

Calhoun: The NPS Institutional Archive DSpace Repository

The Naval Communications Processing and Routing System: a model for management

Barker, Michael Don; Lawrence, William Robert

Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/17143

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

THE NAVAL COMMUNICATIONS PROCESSING
AND ROUTING SYSTEM:
A MODEL FOR MANAGEMENT

Michael Don Barker

DUDLEY KNUX LIBRIRY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940

NAVAL POSTGRADUATE SGHOOL Monterey, California

THESIS

THE NAVAL COMMUNICATIONS PROCESSING AND ROUTING SYSTEM:
A MODEL FOR MANAGEMENT
by
Michael Don Barker
William Robert Lawrence
September 1974

Co-Thesis Advisor:	N.F. Schneidewind
Co-Thesis Advisor:	Sam H. Parry

Approved for public release; distribution unlimited.

REPORT DOCUSENTATION PAGE

1. REPORT NUMEER
2. GOVT ACCESSION NO.
3. TITLE (and Subitilo)

The Naval Communications Processing and Routing System:
A Model for Management
7. AUTHOR(\cdot)

Michael Don Barker
William Robert Lawrence
9. PERFORMING ORGANIZATION NAME ANO ADDRESS
10. PROGRAMELEMENT, PROJECT, TASK
AREA A WORK UNIT'NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School Monterey, California 93940

September 1974
13. NUMBER OF PAGES

124
14. MONITORING AGENCY NAME A ADDRESS(tf different from Controlline Office)

Naval Postgraduate School Monterey, California 93940
15. SECURITY CLASS. (ol thito roport)

Unclassified
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. OISTRIBUTION STATEMENT (of thie Roport)

Approved for public release; distribution unlimited.
17. OISTRIBUTION STATEMENT (of the ebotract ontered in Block 20, if difforent from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reveree elde If neceeeary end idontlty by block number)

Naval Communications, NAVCOMPARS, LDMX, Naval Communications Processing and Routing System, Local Digital Message Exchange, Automated Communications, Management Model, Simulation Model, GPSS Model, General Purpose Simulation System.
20. ABSTRACT (Continue on reveree elde if nececeary and tdontlfy by block number)

This thesis represents the results of a study of the U. S.
Naval Processing and Routing System (NAVCOMPARS). The system's development from preconception to present is described herein as

Unclassified

SLCUHITY CLASSIFICATION OF TMIS PAGEIWhon Dole Entorac
Block 20.
well as a description of its hardware and software components.
Additionally, the Local Digital Message Exchange (LDMX), is likewise described.

The purpose of this thesis is to identify bottlenecks in message flow through NAVCOMPARS. In this attempt, the system was simulated in a functional manner by computer and various input distributions were applied. By so doing, the factors, events and situations contributing to bottlenecks in message processing are identified as fully as possible within the constraints of time and information availability.
and
The Naval Communications Processingand Routing System:
A Model for Management
by
Michael Don Barker
Lieutenant Commander, Únited States NavyB.S./B.A., University of Tulsa, 1965
William Robert Lawrence
Lieutenant Commander, United States NavyB.S., U. S. Merchant Marine Academy, 1964
Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN MANAGEMENT
from the
NAVAL POSTGRADUATE SCHOOL
September 1974

$$
\begin{aligned}
& T+5, \\
& 1223 \\
& c .1
\end{aligned}
$$

ABSTRACT

This thesis represents the results of a study of the U. S. Naval Processing and Routing System (NAVCOMPARS). The system's development from preconception to present is described herein as well as a description of its hardware and software components. Additionally, the Local Digital Message Exchange (IDMX), is likewise described.

The purpose of this thesis is to identify bottlenecks in message flow through NAVCOMPARS. In this attempt, the system was simulated in a functional manner by computer and various input distributions were applied. By so doing, the factors, events and situations contributing to bottlenecks in message processing are identified as fully as possible within the constraints of time and information availability.
 2 ． 1
 an inionill

而

亩
4）

rex	$\underline{=0}$

TABLE OF CONTENTS

LIST OF FIGURES I
TABLE OF ABBREVIATIONS 8

1. INTRODUCTION 11
A. BACKGROUND 11
2. Manual Processing Problems 11
3. Decision to Use Computerized Systems 12
4. Three Phases of Automation 14
a. Phase I - Initial Automation
(1968-1971) 15
b. Phase II - Interim LDMX/NAVCOMPARS (1971-1976) 15
c. Phase III - Communications Automation (1976-1980's) 17
B. NAVCOMPARS DESCRIPTION 17
5. Input Functions 17
6. Processing Functions 23
7. Output Functions 27
C. LDMX DESCRIPTION 28
8. Input Functions 28
9. Processing Functions 28
10. Output Functions 33

II. SIMULATION OF NAVCOMPARS 37
A. STATEMENT OF THE PROBLEM 37
B. SYSTEM SIMULATION MODEL 38

1. General Purpose Simulation System 38
2. System Model Description 40
III. NAVAL COMMUNICATIONS PROCESSING AND ROUTING SYSTEM RESULTS 45
A. SIMULATION BASED ON ACTUAL DATA FOR TWO DAYS 45
B. TWENTY FOUR HOUR TEST DATA FOR CASE 1 AND CASE
2 47
C. LLARGE INPUT VOLUME SIMULATION 49
D. CONSTANT MESSAGE LENGTH RUNS 50
E. SIMULATION VARYING THE RANDOM NUMBER SEED IN FUNCTION 3 53
IV. POTENTIAL APPLICATIONS THROUGH MODEL EXPANSION AND CONCLUSIONS 55
A. POTENTIAL APPLICATION THROUGH MODEL EXPANSION. 55
3. Auxillary Fleet Broadcast Channels For Output 55
4. Fleet Satellite Communications 56
5. "Other" Inputs 57
6. "Other" Output 58
7. Main Processor (UNIVAC 70/45G) Model Simulation 58

