel non-pecuniary variables

need not be explicitly considered since they are imbedded into the

individual's reservation wage, which will now be defined. Suppose

that an individual deliberating reenlistment is capable of estimating

the expected present value of his alternative courses of action: to

This is an advantage of the use of data describing revealed reenlist-
ment behavior: and individual's personal non-pecuniary attitudes are
inconsequential; the fact of his reenlistment displays that any
personal dislikes of the service were overcome by sufficient
compensation.
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reenlist or not to reenlist. Let WM represent the present value of all

pecuniary returns if his choice is to reenlist, and let WC represent

the present value of all pecuniary returns if he chooses not to reenlist.

WM consists of two types of pecuniary returns. Most obviously there are

those whose dollar value is fixed and is not subject to individual

interpretation: basic pay, variable reenlistment bonus, basic allow-

ance for subsistence, clothing allowance. There are also pecuniary

returns whose dollar value is in large part subjectively determined by

the individual: free medical services for the serviceman and his

dependents, Navy exchange and commissary privileges and others. This

distinction is not negligible, and will be treated explicitly later.

For a serviceman on active duty, the determination of WC is not as

straightforward as that of WM. Typically the serviceman may have little

more than a rough estimate, in the year in which the reenlistment

decision is made, of the mean wage received by civilians working in a

job category similar to that of the serviceman and located in the geo-

graphical area of interest to him. Now define r^ as the relative wage.

Then the reservation relative wage is defined as the value of the above

ratio which will just induce the serviceman to reenlist. The individual

will reenlist if his actual relative wage is greater than or equal to

his reservation relative wage. Similarly, among the entire cohort of

eligible reenlistees, those that reenlist will be those whose actual

relative wage is greater than or equal to their reservation relative

wage. Now consider the domain of possible values of reservation rela-

tive wage. For each number in this domain, some portion of the eligible

population will reenlist. As a consequence, the reenlistment rate

(over the eligible population) has some functional expression over the
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domain of reservation relative wage. This introduces a variable of

fundamental importance in constructing an analytic expression for

reenlistment rate.

The form of the functional dependence will be discussed later. It

is worth noting here than an individual's reservation relative wage is

some fixed value of the ratio rr~. Presumably, an individual consider-

ing reenlistment is able to estimate the expected present value of

pecuniary returns for not reenlisting, so his reservation relative wage

can be equivalently expressed as the ratio of a sufficiently large value

of expected present value of returns for reenlisting to his estimate of

returns for not reenlisting. This says of course that for each

individual the reservation wage uniquely determines a value of WM

sufficiently large to induce reenlistment. As a consequence reenlist-

ment rate, for fixed WC, has a functional representation over the

domain of WM: for each value of WM a certain fraction of the eligible

population with given WC will reenlist. The implications of these

obvious comments are meant as a preliminary to later work. In order to

assure proper statistical control of the variables in the model, it is

necessary to be able to match observations of reenlistment rate with

corresponding relative wage. That is, a particular set of men eligible

to reenlist faces a given relative wage (the members of this set who

reenlist in the face of this relative wage are those for whom this

relative wage is the reservation relative wage). This set of men

eligible to reenlist must be identifiable, for each observed relative

wage, in order to be able to perform significant statistical analysis.

By the preceeding remarks, an equivalent necessary condition for proper

statistical control is that for any fixed value of WC it is possible to

identify the set of men eligible to reenlist which corresponds to any value
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of WM. Or, for any value of WC and any value of WM, it is necessary to

be able to identify the appropriate corresponding eligible population.

Now just as the purpose of this section was to eliminate the necessity

of identifying, and including in the model, variables which are in the

class of personal non-pecuniary factors, a purpose of later section

will be to remove the requirement that the value of WC for a potential

reenlistee be known. What will in effect be accomplished is that the

variable WC will be removed from the model, so that a correspondence

between reenlistment rate and WM only need be made in order to satisfy

the functional requirement that reenlistment rate depends on relative

wage and the statistical requirement that the appropriate eligible

population be identifiable for given WM and WC.

C. THE REENLISTMENT MODEL IN CROSS-SECTION AND TIME SERIES; OTHER
FACTORS AFFECTING REENLISTMENT RATE

In the preceeding section, a model of the form R = f(WM/WC) was

postulated, where WM and WC are as previously defined and R represents

reenlistment rate. Fisher [3] and [4] first concluded that a model of

the form R = f(ln (WM/WC)) was indicated. Specifically, Fisher concluded

that the appropriate model was expressed by:

R = a + In (WM/WC) + e,

a linear expression for R in In (WM/WC), with disturbance term e. Later

work, for example Nelson [5], employed a relation of the form:

(a) InR = a + 6 ln(WM/WC) + Z + e,

where the term 7. represents an additional set of variables which are

included in the model. The variables in Z depend, of course, on the
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2
author of the study employing the model. A similar model in Logit form,

(b) In (yM = a + 3 ln(WM/WC) + Z + e,

has also been considered by, for example, Gray [2] and Wilburn [6].

In this paper models of both forms (a) and (b) will be considered

for comparative purposes. Note that equations (a) and (b) may be

rewritten as:

(a') InR = a + 3 InWM - B InWC + Z + e,

(b
1

) In (j^\ = a + 3 InWM - 3 InWC + Z + e.

Or:

(•"> R ' (wf
1, e ' -

(b
) PR " a

\WC /
Z e '

where:

a' = exp(a), V = exp(Z), and e' = exp(e).

These equations imply that, depending on which of the models (a) or

n

(b) is used, either In R or ln(y^) is linear in the natural log of

the ration WM/WC (neglecting for the moment the effect of the variables

in Z). The implicit assumption is made, then, that the potential

reenlistee values the dollars in WM and in WC in constant ratio. That

is, the potential reenlistee is indifferent to an equal percentage

change in WM and in WC: his reenlistment decision remains the same

whether the relative wage offered him is the ratio WMi/WC-,, or the

ration (1 + a)WM,/(l + a)WC-,, for any a (a may be positive, negative

or zero, repreenting an increase, decrease or lack of change

2
Note that just as reenlistment rate R can be considered to be the

sample estimate of the probability of reenl isting,the ratio
R/(l-R) may be interpreted as the sample estimate of the odds of

reenl is ting.
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respectively in each of WM-, and WC-,). This may not actually reflect the

candidate reenl is tee's utility of dollars in WM and WC. The man may in

fact value a percentage increase in his civilian alternative wage WC

more highly (or even less than) the same percentage increase in WM.

To relieve this possibly erroneous assumption, the following

revisions to models (a) and (b) will be used:

\wc
6
/

(«•) A- WJSLf z- -
1_R

\WC
V

The parameter 5 reflects the possibility that a potential reenl istee

values a percentage change in WM and the same percentage change in WC

differently. Presumably, the value of 6 is positive. If this is the

case, then: if 5 > 1 a percentage change in WC is valued more highly

than the same percentage change in WM; if 6 = 1 equations (c) and (d)

become (a) and (b); if < 6 < 1 a percentage change in WM is valued

more highly than the same percentage change in WC; if 5 = the deci-

sion to reenl ist is independent of the candidate reenl istee's civilian

alternative wage; a value of 6 < indicates an aversion to civilian

dollars. These equations may be rewritten as:

(c
1

) InR = a + B InWM + y InWC + Z + e,

(d') In (A) = a + 3 InWM + y InWC + Z + e,

wjiere: Y
= -3<5.

If y = -3, then the equations (c
1

) and (d') become (a
1

) and (b
1

).

The coefficient g in the equations (c
1

) and (d
1

) is the parameter

of interest. In equation (c'), 3 is the military wage elasticity of

reenl istment rate since application of the partial differential operator
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3 to (c
1

), while neglecting the disturbance term e, yields:

3(lnR) = 6 3(lnWM) + Y 3(lnWC) + 3Z ;

or

3R/R = 3(3WM/WM) + y a(lnWC) + 3Z.

Similarly, in equation (d
1

) 6 represents the elasticity of the odds of

reenlistment with respect to military wage.

It is now appropriate to consider some assumptions about the nature

of the cross-section and time series data. First, consider reenlistment

behavior of cohorts of eligible reenlistees over time. It seems

reasonable to assume that an individual deliberating reenlistment is

unaffected by the past reenlistment behavior of others, and that his

decision is also unaffected by past values of relative wage. Stated

equivalently, this assumption is that the model contains no lagged

values of reenlistment rate or relative wage. This is a simplified

assumption; it is of course also possible to postulate and use a

model which contains lagged values of relative wage. Now consider the

effect of the war in Vietnam on initial enlistments or of general

civilian unemployment on reenlistments in the Navy. These are examples

of temporal factors that can be expected to have a significant effect

on initial enlistments (in the first case) or reenlistments (in the

second case) in the Navy. It seems reasonable, then, that a variable

reflecting such temporal factors should be included in the model.

Similarly, a potential reenlistee who is a member of a certain Rate and

is in a certain pay grade may be affected by factors peculiar to his

Rate and pay grade, as well as to factors unique to the year in which

the reenlistment decision is made. In particular, since enlisted men

in higher pay grades typically enjoy greater prestige and increased

personal liberty than men in the lower pay grades, it may be hypothesized
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that pay grade affects reenl istment rate in ways not expressible in

terms of pecuniary compensation, as well as in its contribution to WM.

It cannot, then, be fairly assumed that factors which depend on Rate,

pay grade or year of eligibility to reenl ist do not separately influ-

ence the reenl istment decision. As a consequence, variables represent-

ing the influence of such factors will be included in the model. [Such

variables are, in general, unobservable or not quantifiable. Their

inclusion in the model is a formalism for the sake of completeness.]

These factors are the general non-pecuniary factors whose existence was

previously hypothesized.

Note that nothing has yet been said about the influence of Mental

Group on the reenl istment decision. It seems likely that personnel in

different Mental Groups will reenl ist at different rates. But designa-

tion of an individual as a member of a particular Mental Group is some-

what less accurate, hence less meaningful for statistical purposes,

distinction than classification of personnel by Rate, pay grade or year

of reenl istment. Additionally WM for a candidate reenl istee does not

depend on his Mental Group. [An individual's expected WC may, however,

depend on his Mental Group. If this is the case, it should emerge in

comparison of results for separate Mental Groups.] Hence, Mental Group

classification will not be used to define any of the variables of the

model. Instead, the model to be constructed will be applied to all

personnel in each of the Mental Groups separately. The results for the

Mental Groups will then be statistically compared.

Now consider a potential reenl istee viewing his military and civilian

pecuniary alternatives. WM depends (in a manner to be made explicit

later) on his Rate and pay grade and on the year in which his current

enlistment expires. But typically the potential reenlistee's view of
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his civilian alternatives is limited; he has been efficiently isolated

from the civilian world and civilian labor market by the requirements

of his military service. And, typically, it is likely that he has

been unable to go job-seeking in the geographical area of interest to

him for civilian life. So it may be realistic to suppose that the

alternative civilian wage perceived by the potential reenlistee can be

considered to be the median wage (or average wage) of the civilian

population working in his skill category (craftsman, mechanical, elec-

trical, clerical and so on) in the year in which he is eligible to

reenlist. This will be taken as a formal assumption: the civilian

alternative wage perceived by an individual in a given Mental Group

depends only upon his Rate and the year in which the reenlistment

decision is made. [This assumption may be faulty in that the alterna-

tive civilian wage may also depend on the potential reenlistee's

military pay grade. That is, an advanced rank status in the military

may promise higher pay in the civilian economy, since it may be

interpreted as being equivalent to advanced expertise.]

