
Calhoun: The NPS Institutional Archive
DSpace Repository

NPS Scholarship Theses

1973

Adaptive memory management in a paging environment.

Raetz, Gary Michael.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/16442

Downloaded from NPS Archive: Calhoun

ADAPTIVE MEMORY MANAGEMENT
IN A PAGING ENVIRONMENT

Gary Michael Raetz

Monterey,
Cawo

p0gT ;?
r:

;
:;

:

:;;
.

::

:r.
:;;Gf;L

Monterey, California

T
ADAPTIVE MEMORY MANAGEMENT

IN A PAGING ENVIRONMENT

by

Gary Michael Raetz

Thesis Advisor: G. L. Barksdale, Jr

December 1973

Appiovzd Ion pubtic nzizabn.', dJJ>Vuhiitlori unlimited.

T158009

Adaptive Memory Management
in a Paging Environment

by

Gary Michael ,Raetz
Ensign, united States Navy

B.S., Portland State University, 1972

Submitted in partial fulfillment of the
reguirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL

December 1973

7^)

fl'39

Library

Naval Pot

Monterey

ABSTRACT

Adaptive memory management techniques for

multiprogramming operating systems are described. Page

replacement during execution and initial page assignment are

the factors affecting optimal memory usage. Modifications

to a time-shared operating system (Michigan Terminal System)

that would allow implementation of the Page Fault Frequency

Replacement Algorithm are discussed. Additional

modifications to this system are suggested that would

subordinate job initiation to memory availability.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 6

I. INTRODUCTION 7

II. VIRTUAL MEMORY MANAGEMENT 8

III. THE MICHIGAN TERMINAL SYSTEM (MTS) 10

A. THE SUPERVISOR PROGRAM (UMMPS) 10

B. MTS 11

C. HASP 11

D. THE PAGING DRUM PROCESSOR (PDP) 11

IV. MEMORY MANAGEMENT IN MTS 1U

A. ORGANIZATION OF MEMORY, VIRTUAL AND REAL 14

B. THE PAGING MECHANISM 17

V. ADAPTIVE MANAGEMENT OF MEMORY 21

A. CURRENT TECHNIQUES 21

B. CURRENT ADAPTIVE MANAGEMENT IN MTS 23

C. IMPLEMENTATION OF ADAPTIVE MEMORY MANAGEMENT 25

D. LOAD TIME MEMORY MANAGEMENT 31

E. POSSIBLE IMPLEMENTATION OF ADAPTIVE LOADING 33

VI. CONCLUSIONS 37

APPENDIX A FORMAT OF THE PCB IN UMMPS 39

APPENDIX B LOGIC OF THE PDP 44

BIBLIOGRAPHY 50

INITIAL DISTRIBUTION LIST 52

FORM DD 1473 53

LIST OF FIGURES

1. Proposed POQ data structure

2. Program paging requirements

29

31

ACKNOWLEDGEMENTS

The author wishes to express his thanks to his thesis

advisor, Assistant Professor Gerald L. Barksdale, Jr.

,

Chairman of the Computer Science Group. Professor

Barksdale's time, patience, and advice v/ere essential and

much appreciated in the preparation of this paper.

Special thanks must also go to my wife, Mary, whose

patience and understanding helped see this thesis through to

completion.

I- INTRODUCTION

Adaptive management and allocation of virtual memory

for a multi programmed computer operating system is the

subject of investigation for this thesis. The general

problem is to effectively allocate resources to all

processes utilizing the system and at the same time minimize

the degradation of service to process due to the concurrent

running of all other processes. The requirements and

characteristics of virtual memory management in a

demand-paged system are discussed. A brief discussion of

the time-shared raultiprogrammed, multiprocessing operating

system (Michigan Terminal System, MTS) written for the IBM

360/67 by staff at the University of Michigan is given. A

more detailed discussion of the memory management processes

employed by MTS is given which establishes the background

needed for discussion of adaptive allocation of virtual

memory and its proposed implementation.

The concept of a system load factor and factors that

are considered in computation of the load factor are

discussed[1] . The load factor is employed by the system to

make job scheduling decisions. It is suggested that the

load factor could also be used in conjuction with some

measure of program size to make a decision to allocate or

not allocate memory to a program currently requesting to be

loaded.

II. VIRTUAL MEM ORY MANAGEMENT

In contemporary computing systems, memory is considered

as the central resource[22]. This is especially true in a

multiprogramming environment since many tasks are sharing

memory with the supervisor and other system management

procedures. It is for this reason that the storage

allocation problem is of considerable interest. The problem

is to determine, at each moment of time, how information is

to be distributed among the levels of memory[9].

Virtual memory is used to provide a logical address

space that is much larger than the physical address space.

To accomplish this, a set of addresses different from those

provided^ by physical memory are used and an address

translation mechanism is provided. The address translation

mechanism translates the program-generated logical addresses

into corresponding physical addresses for access by the CPU.

The methods of implementing and managing virtual memory are

discussed thoroughly in references 4, 9, 18, and 22.

There are three basic technigues used for automatic

memory management. They are segmentation, paging, and a

combination of both[9]. Segmentation organizes the logical

address space into blocks of arbitrary size, each being a

linear array of addresses. In theory, each program module

is assigned its own segment and each address within a

segment is referenced by a two-component address; the

segment number and the relative address within the segment.

Paging organizes main memory into equal size blocks called

page frames. Virtual memory is organized into blocks the

same size as page frames; these blocks are called pages. In

paging, addresses are also referenced by a two-component

address; the page number and the relative address within the

page. The third method combines segmentation and paging

into one implementation, thereby accruing the advantages of

both[9].

The most widely used paging method implementation is

demand paging. Pages are brought into main memory only on

occurence of a page fault[22]. Pages are removed from

memory on action of the employed replacement policy. The

remainder of this paper is devoted to discussion of adaptive

replacement policies and implementation of one specific

policy, the Page Fault Frequency Replacement Algorithm.

III. THE MICHIGAN TERMINAL SYSTEM

Adaptive management of memory is discussed with

reference to one specific operating system, the University

of Michigan Multiprogramming Supervisor/Michigan Terminal

System (UMMPS/MTS) , Version 3.0. This system was created

specifically to be the operating system for an IBM System

360 Model 67. The virtual memory allocation scheme is

demand-paging, which makes the system suitable for study.

The 360/67 extends the basic System/360 architecture to

provide additional capabilities needed in an advanced time

sharing system. Multiprogramming, multiprocessing, and

multi-access capabilities are incorporated in the Model

67[11]. The Model 67 is the primary computer at the Naval

Postgraduate School. Main memory at the NPS installation

consists of one million bytes and auxiliary storage consists

of one data cell, a 2314 disk unit, and one 2301 drum

storage unit[21].

A. THE SUPERVISOR PROGRAM (UMMPS)

The heart of the system is the supervisor program

called the University of Michigan Multiprogramming

Supervisor, hereafter called UMMPS or the supervisor. UMMPS

controls the execution of all other tasks in the system.

The supervisor is always resident in processor storage and

all addresses accessed by it are real, i.e., the relocation

hardware of the Model 67 is not used when UMMPS is

executing.

The actual code of the supervisor consists of many

subroutines. These subroutines are called in response to

hardware interrupts or internal program interrupts. The

supervisor appears as an extension of the 360/67 hardware to

the tasks it control s[1].

10

B. MTS

MTS is one of the principle tasks run by the

supervisor. MTS is a re-entrant program that is activated

once for each user initiated task. User initiated tasks can

come from the batch stream or from any one of the supported

terminals. MTS is the interface between the user's jobs and

the supervisor. Among the many MTS functions are

interpreting user commands, file and data manipulation,

character conversion, and raaintanance of user accounting

information. In general, MTS provides the communication

between the user and the supervisor/hardware mechanisms[1 5]

.