B. CONCLUSIONS 59
APPENDIX A NAVCOMPARS MODEL: FLOW DIAGRAM FOR THE GPSS PROGRAM. 61
APPENDIX B NAVCOMPARS MODEL: GPSS PROGRAM 78
APPENDIX C NAVCOMPARS MODEL: STATISTICAL DEVELOPMENT 83
APPENDIX D NAVCOMPARS MODEL: GPSS GENERATED STATISTICS. 92
APPENDIX E TWENTY FOUR HOUR SIMULATION OF TEST DATA 96
BIBLIOGRAPHY 120
INITIAL DISTRIBUTION LIST 123

LIST OF FIGURES

1 NAVCOMPARS OVERALL SYSTEM BLOCK DIAGRAM 19
2 NAVCOMPARS EQUIPMENT CONFIGURATION 20
3 LDMX OVERALL SYSTEM BLOCK DIAGRAM. 30
4 LDMX EQUIPMENT CONFIGURATION 31
5 NAVCOMPARS MODEL 43
6 ACTUAL DATA INPUT FOR SIMULATION 46
7 CASE SITUATIONS FOR SIMULATION 48
8 CASE 2 SIMULATION RESULTS 52
A. 1 NAVCOMPARS MODEL: FLOW DIAGRAM FOR GPSS PROGRAM 61
C. 1 NAVCOMPARS TOTAL MESSAGES RECEIVED BY PRECEDENCE. 84
C. 2 MESSAGES RECEIVED VIA AUTODIN 7 MAY 1974 85
C. 3 MESSAGES RECEIVED VIA AUTODIN 17 AUGUST 1973 86
C. 4 NAVCOMPARS TOTAL MESSAGES RECEIVED BY
CLASSIFICATION 87
C. 5 FLEET BROADCAST OUTPUT CHANNELS 88
D. 1 NAVCOMPARS MODEL: GPSS GENERATED STATISTICS 95
(

TABLE OF ABBREVIATIONS

ACC	AUTODIN Communication Controller.
ACS	AUTODIN Control Subsystem.
ADPE	Automatic Data Processing Equipment.
APS	AUTODIN Processing Subsystem.
AUTODIN	Automatic Digital Network, a Defense
	Communications Agency fully supported
	digital communications system.
CCM	Multichannel Communications Controller.
CCS	Communications Control Subsystem.
CIS	Communications Interface Subsystem.
COBOL	Common Business Oriented Language; a
	symbolic programming language designed
	primarily for business data processing.
CPU	Central Processing Unit. The computer
	component that includes the primary
	foreground programs to perform message
	processing.
DD173	Standard message form suitable for input
	through and optical character reader.
DPS	Distribution Processing Subsystem.
DXC	Data Exchange Controller. A direct
	AUTODIN interface.

$18-2$ $+4-2+2+2$

\title{

\qquad
\square

 \square
 －

ECC	Electronic Courier Circuit.
ECS	Executive Control Subsystem.
FIFO	First-in/First Out.
FORTRAN	FORmula TRANslator. A computer language
	designed primarily to expres's problems
	involving numerical computation.
FS	Fallback Subsystem.
GMT	Greenwich Mean Time.
GPSS	General Purpose Simulation System.
K	Alphabetic term used to equal 1,000.
LDMX	Local Message Digital Exchange; directly
	connected to AUTODIN with limited
	capability to provide on-base electrical
	distribution through appropriate interface
	devices.
1 pm	Lines Per Minute.
MIS	Management Information System.
MPDS	Message Processing and Distribution System.
MPS	Message Processing Subsystem.
MSU	Message Switching Unit (AUTODIN), Mass
	Storage Unit (ADPE).
MTU	Magnetic Tape Unit.
MUX	Multichannel.

Naval Communications Processing and Routing System; a system to obtain fully automated Naval Communications System which satifies requirements for overall speed, reliability and systems compatibility.

OCR

OTC

PCS

PRI
PSN

RCS

RI

SEC
SPS

TCS

TOD
TOR

TPS
TTY
UPS
Optical Character Reader.
Over-the-counter service.
Program Control Subsystem.

Primary.
Processing Sequence Number.
Receive Control Subsystem.
Routing Indicator. A group of letters assigned to a message to indicate the geographical location of a situation to facilitate the routing of traffic over communications relay networks. Secondary.

Support Program Subsystem.
Transmission Control Substystem.
Time of delivery.
Time of receipt.
Transmission Processing Subsystem. Teletype.

Utility Program Subsystem.

VDT	Video Data Terminal.
WPM	Words-per-Minute.
ZMITTED	Transmitted (abbreviated).
	Operating Signal, "The following
	repetition is made in accordance with
ZEN	Your request."
	Operating Signal, "Transmitted by other
	means."

I. INTRODUCTION

A. BACKGROUND

Since the earliest communications systems were developed there has been an ever-increasing demand placed upon them as users of these systems utilized them to greater extent. The United States Navy communications systems have likewise been in a growth stage since their inception and previous attempts to handle this increasing volume of narrative traffic consisted of placing more men and machines at selected communications sites. However, with the quantum jump in traffic brought about by Management Information Systems (MIS), greater reliance on communication systems for command and control, high manpower costs and advancing technology, a computerized communications system interfaced over reliable, high speed channels was formulated and developed.

