
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1973

Sound radiation from line arrays.

Akst, H. Gordon.
Massachusetts Institute of Technology

https://hdl.handle.net/10945/16814

Downloaded from NPS Archive: Calhoun



SOUND RADIATION FROM LINE ARRAYS.

H. Gordon Akst

^



LrSRARY
HAVAL POSTGRADUATE SCHOOL

MONTEREY. CALIF. 93940



SOUND RADIATION FROM LINE ARRAYS

by

H. GORDON AKST

B.S., United States Naval Academy

1966

SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN NAVAL ARCHITECTURE AND

MARINE ENGINEERING AND

THE PROFESSIONAL DEGREE OF

OCEAN ENGINEER

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1973



«*'



LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CAMF. 93940

Abstract

Title: Sound Radiation from Line Arrays

Author: H. Gordon Akst

Submitted to the Department of Ocean Engineering on 11 May 1973

in partial fulfillment of the requirements for the degree of Master

of Science in Naval Architecture and Marine Engineering and the

professional degree of Ocean Engineer.

This paper develops simple approximations for the sound

radiation of the accordion (longitudinal) and the whipping (trans-

verse) vibration of a spheroid. This analysis can be directly

applied to the fundamental vibratory modes of a submarine hull.

The very close correlation between these predictions and the

exact spheroidal wave functions is demonstrated for far- field

radiation from a slender spheroid. This correlation is carried out

over the ranges of angular position and frequency of practical

interest. Through application of these approximations in future

predictions, the use of the cumbersome spheroidal wave functions

can be avoided.

Thesis Supervisor: Miguel C. Junger

Title: Senior Lecturer, Department of Ocean Engineering (Visiting)





Acknowledgement

I should like to thank Dr. Miguel Junger for his time and

patience during the preparation of this paper. His uncanny

ability to quickly detect errors and recommend improvements

in my work has been of great help. Furthermore, my personal

benefit from this study has been enhanced by the physical insight

he has injected into it.

I am also indebted to the Department of Ocean Engineering

for provision of numerical calculation facilities and to Pam

Llewellyn for typing.





Table of Contents

Abstract

Acknowledgement

Table of Contents

I. Introduction

II. Procedure

III. Accordion Mode Approximation

IV. Accordion Mode Spheroidal Calculation

Figure 1 Accordion Mode Pressure vs. Frequency

Figure 2 Accordion Mode Pressure vs. Frequency

Table I Accordion Mode Results

V. Whipping Mode Approximation

VI. Whipping Mode Spheroidal Calculation

Figure 3 Whipping Mode Pressure vs. Angle (h = 2)

Figure 4 Whipping Mode Pressure vs. Angle (h - 4)

Table II Whipping Mode Results

VII. Near Field Approximations

Figure 5 Accordion Mode Pressure vs. Distance

Figure 6 Whipping Mode Pressure vs. Distance

Table III Near Field Results

VIII. Summary and Conclusions

Appendix A Spheroidal Wave Functions

Appendix B Near Field Numerical Calculations

Appendix C Important Symbols

Appendix D Bibliography





SOUND RADIATION FROM LINE ARRAYS

I . Introduction

The purpose of this paper is to develop simple approximations

for the sound radiated from slender spheroidal bodies. The analysis

of such bodies can be directly applied to the fundamental modes of

submarine hulls and is therefore of practical interest in the field

of naval architecture. Although the technique can be extended to

any mode, this paper will deal only with the accordion and whipping

modes, which are of the most practical interest.

Although exact spheroidal radiation can be predicted from the

available literature, the wave functions involved are unfamiliar and

cumbersome. In addition to the inherent complication of the functions

themselves, each author who deals with them tends to select his own

notation, further exasperating the novice in their use. One signifi-

Ccint result of this study has been my familiarity with these functions,

however slowly and painfully acquired. I have also gained an apprecia-

tion of the desire to replace these functions by more convenient pre-

dictions, which is the express purpose of this investigation. If one

future investigator of such radiation is spared the use of spheroidal

functions, this study will have fulfilled its purpose. However, since

spheroidals form the exact answer that this paper is attempting to

approximate, their use is mandatory to demonstrate the validity of

those approximations. A brief summary of the necessary properties of

spheroidal wave functions is included in Appendix A.





Literature on spheroidal functions is relatively complete.

1 2
C. Flammer and J. A. Stratton have both published tables of

spheroidal functions, but neither is ideal. Although containing

all the required data, Flammer 's tables are of rather limited range,

and Stratton publishes only the expansion coefficients, requiring

3
calculation of the other data from them. G. Chertock's paper

includes a concise and useful summary of the functions and analyzes

some properties of individual spheroidal modes for rigid body axial

vibration and accordion mode vibration. These analyses are reproduced

4
in E. Skudrzyk's chaper on spheroidal functions, along with a complete

and detailed development of spheroidal properties. A combination of

all these sources was required to overcome the shortcomings of each

individually and the variance in notation between them.

