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ABSTRACT

The critical stress intensity factors and fracture

trajectories for both filled and unfilled viscoelastic plane

stress specimens were experimentally determined by

controlled crack elongation. Fracture testing included

combined displacement loadings both of single and

bi-material specimens with initial cracks located in each

material and at the bi-material interface.

The feasibility of trajectory prediction using an

elastic linear-strain finite-element analysis was

investigated. Technigues for adapting the elastic model

grid patterns to predict viscoelastic trajectories were

developed.

Measured trajectories correlated well with the

directions of maximum principal stress as determined by the

finite-element solution of a blunt crack- tip model.
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I. INTRODUCTION

A. BACKGROUND

During the manufacture of solid propellant rocket

motors, it is possible for stresses to develop during cure

cooldown of sufficient magnitude to induce fracture at

physical discontinuities and internal flaws. Such cracks

may be tolerable providing' the trajectories do not create

significant additional burning surface nor expose the case

to combustion temperatures by local failure of the

insulation. The direction of crack propagation is therefore

of considerable significance. The stress levels for

fracture propagation are of egual interest. It is therefore

desirable to study the behavior of these viscoelastic

materials and to develop technigues for evaluating their

critical fracture criteria.

The fracture stresses are commonly expressed in terms

of the stress intensity factors K , K and K where the
I II III

subscript refers to the fracture mode as shown in Figure 1.
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Figure 1. Fracture Modes





B. CLASSICAL SOLUTION

The study of fracture mechanics, to a large extent, has

dealt primarily with the opening mode behavior of elastic

materials.

The classical solution to the detailed stress field of

a sharp-tipped crack as shown in Figure 2 was formulated by

Williams and given by Sih and Liebowitz [1 ] as:

Figure 2. Stress Field Coordinate System.

Symmetric Case (Mode I)

a = £l_ cos9_[l

/2T 2

sin6 *sin59 ] +

2 2

(1a)
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°
y

=
*LL cos9_[l + sin0_'sin_36.] +

/2r 2 2 2 (1b)

K
xy _±.I cos9 [sin6 'CosSS ] + .

/2~r 2 2 2 (1c)

and

_ Ku = K I/2r [(2x-l)cos0_ - cos36_] +

8G 2 2

(2a)

Kv = *I/2r [(2x + l)sine_ - sin36] +

8G 2 2

(2b)

Skew-Symmetric Case (Mode II)

ox
= - K II sin9[2 + cos0_'cos3j_] +

/2~r' 2 2 2

(3a)

a = K II sine [cose_'Cos36_] + . .

/2r 2 2 2

(3b)

xy
= K II cos£[l - sin9«sin3ej +

/2r 2 2 2

(3c)
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and

u =
K Il/2r [(2x + 3)sine_ + sin36j +

8G 2 2

(4a)

v = K Il/2r [(2k-3)cos£ + cos36_] +

-8G 2 2

(4b)

where k = 3 - 4v Plane Strain

K = 3 - V

1 + V

Plane Stress

George Irwin related the stress intensity factor to the

strain energy release rate by computing the work done at a

propagating crack tip. His results for K show that:

Kj 2 = jvE dU (5)

By means of the energy balance introduced by A. A.

Griffith in the early 1920' s, it can be shown that K , the
IC

value of K at fracture, must be a material property.
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C. COMBINED LOADING

Previous studies [2] concerning stress fields in rocket

motor castings indicate approximately egual shear and

tension at the propellant-liner interface near the motor end

surfaces. It is therefore desirable to investigate the

behavior of such materials under a combined loading

condition.

Adaptation of the classical solutions for single-mode

stress fields to the combined-mode case reguires only

superposition of the respective solutions. Combining the

opening and shearing modes, we then have:

ox
= 1 coseCKj [l-sine'sinSej-Kjjtane [2 + cos8 • cos 36 ] } (6a)

/2r 2 2 2 2 2 2

a = 1 cos6{K
I
[l+sin8'sin39]+K TT tane[cos9'Cos56] } (6b)

7 /2r 2 2 2 2 2 2

a = _J^_cos6_{K
I
[sin_e«cos3e_]+Kj

I
[l-sin9_*sin_3_e] }

/2r 2 2 2 2 2

In polar coordinates, the stresses are given as:

(6c)

a. _l_cos£[(3-cos6)K
I

+ (3cos9-l)K
]

. tanGj + . . . (7a)

2/2F 2
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1 cos9 [(l+cos6)K
I

- 3Kjjsine] + . . . (7b)

2/27 2

rQ
= 1 cose[KjSin6 + Kj j (3cos0 -1) ] +

2/2r 2

(7c)

It can be seen that the general formulation of the

combined loading solution may be expressed as:

a = f(r)-g(e,K
I
,K II )

(8)

Two commonly recognized hypotheses for crack extension

in a brittle (non-viscoelastic) material under slowly

applied loads are:

a) The crack extension starts at its tip in the

radial direction, and

b) The crack extension starts in the plane

perpendicular to the direction of greatest

tension.

These state that a crack will extend radially in the

direction of maximum tangential stress where the shear

stress is zero. Consistent with the theory of Griffith, the

direction of crack propagation corresponds to the direction

of maximum energy release. This direction has been

14





identified as the maximum principal stress direction.

It is intended herein to demonstrate that the fracture

trajectories of viscoelastic materials may be predicted by

the maximum principal stress directions as determined by

elastic analyses. To minimize the time-dependent

viscoelastic effects, the loads were slowly applied in order

to approximate an "equilibrium" condition.

In order to determine the direction of maximum

principal stress, the detailed stress field in the vicinity

of the crack tip must be known. Williams' solution, based

on an infinite sheet with a sharp-tipped central crack, has

generally been accepted for any geometry in the "vicinity"

of the crack tip. Definition of this "vicinity" varies with

sample geometry. Another method of establishing the stress

field is by finite-element techniques.

There are two basic objectives of this study: 1) to

demonstrate that the linear-strain finite-element solution

is suitable for fracture analyses by correlation with the

classical field for a sharp-tipped crack, and 2) to apply

the finite-element technique to determine the direction of

maximum principal stress for the blunt-tipped crack

geometry, which models the viscoelastic materials at

fracture.

15





The results of crack elongation tests under combined

loading with constant boundary displacements have been

correlated herein with the trajectory predictions made by

finite-element methods.

16





II. EXPERIMENTAL STUDIES

A series of combined loading tests was performed on

selected material specimens. The geometry of the specimens,

whose fracture behavior is independent of crack length, is

shown in Figure 3. An initial crack length of 1.0 inch was

chosen for all tests.

A. DESCRIPTION OF SAMPLES

Three basic specimens of the same geometry but

different material properties were examined in this study:

1) an unfilled viscoelastic liner material, 2) a filled

viscoelastic propellant sample, and 3) a composite specimen

which models the propellant-liner interface. Initial cracks

were made both along the centerline and offset 0.2-inches

from the centerline. The specimens were subjected to

combined loading by constant boundary displacements ranging

from pure opening (Mode I) to pure shear (Mode II) .

B. SAMPLE FABRICATION

The samples were fabricated by United Technology

Center, Sunnyvale, California. The propellant and/or liner

materials were cast in redwood boxes. The wood, which was

17
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Figure 3. Geometry of Test Specimens.

18





easily cut and shaped to the desired geometry, provided a

semi-rigid boundary to the rubbery materials for

installation in the testing apparatus. The inner surfaces

of the wood were coated with an epoxy cement which

penetrated the wood and provided a bonding agent for the

liner. Since the propellant does not adhere to the epcxy or

to the wood, a thin film of liner (to which the propellant

bonds well) was applied to the epoxy permeated surfaces.

The samples were cured in the boxes and later sawed and

milled into 0.10-inch thick specimens.

The propellant samples were determined to be relatively

uniform but the liner samples possessed a "soft" region

extending frcm the wood boundaries approximately 0.15-inches

into the sample itself, resulting from incomplete cure near

the extremities. The region was identified by a tacky

surface with a glossy appearance. This undesirable feature

resulted in severe necking, which precluded accurate

determination of strain levels during testing. The

effective gage length was reduced from the specimen height

of 1.0 inch to a maximum of 0.7 inch for the single- material

specimens and to a maximum of 0.35 inch for the composite

samples (on the liner half) . The resultant force along the

19





direction of displacement was measured and modulus data were

obtained from separate tests of the biaxial specimens.