1. Manual Processing Problems

Since 1964, the Navy has been automating various functions of communications stations in an attempt to keep an ever increasing narrative message volume flowing between users while maintaining information currency demanded by command MIS. However, the early stages of the automation programs were unsuccessful as highlighted by exercise BASELINE II, conducted in 1966, which clearly showed that
(
message handling delays for higher precedence traffic were grossly unacceptable. Further, this exercise established that these delays were principally "waiting to be processed" times in the sender's and receiver's communication centers.

2. Decision to Use Computerized Systems

As a result of Baseline II, Naval communications was taken under study by the Chief of Naval Operations in 1968 for the implementation of an integrated information system capable of interfacing with all Naval data bases throughout the world. Additionally, human errors, which include unacceptable message processing delays, were on the increase due to undermanning, inadequate training, overloading, inattention, etc. The final problem arose with the manpower and budgetary reductions of the late 1960's and early 1970's which accelerated consolidation of existing communications facilities. This meant that the consolidated communications stations workloads were significantly increased as message volumes were concentrated into fewer lines. Therefore, it became evident that computerized automation was essential to reduce or eliminate routine human functions such as logging time of receipt(TOR) or, time of deliveries (TOD), message identification, filing, etc., which are most prone to

error as well as achieve optimum interface capability with other computerized stations.

Due to its high speed and accuracy, use of a computer does allow message traffic volumes to increase while significantly reducing errors. However, it is recognized that the computer cannot totally eliminate all causes of delay and error. Additionally, it can collect, tabulate and format information into required periodical reports for managerial use and, thus, free the human communicator from routine tasks in order to allow him to give more attention to the management of the system.

In view of the foregoing, Commander, Naval Telecommunications Command (then, Naval Communications Command) developed the Naval Communications Automation Program Subsystem Project Plan (SPP) which provides for the timephased evolution from manual communications processing to the automated "one Navy memory" concept, i.e.. a network of Navy computers employed by different systems and commands which will allow computer-to-computer interrogation and reply. Its primary objective is to satisfy the overall requirements for speed, reliability, security and systems compatibility vice ADP which eliminates manual processes with its attendant errors and delays.

Specifically, this automation plan calls for ${ }^{1}$
(1) Increased speed of service to meet JCS stated user-to-user handling times,
(2) Reduced error rates to less than one percent of the message traffic handled.
(3) Reduced security violations.
(4) Increased reliability by reducing non-deliveries and mis-routes to less than one in ten million $\left(10^{7}\right)$.
(5) Handling of up to 8,000 messages per day and supporting new requirements without large system upgrading procedures and attendant personnel retraining.

3. Three Phases of Automation

The concept of automation in the Navy has been divided into three phases to allow an orderly transition or evolution of communications processing through a thorough study of each phase. This, in turn, hopefully will lead to a "one Navy memory" at the lowest overall cost. It should be noted that an economic analysis is conducted for each module and communications facility considered for automation. However it is not the purpose

[^0]
of this paper to discuss the determination process of "lowest overall cost."

Phase I - INITIAL AUTOMATION (1968-1971)

This phase, commenced in 1968, consisted of studies by the Navy and the Joint Chiefs of Staff to identify certain manual communications processing functions in need of immediate automation. Additionally, and in conjunction with these studies, certain processing functions in designated communications centers were semi-automated such as limited automatic formatting, editing and file and retrieval functions, and distribution assignment. These were, out of necessity, offline to the communications networks.

As a result of these studies and observations, specifications for the Local Digital Message Exchange (LDMX) were formulated and submitted for competitive bid during 1969. Prior to the delivery of the first unit (destined for Naval Message Center, Pentagon) a degree of standardization and user interface facilitation was obtained by coding many portions of the LDMX software in COBOL vice machine language.

Phase II - INTERIM LDMX/NAVCOMPARS (1971-1976)
Based on the numerous and extensive studies conducted, this phase concerned itself with the acquisition and implementation of the Local Digital Message Exchange and Naval

Communications Processing and Routing Systems (NAVCOMPARS). The LDMX system was designed to facilitate shore commands and/or ships inport communications by local processing into and out of a AUTODIN network. However it should be noted that LDMX does not provide a fleet interface via fleet broadcast. On the other hand, NAVCOMPARS does provide local traffic distribution while maintaining an interface with the fleet at sea via fleet broadcasts. Though present state-of-the-art is not sufficient to meet the standardization desired at this time, it will contribute in the future to the development of new systems as well as partially alleviate current problems. Additionally, during this phase, when equipment is on-line and operating, doctrine and procedures will be studied and changed for future completely automated systems. It should be noted that some difficulty has been encountered during the implementation of both LDMX and NAVCOMPARS at selected sites in arranging standardized hardware and software configurations. Finally, a study has been undertaken during this phase to provide the complement of NAVCOMPARS (ashore) aboard ship: namely - the automated Message Processing and Distribution System (MPDS). This latter system will not be considered in this paper.

I
(

$+\pi=0$
2nern

H2
$=2$

Phase III - COMMUNICATIONS AUTOMATION (1976-1980's)
Based on studies and analysis conducted on LDMX and NAVCOMPARS during Phase II, plus earlier studies conducted during Phase I, the LDMX and NAVCOMPARS systems will be upgraded and standardized to provide a totally automated and integrated communications system utilizing digital processing.
B. NAVCOMPARS DESCRIPTION

NAVCOMPARS is an application of modern ADPE technology and procedures designed to interface shore communication networks with multichannel ship/shore circuits for control of operational fleets. It is capable of accepting traffic from two AUIODIN mode I channels (dual homing concept) and complies with the criteria as set forth in DCAC-370-D175-1. As an automated communications processor it was designed to handle fleet center functions such as: screening, formatting, servicing messages, maintaining a real-time fleet locator, readdressal and routing of messages as dictated by environmental and operational conditions. An overall system block diagram and equipment configuration drawing appear in Figures 1 and 2 respectively.