As mentioned previously, this paper will develop approximations

for the total sound radiation from the accordion and whipping modes of

a slender spheroidal shell. Chertock's accordion results are for

individual modes only, and not for the total radiation. M. Strasberg

has investigated the accordion mode radiation without Poisson effect,

6
but demonstrates only fair agreement at higher frequencies. W. Blake

has analytically predicted the acoustic radiation from the transverse

motion of a long, slender beam with elliptical cross section. Finally,

C. Flammer, Spheroidal VJave Function (Stanford, 1957) .

2
J. A. Stratton, et al.. Spheroidal Wave Functions (Cambridge, 1956).

3
C. Chertock, "Sound Radiation From Prolate Spheroids," JASA 33(1961)871,

4
E. Skudrzyk, The Foundations of Acoustics (New York, 1971)

.

M. Strasberg, "Sound Radiation from Slender Bodies in Axisymmetric
Vibrations," Fourth International Congress on Acoustics, 1962.

6
W. K. Blake, "Radiation from Free-Free Beams Under Influences of

Light and Heavy Fluid Loading," NSRDC Report 3716 (1971).





7
M. Junger has formulated the basis for the v/hippmg mode approximation

developed in this study. This paper will extend the results of Strasberg

and Junger and verify those results with the exact spheroidal radiation.

7
M. C. Junger, "Sound Radiation by Resonances of Free-Free Beams,"

JASA 52 (1972) ; 332,





II. Procedure

In general, the procedure followed by this paper will be to

formulate an approximation of sound radiated from a spheroid by

utilizing line arrays of sources with varying strength along the

line. For the accordion mode, which is the longitudinal vibration of

a body, the appropriate source type is the simple source; while

for the whipping mode or tranverse vibration, a dipole source is

applicable. Higher modes can be similarly approximated by line

arrays of multipole sources. This approximation is then compared

with its spheroidal equivalent.

The first step of the approximation is definition of the shape

and certain properties of the radiating body in both cartesian and

spheroidal coordinates. Since the body used is a spheroid or an

ellipsoid of revolution, this step is basic. The next step is to

formulate the incremental radiation from an element of length dz along

the axis of the radiator. Such formulations are available from basic

theory of sound sources. A surface velocity distribution is then

selected that approximates the mode under investigation, and from

it, the source strength is determined as a function of position on

the axis. Finally, the incremental radiation is integrated along

the length of the body, and an expression for the total radiation

is obtained.

The exact spheroidal radiation is determined as a summation of

the individual spheroidal mode radiations. The acoustic pressure

is related to the normal velocity, and the modal pressure coefficients

are determined. Their evaluation is accomplished by matching the

-velocity expression to the prescribed velocity distribution over the





body and utilizing the orthogonality of the angle functions. The

resulting integrals are then evaluated, and approximations for far-field

and slender body are applied, resulting in expressions for each mode.

These are summed to obtain total radiation.

In principle, both formulations are straightforward but are

complicated in practice by difficult integrations and infinite

summations. Evaluation of the resulting expressions is also cumbersome,

involving extensive nuraerical manipulations. As will be pointed out

later, some effort must be devoted to maintain precision, if ficticious

peaks in the smooth functions are to be avoided.

Since the two methods are obviously considerably different, the

arrival at equivalent expressions fortunately is an indication that

both are probably correct.





III. Accordion Mode Approximation

As pointed out in the procedure section, the first step in the

formulation of the problem is to develop certain properties of the

radiating body, in this case, a spheroid. The expressions developed

will be used in both the accordion and whipping mode approximations.

For an ellipse of focal length d, major axis L, and minor axis

D, d^ = Ir (1 - (D/L) ) , as shown in Appendix A. Therefore, for

slender spheroids (D << L) , d is approximately equal to L. For

purposes of this discussion, the other properties of interest can be

derived for the ellipse that is the intersection of the spheroid and

the x-z plane. In this case, x is the perpendicular distance to the

axis and z is the distance along the axis with z = at the center

of the body. The governing equation for this ellipse is:

z^ x2^
+ —^ = 1

(L/2)2 (D/2)2

If a(z) is defined as the radius of the cross-sectional area

normal to the axis, then:

a(z) = x(z) = D(|- (z/L)2)^/2 (1)

If a(z) is the angle between the normal to the spheroid and

the normal to the z axis, then:

tan(a(z)) = - dx/dz = — -— (2)

