
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1974

An investigation of the parameters for register
allocation during compilation.

Underwood, Van Douglas.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/17091

Downloaded from NPS Archive: Calhoun

AN INVESTIGATION OF THE PARAMETERS
FOR REGISTER ALLOCATION DURING COMPILATION

Van Douglas Underwood

DUDLEY KNOX LIBR >R

NAVAL POSTGRADUATE £

MONTEREY, CALIFORNIA

r 7

NAVAL POSTGRADUATE SCHOOL

Monterey, California

T
AN INVESTIGATION OF THE PARAMETERS

FOR REGISTER ALLOCATION DURING COMPILATION

by

Van Douglas Underwood

June 1974

Thesis Advisor: G. A. Kildall

T159582

Appiov&d Ion. public ndLojaAi; dufruJbiuUon unlimited.

INTERNALLY DbTKlBMC

RFPORT
An Investigation of the Parameters

for Register Allocation During Compilation

by

Van Douglas ,
Underwood

Lieutenant, United States Navy
B.S., Iowa State University, 1968

Submitted in partial fulfillment of the
reguirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOI

June 1974

ABSTRACT

Two established methods of code improvement , Day [U] and

Kildall [7], are reviewed. The problems of optimal register

allocation are discussed, A method is presented using

Kildall's [7] optimization algorithm for specifying the

active data items in a program. Demonstration of

particular problems with register allocation are presented.

Topics for further consideration in a complete solution are

discussed.

TABLE OF CONTENTS

I. AN INVESTIGATION OF THE PARAMETERS FOR REGISTER

ALLOCATION DURING COMPILATION 6

II. BACKGROUND 6

A. OPTIMAL REGISTER ALLOCATION, DAY [4] T
... 7

B. GLOEAL EXPRESSION OPTIMIZATION, KILDALL [7] 9

III. THE CONCEPT OF PROFIT 13

IV. ACTIVE DATA ITEM EXTENSION 15

V. REFERENCED DATA ITEM ANALYSIS o 17

VI. A PROBLEM WITH ALLOCATION 19

VII. PROJECTED TOPICS 23

A. THE PROBLEM OF REGISTER REASSIGNMENT 23

B. COMPLEMENT EQUATION ANALYSIS 24

C. DESIRABLY EQUAL REGISTERS 24

D. REGISTER PRELOADING 24

E. ALTERATION OF THE COMPLEMENT EQUATION

CHARACTERISTICS 26

VIII. CONCLUSIONS 27

LIST OF FIGURLS

I. CONFLICT OF ACTIVITY CHARACTERISTICS 21

ACKNOWLEDGEMENTS

The author wishes to extend personal and heartfelt

thanks to Gary A. Kildall whose efforts as a professor

provided the interest in the subject area, whose efforts as

an academician provide the structure for many of the ideas

presented, and whose patience and time spent in review

helped keep fantasies founded in reality.

Also the author wishes to thank Ensign Gary Raetz who

gave much tine as a student and laboratory partner and later

as a second reader to many efforts which helped both

directly and indirectly in the development of this thesis.

In conjunction with Gary Raetz's time, thanks are also

extended to his wife Mary for understanding his absences

from her.

II. BACKGROUND

The advent of higher order languages began the era of

compilers and subsequently optimizers. The problem with

compilers in general is that more efficient code can often

be written by an assembly level programmer. Efficiency in

this case is measured in the execution time for the program,

the amount of memory required to store the program, or

both. The desire for improved code lead to the development

of the science of code optimization. The field of

optimization has been explored [1,3,6,7,10] and several

basic theories have evolved.

One important aspect of optimization is register

allocation. The register allocation problem is the problem

of assigning data items to registers so that the resulting

code is efficient. The extension of the problem is to

coordinate register assignments made on different tranches

and to determine data item replacement. Techniques will be

presented for examining these two problems.

