

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1974-06

High noise level microphones used in aircraft.

Hintz, Edward Joseph Jr.

Monterey, California. Naval Postgraduate School

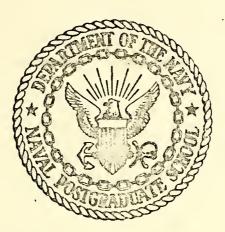
https://hdl.handle.net/10945/17049

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943


http://www.nps.edu/library

HIGH NOISE LEVEL MICROPHONES USED IN AIRCRAFT

Edward Joseph Hintz

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

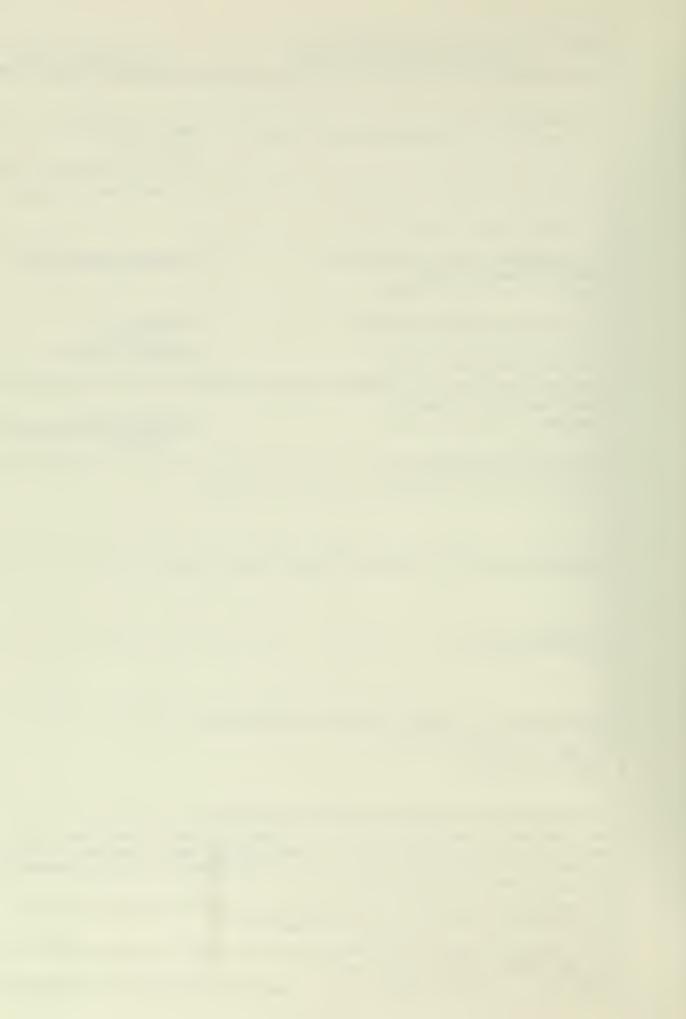
NAVAL POSTGRADUATE SCHOOL Monterey, California

HIGH NOISE LEVEL MICROPHONES USED IN AIRCRAFT

Ъy

Edward Joseph Hintz, Jr.

June 1974


Thesis Advisor:

G. D. EWING

T/6 1 · 12

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered) READ INSTRUCTIONS **REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 5. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitie) Master's Thesis; High Noise Level Microphones Used in Aircraft June 1974 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(+) 8. CONTRACT OR GRANT NUMBER(*) LT Edward Joseph Hintz, Jr., USN 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NAVAL POSTGRADUATE SCHOOL Monterey, California 93940 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE June 1974 NAVAL POSTGRADUATE SCHOOL 13. NUMBER OF PAGES Monterey, California 93940 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Naval Postgraduate School Monterey, California 93940 Unclassified 154. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number) Bond conduction microphone dynamic microphone high ambient noise 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number) The objective of this paper is to do a comparative analysis of three of the present "State of the Art" high noise level microphones. They are the M-87/AIC and M-87/AIC+ (EV 693) both made by Electro-Voice and the HNL bone conduction microphone made by SETCOM Corporation. The advanges and disadvantages of using a bone conduction microphone over a boom mounted microphone are also investigated.

•

High Noise Level Microphones used in Aircraft

by

.

Edward Joseph Hintz Jr Lieutenant, United States Navy B.S., United States Naval Academy, 1968

Submitted in partial fufillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL June 1974

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

1

ABSTRACT

The objective of this paper is to do a comparative analysis of three of the present "State of the Art" high noise level microphones. They are the M-87/AIC and M-87/AIC+ (EV 693) both made by Electro-Voice and the HNL bone conduction microphone made by SETCOM Corporation.

The advantages and disadvantages of using a bone conduction microphone over a boom mounted microphone are also investigated.

TABLE OF CONTENTS

Ie	INT	RODUCTION	- 9
II•	PRO	ELEMS WITH VOICE COMMUNICATIONS	- 18
	A.	SPEECH INTELLIGIBILITY	- 18
		1. Personal	- 1 8
		2. Equipment	- 18
		3. Environment	- 19
		4. Message Control	- 19
	B●	HIGH NOISE ENVIRONMENT	- 1 9
	Ce	MICROPHONE HISTORY IN AVIATION	- 23
		1. First Generation Virbation Microphones	~23
		2. Second Generation Vibration Microphones-	-24
	D•	BONE CONDUCTION MICROPHONES	-24
IIIº	EXP	ERIMENTAL PROCEDURE	- 26
	V •	RECORDING PHASE	-26
		1. Test Conditions	- 26
		a. Outside Ambient Noise	-27
		b. Quiet Environment	- 27
		2. Taping	-27
		3. Talkers	-27
	Be	IISTENING PHASE	- 28
IV.	CON	CLUSIONS	- 35
LIST	OF	REFERENCES	- 38

LIST OF TABLES

ʻI.	Typical Noise Levels (dbA)	- 20
II.	HU-1 External Noise Levels	-31
III.	HU-1 Internal Noise Levels	-32
IV.	Randcm Word List Order	- 33
ν.	Listeners Scores (in percent)	- 37

LIST OF FIGURES

1-1.	HNL Microphone Mounted in an APH-6D12
1-2.	Side View of Patented Mounting13
1-3.	Inside View of Patented Mounting14
1-4.	Detailed View of HNL Microphone15
1-5.	Recording of the Word "Twenty"16
1-6.	Recording of Eight Different Words17
2-1.	Typical Noise Spectra in Military Aircraft21
3-1.	Kreul Et Al Modified Rhyme Test29
3-2.	Talker's Position in a HU-1 Helicopter30
3-3.	Test Answer Sheet34

ACKNOWLEDGENENT

The author wishes to thank Mr. Ken Schwartzman, president of SETCOM Corporation, who provided the HNL microphone used in this evaluation. His wealth of knowledge and experience regarding the bone conduction microphone was invaluable.