L2(i- (z/L)2)V2

10





Using that definition of a(z), the normal velocity of the

spheroidal surface is made up of contributions from both the axial

and "radial" (perpendicular to axial) velocities as follows:

u = u sin(a(z)) + u cos(a(z))
n z r

(3)

For the array approximation, only the tangent form is required;

however, for the spheroidal work, the individual sine and cosine

terms must be obtained. Using:

sin(a(z)) =

cos(a(z)) =

-dx

((dx)^ + (dz) 2)^/2

dz

((dx)2 + (dz) 2)^/2

8
and differentials obtained from Skudrzyk's expressions leads to

the following relationships for the spheroidal velocities:

sin(a(n) ) = n

v-i
L o

2 2

1/2

cos(a(n)) = (L/D) (1 -n^)"^^^

Kj - 1

^J - n'

1/2

(4)

(5)

by:

Finally, the incremental surface area along length dz is given

dA = 27Ta(z) ds = 2TTa(z) dz/cos(a(z)) (6)

The radiation from a simple source is simply;

p = (p exp(ikr)/4TTr) S

r=a

8
Skudrzyk, p. 459, eq. 14, 15, and 16.

11

(7)





where p is the acoustic pressure, p is the anibient density, k is the

wave number^ r is the distance from the source to the point of
t

observation, and S is the volume velocity (S = dS/dt) . The incremental

volume velocity for an element of length dz is given by dS(z)=u (z) dA(z)

,

and using (3) , (6) , and (7) , the incremental pressure for that element

is:

dp = (-ipwexp (ikr)/2r) a(z) [u (z) + u (z) tan(a(z)) dz (8)

adopting exp(-iwt) time dependence.

For the far field approximation, small differences in range

are ignored in the magnitude term, but retained in the phase. Hence,

if r = R - z cose, where R (R >> L) is the distance from the center

of the body and 9 is the angle with the z axis , the total pressure

is expressed as:

+L/2

p =-(ip(joexp(ikR)D/2R) / exp-(ikz cos(e))(-- (z/L) 2)

-L/2

u (z) D z

X (u (z) + -^^ -—) dz (9)

l2(1- (z/L)2)V2

where use has been made of (1) , (2) , and (8)

.

The accordion mode of vibration is the fundamental, axial,

elastic mode, with maximum velocity at the ends, no axial velocity

at the center, and a lateral ("radial") velocity due to Poisson

effect. This lateral velocity is maximum at the center. For a

uniform tube, the ratio of lateral to axial velocity is -naD/2L,

where a is Poisson 's ratio. Therefore, for a thin spheroidal shell, a

9
fair approximation to the motion of the accordion mode is:

9
Chertock, p. 875.

12





u (z) = U^ sin(TTz/L) (10a)
2 O

u (z) = -(TTaD/2L)U cos(ttz/L) (10b)

Substituting these expressions into (9) yields the following

expression for non-dimensional pressure P ,

o

P = £S = li + l2 (11)
° (exp(ikR) (-ia)UQ)p(D/2)2

where:
+L/2

I]_ = 2/L^ / exp(-ikz cos(e))z sin (ttz/L) dz

-L/2

-L/2

I2 = -TTO/L 4 (— - (z/L)^) exp(-ikz cos(9)) cos (ttz/L) dz

-L/2

Both integrals can be evaluated in closed form, thereby yielding: '

I J » (w2-v2)-2 Tw(w2-v2) sin(w) + (w2+v2) cos (w)l (12)

Jl (w-v) Ji (w+v)

lo = (-TT^a/S) (—7 r- +
;

r-)^ (w-v) (w+v) '

where w = kL cos (9)/2, v = 7r/2, and J^ is the Bessel function of the

first kind, of order 1. I^ agrees exactly with Strasberg's result,

but he has assumed a = 0, so that u = 0, I2 = for his analysis.

Combining (10) , (11) , and (12) leads to the desired expression for

the total sound radiated by a spheroid in accordion mode vibrations

:

10
Gradshteyn, p. 198, eq. 5.

Abramowitz, p. 360, eq. 9.1.20., and p. 225, eq. 6.1.9,

13





P = (w^-v^)"^ Iw(w^-v^) sin{w) + (w^+v^) cos (w)

Jl (w-v) Ji (w+v)

(w-v) (w+v)

Evaluation of this expression gives the smooth curve on Figures

1 and 2. In numerical calculation, care must be exercised to maintain

precision in the region where w approaches v (w = v + e) , since terms

of order e^ must be retained within the parentheses to avoid a ficticious

peak in the curve. If precision is maintained, the first expression

converges to a finite value for w = v. The curves for I^ and I 2 are

plotted separately in the graph to allow individual comparison with

spheroidal predictions and Strasberg's results.