C. HASP

The Houston Automatic Spooling Program (HASP) is

another principle task under the control of UMMPS. HASP

controls all spooling operations involving card and printed

I/O. Another function of HASP is batch task scheduling and

initiation. The scheduler monitors the number of active

tasks and the load placed on the system by these tasks. It

selectively initiates tasks according to a priority which it

assigns each incoming batch task. The selection of jobs to

initiate depends on the system load and types of jobs

waiting initiation. HASP also gives the system operator

complete control over all batch tasks, card read/punch, and

printing eguipment.

D. THE PAGING DRUM PROCESSOR (PDP)

The task that is run by the supervisor to manage

virtual memory is called the Paging Drum Processor,

hereafter called the PDP. The PDP is a residsnt system

program that controls the reading and writing of pages when

the supervisor encounters a page-fault or memory overflow.

11

Memory is segregated into three distinct levels due to

hardware restrictions. The primary memory is core or

processor storage, secondary memory is drum storage and

tertiary memory is disk storage. The actual hardware to

support the paging process are IBM 2365-12 processor storage

units, one or more IBM 2301 drum storage units and one or

more disk packs of an IBM 2314 disk storage unit.

The PDP is activated when available core storage falls

below a critical number of pages or when a currently active

task references a logical address currently not available in

processor storage. Because the PDP only responds to

demands, it will not always be an active task.

The primary unit of information processed by the PDP is

the Page Control Block, hereafter called the PCB. A PCB is

created by the supervisor for every page that a job

requires. PCB's are used by the supervisor to keap track of

the exact status of each page. Information contained in

each PCB includes page status bits, the page's processor

storage address, if valid, the p age'

s

__v irtual memory

address, if valid, and the external address, i.e., the drum

or disk address if valid. All PCB's are kept in processor

storage where the supervisor and PDP can access them[1].

Additional information and the format of the PCB can be

found in Appendix A.

The PDP controls the paging process using four queues

and five supervisor subroutines" 1]. The four queues are the

management tools of the PDP. The queues are used to keep

track of pages that are to be read in, pages that can be

written out to auxiliary storage, pages to free on auxiliary

storage, and pages that have been read in. The specific

information kept in the queues are the addresses of the

PCB's associated with pages in the abova situations. The

only pages whose PCB's are not on any queue are those pages

resident on auxiliary storage. These pages are essentially

dormant to the PDP until a task requests that one be read

in. At this time the requested page's PCB is placed on a

12

queue by the supervisor and is eventually read in by the

PDP. All pages resident in processor storage have their

associated PCB on one of the PDP queues. The reason for

this is that all pages in processor storage are available to

the PDP for replacement, so the PDP must know their

location. Section IV-B gives a more detailed discussion of

the paging mechanism and a detailed description of the PDP

logic can be found in Appendix B.

13

IV. MEMORY MANAGEMENT IN MTS

A. ORGANIZATION OF MEMORY, VIRTUAL AND REAL

A general discussion of memory management techniques

will be given as well as some discussion of adaptive memory

management. The memory management techniques currently used

in multiprogrammed paged systems and all discussion of

adaptive memory management will be given in terms of what is

done in UMMPS. It is therefore necessary to present in some

detail the memory organization and management techniques

employed in UMMPS.

The characteristics of a demand paged virtual memory

system make it necessary for the supervisor program to

manage two storage resources, real core and auxiliary

storage. The following discussion outlines these two areas

in terms of what is done in UMMPS.

Segmentation was mentioned earlier as a means of

achieving dynamic relocation. The supervisor uses a

modification of the described method called linear

segmentation to achieve a large logical-address space[22].

The Model 67, with 24 bit addressing, allows a maximum of 16

segments of virtual storage where each segment consists of

256 pages of 4096 bytes each.

The organization of real core memory, which consists of

up to 1 million bytes at the Naval Postgraduate School, is

based primarily on four categories of users, each of which

requires storage. They are the resident system, system

tables and queues created due to other processes, shared

paged system programs, and user's tasks.

Segment and 1 are currently reserved for the

non-relocatable, non- paged resident system routines[20]. At

NPS, these routines currently reguire about 36 pages of real

14

core and are always in use, i.e., never available for

allocation to any other process.

The supervisor rejuires storage space to keep

information about tasks that it is processing. A section of

processor storage is dedicated to the supervisor just for

this reason. As a part of the first two segments, it is not

paged since it will be used frequently by the system.

Examples of information kept in supervisor core are segment

tables, page tables, processor queues, PDP queues, and

PCB's. All remaining core storage is available to the user

on a demand paged basis and is contended for with all other

paged processes.

Segment two is used for routines which are paged. Some

examples of the shared processes are [ITS, KWIC (the system

key-word scanner) , file building and manipulation routines

and other frequently used re-entrant programs. When the

system is initially loaded, the shared system programs are

loaded in real core pages, as any user program would be

loaded. When user programs are loaded into processor

storage, pages that are occupied by shared programs may be

needed. The shared programs are then removed from processor

storage by the PDP to make additional page frames available.

The segment two programs then become resident on auxiliary

storage and the user task remains in core until its pages

are needed by some other task.

There are 13 segments remaining in the virtual address

space for user tasks. The present system will only allow

nine segments, thus leaving six for user tasks. The six

remaining segments are allocated as follows: segment three

is allocated to virtual machine programs, segment four is

allocated by the system for users task's storage

requirements, and segments five through nine are available

for allocation by users tasks[20]. A user requestinq

storage during execution of a program would then be

allocated virtual addresses in segment five.

15

The current hardware configuration at the Naval

Postgraduate School allows a total of 256 real core pages if

all four memory modules are on line. Given that the system

occupies 36 pages and requires some storage for tables and

queues, the user has available over 200 real pages for

assignment. Virtual memory is much larger as can be seen

from the number of segments that can be used. The limit of

virtual memory is determined by the capacity of the paging

drum and the backup paging disk which is used in case of

drum overflow. The capacity of a drum is 900 pages with an

expected access time of about eight milliseconds per page.

The capacity of the paging disk is 6400 pages with an

expected access time of about 80 milliseconds[7].

Virtual memory is made possible by the paging drum and

backup paging disk. The primary paging device is the drum

since - it is nearly 10 times faster than the disk in average

page access time. Another feature that makes the drum more

suitable to paging is the information storage format.

The IBM 2301 storage drum has 200 addressable tracks

which are accessed by the PDP as nine logical tracks or

"slots." Each physical track has a capacity of 4 1/2 pages

which gives each slot a capacity of 100 pages[10].

Associated with each of the nine slots is a queue of read

requests. The queues are serviced in First- in- first-out

order. If there are no outstandinq read requests for any

slot then the PDP will schedule a paqe to be written on that

slot if memory is needed. By scheduling writes on slots

with no read requests the PDP makes optimal use of the I/O

channel to the drum.

When the drum is full, i.e., 900 virtual pages have

been created, the backup paging disk is used. The capacity

of the disk is much higher than the drum but the cost in

access time makes the disk unacceptable as a primary paging

device. The PDP has no provision for optimal I/O on the

disk. A channel program is created for each disk page read

or written.

16

While drum storage pages are available the PDP will

"page-out" directly from core to the drum. When the drum

becomes full, pages from the drum are temporarlily returned

to core then paged-out to the disk in a manner which keeps

the most used pages on the drum. This aspect of the PDP

will be explained in section IV-B.

B. THE PAGING MECHANISM

The PDP and supervisor maintain four queues which keep

track of pages that are in various stages of the paging

operation. The four queues in actuality are linked lists of

PCB's. The four queues and their definitions are as

follows:

t.

1. Page In Queue (PIQ) is a list of PCB's for all

pages that have been requested from auxiliary

storage but which the PDP has not yet started

reading.

2. Page In Complete Queue (PICQ) is a list of PCB's

for all pages that the PDP has finished reading

but has not notified the supervisor. The

supervisor periodically checks the PICQ and posts

all PCB's from the PICQ to the POQ.

3. Page Out Queue (POQ) is a list of PCB's for all

pages that are in processor storage. This list is

ordered by it's least recently used (LRU) member

and is the list used to get pages for the PDP to

write to auxiliary storage when processor storage

is needed.