The officers and men of DPT, Aviation Division, Fritzsche Army Air Field, Fort Ord, California, especially Col. Garry Farmer and CW2 Carter Smith for their considerate effort in providing flight time for his experiments.

Dr. Gerald Ewing, my thesis advisor, who directed me to SETCOM Corporation which started me off on the right track. His guidance regarding general organization and the evaluation of my data was essential to the success of my thesis.

The men of Crews System Branch, Naval Missile Center, Point Mugu, California, whose testing techniques were of great assistance.

Last, but far from the least, the author would like to thank his wife, Karen, for her help and understanding in the preparation of this paper. ź

I. INTRODUCTION

The changing mission objectives and requirements plus new weapons system concepts have generated the need to reevaluate present forms and functions of aviator's personal is being called upon to perform multiple equipment. Man roles of increasing comlexity while airborne and these roles may impose conflicting requirements in personal equipment. The VTAS (Visual Target Acquisition System) concept applied to air compat manuvering requires substantial change in the pilots protective helmet to meet system requirements. Tradeoffs between impact and eye protection, sound attenuation, size, weight, communication efficiency. starility and peripheral visual field are imposed on the flight helmet in the VTAS role [Ref.1]. Changes in the oxygen mask and microphone system are under development to meet the system priorities.

A present day problem has been the inability of the helicopter crew member to have reliable communication with the pilots during VERTREP (Vertical Replenishment) and hoisting operations due to very high outside ambient noise. Improved communication from and within aircraft; specifically, study of intelligibility of present equipment both for helicopter to ground and helicopter to helicopter was recommended to the Navy by CHABA (Committee on Hearing, Bioacoustics and Biomechanics) [Ref.2].

An evaluation of an integrated microphone configuration incorporated within the helmet shell was undertaken, with the foregoing VTAS, VERTREP and hoisting problems in mind. An integrated microphone would be useful when bulk and inconveniece of a boom microphone would detract from or prevent mission performance or where slipstream or rotor downwash effects would render conventional air conduction

tranducers unusuable. Foremost consideration was whether Man's performance would be enhanced or degraded with integrated personal equipment.

The evaluation procedures used in this study are essentially a play off between an experimental bone conduction microphone and a standard military air conduction microphone.

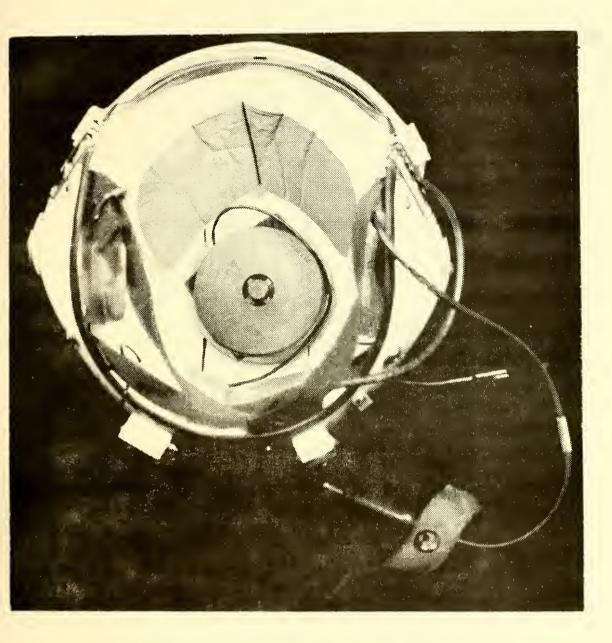
The experimental microphone selected for the comparison evaluation was the HNL (High Noise Level) bone microphone as supplied by SETCOM Corporation of San Jose, California. This microphone was described by the manufacturer as a high noise level bone conduction microphone that is designed to "feel" the vibrations of the head when a person speaks and to respond minimally to all other sounds. The manufacturer states that clear transmissions with also good voice recognition and signal-to-noise performance are possible in noise levels as high as 115 dbA [Ref.3]. The HNL was a an earlier standard bone conduction developed model of microphone of the same manufacturer [Ref.4]. The HNL microphone was mounted in the center of a circular crown sizing pad of an APH-6D flight nelmet modified in accordance with the manufacturer himself. See figure 1-1. Figures 1-2 thur 1-4 show in greater detail the manufacturers patented method of mounting the microphone in a helmet. The manufacturer clearly points out that the HNL microphone is a vibration sensitive bone conduction tranducer and preamp combination.

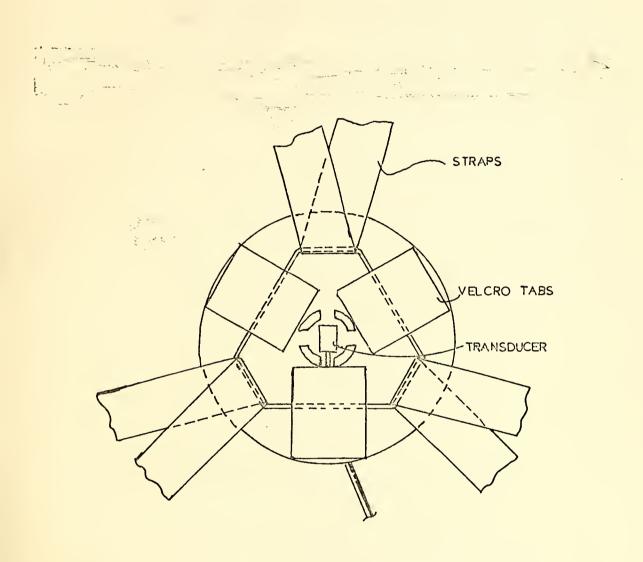
SETCON does a lot of frequency shaping in its preamp to overcome the loses in the higher frequencies (see Chapt. II.D.) so that its output looks much the same as that of the M-87/AIC microphone. This simularity is shown in figure 1-5 and 1-6. These figures are the results of playing two different tape recordings into a "Bruel Jaer Type 3347 Real-Time 1/3 Octave Band Analysiser". The first recording (figure 1-5) had the word "twenty" recorded on it by the M-87/AIC and the HNL microphone. the second recording

(figure 1-6) was made up of a list of eight different words recorded twice, once with each microphone. Both recordings were make inside a HU-1 helicopter with all the doors closed. The amount of shaping is Company Confidential and SETCON would not release this information for print in this paper.