The discussions which follow will relate to a class of

computers which are characterized by having a set of general

purpose registers. The methods discussed would not apply to

stack machines, for example.

Data item allocation will be to one of a set of general

purpose registers. The methods will then apply tc the

allocation problem by data item type. That is to say, the

methods may be applied to allocating floating point data

items to a set of floating point registers and integer data

items to a set of integer registers as long as the data item

type can be identified by the compiler.

Several authors have addressed the problem of optimal

register allocation, either directly or indirectly. It will

be the purpose of this tretise to examine two of these

techniques [Day 4,Kildall 7] with the purpose of deterrcinina

the optinizinq information which is necessary for optimal

allocation.

A. OPTIMAL REGISTER ALLOCATION, DAY [4]

One solution to optimal register allocation has been

presented by Day [4 J. Day's method is based primarily on

the concepts of data item interference and profit.

Day defines a data item as a constant or a data name.

"A data item is defined when statement execution causes a

new value to become associated with the data item."

Constants are defined by their representation and their

values are not normally changed. "A data item is referred

to when the current value of the data item is required for

correct statement execution." Having the current value

required for correct statement execution implies that the

value is at least temporarily in a register. "A data item

is active at a point in" a region "if it may be referenced

subsequent to that point." Day defines a reqion to be a

stronqly connected subgraph of the program when represented

as a directed qraph. A stronqly connected subqraph, by

definition, means that any node in the subqraph can be

reached from any other node in the subqraph. Because of

this characteristic of stronq connectivity when combined

with the definition of an active data item, a data item is

necessarily active over an entire reqion if it is active at

any point in the reqion. Strongly connected reqions

intuitively correspond to nested loop structures in the

source proqram. Day states that "two data items interfere

in" a reqion "if they are both active at a point in" the

reqion. Extension of the concept of active data items

implies that any data items active in a reqion must

necessarily interfere with any other active data item in the

reqion at all points in the reqion. Since a reqion is

stronqly connected, all points in the reqion are necessarily

subsequent to every other point in the reqicn.

The principal characteristic of interfering data items

is that if they are allocated to the same register, at some

point they will both be active, by the definition of

iterference, and may not be allocated to the same register

at that point. Likewise, the characteristic of

non-interfering data items is that at no point are any two

non-interfering data items active.

The concept of profit is a numerical "representation of

the improvement in program execution that may occur if the

data item is globally assigned to a register being

processed." The comparative values of the profits ar€ the

deciding factors in making the assignment of a data item to

a register. "The values assigned to the profit equation

constants determine whether the profit represents a

projected improvement in program size or execution time."

Day assumes "the profit of a particular global assignment to

be the sum of those data items therein assigned to

registers." In terms of the analysis, the method is to

maximize ever all possible assignments to identify the

assignment with the largest profit value.

A basic block is an ordered set of statements

($1, S2, S3 ,. .. ,Sk}

which is entered only through S1 and branched from only at

Sk and where Si is executed before Si+1. Day uses this

definition in the discussion of both lecal and global

assignment. "Local and global assignment differ in the

extent of the program over which the assignment of data

items to registers is effective: local assignment cccurs

within a basic block, while global assignment occurs fcithin

a region."

The desirability of global assignment stems from the

weakness of the more easily conducted local assignment. Day

states that one "weakness in local assignment involves the

disposition of data items that are defined or referred to in

a block and are active on entry to or exit from the block.

Local assignment cannot usually retain assignment history

across block boundaries, and so the values of active data

items must be moved to main storage for interblock transfers

of control."

Day introduces three types of allocation: cne-one,

many-one, and many-few. "A cne-one assignment defines a

one-to-one correspondence between" the data items and the

registers. A weakness in global one-one assignment is that

it is usually incapable of assigning more than one data item

to a register in a region. Day's approach to the solution

of the problem "is to consider a set of data items for

assignment to a register if no two data items in the set

interfere at any point in the region." Day's global

many-few assignment method has this characteristic.