C. SAMPLE PREPARATION FOR FRACTURE TESTING

The initial cracks were made by cutting a one-inch slit

in the samples with a knife. The crack tip location was

marked by grid lines drawn on the sample itself with a fine

point drawing pen (No. 00 Rapidograph) . The grid lines

facilitated detection of crack propagation and were used to

determine the strain in modulus evaluation tests. The

displacements of the grid nodes were optically measured with

a cathetometer, since the "soft" areas invalidated

cross-head travel data as a method of strain determination.

Mechanical testing indicated the moduli varied by as much as

50-percent between batches, and an egual variation within

the same batch could be expected for different

configurations and/or material aging time between tests.

(The propellant is extremely hygroscopic. During initial

tests the samples were retained in a dry nitrogen

atmosphere, but due to the unavailability of a controlled

environment during tests at NPS, the samples were allowed to

age unrestrained. This affected the critical load levels,

but the trajectories are independent of absolute moduli)

.
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D. LABOEATOEY PBOCEDURES

1 . De script ion of Hardware

The combined-loading tests required construction

of a specimen-holding apparatus, shown in Figure 4, which

would allow rigid-body displacements of the specimen

boundaries ranging from y = 0° to y = 90°.

meas

1
E k\WW\\\\N wwwww

l\|f\\\\\\\\N

E3 lAWAWJlwwikWwwi H

k

Figure 4. Drawing of Specimen Loading Fixture.

21





2- Force Measurement Under Combined Loading

Using the finite-element solution for stress

distribution along the constant-displacement boundaries, the

loading condition of a sample was determined by measuring

the force component in the direction of displacement. This

force was transmitted to the testing machine load cell, and

recorded, to establish the stress intensity factors. By

measuring the applied load vs. displacements, the influence

of the "soft" regions at the liner-to-wood interface was

minimized. The loading diagram is shown in Figure 5.

Figure 5. Loading Diagram of Material Sample,
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3. Detect io n of Crack Elongation

Identification of fracture loads was hindered by

the extreme low crack propagation velocities associated with

viscoelastic fracture at low loading rates. During all

fracture tests the loading rate was maintained at 0.05 inch

per minute. Three techniques were employed, each of which

provided limited success in critical load identification:

a. Separation of Grid Lines

The method most frequently used consisted of

5X optical observation of the crack-tip grid lines. With a

high-intensity lamp illuminating the crack-tip area, it was

possible to determine when the crack penetrated the vertical

line located at the crack tip as shown in Figure 6. This

method worked equally well with both liner and propellant.

In general, the crack propagation was easier to detect in

the propellant samples because elongation was erratic,

sharp-tipped, and the material surface highly reflective,

thereby enhancing optical techniques. The liner

deformations at fracture levels maintained an elliptical

crack-tip geometry.

23





a. Grid Lines Prior to Crack Elongation

b. Separated Grid Line at Critical Load

Figure 6. Crack Propagation Grid Lines
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b. Optical Observation of Crack Surface

An alternate optical technique was used with

the liner samples when the boundary displacement angles were

greater than 45°. Pre-fracture deformation opened the

initial cracks approximately 0.2 inch. The surfaces were

painted with drawing ink when the opening reached

approximately 0.1 inch. The high intensity light was aimed

along the crack line at the internal crack tip. The ink

dried quickly and the crack elongation was identified by

parting of the blackened fracture surface, A 5X eyepiece was

also used with this technique, but the phenomenon could

quite well be observed by the naked eye. This technique did

not work with the propellant since pre-fracture strains did

not sufficiently open the crack to allow preparation and

observation.

c. Fluctuation of Load Data

A third technique was quite successful with

propellant samples due to their erratic crack-elongation

behavior. The data acquisition system was adjusted to

maximum gain with zero offset so that recorded data

emcompassed only a narrow band of force level. (Typical

25





fracture loads were in the order of 15 pounds.

Amplification to produce 5 pounds full-scale recorder

deflection with a 10-pound zero offset was used.) Tension

up to the critical load produced a smooth data trace.

Propagation of the crack was easily detected by fluctuations

of the data trace. (Friction of the loading device

typically produced load data-trace perturbations in the

order of 0.05 pound peak-to-peak (PTP) or 0.10 inch during

pre-fracture loading. The propellant samples' erratic crack

propagation produced fluctuations in the order of 0.20 pound

PTP or 0.40 inch on the recorded trace.) This technigue

correlated well with the optical method of grid line

separation.