The HNL microphone was compared with a standard M-87/AIC bocm mounted dynamic lip microphone. The "Kreul Et Al Modified Rhyme Test" word list {Ref.5] was used to evaluate the intelligibility of both systems while being exposed to the interior and exterior helicopter noise as the evaluation criterion.

The M-87/AIC microphone (FSN 5965-755-4643) was developed as a noise cancelling dynamic microphone for the United states Air Force and it is currently being used by all the Armed Forces as their primary aircraft microphone. The M-87/AIC is manufactured by Electro-Voice, Inc.




Figure 1-1. HNL Microphone Mounted in an APH-6D

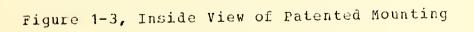
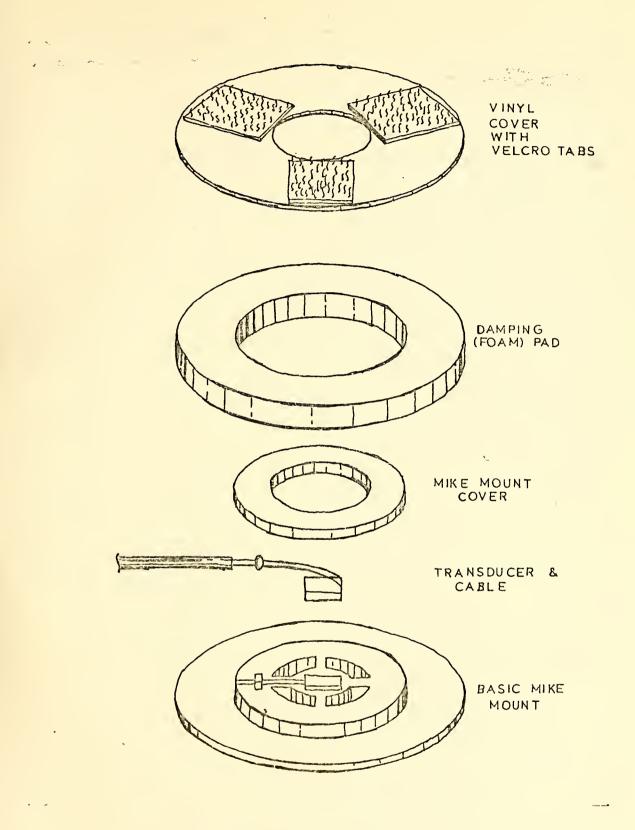
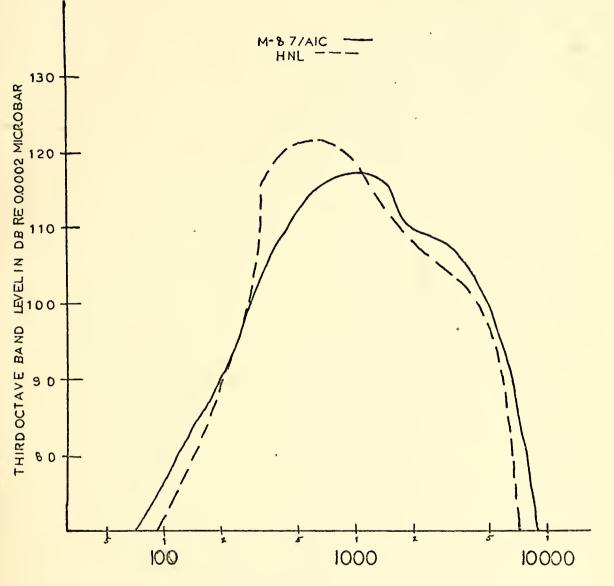
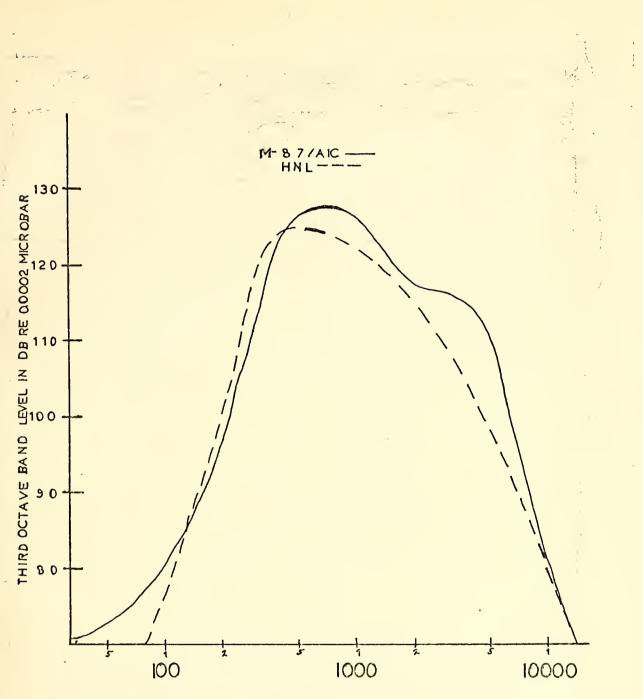


Figure 1-2. Side View of Patented Mounting

.


Figure 1-4. Detailed View of HNL Nicrophone

FREQUENCY IN HERTZ

Figure 1-5. Recording of the Word "Twenty"

FREQUENCY IN HERTZ

Figure 1-6. Recording of Eight Different Words

II. PROBLEMS WITH VOICE COMMUNICATIONS

A. SPEECH INTELLIGIBILITY

Command control of Navy ships and aircraft depends to a major extent on the effectiveness of their communications Demands on these systems increase as new weapons systems. systems and tactics are introduced and ambient noise levels Too often, voice intelligibility is only become higher. marginal to say the least. The factors that affect speech intelligibility can Ъе broken down into four major categories; those associated with (1) the person sending the message, (2) his equipment, (3) his environment, and (4) the message content [Ref.9].