Many-few assignment is a single valued mapping of a subset

of the data items in a program onto a set of registers where

the number of data items competing for assignment is greater

than the number of available registers.

Day presents a solution method for the global many-few

problem utilizing matrix construction and multiplication to

implement the interference characteristics of the data

items.

B. GLOBAL EXPRESSION OPTIMIZATION, KIIDALL [7]

Kildall conducts an analysis of program structure in

order to produce optimized object code. Kildall utilizes a

directed graph to represent the program flow, along with an

"optimizing pool," an "optimizing function," and a "meet

operation" to conduct his analyses.

An optimizing pool is associated with each node in the

graph.. The nature of the pool is an arbitrary set which

describes the optimizing information associated with a

particular node in terms of the analysis being conducted.

An optimizing function maps an "input pool" and the

optimizing pool of a node to a new "output" pool. In every

instance, the input pool for a node is derived from the

output pcols for the node's immediate predecessors. The

output pool of a node contributes to the input pool of the

node's immediate successor (s)

.

The meet operation is defined to handle the problem of

combining two or more input pools at a point where two or

more program flows join, and varies for differing types of

analysis. The meet operations defined are binary,

associative, and commutative. The meet operation is a

mapping of the set of all optimizing pools onto itself.

This can be represented as:

PXP-»P

(where P is the set of all optimizing pools)

.

Kildall defines several types of analysis. Two of his

analyses are of primary interest and will be reviewed

below. The two are common subexpression elimination and

live variable analysis.

For common subexpression analysis, the pool of computed

expressions is partitioned into equivalence classes whose

members are known to have identical values. The optimizing

function for common subexpression analysis manipulates the

equivalence classes of the partition. "Two expressions are

placed into the same class of the partition if they are

known to have equivalent values." The meet operation for

common subexpression analysis is intersection by equivalence

classes.

For live variable analysis a reversed program flew graph

is used for the analysis. At any point, the pool associated

with a node is the set of data items which may be referenced

subseguent (in the forward direction) to the node. The

optimizing function for live variable analysis has two

distinct characteristics. These are:

"1. If the expression at node N involves an assignment

to a variable, let d be the destination of the

assignment; set P<— P-{e|d is a subexpression in

e} (d and all expressions containing d become dead

10

expressions) " (e is the set of all partial

computations at the current node.)

"2. Consider each partial computation e at node N. Set

F<— P {e} The value of the optimizing function is

altered to the value of P."

The meet operation for live variable analysis is set

union.

For completeness, Kildall's flow analysis algorithm is

presented below.. The following notation will be used in

the presentation: P is the set of all possible optimizing

pools. E is an entry pool set. 2 1S "the unit element

for the analysis being conducted.

A1[initialize] L <- E

A2[terminate?] If L=p then HALT

A3[select node] Let L« 6L,L •= (N, Pi) for some N6N and

PieP, L«-L-{L'}

AU[traverse?

]

Let Pn be the current approximate pool

of optimizing information associated

with the node N (initially Pn=J) . If

PnfPi Go To step A2.

A5[set pool] Pn«-PnAPi,L«-LU{N' ,f (N, Pn)) | N«ei (N) }

A6[loop] Go To step A2.

Examples of optimizing pools, an optimizing function,

and a meet operation are presented in section V. The term

global will be used henceforth to refer to an entire program

and not just a region.

By utili2ing Kildall's methods, the data item concept

can be expanded to include expressions. This extension is

desirable because a repeated expression would have to be

recomputed if allocation were only to variables and

11

constants. Kildall [7] presents a data structure which may

be used for manipulating the data items under the expanded

definition.

12

III. THE CONCEPT OF PROFIT

The concept of profit is essential to register

allocation. Day's definition of profit is a linear

comtinaticn of the number of definitions of and references

to a data item in a region.