** • Tr^j§£t ory_ Measurement

The trajectories were optically determined

following specimen removal from the test rig, and relaxation

to original shape. The liner fracture was characterized by

a well-defined straight trajectory. The propellant

trajectories were not smooth, but zig-zagged about a rather

well-defined constant-direction path. Samples of each are

shown in Figures 7 and 8.
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Figure 7. Photograph of Fracture in Liner Material,

Figure 8. Photograph of Fracture in Propeliant
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IV. COMPUTER METHODS

A. FINITE-ELEMENT SOLUTION

1 • General Description of PSELST

The analytical solution for the elastic model of

the labratory tests was generated by the finite element

method. The basic program, PSELST (Plane Stress Elastic

Analysis using Linear Strain Triangles) was written by Dr.

Carlos A. Felippa [3] at the University of California

(Berkeley, June 1966) and reprogrammed to allow initial

displacement boundary conditions by J. P. Malone [4] at the

Naval Postgraduate School in July 1968.

Displacement- compatible finite elements are used to

ensure convergence. PSELST computes in-plane deflections

and stresses at selected sites on the body resulting from

in-plane loading. The basic mesh element is a guadrilateral

composed of four 6-nodal-point linear strain triangles, the

center point being the centroid (Figure 9)

.
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Quadrilateral

(4 Corner Nodes, 8 External Nodes)
(#9 = Centroid)

Triangle

(3 Corner Nodes,
6 External Nodes)

Figure 9. Linear-Strain Triangles of Basic Mesh Elements.

A detailed description of the program may be found in

Reference 4.

2« Grid Mesh Design

Generation of the finite-element grid mesh is the

single most important (and time-consuming) aspect of this

solution method. While certain ground rules are established

for efficient grid design, selection of an optimum pattern,

if such exists, reguires considerable trial and error. In

29





this study twelve patterns were examined which were

essentially element-size variations of four basic designs:

1) Rectangular elements.

2) Rectangular elements with triangular elements

in the vicinity of the crack tip.

3) Quadrilateral elements with polar symmetry

and triangular elements at the crack tip.

4) Quadrilateral elements with polar symmetry

and finite radius at the crack tip.

Schematics of each are shown in Figure 10.

B. CALCULATION OF INTERNAL STRAIN ENERGY

The internal strain energy may be computed by

integration cf the element stresses or displacements or, in

the case of a conservative system, by computing the work at

the structure boundaries. The latter technigue reguires

considerably less effort, and since boundary stresses and

displacements were provided by PSELST, a numerical

integration program using Simpson's method was employed to

compute the strain energy. The change in strain energy
i

resulting from crack elongation was computed by repeating

the entire solution process with an extended initial crack

under identical loading conditions.
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a. Rectangular Elements

b. Rectangular Elements with Triangles at Crack Tip

c. Polar Quadrilaterals with Triangles at Crack Tip

d. Polar Quadrilaterals with Finite Crack Tip Radius

Figure 10. Mesh Grid Patterns at Crack Tip.
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IV. ANALYSIS AND RESULTS

A. EVAIUATION OF FINITE-ELEMENT METHOD

Evaluation of the finite-element method as a solution

technique consisted essentially of validating the solution

in two basic areas:

1 . General Behavior of the Solution

Similar to the stress solutions, the displacement

fields of Williams are a product solution; that is,

u = f (r)*g (6) (9a)
1 1

v = f (r).g (e) (9b)
2 2

where f (r) and g(Q) are given in Equations (2) and (4). We

may check the r and 9 behavior independently by plotting the

computer solutions in the vicinity of the crack tip at

constant G or r. If agreement with the classical solution

exists, this process also establishes the bounds of validity

for the classical solution as represented by the singular
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term of the series. A typical set of displacement curves

for (v) at = constant is presented in Figure 11. Similar

results were obtained for the displacements (u) . This shows

excellent correlation for a one-inch crack within a radius

of 0.004 to 0.100 inch from the crack tip for the geometry

shown. A representation of the 6-dependence for a boundary

displacement angle of Y = 37.5° is shown in Figure 12. This

also correlates well with the classical solution. The data

shown in these figures represent solutions from the grid

pattern of Figure 10c (polar quadrilaterals with triangles

at crack tip). This pattern produced the best solution

agreement with the classical in the vicinity of the crack

tip. Determining the optimum grid pattern was essentially a

task of evaluating the solution convergence to classical r

and behavior.