1. <u>Personal</u>

Fersonal factors known to degrade speech intelligibility include regional dialects, poor enunciation or vocal articulation habits, and inadequate training in the special procedures and phraseologies associated with the equipment or the mission.

2. Equipment

The design features of present day equipment are known to degrade intelligibility by creating noise and distortion. This plus the requirements of minimum bandwidth nct lend itself to good message transmissions. does Reducing noise and increasing bandwidths are expensive, and tradeoffs between expense and intelligibility are a serious consideration. Distortion often results from speech processing schemes which are introduced to overcome noise or to make more efficient use of available power. Distortion another sort is created by life-support ΟÎ equipment necessary for high-altitude flight, such as the oxygen mask

worn by aircraft crew members. This enclosure over the mouth and nose creates an unnatural cavity in which to talk.

3. Environment

Environmental conditions known to degrade intelligibility are ambient acoustic and electrical noise, which create diversions from assigned tasks (like flying an aircraft) and puts more unwanted stress on the performer.

4. Message Content

Message parameters which degrade intelligibility include large vocabularies, reports of unusual events with seldom-used words or phrases, and short words or phrases vice grammatical sentences and polysyllabic words.

This study will only address the equipment (mainly microphones) and environmental portions of this critical problem, specifically, those transmissions between crew members of helicopters over the ICS (Internal Communication System).

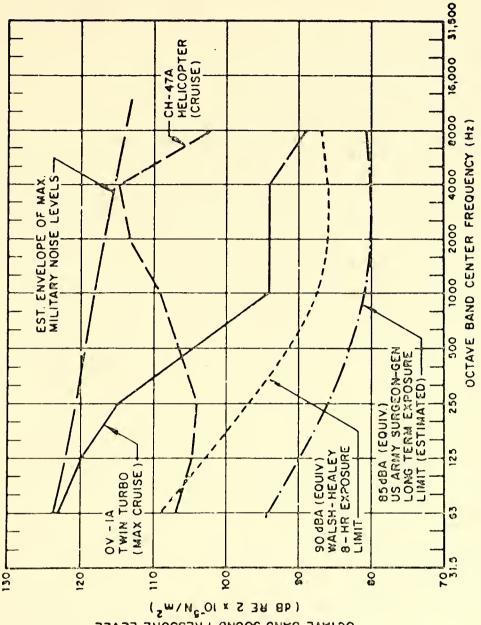
B. HIGH NOISE ENVIRONMENT

The primary problem with communications in military vehicles is the high noise environment which they operate in. See Table I. As an example Figure 2-1 shows some typical spectra for two types of military aircraft. The spectrum for the OV-IA twin-turbine exterior noise surveillance aircraft shows that in this case the greatest ambient and also the greatest ear damage risk occurs at low frequencies. However, for the CH-47A helicopter at cruise power the predominant ambient noise occurs in the mid to high frequency region. An estimated envelope of maximum military noise exposure level was obtained by combining the data for the two aircraft [Ref.10].

TYPICAL NOISE LEVELS (dbA)

Rustling leaves	10
Whisper	20
Office backround noise	50
Conversation	60
Street with moderate traffic	70
Police whistle/vacuum cleaner Five-ton truck	80
Five-ton truck	87-101
Street with heavy traffic	90
Motorcycle/gas lâwn mower	100-120
CH-47 helicopter/OV-1 Mohawk	102-111
Rock music band	105-111 111
Armored personnel carrier (M113) M60 tank (not the gun)	114
lot runnay/carcion flight dock	130
Jet runway/carrier flight deck .45 caliber pistol (30 feet away)	140
40mm grenade launcher	147
M16 rifle	154-158
3.5-inch rocket	171
81mm mortar	184
90mm tank gun	172-186
105 howitzér	185-191

1.11.12


.

•

NOTE: The threshold of physical pain is about 120 to 140 dbA.

Table I

.

OCTAVE BAND SOUND PRESSURE LEVEL

Figure 2-1. Typical Noise Spectra in Military Aircraft (Interiors)

The Walsh-Healey Criterion as applied by the Department of Labor is directed at an eight hour exposure determined by the length of a typical working day. The Army Surgeon General has stated that an 85 dbA (equivalent) level is more appropriate for military personnel because on the average the exposure duration will probably be greater than eight hours. The estimated noise spectrum limits for this crition are also shown in Figure 2-1.

The problem of high interior noise levels in aircraft is not just peculiar to the Army's inventory, but it is also all of the Armed Force's aircraft. found in In the problem is compounded with very helicopter this high exterior ambient noise caused by the rotor system and other related effects (rotor downwash, slipstream, etc.). One of the main reasons that this is a serious problem to the helicopter community is the missions (VERTREP, hoisting. etc.) that they are tasked with. Communication between crew members is essential to the successful completion of these missions. During these missions at least one crew member is always exposed to the outside ambient noise. This noise level usually exceeds the design limits of his noise cancelling microphone thus making communication difficult if nct impossible. The seriousness of this problem is well known to every helicopter pilot and crew member plus it is also on file at the Naval Safety Center, Norfolk, Virginia in the form cf aircraft accidents, incidents, and grounā accident reports [Ref.6]. This inability to have reliable ccmmunication in the environment which helicopters work has cost many lives and dollars throughout the history of aviation.

This communication problem is also present with aircraft ground handling crews (taxi directors, all aircraft carrier flight deck personnel, etc.) of all types of aircraft.

C. MICROPHONE HISTORY IN AVIATION

Throughout the history of aviation there have been many attempts to build microphones or a complete communication system to resolve this problem of communication in high ambient noise. For the crew member of a helicopter the greatest portion of the exterior ambient noise is wind noise.

1. First Generation Vibration microphones

Air moving over a standard lip microphone is one of worlds best "White Noise" generators thus the making filtering almost impossible. The next concept devised was shield the microphone from the ambient noise. to It was then determined that an easy way to shield the micrcphone was to build one that was not pressure from the wind came the vibration sensitive. From this idea sensitive microphone. After performing sound surveys of the human skull it was determined that the throat gave the strongest vibration signal, but it did not have a flat frequency response. As a result of this survey and the principle that "the most must be the best", the throat microphone came into being in the late 1940's. As with most new designs the faults in the system are always noted after it's built and the throat microphone was no exception. The two biggest drawbacks were; first, it became uncomfortable to wear for long periods of time because it had to be held tight against the throat in order to operate properly and the second was due to the uneven frequency response of the microphone (no high frequency response) which made it hard to understand the speaker. In human speech the lips is where you get the final forming of words therefore, the further the microphone pick up is from the lips the more unnatural and unclear it is going to sound.