Since the assumption has been made that variables representing R,

WM and WC are not lagged in the model, the time series data in R, WM

3
and WC may be considered as another cross-section. Make, for the moment ,

the stronger assumption that the model contains no lagged variables at

all. Then the time series, represented by year in which observations

are made, may be considered as another cross-section. Let the

3
This assumption is made for the sake of simplicity of representa-
tion. Later it will be seen that the assumption is not necessary;
equivalent results are obtained if it is not made. At the same time
it will be seen that the analagous assumption for the variables R,

WM and WC may be weakened somewhat: identical results will be
achieved even if the model contains lagged values of the variable
WC.
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subscripts i, j and t represent Rate, pay grade and year of reenlistment

eligibility. Then the equations (c') and (d
1

) can be represented in

cross-section data as

(e) In R
ijt

= a * B in W,
Jt

+ y In IC,
t

+ A, * B. + C
t

+ «
1Jt

,

<f) ln
(*%&)

~~ °
+

" ^^ +
" ^ WCit +

"i
+ B

J

+ C
t

+ E
i0t '

where:

R. .. is observed reenlistment rate for Rate i, pay grade j, year t;
i j i

WM. ... is military wage for Rate i, page grade j, year t;
i j t

WC •

t
is alternative civilian wage for Rate ,i in year t;

The variables A., B., and C. represent all factors which influence
l j l

reenlistment in, respectively, Rate i, pay grade j, or year t uniquely;

c..
f

is the disturbance term for the observation of R. ... A., B., and

C, are the variables whose introduction into the model was promised

earlier. Note that these variables are invariant over subscripts

not included in their notational expression. For example, the factors

represented by C
t

depend only on the year of reenlistment, and are

invariant over Rate and pay grade.

Note that a crucial assumption implicit in equations (e) and (f)

is that the variables R. .. and WM ... are the only variables in the

model which are not invariant over at least one cross-sectional

dimension (for convenience, the set of all Rates considered in the

analysis will be referred to as a cross-sectional "dimension"; similarly

for the set of all years and the set of all pay grades considered).

Later work relies heavily on this assumption.

The models represented by equations (e) and (f) seem reasonably

complete with the introduction of the variables A., B. and C. as "catch-

all" categories to reflect all factors which influence reenlistment
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depending on Rate, pay grade and year separately. But it is clear that

the inclusion of these variables creates a problem: quantification of

A-, B. and C. is difficult if not impossible. Note that this problem is
i j i»

indissoluble. The influence of such variables as C. and WC-
t

on the

decision of a potential reenlistee is almost certainly non-trivial.

Their effects cannot reasonably be ignored in any rational model of

first- term reenlistment behavior. One possible approach to resolving

this problem is to construct a model using dummy variables to represent

Rate, pay grade and year. But in the face of 61 rates, nine pay grades

and seven years this may yield results too minutely specialized to be

interesting unless a certain amount of arbitrary aggregation (over

Rates, pay grades and years) is done. In any case, an alternative

procedure for ridding the models (e) and (f) of the effects of the

variables A., B. and C. will be used here. Use of this procedure is

also motivated by a desire to rid the model of the variable WC. , the

civilian alternative wage, the method of measurement of which may be

subject to dispute.

To specify the procedure, consider:

(e) In R.
jt

= a + b In WM
ijt

+ Y In WCn A, B. C
t

+ e.
jt ,

in "observed" data.

Taking the mean, for Rate i and pay grade j , over all years:

(el) In R.. = a + 6 In WM,. . + y In WC. + A. + B. + C +e • •

* ' J •1J. ij. ' i.

Where, for example,

R
io.

- 1 I R
T & R

ijt

and

wc
i

=
T j,

wc
it

t=l

for T = number of years considered in the data.
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Taking the mean, for Rate i in year t, over all pay grades:

(e2) In R.
t

= a + B In WM.
t

+ Y ln WC
it

+ A
i

+ B + C
t

+ £
i t

*

Taking the mean, for pay grade j in year t, over all Rates:

(e3) ln R .. = a + 3 In WM .. + y In WC . + A + B. + C. + e ..

Taking the mean, for year t, over all Rates and pay grades:

(e4) ln R
t

= a + 3 In WM
t
+ylnWC

t
+A +B +C

t
+e

t

Taking the mean, for pay grade j, over all Rates and years:

(e5) ln R . = a + 6 ln WM . + y In WC + A + B. + C + e .

Taking the mean, for Rate i, over all pay grades and years:

(e6) ln R. = a + 3 In WM. + y ln WC. + A. + B + C + e.

Taking the grand mean:

(e7) ln R =a+3lnWM + y In WC +A+B+C+e

Adding and subtracting,

(e) - (el) - (e2) - (e3) + (e4) + (e5) + (e6) - (e7)

yields the equation:

ln R. .. - In R. . - ln R. . - ln R .. + In R. +
ljt ij. l.t .jt i..

ln R . + ln R , - ln R
•J. . . L ...

3(1 n WM... - ln WM. . - ln WM. .
- ln WM .. + ln WM. +

ljt ij* I • t •Jt l • •

ln WM . + ln WM . - In WM ) +
.J. . . L. ...

£ijt" £
ij.

- £ i.t" £
.jt

+ £
i..

+ £
.j.

+ £
..t"

£
...

'

A similar result holds for the model represented by equation (f).

This is the form of the data that will be used in a linear regress-

ion to estimate the coefficient 3. For want of more convenient termin-

ology, data in the form above will often be referred to as "normalized
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data", while the initial values of each In R. .. and In WM..t will be

called the "original data." In addition, the procedure of obtaining

normalized data from the original data will sometimes be called "the

model" when no ambiguity is possible. Some features of "the model" in

this sense are investigated in Section IV.

Now note that any variable which has fewer than three subscripts in

its notational expression disappears from the normalized form of the

data. A little reflection shows that lagged values of any such vari-

able are also purged in the normalized data. In particular this holds

for the variable WC... As a consequence, it is only necessary, in

order to obtain the identical equation in normalized data, to assure

that the model contains no lagged values of R. .. and WM. .+..3a ljt ijt

The question of the nature of the normal izeddisturbance term:

£...-£.. -£.. -£..+£. +e. + e .-e
ljt ij. l .t .jt l .. .j. ..t

will be taken up later.

D. THE CONSTRUCTION OF WM

The measurement of WM used here is that proposed by Burton C. Gray

in [13].

As mentioned previously, pecuniary compensation for reenlisting can

be viewed as consisting of two types of remuneration: the actual wage

received by the reenlistee and the value placed by the reenlistee on

the peripheral benefits of military service. A component of the actual

wage received by a reenlistee that is unique to first- term reenlist-

ments is the Variable Reenlistment Bonus (VRB). This bonus is a multiple

of the reenlistee 's annual base pay (which in turn depends upon pay

grade) and varies from year to year and from Rate to Rate (depending

on the valuation placed on reenlistments in a given Rate in a given year)
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VRB has since fiscal year 1965 been the primary tool used to selectively

(by Rate) influence reenl istments. Prior to FY 1965 all reenlistees

received a reenl istment bonus that was a fixed multiple of annual base

pay. Ideally, one should wish to evaluate the effect of VRB on first-

term reenl istment behavior. But since the determination of a single

parameter of interest is intended simply as being illustrative of the

fundamental goal of this paper, an investigation of the consequences

of using normalized data, this is not done. VRB enters the construction

of WM as merely another component.

Now consider the future of a reenl istee. He can reasonably expect

promotion to a higher pay grade within his next term of enlistment, with

a concurrent increase in pay. This expectation obviously influences the

reenl istment decision (for it can be supposed that fewer men would

reenl ist without the promise of probable advancement in rank), but in

a way difficult to specify. The simplifying assumption is made that

this promise of increased future pay offsets the lesser valuation of

future dollars. That is, in considering the present value of WM, the

potential reenl istee employs a discount rate of zero.

A final assumption, due to the nature of the available data base,

is made. For want of other information, it is assumed that all

reenl istments are made for an obligation of four years.

With the preceeding paragraphs in mind, it is possible to postulate

the following construction:

WM = 4C + P UM + 4(1 + K)

where: for a potential reenlistee WM is the present value of military

wage for a four-year reenl istment (at a zero discount rate), P is the

reenl istee 1

s annual base pay, VRB is the appropriate Variable Reenl ist-

ment Bonus multiple,
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C is a constant representing the monetary valuation of the

peripheral benefits of military service for a four-year

reenlistment,

K is a dimensionless multiplicative constant representing the

the valuation of those benefits associated with military

service that can be expected to increase with annual base

pay. K is intended to reflect such elements as tax

advantages, allowances and commissary and exchange benefits,

whose value increases as base pay increases.

This may be rewritten, for Rate i, pay grade j and year t, as:

1 + VRB
1^ + 4 (1 + K)WM..

t
- 4C + P

ijt

The construction of WM allows freedom for parameterization of the

constants C and K. In order to get an idea of the sensitivity of the

coefficient B to changes in assumed C and K, regression analyses are

performed for various presumably reasonable values of these constants.
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III. APPLICATION

A. PRELIMINARY

Consider the consequences of applying the natural logarithm trans-

formation to the variables R. .

f
and R. .

+/(1-R. ..). These variables have

respective ranges of values of [0,1] and [0,°°), which under the natural

logarithm transformation become (- » ,0] and (-°°,°°). Thus this trans-

formation avoids the awkward situation of having a finite range of

values on the dependent variable (in the case of R^^) in a linear

regression analysis. But there is a limitation associated with the use

of the logarithmic transformation: under this transformation a

reenlistment rate of zero is undefined. Hence in the model represented

by equation (e) of the preceeding section, no observations of zero

reenlistment rate can be allowed. Additionally, in the model represented

by equation (f), a reenlistment rate equal to one must be disallowed,

since this corresponds to an infinitely large value of the odds of

reenlistment. Accordingly, since it is desirable to use the same data

base for each of the models (e) and (f), any observations of reenlist-

ment rate equal to zero or one will be discarded. This is not felt to

restrict the analysis too severely since reenlistment rates of zero or

one, the extreme values of the data, typically correspond to extra-

ordinary classes of reenlistees. In particular, reenlistment rates of

zero are most common in very low pay grades and reenlistment rates of

one are usually observed in the highest pay grades. This suggests that

a zero reenlistment rate can usually be associated with a class of men

who show an unsuitabil ity for military service, while a reenlistment

rate equal to one can usually be associated with the class of men who
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thrive in the military. Neither of these classes is particularly

interesting for a study of general reenlistment behavior.

Now suppose that in models (e) and (f) the error terms e... are

independent, identically distributed Normal random variables, each with

2
mean zero and variance a . Then the application of ordinary least

squares procedures to estimate the coefficient 3 in the normalized form

of model (e),

In R... - In R.. - In R. . - In R .. + In R. + In R . +
1 j t ' J • lit • J ^ 1 • • • J •

In R .
- In R

* U • • •

S(ln WM... - In WM. . - In UN. . - In WM .. + In WM. +

In WM . + In WM . - In WM ) +
• J • . . x. ...

e
ijt - e

ij.
" ei.t"

£
.jt

+ e
i..

+ e
.j.

+ e
..t

" e
...

yields an unbiased estimator for this coefficient. The same is true for

ordinary least squares estimation of 6 in the normalized form of model

(f). These assertions will be proved in Section IV, where it will also

be shown that the above assumption about the distribution of the

disturbance terms e... may be relaxed somewhat.

B. VALUES FOR PARAMETERIZED C AND K

Regression analyses were performed for each combination of the

following selected values of the constants C and K:

C K

500

1000 0.10

1500 0.15

2000 0.20
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It is felt that these selected values represent a range broad enough to

include realistic possible values of the constants.

C. THE REGRESSION ANALYSES

In addition to estimating the coefficient 3 in the normalized forms

of the models (e) and (f), it may be interesting (for comparative

purposes) to estimate 6 in the equations:

(g) In R
ijt

- a + B In WM^ «
1Jt

,

l« ln(l^%) =
"

+ S ln "ijt
+ e

ijt •

where it is assumed that the e_-
n
«

t 's are independent, identically

2
distributed Normal random variables with mean zero and variance a .

Note that these latter equations are truncated forms of the models

(e) and (f): the variables WC.., A., B., C. are neglected.