2- Evaluation of Stress Intensity Factors

a- Simultaneous Solution of Classical Eguations

A correct solution requires K and K to be
I II

constants for any given loading of the fixed geometry. It

is therefore possible to solve for these quantities by

simultaneous solution of two linear algebraic equations
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r - Distance from Crack Tip (inches)

Figure 11. Typical Displacement Curves at = Constant.

90°

180

-90°

Figure 12. Typical Displacement Curves at r = Constant
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expressing the stresses or displacements at two points

within the field. In the region of classical behavior, the

values obtained should be independent of the points

selected. Since the solution by this method is dependent

upon adherence to the classical formulation, accurate

results rely upon upon precise r and 9 behavior.

b. Energy Release Rates

A second technique for evaluating K and K
I II

utilizes the energy relationships of Irwin. The work at

the moving boundary is computed for two solutions under

identical loading conditions, one having an incremental

crack extension. Since mesh grid generation is complex and

time consuming, and relocation of the nodal point

coordinates for a polar grid is undesirable, a simple scheme

was used to provide crack extension: the nodal point

coordinates of the free ends were displaced a small amount,

thereby effecting a change in crack length with minimum grid

modification. This is shown schematically in Figure 13.

Because the solution is linear, and K and K depend
I II

only on their respective displacement components, it is

sufficient to evaluate the energy release rates at the two

orthogonal cases of pure opening and pure shear.
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Figure 13. Scheme for Extended-Crack Mesh
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This technique is preferred since it is, in effect, an

"overall" or "average" solution and is not sensitive to

local irregularities within the field .

c. Simplified Analysis of an Infinite Strip

A third method of evaluating K and K
I II

employs the simplified analysis of the infinite strip as

developed by Lindsey [5]. His solution assumes that a

semi-infinite crack is inserted in an infinite strip and the

upper and lower boundary stresses decay to zero at some

finite distance to the left of the crack tip as shown in

Figure 14.

)
r

a
y

± ^^f
—"*

i
i

i
i i i \ i j i n

i

b 1

1
T

^—

i

1 _jL_ _j i
i i

i _j '
1

Figure 14. Infinite Strip with a Semi-infinite Crack

"To the far left, the sheet is completely

unloaded and stress free. To the far right it is

under constant stress as if there were no crack,
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and in the center there is a transition region of

unknown character between the two constant fields.

If the crack advances by an amount Ac, the

transition region moves ahead Ac. The constant

stress field is reduced in dimension by Ac and the

unstressed region is increased by the same amount.

The strain energy lost from the constant stress

field by the crack moving ahead Ac is

AU = ^av£v*2btAc (10)yc
y

where t is the thickness of the sheet." [5]

In the limit of infinitesimal increments in crack

length,

^ = av e vbt = Hibt (11)

dc y y E

Imposing displacement boundary conditions, Lindsey

shows that

K T
= __L_(^°)/F (12)

1 *TV b'

and in a parallel development for K
II

KH =
E

s
(^)/b (13)

•2(l+v) b
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where v and u are the initial displacements. Although the
o o

geometry studied herein is far from the infinite-strip case

of Lindsey, his results differ by less than two percent

from the finite-element energy solution in the case of K .

I

For the parallel case of K , the agreement is not so
II

close, the finite- element solution to K being ten percent
II

lower than that of the infinite strip. The disagreement

may be accounted for by examining the assumption of a

decayed stress field to the left of the crack tip. In the

opening mode, the normal boundary stress did in fact decay

to zero within a short distance of the crack tip. The

finite-element stress solution for this case is shown in

Figure 15a. Extending the crack simply translated the

gradient region and, in effect, the result was a

foreshortening of the constant stress field by the amount Ac

as assumed.

In the Mode II case, a boundary shear distribution of

the PSELST solution is shown in Figure 15b. It can be seen

that the shear stress does not decay to zero for the short

geometry studied, but rather remains at a significant level
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a. Normal Stress in Mode I Loading.

b. Shear Stress in Mode II Loading.

