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ABSTRACT

The behavior of the system hazard rate function of a two

component parallel system is investigated. The inter-

relationships between the probabilities that the components

composing the system are alive and the system hazard rate is

examined with special attention to certain points where

there are important changes in the behavior of the hazard

rate function. The behavior of the system hazard rate

function is shown to depend upon the rates of change of the

probabilities that the components of the system are alive.
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I. INTRODUCTION

In the field of reliability, there has been an extensive

study of the properties of the increasing hazard rate (IHR)

and decreasing hazard rate (DHR) classes of life distribu-

tions. The exponential life distributions with their

constant hazard rates form a dividing line between these two

classes. It is reasonable to expect that the life distribu-

tion of redundant systems composed of devices with exponen-

tial life distributions fall Into the IHR class. However,

when two devices with different exponential life distributions

are combined in a parallel redundant system, the system

hazard rate is at first increasing and then decreasing. The

underlying causes of this interesting behavior is the subject

of the thesis.

The usual definition of the probabilistic hazard rate

function of a device with a random lifetime T will be used

throughout this thesis. The hazard rate r(t) of a device

is the density function f(t) for the lifetime of the device

divided by its survival function F(t)=P[T>t].

A distribution has an increasing hazard rate if r(t) is

monotone non-decreasing in t, and has a decreasing hazard

rate if r(t) is monotone non-increasing In t. References 1

and 2 contain an extensive survey of the properties of the

IHR and DHR classes of life distributions. The exponential

life distributions are included in both of these classes.





In Reference 3» Esary and Proschan gave sufficient conditions

for a system to have an increasing hazard rate when it is

composed of identical components with increasing hazard

rates. A parallel system of two components, with identical

exponential life distributions, satisfies these conditions

and it has an increasing hazard rate. Esary and Proschan,

also gave an example to show that when two components with

different exponential life distributions form a parallel

system, the system survival function need not have an

increasing hazard rate. In this case the system hazard rate

initially increases, overshoots and then decreases to an

asymptotic value equal to the lowest of the two component

failure rates.

In Section II, the derivation of the system hazard rate

for a system of two parallel components having constant

non-identical failure rates is reviewed. In Section III,

a characterization of the system hazard rate as a function

of some conditional state probabilities is presented and

their interrelationships are discussed. In Section IV, an

empirical approximation for the time at which the system

hazard rate is a maximum is exhibited.





II. SYSTEM HAZARD RATE

Consider a system of two independently functioning

components with exponential lifetimes T, ,T
2

and survival

functions
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Assume without loss of generality that X
?
>X-.. The equations

for the system survival function and the system hazard rate

are generally known.

With the components in parallel, the system lifetime T

has a survival function
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Examining r(t) at t=0 and as t approaches infinity gives

the expected results;

r(0) =

lim r(t) = min(X, ,Xp) = X^

The derivative of r(t) with respect to time is

t( t )
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Looking at the sign of r'(t), it is clear that the

hazard rate is increasing if and only if
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increasing for all t>0. The system hazard rate must be at

a maximum for the value of t which is a solution to
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III. SYSTEM HAZARD RATE
IN TERMS OF

STATE PROBABILITIES

If the parallel system is alive at some time t >0, it

exists in one of three possible states, i.e. both components

alive, component one alive and component two dead, or

component one dead and two alive. The system hazard rate

and its derivative have simple expressions in terms of the

conditional probabilities for these states and their

derivatives. The probability that the system is in state

i, 1=0,1,2, given it is alive at a time t, will be called

the state probability, denoted by P. (t). For a system with

lifetime T and component lives T_ and Tp , the state

probabilities are:
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It is clear that P
Q
(t) + P

1
(t) + P

2
(t) = 1, for all t.

Examining the state probabilities at t = and as t

approaches infinity produces the following results.