4. Release Page Queue (RPQ) is a list of PCB's for

all pages that have been released by the task that

owned them. When a task terminates, all pages

that were virtual at termination must also be

17

queued for release. The PDP releases these

external addresses immediately upon being made

active[1].

These four queues are the communication path between

the supervisor and the PDP. The PDP is not always active

since the pages in processor storage may satisfy the

reference stream of the currently active tasks. When a page

fault occurs, i.e., a reference to a logical address not in

processor storage, the PCB for that page is linked on the

end of the PIQ. The supervisor periodically samples the PIQ

and if it finds a PCB it restarts the PDP if it is currently

idle. The PDP ed not be an inactive task for PCB's on the

PIQ to be processed. If when the PDP has finished reading

and writing pages on all nine drum positions, there are

pages on the PIQ it will process these PCB's as if it were

just activated.

Before checking the PIQ the PDP frees all external

addresses for PCB's on the RPQ since these pages are no

longer needed by any task. It then proceeds to construct

channel programs to read a page from each drum position that

a page is reguested from and gets processor storage for each

page. If there is not enough processor storage, the PDP

removes pages from processor storage by examiniug PCB's on

the POQ. PCB's whose pages have not been referenced since

the last scan of the POQ are candidates for removal. Since

the POQ is ordered LRU, the pages that the PDP constructs

drum write channel programs for are the unreferenced least

recently used pages of processor storage.

If there are any slots that the PDP has not constructed

reads for, it will determine the number of pages available

in processor storage. If there are less than a preset

limit, currently 15, then the PDP will ask the supervisor

for pages to write to the drum. The supervisor gives the

PDP the least recently used pages' PCBs. The number it

18

receives depends on the number of empty slots it has in the

channel program it is building. The PDP receives less than

or egual the number it asks for and constructs tha remaining

portion of the channel program. If the number of pages in

processor storage is greater than the preset limit, the PDP

will not write any pages to auxiliary storage.

As well as constructing I/O programs for the drum, the

PDP also handles the I/O completion interrupts from the drum

at the same time it is constructing reads and writes. Upon

receipt of an interrupt, the PDP scans the channel program

just completed, looking at the PCB's corresponding to the

pages just read or written. For the pages just written to

the drum the processor storage page is released since that

page now has an external address stored in the PCB. For all

pages read from the drum to processor storage the

corresponding PCB's are linked on the PICQ. As was

mentioned earlier, the supervisor can then link these PCB's

on the POQ and restart the task that was in wait due to

page-fault.

The manipulation of the POQ is critical since the PCB

order on the POQ will in effect be a partial determinant of

the paging rate. One of the status bits in each PCB is a

reference bit which is turned on each time that the

corresponding page is referenced. The supervisor subroutine

that manages the' POQ and gives PCB's to the PDP for writing

performs the ordering of the POQ in the following manner.

All PCB's taken from the PICQ are added to the front of the

POQ with the reference bit set on. When the POQ is scanned

for pages to write out, PCB's are removed from the front of

the gueue if the reference bit is not on. If a PCB is found

with a reference bit on during the scan (i.e., a PCB from

the PICQ) it is unlinked from the top of the POQ and linked

on the back, and the reference bit is turned off thus

accomplishing a least recently used ordered list[1].

If the need for virtual memory exceeds 900 pages then

the backup disk is used as a paging device. Since the

19

expected access time for a page on the disk is about ten

times longer than that of the drum, it is very desirable to

minimize the number of page-faults that will cause access to

the disk. The function of drum storage management is

another process performed by the PDP. If the number of

available drum pages is less than or equal to 100* (number of

drums on line) then the PDP begins moving pages from the

drum to the disk. This is called page migration by the

University of Michigan. Pages are selected for migration on

a least recently used basis here also, where "used" means

paged in or paged out[7]. The PDP keeps nine LRU ordered

queues, one for each of the drum read positions, on which

are linked the PCB's in LPU order. For every drum I/O

operation the PDP processes the corresponding I/O complete

interrupts It is at this time that the PCB's referenced

during the I/O operation are placed on the back of their

corresponding migration queue. At any point in time, the

PCB on the front Df each migration queue corresponds to the

least recently used page on that drum slot and is a

candidate for page migration.

Least recently used ordering is used in two processes

within the system to help optimize the performance or

minimize the effect of paging on the operation of the

system. This ordering technique gives the system some

information as to the locality of reference of the active

tasks whereby the system can make some decision as to which

pages will be referenced next and which page frames can be

made available for use by other tasks[8]. This replacement

technique, which uses information about the currently active

tasks, falls within the general category of adaptive memory

replacement algorithms.

20

V. ADAPTIVE MM££J!MENT OF MEMORY

An efficient management and replacement algorithm is of

prime importance in a multiprogrammed virtual memory system

such as MTS. The memory management technigue may make the

difference between satisfactory or acceptable response time

and unacceptable overhead due to paging. Studies of

replacement algorithms have included prograi behavior

independent schemes such as P.andom and First-in- first-out

,

to program behavior dependent schemes such as Least Pecently

Used , Working Set, and Page-Fault Freguency algor ithms[5].

The latter can be called adaptive memory management

algorithms and have the property of being able to adapt to

the dynamically changing memory requirements characteristic

of programs. This, in fact, is the definition of an

efficient memory replacement algorithm according to Chu and

0pderbeck[5].

The advantage of adaptive memory management lies in the

capability to dynamically change memory reguirements and

contents for all active tasks. This permits the system to

approach optimal usage of a restricted resource and to

minimize degradation due to paging overhead without a priori

knowledge of program behavior.

A. CURRENT TECHNIQUES

References 4,5, and 15 give a very good background on

the current methods of adaptive memory management. A review

of these techniques will be given here, but, if more detail

is needed these references are recommended.

The least recently used algorithm was mentioned earlier

as being used in MTS as a management scheme. This scheme

allows all processes to acquire memory pages without

restrictions until an upper bound is reached. The LRU

21

scheme then comes into play for every page fault that occurs

after the upper bound is reached until enough pages are

acguired to bring the total pages in use lower than the

upper bound. Pages are selected to be paged out based only

on when they were last referenced. As Lancaster pointed

out, this is strictly a global policy and the paging process

of one task can directly affect another, since the page in

processor storage referenced farthest back in time may

belong to some other task[15].

The Working Set Algorithm, on the other hand, is

strictly a local replacement algorithm. The Working Set

principle depends on a characteristic of typical execution,

that being, that over a short period of time the set of

pages referenced is relatively constant. The working set of

a given task is a function of the time segment over which

the process is monitored. The algorithm is executed at the

end of every time segment, removing pages from core that

have not been referenced. Optimal performance of this

algorithm depends on the time segment length. For programs

whose working sets are large, the optimal time segment is

different than for programs whose working set is small. The

replacement of pages is local to a task's own pages which

solves the problem of the LRU algorithm; however, the time

segment length problem does not allow optimal use of

storage.

Chu and Opderbeck[4 , 5] have suggested an algorithm that

performs page replacement on a local basis and is able to

modify its primary decision variable adaptively, thus,

overcoming the problems of the LRU and Working Set

algorithms. The Page Fault Freguency Algorithm computes the

time-between-page- faults (TBPF) and uses this as the key

parameter for determining if the faulting task is running

with optimal memory allocated. If the TBPF is very short,

this is indicative of too few pages allocated to the

faulting task. Likewise, if the TBPF is excessively long

then pages could be released from the faulting task. When

22

the TBPF indicates pages are to be released, all pages

unreferenced since the last page fault are released thus

employing an LRU algorithm for page removal and a global

decision parameter. A more detailed description of the PFF

algorithm and problems inherent in its implementation can be

found in Alexander[1] and Lancaster[15].

B. CURRENT ADAPTIVE MANAGEMENT IN MTS

Processor storage in MTS is managed strictly on a least

recently used basis as mentioned earlier, however, the

supervisor employs a sceduling algorithm whose policies are

partially dictated by paging frequency. This algorithm also

has an affect on storage availability depending on the

requirements of the currently active tasks.