Four selections for the value of the constant C and three choices

for the constant K yield 12 different constructions of WM. Regression

analyses are conducted for each of these constructions of WM, using

models (e) (normalized), (f) (normalized), (g) and (h) for each of five

Mental Groups. This produces 240 least squares estimations to be

considered. Results for one construction of WM for models (e) (normalized),

(f) (normalized), (g) and (h) and each of the five Mental Group classi-

fications are looked at in detail in this section. Less detailed

regression analysis results for the remaining 11 constructions of WM

are given in Appendix A in tabular form.

Now consider Table I, which gives summary results for the construc-

tion of WM using C = 500 and K = 0.10. Denote Mental Groups I, II,

upper III, lower III and IV as Mental Groups 1, 2, 3, 4 and 5 respectively.
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Table I

Normal
Model

ized

(e) B SE t
~2
a R N

MG 1 1.17260 0.26011 4.49983 0.19601 0.1904 720

MG 2 1.76626 0.17863 9.90073 0.15014 0.3070 1259

MG 3 1.84425 0.21828 8.44902 0.17024 0.2956 996

MG 4 1.34492 0.20119 6.68474 0.15299 0.2629 805

MG 5 1.50907 0.28158 5.35927 0.13337 0.2601 530

Normal
Model

ized
(f)

MG 1 1.87660 0.36445 5.14912 0.38339 0.2167 720

MG 2 2.72210 0.24978 10.89793 0.29433 0.3346 1259

MG 3 2.61042 0.30134 8.66258 0.32445 0.3025 996

MG 4 2.00364 0.28072 7.13740 0.29784 0.2793 805

MG 5 2.16256 0.39745 5.44106 0.26571 0.2638 530

Model (g)

MG 1 1.36861 0.12644 10.82445 0.59642 0.3746 720

MG 2 1.91656 0.09547 20.07401 0.65793 0.4927 1259

MG 3 1.58111 0.11230 14.07977 0.62178 0.4078 996

MG 4 1.44961 0.12798 11.32667 0.62849 0.3712 805

MG 5 1.54090 0.14984 10.28386 0.46204 0.4085 530

Model (h)

MG 1 1.85354 0.17451 10.62108 1.13624 0.3685 720

MG 2 2.70828 0.13598 19.91696 1.33460 0.4898 1259

MG 3 2.05608 0.15295 13.44309 1.15332 0.3922 996

MG 4 1.93526 0.17588 11.00301 1.18701 0.3620 805

MG 5 2.11862 0.21826 9.70676 0.98037 0.3891 530
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Let B denote the estimate for B, SE represent the standard error of the

~2
estimate of 6, t represent the computed t-statistic, a be the estimate

2
of the variance a , R be the multiple correlation coefficient and N

represent the number of observations of R.-_- t . [It will be shown in

"2 2
Section IV that a is an unbiased estimator fora .] Note that the

computed values of the t-statistic indicate that in each of the twenty

least squares estimations of 6 represented in Table I the estimated

coefficient is significantly different from zero. But also note that in

comparing results for the normalized models (e) and (f) and the corres-

ponding truncated non-normalized models (g) and (H), the following

differences are consistently true for each Mental Group:

1. The values of computed t-statistic for models (g) and (h)

are greater than the values for models (e) and (f )

.

2. The standard error of the esimate is less for models (g)
and (h) than for models (e) and (f)

3. The multiple correlation coefficient R is greater for
models (g) and (h) than for models (e) and (f).

These considerations might seem to indicate that models (g) and (h)

fit the data better than the corresponding normalized forms of models

(e) and (f). But in reality the results 1., 2., and 3. are not particul-

arly surprising, since the computed value of t is directly proportional

to, and the computed value of SE inversely proportional to, the square

root of the sum of squared deviations from the mean of the explanatory

2
variable, while 1-R is inversely proportional to the sum of squared

deviations from the mean of the dependent variable. That is, for a

single explanatory variable with observed values x., i = 1, ...n, and

a dependent variable with observed values y. , i = 1, ...n,

SE =

n 1
2

T7s2
(x

i
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t = I_1
SE '

and:
I {y. - BX.)

2

R
2

- 1 -V •

I (y, - y)

l

where:

1

n - 1

n

y = „ l*V x =
n I x

i
'

1 1

B is the estimated regression coefficient, and a is the estimate of

2
a . Hence as the sum of squared deviations from the mean of both the

explanatory variable and the independent variable decrease, it is to be

2
anticipated that SE and R will increase and the computed t-statistic

will decrease. To see how this fact yields the results in comparisons

1., 2., and 3. above, consider the explanatory and dependent variables

of the models (e) (normalized) and (g). Dropping for a moment the

logarithm symbol, model (e) (normalized) has dependent variable;

R... - R. . - R. .
- R .. + R. + R . + R . - R

ljt lj. 1. 1 .jt i . . .j. ..t

and explanatory variable;

WM. .. - WM. • - UN. «.
- UN - + + WM. + WM . + WM .

- WM
l Jt lj. l.t .jt l . . .j. ..t

both of which have mean zero, while model (g) has dependent variable

R. .j. and explanatory variable WM. ... Taking squared deviations from

the mean for the variable R- it :
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ni(R1it
-R )

2 -

1 j t
1Jl

?H (Rut- R
u.

- R
i.t-

R
.jt

+ R
i..

+ R
.o.

+ R ..t-
R
...'

2
+

Tl I (R-j, - R )

2
+ J II (Ri t

-R )

2
+

I I I (R ^ - R )

2
+ i J I (R - R J 2

+

I T I (R - R )

2
+ J T I (R - R. )

2
>

j
'•"

-
J '

i
'•' 1 "

I I I (R*j* - R- - R 4 *.
- R 4+ + Rj + R • + R + - R )

2
>

i j t
1J *

' "

since all terms in the above equation are non-negative. But the term

on the right hand side of this inequality is the sum of squared devia-

tions from the mean of the dependent variable in the normalized form of

model (e). A similar result holds in the comparison of the sum of

squared deviations from the mean of the explanatory variables in

models (e) (normalized) and (g). And a similar result holds in the

comparison of the models (f) (normalized) and (h) as well. As a

consequence, the results of comparisons 1., 2., and 3. are not unexpected

Now consider the estimates of 6 presented in Table I. All estimates

of the military wage elasticity of the odds of reenlistment and the

probability of reenlistment exceed one. In fact, the estimates of the

elasticity of R with respect to WM cluster loosly about a value of 1.5,

D
while the estimates of the elasticity of y-=- with respect to WM have a

median value of approximately 2. Since these estimates are based on a

single choice for the construction of WM no great import will be assigned

to them, except to note that they are not appreciably different from
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estimates of these quantities obtained in other studies. For example,

estimates of the WM elasticity of R in previous studies are generally

confined to the range 0.8 to 3, with the bulk of the estimates lying

in a range of values between 1 and 2. Note that in the normalized forms

of models (e) and (f) the estimates of 3 for Mental Groups II and upper

III seem to be appreciably higher than estimates of this coefficient

for Mental Groups, I, lower III and IV (this apparent difference is

not so marked for models (g) and (h); in any case models (g) and (h)

are of interest here only for a comparison of results with the corres-

ponding normalized forms of models (e) and (f), so that the former

models will not be treated further). This result agrees ^ery well with

prior expectations: it indicates that personnel in the highest and

lowest Mental Groups are less inclined toward reenlistment than men in

the median Mental Groups. It can be argued that this result is reason-

able since men in Mental Group I, who presumably possess greater

intellectual ability, may find greater rewards and challenges in civilian

life than in enlisted military service, while men in Mental Groups lower

III and IV may often find themselves unable to compete for advancement

successfully with men in higher Mental Groups, and may sometimes be

unable to meet demands of competence placed on them by military service.

For both the highest and lowest Mental Groups, then, enlisted military

service may be viewed as limited in opportunity. To establish the

validity of these initial observations it is desirable to determine if

the estimates B contained in Table I do in fact estimate different

coefficients 3 for different Mental Groups (that is, whether the

same coefficient e applies for all Mental Groups or whether different

coefficients e.. apply for different Mental Groups).
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Toward this end a statistical test, in which the estimates B may

be compared for each pair of Mental Groups in each of the models (e)

(normalized) and (f) (normalized), is in order. Concentrate now on

the normalized form of model (e). For the regression analysis of

-2 2
Mental Group i, i = 1, ...5, let a. be the estimate of a , B. be the

estimate of B-, and n. be the number of observations. Since the

estimated intercept for each least squares estimation using the

normalized form of model (e) is zero, testing for the equality of the

coefficients 3- is equivalent to testing for the equality of the

appropriate regression lines. Now if Mental Groups i and j yield the

~2
same regression line in the normalized form of model (e), then a. and

-2 2
a. both estimate the same variance a . And in this case,
J

(I-1)(J-1)(T-1) n.

- 1

IJT
x with

(I_l)(j_l)(T-l) n .

IJT

and

- 1 degrees of freedom,

(I-1)(J-1)(T-1) n

- 1

IJT

?
(I-1)(J-1)(T-1) n.

x with J-

IJT

-1 degrees of freedom,

where these two Chi-squared random variables are independent since they

are derived from two different (and assumed independent) populations of

random variables. [See Section IV for the development of this asser-

tion. Here I = 61 is the number of Rates, J = 9 is the number of pay

grades and T = 7 is the number of years considered.)
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Hence as the sum of two independent x random variables, the

quantity:

1 (I-1)(J-1)(T-1)
IJT

~2 -2
n. a. + n. a.

,*2 .2,1

has x distribution with:

'
I - 1 '^j'<T-D

(n . + n .) . 2

degrees of freedom. Now if Mental Groups i and j yield the same reg-

ression line then g. - 3- = 0, in which case B. - B. is Normally
I 'J

distributed with mean zero (since B- and B. are unbiased estimators of

$. = B-) and variance:

Var (B
i

- B.) = Var (B^ + Var (B.) = —
d\2jfttj-X

1

)

2
1(4

k=l
K

k=l
K

,m th
where for convenience X, represents the k observation on the explana-

tory variable for the normalized form of model (e), applied to Mental

Group m = i ,j. Hence:

Vi
1 1

n

.

J

1

N(0,1)

I
(xj - x

1') 2

i
(xj - X

J') 2

k=l
k

k=l
k

2 2
As a consequence, under the composite hypothesis that 6. and a. estimate

2
the same parameter a and that 6. = 3., the quantity:
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(B
1

- B
j}

(I-1)(J-1(T-1)
(n + }

_ 2
IJT ^

n
i V

I (Xj - X
1

)

"j

k=l
S (x

j

k
- x¥

k=l
K

(I-1)(J-1)(T-1)
IJT

-2 -2
n. a. + n . a

.

ii J J <^>f

(B, - B )

n.
l

(I - 1)^ HT -
1)

(«, Bj ) - 2
IJT

n

.

ix2
I (X? - X

1

)

k=l k=l

(X
J' - X

j
)

2

2 ( (I-D(J-1)(T-1)
IJT

n.a
2
. + nf

2
. (^)jl

has t-distribution with:

degrees of freedom. Computing this statistic, for the normalized forms

of models (e) and (f) separately, for each pair of Mental Groups, I, II,

upper III, lower III and IV yields the results given in Table II.

Note that for yery high level of significance, none of the coeffici-

ents B. , B. (for either model (e) or (f)) test significantly different

from each other, so that for high chosen level of significance the com-

2 2 2
posite null hypothesis that a. and o. both estimate common a and that

B.j = Bj cannot be rejected. But note that the magnitudes of the computed

t-statistics for the most part give credence (especially in the normalized

form of model (f)) to the observations that prompted this test: the sets
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TABLE II

R

i,j t(R) Mi-R/ df

1.2 1.95 1.98 1481

1.3 2.00 1.57 1284

1.4 0.53 0.28 1141

1.5 0.84 0.51 935

2.3 0.28 0.28 1688

2.4 1.57 1.91 1545

2.5 0.75 1.17 1339

3.4 1.68 1.47 1348

3.5 0.91 0.87 1142

4,5 0.47 0.32 999

(i,j) refers to the comparison of coefficients for Mental Groups i and j

t(R) is the computed t-statistic for the normalized form of model (e).

t(-^n-) is the computed t-statistic for the normalized form of model (f)

df is the appropriate degrees of freedom,

ildi^Mi
j + . 2

J

of the t-distribution to the nearest integer.
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{32, 33} and {$1, 34, 35} of coefficients may be accepted as being

different from each other, and the coefficients within each of these sets

may be accepted as being the same, at an appreciably higher level of

significance than any other partition of the set {3I, 32, 33, 34, 35} .
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IV. FEATURES OF THE MODEL

A. A MORE GENERAL CROSS-SECTIONAL MODEL

Consider a slightly more general form of the reenlistment model.