Figure 15. Stress Distributions on Specimen Upper Boundary

even to the specimen's edge. Elongating the crack therefore

has two effects: the uniform stress region is reduced by an

amount Ac as in the case of Mode I; and, the gradient is

extended by the amount Ac. Therefore, the resultant
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boundary work, which equals the change of internal strain

energy, may be considered as the reduction of the uniform

stress over a length Ac plus that due to the redistribution

of the shear gradient to the left of the uniform region.

Studies indicate, for the geometry considered herein,

that this redistribution of shear stresses accounts for a

ten percent reduction in the value of K from that of the
II

simple case wherein the distribution translates but does

not change.

B. DETERMINATION OF THE LOADING ANGLE

Except in the pure opening case, the resultant forces

on the upper and lower specimen boundaries are not

co-linear. This couple must be balanced by side loads. The

finite-element solution- is used to determine the magnitude

of these unknown forces by establishing the distribution of

the boundary stresses. From Figure 16 the relationship

between the force resultant component along the direction of

displacement (test data) and the orthogonal components

corresponding to Mode I and Mode II can be determined as

follows:
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oL^r
ds

u

meas

Figure 16. Diagram of Resultant Forces along Specimen

Boundary.

Fy = Fsina = .

—

^^
cos (a-y)

l^meas (14a)

meas
Fx = Fcosa = cosa = C?F

cos (a-y) meas (14b)

If the specimen were not rigidly mounted in the

fixture, the resultant force would parallel the

displacement and the factors C and C would equal sina and
1 2

cosa, respectively. Figure 17 illustrates the distortion of

C and C from the preferred case of sine and cosine
1 2

functions. The relationship between boundary displacement
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angle and the resultant force loading angle is shown in

Figure 18.
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C. EXPERIMENTAL EVALUATION OF STRESS INTENSITY FACTOES

For a linear system, the strain energy is proportional

to the displacement squared. In this case it is useful to

consider the separate energy components due to pure opening

or pure shear in order to establish a K -K envelope. From
I II

Irwin we have:

K 2 . zi.dU . ^E.AU
(15)

I 7rt dc irt Ac

A parallel analysis of the shearing mode, which assumes

the crack extends an infinitesimal distance without

changing direction, yields the same expression for K

Using the finite-element solution for the strain energy

release rate, AU/AC, the following relationships are

established

:

¥_

196
Kj = 174.23(TTT)v n (16a)

KlI 82.42(
I
^)u d6b)

where v and u are the displacements in the Mode I and Mode
o o

45





II directions respectively. For the linear system, the

force components are proportional to the displacements. The

proportionality constants are determined by the

finite-element solution. For the geometry considered, we

find that:

Fx r 196,un = ——(-—) (17a)
345 E

m Jx_
(

i96
(17b)

1244^ E
J

Equations (16) then become:

Kj = .1400F
y

(18a)

K :I = .2389FX
(18b)

Using the experimental load data at fracture, the

stress intensity factors of single material samples were

computed and are presented in Figure 19.
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Erdogin and Sih [6], studying the fracture of a brittle

sheet (plexiglass) with oblique central cracks, found the

failure envelope generally elliptic in K - K space.
I II

However, K (critical value of K where K =0) was
IC I II

slightly larger than K (critical value of K ) , which is
IIC II

opposite to the viscoelastic results of this study.

D. MAXIMUM PRINCIPAL STRESS DIRECTION

Three basic techniques may be applied to determine the

direction of maximum principal stress. The simplest and

most obvious is to solve for the angle using the computed

stress values at the crack tip nodal point.

Depending on the grid pattern, from four to twelve

elements may be common to the tip node. A

crack-tip-centered polar coordinate grid with 30° segments

was used. Increasing the number of elements resulted in

elongated elements in the vicinity of the crack tip. For a

well-behaved solution, included angles of less than 30° are

not recommended in order to limit the element aspect ratios

to a maximum of 2:1.

On the ether hand, if the polar segment angles are

large and the quadrilaterals are kept low in aspect ratio,

as is desired, the element size will grow too rapidly, as r
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increases, to allow a sufficient number of elements in the

vicinity of the crack tip for solution definition. The 30°

segments used herein represent a compromise which allowed

sufficient element quantity in the crack tip region while

maintaining a reasonable aspect ratio. It is recognized

that the solution encompassed by the inner ring of elements

is questionable because of the crack tip singularity. It

has been observed that even a well-conditioned element grid

will not yield solution convergence within the

singularity-adjacent elements.