2. Second Generation Vibration Microphones

During the development of the second generation of vibration microphones it was noted that the head provided a harder bone structure which in turn provided a better high frequency response than the throat, but the intensity of the vibrations was much less. The best frequency response was found to be from the cheek bone.

These second generation vibration microphones acquired many different names such as "Top of the Head Tissue Microphone", "Bone Knockers", "Head Contact Microphone", and "Bone Conduction Microphone", for the remainder of this paper they all will be referred to as bone conduction microphones.

D. BONE CONFUCTION MICROPHONES

Bone conduction microphones were first patented in the early 1950's by General Dynamics and are now being produced in all shapes and sizes by numerous companies such as Dyna Magnetic Devices, Inc. and SETCOM Corporation.

Bone Conduction microphones operate from energy generated by auditory vibrations of the bones in the head. The microphone transducer is generally a sensitive, low mass in intimate contact with the head to pick up accelerometer the bone vibrations and generate output signals responsive the auditory vibrations. In many applications the to microphone is used by persons who require the use of both hands and in relatively noisy environments. Normally, in such environment the microphone is used in conjunction with some type of head gear such as industrial hard hats, fire, motorcycle, riot and police helments.

The early bone conduction microphones had serious limitations in such applications. They were adversely affected by ambient noise transmitted through the air or through the head gear from which they supported. Their size

shape make it difficult and often impossible to mount and the transducers in the head gear and so in many instances mounted render the head gear uncomfortable. when In some instances transducers mounted in the head gear are hazardous in that a hard blow to the head qear may drive the injury. transducer into the head The and cause audio in general, poor because the transducer is not quality is held in intimate contact with the head with sufficient pressure to pick up high frequency vibrations whereby high frequency sound is not effectively reproduced.

ţ

NASA, prior to the Apollo Program, did an extensive study on bone conduction microphones. They had planned to use this type of microphone in one of the early space suits. The reason it was not used is that the test results showed that the microphone would not pick up the "s" sound (high frequency) and that there was very little voice recognition.

In May of 1971 the Navy did а comparative intelligibility evaluation with a bone conduction microphone made by Dyna Magnetic Devices, Model D551-100 and a standard Navy noise cancelling dynamic M95A/UR lip microphone [Ref. results of this report showed that 71. The the bone conduction microphone intelligibility was about thirteen cent pcorer than that of the standard lip microphone. per This report, in the discussion section, also pointed out, "While the particular prototype microphone chosen for comparative evaluation did not offer improved intelligibility, further trials of developmental transducers should be undertaken. An integrated contact microphone considerable operational offers appeal for certain applications such as VTAS, if communications performance is at least equal to, if not improved over current Navy dynamic microphones".

III. EXPERIMENTAL PROCEDURES

Following the recommendations of Ref. 7, a comparative evaluation was conducted between the HNL bone conduction microphone, made by SETCOM Corporation of San Jose, California, and the Armed Forces Standard noise cancelling Dynamic M-87/AIC lip microphone , made by Electro-Voice, Inc. The M-87/AIC was tested with and without a foam wind screen cover.

The evaluation was carried out in accordance with the procedures set forth by the American Standards Association [Ref.8] with exception that the "Kreul Et Al Modified Rhyme Test" was used in place of the PB-50 word list. This modification was done because the conclusions ofRef.9 stated the Modified Rhyme Test of House, el al, was found to be the most acceptable speech intelligibility test for military aircraft. A copy of this word list can be seen in Figure There are two reasons for this change; first it takes 3-1. for less time to train the participants and second a shorter time to conduct the actual test, while the results provide same accuracy of the PB-50 word list. the The test procedures basically consists of two parts: the recording phase and the listening phase.

A. RECORDING PHASE

1. <u>Test Conditions</u>

Iwc comparative microphone test conditions were evaluated: (1) the microphone exposed to outside ambient noise in forward flight and (2) the microphone exposed to a very quiet environment.

2ΰ

a. Cutside Ambient Noise

The conditions of high exterior noise levels was acheived by having the talkers secured by a safety belt in after station of a UH-1 helicopter with the side door the open. This was done so that his head and torso could project out into the airstream and rotor downwash during fcrward flight, simulating conditions that crewmen experience during hoisting and VERTREP operations. See Figure 3-2. During this test condition the helicopter was operated at 88 percent power, 60 to 65 knots forward speed at 1000 feet altitude. The outside noise level was 110 dbA. The exceptence Sound Level Surveys for the HU-1 helicopter conducted by Patuxent River Test Center are shown in Table II and Table III.

t. Quiet Environment

The second condition, a quiet environment, was acheived by using a vacant classroom for the talkers to do their recording.

2. <u>Japing</u>

The word lists were recorded on a Magnavox Model 1V9011 tape recorder operated at 3 3/4 per second. An adapter was fabricated to connect the microphone directly to the "mic" input of the tape recorder. This direct connection was used so that only the microphones were being evaluated and not the entire communications system of the aircraft.

3. <u>Talkers</u>

Two talkers (A and B) were used during both of the environment conditions. Talker A always used word lists 1, 2, and 3 while talker B always used lists 4, 5, and 6, but they did not always use them in that order. The exact order in which they were used is shown in Table IV. It also

listening phase. The talkers were selected and trained in accordance with Ref. 8. The carrier phase which was used with each of the words on the Modified Rhyme Test was "Number ____, would you circle the word ____ now." The phrases were said at a rate of 15 phrases per minute.

B. LISTENING PHASE

The listeners were made up of ten people aged 24 through 33 with a mean age of 27.1 years from all walks of life and of both sexes. All subjects were judged to have bilaterally normal hearing in accordance with Ref.8. Each person evaluated the talkers in both of the environments by listening to the tape recording on MX-2508/AIC head set as it was played back on the same tape recorder that was used in the taping phase, in a quiet environment. The MX-2508/AIC head set is the standard Armed Forces head set used by pilots in aircraft where helmets are not required and by maintenance (Avonics) personnel for testing communication equipment. The evaluators were given modified copies of Figure 3-1, see Figure 3-3, to circle their answers cn.