For simplicity in the derivation of results, suppose that three

cross-sectional dimensions are involved. Let Y = X$ + Zfi + e, where

Y is an n-vector of observations on the dependent variable, X is an n x k

matrix of observations on k explanatory variables, each of which varies

over all cross-sectional dimensions (as did WM. ... in the reenlistment
l j t

model), 3 is a k-vector of coefficients corresponding to the variables X,

Z is an n x m matrix of observations on m explanatory variables, each of

which varies over at most two cross-sectional dimensions (as did WC..

and C. for example, in the reenlistment model), Q is an m- vector of

coefficients corresponding to the variables in Z. Then it is evident that,

if the observations are "normalized" as in the reenlistment model, the

variables Z will disappear from the normalized data. So the model in

normalized form becomes Y = X 6 + e , where, for example, the typical

element of e is:

e
ijt " e

ij. " £
i.t " e

.jt
+ e

i..
+ e

.j.
+ £

..t " £
...

The procedure of normalizing data in this manner, then, is advantageous

when it is desirable to rid the model of one or more of the variables in

Z. For example, theoretical or practical considerations may dictate

that a variable in Z be included in the model, but this variable may in

practice turn out to be unobserved (as was WC-
t

in the reenlistment

model) or even unobservable (as was C. in the reenlistment model). An

obvious disadvantage is that all the variables Z disappear in the
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normalized data, so that none of the coefficients in n can be estimated

using normalized observations. The normalization procedure can also be

used to advantage to rid the model of disturbance terms of a certain

form. This is the subject of a later part of this section.

B. A NECESSARY IDEMPOTENT MATRIX

Consider the set of all ordered triples of three indices, i, j, t:

{(i,j,t): i = 1, ...I, j = 1, ...J, t = 1, ...T}

There are IJT unique such ordered triples. Construct an IJT x IJT

matrix, the rows and columns of which are each indexed with one of the

f"h

ordered triples (i, j, t), as follows: If the k row of this matrix,

call it V, is indexed with (i-j, j-j , t-j
) ; then the k column of V is also

indexed with (i,, j, , t-, ) . For the row of V indexed with (i, 9 j, , t,

)

and the column of V indexed with (!„, j„ , t«)> let the corresponding

element of V be equal to

-(J-1)(T-1)/IJT

-(I-1)(T-1)/IJT

-(I-1)(J-1)/IJT

(T-D/IJT

(J-1)/IJT

(I-D/IJT

-I/IJT

(I-1)(J-1)(T-1)/IJT

if i-
1

t i
2

, J-,

if i-
-

\v h

if i- .
=

\v h

if i
1

t i 2- J
i

if i.
1

i i

2
, J

i

if i.
,

=
1
2

, J
i

if i

I

t 1 2> J
'i

if i- =
1
2 , J

i

J0 5 t, = t

t J
2 » t

= j
2

» t

^ J 2
, t

= J
2

> t

t J
2

. t

/ j 2
, t

= J2
» t

= t,

/ t.

= t,

^ t.

^ t,

7* t,

= t,

) elements ofWithin each row and each column of V, then, there are (I-'

the first type, (J-l) elements of the second type, (T-l) elements of the

third type, (I-1)(J-1) elements of the fourth type, (I-1)(T-1) elements
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of the fifth type, (J-1)(T-1) elements of the sixth type, (I-1)(J-1)(T-1)

elements of the seventh type, and one element of the eighth type.

From the symmetrical construction of V, it is apparent that V is

symmetric. That V is singular is also apparent, since VN = 0, where N

is the n-vector with unit elements (that is, the sum of the elements in

each row and each column of V is equal to zero) and n = IJT.

And it can be shown that V is indempotent as well: Let X be an

arbitrary n x r matrix. For convenience of representation, let the m

row of X be indexed with the same ordered triple (i, j, t) as the m

row of V. Consider the k
th

column of VX. If X
k

is the k
th

column of X,

k th
then VX is the k column of VX, so that without loss of generality it

is necessary only to consider the case r = 1 in order to establish the

form of VX. Let X. , j, t-, be a typical element of the n x 1 matrix X.

s t
The the (i-,, j-, , t-, ) element of VX is of the form:

IJT
(I-1)(J-1)(T-1) X. . . - (J-D(T-l) I X..

tVri i-i
1J ri

m
(i-D(t-i) J x.

jt
- (i-D(J-i) I x

+
j=i 'i

J
'

u
i

i j

t=i 'i
J

i

I T J T

(T-D I I X + (J-l) I I X + (1-1) I I X
jt

i=l j=l
1Jt

l i=l t=l 1J
l

r
j=l t=l M^

i^i-|
j/j'i

I J T-III x

i=l j=l t=l
1JI

i^i-j JYJ
1

t/t-j

i7i
1

t^t
1

J«! t^t-.
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IJT
IJT X

Vi*! i=i «i*i " IT /
L x

i it
j=i Vn

J T I T

IJ

t=i Vr j=i t=i V x
i=i t=i 1Jr

i j I J T

t A i ^ .i, j, j,
*w

i=l j=l t=l

Vi*i "
*

i ^i*i
"

J
j

Xi
i

jt
i

" T
t

XW +

1_
JT nxijt 4nx, t + |jn x

i Jt

I3T I 11 x
iJt =

x. , . - x . . -X. . -X. . + X. + X , + X . - X
liJiti -Ji^ Iv*! Vl' It- Ot -.tn
i
jn 1"

1 1

That is, the matrix V is the linear transformation which reduces the

original data X to data in the normalized form.

Now consider the matrix product VVX. Let X- . . be the typical

o
lJ] ]

element of VVX, and let X. . . represent the typical element of VX:

Vri

X° xWi - x
. JVl

X. , - X. . + X. +

X , + X - X
.JT
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Analagous to the above derivation,

- X°, t -X° - X? , t + x° +X, .

t
= X

i
J ri '1 J

1 n 'i'i 'i
j

i

x°, + x° . - x°
. J-I . • 1

But:

X° = X - X - X - X + X
- J "I

*-"J
•Jl L

] -Jl L
]

. . L-j .J-| . ...

X. +X.-X ^
.J r ..t

1

x° X. . - X . - X. ¥ - X. + X. +

V*! - t
i V*! M" 1 r*

X + X . - X =
• • • • • L-l • • «

x° . X. , - X . - X. + X
i

1
Jr -Jr lr - 1,0-j. i r -

X . + X - X =

l r .

X, - X - X. - X. + X. +

v- V- V* V
X + X - X =

•J
X , -X. -X -x. +x +

V .Jr - Jr r

x . + x - x =o
• J

i

X.-X.-X.-X +X +X +X.-X =0
• • L-

-|
. . L -i • * L-t ••• •«• ••• • • L-

]
• • •

X -X -X -X +X +X +X -X =0.
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So that: X. . + X? . + .

V^l V^i

In particular this holds for the vector X. which has zeros in each ele-

ment except the k , which is equal to one. That is VVX? = VX? . But

VVX^ is the k
th

column of VV, and VX° is the k
th

column of V. This holds

for each k = 1 ... IJT, so that each column of VV is equal to the

corresponding column of V. Hence VV = V, so that V is, by definition,

idempotent.

The idempotency of V can be seen equivalently as follows. Consider

the equation VX = AX, where A is any eigenvalue of V, and X is a corres-

ponding eigenvector (x f 0) by assumption). Pre-multiplying both sides

of this equation by V yields:

VVX = VAX = AVX = A
2
X.

But VVX = VX = AX, so that aX = A
2
X. So either a = or it is possible

to divide by A to get X = AX. Or X'X = X'aX = AX'X, where X'X is a

strictly positive scalar. Hence if A f 0, then A = X'X/X'X=1. That is,

for the matrix V, all eigenvalues are equal to 1 or to 0. Now the claim

that V is indempotent can be made, since a sufficient condition for a

symmetric matrix to be indempotent is that each of its non-zero eigen-

values be equal to unity.

Now since V is indempotent, its rank is equal to its trace. And the

trace of V is equal to the sum of its diagonal elements. That is, tr(V)

= IJT [(I-1)(J-1)(T-1)/IJT] = (I-1)(J-1)(T-1). Hence the rank of V

is (l-l)(j-l)(T-l).

C. ORDINARY LEAST SQUARES ESTIMATION UNDER THE TRANSFORMATION V

Consider once again the model described in Section A, Y = X3 + 19. + e

where Y,X,e,Z,fi and e are as defined there. Recall that the number of
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cross-sectional dimensions involved was assumed, for purely illustrative

purposes, to be three. Suppose that one cross-sectional dimension is

resolved into I categories, the second dimension into J categories, and

the third dimension into T categories. Then there are n = IJT observa-

tions in Y, and to each observation in Y there can be assigned a unique

ordered triple (i,j,t) which represents the appropriate category of each

of the cross-sectional dimensions for that observation in Y. Obviously

this same ordered triple is assigned to the corresponding observations

of the variables in X and in Z, as well as to the corresponding element

of e. Now suppose that the matrix V has been constructed so that the index

of the p row of V is equal to the index of the p observation in Y.

Then pre-multi plying the above equation by V yields VY = V X & + VZfi + Ve,

where VZ = 0~ and VY f
0"

f VX since by assumption the dependent variable

whose observations are represented by Y and the k explanatory variables

whose observations are represented by X vary over all cross-sectional

dimensions, while the variables whose observations are represented by Z

vary over at most two cross-sectional dimensions. So the equation

becomes VY = V X B + Ve.

Note that the above property provides a concise operational defini-

tion of the phrase "varies over all cross-sectional dimensions." A non-

stochastic variable whose vector of observations, over all possible

categories of the cross-sectional dimensions, is given by W may be said

to vary over all cross-sectional dimensions if VW f 0. It will be shown

in a later section that the element of VW which is indexed by (i,j,t) may

be interpreted as the three-way interaction of the i category of one

cross-sectional dimension, the j category of the second dimension, and

the t category of the third dimension. Similarly, for a stochastic
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variable whose vector of observations is given by W, the element of VW

indexed by (i,j,t) may be interpreted as the sample estimate of this

three-way interaction term.

Now in order to discuss the ordinary least squares estimator of 3 in

the equation VY = V X 3 + Ve it is necessary to consider the rank of VX.

Suppose that r (X) = k (k < n), so that (X
1

X)~ exists. If it were the

case that r (X) < k, then the coefficient vector 3 in the equation

Y = X3 + Zft +e would be inestimable in the original data, since a necess-

ary condition for the ordinary least squares estimators, in the original

data, of 3 and n to exist is that both X
1

X and V 1 are nonsingular.

That is, these estimators in the original data, in partitioned matrix

form,

Lfl

X' X X'Z

V X Z'Z

-1

"X' Y

. .V Y .

exist only if (X
1

X)" and (Z' Z)~ exist. So the assumption that r (X)

= k is no more restrictive in the ordinary least squares estimation of 3

using data in the form VY, VX than it was in the ordinary least squares

estimation of 6 using the original data Y, X. [Note that this discussion

applies only to estimation of the originally specified k-vector 3 of

coefficients. It may of course be possible, even if r (X) < k, to

estimate a linear combination of some of the coefficients in 3. But this

is not the goal here.] Now since r (V) = (1-1 )(J-1 )(T-1 ) , a necessary

condition for (VX)' (VX) = X' VX to be nonsingular is that r (VX) = K.