The expanded definition of data item may mean that the

number of references may not accurately and completely

reflect the value of a data item (an expression, for

example) in a register. It will not be the purpose of this

paper to specify an explicit profit function. However, the

contributing factors of the profit function under the

expanded data item definition will be discussed below.

In general, it is assumed that the profit should reflect

a measurable guantity. If the optimization is to be toward

program size, the profit function should be a measure cf the

relative number of instructions reguired to execute the

resulting code. If the optimization is to be toward program

run time, the profit function should be a measure cf the

execution time of the resulting instructions. The two

concepts, of course, are often closely related.

The profit should increase with the number of references

to a data item over an active region. If a high profit

results from this factor, it would imply a decrease in the

number of load operations (and combining operations in the

case of expressions) . This factor would then imply a

decrease in program size and, depending on the operation

times, often leads to savings in run time.

The profit should increase with the number of

instructions necessary to replace the data item in a

register, due to the fact that the data item concept is

extended to include arbitrary expressions. This factcr is

called "complexity," since the profit is related to the

• complexity of the data item. To reduce run time, profit

13

should assign different values to the operations as to

execution time. The slower execution times of a particular

operation would lead to a higher profit since it would

require more time to replace the data item in a register.

Exponentiation would be weighted more heavily than addition,

for example.

The profit should decrease with increased distance to

the next reference, thus preventing highly complex data

items from holding a register over long program flows

without reference.

The profit should be adjusted with program flow

information, when available. Logically, a data item on a

highly executed branch would have higher value in a register

than a similar data item on a seldom executed branch.

14

IV. ACTIVE DA1A ITEM EXTENSION

One of the primary attributes of Day's analysis deals

with the concept of interfering data items. A problem with

Day's definition of an active data item when combined with

his definition of a region was mentioned above. It becomes

desirable to make a new definition of an active data item to

correct that problem. Intuitively, a data item is active

between a definition of the data item and the last reference

to the value of the data item which was thereby defined. In

terms of register allocation, this definition may be stated

as: a data item is active at all points where the value

of the data item must exist or have existed in a register

for proper statement execution and remains active to the

last reference to the data item for which the value which

existed in a register would yield correct execution.

Informally, in terms of registers, a variable becomes active

when the associated value exists in a register and remains

active over the range to the last point at which it is

referenced prior to redefinition or program termination. In

other words, it is the range over which a data item

maintains the value which was at one time loaded into a

register.

To an extent, live variable analysis corresponds to this

definition. Variables are included as being live over the

range from which they are assigned a value by an executable

statement to the point of their last reference prior to

redefinition (by an executable statement) or program

termination. Live variable analysis departs from the

definition given for active data items in two ways.

The first departure of live variables from active

variables comes from the case of data items which are

implicitly defined. Implicit definition may be made ty the

representation (in the case of constants) , by compile-t ine

15

assignments (e,g. # the FORTRAN "DATA" statement), or by

default memory initialization. Implicitly defined data

items are evaluated as live from program entry to the last

reference to the data item (with possible non-active

sections interspersed). For implicitly defined data items,

however, the value associated with the data item does not

exist in a register until the first reference. Implicitly

defined data items are, therefore, active frcm their first

reference to their last reference or redefinition.

The second departure of live variables from active

variables may occur from a READ-type statement. Depending

on the machine configuration and the data manipulation for a

READ-type statement, the data item read may or may not have

existed in a usable form in a register. Live variables

begin a live segment with the definition by a RZAE-type

statement. Eepending on the data manipulation, a READ

statement may or may not originate an active program segment

for that data item.

16

V. REFERENCED DATA ITEM ANALYSIS

In order to analyze data item interference based on the

revised definition of active data items, referenced data

item analysis is introduced. The purpose of referenced

data item analysis is to provide a method which determines

data items possessing the characteristics of active data

items net possessed by live variables so that the active

data items may be determined. In particular, referenced

data item analysis produces sets of data items which have

previously appeared in a register.