1. Input Functions

The system is designed to accept traffic from the following: AUTODIN switching centers; on-line dedicated/ full period channels; off-line dedicated/full period

1 low

电
channels; high and medium speed paper tape readers; optional character readers (OCR's); video data terminals (VDT's); card readers; and magnetic tape.

Messages entering from AUTODIN are handled through a UNIVAC 161108 (AUTODIN Communications Controller, ACC) front-end processor, one for each AUTODIN line with appropriate decryption devices. Though presently configured for transmit/receive at 1200 baud, these processors are capable of handling up to 2400 baud. They perform the following functions automatically: acknowledge all received line blocks; generate and transmit the proper receive control characters; examine the header block for a valid AUTODIN select character; check the receipt of correct receive control characters; receive the transmitted data; coordinate the transfer of data between the on-line UNIVAC 70/45G and the front-end processor (ACC) storage area; and generate and check block parity for all blocks transferred between the ACC and the AUTODIN network.

On-line dedicated/full period channels, such as electronic courier circuits, are interfaced directly to NAVCOMPARS via a Multichannel Communications Controller (CCM), a communications coordinating device which provides control over data transmissions and the associated communications systems, on a multiplexer channel. These lines

Pa

 \qquad $+$
 \square

\qquad
2
\qquad
\square ,
enile

\square

$$
\operatorname{lin}-\operatorname{men} \text { 里 }
$$

fLEET CENTER

Figure 1

NAVCOMPARS EQUIPMENT CONFIGURATION
Figure 2

i)
± 1 a \qquad
$14=1$
\qquad

(2)

(1)

\square

are buffered, half duplex and must be of land-line quality capable of handling up to 1800 baud for direct interface. The use of Multichannel Communications Controllers permits the system to handle up to 256 such channels without system degredation. These lines are normally cryptographically covered and must undergo decryption prior to entry to the control processor.

Off-line dedicated/full period channels are those not of sufficient quality for direct system interface or those which entail off-line (manual) encryption/decryption procedures. For channels falling in this category, medium speed printers (125 lpm) and paper tape readers located in the fleet center are used.

Though the video data terminals may be used for message input, their normal usage is for operator interaction with the system for correcting messages in the system or calling upon the various files as in the case of service message requests. These units are small, desk top, manually controlled devices, that permit real time operations between router stations and the central processor. They are capable of displaying 64 alpha-numeric characters in 22 lines of 81 characters per line, operate on buffered, half duplex lines to the CCM's and are automatically validated.

The optical character readers are, currently, leased Cognitronics System/70 equipment and are the main source of message entry for over-the-counter (OTC) service provided local commands. This equipment reads a standard OCR on DD form 173 typewritten messages. Its channel is buffered, half duplex to the CCM at 1800 baud. Message format is modified ACP 126 to decrease message preparation time and to enable the system to automatically perform routing indicator (RI) lookup, i.e., comparing the short titles of the addressees on the message against those in the present Routing File, and format conversion to JANAP 128 procedures. In the event of OCR malfunction, the high speed paper tape reader in the service center is used for message entry after tape preparation.

Magnetic tape input is on one-half inch, nine channel tape with a read/write/transfer rate of 30,000 characters per second. Five and seven track tape options are also available. These devices are connected to the main processor via appropriate selector channels.

Standard ship/shore communications via HF links are handled by standard torn tape procedures at the receiver site. Two human checks for validation are performed upon receipt and, once certified correct, the tape is entered directly to NAVCOMPARS on a dedicated circuit via

high speed (1000 characters per second) paper tape readers.

All inputs via OCR, VDT and paper tape readers utilize modified ACP 126 procedures which reduce user message preparation time. NAVCOMPARS automatically activates the modules necessary to convert to JANAP 128 procedures including routing indicator lookup.

Satellite communications are effected through a SPERRY UNIVAC AN/MyK - 20 minicomputer interfacing the earth station terminal and NAVCOMPARS. This processor has a 750 microsecond l6-bit word core memory capable of expansion to 65 K word total. It has an exceedingly flexible microprogrammable control section which provides a very fast computing capability. The AN/YUK - 20 provides standard front-end processor functions.

2. Processing Functions

At the heart of NAVCOMPARS are the two solid state, high performance UNIVAC $70 / 45 \mathrm{G}$ main processors capable of handling real-time interaction of video display terminals with the computer, as well as communications applications of incoming/outgoing narrative traffic processing. Each processor has a modular main memory of about 393 K bytes, capable of off-the-shelf expansion to $1,024 \mathrm{~K}$ bytes by 64 K byte modules. It is capable of addressing fixed length

14tinem

$1+2+2-2+\sin =$

促
units of data of $1,2,4$, or 8 bytes for processing. It uses sixteen general purpose registers as data accumulators of arithmetic and logic operations, base-address and index registers, and repositories for editing data. Data handling, decision, control, decimal and fixed point operations are performed by a standard instruction repertoire. The system is capable of handling fifteen levels of memory separation and is equipped with a protection procedure to ensure program/memory integrity in a multiprogramming environment. An interrupt system responding to various internal and external conditions, in conjunction with the capabilities of the selector and multiplexor channels, permits I/O activities to be conducted simultaneously with processor functions. Projected system reliability is high due to the massive hardware duplication in NAVCOMPARS. Hardware failures will not seriously degrade the system. In the case of on-line processor malfunction, the off-line processor automatically goes on-line with the only loss being report generation and other miscellaneous activity. A power failure detection device alerts the software system (by interrupt) with sufficient warning to quiesce I/O devices, store register contents and perform such functions as are required to facilitate recovery. The initialization and restart module provides for near automatic restart with limited operator control.
(