The least recently used scheme is the only memory

management technique used in MTS until the supervisor

detects a task that requires extra supervision due to its

execessive demands on system resources. At this time, what

is called the privileged/non- privileged task mechanism,

hereafter called the P/NPTM, becomes an active part of the

supervisor and it restrains larger tasks so that they cannot

monopolize the system resources.

All tasks are allowed to compete for system resources

and hold them until the need for that resource expires.

Examples of resources that are competet ively acquired are

processor time, processor storage, and I/O channels. The

scheduling mechanism for the processor does not allow a

single task to monopolize the CPU, however, it is possible

for a job to acquire more processor storage than should be

allowed to permit optimal multiprogramming , To prevent this

from occuring, the only characteristic of jobs that the

P/NPTM monitors is the amount of processor storage allocated

to individual tasks. The P/NPTM simply classifies a task in

one of two categories: a neutral task, i.e., a task

requiring less than N processor storage pages, and big

23

tasks, i.e., a task requiring more than N pages, where N is

determined by the supervisor based on the total number of

processor storage pages available. The upper bound, N, is

currently determined to be 16 when four storage nodules are

available. The total number of pages allocated to big jobs

also has an upper bound, M, established by the supervisor.

It is currently set to 60.

With the above restrictions, the P/NPTM operates in the

following basic manner. If, when a neutral task page faults

and it's total processor storage page count is less than N

it will remain a neutral task. When any task page-faults

and has N processor storage pages then a decision to make it

privileged or non- privileged is made. This decision is

based on other tasks currently in the system. If there are

other privileged tasks (or big tasks), and their total

number of processor pages exceeds M, then the faulting task

is made non-privileged. A non-privileged task is

essentially suspended from all processing until some other

privileged task terminates. When a privileged task

terminates, the processor storage pages it holds are

released, thus lowering the total number of pages allocated

to big tasks to less than H. A non-privileged task can then

be activated and given privileged status.

When a task attains privilege! status, two things are

done. The task is allowed to use as many processor storage

pages as it requires, and it is given a time slice eight

times as long as the normal time slice given neutral tasks.

A privileged task remains privileged until it enters a wait

state other than page wait or until it uses up it's extended

time slice. When either of these events occur, the

privileged task is returned to neutral status[1].

The P/NPTM can be classified as a very selective

adaptive memory management technique since it manages only

those jobs that have high core requirements. It is used to

prevent tasks that require much processor storage from

monopolizing it. It will also prevent many large tasks from

24

being active concurrently. If this were not prevented,

contention for the limited number of pages in storage would

cause a great deal of thrashing[22].

The suspension of a task in the non- privileged state

prevents big tasks from acguiring all of processor storage.

Suspension will eventually cause more page faults as well.

While a task is in the non-privileged state, waiting to gain

access to a processor, it's processor storage pages are

likely to become the least recently used pages and could

possibly be paged out. When status changes from

non-privileged, the task is allowed access to a processor

and can begin execution. Significant paging overhead could

be incurred because the working set for this task is now

resident on auxiliary storage. The P/NPTM is beneficial in

that it is effective in preventing thrashing, but it will

not prevent one large job from monopolizing the system.

Once a job becomes privileged, it can monopolize processor

storage. The system prevents this by placing all big jobs

in a hold queue to be scheduled externally by the operator

when resources are available. The inability to adequately

schedule and manage all tasks demonstrates the need for an

improved management technique.

These management schemes perform satisfactorily but it

is suggested by Lancaster[15] that the performance of the

system could be improved. The suggested modification is

outlined in Reference 11 and entails implementation of the

PFF Algorithm. The following section describes

considerations important in implementation of the PFF

Algorithm in UMMPS.

C. IMPLEMENTATION OF ADAPTIVE MEMORY MANAGEMENT

The simulated performance of the PFF Algorithm has been

shown to be better than the best LRD Replacement Algorithm,

and is comparable to the Working Set Algorithm[5] . There

are two basic requirements to be considered when

25

implementing the PFF Algorithm. The performance measurement

parameter, i.e., the page fault frequency, depends directly

upon measurement of the time between page faults for every

task. The time must be process (or virtual) time rather

than real time to compute the faulting frequency for

individual tasks. The 360/67 is equipped with a high

resolution timer that updates the timer location every 13

microseconds[13]. The updated timer location is used to

keep track of real time and process time for each task.

This satisfies the need for an interval timer for the fault

frequency calculation. As Chu[5] mentioned in his general

discussion of PFF Algorithm implementation, the time of the

last page fault must be stored. The reason for this is that

if the last page fault occured more than the optimal number

of microseconds ago, then some of the task's pages are

removed.' Storage of the time of last page fault would be

quite simple in UMMPS. Each task that the supervisor

processed has information about it that must be stored and

available to the supervisor. The area assigned each task

for this purpose is called a Job Table. Information stored

in the Job Table includes the task name, the task's time

slice value, register save areas, accounting information, a

pointer to the task's PCBs and the number of virtual memory

pages the task has. The time between page faults could also

be stored in this area.

The other requirement to consider in PFF Algorithm

implementation is the data structure used to represent

processor storage. Recall that the PFF Algorithm's policy

for deallocation of pages is local to the faulting task'.

The pages removed from processor storage are those

unreferenced since the last page fault. These criterion

require that a task's pages can be accessed and ordered

rapidly and efficiently.

The data structure used by UMMPS to manage removable

pages is called the Page Out Queue, as was mentioned

earlier. It is simply a linked list of PCB's in least

26

recently used order. This data structure will not satisfy

the PFF requirements since the supervisor would have to

search the POQ for PCB's representing the least recently

used pages for a faulting task. The time spent in searching

would depend on two factors, each of which affects the PCB

location on the POQ. The first is how often a task is

active and the second is the locality of reference within a

task's pages. A more suitable data structure would make

access time to a task's least recently used pages

independent from these factors.

The data structure suggested for implementation of the

PFF Algorithm in UMMPS has the required characteristics. It

retains the use of PCB's and requires allocation of one

additional block of storage for each task. The additional

informatica block, call it a Task Block, is used as a list

head for an individual POQ for each task. There are four

essential information fields in each TB, and they are as

follows:

1. Task Number: The task number must be included as

an identification of the PCB's the TB represents.

When searching the modified POQ, the supervisor

would base it's search on the task number field to

find the list of PCB's associated with the task it

is currently processing.

2. Task Page Out Queue (TPOQ) : The address of the

least recently used page's PCB. This field is

essentially a pointer to the LRU ordered list of

PCB's for the task represented in field one.

3. Task Page Out Queue End (TPOQE) : The address of

the last PCB on the above list of PCB's. In

ordering the list least recently used, the

supervisor must be able to add PCB's to the back

of the queue as well as the front.

27

4. Next Task Block: The address of the Task Block

for the next task. This tells the supervisor

where the Task Block for the next task is if this

Task Block does not match the one it is looking

for.

The supervisor now keeps two global variables called

POQ and POQE which point to the first and last PCBs on the

POQ respectively. With a slight modification to the page

creation routine in UKMPS, the variable POQ could point to a

Task Block. Within that Task Block would be a pointer to

the next Task Block on the POQ. The last Task Block on the

queue would have a null value in the Next Task Block field

to signify the end of the queue. The supervisor variable

POQE would then be set to point to this last Task Block.

Figure 1 gives a diagram of the proposed data structure.

Each Task Block is the head of an individual task's

POQ. Each of these POQ's would be ordered in the same manner

used now, i.e., least recently used. This would be done by

preserving the use of the reference and change bits. When a

faulting task's pages are to be released, the supervisor

then has to scan the list of Task Blocks to find the

faulting task's PCB' s. When the Task Block is found, the

TPOQ field of the Task Block directs the supervisor where to

find the task's least recently used PCB.

The suggested data structure conforms to the

requirements of the PFF Algorithm's deallocation policy.