RAME		EAR				
	MODIFIED RHY	ME HEARING TEST 1	LIST			
1. 1. sing 2. sit 3. sin 6. sill	2. 6. look 3. shook 4. cook 2. took	3. 2. vost 6. rest 1. nost 4. test	4. 6. kill 3. kid 4. kit 2. king	5. 5. putt 2. puff 6. pub 1. pun		
4. sip 5. sick	5. hook 1. book	5. best 3. vest 8.	1. kith 5. kiss	3. pup 4. pug		
3. fin 2. fig	5. toil 3. boil	3. ruat 4. must	4. rig 5. pig	4. sane 3. save		
6. fit 5. fib 1. fill 4. fizz	1. foil 6. soil 2. coil 4. oil	2. just 5. gust 6. dust 1. bust	2. wig 3. big 1. jig 6. fig	5. aafe 6. same 2. sale 1. aake		
11.	12.	13.	14.	15,		
2. bit 6. hit 4. sit 5. vit 3. fit 1. kit	1. came 2. cape 3. cane 4. cake 5. cave 6. case	3. hold 6. cold 4. fold 5. gold 2. told 1. sold	5. masa 1. map 3. math 4. man 6. mad 2. mat	5. sale 6. pale 1. gale 4. bale 2. male 3. tale		
16.	17.	18.	19.	20.		
1. rav 6. saw 2. paw 5. thaw 4. jaw 3. law	5. rent 3. went 1. dent 6. sent 4. tcnt 2. bent	3. pace 5. pale 1. page 4. pay 6. pave 2. pane	3. came 6. game 4. name 1. fame 2. same 5. tame	4. dub 3. ou 1 6. dun 1. duck 2. dud 5. dug		
21,	22.	23.	24.	25.		
2. rake 1. rave 6. ray 5. raze 4. rate 3. race	6. bill 2. hill 5. fill 1. vill 3. kill 4. till	6. pan 3. pang 4. pad 1. pasa 2. pat 5. path	5. keel 1. peel 2. reel 6. eel 3. feel 4. heel	2. bus 1. bun 4. buff 5. buck 6. bug 3. but		
26.	27.	28.	29.	30.		
2. heath 5. heat 4. heave 1. hear	3. sag 4. sack 6. aat 2. sass	3. gun 2. nun 6. run 1. aun	6. tick 4. pick 3. sick 5. wick	3. cuff 4. cup 5. cud 2. cub		
3. heal 6. heap	5. sap 1. sad	5. bun 4. fun	2. lick 1. kick	6. cuss 1. cut		
31.	32.	33.	34.	35.		
 peace 3. peak, peach 5. peat 	6. pay 1. way 4. gay 2. may	3. den 2. pen 4. hen 6. men	4. seat 5. beat 1. meat 3. heat	4. dip 5. hip 2. rip 1. sip		
4. peal 2. peas	3. say 5. day	1. ten 5. then	2. feat 6. neat	6. lip 3. tip		
36. 2. dip 6. din	37. 5. team 6. teak	38. 3. aub 4. sun	39. 4. píg 1. píll	40. 5. fed 3. red		
4. dim 3. did 1. dig 5. dill	3. tcase 2. tear 1. teach 4. teal	6. sung 5. sup	5. pin 2. pick	2. shed 6. wed		
41.	42.		3. pip 6. pit	4. bed 1. 1ed		
5. mop 6. shop	5. lane 6. lame	43. 2. seach 3. beat	44. 5. sang 6. hang	45. 1. seep 4. seed		
1. top 2. hop 4. cop 3. pop	4. lace 3. lay 2. lake 1. late	1. bean 6. beak' 5. bead 4. beam	3. gang 4. bang 1. rang 2. fang	5. seem 3. seethe 2. seen 6. seek		
46.	47.	48.	49.	50.		
5. park 2. dark	L. pin 5. din	1. tab 4. tang	6. bath 3. back	1. hot 3. not		
3. mark 6. bark 4. lark 1. hark	2. sin 3. tin 6. fin 4. win	2. Usa 3. tam 5. taux 6. tap	1. bat 5. ban 4. bass 2. bad	6. tot 2. got 5. lot 4. pot		

EXHIBIT 10: KREUL ET AL MODIFIED RHYME TEST ANSWER SHEETS.

.

Figure 3-1. Kreul Et Al Modified Rhyme Test

Figure 3-2. Talker's Postion in a HU-1 Hericopter

CIRCLE							
RADIUS			ANGULAR	POSITION	DEGREES		
FEET	0	30	60	90	120	150	180
12.5	110	112	N.Ū.	N•0•	N.D.	115	119
25	107	111	114	115	113	115	116
50	102	109	109	109	110	111	113
100	103	104	105	111	110	105	106
200	97	97	100	103	102	101	101

GROUND IDLE UH-1

50 HOVER UH-1

.

CIPCLE							
RADIUS		١A	NGULAR	POSITION	DEGREES		
FEET	0	30	60	90	120	150	180
12.5	106	105	105	106	108	108	108
25	105	105	103	106	104	108	113
50	102	106	108	107	106	107	105
100	103	103	104	108	103	102	105
200	101	97	98	104	103	102	102

Table II. HU-1 External Noise Levels at Ground Tâle and 50' Hover (db)

.

.

•

50	•	H	٥	V١	E١	R

FREQUENCY	PILOT	COPILOT	FLT ENG	CREWMAN	
OVERALL	102	102	102	102	
20-75	91	90	94	96	
75-15 0	96	96	92	92	
150-300	94	94	92	93	
300-600	94	94	94	94	
600-1200	93	93	92	91	
1200-2400	93	93	92	91	
2400-4800	93	93	95 ·	93	
4800-10,000	83	84	83	83	

MILITARY RATED POWER

FREQUENCY	PILOT	COPILOT	FLT ENG	CREWMAN	
OVERALL	95	95 ·	10.0	100	
20-75	85	84	88	90	
75-150	86	86	86	87	
150-300	84	88	87	88	
.300-600	84	84	88	88	
600-1200	84	83	90	89	
1200-2400	84	84	92	90	
2400-4800	88	90	94	95	
4800-10,000	77	77	83	84	

Table III. HU-1 Internal Noise Levels at Military Rated Power and 50'Hover (ab)