It is interesting to note that, in spite of the

solution singularity at the sharf-tipped crack node, the

principal stress direction calculated from the averaged

stresses at that node coincided with the test data and the

blunt-tip numerical solutions. The averaged stresses were

computed from the solutions of all elements common to the

crack-tip node. An example is shown in Figure 20. For a

boundary displacement angle of 30°, the classical sharp-tip

maximum principal stress direction is 50°. The

finite-element sharp-tip solution approached this value as r

decreased. However, the solution diverged within two

elements of the crack tip to a value of 33°, which agreed
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Figure 20. Comparison of Sharp and Blunt-Tip Solutions,
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with the experimental trajectory for this loading. The

blunt-tip solution approaches the experimental result, but

it also diverged within the last element to a value of 49°.

In this case, the singularity is absent and the solution

divergence is typical of finite-element solutions at a free

surface. At the crack tip, the finite-element solution

cannot match the singularity of infinite stress. The values

obtained, although fictitious, represent a solution limit in

any radial direction as r approaches zero. It is quite

possible that the average of these may be considered a

"smearing" of the solution in the vicinity of the crack tip

and that the direction of maximum principal stress can be

calculated from these average stresses. This result was

observed to be independent of the grid pattern. Time

limitations precluded further investigation of this

curiosity.

A second technique to derermine the maximum principal

stress direction utilizes the finite-element solution in the

crack-tip near-field, excluding the singularity region.

Once the limits of classical theory behavior have been

established, the field within this region may be examined at

fixed radius to determine the maximum stress location and

its corresponding direction. If, in fact, the solution is
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classically well-behaved, the angular location of the

maximum stress elements should be constant although the

stress magnitude changes inversely with the square root of

the radius.

Superposition of Equations (1) and (3) for the case of

combined loading, yields

a = £
1
(r)-g

1
(0,K

I
,K

II ) (19a)

a
x

= f
2
(r)-g

2
(6,K

I
,K

II )
(19b)

\y - V r) -*3 C6'W (19C)

where orientation of the element is shown in Figure 21

For the principal stress direction:

2a 2f,*g.r

6 = Jgarctan{ ^-} = ^arctan{- } (20)
a
x"

a
y

f 2*g2- £rgl
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Figure 21. Principle Stress Orientation Near Crack Tip,

Since f (r) = f (r) = f (r) ,

1 2 3

6 = ^arctan{-
2g 3 (6,K I

,K II )

} (21)

g 2
(e,K

I
,K

II )-g 1
(e,K

I
,K

II )

which is invariant with respect to radius. The orientation

is unchanging along any radius, the maximum stress having

been determined at some distance from the crack tip. In the

limit as r approaches zero, even though the finite-element

solution diverges at the singularity, one may interpret this

orientation as being the maximum principal stress at the

crack tip and hence predict the trajectory for a propagating

sharp-tipped crack.
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A third method involves an analytical solution to

Williams' equations. In the direction of maximum principal

stress, the shear stress is zero. From Equation (7c) we

then have, in the direction of maximum principle stress.

Kjsin3 + Kn (3cos3-l) = (22)

where 3 is the predicted trajectory angle. Solution of this

is dependent only on the ratio of K to K which was
I II

experimentally determined by fracture testing. The angle 3

corresponds to the sharp-tipped crack solution.

E. EFFECTS OF CRACK TIP RADIUS

Because of the large strain levels, the geometry cf the

originally sharp-tipped cracks had deformed sufficiently to

approximate an elliptic shape at fracture. Figure 22 shows a

typical sample wherein the propagating crack-tip geometric

deformation can be seen.

The character of the crack-tip solution is dependent

upon its relative bluntness. Since the crack tip radii of

curvature became significant at fracture, the finite-element

solution was adjusted accordingly to model this effect. It

was determined that the direction of maximum principal
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stress (predicted trajectory direction) was relatively

insensitive to tip radius within a range of 0.004 to 0.100

inch. (The minimum radius examined was 0.004 incn) . Figure

23 illustrates the sensitivity of predicted trajectory angle

to ciack tip radius for three selected load combinations.

Figure 22. Crack-Tip Deformation at Fracture Leads.

Examination of the liner samples during fracture

indicated tip radii in the order of 0.006 to 0.010 inch.