So a necessary condition is that K < (1-1 )(J-1 )(T-1 ) . That is, that the

matrix X represents observations on at most (1-1 )(J-1 ) (T-l ) explanatory

variables. Consequently, in all discussion hereafter, the requirement

that K < (I-1)(j-1)(t-1) <IJT = n will be made.
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Additionally, the requirement that r (VX) = k means that the columns

of VX must be linearly independent. But these are simply the vectors

which represent the three-way interaction terms for each variable in X.

This is a new restriction, not encountered when basing estimators upon

the original observations. It may turn out, in some cases, to prohibit

application of V in the model. It is certainly not prohibitive when X

represents observations on only one explanatory variable (as was the case

for WM. ... in the reenlistment model). It may be worth noting that the

circumstances in which r (VX) < k can be stated more succinctly: r (VX)

< k if and only if some linear combination of the vectors in X is in the

null space of the transformation V.

If r (VX) = k, then X'VX is nonsingular, and the ordinary least

squares estimator, under the transformation V, for 3 in Y = X3 + Zft + f

is B = ((VX)'(VX))"
1

(VX)'(VY) = (X'VX)
-1

X'VY.

A definition of terms should now be made. B, in the equation above,

has been called an estimator for 3 under the transformation V. But it

is clear that if B is linear in VY, then it is also linear in Y. That

is, for any linear transformation A, A(VY) = CY for some linear transforma-

tion C. The reason for this apparently unnecessary terminology is that

this estimator B is the best linear unbiased estimator for 3 (it will be

shown later) among all those unbiased estimators for 3 that are linear in VY,

[The definition of "Best" used throughout this paper is that employed in

the Gauss-Markov theorem. An estimator 3 for 3 in the equation Y = X3 +

Zfi +eis best linear unbiased if it is linear in Y, if it is unbiased

and if any other estimator of 3 which is also linear in Y and unbiased

has a covariance matrix which exceeds that of 3 by a positive semidefinite

matrix.] That B can be the best unbiased estimator linear in VY and
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yet not be the best unbiased estimator linear in Y is clear, since the

transformation V is not invertible. That is, no linear transformation on

VW can reproduce W. If this were possible, then there would exist some

matrix A such that AVW = W for all W. But since V is singular, there

must exist a vector W-, (not identically zero) such that VW-. = 0.

Specifically, W-. = N can be the n- vector with unit elements. So AVW-, =

A = 0^
f- W, . [Equivalently, V is not isomorphic. It has null space

S = {W:VW = 0}. Consequently, V maps all vectors of the form Z + cN,

where c is a scalar and N the n-vector of unit elements, into the vector

VZ.] In addition to being the best linear unbiased estimator for 3

under the transformation V, B is in many cases the best linear unbiased

estimator for 3 as well. This is the subject of the next part of this

section.

D. POOLED TIME SERIES AND CROSS-SECTION DATA: EFFECT OF THE COMPOSITION
OF THE DISTURBANCE TERM ON THE MODEL

The ordinary least squares estimator for 3, under V, shows a degree

of insensitivity in its quality of "best linear unbiasedness under V" to

the composition of the disturbance term of the model. The type of

composition of the disturbance term for which the property of best

linear unbiasedness, under V, of B is invariant is considered here.

It may happen that in a regression model involving time series and

cross-section data the disturbance term for an observation is composed

of effects due to the cross-section, an effect due to the time series,

and a series of remainder terms (that is, components of the disturbance

term which are due to the joint effects of cross-section and time

4
series). For example, the disturbance term e... for economic entity i,

i j t

4
As postulated by, for example, Kuh [11] and Chetty [12].
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subject to factor j at time t may be given by:

]
-

e
ijt

=
«tjt

+ a
i

+ Y
J

+ 6
t

+ x
ij

+
"it

+
"5V

where

2. E(n
ijt

) =0,i=1, ...I, j = 1, ...J, t = 1, ...T

3. Var (n
i

-

t
)

= o for all i, j, t

4. ri'-f's are independent, Normally distributed random variables
1 J L

5. No statements can be made concerning the distributions of the

random variables a-, y. s 6., X.., w.., -n .. .

I J L 1 J 1 l> J L

6. No statements can be made concerning the independence, or correla-

tions, of the random variables r[iii. i a-, y-» <$ X. .» u.., it..
I J w 1 J L» IJ It Jt

(other than as in 4. above)

7. Each random variable is invariant over any dimension not included

as a subscript in its notational expression.

The disturbance structure hypothesized here is central to later work.

For ease of reference, call the error structure formally assumed by

statements 1. through 7. above "disturbance structure (A)."

Under the specifications of disturbance structure (A), no conclusion

can be made about the form of E (e) or Var (e). Consequently no claims

can be made regarding the unbiasedness of the ordinary least squares

estimator for 6 in the original data. And the generalized least square

estimator is unknown, since Var (e) is unknown. But for e = [e,-4+] and

n =
[n-j-jf] as specified above, Ve= Vn , since Va = Vy = V6 = Vx = Vu

= Vtt =0. Hence under disturbance structure (A) the ordinary least

squares estimator, under V, for 6 is unbiased:
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B = (X'VX)'
1

X'VY

E(B) = ELU'VXrVvY] = EE(X'VX)"
1

X'(V X 3 + Ve)] =

3 + (X'VX)"
1

X'V E(n) = 3 + = 3 .

And the variance of B is given by:

Var (B) = E[(B-3)(B-3)'] =

E[(X'VX)
_1

X'Vee' VX(X'VX)"
1

] =

EL(X'VX)'
1

X'Vnn' VX(X'VX)"
1

] =

(X'VX)"
1

X'VE(nn') VX(X'VX)"
1

=

a
2

(X'VX)"
1

X'VIVX(X'VX)"
1

=

a
2

(X'VX)"
1

X'VX(X'VX)"
1

= a
2

(X'VX)"
1

,

since E(nn') = o I, and since V is idempotent.

It is now possible to show that, under disturbance structure (A),

B is the best linear unbiased estimator, under V, for 3- But it is first

worthwhile to show that any linear transformation which has null space

identical to that of V (that is, any linear transformation which maps

precisely the same vectors onto the null vector) is itself a linear

transformation, under a nonsingular matrix, of V. That is, that the

matrix V which removes the stochastic variables a., y., 6. X.., to., and
i "j t, ij' it

ir.. from the disturbance term, and under which the image of a vector

[n--
t ] which varies over all dimensions is non-null, is unique up to a

nonsingular linear transformation C. Suppose there exists another linear

transformation, say A, such that Ae = An (Act = Ay = A6 = Ax = Aw = Au = 0)

for all n-vectors e. Then since A and V are to have the same null space,

AX = if and only if VX = 0. In particular, this must hold for the vec-

tor VX: AVX = 0", if and only if VVX = VX = 0. An equivalent statement is

that the system A(VX) = has only the trivial solution VX = 0. Hence

either A is nonsingular or A = CV for nonsingular C (in the latter case
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AVX = CVVX = CVX and AX = CVX). But if A is nonsingular, then AX =

implies that X = 0. So, for nonsingular A, A and V could not have the

same null space. Hence A = CV, for nonsingular C.

Now since CV, for nonsingular C, is the only linear transformation

which removes stochastic variables a., p., y. \.., m.
, n.. from the

1 J *- , 1 J H JL

model, any other unbiased estimator of 8 must be linear in CVY, hence

in VY. Consider any other such estimator, say AVY, where A is a k x n

matrix independent of Y.

Let D = A - (X'VXrVv.

Then AVY = [D + (X'VX)
_1

X'] VY =

[D + (X'VXrV] [V X 8 + Ve] =

[DVX + I] 8 + [D + (X'VXrV] Ve.

But E(AVY) = (DVX + I) 8 + [D + (X'VX)
_1

X'] E(Ve) =

(DVX + I) 8 + [D + (X'VXrVv] E(n) =

(DVX + I) 8.

So in order for AVY to be unbiased, it is necessary that DVX = 0. So the

estimator becomes 8 + [D + (X ' VX)~ X'] Ve. The corresponding sampling

error is [D + (X'VX)" X
1

] V e, and the covariance matrix is:

E[{DV + (X'VXTVv }Vee'V{VD' + VX(X'VX)"
1

}] =

[DV + (X'VXrVv] E(nn') [VD* + VX(X'VX)"
1

]
=

a
2

[DV + (X'VXrVv] [VD
1

+ VX(X'VX)'
1

]
=

a
2

[DVD
1

+ DVX(X'VX)"
1

+ (X
1

VX)
_1

X' VD ' + (X'VX)'
1
X

, VX(X
I

VX)"
1

]
=

a
2

[DVD
1

+ (X'VX)"
1

].

So the covariance matrix of the estimator AVY exceeds the covariance

matrix of B = (X'VX) X'VY by DVD
1

, a positive semidefinite matrix. Hence

B is the best linear unbiased estimator under V in the sense that its
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covariance matrix is exceeded, by a positive semidefinite matrix, by the

covariance matrix of any other linear unbiased estimator of 3 under V.

And, since B is the best linear unbiased estimator for 3 under V,

and since only those estimators linear in VY can claim to be unbiased,

the estimator B is the best linear unbiased estimator for 3 under

disturbance structure (A).

The discussion of the hypothesized error structure has been couched

in terms of pooled cross-section and time series data. But in any

regression model involving cross-sectional data (no matter what the nature

of the cross-sectional dimensions) it is clear that, if no more specific

statement about the error structure can be made than that disturbance

structure (A) applies, then B = (X'VX) X'VY is the best linear unbiased

estimator for 3.

E. AN UNBIASED ESTIMATOR FOR a
2

Assume disturbance structure (A) from the preceeding section applies.

The purpose of this section is to show that:

S
2

= e'e/[(I-l)(J-l)(T-l)-k]

2
is an unbiased estimator for a in

Var (B) = (X'VX)"
1

a
2

.

Consider the estimator B = (X'VX)" X'VY of 6 in the model:

Y = X3 + Zfi + e, VY = V X 3 + Ve.

The residual vector is e = VY - VXB = VY - VX(X'VX)"
1

X
,

VY =

[V-VX(X'VX)"
1

X'V] Y. Let M = V-VX(X'VX)"
1
X'V. Then e = MY and M is an

idempotent matrix with trace (1-1 )(J-1 )(T-1 )-k. To see the idempotency

of M:
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MM = [V-VX(X'VX)
_1

X'V] [V-VX(X'VX)"
1
X'V] =

V-VX(X'VX)
-1

X'V - VX(X'VX)
_1

X'V + VX(X'VX)"
1

X
,

VX(X
,

VX)"
1
X

,

V =

V-VXU'VXTVv - VX(X'VX)"'X'V + VX(X'VX)
_1

X'V =

V-VXCX'VXJ^X'V = M.

To see tr (M) = (1-1 )(J-1 )(T-1 )
- k:

Since the trace of the difference of two matrices is equal to the

difference of the traces,

tr(M) = tr(V) - tr(VX(X'VX)"
1

X'V) =

(i-i)(j-i)(t-i) - tKvxU'vxrVv) .

And since for two matrices A, B, of compatible order, tr (AB) = tr(BA),

tr(M) = (I=1)(J-1)(T-1) - tr((X ,

VX)"
1

X'VX) =

(I-1)(J-1)(T-1) - tr(I
k

) = (I-1)(J-1)(T-1) - k,

where I. is the identity matrix of order k.

The residual vector may also be written, e = MY = MVY = MV (Xg + e )

= MVe, since MVX = VX - VX(X'VX)"
1

X'VX = VX - VX = 0.

So the error sum of squares is e'e = e'VM'MVe = e'VMVe = n'VMVn =

n'M n» since Ve = Vn. And, since n'Mn is scalar, it is equal to its own

trace: e'e = tr(n'Mn). And since tr(AB) = tr(BA), e'e = tr(n'Mn) =

tr(Mnn'). And since the trace of a square matrix is a linear operation

on the matrix, the expected value of the trace is equal to the trace of

the expected value:

E(e'e) = E[tr(Mnn')] = tr[E(Mnn')l = tr[ME(nn')] = tr[a
2
MI] =

tr[a
2
M] = a

2
tr(M),

since for a scalar k and matrix A, tr(kA) = k tr(A).
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So E(e'e) = a
2

[(1-1 )(J-1 )(T-1 ) - k ].