The optimization pool for referenced data item analysis

is the set of all data items which have been referenced

previous to the current point in the program flow. The

optimizing function performs a union of all data items in

the expression at the current node with the input set of

referenced data items. Thus for an expression R=A+E at a

node N with an input pool of {X,Y,Z}

F(N, {X / Y / Z}) = {X,Y / Z} U {R,A,E} = {ErA,E,X,Y,Z}

where F(N r Pn) is the optimizing function operating on node N

and the corresponding input pool Pn.

Active data items are not dependent upon the program

branch structure. An active data item is active from a

first reference (loaded into a register) to the final

reference, with possible inactive segments interspersed.

The meet operation is, therefore, set union.

As discussed above, the inclusion of a variable in the

referenced data pools which participate in a REAL-type

statement will be dependent upon the machine for which the

output code is intended.

As discussed in section IV, live variables have the

characteristics of active variables with the exception that

their pcint cf entry into the set of active data items may

17

overextend the definition point. Referenced data items have

the characteristics of active data items except that the

data items may (and in general will) extend past the last

reference. Intersection of pools for these two analyses at

every point in the program flow, then, will produce sets of

data items which are active at that point. It should be

noted that a single forward pass is insufficient for active

variable analysis because on a forward pass the current

reference to a variable is not known to be the last.

Similarly, a single reverse pass is insufficient because the

current reference is not known to be the first reference.

18

VI. A PROBLEM WITH ALLOCATION

The problem of register allocation is now considered.

There are certain necessary requirements which are implicit

because of the interference characteristics of the

variables. The nature of these necessary requirements is

that no two mutually active variables may be assigned to the

same register. There are some desired characteristics

which are derived from the branching structure of the

program. The nature of the desired characteristics is that

variables active on several branches be in the same register

at the point where the branches join. The necessary and

the desired characteristics will now be discussed.

At any point in the program, only one data item may be

allocated to a register. Day [4] allocates a set of

non-interfering data items to a register. The

characteristics of non-interfering data items, however,

imply that only one data item at any given point will have

value in the register (be active at that point) . Therefore,

although Day allocates a set of data items, at any point

only one member of that set will be in a register.

Further, all active data items have value in a

register. If the number of active data items is greater

than the number of registers, then a selection must be made

of the data items to be allocated. Profit is the

measurement used to make the selection. The selection may

be made by reducing the set of active data items at each

node to the M most profitable data items, where M is the

number of registers. The necessary requirements will be

derived from these reduced active data item pools. That is,

no two members of any reduced active pool at any point may

be allocated to the same register at that point.

It is desirable that data items allocated on different

branches and are active at a point where the branches join,

19

be allocated to the same register on each branch. By

meeting this desired characteristic, the register will hold

the correct value of the data item regardless of the branch

taken to reach the point where they join. The desired

characteristics apply only in the event the data item is

active en all branches which join at a point. If the data

item was not active just prior to the join point, the

contents of a register would be dependent upon the tranch

taken at run time.

Figure I is now presented to illustrate the desired and

the necessary characteristics of a program segment. There

are three variables in the example, X,Y and U. For purposes

of the example, Ra (d) and Rb (d) will represent the register

allocated to the data item represented by d en branch a and

b respectively. R1 and R2 will represent the actual

registers in the two register machine.

branch a branch b

FIGURE I.

20

X and U are active prior to point 1 and over all of

branch a. X is active on branch b to point 2 and from

point 3 to point 4. Y is active on branch b from point 1 to

point 3. U is active on branch b from point 2 to point U

.

The necessary requirements in the example are shown

belcw.