Four selector channels with two trunks each permit I/O operations to be completed with discs, tapes, mass storage unit, and AUTODIN front-end processors. There are three disc units, each containing five disc packs. Each disc unit has a storage capacity of 145 million bytes and a data transfer speed of 156,000 characters per second. There are two tape units with six drives each. If off-line storage is considered, then storage capacity is unlimited. The tapes are standard one-half inch, nine track with a read/write/transfer rate of 30,000 characters per second. The mass storage unit has a storage capacity of 556 million bytes with a 600,000 character per second transfer rate. It should be noted that the standby processor is capable of accessing the direct access storage devices during offline operation.

The following is a summary and brief description of the major program (software) subsystems:

Executive Control Subsystem (ECS) - The ECS is responsible for the real-time control and monitoring of system resources. This system interfaces the remaining sub-systems with one another and ancillary equipment. In real-time it performs device controlling, program monitoring, interrupt analysis, and operator liaison.

Communications Control Subsystem (CCS) - This system interfaces the various communication type devices used in the system, i.e., visual display terminals, low speed printers, teletype circuits, both send and receive, and high speed and receive circuits.

Communications Interface Subsystem (CIS) - Provides real-time control over AUTODIN mode I operations in the following areas: line coordination, network control, system logs, line processing, and start-up and shut-down operations.

AUTODIN Processing Subsystem (APS) - Maintains an AUTODIN processing capability during outage of the control processors.

Utility Program Subsystem (UPS) - Performs channel coordination, input buffering, and format conversion.

Message Processing Subsystem (MPS) - Performs message validation, message routing, format conversion from modified ACP 126 to JANAP 128 format, distribution assignment, message file, readdressal/retransmission, and query VDT operations.

Transmission Processing Subsystem (TPS) - Performs transmission line control, channel scheduling, broadcast channel activity, AUTODIN channel selection, message altrouting and message journaling.

Transmission Control Subsystem (TCS) - Responsible for transmission identifies line generation, formal conversion/editing, routing line segregation, and broadcast rerun.

Support Program Subsystem (SPS) - Performs file maintenance, report generation, off-line message processing and off-line message recovery.

3. Output Functions

Messages exit NAVCOMPARS by the same units described in inputting except as noted below:

Unit record (card) traffic utilizes a UNIVAC 70/234 10
write (check read) card punch capable of a rate of 100 cards per minute.

Over-the-counter (OTC) service is outputted on medium speed printers or paper tape cutters and manually processed.

The OCR is, by its nature, an input only device.
The VDT's are used for system query and response such as in service message reply generation and not for standard message output.

Fleet broadcast channels are automatically connected to NAVCOMPARS through appropriate encryption devices for messages addressed to afloat units guarding one or more of the broadcasts. These channels are 75 baud, (100 words per minute).

C. LDMX DESCRIPTION

LDMX is designed to exchange data with and between online ADP centers, control pooled transmission facilities, and process narrative as well as data messages. It is capable of accepting traffic from two AUTODIN mode I channels (dual homing concept) and complies with the criteria set forth in DCAC-370-Dl75-1. For specific fleet oriented functions, NAVCOMPARS software modules may be fitted to the LDMX system. An overall system block diagram and equipment configuration drawing appear in Figures 3 and 4 respectively.

1. Input Functions

The input to LDMX is from both on-line and off-line means. The system receives narrative on-line traffic via an interface with AUTODIN and dedicated teletype circuits. Off-line (over-the-counter or mail) is manually prepared for input. The most desirable manual, off-line, input is via an optical character reader (OCR), otherwise input by means of a less desirable form (paper tape) is utilized. After message receipt, it is disc stored on the "In-Processing File."

2. Processing Functions

Once a message is in the "In-Processing File," it is queued for processing and is also recorded on magnetic tape in the "History File."

Messages are processed from the queue on a basis of precedence in the following descending order: Emergency Command (Flash Over-Ride), Flash, Immediate, Outgoing Priority, Incoming Priority, and Incoming/Outgoing Routine. Once out of the queue and actual processing commences the system analyzes each message and determines the following information: classification; precedence; station serial number; date-time-group; originator; operating signals; addressee delivery responsibility; content indicator code; subject code; originating office; flagword; and reference. Under ideal conditions the message will be processed directly through the system without human intervention. Messages with processing restrictions or format errors will necessitate a VDT display at the Inrouter station for incoming messages, and the Outrouter station for outgoing messages, for processing assistance. Once the error is corrected it is transferred back into the system for final automated processing.

During processing a printer records incoming dedicated traffic. In addition to circuit monitoring, this system maintains a message and service log. The service log receives entries for each message requiring a service operation and the message log receives an entry for all incoming and outgoing messages processed through the system.
$-=-24 x+5$
$-x-2+2+2$

Lencon

俋

LDMX EQUIPMENT CONFIGURATION
Figure 4

As noted earlier under NAVCOMPARS, the SPS performs all report generation in support of main processing. The "Journal File" maintains key information extracted from each message during the processing cycle. The report generation programs provide a dump and listing at the close of each radio day (0000GMT) or on an ad-hoc basis. Software programs within LDMX include the Executive Control Subsystem (ECS), Communication Control Subsystem (CCS), Message Processing Subsystem (MPS), and Support Program Subsystem (SPS) described previously under NAVCOMPARS. Other programs and descriptions are:

Process Control Subsystem (PCS) - This subsystem is responsible for all tasks akin to message input, preparation and filing. It interfaces with the CCS and performs input line polling, message preparation, and accepts messages from transmission media, i.e.; paper tape, AUTODIN, OCR, on-line dedicated circuits and magnetic tape.