There will, however, be some additional overhead incurred

using the new data structure. The supervisor must search

the Task Block list to find the faulting task's PCB's and

this takes time. The time required in the search depends on

the number of tasks and on the order in which the Task

Blocks are kept on the global POQ. It can be seen that if

the faulting task's Task Block were at the head of the Task

Block list, then the expected search time for that task's

28

r
POQ

«->stask # ^
|TPO0

I

ITPOQE I

(NEXT TB Tl
|NEXT PCB|

r->.. LRU
-J TPOQ

•>
I

I H ULL

(TASK # 1 <J r-> T

I
,

TPOO
TPOQE
NEXT TB

~~\
|NEXT PCB|

,—

J

I

[TASK #]<J r-> T
| TPOQ |

' | NEXT PCBJ
TPOOE
[NEXT TB|-

I

I

r-> LRU
TPOQ

_j

-> LRU
TPOQ

•>f 1
| NULL |

>l I

I NULL

Task Blocks Ordered
"Most Recently Paged"

__ I

IItask # 1<J r^-> I 1
ITPOQ | 1 INEXT PCB|
ITPOQE \

.—, «—. r-J

INEXT TBI—. |

i 1 i

r->.. LRU
J TPOQ

. r->r
I I

NULL

|TASK # |<J r~>

[

|

ITPOQ | • INEXT PCB| —
ITPOQE |

,' I—, r-«

INEXT TBI—,
j

r->.. LRU
J TPOQ

j

r>riASK # i<j r-> r]
ITPOQ |

1 INEXT PCBJ
| ITPOQE |

INEXT TB|
i 1

L_ J

r->.. LRU
-» TPOQ

u

. r->
| | NULL |

->r i

I
NULL |

POQE

Proposed POQ Data Structure

Figure 1.

29

PCB's and pages would be minimized. It has also been

observed that when a task page faults, it will often page

fault again very soon[1]. Considering these factors, it

would be advantageous to dynamically order the global POQ in

a "most recently page faulted" order. At the occurence of a

page fault for any task, the supervisor should find the

faulting task's Task Block and put it at the head of the

Task Block list, thus first on the POQ. If the same task

faulted several more times during the same time slice and

required that pages be removed from processor storage, the

search time for its PCBs would be very short. Using this

ordering technique, the expected search time for the

supervisor to find a faulting task's pages is minimized.

The overhead due to the dynamic ordering of the PDQ may be

offset b} the gain in implementation of the PFF Algorithm.

This would have to be determined experimentally.

An additional benefit could be realized from use of

this data structure when a task terminates. When a task

terminates, all it's pages in processor storage and

auxiliary paging storage are returned to the system. The

system currently releases pages on auxiliary storage by

placing the PCB's of pages on auxiliary storage on the RPQ

and allowing the PDP to free the pages. The processor

storage pages are released by looking in the task's Job

Table and finding the location of it's segment table. In

the segment table the supervisor finds the location of the

page table. The supervisor frees all pages pointed to by

the page table and then removes the freed page's PCB's from

the POQ.

An alternate method made possible by the suggested data

structure would allow the supervisor to free a task's pages

by finding that task's Task Block on the POQ. The pages and

PCB's could be released by stepping down the TPOQ, releasing

pages and PCB's. The global POQ could then be relinked to

eliminate that Task Block.

30

D. LOAD TIME MEMORY MANAGEMENT

The memory requirements for a typical program are

usually constant over a short period of execution time.

This fact is the basis of the Working Set Replacement

Algorithm, as was mentioned earlier. There is a time,

however, during the existence of a program in a system, when

the processor storage requirements are higher than average.

During the loading phase of a program, the memory

requirements may greatly exceed the program's working set.

This is shown in figure 2.

Number of pages
in processor storage

Time

Program Paging Requirements

Figure 2.

The program loader is a system program that is always

resident in supervisor storage. It is invoked each time a

user issues an explicit "RUN" or "LOAD" command. The loader

is also invoked for every implicit load generated by

external references. The loader program's function is to

take a program in object deck form, concatenate it with any

other object programs that are required, load these object

decks into processor storage and transfer execution control

to the supervisor. Processor storage pages for a task are

initially acquired during the loading of the object program.

The loader gets pages for the program until the entire

program is loaded.

31

The loading process could create a sizeable lead on a

system if the system resources, processor storage in

particular, were heavily used at the time the load procedure

is started. An extremely heavy paging load would result if

a large load procedure were initiated when free processor

storage pages are at a minimum. This essentially says that

the supervisor should be able to selectively initiate tasks

based upon knowledge of the current demands on the system

resources.

As was mentioned in the brief description of HASP, the

system makes use of an adaptive scheduler to initiate batch

tasks. The scheduler assigns an execution priority to each

task based upon one parameter supplied by the user, the

projected CPU time needed to complete the task. Batch tasks

are initiated according to their assigned priority and the

current load on the system. The measure of the dynamically

changing system load is called a load factor. The load

factor is a linear combination of individual system resource

factors. The system resource factors are maintained for the

supervisor by the JOBS task, and are a measure of resource

usage during the last sampling period. Some examples of

usage information collected by JOBS are:

1. CPU Activity: This is broken down into two

sub-categories; the CPU utilization and the CPU

queue length. The utilization is defined as the

percent of the available processor time expended

during the current sample period. The CPU queue

length is the average number of tasks that were

running or ready for a processor during the

current sample period.

2. Paging Activity: This includes drum page-ins per

second and disk page-ins per second.

3. Disk I/O Activity: This gives a measure of the

32

numb€r of disk channel programs that are being

executed per second.

4. Channel Activity: This gives a measure of the

load put on the system by starting channel

programs on all I/O devices. This includes

channel programs started on the disks and drums.

With the above information the supervisor is able to

tell which system resources are being used most heavily at

any given time. The adaptive scheduler uses this

information to determine whether it is appropriate to

initiate another batch job. If the projected CPU time of a

job is high and the current CPU utilization is low, the

scheduler will initiate this job to attempt to increase the

utilization of the CPU[19].

There exists one potential problem in this scheduling

technigue. There could arise a situation where the CPU

activity is low but the paging activity is high and

processor storage is unavailable. Initiation of a task that

reguires many pages at load time will increase the paging

activity since pages must be acguired for the new task. The

extra paging overhead may drastically raise the load factor

and degrade the service to all other users. If, however,

the supervisor we.re able to distinguish between pending

tasks by the amount of processor storage reguired and CPU

time reguired then a task that reguired fewer pages could

have been initiated. This would have prevented the drastic

rise in the load factor due to unnecessary paging and make

better use of the system resources.

E. POSSIBLE IMPLEMENTATION OF ADAPTIVE LOADING

The supervisor has enough information about the current

load on the system to make a reasonable decision as to which

"RUN" or "LOAD" commands, if any, should be initiated.

33

There exists a count of available processor storage pages

that the supervisor increments and decrements as the paging

and loading process proceeds. The free page count in

conjunction with the measurements included in the load

factor are sufficient to make a decision as to whether the

system can afford to give up more free pages and increase

the paging rate.

There is one piece of information that the supervisor

is currently not able to get until after the loading

procedure is finished. The supervisor does not have any

measure of processor storage reguirements for a program.

During the loading process the loader keeps track of how

long the load program is, and when the loading is finished

the total size of the load program is known. This is too

late for the supervisor to find out the size of a load

program. A possible means of resolving this problem would

be for each loadable object program to have a size signature

as well as the name identification currently used. The size

signature would be supplied to the object decks by the

assemblers, compilers and other programs that create object

decks from source code. The size of an object program can

be computed by these programs since they are emitting the

object code.

With object program length and system load information,

the system could make a more optimal decision as to which

jobs to initiate. The interpretation of "RUN" and "LOAD"

commands could be modified to accommodate the use of the

size signature. When one of these commands is given, the

location of the object program is also specified. As a

preliminary step in the potential load operation, the

supervisor could interrogate the signature field of the

object program. This would give the supervisor an estimate

on the number of pages required to load the program. This

estimate would be a lower bound on the pages required and

would give the system a decision variable based on core

requirements. Using the core requirement estimate in

34

conjunction with the assigned CPU time priority, the

supervisor can make a more appropriate selection of tasks to

initiate. If the core requirement estimate exceeds the

number of available page frames, the next task in the same

priority queue could be considered for initiation. The main

advantage of this loading and initiation scheme is that it

allows processor scheduling to be subordinate to memory

availability. The supervisor can initiate jobs to make

optimal use of the CPU and minimize the paging overhead as

well. The load factor and utilization factors are the tools

used by the system to determine which type of job to

initiate and the object deck size and projected CPU time are

used to actually select jobs to initiate.