P (0) = 1, lim P
Q
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P
2
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At first glance, It might seem that P, (t) would equal

P
fi
(t) at the mean Vrmb lu failure for component 2, hut,

P
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The probability that a particular single component is alive

at some time t is greater than the probability that both are

still alive for any time t greater than the mean tine to

failure of the other component multiplied by a constant In 2

Further, for X
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or
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The derivatives of the state probabilities with respect

to time are

:
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P (t) decreases in time from P
Q
(0) = 1 to lim Pq^) = °> &nd

,
t->°°

P
o
(t)<0 for all t. P-,(t) is increasing in time from

P
1
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(t) = 1, and p|(t)>0 for all t.
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t
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As a consequence of the definition of the state

probabilities and the requirement that
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the derivatives are related and

PqU) + pj(t) + Pg(t) = .

Therefore, Pg(t) = -[P
Q
(t) + P-^t)] and P

2
(t) increases

t t • t

when -? (t) > P-,(t) and it decreases when -? (t) < P-,(t) .

Pp(t) increases as long as P
Q
(t) decreases in time faster

than P-,(t) increases, reaches its maximum value when
f t

-P (t) = P, (t), and then decreases because P, (t) is increas>

ing in time faster than P
n
(t) is decreasing.

A hazard rate may be thought of as a conditional

instantaneous probability of failure at time t, given

survival to time t. The hazard rate for the system, given

that it is in one of its three states, is 0, A , and Xp

respectively. The system hazard rate may be written in

terms of these hazard rates and the state probabilities as
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which reduces to the expression previously given for r(t).

The derivative of the system hazard rate with respect to

time may be written as
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P
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Then the condition for the maximum point of the hazard rate,

r(t) = 0, requires

X
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P|(t) + XgPgCt) = .
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or

1 2
>

1 '

or Xp > X,

Therefore, at its maximum, X, < r(t) < X
2
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it follows that

X
2

X
n
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2
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1
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l A l d -1
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l

As Xp approaches X-. in value t becomes very large, and if

X, = Xp = X , the system hazard rate r(t) approaches X

asymptotically from below. For Xp >> X-, , t becomes very

small and the system hazard rate is greater than X, almost

instantly.

From r'(t) = X,P (t) + XpPp(t) , r(t) is increasing if

and only if X,P (t) + XpP (t) > , and decreasing if and

only if X
1
P
1
(t) + XpPp(t) < . The behavior of the system

hazard rate is directly dependent upon the rates of change

of the state probabilities P-,(t) and P«(t). r(t) increases

as long as P.(t) and Pp(t) increase and it continues to

increase as long as X,P. (t) > |XpPp(t)| . For

X
1
P
1
(t) < |X Pp(t)| , r(t) decreases.

Figure 1 shows the state probabilities and the system

hazard rate plotted as a function of time. As the failure

rate of component two increases in relation to the failure

rate of component one, these curves are "pushed towards the

left", the system hazard rate increases rapidly, and its

17





maximum value Increases. Pq^) decreases to zero very

rapidly while P-,(t) increases to one almost instantly.

Pp(t) becomes more peaked and it reaches its maximum value

sooner.
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IV. EMPIRICAL RELATIONSHIP

. BETWEEN TWO MAXIMA

An empirical investigation of the relationships between

the state probabilities and the system hazard rate was also

undertaken. The system equations were solved for various

values of their parameters which permitted comparison of

the resulting curves and verification of the analytic

results of Section III.

The time at which the system hazard rate reaches its

maximum, T , can be found by solving

, 2
" X

l
t

, 2
" X

2
t

,, , ,2 nL e + X, e - (A, - A-) =

for t. While this can be solved numerically, a useful

analytic solution for T has not been found. However, it

was discovered that the time at which the system hazard

rate reaches its maximum is approximately related to the

time t at which P«(t) reaches its maximum by

T = 2t.
s

From the numerical results, it appears that T is
X
2related to x by some function of a = t— , the imbalance

A
l

between the two components, i.e. T = g(a) • x. The exact

form of g(a) is unknown but it appears to be some function

20





whose values are plotted in Figures 2, 3, and 4. Note

that g(a) is never greater than 2.17, nor less than 2.0

for all 1.001 <_ a < 100, and for values of a > 15,

g(a) < 2.01.
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