AUTODIN Control Subsystem (ACS) - The ACS performs I/O functions only. It interfaces with AUTODIN Switching Centers (ASC) and, in short, is the front-end processor for the main frame facility.

Distribution Processing Subsystem (DPS) - This subsystem responsibility lies in output line segregation and all message output to the media, such as, AUTODIN circuits,

dedicated circuits, mat printer, service printer, paper tape or magnetic tape.

Fallback Subsystem (FS) - Since Navy policy usually dictates redundancy, this subsystem, by using suitable peripheral equipment from the main frame, has the capability to send and receive paper tape traffic between the ASC and ACC in the event of main frame outage.

A capability is provided for retrieval of messages previously processed. Message identification parameters must be entered via a VDT terminal. New messages are retrievable from disc storage and traffic, up to 45 days old, is retrieved from the mass storage unit. Traffic older than 45 days must be sought from the properly selected magnetic tape "Journal File Tape Library." The operator has the capability to select the retrieval output in the form of paper tape, card and/or hard copy.

3. Output Functions

Outgoing narrative messages entering the processor will receive processing similar to an incoming message. The exception lies in the fact that the originator and ZEN/lines, i.e.. delivered by other means, will be analyzed for delivery responsibilities. After the start and end of message validation, the processor outputs either an accept or reject notice to the operator by means of the outgoing

2

$$
-\operatorname{lot}
$$

log. A Processing Sequence Number (PSN) is assigned and the message is queued for precedence processing. Once the message has been prepared and routing appended to the message, the information is permanently stored in the system's journals.
D. LDMX/NAVCOMPARS Common Functions

There are three areas or functions common to both LDMX and NAVCOMPARS worthy of mention; namely, report generation, security, and system monitoring. Each is a decided advance over older manual methods as they allow human interface with the system at a higher level than ever before.

1. Report Generation

In the past, reports were prepared manually and much time consuming, tedious work was devoted to this task. Due to inherent delays in this method, reports were often outdated and, hence, nearly useless to the individual concerned with managing a communication system or parts thereof. From information stored in the on-line message file, reports from LDMX and NAVCOMPARS contain:
"Total messages processed.
"Messages processed by channel
"Breakdown by precedence and classification for each channel.

[^1]ane
"Total number of service messages processed.
"Number of suspected duplicates.
"Total received ZCV messages.
"Messages misrouted to the NAVCOMMSTA.
"Average message length, with a breakdown by classification and precedence.
"Number of messages requiring operator intervention.
"Breakdown of manual/automatic distribution assignment.
"Messages delivered to commands on guard list.
"Channel utilization (in minutes) for each channel
(Approx.).
"Channel loading by work/count.
"Hourly message processing profile." ${ }^{2}$
2. Security

In the past, communications security within the
Naval Communications Facility was provided by limited access to the various centers in operation as most traffic was in plain text on hard copy or paper tape with encryption/decryption devices being provided on incoming and outgoing channels. In LDMX and NAVCOMPARS, the direct application of crypto devices to incoming and outgoing

2
Naval Command System Support Activity Document Number $84 \mathrm{CO} 42 \mathrm{FD}-01$, Automation of NAVCOMMSTA Honolulu Functional Description (Draft), p. 52, August 1973.

$-m=-\infty$ \qquad (- $-\frac{1}{\square}$

[^2]channels is still provided. However during on-line operation security required by the user is provided by hardware, in that hardware creates the interface between the communication link and communications station and is specifically designed to protect line security and the software which specifically controls processing. During maintenance periods, the tapes or discs on which the journal or history files reside may be conveniently removed and stored in appropriate security containers. However, on traffic which requires human intervention, the system still requires communications personnel to have appropriate security clearances.

3. System Monitoring

LDMX and NAVCOMPARS system monitoring is broken into two sections. The first is monitoring of hardware and software by a computer operator who interfaces with the system via a console. The second is monitoring message processing by operations personnel utilizing VDT's in the message center, service center, and fleet center.

II. SIMULATION OF NAVCOMPARS

A. STATEMENT OF THE PROBLEM

As no definitive information exists indicating where NAVCOMPARS degenerates with abnormal message load, it is the intent of this paper to identify those areas most prone to developing bottlenecks. In a communications system such as NAVCOMPARS, it is necessary to provide documentation where queues occur and determine the average time messages spend waiting to be processed. An attempt has been made to accurately represent system flow and to identify potential bottlenecks. Additionally, as a byproduct of this investigation, a model for use by operational managers was developed which, if utilized, would provide personnel with the ability to monitor and tune a NAVCOMPARS installation.

In identifying potential bottlenecks in system flow there are two approaches which may be taken; first, the use of queueing theory and, second, simulation. The complicated relationships among precedence, message length, processing time and channelization complicates any analysis of NAVCOMPARS to the extent that simple queueing calculations are not sufficient to predict the effect of changes in traffic load, variable message lengths, incoming and
outgoing traffic alignments, processing times or management techniques. To provide a tool for addressing such problems, simulation allows complex, variable, real-time transaction input and processing as well as providing a means of analyzing the system under a continuous flow situation.
B. SYSTEM SIMULATION MODEL

Three methods of simulation were considered for the analysis: (1) manual, (2) FORTRAN IV, and (3) IBM General Purpose Simulation System (GPSS/360). The manual form of simulation was not used because of the high volume of transactions encountered in NAVCOMPARS. FORTRAN IV, though not ideally a simulation language, was disregarded as its ability to detail complex items was not required. As such, GPSS/360 was finally decided upon.