In design of paging systems it is evident that the

scheduling function was viewed as the dominant system

control 'function. The allocation procedure was designed as

a subordinate function to provide space for jobs as the

scheduler dictated[1 8]. This is evident to some degree in

UMMPS. The current OMMPS scheduler observes the system

load, memory availability being a factor, but makes no

optimal decision as to which task will cause the greatest

rise in load factor due to assigning too many pages of

processor storage. Over allocation would be allocating more

pages to a new task than are available, thus raising the

paging rate. The advantage of the suggested adaptive

loading technique is that it allows the system to maintain a

more constant load on all resources. This is made possible

by subordinating the scheduling function to that of

allocation which Kuehner and Randell[18] say is the key to

improving performance via scheduling.

Efficient processor storage management is a key factor

in obtaining optimal performance in a multiprogramming

environment. This includes not only management during

program execution, but optimal allocation policies at

program loading time. Since the processor storage

requirements are different and usually higher at load time,

35

the performance of a system can be adversly affected if

resource requirements are not considered in job initiation.

This situation exists in the UMMPS environment and a

possible solution has been suggested.

36

VI . CONC LUSI ONS

The simulated performance of the Page Fault Frequency

Algor ithra[4 , 15] indicates that it has high potential as a

virtual memory management technique. The PFF Algorithm is

local to each task in making optimal decisions. The only

way to implement this algorithm in UMMPS is to modify the

processor storage data structure so that the local policies

can be enforced. The given modification to the Page Out

Queue will allow the PFF Algorithm to access each task's

pages with a minimum of overhead.

PFF, being a local algorithm, cannot optimally manage

storage resources on a global basis. For this reason, the

processor scheduling algorithm must consider available

processor storage and projected storage requirements for a

job before scheduling. The current scheduling technique in

UMMPS does look at the load on the system before scheduling

a job, but it does not take into consideration the potential

processor storage requirements of a job. The scheduler also

witholds large jobs from the system and requires that they

be scheduled externally. This scheduling technique could be

improved if scheduling were made subordinate to memory

allocation.

The scheduler can schedule jobs to minimize paging and

maximize memory use if information about the system and jobs

to be scheduled is available. The number of available pages

is known and this should be an upper limit on the size of a

job to initiate. The information needed is the projected

processor storage requir eonents for jobs to be initiated.

The best way to obtain this information is to modify

programs that create object decks, such as compilers and

assemblers, to identify each object deck with a processor

storage requirement signature. Kith this information, the

scheduler can schedule jobs so that the least amount of

37

paging is caused, thus approaching optimal management of

processor storage on a global basis. This scheduling

technigue would allow large jobs to be initiated when

resources are available.

Supported by a processor scheduling algorithm that can

adaptively schedule according to available resources and job

requirements, the PFF Algorithm can be implemented in UMHPS.

The modifications required to the current system are minor

and the potential benefits that may be realized appear to

make implementation worth while.

38

APPENDIX A

FORMAT OF THE PCB IN UMMPS

The Page Control B^ock is a dedicated blcck of

processor storage created by the supervisor for every page.

The PCB requires 16 words of IBM 360/67 processor storage

and it's format is as follows:

Real Core Address \

1

Virtual Memory Address

Status 1

Eits]

System Queue Chain Pointer

Jot Table
jNumber 1

Supervisor J

Scratch |

Lock | PDP
Count | Flags

Storage Key!
- Switches]

S u p er v is o r
|

Flags |

External Address
Drum or Disk

The word size of the 360/67 is 32 bits / divided into

four, eight tit bytes. The size of the fields in the PCB

can be computed using the following examples. The Real Core

Address field is two bytes and the Status Bits field is one

byte in length. The meaning and use of each of these fields

is given in the table below.

Real Core Address: If the page represented by a PCB is

located in processor storage, then the address of

that page is stored in this field. The PDP uses

this field to test the page address for validity.

If the real core address is not valid or

non-existent, this field will contain the value

zero. The PDP also uses this address when

releasing a real core page. The address only

requires 12 of the 16 available bits and is the

high order 12 bits of the page* s real cere

address. For example, if the real core address

field contained the value 4 hex, the actual

39

processor storage address of that page is 00U00C

hex since the 360/67 uses 2 U bit addressing. The

last 3 bytes, or 12 bits, can represent anj

address within a page and are not specified within

the Eeal Core Address field.

Virtual Lemory Address: When a page is created, it is

assigned a virtual memory address. This includes

a page number and segment number. The PDP only

uses the page number for error diagnostics. Ihe

supervisor makes use of this field to manage

virtual memory.

Status Bits: The Status Bits field contains four bits

which specify the storage key for the second half

of tl.2 page. Three of the four remaining bits are

used for status bits. The status bits are as

follows:

Byte Format: |SSSSUQPR|

Storage Key: This field contains a four bit cede

that is compared tith the protection key in

the Program Status Word for each reference tc

storage within the 2048 bytes of the secend

half of th^s page. Access to storage is

permitted only when the storage key and

protection key match, or when the protection

key is zero.

Unused: Bit is unused.

Queue Flag: This flag is on if this page is on

some system queue. The system queues are the

PEQ, POQ, PIQ, and PICQ.

Page Available Flag: This flag is on if this page

is available for use. It would be off if

this page is not in processor storage.

no

Eelease In UNLOCK Hag: On if this page is locked

in core and is to be unlocked in supervisor

subroutine "UNLOCK" as soon as possible.

System Queue Chain Pointer: The supervisor and the IDE

use four queues to keep track of pages as

explained earlier. The addresses of the PCB's are

used to construct the queues. This 24 bit field

is used as a pointer to the next PCB on the same

queue as this page. The queue ends are glolal

variables defined in the supervisor and contain

the addresses of the first and last PCB on each

queue.

Jot Table Number: The information in these eiqht bits

tells the supervisor which job table, i.e., which

job is using this page. The PDP only uses the jot

table number for error documentation.

Supervisor Scratch: A temporary work area for the

supervisor, unused by the PDP.

Lock Count: Current number of requests for this page

to be locked in core. If this count is zero theD

this paqe is on the POQ and can be paged out.

This inf orraatioii is used by the supervisor.

PDP Flags; This field contains a one bit flag, set by

the PDP. It is set when an I/O error occurs in

reading a page from auxiliary storage.

Storage Key and Switches: This field contains the

storage key for the first half of the page. The

function of the storage key was explained in the

Status Bits section. There are also three3 flags

used by the PDP in this field. The field is

defined as follows:

41

Byte Format: fKKKKNUCs]
t--- -~j

Storage Key: Storage key for first half of this

page.

Jot Used: Bit is unused.

Use £it: Also called a reference bit, this bit is

set each time the page is referenced. It is

used by the supervisor in ordering the POQ in

a least recently used manner. This bit is

reset each time the POQ is scanned for pages

to write to auxiliary storage.

Change Bit: This flag is only set when some

location within this page is modified. When

- this page js being considered for writing tc

auxiliary storage, this bit is checked. If

not set, then the processor storage space

used by this page can be released withcut

writing the page to drum. This is true since

the drum page will be the same as the core

copy. If the bit has been set, the page must

be written; during the writing process the

change bit is reset.

Shared Bit: If this page is shared by more than

one task, this bit is on. This flag is only

tested by tne PDP in an I/O error situation.

Supervisor Flags: The flags in this field tell the

supervisor if this page is currently being written

to cr read from auxiliary storage. There are also

two flags used by the Virtual Kachine Prograc

which are the virtual use and change bits.