	II NOI	ESY DNMENT	II	LET DNMENT
MICROPHONE	A	В	A	В
M-87/AIC	1	5	2	б
M-87/AIC+1	2	4	3	5
HNL	3	6	1	4

¹ M-87/AIC with Foam Wind Screen

Table IV. Random Word List Order

NAME					EAR		D	ATE		
		м	ODIFIED RH	YME HEARING TE	ST 1	•	L	1ST		
1.		2.		3.		4.		5.		
sing	sit	look	shook	vest	rest	k111	-kid	putt	puff	
sin	si11	-cook	took	nest	test	kit	king	pub	pun	
sip	sick	hook	book	best	, vest	kith	kiss	. pup	pug	
6.		7.		8.		9.		10.		
fin fit	fig	toil	boi1	rust	must	rig	pig	sane	save	
		foil	soil	just	gust	wig	big	safe	same	
fill 4	fizz	coil	011	dus t	bust	jig	fig	sale	sake	
11.		12.		13.		14.		15.		
	hít	c ame	cape	hold	cold	mas s	map	sale	pale	
	vit	cane	cake	fold	p10-3	math	man	gale	ba1¢	
fit	kít	cave	case	told	. s⇔ld	mad	mat	male	tale	
16.		17.		18.		19.		20.		
rav	sav	rent	went	pace	paie	came	game	dub	ωu.1	
paw	thav	dent	sent	page	pay	name	fame	dun	duck	
jaw	Iav	tent	. bent	pave	pane	same	tame	dud	dug	
21.		22.	22.		23.		24.		25.	
rake	rave	b111	hill	pan	pang	keel	peel	bus	. bun	
	raze	fill	vi11	pad	pass	reel	ee 1	buff	buck	
rate	race	k111	till	pat	path	feel	hee1	bug	bưt	
26.		27.		28.		29.		30.		
heath	Leat	sag	sack	gun	nun	tick	pick	cuff	cup	
heave	hear	sat	sass	ruถ	รบถ	sick .		cud	cub	
heal	teap	sap	sad	. bun	fun	lick	kick	cuss	cut	
31.		32.		33.		34.	34.		35.	
peace	peak,		way	dea	pen	seat	beat	dip	hip	
peach	peat	gay	may	hen	nen	meat	heat	rip	sip	
peal .	peas	sa;	. day	ten .	then	feat	neat	1ip	tip	
36.		37.		38.	38.		39.		40.	
dip	din	team	teak	sub	sun	pig	. pill	fed	red	
	did	tease	tear	sung	sup	pin	pick	shed	wed	
. dig	dill	teach	teal	, sud	sum	şip	pit	. bed	. 1ed	
41		42.		43.		44.		45.		
Pop	stop	. lare	1ame	seach	Lea:	sang	hang	seep	seed	
top	bep	Jace	Lay	. eac	beak	gang	bang	seen	seethe	
сор	P °P	lake	late	bead	beam	rang	fang	seen	seek	
46.		47.]	49.		49.		50.		
park	dark	pin	dín	Eab	tang	bath	back	hot	not	
park	bark.	sin	tin	tata	tam	bat	ban	• tot	got	
lark	Back	fin	vin	- Caric	tap	bass	. bad	lot	pot	

EXHIBIT 10: KREUL ET AL MODIFIED RHYME TEST ANSWER SHEETS.

i

Figure 3-3 Test Answer Sheet

IV. CONCLUSION

The results of the comparitive tests, Table V, shows very clearly that the M-87/AIC+ microphone turned out to be the best microphone because of its high mean score and a small standard deviation in both the guiet and noisy environment.

The fcam windscreen of the M-87/AIC+ cuts down on the turbulent airflow over the microphone thus reducing a large amount of the ambient noise while smoothing out the pops and other harsh sounds of the talker and the wind.

The idea of using a foam windscreen over a microphone to reduce outside ambient noise (mainly wind noise) is not original. It has been used by the motion picture industry and TV companies in their outside work for many years.

The M-87/ATC+ microphone is in the supply system under EV 693-8417, FSN 5965-181-0213 and can be ordered from the Defense Electronics Supply Center, Dayton, Ohio. The name M-87/AIC+ is not the offical name of this microphone, but the results of Ref.11 proves that the EV (Electro Voice) 693 microphone is the same as the M-87/AIC plus a foam windscreen, thus the author came up with the nick name of M-87/AIC+.

The EV 693 (M-87/AIC+) costs approximately \$12.00 while the M-87/AIC only costs \$7.00. A M-87/AIC can be easily converted to a EV 693 by simply putting about 50 cents worth of foam rubber over the M-87/AIC. This process will save over \$4.50 per copy.

The results of this test also shows that the HNL microphone remained almost constant during both phases of this test and it's mean in the noise environment was only .3% less than that of the M-87/AIC, but the S.D. was almost one percent greater. The closeness of these results

35

indicate that further comparative studies and analysis should be preformed on the HNL microphone because the bone conduction microphone has many advanges over the standard boom type microphone as already stated in the earlier sections of this paper.

It is further recommended that these further tests be operation type tests and that all the evaluators (listeners) be pilcts or aircrew members because they are more accustomed to listening to message traffic in this type of environment and at a faster rate than what the normal person is use to hearing.

36

	TALKERS				TALKERS				TALKERS				
	USING A				USING A				USING A				
	M-87/AIC				M-87/AIC+				HNL				
		M I CROP HONE				MICROPHONE				MICROPHONE			
	CLASSROOM AIRCRAFT				CLASSROOM AIRCRAFT			CLASSROOM AIRCRAFT					
	۵	В	A	В	А	в	А	B	А	в	А	В	
0	96	96	92	96	100	9 8	96	100	.92	94	90	54	
1	94	88	92	9 0	100	96	94	56	86	82	82	92	
2	94	94	92	96	98	100	96	98	82	83	88	96	
3	98	Şέ	92	86	100	96	94	94	94	94	84	<u></u> 92	
4	98	94	92	90	100	100	94	94	94	92	88	96	
5	96	54	90	90	100	98	92	94	88	100	86	92	
6	96	96	94	92	100	98	94	96	88	94	94	9 6	
7	96	92	96	80	98	98	96	88	92	92	86	96	
8	98	96	96	93 -	100	100	98	94	96	98	92	94	
5	96	92	92	90	100	96	96	96	94	94	92	58	
MEAN=95.1			MEAN=91.7		MEAN=98.8		MEAN=95.0		MEAN=91.7		MEAN=91.4		
S.C.=2.47			S.D.≓3.85		S.D.=1.51		S.D.=2.47		S.D.=4.74		S.D.=4.45		