For calculation of I2/ a Poisson's ratio of .29 was used, which

is the static value for a uniform steel shell. However, in practice,

the value used would probably be modified by the addition of stiffeners

to the shell and by dynamic effects of ring resonances at higher

frequencies. Since the same value was used in both calculations,

these modifications have no effect on the results here.

14





IV. Accordion Mode Spheroidal Calculation

The spheroidal wave function equivalent of the preceding expression

will now be evaluated using the spheroidal functions that are outlined

in Appendix A. For purposes of brevity, the abbreviated symbols

S and R will be used to indicate the complete variables S (h,ri)
mn mn mn

and R (h,C). R L will be used to indicate R ih.E ) evaluated
mn mn' L mn o

on the surface of the radiator.

The total acoustic pressure is the sxom of the pressure contri-

butions from each of the individual modes. If p are the modal
mn

spheroidal pressure coefficients, then:

=zz
m n

p R S cos(md)) (13)
mn mn mn

The relationship between pressure and the normal component of

12
particle velocity is given by:

9p 1 3p n .

dn g dt, dt n

13
where g is the metric coefficient. Therefore:

EZ
m n

Pn,r,^^r.2^r, COS(m (J))= lupU (n,(t)) 9^ (14)
mn mn mn n t,

where R' = 3R /3C. If this equation is applied as a boundary

condition over the surface of the radiator, the orthogonality of

the angle functions can be utilized. Multiplying both sides of (14)

,

12
Skudrzyk, p. 467.

13
Skudrzyk, p. 459, eq. 18.

15





evaluated on ^=E, , by S , cos(k<J)) and integrating over the surface

yields:

/ / mn mn
m n

27T +1

// S cos (mi) S, T cos(k(i)) dn d*
mn kl

'o o -1

= iwp

27T +1

//
-1

^o ^
S cosCkij)) dn d(|) (15)

14
The integral on the left hand side of the above equation reduces

to a multiple of the normalization constant and vanishes unless

m = k and n = 1. The only non-zero value is 2itN /e where e =1
mn m' o

and e =2 for m 5^ 0, and N is given by equation (A. 3) .

m ' mn "^ ^ -a

Combining (13) and (15) and making use of (A. 2) leads to the

following expression:

p = (iwpd/47T) V
y

m n

e R S cos (mej))
m mn mn

N R'
mn mn

27T +1

r=0,l o -1 L^'o

^o' -
-'

?.' - 1

;

1/2
P (n) cos (m(t))dnd(j) (15)
m+r

15
which agrees with Chertock.

For the accordion mode, the spheroidal modes that contribute to

the radiation are the m = and n = even modes, since such vibration

14

15

Skudrzyk, p. 470, eq. 56.

Qiertock, p. 873, eq. 12c and 13.

16





is independent of (\) and symmetric about the midsection. Combining

(16), (A, 4), (A. 5a), and (A, 5b) with long, thin spheroid (d->-L) and

far field (C"^2R/L,ri"^cos6) approximations and integrating over leads to;

p = (copL^exp(ikR)/4R)

oo

-(n+l),^ ,n
)S 2"{(n/2)l)2(52_i))/N I

On o On

n=0
even

+1

Z -: i
r=0
even

V-n^-

'o'-'

1/2
u (n)
n

Pj.(n) dn (17)

An expression for the normal velocity on the surface can be

derived from (3) , (4) , and (5) in spheroidal coordinates and is

given by:

u„(n) = Uq
?o^-l

. O

16

1/2

ri sin (Trn/2) - (7Ta/2) (1-n^) "^^^cos (TTn/2)

(18)

which agrees with Chertock. Combining (17) and (18) and using the

earlier definition of P (equation (11) )
, then:

o

"^ = } (d^"" sin((n+])TT/2)SQ^2"((n/2)!)2 /N^^nl

n=0
even

00

I On
X ; d (J - (tto/2)K

)r r r

'

^^
even

(19)

16
Chertock, p. 876, eq. 32.

17





where

:

+1

./.,J =
I

r)sin(7rn/2) P (n) dx]