1 Ra(X)*Ra(U)

2 Rb(X)*Rb(Y)

3 Rb(U)*Rb(Y)

4 Rb(U)*Rb(X)

The desired characteristics in the example are:

1 Ra(X)=Rb(X)

2 Ra(U)=Rb(U)

Another set of constraints stems from the activity

characteristics of the variables in conjunction with the

necessary requirements. At point 1 , for example,

Rb(X)*Rb(Y) and at point 2 Rb (U) *Rb (Y) . Since there are

only two reqisters in the machine, these requirements

combine tc imply that Rb (X) =Rb (U) .

More specifically, the reqister released by a data item

when it becomes inactive is subsequently used by another

data item when it becomes active. Thus the reqister used by

the first item is "equated to" the reqister of the second

data item. Due to the fact that the activity of the data

items must net conflict, this action is termed "conplement

equation.

"

The complement equation characteristics of the example

are:

1 Eb(U)=Rb(Y)

2 Rb(X)=Rb(U)

3 Rb(Y) =Rb(X)

The complement equation characteristics, the necessary

requirements, and the desired characteristics combine to

reach a contradiciton. The contradiction may be represented

by :

21

Ba(X)=R1 Arbitrary

Ra (U) = R2 Necessary Requirement 1

Rb(Y)=R2 Complement Equation 1

Rb(X)-R1 Necessary Requirement 2

Rb(U)-R1 Complement Equation 2

Rb (X) =R2 Necessary Requirement 4

Rb(X)=R1 Desired Characteristic 1

Note that the last two assiqnments are in conflict.

Arbitrarily settinq Ra (X) =R2 would lead to the same

contradiction.

The effect of this contradiction is that, if an

alteration is not made to at least one of the

characteristics, a reference to X or U after point 4 would

require reloadinq of the variable being referenced.

22

locally using globally derived information, using Kildall's

technigues [7].

B. COMPLEMENT EQUATION ANALYSIS

The concept of complement eguation was introduced in

section VI. The projected purpose of complement eguation

analysis is to specify the complement eguation constraints

of a program. Complement eguation, being based en the

activity characteristics of the data items, should operate

on the sets of active variables. By comparing the pocls of

active data items from node to node, the changes in the

pools represent the registers of the data items which are

complement eguated.

C. DESIRABLY EQUAL REGISTERS

Desirably egual register assignments occur where tv»o or

more program flows join. The program characteristic which

leads to desired register eguation is as follows: registers

of data items are desirably egual if they are active en two

or more tranches prior to a join point, and are active at

the join point, Specification of this situation may be made

by intersecting the active pools prior to the join point

with the active pool at the join point. Data items which

are in the intersection are then desirably in the same

register en all branches.

D. REGISTER PRELOADING

Preloading is the process of loading a register prior to

a join point. Preloading may be desirable in two

situations.

The first situation arises from the expanded definition

of data items to include expressions. The situations may be

detected by comparing the complexity cf the coramon

24

subexpression pools from pre-join nodes to the join node.

If the complexity of the pool increases, the preloading may

be profitable. For example, if the pool structure is

{X,A+B} {Y,A+B}

{A+B}

it may be worthwhile forcing A+B to a register at the join

point. Tc load A+B at the join point would reguire

LOD A

ADD B

However, prior to the join point, A+B may te loaded into a

register by loading either X or Y reguiring cnly one

operation.

The second situation for which preloading may be of

value occurs when several branches join and a data item is

active en several, but not all of the branches joining at

that point. By preloading the data item on the branches on

which it is not active, the code on the branches nay be

fully utilized. Thus the code

LOD A

ADD B

STO X

LOD A

ADD B

STO X

9

could be modified to

LOD A

ADD B

STO X

LOD A

ADD B

STO Y

LOD A LOD A

ADD B ADD B

STO X

25

in which case the correct value of A+B would be in a

register and could be stored at the join point. The

resulting cede in this case would have the same program

size, but would execute in a shorter time, especially if the

right branch were seldom executed.