Byte Format: |WMNUCRNN|

42

Write-Out in Progress: This page is currently

being written to the drum if this bit is on.

Jtfot Used: Bits not used.

JJse £it: Virtual Machine use bit.

Change Eit: Virtual Machine change bit.

Bead-In in Progress: This page is currently being

read from the drum if this bit is en.

External Address: This half-word contains the external

address of this page on auxiliary storage. The

address can have two forms, a drum address or a

disk address. If the page is on drum, the first 3

bits specify which module or drum the page is en.

The next 5 bits represent the slot number assigned

by the PDP. The last eight bits represent the

track number on the drum- If the page is on disk

then the first three bits represent the disk pack

module number, and the last 13 bits represent the

relative page number of this page on the disk

pack.

U3

APPENDIX B

LQ^IC OF THE PDP

The general logic of the Paging Drum Processor is

given. The actual PDP processes are much more complex than

presented here, however, a basic understanding of the

function and reguirements of the PDP can be attained.

When the PDP is started at system initial program load

time, it performs initialization of flags, builds gueue

pointers, locates the actual paging devices, and initializes

the paging devices. The initialization process is not

included in this write-up, but, the initial values of

several PDP internal flags must be known before reading the

logic write-up. They are as follows:

1. MIGRATION-IN-PROGRESS: Initially set to false.

This flag is true when a page is in the process of

being read from drum to core and written from core

to disk in the migration process.

2. NEED-MIGRATION: Initially set to false. This

flag is true when the number of available drum

pages is less than 100 times the number of drums.

The PDP will' begin a page migration when this flag

is true.

3. NEED-WRITE: Initially set to false. This flag is

set to true when there are less than a preset

number of available page frames in core. When

true the PDP will write pages to the drum from the

POQ until there are enough available page frames.

4. OPENSLOT: Initially set to false. This flag is

set to true when the PDP has an open slot in a

Channel Command Word Buffer that could be used for

a page migration read or write.

44

LOGIC OF THE PDP

STARTPDP

CHECKRPQ: If RPQ is empty then go to CHECKPIQ.

Get PCB at head of RPQ.

Does PCB have valid External Address?

No: Go to NOEXADDR.

Yes: If this PCB is migrating, abort migration.

Remove this PCB from migration queue.

Free the external disk or drum address.

NOEXADDR: Free the supervisor core held by this PCB.

Go to CHECRPQ.

CHECKPIQ: If PIQ is empty then go to ENDCHECK.

Get PCB at head of PIQ.

Does PCB have valid External Address?

Yes: Go to PUT-ON-LOCAL-PI Q.

No: Put PCB on PICQ since page is in core.

Go to CHECKPIQ.

PUT-ON-LOCAL-PIQ: If this PCB is migrating,

abort migration.

Remove this PCB from the migration queue.

Is PCB's page on drum?

No: Put PCB on local disk PIQ. Go to CHECKPIQ.

Yes: Set i equal to PCB's slot number from

external address.

Put PCB on local PIQ(i). Go to CHECKPIQ.

ENDCHECK: Is MIGRATION-I N-PROGRESS true?

Yes: GO to CHECK-FOR-WRITES.

No: If there is a drum page address vacated by a

migrated page then free this external address.

Is page migration needed, i.e., is there less than

(1 00*(number of drums)) free pages?

Yes: Set NEED-MIGRATION to true.

Go to CHECK-FOR-WRITES.

No: Release the core page used for migration,

45

if one exists.

CHECK-FOR-WRITES : Is core too full, i.e., do pages need

to be written out to free page frames?

Yes: Set NEED-WRITE to true.

STARTLOOP: If there are less than two PCBs on the

local PIQ or (NEED-MIGRATION and NEED-WRITE) are

false then go to RLABEL.

If there is no available Channel Command Word Buffer

then go to RLABEL.

Get a CCW Buffer. If the buffer is not initialized,

then initialize the buffer.

Set i egual to 1.

Set EMPTY-CCW-SLOTS to zero.

Set OPENSLOT to false.

CCW1 : I:: local PIQ for slot (i) is empty then go to CCW2.

Get PCB at head of local PIQ for slot (i) .

Get a real core page frame if possible. If not go to

CCW2.

Put Real Core Address of page in PCB.

Build read CCW if word i of CCW Buffer for PCB on

slot(i). Include address of real core page just

acguired

.

CCW3 Add one to i. If i<9 go to CCW1 else go to

BUILD-MIG-CCW.

CCW2: Set OPENSLOT to true since slot (i) is available

for page migration use. If drum pages available on

slot(i) is not zero then increment EMPTY-CCW-SLOTS

by one. Go to CCW3.

BUILD-MIG-CCW: Is NEEDMIG true?

No: Go to MAKE-WRITE-CCW.

Yes: Is OPENSLOT true?

No: Go to STARTIO since no slots to write to.

Yes: Find an open slot. Set i equal to open slot

number.

MIG-GET-PCB: Get PCB at head of migration queue

for slot (i) . it represents the oldest page on

46

slot (i) . If Heal Core Address for page is valid

release the drum address and go to MIG-GET-PCE.

Is there a real core page to read migration

page into?

No : Get a real core page frame if possitle.

If no core available go to MAKE-WBITE-CCW.

HAVECORE: Remove PCB from migration queue for slot (i)

and decrement EMPTY-CCW-SLOTS by one.

Construct CC W fcr drum read in CCH Euffer word i.

Set NEEDMIG to false.

HAKE-HRIIE-CCH: If EMPTY-CCW-SLOTS is zero go to STARTIO

Set NEED-WRITE to false.

Are there any pages to write that previoulsy failed

to he written?

Yes: Set POP Page Out Queue equal .to write-retry

queue. Get PCB at head of PDP POQ. Go tc

POQ-WRITE.

GET-POQ: No: If pages need not he written to free core

page frames go to STARTIO else set PDP Page Out

Queue to same number of PCBs on supervisor POQ

as there are EMPTY-CCW-SLOTS. Get PCE at head

Of PDP POQ.

P0Q-WRI1E: Is external address of page valid?

No: Go to MUST-WRITE.

Yes: If the change bit is set, go to .BUST-WRITE.

If External Address is on disk, go to MUST-WRITE.

Free the Real Core Address for the page.

If page was reclaimed* go to PAGE-RECLAIMED.

If page does not exist in core go tc PAGE-RELEASED.

Go to IRY-AGhIN.

PAGE-RECLAIMED: Page in core was reclaimed by user.

Is this page migrating? Yes: Abort migration.

Remove the PCB from the migration queue.

Free the external drum or disk address.

Go to TRY-AGAIN.

PAGE-RELEASED: Page does not exist, task terminated.

47

Is this page migrating? Yes: Abort migration.

Remove this PCB from migration gueue.

Free the supervisor core for this PCB.

Free the drum or disk External Address.

Go to TRY-AGAIN.

MUST-WRITE: Set i to an empty slot number.

If page for the PCB is migrating, abort migration.

Remove PCB from the migration gueue.

If the PCB has old External Address, delete it in the

PCB and free the drum or disk address.

Get an external address on slot (i) if possible. If

unsuccessful go to MUST-WRITE.

If page is to be written to disk go to MAKE-DISKW-CCW,

Construct write CCW in word i of CCW Buffer for this

PCB.

TRY-AGAIN: Get next PCB on PDP Page Out Queue,

if gueue not empty, and go to POQ-WRITE.

If PDP POQ is empty and there are still available

slots for writes, go to GET- POQ, else go to STARTIO.

MAKE-DISKW-CCW : Construct write CCW in disk CCW Buffer

for this PCB. Go to STARTIO.

STARTIO: If there is no CCW Buffer to use go to RLABEL.

Start I/O with filled CCW Buffer. On I/O completion

go to POST-I/O-COMPLETE.

POST-I/O-COMPLETE: For all PCBs whose page was written,

free the real core page unless the following

occur

;

If the core page was reclaimed then free the

external drum or disk address.

If the page was released by the task, then free the

external drum or disk address and free the core PCB.