-1

+1

/K = / (1 - n^)^^^ cos(7rn/2) p^(n) dn
r J r

-1

The integral terms J and K were then evaluated for r = 0,2,4
r r

by expansion of the Legendre polynomials and doing the resultant

groups of integrals. Both groups are integrable in closed form, but

the K series results in Bessel functions of the first kind of order
r

r/2 + 1, which makes their evaluation somewhat cumbersome. The

resultant values are:

r J
r

K
r

.81057 1.1337

2 .28567 -,2970

4 -.02763 ,0376

Utilizing the above values and tabulated data on the spheroidal

functions, equation (19) can be used to determine p"
. It should

o

be noted that the expansion coefficients (d ) in (19) are those

given by Flammer. If the wider range of Stratton's tables is desired,

17
the difference in normalization must be accounted for. For use with

Stratton's tables, equation (19) becomes:

17
Flammer, p. 86.

18





d^(h On) ( > d (h On) P (n) > d (h On) (J -(Tra/2)K )
«°

. ' /^ r ' r / . r ' r r
V d (h|0n) P (n) V

= 1
r=0 r=0

P -
G H

n=0 on on

00'

G„ = V" 2(d (h|0n))2/(2r +1)
On /^ r '

r=0

"on
" y] (-D^^^^'rl d^(h|0n)/2''((r/2)!)2

r=0

In this case, Stratton's tables were used with the above equation

and excellent agreement with the approximation was achieved (as shown

by the crosses on figures 1 and 2 and as demonstrated by Table I.)

Calculations using Flammer's tables and equation (19) also demonstrated

the approximation's accuracy.

19
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TABLE I - Accordion Mode Results

w
"la 'Is 2a 2s

.4052 .4053 -.2582 -.2582

.20 .4007 .4007 -.2574 -.2574

.50 .3769 .3769 -.2530 -.2531

.80 .3343 .3343 -.2454 -.2454

1 .00 .2966 .2928 -.2383 -.2358

1 .60 .1515 .1513 -.2097 -.2096

2 .20 -.0143 -.0169 -.1725 -.1725

2 .80 -.1619 -.1620 -.1313 -.1313

3 .40 -.2596 -.2591 -.0905 -.0902

4 .40 -.2896 -.2895 -.0540 -.0542

I . - First term of array approximation

I^ - First term of spheroidal prediction

I- , I„ - Second terms of array and spheroidal, respectively.

22





V, Whipping Mode Approximation

The whipping mode is the beamlike transverse vibration of

the shell. Since a slender spheroidal shape is again assumed,

the properties derived in section III are applicable. The radiation

from an element of length dz of the spheroid can be developed

from the expression for a circular cylinder given by Junger and

18
Feit. For such an element, the n = 1 term is:

p = (pa exp(ikR)/R) {2Wi f(k cos (9)) (-i) (ka sine) cos(l)/4

where;

Z+dZ

/f(k cos 9) = I cos (kz cos 9) dz = dz

Z

Therefore:

dp = -u)u (z)p7T (a(z) ) ^exp(ikR) sine coscj) dz/RA (20)

19
which agrees with Junger.

A transverse velocity distribution of the form U]^ (cos (ttz/L) -2/tt)

20
would be the simplest vibratory mode of a uniform free-free beam.

For a slender spheroidal thin shell, very little error is introduced

by using that velocity distribution. Substituting into (20) and

using (1) and the phase difference term leads to:

18
Jxinger and Feit, p. 215.

Junger, p. 332.

20
Den Hartog, p. 154.

23





Pi = ^^ = (I3 + 14 + 15 + l6)sin(6)
toUiLpTTD^exp(ikR) cos {(^)

L/2

13= (1/4L) I cos(ttz/L) exp(-ikz coscf)) dz

-L/2

L/2

Ii^ = -(1/L^) / z^cos(ttz/L) exp(-ikz cos9) dz

-L/2

L/2

I5 = -(l/2TrL) I exp(-ikz cos6) dz

-L/2

L/2

Ig = (2/7tl3) I z^exp(-ikz cos 9) dz

-L/2

21
All four integrals can be evaluated in closed form, yielding:

13 = TTCOS (w)/8 (v^ - w^)

I1+ = 8tt PcosCw) (6w2 + 2v2 - (v^ - w^)^)

-4w sin(w) (v2 - w^)! (v^ - w^)-^

I5 = - sin(w)/2TTw

Ig = (w cos(w) + sin(w) (w2/2 - 1))/ttw^

21
Gradshteyn, p. 198, eq. 8.

24





Combining the above expressions leads to the desired approximation;

?! = r(v/2) (v2 - w2)-3(cos(w) (3w2 + v^) - 2w sin(w)(v2 - w^))

- sin(w)/2irw + (w cos (w) + sin(w)(w^/2 - 1))/itw^I sin6

Numerical evaluation of this expression for two different

frequencies is presented as Figures 3 and 4. Once again, care

must be used to maintain precision in the region where w approaches

V. In this case, the numerator of the first term must be evaluated

to terms of order e^ to avoid a ficticious infinity.