1. General Purpose Simulation System

The General Purpose Simulation System is very
adaptable to defining a functional model of NAVCOMPARS for the purpose of identifying bottlenecks. It has the capacity of representing "black-box" functions while maintaining the required multichannel/server representation through the use of TRANSFER statements. The greatest flexibility of GPSS, however, is the use of FUNC'TION statements which may represent theoretical or

empirical distributions and are easily interchanged to observe the effect of different distributions within the model. Additionally, transactions may be generated according to time between inputs, message length and precedence distribution. Precedence is important because higher priority transactions are processed before those of lower priority.

The general sequence of events at a facility or server is given by the following in GPSS: QUEUE, SEIZE, DEPART, ADVANCE, and RELEASE. A QUEUE is a point where traffic or transactions may be held or delayed by the unavailability of the facility it intends to utilize and where queue statistics are gathered. When the facility is free, the next transaction gains entry to the facility, on a first-in/first-out (FIFO) within precedence basis. At this point the QUEUE is DEPARTED. The ADVANCE statement allows a service time to be computed and applied to the transaction through a fixed time specified by the user or by the use of VARIABLE and FUNCTION statements which allow varying delays to be introduced into the system. When a facility is finished with a transaction, the transaction RELEASES the facility and moves to the next area identified in the program.

GPSS maintains and generates facility statistics and queue statistics ${ }^{3}$ as a normal output. These statistics are specified in the basic unit of time specified by the user.
2. System Model Description

The message flow simulated by this model is a functional representation rather than a detailed simulation of individual NAVCOMPARS system components. The model provides a means of testing proposed or actual message input distributions, processing times and broadcast alignments without incurring the actual costs and difficulties normally associated with an actual system change. In addition, the model is versatile enough to help analyze many traffic flow problems, such as identifying bottlenecks in queues and establishing activation criterion for an overload fleet broadcast channel, if so desired.

Message arrivals of each precedence are simulated from arrival rates which may be specified as functions of time. The arriving messages are assigned precedence, classification, message length, etc. according to an empirical distribution that segregates messages to the five precedence level queues in the main processor.

[^3]

The distribution was determined from two days of actual data obtained from the U. S. Naval Communications Station, Norfolk, Virginia. The main processor polls each precedence queue and simulates message processing on a FIFO within precedence basis. The processing time through the main processor (POUT) is computed as a function of message length, average number of instructions required per character, and instruction execution time. Another developed empirical distribution segregates messages to one of four fleet broadcast channels or to an "Other" channel for over-the-counter service, electronic courier circuit, etc. Each of the four fleet broadcast channels have separate queues associated with them and transmitting times are computed as a function of message length and the number of words-per-minute transmitable by radio teletype. The messages are transmitted out on each channel on a FIFO within precedence basis. Figure 5 provides a pictorial representation of the model.

The NAVCOMPARS simulation developed in this thesis, can be operated under continuously varying traffic loading conditions specified by the following input data:
(1) Daily and hourly volume of first-run message
arrivals. This parameter can be stepped over a range of values to simulate operations under varying traffic conditions.

(2) Precedence of each message.
(3) Individual message length distribution.

Message lengths determine the rate at which messages can be processed and transmitted.
(4) Diurnal variations in message arrivals. Studies of message traffic indicate that strong diurnal variations exist in the arrival rate of messages to a communications station for delivery.
(5) Message type composition. The message type composition indicates the portion of arriving traffic which is segregated into each of the queues.
(6) Classification of each message.

In addition to traffic loading, the performance of NAVCOMPARS is affected by the following operational parameters:
(1) Main processor service time. This value affects system through-put and was based on the UNIVAC $70 / 45 \mathrm{G}$ instruction execution time and average number of instructions required per character for processing in the runs made for this thesis.
(2) Front-end processor service time. The value of service time per character was estimated at approximately one millisecond per character through-put to disc storage.

(3) Broadcast channels transmitting service time. The service time value utilized herein was for the standard 100 WPM teletype broadcast using an average value of six characters per word.
(4) Channelization. Channelization of message flow is determined by inputs specifying which messages may flow out of which channels.

When loaded with the above inputs and given the operational parameters, this simulation generates a time profile of the important features of NAVCOMPARS. This profile consists of hourly summaries for a 24 hour period contained in Appendix D.

III NAVAL COMMUNICATIONS PROCESSING AND

ROUTING SYSTEM SIMULATION RESULTS

In order to evaluate the model as developed and observe the resulting statistical generation, a series of eleven computer runswere made. During these runs certain parameters were allowed to vary or be held constant in order to observe the models interrelationships. These parameters were traffic volume and message length. Although the simulations do not delineate message length per message in an output format, the changes in message length could be observed indirectly as a result of the main processor (POUT) and fleet broadcast channel queue's average time per transaction. This is because message length is a controlling factor of message processing time.
A. SIMULATION BASED ON ACTUAL DATA FOR TWO DAYS

Based on the data for two days received from Naval Communications Station Norfolk, Virginia, it was determined that the hourly arrival rate of messages was cyclical over each 24 hour period as denoted in Figure 6. The average arrival rate per hour for a 24 hour period was used in the simulation program. Using the average hourly arrival rates, a constant interarrival rate was computed per hour of simulation and used in 24 separate

ACTUAL DATA INPUT FOR SIMULATION

Figure 6

GENERATE statements. The peak hour occurred immediately prior to and after midnight GMT. This most closely resembled the actual input for the two days of observed data.