For all pages that were read, put the associated PCBs

on the local PDP PICQ.

Put all I/O completed PCBs on the tail of the

migration gueue for the appropriate slot.

Free the CCW Buffer.

48

If the PDP was waiting for a CCW Buffer,

go to STARTPDP, else go to RLABEL.

RLABEL: If there is work for the PDP to do, go to

STARTPDP. This branch would be taken if there is I/O

to be started, i.e., an unexecuted CCW Buffer.

If not, chain all PCBs on the PDP PICQ together

via the System Queue Chain Pointer.

CHECKPICQ: If the supervisor PICQ is not empty, then

reguest that PDP be put on bottom of CPU queue. When

reactivated go to CHECKPICQ.

If the supervisor PICQ is empty, chain the PDP PICQ

to the supervisor PICQ, emptying the PDP PICQ.

If there has been no work posted for the PDP to do

then stop, else go to STARTPDP.

Aftei. the PDP has stopped, the supervisor will restart

it when PCBs are put on the RPQ and PIQ.

49

BIBLIOGRAPHY

1. Alexander, Michael T., Timesharing; Supervisor
Programs, The University of MicFigan Computing "Center
FTaylWg, Rev. May 1970.

2. Alexander, Michael T. , "Organization and Features of
the Michigan Termnal System," AFIPS Conference
Proceedings, v. 40, P. 585^591, 1972. ~ ~

3. Arden, B. and Boettner, D., " Measurement and
Performance of a Multiprogramming System," Second ACM
Symposium on Operating Systems Principles, Princeton,
Tn"J77~~ October 2U-22J~1969, "P7"T3U-T^E7

4. Belady, L.A., "A Study of Replacement Algorithms For A
Virtual Storage Computer," IBM Systems Journal, v. 5,
No. 2, 1966.

5. Chu, W. W. and Opderbeck, H. , "The Page Fault Freguencv
Algorithm," AFIPS Conference Proceedings, v. 41, AFIPS
Press, MontvaIe,~~N. J. .

6. Chu, W. W. and Opderbeck, H.

,

Performance of
E§.Hl5.c £iH§ILt JilSS^ithras H^-th Different Page "51zeg,
Computer Science Oept. University Of California, Eos
Angeles, California.

7. Computing Center Newsletter, University of Michigan
Computing CefftefT vT-Z7""no7~l4 , October 9 1972.

8. Denning, P. J. , "The Working Set Model For Program
Behavior," Comm. ACM, v. 11, No. 5, P. 323-333, May
1968.

9. Dennina, p. J. . " Virtual Memory," Computing^ Survevs, v.
2, No. 3, September 1970.

10. Fuller, S.H., "Performance of an I/O Channel With
Multiple Paging Drums c

" SIGME Symposium on H ea sure men

t

aH^ Evaluation Proceedings, Issocialicn For Computing
Machinery, T9"73.

11. Gibson, Charles T. , "Time-sharing in the IBM/360: Model
67," AFIPS Conference Proceedings, v. 28, P. 61-78,
1966.

12. Hinson, E.F., A ~omparitive Study Of The Michiaan
Terminal System JMTSf-tfilin—OTher~"Ti afestfdrrTg; "Sysr^fg-
"For The TEtt ' 3b£75/7 Computer, Masters TKesis ,M7avaI"
Postgraduate ScTiool / ""Monterey California, 1971.

50

13. IBM System^360 PciciDles of Operation r Eigth Edition,
International BusmessTachines Corporation, File No.
S360-01, Form A22-6821-7, September 1968.

14. Irwin, D.J. and Thoringer, J.M., "An Adaptive
Replacement Alaorithm For Paced Memory Computer
Systems," IEEE Transactions On Computers, v. C-21, No.
10, Oct. 1972. ~ ""

15. Lancaster, A . E. , Implementation Of The Page Fault
Frequency ReplacemSrrr'ETgsrttfijnT M asteTS-TheSls, "NSval
Postgraduate scKoo±7 ITonTerey California, 1973.

16. Parmlee, P.P. and others, "Virtual Storaqe And Virtual
Machine Concepts ," IBM Systems Journal, v. 12, No. 2,
1972.

17. Randell, B. and Kuehner, C. J., "Dynamic Storage
Allocation Systems," Comm ACM, v. 11, No. 5, P.
297-306, May 1968.

18. Randell. B. and Keuhner, C. J . , "Demand Paging In
Perspective," AFIPS Conference Proceedings, v. 33, Part
11, ^P. lOII-IOTB'Vl^SET ~

19. University of Michigan. MTS Volume 1: MTS and the
Computing Center, P. 1i2,~3d" e~d*7y~JanIIary T9T3.

20. University of Michigan. MTS Volume 5:_ System
Services, 3d ed . , December T9T1

.

21. Users Manual, First Edition (with Change 20) . William
R". Church- computer Center, Naval Postgraduate School,
Monterey, California, P. 1-7 Figure 1.3, March 1970.

22. Watson. Richard W. , Timesharing System Desion
Concepts, P.. 135-184, McGraw=HiIT7~Inc. , T9707"

51

INITIAL DISTRIBUTION LIST

1. Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

No. Copies

2

2. Librar 1 Code 0212
graduate

Monterey, California 93940
Naval Postgraduate School

3. Professor G. L. Barksdale, Code 72
Naval Postgraduate School
Monterey, California 93940

Ens Gary Michael Raetz, USN
Computer Science Group
Naval Postgraduate School
Monterey, California 93940

Chairman, Computer Science Group, Code 72
Naval Postgraduate School
Monterey, California 93940

6. LTJG T. G. Price, Code 52Pg
Naval Postgraduate School
Monterey, California 93940

52

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Adaptive Memory Management in a Paging
Environment

5. TYPE OF REPORT & PERIOD COVERED
Master's Thesis (December

1973)
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf»;

Gary Michael Raetz, ENS, USN
8. CONTRACT OR GRANT NUMBERfnj

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE
December 1973

13. NUMBER OF PAGES
54

14. MONITORING AGENCY NAME 6 ADDRESSf/f different from Controlling Office)

Naval Postgraduate School
Monterey, California 93940

IS. SECURITY CLASS, (of this report)

Unclassified
15«. DEC L ASSI Fl C ATI ON/ DOVtfN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It dltteront from Report)

IB. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary end Identify by block number)

Virtual memory MTS
Time-sharing systems Adaptive Memory Management
Paged memory Replacement Algorithms
Michigan Terminal System Operating systems

20. ABSTRACT (Continue on reverse side It necestary and Identify by block number)

Adaptive memory management techniques for multiprogramming operating
systems are described. Page replacement during execution and initial page
assignment are the factors affecting optimal memory usage. Modifications
to a time-shared operating system (Michigan Terminal System) that would
allow implementation of the Page Fault Frequency Replacement Algorithm are
discussed. Additional modifications to this system are suggested that
would subordinate job initiation to memory availability.

DD i JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
(Page 1) S/N 0102-014-6601

|

53
SECURITY CLASSIFICATION OF THIS PAGE fWien Data Entered)

CbCUWITY CLASSIFICATION OF THIS PAGEftfrTion Data Entered)

DD Form 1473
, 1 Jan 73

S/N 0102-014-6601

(BACK)

SECURITY CLASSIFICATION OF THIS PAGEfH?ien Date Entered)

54

'5 *PR75

6 JUL 76 S
9 AUG 76
20 IUM 77
8 A no. 7 7

228 2 3
2 3 4 17

754
239 18
2 U U 1 U
2 U 7 H

Thesis 147525
R139 Raetz
c »l Adaptive memory manage

ment in a paging en-
vi ronment.

*5 APR75

6 JUL 76
O AUG 76

>UG 7 7

2282 3
2 3 <4 I 7

754'
239 18
2 4 U I U
2 'i .

Thesis
R139
c.l

L 7%OE
' i V-' i. O

Raetz

Adaptive memory manage-
ment in a paging en-
vi ronment.

thesR139

Adaptive memory management in a paging e

3 2768 002 05250 8
DUDLEY KNOX LIBRARY