So, for S
2

= e'e/[(I-l)(J-l)(T-l) - k], E(S
2

) = a
2

.

F. THE JOINT DISTRIBUTION OF B AND S
2

A theorem with application in statistical analysis may be expressed

as follows: If A is an idempotent matrix and y is an n-variate Nromal

random variable from a N(0,a ) distribution, then the quadratic form

1 2
-yy'Ay is distributed x with q degrees of freedom , where q = tr(A) =

5
rank of A. This theorem can be applied to the results of the proceed-

ing section which showed that e'e = n'Mn , where M is idempotent and the

elements of n are independent identically distributed Normal random

2 2
variables, each with mean zero and variance a . By the theorem, e'e/a

is distributed x
2 witn (I-1)(J-1)(T-1) - k degrees of freedom.

Now consider the estimator B for e. It has already been shown that

E (B) = 6 and

Var (B) = a
2
(X'VX)

_1
.

And B = (X'VXrVw = (X'VXTV V(Xb + e)

(X'VX)"
1
X'VX3 + (X'VXrVve =

3 + (X'VXrVv n.

So, since B is linear in the components of n» B has a multivariate normal

distribution also

B ~ N(e, a
2
(X'VX)

_1
).

It can now be shown that the Chi-square and Normal distributions described

2 2
above are independent. Note that e'e/a = n'lW a is an idempotent

5
For a proff of this theorem, as well as of the converse implication,
see Hogg, R., and Craig, A., Introduction to Mathematical Statistics ,

pp. 348-351, MacMillan, 1965.

56





quadratic form in n, and that B = g + (X'VX)" X'Vn is a vector whose

elements are linear in n» where the components of n are independent

identically distributed random variables. A sufficient condition for

e'e/c and B to be statistically independent is that the product of

(X'VX)" X'V and M be equal to the null vector. That this is so is easily

verified:

[(X'VXrVv] M =

[(X'VXrVv] [V-VX(X'VX)'
1

X'V] =

(x'vxrVv - (x'vxrVvxu'vxrVv =

(X'YX^X'V - (X'VXrVv =
.

2
Hence e'e/a and B are independent.

Now since:

-2 e'e a e'e

[(I-1)(J-1)(T-1) - kj " [(l-l)(J-l)(T-l) - kj 1

2 2
is linear in e'e/a , S and B are independent as well.

As a consequence, it is now possible to get a joint distribution of

S and a linear combination of the components of B. Now B - s ~N (0,

a
2
(X'VX)

_1
). Let W be a k-vector of constants.

Then W'(B-B) ~ N(0, W (X
1

VX)
_1

Wa
2

) .

And W
'

(B - g)

V2

~
H(0.1).

[a
2

W'(X'VX)
_1

W]

For a proof of this assertion, see Theil, H., Principles of
Econometrics , pp. 83-84, Wiley, 1971.
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2
So that, since B and S are independent,

^4^ nv[(w)(w)(T-i) - k]

[£ wu'vxr'w]^ ^__ w
.

(B-e)
« o 1/2

=

; 1/2

{[(I-1)(J-1)(T-1) - k] SVcr } S[W'(X'VX)' I W]

has

t-distribution with (1-1 )(J-1 )(T-l)-k degrees of freedom.

So a confidence interval for W'6, is a linear combination of the

elements of 3, is given by

1
W'B ± t, a S {W'U'VX)

-1
!^

2

'"
2

+ h
where t-, a_ is the 100 (1-a) percentile of a t-distribution with

'"2

(I-1)(J-1)(T-1 ) - k degrees of freedom.

In particular this holds for a vector W which has zeros in each

component, except for the p element which is equal to one. Applica-

tion of this vector W will give a confidence interval for the p

component of 8, p = 1, ...k.

G. AN ALTERNATE DERIVATION OF V

The calculations which yield the elements of the matrix V, introduced

in Section B , may not be apparent. The purpose of the present section

is to delinate the sequence of steps that lead to the elements of V.

As a vehicle, consider a disturbance term of the form, once again,

(1) £
ijt

= n
ijt

+ a
i

+ Y
j

+ 6
t

+ X
ij

+ w
it

+ u
jt'

where nothing is

known or can be reasonably assumed about the components of the e-,-
t
ls

except that the n.-.'s are independent Normal random variables, each

with mean zero and variance a «
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Now

(2) U T I
e
ijt

=
T I nijt

+ a
i

+ Yj +
T fi

t
+

x
i i

+
T £

w
i t

+
T [ *Jt

(3)

(4)

(5)

(6)

(7)

i.t J

J I
x
ij

+ w
it

+
J I *Jt

j j

jt
=
T l

£
ijt

=
I I n ijt

+
T I a

i

+ Yj + 5
t +

ll A
i.i

+ jl u
it

+
*jt

i .

.

JT

I
e
ijt

=
J~ frljt

+ a
i

+
J I Y

j
+ 5

t
+

J J j

1

J^ijt-JrJI'Mjt'i^Wpt*

I
*ij

+
T

J
-It

+
3T H

t
-jt

\TlUm-hll-nt +
\l ai^i + rlh +

i t 1 t

tI x
ij

+ nl\ w
it

+
r

I
*jt

J I I e
i jt

=
TT H n ijt

+
I X a

i

+
J I yj

+ « t
+

-
1 j j j

1 1H A
ij

+ l£ w it
+
7 I *jt

i J
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(8) -...-TJrnx-ut-wrnhjfTl-i*!?^*

} i
«
t

+
ij n x

ij
+
It n un +

or 1 1 *jt
•

t 1 J 11 J t

Adding and subtracting (l)-(2)-(3)-(4)+(5)+(6)+(7)-(8), the disturbance

term for the ijt observation in normalized data becomes:

U • .. = £ • ..-£.. -£•.-£-.+£• +£• + £ . - £ =
Hjt ljt IJ. l.t .Jt 1.. .J. ..t

n ijt " ^ij. " ni.f \jt
+ T1

i..
+
\j.

+
^..t" n

,

1
,IJT ^jf JT ^ijt- IT

] ^
1Jt - U Inijt

+
IJT

I Hnijt
+ JllTiijt

+ Tnnijt
- nin,t j

j t
1Jt

i t
1JX

i j
1JL

i j t
J

J

The equations (2) through (8) above v/ere written out in the inconvenient

summative form to make obvious the fact that the variables a-, y-, 6.,
1 J u

X--i to., and 7T.. disappear completely from the disturbance term of the

normalized model. This is so since the equations (1) through (8) are

written in terms of the random variables themselves, not in terms of

realizations of these random variables. These random variables also

disappear, of course, in the event that one or more of them is degenerate,

as might happen if an unobservable explanatory variable were implicitly

included in the disturbance term e....

The expression for u. .. consists of adding and subtracting various

multiples of given random variables. But in this expression any random

variable t\. . . may be included under more than one summation sign.
Vcro

Concentrate on one normalized disturbance term, say y. • . , and rearrange
Vri

terms in the series of summations so that each random variable n...
i j t
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appears once and only once in the expression for y. . + :

y
i i t

=
TTf IJT n

i it " JT
I n ii t ' IT I n

i it "
i

1
J

1

t
1

IJT
(

i
1
J

]

t
1

. ij
1
t
1

Ijjtj

U I n
i

,
t

+ I 11 n
i

,
t

+ J H nii t
+ T H nin

t Vr 3 t V 1
i t

J
l i j

1Jt
l

1 J t

TJ(I-1)(J--|)(T-1) n , ,
t

- (J-D(T-l) I n,, t
"

IJT
(

i
1
J

1

t
1 i

ij
1

t
1

(I-D(T-l) I n. ,
t

- (I-D(J-l) I n, /J 1
+

M, t?«t
1

(T-D I I n..
t

+ (J-l) I I ni1 t
+ (I-D I I ni u

i j
1Jt

l i t
J

l J t V r

i^i-l j7j-| i7i-| t/t
]

j7j
1

t^t-j

ijM-, J7J-| t^t
]

So that u. . . is a series of summations of independent, identically

distributed Normal random variables.

Since each of these random variables n-- t
has mean zero and variance

2
o , it is clear that:

Eta .-

t ) -

Vri

varSW pW var
|

(I"1,(w,(T"1) Vi

(J-D(T-1
I ni1 t

- (I-D(T-l) I n, it
- (I-D(J-l) I n,

i t

i^i-l j?j-| t?«t
1
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+ (T-l)
I I n,,

t
+ (J-D I I n..

t
+ (I-D I I n, jt

-
\ ] l^\-

i7i
1

jYj^ t^t
]

(w)
2

|[(I-1)(J-D(T-1]
2

Var (n,^) + [(J-l )(T-1)]
2

Var/
£ ^

+ [(I-D(T-l)]
2 Var/[ n

iiJt
\ + [(I-D(J-l)]

2

J
n^t -

(T-D'Varn
I n ijt

\MJ-l

\i7i-l J7j-| /

-D^Var/J I^
i^i-, t?«t

1

(i -i)2varn ^M +(i)2var
n s h^i

j«! t/t
1

J7i-| J7j-| t^t,

(ijt) (t(i-i)J-D(T-i)]
2

+ [(J-D(t-i)]
2

(1-1) +

[(I-D(T-l)]
2

(J-l) + [(I-D(J-l)]
2

(T-l) + (T-1)
2
(I-1)(J-1) +

(J-1)
2
(I-1)(T-1) + (I-1)

2
(J-1)(T-1) + (I-1)(J-1)(T-1)

of (I-1)(J-1)(T-1)

IJT
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Note that this applies for all y--
t

. And since y... is a linear combina-

tion of independent, identically distributed Normal random variables,

y. .. is also Normally distributed.

Note that the diagonal elements of the covariance matrix E(yy') are

each a (1-1 )(J-1 )(T-1 )/IJT. But also note that, since each of the y^^'s

is a linear combination of the same IJT random variables n-- t , i=l,...I,

j=l,...J, t=l,...T, the Hj.« + 's are not independent.

The remainder of the covariance matrix may be found by straightforward

but tedious calculations. Since E(y..,) = 0, these calculations (using
l j t

the summative expression in the r\. . 's for each y. . ) yield
ljt 1

l
J

l
t
l

COV (y, . + , y 4 , + ) = E(y. ,
f

y. . . ) =

Vi 1
1

2
J 2

I
2VlV i

2
J 2

t
2

-LH1CMV
IJT

-(I-D(T-l)a
2

IJT

-(i-D(J-l)a
2

IJT

(T-l)a
2

IJT

(J-l)a
2

IJT

(I-Da
2

IJT

2
-a

IJT

if i

if i

if i

if i

if i

if i

if i

^ 2 ' ^1 Jp't

- lo' ^l ' ^2

'

"I

2 » J] ' J?

'

f loj Ji r J o > t2' J
l

2' J
'l

f 1 o > J 1 "J' , t

1 o > J'l ' Jp »
t

t 1*9' Jl ^ J9> t

= t.

t t,

= t,

t t,

^ t.

/ t.

So that, for the matrix previously defined, c V = E(yy').

H. THE CASE WHEN FEWER THAN IJT OBSERVATIONS ARE USED

Suppose the components of the disturbance term are independent

identically distributed Normal random variables with mean zero. Then
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for ordinary least squares estimation in the original data the quantity

2 2 2
(IJT - k) S

n
/a has x distribution with IJT - k degrees of freedom,

2 2
where S~ = e'e/(IJT - k) is the estimator in the original data of a .

When normalized data are used the quantity:

[(I-1)(J-1)(T-1) - k] \ = i (I-l)(J-D(T-l) nj k

j
nrr

1JT
j

~ k

has x
2

distribution with (1-1 )(J-1 )(T-1 ) - k = H-"1

)
(j-j)(T-l

)

IJT _ k

2 2
degrees of freedom, for S the estimator of a previously derived. In

addition, the latter distribution still applies when disturbance

structure (A) is assumed. An analagous relationship holds when n < IJT

observations are used in the least squares estimation (such a case might

arise when some observations must be discarded for one reason or another),

In this case, for ordinary least squares estimation in the original data

2 2 2
the quantity (n - k) S« / a has x distribution with n - k degrees of

freedom. It is desired to show the analagous distribution (in S ) when

normalized data are used. But when not all observations are allowed,

the method of "normalizing" the remaining observations is not obvious.