25





VI. whipping Mode Spheroidal Calculation

Calculation of the radiation from whipping mode vibration using

spheroidal wave functions makes use of the basic relationships developed

in section IV. Equation (15) is the general expression for all modes

which is specialized to the whipping mode.

For the assumed whipping velocity distribution, the spheroidal

modes contributing to the radiation are the m = 1 and symmetric

modes. For m = 1, the symmetric modes are for n - m even, or 11, 13,

etc. The complete expression for the normal velocity on the surface

is given by:

u (z,(J)) = u (z) cos(a(z)) cos(})

By making use of (5) and shifting to spheroidal coordinates,

that expression becomes:

K 2-1 \^/2

u (n,<t)) = (LUi/D) (cos(Trn/2) - 2/tt) -^ (l-n^) -^^^cosc}) (21)

o

Combining (21) and (16) with (A. 4), (A. 5a), (A. 5c), (A.5d) and

long, thin spheroid (d-^L) and far field (5->2R/L, tt^cosS) and integrating

over
(f)

leads to:

Pi = -(l/4h2) ) _
n=l

oo •

^•"^''^^^Si^2''((n-1)/2)1 ((n+l)/2)ldl5Bi^Ai^
^22)

Ni (n + 1) !Ci
^n -^n

where

:

26





+1

Ai^ = 7 '^r J
(l-n^)'^^^(cos(TTri/2)-2/Tr)P^^^ (n) dn

r=0 -1

»• +1

I -'I
r=0 -1

(l-n^) (cos(Trn/2)-2/TT) I (p ^, (n)) dn
an r+i

Bi^ = ) (r+2) (r+Dd^^^

r=0

00

^n ^[__, r

r=0

which has been non-dimensionalized by multiplication by 1 = TrhL/Xh^

22
and use has been made of the relationship:

T,
1 /I 2n1/2 d ^

P , = (1 - n ) -— P ,

r+1 dn r+1

The integrals in Aj- can be evaluated using the same method used

in the accordian mode section: expanding the Legendre polynomials

and integrating. The values from those operations are:

r = 0, .183223

r = 2, -.490870

r = 4, .031939

In this case, the pressure was evaluated using Flammer's tables

over the same range of frequency. Figures 3 and 4 are marked with crosses

indicating the spheroidal prediction from h = 2 and 4 over a quadrant

22
Hildebrand, p. 165, eq. 172.
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of 6 variation. As with the accordion mode, the line array correlates

very closely with the spheroidal results. Table II gives numerical

results for comparison.
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TABLE II - Whipping Mode Results

e Pl(h=2) Pl(h=2) Pl(h=4) Pl(h=4)
Approx Exact Approx Exact

15 .00720 .00720 ..00721 .00739

30 .01355 .01356 .01466 .01484

45 .01836 .01836 .02112 .02111

6Q
"

.02127 .02127 .02430 .02417

75 .02258 .02257 .02383 .02384

90 .02290 .02290 .02290 .02303
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VII Near Field Approximations

The most severe restriction assumed in the derivation of these

expressions is the far-field approximations. These approximations

simplify the evaluation of the expressions and permit solution in

closed form. However, practical considerations encourage the develop-

ment of models that can be used at observation locations closer to

the radiator. Therefore, the evaluation of the approximations was

extended to the near field. Time constraints permitted such evalua-

tion for beam aspect at h = 2 only. However, the computer program

developed has purposely been kept general and can be used for any

position or frequency.

In the prior derivations, the far-field assumption permitted

extraction outside the integral of the exponential and range terms

(Equation (8) to equation (9) and application of equation (20)).

Retaining these terms within the integral leads to integrals that are

practically impossible to evaluate in closed form. Therefore,

numerical evaluation was selected, and a computer program was developed.

The integrals so evaluated are:

+1/2

Pq = DIST j
^""P^^^^^

[z sin(7TZ) - ^ (1/4 - 7?-)'^^^ cos(ttZ) dZ

-1/2

for the accordion mode, where Z = z/L and DIST = R/L; and

+1/2

/Pi = DIST
\

^xP(i^^R)RF
(cos(^Z) - 2/7T) (i - Z2) dZ

-1/2 ^

32





for the whipping mode, where RF = Distance Abeam/Length. In both

cases R must be retained as a function of Z for near field results.

The computer program calculates and sums the real and imaginary

contributions from each segment of length dZ along the body and

then calculates the magnitude of the pressure term. A listing of

the program is included in Appendix B. In all cases, convergence

to less than 1.9% was required, but in most calculations, the con-

vergence was considerably better. For all whipping calculations,

convergence was less than 0.04%.