E. ALTERATION OF THE COMPLEMENT EQUATION CHARACTERISTICS

The complement equation characteristics are the

constraints which must be relaxed. That is, given that a

contradiction exists, the necessary characteristics cannot

be changed, and while the desirably equal registers

constraints may be altered, this could lead to excessive

load-store operations. The opportunities for altering

these charcteristics exist in three forms. If there is a

node-to-node change in the active pools of two or mere data

items, the newly active data items may be loaded intc any of

the vacated registers. If there are fewer than M active

data items at a node (where M is the number of registers)

,

then the complement equation characteristics may be altered

by performing a register-to-register move. The third

alteration made be made at any point by storing the current

register contents to a temporary location, performing a

register-to-register movement, and loading the vacated

register from the temporary location.

The purpose of altering the complement eguation

characteristics is to satisfy the desirably equal register

constraints. When the alterations are made at a cost, such

as storing, performing a register-to-register move, and

loading, the cost would have to be balanced against the

advantages gained by satisfying the desirably equal register

characteristics.

26

X. CONCLUSIONS

Using Kildall's [7] algorithm, a method was presented

for specifying the active data items. The concept of

reducing the active data items at each node to the M most

profitable (where M is the number of registers) was

introduced. A description of the nature of the desired and

necessary characteristics of allocation was presented.

The existence of the contradictions specified in

section VI implies that there may not be a satisfactory

solution to every register allocation problem. If there is

no universally satisfactory solution, the problem then

becomes a linear programming problem. As in Day's solution,

the problem may be informally stated as:

MAXIMIZE: Profit

SUBJECT TO: 1. Necessary Eeguirements

2. (Desired Characteristics)

'

where (Desired Characteristics) * may be a proper subset of

the desired characteristics of the program. Profit in this

case is the sum of the profits of the data items assigned to

registers and the eguating profits less the eguating costs.

Maximizing the profit of the variables at each node will

ensure that the profit associated with the data items is

maximum. The natural extension would imply that maximizing

the profit of eguating at each step would also result in a

maximum profit globally. This may not be true, however,

since changes to the complement eguation characteristics,

when made, are effective over all nodes subsequent to the

node at which the alteration is made. Thus an alteration to

gain a desired register equating may require other

alterations in the complement equation characteristics which

will have an associated cost. None of these statements

27

have been formally specified, however, and remain as topics

for further investigation. In the final analysis, it

appears that the techniques discussed here must be applied

somewhat heuristically in an attempt to obtain a "good"

allocation. This allocation may be incrementally imfroved

but, considering the current state of the theory, no

absolute statements are possible at this time.

28

BIBLIOGRAPHY

1. Aho, A. , Sethi, R., and Ullman, J. , A Formal Approach to
Code Optimization, Proceedings of a symposiulT" on
compiler optimization , University of Illinois at
Urbana-Champaign, July, 1970.

2. Busacker, Robert G. and Saaty, Thoias L. , Finite
6£^£i}S and Networks: An Introduction TIiIlT
jSpplicati"5ns y McGrawr"HiIT^Inc. , 1965.

3. Cocke, J. and Schwartz, J., Programming, LaBSLua^es And
Their Compilers, Preliminary notes7^Ccurant InsTituIe
or^Tie "Hatnelaiical Sciences. New York University,
197C.

4. Day, W., Compiler Assignment of Data Items to
Registers, IBM Systems~JournaI, 8, S(197"07, P2HT-n7.

5. Horowitz, L.,Karp, R., Miller, R., and Winograd, S.,
Index Register Allocation, Journal of the ACM 13, 1 (Jan.
T9T^y,

_
P^3=ETT

6. Kennedy. K., A Global Flow Analysis
Alqcrithjn, International ^Journal of Computer
"M a"t"fiemagics, Section A, vol. 3, 1971,