The most straightforward approach is to take the appropriate means, in

the normalization process, over those observations that are available.

J- L.

Then, for example, the normalization of the (i,j,t) observation on

the dependent variable (which is assumed to be used) still has the form:

ijt " y ij. " y i.t " y .jt
+ y

i

+ y
.j.

+y
..t

- y

where now

(*) y
ij.

l

- I
y iJt

T(i,j)|| teT(i,j)
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1

i.t

Y
.jt

l.

.

|J(i,t)

1

I(j,t)

|J(i.t)

Kj.t)

..t
KJ.t)

KJ.t)

JeJ(i.t)

I
y ijt

tel(J.t)

1

|T(1,j)||

T(1.J)

J(1.t)

1

jeJ(i.t) teT(1,j)

I I
yUt

iel(j.t) teT(i.j)

I I
y
iJt

lel(j.t) jeJ(i.t)

I I I
y ijt ,

J(i»t)||.||T(i,j)| iel(j.t) jeJ(i.t) teT(i.j)

where, for example, T(i,j) is the set of all years in which the observa-

tions of y..., for Rate i and pay grade j, are used and |T(i,j)| is the
i j t

number of elements in T(i,j). The normalized value of any observation

which is not used in the least squares estimation is taken to be zero.

The same form applies for normalization of the explanatory variables in

X. With a little reflection it is seen that, in effect, this normaliza-

tion process implicitly takes the value of an unused observation of any

variable to be the sum of the appropriate means over observations which

are in fact used. That is, an unused observation y... is taken to be

equal to:

y • .. = y . . +y-4.+y- + -y-
ut J ij.

J i.t J .jt J
i. • J.

y ..t
+ y

,

where the terms on the right hand side of this equation are as given in

(*) above. In particular, this modified normalization process is applied

to the disturbance terms e. ... as well. Let y represent the n-vector

(n < UT is the number of observations used) of disturbance terms under
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the modified normalization. Define, as in the preceeding section,

Vq = ~2 E(vv') »

o

where the matrix V
Q

has order n < IJT. Note that the diagonal element

of Vq which corresponds to observation (i,j,t) is equal to:

(||Kj,t)||-l)(||J(i,t)||-l)(||T(i,j)||-l)

||l(j\t)|H!J(i,t)||.||T(i,j)||

since it represents the variance of a component of y derived through the

modified normalization specified in (*) above. Thus, the trace of V
Q

is

equal to:

(||I(j,t)||-l)(||J(i,t)||-l)(||T(i,j)||-l)

I I I
ieUI(j,t) JeUJ(i,t) teUT(i,j)

|
| I(j ,t)

|

|

• |

|

J(i ,t)
|

|

|

|T(i ,j ) |

|

Note also that V
Q

is symmetric and that for an arbitrary n-component

disturbance vector e, VqVqe = V^e , so that V
Q

is idempotent. That

this is so is clear since for e . . , e • . , e -

+ , e- , e . , e f
and

1 J • l.L
. J L j I . • .J. . . L

e as specified in the equations (*), Vn e . . = Vn e- .
= Vn e .

f
=

Vn e. = V e • = V e .
= V e = 0\ The matrix V has propertiesOi.. o.j. o..t o... o

analagous to the matrix V considered previously, and represents the

linear transformation which projects an n-vector of observations into

the modified normalization of that vector.

Now let N(n) = tr(V )
=

(||I(j,t)||-l)(||J(i,t)||-l)(||T(i,j)||-l)

I I I
ieUI(j.t) jeUJ(i,t) teUT(i.j)

|
|I(j,t)

1
1 .| |J(i,t)| | -| |T(i,j)

1

1

and let M
Q

= V
Q

- V
Q

XCX.'VqXJ^X'Vq, where X is now the n x k matrix of

observations which results from removing the IJT-n unused observations

from the original IJT x k matrix of observations X. Then the error sum
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of squares for the least squares estimation in modified normalized form

of the data (with unused observations removed) is e'e = e'M e where M

is an idempotent matrix of rank N(n) - k. That M is idempotent is

clear since \A^
Q

= [V
Q

- V X(X ,

V Xr1
X'V ][V - V^X'V^rVv^ =

v
o

" v x(x
,

v x)"
1
x

,

v - v
o
x(x ,

v x)"
1
x'v + v x(x'v x)"

1
x

,

v x(x'v x)"
1

x
,

v

V
o

" V^'V^^o = V And M
o

has trace ( nence rank
)

N ^ n ) ~ k since

tr(M) tr[V
Q

- VqXCX'VqXJ^X'Vq] =

,-lv
tr(V

Q
) - tr[V X(X'V X) *X'V ]

=

tr(V
Q

) = trCX'V^CX'V^)'
1

]
=

N(n) - k. Hence for disturbance term e specified by:

ijt n ijt
+ OC • + Y ,•

+ fi +•
+ ^ ,• ,•

+ ^ -; + + TT •

1J 'it "jt

where n^^'s are independent identically distributed Normal random

2 1 2
variables with mean zero and variance a , -y e'M e has x distribution

a

with N(n) - k degrees of freedom. Thus, for the estimator:

s
2

=
e'e *v

N(n) - k N(n) - k
of a

1

2 2 2
[N(n) - k] S /o has x distribution with N(n) - k degrees of freedom.

For those cases in which the removal of observations is not systematic

(that is, when observations are discarded in no regular pattern), computa-

tion of N(n) may involve many computations and may require that one keep

track of a large number of values of |I(j,t)||, |J(i,t)| and |T(i,j)||.

It may therefore, be beneficial to derive the distribution of an alternative

random variable linear in S . The quantity:

(I-1)(J-1)(T-1) n .

IJT _\
N(n) - k

N(n) - k
(I-D(J-D(T-l)n

IJT
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is linear in CN(n) - k] S'

?
hence has x distribution, with degrees of freedom given by

(I-D(J-D(T-l)n
IJT

- k

(I-D(J-D(T-l)n
IJT

E 2

(I-D(J-D(T-l)n
IJT - k .

Thus the analogy is completed.

I. GENERALIZATION TO q CROSS-SECTIONS

There is a natural generalization of all of the preceeding sections

to the case in which q cross-sectional dimensions are involved.

Previously, recall, all was described in terms of three cross-sectional

dimensions.

Suppose q cross-sectional dimensions are being considered in the

model Y = X$ + Zfi + e. Analagously to the case for q = 3, let the

variables whose observations are represented by X and Y vary over all

q dimensions, and let each variable in Z vary over at most q - 1 dimen-

sions. Also let the disturbance term e be constructed analagously to

the previously considered case, q = 3. That is, for q cross-sectional

dimensions, with respective numbers of categories I -.,... Iq , e is a

linear combination of: q
TT I

k=l
k

random vectors, one of which varies over q cross-sectional dimensions

68





(let this single random vector be denoted as n, as before, where the

elements of n are written with q subscripts) and the remaining

q
tt I. - 1

k=l
K

of which vary over at most q - 1 dimensions (that is, the elements of

each of these remaining random vectors are written with fewer than q

subscripts). Also, the elements of n are independent, identically

distributed Normal random variables, each with mean zero and variance

a , and the remaining
tt I. - 1

k=l
K

random variables are subject to any unknown distributions, and to any

unknown conditions of stochastic non-independence.

All the properties that have been derived in preceeding sections

flowed naturally from a knowledge of the idempotent matrix V. Thus, in

order to characterize the general case for q cross-sectional dimensions,

it is only necessary to find the appropriate matrix V whose properties
H

are analagous to those of the previously defined V. To this end, let

C-- be the subscript (in the notational expression for the elements of

n; there are q such subscripts in the notational expression for each

element of n) representing the i category of the j cross-sectional

dimension, j = l...q, i = 1,...I..

Then the elements of V = -« E(nn') are given, for i = 1,...I ,

h - '--if b
* x\v-\n nV- cV '

= H)P+
-s

(Im
"1K

where

:

m:C
1 m

=C
j - *' 1 '—

1
'

m d m '

S = m:C.

and p is the number of elements in S. When S is empty, define m
n'cU m

-"') = "•
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That is: S is the set of all cross-sectional dimensions for which the

subscripts C. m and C. _ are equal in the variables n
C. -,,... C. and

l mm i mm
* ^1 lqq

n
C. -.,... C. , whose covariance is an element of V . Or: S is the set

of all cross-sectional dimensions for which the above two random vari-

ables correspond to the same category. Note that the set S depends on

the two elements of n whose covariance is being considered.

To complete the analogy to the case q = 3, V is an idempotent matrix

of order q

k=l
K

and trace (=rank) q

* (I
k

- 1) .

k=l
K

J. THE INAPPROPRIATELY APPLIED MODEL: A CASE IN WHICH DISTURBANCE
STRUCTURE (A) DOES NOT APPLY

Before proceeding with this section, it may be instructive to amplify

on the derivation of the transformation V. Note that the originally

stated purpose of the transformation V was to rid the model Y = Xb + Zft

+ e of the effects of certain unobserved or unobservable explanatory

variables. The disturbance structure (A) hypothesized in Part D

was constructed, more or less artifically, to take advantage of the pro-

perties of V. Disturbance structure (A) is simply the most general case

of the original problem: it contains all possible sources of error which

the transformation V is able to remove. Consider a model of the form

Y = X$ + Zn + e as previously introduced. Then the following statements

are equivalent:

a. e obeys disturbance structure (A):

b. The elements of e are independent, identically distributed Normal

2
random variables, each with mean zero and variance a , and

included in the specification of the model (specifically, in Z)
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is any variable (observed or not) which may be written as vary-

ing over fewer than q cross-sectional dimensions (q is the total

number of dimensions involved in the data).

c. No knowledge or information about the disturbance term e may

reasonably be assumed except that at least one component of each

e... is a sample from a Normal population with mean zero and
I J L

variance a .

This situation suggests two useful observations. The first concerns

the unobserved or unobservable explanatory variables which, by the

dictates of theory (that is, theory relating to the subject being modeled)

or other considerations, are necessarily included in some model of the

form considered here.' Note that, since the transformation V rids the

model of these variables (as long as each of these variables varies over

fewer than q cross-sectional dimensions, where q is the total number of

dimensions involved) in any case, it is conceptually and practically

equivalent whether these variables are explicitly included in the formal

form of the model, or whether they are implicitly "thrown into" the

disturbance term. This is a trite observation, but it is well worth

noting for the following reason: some studies and analyses (see, for

example, Nerlove [8]), when implicitly including an unobserved or

unobservable explanatory variable as a component of the disturbance term,

7
make a strong and possibly erroneous assumption in order to complete the

regression analysis (that is, in order to be able to claim an unbiased

The term "erroneous" should be seen in context. The case of interest

here is that in which there exists some unobserved explanatory vari-

able which is expected to have a significant effect on the dependent

variable. In addition, it is supposed that the analyst has no (or

does not care to get any) information about the values of this

variable. Such a variable may indeed not even by quantifiable.
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estimator of the regression coefficients) without using some transforma-

tion such as V to purge the model of the offending variable. Specifically,

Q
the required assumption is that the disturbance term (which now implicity

includes unobserved and unobservable explanatory variables) has known

mean, usually zero. [It is further typically assumed that the disturbance

term is Normally distributed, although this assumption is not necessary

if all one wishes to do is ensure that the estimator is unbiased.] That

this assumption may be erroneous can be seen in two approaches to the

assumption. One may simply make this assumption with no justification.