The spheroidal values for the near field pressure magnitudes

were calculated using the following expressions, which were derived

from equations (19) and (22) for beam aspect (9 = 90°):

P, =hDIST |,.127H<J' - .168R<^>,^ . , . 127H<„2' - .leSR^^',^]
^^

Pi = DIST/h (.206r|^^ + .022R^^^)2 + (.206rJ^^ + .022R^^^2
1/2

Values for the radial spheroidal functions were obtained from the

23
NRL tables, which give only limited data for values of ^ greater

than 1.4. For both modes, only the first two spheroidal harmonics

were used: 00 and 02 for accordian and 11 and 13 for whipping.

The values calculated for both the approximations (solid

curve) and spheroidal expressions (crosses) are shown in Figures

5 and 6 and Table III. The far field computer results for both modes

agree with solutions of prior sections. The agreement for the accordion

mode is extremely good to a distance of a quarter- length abeam. The

23
Hanish, S., et al.. Tables of Radial Spheroidal Wave Functions

,

NRL Report 7088 (Washington, 1970).
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whipping mode is not as good and can be useful to a minimum distance

of about half-length. Since convergence for v;hipping numerical

calculations is very good, this error can be attributed to a

combination of inherent inaccuracy of the model and the possible

inaccuracy introduced by truncating the spheroidal evaluation at

only two terms. Therefore, in view of the possible inaccuracies of

each solution individually and the variation between them, neither

near field whipping mode solution should be considered the exact or

correct solution.

34





\'

t—

FIGURE 5

ACCORDION MODE PRESSURE

vs DISTANCE

Approximation

)( Exact(Flaininer jHanish)

h - 2

s
•H
i-C

Ti
iH
«>

•H
«H

U
€i

K^

—»—

,. o

O

<M

O
-<
Eh
CO

O

o
o

IPU

35





OM -

FIGURE 6

WHIPPING MODE PRESSURE

vs DISTANCii

Approximation

X Exact (Flanmer, Hani sh)

h = 2

.032 -•

.050 -

.028 -

.026 '

024

Far field limit

.022 *- 4- •4-—

I

\
—

0.5 1.0 1.5 2.0

DISTANCE ABEAM
LENGTH

3.0 4.0

36





TABLE III - Near Field Results

Distance
Length

Spheroidal Approximation
(Convergence (%)

)

Error (%)

Accordion Mode

2.00 .1446 .1453(.65) .48

.75 .1328 .1335(.60) .52

.50 .1230 .1239(.40) .73

Whipping Mode

2.00 .02344 .02323(.01) -.89

.87 .02519 .02422(.01) 3.80

.75 .02579 .02452(.001) 4.90

.62 .02671 .02489(.001) 6.80

.50 .02822 .02528(.02) 10.40
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VIII. Suminary and Conclusions

This paper has developed an approximation for the sound

radiation of two fundamental vibratory modes of a spheroidal

body. This approximation has demonstrated very good correlation

with the exact spheroidal prediction over the frequency range

of practical interest. The expressions developed are far more

straightforward than the cumbersome spheroidal wave functions.

Their future use should therefore promote faster and easier

predictions of such radiation.

The two obvious limitations of these approximations in

practical application are the near field performance and the

physical limitation imposed by a spheroidal shape. Section VII

has demonstrated excellent near field performance for the

accordion mode approximation and fairly good performance for the

whipping mode, at least in the intermediate or "suburban" field.

The second limitation of shape differences between a spheroid

and actual physical radiators should not be severe, particularly

since the actual shape can be incorporated into the approximation

and evaluation carried out numerically.
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Appendix A - Spheroidal Wave Functions

Spheroidal wave functions are the result of the solution of

the wave equation in spheroidal coordinates by the usual technique

of separation of variables. The prolate spheroidal coordinates that

are of interest here are obtained by rotating elliptic coordinates

about the major axis. If the foci of the ellipse are located at

(x, Y, z) = (0, 0, ±d/2) and r^ and r2 are the distances from these

foci, then the spheroidal coordinates are:

5 = (ri+r2)/d ISl"

n = (ri-r2)/d -l<ri_^+l

(j) = tan~My/x) 0<_4)<_2tt

Surfaces of constant 5 are confocal ellipsoids; surfaces of

constant ri are confocal hyperboloids orthogonal to the ellipsoids.

For a spheroid of length L and minor diameter D:

?2 = 1 + D^/d^

An ellipse is defined by surfaces where r^ + r2 = constant.