S.D. - UNBIASED ESTIMATE OF THE TRUE STANDARD DEVIATION

Table V. The Ten Listeners (0-9) Scores (in percent)

•

LIST OF REFERENCES

- Commander Naval Missile Center Letter 5211: Serial 595 to Commander navNaval Air System Command, Subject: Flight Helmet in the VTAS Role, 1 March 1971.
- 2. Committee on Hearing, Bioacoustics and Biomechanics, Sonar Detection of Supmarines by Helicopter, by Working Group 54, 1970.
- 3. SETCCM Corporation, Specifications for HNL Bone Microphene, <u>Hands-Free</u>, <u>Face-Free</u> <u>Accessories</u> <u>For</u> <u>Portable Radios</u>, April 1974.
- SETCOM Corporation, Specifications for Standard Bone Microphone, <u>Accessory Kits For Industrial Applications</u>, March 1973.
- 5. Naval Electronics Laboratory Center Technical Document 191, <u>Compendium Of Speech Testing Material And Typical</u> Noise Spectra For Use in Evaluation Communications Equipment, by J. C. Webster, p. 3, 27, 13 September 1972.
- 6. Naval Safety Center Job Number 41136BE, <u>Communication</u> <u>Problem Mishaps</u>, p. 1-127, 2 May 1974.
- 7. Commander Naval Missile Center Letter 5211: Serial 1636 to Commander Naval Air System Command (Air-531), Subject: Comparative Intelligibility Evaluation of the M950a/UK Lip Microphone and the D551-100 Tissue Microphone, 26 May 1971.
- 8. American Standards Association Report S3.2-1960, <u>American Standard Method for Measurement of</u> <u>Monosyllabic Word Intelligibility</u>, by Acoustical <u>Society of America</u>, p. 6-9, 25 May 1960.
- Naval Electronic Laboratory Center Task Number NR 213-089, Speecn Intelligibility in Naval Aircraft Radics, by J. C. Webster and C. r. Allen, p. 5, 47, 2 August 1972.
- 10. United States Army Electronics Command Report OSD-1366, <u>Noiise-Reducing Headset Development Final</u> <u>Report</u>, by C. 1. Malme, C. H. Allen, and E. C. H. Schmidt, p. 2-4, July 1973.
- Commander Naval Missle Center Letter 5211: Serial 3960 to Commander Naval Air Development Center , Subject: <u>Comparative Articulation Evaluation Report</u>, M-87/AIC <u>Microphone and Electro-Voice Microphone</u>, Type 593, 31 July 1972.

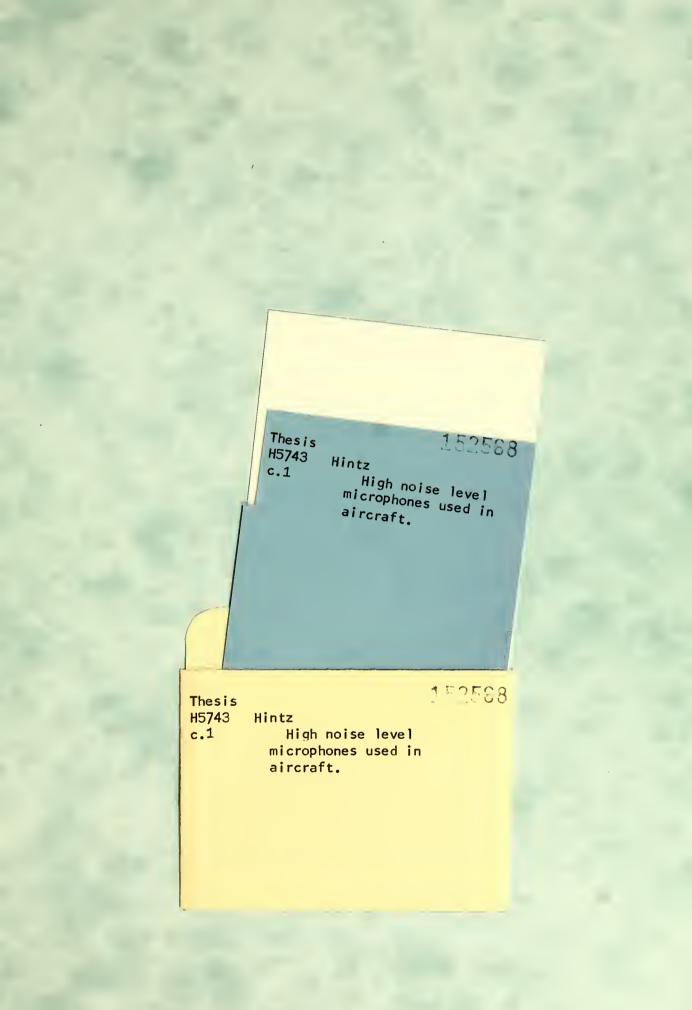
INITAL DISTRIBUTION LIST

.

		NO.	COPIES
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0212 Naval Postgraduate School Monterey, CA 93940		2
3.	Professor Gerald D. Ewing Code 52Ew Department of Electrical Engineering Naval Postgraduate School Monterey, CA 93940		2
4.	Department Chairman, Code 52 Department of Electrical Engineering Naval Postgraduate School Monterey, CA 93940		2
5.	Commander, Naval Telecommunications Command Naval Telecommunications Command, Headquarters 4401 Massachusetts Avenue, N. W. Washington, D. C. 20390		1
6.	Commander, Naval Missile Center Crew System Branch Code 5211 Naval Missile Center Oxnard, California 93042		1
7.	L. Kent Schwartzman Setcom Corporation 195 N. 30th Street San Jose, California 95116		1
8.	Commander, Naval Safety Center Code 11A Naval Air Station Norfolk, VA 23511		1
9.	COL Garry Farmer Fritzsche Army Air Field Fort Ord, CA 93941		l
10.	CW2 Carter Smith DPT Aviation Division Fritzsche Army Air Field Fort Ord, CA 93941		1

.

11 LT Edward J. Hintz, USN
396-38-7657/1310
1058 Buena Vista Way
Chula Vista, CA 92010


.

١

-

• •

e . 1