7. Kildall, G.
CompilationCompilation, Technical"
"University of Washington
University of Washington,
1972.

8. Roon, J., A Direct ion-Indep end a r.t Algorithm for
Determining the Forward arul Bacxwara (TcmjruTe PcInTs ior
a Term cr~5u75scripT: "During CompiTaTIcnTComputer" Journal
"9,~21IugT T36~5J7 P7577T5T)7

9. Schnieder, V., On the Number of Registers Needed to
Evaluate Arithmetic Ex^ressIonsTBTT TY"PT77Y"7 P'S'Q-'Sl.

"

10. Sethi, R. and Ullman, J., The Generation of Optimal
Code For Arithmetic Expressions, Journal of" the It3 777
HJC c t7~l 97U77"P715-72B.^

29

INITIAL DISTRIBUTION LIST

No. Copies

1. Library, Code 0212 2

Naval Postgraduate School

Monterey, California 939^0

2. Department Chairman, Code 72

Computer Science Group
Naval Postgraduate School
Monterey, California 939^0

3. Asst. Professor Gary A. Kildall, Code 72Kd

Computer Science Group
Naval Postgraduate School
Monterey, California 939^0

4. Instructor Gary Raetz, Ens. USN, Code 72Rr
Computer Science Group
Naval Postgraduate School
Monterey, California 939^0

5. Lt. Van D. Underwood, USN
Box 241
Osceola, Iowa 50213

30

SECURITY CL ASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING l-'ORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CAT ALOG NUMBER

4. TITLE (and Subtitle)

An Investigation of the Parameters for
Register Allocation During Compilation

5. TYPE OF REPORT ft PERIOD COVERED

Master's Thesis; June 1974

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORS

Van Douglas Underwood

6. CONTRACT OR GRANT NUMBERd.)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

June 1974
13. NUMBER OF PAGES

31
14. MONITORING AGENCY NAME ft ADDRESS!-

// different from Controlling Office)

Naval Postgraduate School
Monterey, California

15. SECURITY CLASS, (of thla report)

Unclassified

15a. DECLASSIFICATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thla Report)

Approved for public release; distribution unlimited.

-U-S

—

I i
'

• >—f i I 1

—

'—,
1—^—. n •—i—*

—

\—i-1 i ,
I k i

f •

'

{
• I 1 1 1 —, 1 —'ri-

17. DISTRIBUTION STATEMENT (of \ha ^belre^t rfn^erstf ttr-SJdck 30, }f different irom Rupert) V—•-

Ll» im \Ji 1- ',' \~ «

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide If neceaaary end Identity by block number)

code improvement
program graph
register allocation
data item

active
expressions
register
region

basic block
common subexpression
elimination
live variable

20. ABSTRACT (Continue on reverae aide If neceaaary and Identity by block number)

Two established methods of code improvement, day '4" and Kildall '7",

are reviewed. The problems of optimal register allocation are discussed.
A method is presented using Kildall' s '7" optimization algorithm for
specifying the active data items in a program. Demonstration of particular
problems with register allocation are presented. Topics for further con-
sideration in a complete solution are discussed.

L

DD
t jan"™ 1473 EDITION OF 1 NOV 65 IS OBSOLETE

(Page 1) S/N 0102-014- 6601
I

31
SECURITY CLASSIFICATION OF THIS PAGE (Hnen Data £n(.r. "

CfcCUHlTY CLASSIFICATION OF THIS P KGZ(Wh»n Dmta Entmrmd)

DD Form 1-173 (BACK)
, 1 Jan 73

S/N 0102-014-(iG01 32 SECURITY CLASSIFICATION OF THIS PAGEO»?i»n Dmla Enl0r*d)

\

Thesis 150557
UH35 Underwood
c.l An investigation of the

parameters for register

T,J
allocation during compile
tion.

Thesis
UM-35 Underwood
c.l An investigation of the

parameters for register

allocation during compila-
tion.

r r
7

thesU435

An investigation of the parameters for r

3 2768 001 88941 3
DUDLEY KNOX LIBRARY