Since the finite element solutions demonstrated trajectory

insensitivity within this span of radii, the experimental

results were compared with the blunt-tipped crack, solutions.
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The results cf single-material samples, which show excellent

correlation, are presented in Figures 24 and 25.

Growth of the tip radius was not observed in the

propellant samples during the fracture tests due to the

erratic nature of the crack propagation. Unlike the liner,

the propellant fracture tip would "stretch" and then

suddenly elongate a small distance in an interrupted

seguence. The resultant trajectories, however, were

identical to those of the liner under similar loadings, and

indicate that an effective blunting of the crack tip may

have occurred.
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F. BI-MATESIAL RESULTS

Combined loading of the bi-materiai samples produced

the fracture envelopes shown in Figures 26 and 27. The

fracture trajectories are presented in Figures 28 and 29.

The propagating cracks did not, under any load

orientation, continue across the liner-propellant interface.

Trajectories that ran to the interface abruptly changed

direction and continued along the interface. Cracks

originating at the interface, or having progressed to it,

would not depart from the interface regardless of leading.

Post-test examination of the samples revealed that the

interface cracks propagated within the propellant; that is,

propellant was observed on both sides of the fracture

surface. An example is shown in Figure 30.

Solution discontinuities at the interface region of

bi-material finite-element studies were not sufficiently

resolved to allow trajectory prediction for these samples.
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Figure 30. Pnotograpn of Bi-Material Fracture
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V. CONCLUSIONS

The application of PSELST to crack tip analyses has

been shewn to be a highly effective solution technique for

single material structures. Although the stress field

cannot match the classical theory at the singularity point,

the solution converges rapidly and agreement with the

classical solution occurs within one or two elements from

the crack tip. In addition, solution of the stress field by

this program establishes the range within which classical

behavior may be expected.

Because of the solution technique, the stress

discontinuity at bi-material interfaces limits the

effectiveness of PSELST for stress analyses in the immediate

vicinity of the interface.

It has been shown that viscoelastic trajectories may be

predicted using linearized analyses of elastic materials to

determine the direction of maximum principal stress. In the

vicinity of the crack tip, the direction of maximum

principal stress is invariant with respect to radius and, in

the case cf single materials, independent of the elastic

modulus.
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The large deformations associated with viscoelastic

fracture result in an actual or effective "blunting" of the

crack tip. Corresponding analyses must account for this

finite radius since the stress field does not coincide with

the sharp-tip solution. It has been found that the

direction of maximum principal stress is invariant with tip

radius within a range of 0.004 to 0.010 inch for a 1.0-inch

crack length.
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VI. RECOMMENDATIONS FOR FURTHER STUDY

Several areas of related interest have teen identified

during this study as having potential consideration for

further investigation. Those which may complement this and

subsequent investigations include:

A refinement of the viscoelastic sample fabrication

process to eliminate the "soft" regions of incomplete cure.

Uniform samples would enhance identification of the material

properties, since strain data could easily be acquired

simultaneously with the force data during fracture tests.

Sample testing should be performed in a limited time

span, with environmental control during storage to minimize

the aging and absorption of moisture, which greatly affect

the material modulii.

The resultant critical loads should be studied to

determine compliance (if any) with the known fracture

theories.

The test fixture, which was rigidly mounted to the test

machine, should be redesigned to incorporate a "floating"

attachment which cannot transmit moments, thereby causing

the resultant force to parallel the displacement and hence

equal the measured force.
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The angular range of combined loadings should be

expanded. This study ranged from displacement loading

angles of 0° to 90° but further studies should include the

entire range of 360° if possible.

The combined load tests should be evaluated with an

elastic sample of known material properties. This would

allow a rapid and accurate evaluation of the test procedures

and analyses.

The agreement between the blunt-tipped crack trajectory

angles and the sharp-tipped solutions, determined by

averaging the stresses at the tip from all elements common

to it, warrants further study.

An expanded analysis should be performed to investigate

the effects of large displacements in the vicinity cf the

crack tit.

The finite-element program should be modified to

include special elements, such as long thin elements and

crack-tip elements, to enhance fracture study.

The refinement of technique to minimize solution

discontinuities at interfaces of different materials should

be studied.

A finite-element analysis of the offset crack samples

with a finite radius crack tip should be conducted to

complement this study.
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