But since theory, or other consideration, has dictated that the unobserved

explanatory variables does have an effect on the dependent variable, the

original problem still remains. And the resolution to that problem is

still to remove the offending explanatory variable (whether explicitly

included in the model or implicitly included as a component of the

disturbance term) by some transformation such as V. Alternatively, one

may attempt to justify the assumption by means of some device such as

the Central Limit Theorem, in this case making the additional assumption

that the components of the disturbance term, which now includes the un-

observed explanatory variables, are independent. Ignoring for the moment

o

This assumption is characterized as "required" since unless it is

made, some unobserved explanatory variable is, in effect, still
being considered an explicit term in the model.

9
Note that V may not be unique in this respect. For example, in

the model

yn - a + BXn t vZi e.
t

,

where one wishes to purge Z., the transformation W may be used,
Whefe:

W[y
it

] - [y.
t

- y. L W[XU] = [Xn - X.], W[Z.] =

[Z
i

- Z.] = 0, W[en] = [e
1t

- £.], W|>] = [a - a] =

Here [Pit] is an n- vector whose elements are Pit.
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the fact that this latter assumption is contrary to the assumptions of

disturbance structure (A), this sort of argument may be reasonable in

some cases. But in justifying the application of the Central Limit

Theorem, in order to approximate a Normal random variable of known mean

by a sum of random variables, one typically assumes that the disturbance

term represents the net effect of numerous individually unimportant but

collectively significant variables. But this is clearly not the case (at

least this latest assumption cannot reasonably be made) when disturbance

structure (A) pertains. And, more generally, it can be said that there

are certainly studies of interest where this is not the case: the un-

observed explanatory variable whose inclusion in the model was a necessity

cannot in general be assumed not to dominate the disturbance term in which

it is incorporated. In summary, there exist studies for which the use of

a transformation such as V, to rid the model of undesired variables, is

unavoidable if an unbiased estimator of the regression coefficients is

to be obtained. Simply discarding an undesired variable as a component

of a disturbance term with known mean should be viewed cautiously. As

an example, in the reenlistment model, the inclusion of the terms WC.

and C. in the disturbance term can be expected to have a large effect on

the disturbance term.

The second observation concerns the best linear unbiasedness of the

estimator B = (X'VX)"
1
X'VY for g in Y = Xg + Zfi + e . Recall that when

disturbance structure (A) is assumed, B is the best linear unbiased

estimator for 3. Note that since, in disturbance structure (A), the ran-

dom variables a, y, 6, X, u and tt may assume any (unknown) distribu-

tion, and since any error terms in the model (except the n,-- t
's) may be

interdependent, disturbance structure (A) is more general than that

typically assumed (specifically, that error structure in which the
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elements of the disturbance term e are independent, identically distributed

p
Normal random variables, each with mean zero and variance a ). But it is

not a generalization of this latter error structure: the latter is not a

special case of disturbance structure (A). This is so since disturbance

structure (A) is based on a certain lack of specific information or

knowledge about the characteristics of the components of the disturbance

term. As a consequence, if the error structure which one wishes to assume

is not that specified by disturbance structure (A), then B = (X'VX)" X'VY

is not necessarily the best linear unbiased estimator for 3 in Y = X8 +

Zfi + e.

This latest observation leads into the proper subject of this

section: a consideration of a common case in which B is not the best

linear unbiased estimator for 8. For consistency of approach, suppose

that the model is written in the form Y = X8 + e, where any unobserved

or unobservable explanatory variables (if any), which were previously

included in Z, are now included in the disturbance term e. As has been

seen, B = (X'VX)~^X'VY is the best linear unbiased estimator for 3 when

e obeys disturbance structure (A). Consider the asymptotic properties

of the matrix V in three cross-sectional dimensions. As the number of

categories, I, J, and T, in each cross-sectional dimension goes to

infinity, the elements of V behave as follows:

1 -1 1-1 1 -i
(I-1)(J-1)(T-1) _ L 1 I - I - 1

IJT "1 1 1

1-1 1-1
-d-D(J-i) ... L

'

J J_ +0
IJT "1 IT U

'

1-1 1-1
-d-D(T-i) _ _ 1 1 j.

IJT 1 1 J
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1 1 1 1
-(J-D(T-l) _ J_ _ T _L

IJT 111 ,

! .1

IJT ~1
J T

1
-1

J-l _ ' J 1 1

IJT 1 I T

1 -1
T-l ' T 1 1

IJT 1 I

+ ,

,

- o ,

-1

IJT
> .

[Note that when q cross-sectional dimensions are considered, the number

of unique elements in V is 2^, since each element of V depends on the

comparison of the subscripts of two random variables, each of which has

q subscripts. These two random variables may either agree or disagree

in each subscript. For q = 3, then, V has 2=8 unique elements.]

That is, the diagonal elements of V approach unity and all other elements

of V approach zero. Or, as I, J, and T increase without bound, V tends

to the identity matrix. As a consequence, (X'VX)" X'VY approaches

(X'X)~ X'Y as I, J and T become infinitely large. Hence, in the case

that e obeys disturbance structure (A), the ordinary least squares

estimator § = (X'X)" X'Y is in the limit (in I, J and T) an unbiased

75





estimator for 3, since it is the limit of a sequence of unbiased

estimators. This suggests that, for sufficiently large I, J and T,

the ordinary least squares estimator for 3,3= (X'X)~ X'Y could serve

to approximate the best linear unbiased estimator B when disturbance

structure (A) holds. This line of thought will not be pursued: it is

the converse suggestion, that B can serve to approximate 3 for sufficiently

large I, J and T, that is more interesting here. Suppose that the

transformation V was inappropriately applied to the model Y = Xb + e.

Specifically, suppose that the components of e are independent, identic-

ally distributed Normal random variables with mean zero and variance a .

Call this disturbance structure (B). Then the ordinary least squares

estimator 6 = (X'X)~ X'Y is the best linear unbiased estimator for 3.

Note that B = (X'VX)"
1

X
,

VY is still an unbiased estimator for 6, but it

is no longer best. But since V approaches the identity matrix as I, J

and T increase, the less efficient estimator B approaches (X'X)~ X'Y

as well. This suggests a pragmatic comparative scheme for the two

estimators B and 3:

In treating a subject related to that considered here, Wallace and
Hussain [9] have shown the asymptotic equivalence of the Aitken
estimator and an estimator derived under a linear transformation
(much as B was derived from the linear transformation V) for a

particular error structure. In the disturbance structure considered
in their paper, the disturbance term was assumed to be a sum of
independent random variables (in a combined time series and cross-
section analysis)

,

e
it

= a
i

+ Y
t

+ n
it'

for which E ( a
i)

= E(V = E ^ n it )
= °

and Var( a .j)
= a-, , Var ( Yt ) = o\> Var( n .

t
) = a^ for all i, t,

2 2 2
where a-,, c^ > and a~ were known.

The paper also showed the equivalence of the iterative Aitken esti-
mator and the estimator derived under a linear transformation for
the disturbance structure as above with

2 2 2
a,, Qp, and a_ unknown.
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1. Suppose disturbance structure (A) applies. Then B is biased,

and B is the best linear unbiased estimator and should reasonably

be used.

2. Suppose on the other hand that disturbance structure (B) is

assumed to hold. Then 3 and B are both unbiased estimators,

although B is less efficient than 3. But note that B has an

advantage which may offset (on a case-by-case basis) its lesser

efficiency: it guarantees to purge all random variables which

are invariant over at least one cross-sectional dimension. That

is, if one is unsure of the validity of the assumption that dis-

turbance structure (B) holds, then one may see some value in

applying the transformation V in order to rid the model of all

such possible sources of error.

Two concluding observations should now be made. First, it is clear

that application of the transformation V is equally inappropriate in all

other cases where disturbance structure (A) does not hold in the model

Y = X3 + e. An important special case is that in which the generalized

least squares estimator for 3 is appropriate. Just as the ordinary

least squares estimator 3 = (X'X)~ X'Y is the best linear estimator for

3 when E(e) = and Var (e) = a I, the Aitken estimator 3 = (X
1

n" X)~

X' q" Y is the best linear unbiased estimator for 3 for the case in

which E(e) = and Var(e) = o Q.

Finally, it is worth repeating the crucial condition which underlies

the specification of the case in which the transformation V is effective.

In the model Y = X3 + Zft + e (or in the equivalent, under the trans-

formation V, model Y = X3 + e, where the variables in Z are thrown into

the disturbance term e) V is effective in removing unobserved or unobserv-

able variables (stochastic or deterministic) only if these variables
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are invariant over at least one cross-sectional dimension. Accordingly,

all work in this paper is performed under the assumption that each

variable in X (those variables which vary over all cross-sectional

dimensions) has been observed.

K. INTERPRETATION OF TERMS UNDER THE TRANSFORMATION V

Consider the model in the form Y = Xe + e, in three cross-sectional

dimensions. The equation representing the data in the i category of

the first cross-sectional dimension, the j category of the second

J.L.

dimension and the t category of the third dimension is y. .. = x... 6 +

e
iit » where x. .. is a k-vector of observations on the k explanatory

variables in X. The categories of the cross-sectional dimensions corres-

ponding to the observations y. .. and x- .. may be considered to be

"treatments" which affect the values of the observations of y... and

x. .. in the (i, j, t) "cell". With this in mind, assume that each
i j t

y. .. and x... can be represented as a sum of common mean, effects due to
'ijt ijt K

single treatments (here i, j, t represent the "treatments"), two-way

interaction effects of pairs of treatments, and a three way interaction

effect of the three treatments. [Note that since there is only one

observation (on each of y . . . and x...) per "cell", it is generally not

possible to discern between the effect of the three-way interaction term

and the error term e-.
f

. In this case, however, it is known that a three-

way interaction term does in fact exist. That this is so can be seen as

follows: since x... is deterministic, one can calculate the exact three-

way interaction effect for cell (i, j, t) as x... - x .. - x. . - x- .
+

X. + x . + X . - X , subject only to roundoff error (this express-

ion is the same as that of a sample estimate of the three-way interaction

effect for the case of stochastic x..,). This is not identically zero
I j t
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(for all cells), by previous hypothesis about the variables in X, so a

three-way interaction effect is present. And since y . .. is a linear

function of x..., y. .. also includes a three-way interaction effect.]

That is, that:

*m =w +
ijt

+ A
i

+ B
j

+ c
t

+ D
ij

+ E
it

+ F
jt

+ eut

-ijt
*° +

*ijt
+ A? B». + C? 0°, E?

t
F°

t
,

where 8... and $... are the three-way interaction terms mentioned above,

Substituting these into the model

y... = u + 0. .. + A- + B. + C+ + D- • + E. . + F-. + e. ..J 1jt
M

ljt l J t ij it jt ljt

(,» + *. .,
+ A° + B° + C? D» E»

t
F° ) B +

ljt ljt
P

ljt

These effects can be equated term by term to give

and:

A
i

A°e

B
o

B°B

c
t

c°e

D
ij

DV
E
it

t>
F
jt ^

e
ijt •lit

B (*>
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Now consider the data under the transformation V: VY = V X 3 + Ve. In

the (i, j, t) cell this gives:

^3f y
ij-

- yi.t-y.jt
+
^i.. ^.j. +

*..t- y
...

(x
ijt - X

ij.
" x

i.t " X
.jt

+ X
i..

+ X
.j.

+ x
..t " ".J 6

+ (Ve).. + , where (Ve)... is the (i, j, t) element of Ve.

Note that the left hand side of this equation is the sample estimate

of the three-way interaction term 0. •+, And the term in parentheses on

the right hand side is the three-way interaction term <^
1

-

it
. This is the

relationship specified in (*) above, with a sample estimate for $...
1 j t

replacing $... and with a disturbance term (Ve)... included. That is,3 ljt i jt

under the assumption that y . ., and x... can each be represented as a

sun of common mean, effects due to single treatments, two-way interaction

effects of pairs of treatments, and a three-way interaction effect, it is

true that 0. .. = $.., 6. Hence B can be estimated by regressing the

sample estimate of the three-way interaction term 0... on the three-way

interaction term $..,. This is precisely what the estimator B = (X'VX)"
ljt K J V

/

X'VY accomplishes.
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