Hence, on the major axis, r^ + r2 = L, and on the minor axis, r^ + r2 =

2((D/2)2 + (d/2)2) ^
, Therefore, L^ = d^ + d^, and for L >> D, or

for a slender or needle shaped spheroid, d -^ L. The radial coordinate

on the surface, or ^ , approaches 1 for slender spheroids.
o

In the far field, r^ + r2 -> 2R, and E,
->- 2R/d, where R is the

average distance to the spheroid. Furthermore, in the far field,

T\ -* cos (8), where 9 is the angle with the major axis.

39





The separable solution is of the form:

P,r,r,
= S^„(h,n) R ^(h,?) cosdnc}))

mn mn mn
(A.l)

where the indices m and n (m _< n) identify the various modes. The

parameter h is a non-dimensional frequency, h = —cod/c = -z^d, where

u) and c are the angular frequency and sound speed, and k is the wave

number, or their ratio. A surface harmonic is represented by

S (h,ri) cos {mi)) which vanishes at n-m circles of latitude,
mn

Through application of the Laplacian operator in spheroidal

coordinates to the above solution, it can be shown that both R and
mn

S satisfy the same ordinaiy differential equation,
mn

d_
dz

(l-z^)
d̂z

X - h^z^ -

1-2^
u =

where for -1 < z < + 1, z =ri and u = S
mn

and for +1 < z < o°, z = E, and u = P.
mn

The angle functions S (h,ri) are generalizations of Legendre
mn

functions and depend on m,n,h, and ri» thereby making spheroidal

manipulations cumbersome. They are generally expressed as series

expansions of Legendre functions as follows:

mn .

00

I ,mn ,, , m , .

d h P ^ n
r m+r

(A. 2)

-0,1

where the prime over the summation sign indicates summation over only

even values of r when n-m is even, and over only odd values of r when
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n-m is odd. The expansion coefficients are available in Flaitimer and

Stratton, although the range of the latter is much greater.

A quantity required for calculations is the norm or mean square,

which is also a function of m,n, and h, and is given by:

+1
(r+2m) 1 [d"*"(h)]2

N (h) = I (S (h,n))^dn = 2 y
,
,„ ^^ ^,, (A. 3)

mn J mn / , r! (2r+2m+l)

+i 00

(s (h,n))2dn = 2 }J mn (_ ,

-1 r=0,l

This quantity is tabulated for limited ranges in Flammer, but must

be calculated from the expansion coefficients in the use of Stratton 's

tables.

The radial function is a complex function describing the distance

dependence of the wave functions. It may be computed at any point by

a series expansion of spherical Hankel functions of the first kind.

Additionally, numerous tables are in existence for a wide range of

frequencies and distances. For time dependence exp(-iwt), which is

used here, the radial solutions are:

mn mn mn

which correspond to the diverging wave.

However, for purposes of this study, only the far field approxima-

tions for long and thin spheroids are required. These are available

1 2
in both Chertock and Skudrzyk. For hC >> 1:

G. Chertock, p. 872-873.

2
E. Skudrzyk, p. 464, p. 475-476.
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mn

Since h = - kd and E,
-> 2R/d in the far field, the exponential term

becomes exp(ikR) .

A further quantity required for the calculation of sound radiation

is the derivative of the radial function. For slender spheroids:

mn 3^ I mn
-> iR^^^'(h,0 (A.5(a))

5-1 ^

For m = 0:

R^^^'(h,a -^
^' ^^ "-^^

n even (A.5(b))
°"

5 -> 1 2'^(n/2) 1 (n/2) !h d°"(h)
o

For m > 0:

R^^'(h,?) -> -mf2(m,n,h) (^^-i)
l/2m-l

(A. 5(c))

Where:

(-l)"^(2m-l) (m-1) I(m+1) Ih'^" > d^(h)

r=-2

n-2m+l
,2n,) j

(Bl£) , (Ilt£) .^"^ (h) V lirtHrM ^mn
2 2 -2m / r! r

^ / T-v r=-2m
f2(m,n,h) =

; n even

r=0

(A. 5(d))
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Appendix C - Important Symbols

a(z) radius of cross section

c sound speed in medium

d focal length

h non-dimensional frequency = -dcd

k wave number = 27t/A

m, n,r index

p acoustic pressure

t time

u ,u /U velocity components
n z r

V Tr/2

w kL cos(0)/2

D maximum diameter of spheroid

L length of spheroid

N (h) normalization constant
mn

P (n) Legendre functions
m

P Accordion mode non-dimensional pressure

P. Whipping mode non-dimensional pressure

R. Far field range

Radial spheroidal function

Angle spheroidal function

Maximum velocity, accordion

Maximum velocity, whipping

Radial coordinate

Angle coordinate

Longitudinal angle

Angle with axis
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