The results of the simulation indicate that queues build during peak hours and decrease as the load lessens through the day. A sample statistical generation of this simulation is contained in Appendix E.
B. TWENTY FOUR HOUR TEST DATA IN CASE 1 AND CASE 2

As previously noted, actual data for two days indicated a cyclical type input to the system. In order to observe facility utilization and queues, under other message loading conditions, two cases were constructed with increased message loadings during peak periods.

In Case 1 message traffic increased rapidly after two hours, leveled off at its peak values for a three hour period, and then decreased rapidly. During the simulation it was noted that for these message input levels, the system quickly cleared its queues while facility utilization remained low. In Case 2 the peak was almost double that of Case 1 while the lower input rate remained four times as great as Case l. Figure 7 is designed to show Case 1 and Case 2 in contrast with the actual data arrival rates for the two days of actual data.

Figure 7

The results of Case 2 were more accentuated due to queue build-up as facility utilization percentage rose during the peak hours. Once the last peak hour of message arrivals was completed and the input rate decreased, all of the queues required approximately two hours to reach a peak, thus indicating a lag of the internal system queue build up after peak message arrival periods.

By observing the build up of queues at the main processor and fleet broadcast channels, a Communications Officer of a NAVCOMPARS could determine when to activate auxilliary fleet broadcast channels to handle the overloaded conditions. The actual queue loading factors in the system requiring auxilliary channel activation would be dependent on each individual command's policy for such situations. This is another illustration of the model's use as a management tool.

C. LARGE INPUT VOLUME SIMULATION

In order to observe the rapid build up of queues and high facility utilizations, two runs were conducted. Run One used a constant interarrival time and an input rate of 1000 messages per hour for a three hour system run time. Facility utilization for both AUTODIN channels remained low while the main processor experienced approximately 60° percent utilization. However, the four fleet broadcast
channel utilizations were approximately 99 percent the first hour and remained at that level during the three hour period. Queue time increased rapidly.but stayed within allowable limits for precedence processing and output transmission, as specified by Naval communications policy.

For the second run, an input of 1000 messages per hour was used for a five hour system run time. The results were similar to the first run with no new significant observations.

D. CONSTANT MESSAGE LENGTH RUNS

Message length was tested in four simulation runs of three hours duration each, with an input rate of 1,000 messages per hour, in order to ascertain its effect on the model. The results indicate a sensitive relationship between message length, average time a message waits in an output queue for processing, and the processing capabilities of the main processor (POUT) and fleet broadcast channels.

The fleet broadcast output capability is a constant based on 100 WPM radio teletype using six characters per word, i.e., an output rate of 600 characters per minute. The loading of the output channels is based on an empirical distribution derived from two days of actual data. Of the
four fleet broadcast channels, the lowest loading rate was six percent of the total output from POUT and the highest loading rate was nine percent, resulting in a 33 percent drop in loading rate from the highest to the lowest. Message length was varied from 1,000 to 2,500 characters per message in 500 character increments per simulation run. This was a 33 percent increase rate per run over the interval investigated. It should be noted that this was coincidental and not contrived to specifically fit the model.

Figure 8 is a plot of average time per transaction in an output queue versus message length for each fleet broadcast channel by hour. Observe that NMEE \#2, the lowest input rate per channel, lags NMAA \#2, the highest input rate per channel, by one cycle, ${ }^{4}$ when measured by average time in queue. This lag is due to the relationship of input loading rate (a 33 percent difference) and the size of message. The total number of characters entering into NMEE \#2 at 1,500 characters per message is approximately equal to the total number of characters entering NMAA \#2 at 1,000 characters per message. This supports the intuition that as message length increases,

[^4]$-\infty \quad-$ nen

ancon
cin and

CASE 2 SIMULATION RESULTS

Figure 8
the total number of messages loaded into the fleet broadcast channels decreases. As the message length increases, the bottleneck shifts from each output channel queue to the main processor, thus decreasing the total number of messages available to be loaded in fleet broadcast queues per hour.

The above case demonstrates the usefulness of the model because the results give a dynamic quantitative relationship between message length, output channel percentages, loading and number of messages for the specific set of defined conditions. Additional quantitative relationships between message length, output channels, etc., can be developed by various data input combinations. Potentially, a family of relationships could be developed which will enable the user to answer several "If-Then" type questions regarding these parameters and their effects on total system performance.
E. SIMULATION VARYING THE RANDOM NUMBER SEED IN FUNCTION 3 In a FUNCTION statement the RN pair indicates a random number generation for execution of the function. The number immediately following RN is called the "seed." It is this number which determines the entry into the random number table contained in the IBM $360 / \mathrm{GPSS}$ system. In order to test the random number generation for GPSS, two simulation

runs were made changing the seed contained in the message length FUNCTION statement.

In the NAVCOMPARS, message length is critical due to its relation as throughput to the processing system. That is, the longer the message the longer it will take to process it completely through the processing and routing system. By changing the seed in determining message length, changes should occur in the output statistics of the program if random number generation is anything other than random. The results of this model test showed absolutely no change in any of the simulation output statistics. Therefore, it is concluded that the point of entry into the random number tables will not have any effect on the final results of the simulation.

IV. POTENTIAL APPLICATIONS THROUGH MODEL EXPANSION AND CONCLUSIONS

To systematically expand upon a model it must possess the characteristic of "modularity," which means that modules or segments may be added in order to improve the ability to faithfully simulate the actual system. With this in mind, the NAVCOMPARS model was developed to be modular. The following examples indicate this feature and its capability.
A. POTENTIAL APPLICATION THROUGH MODEL EXPANSION

1. Auxillary Fleet Broadcast Channels for Output. During the daily operation of NAVCOMPARS it is possible to have an increase of incoming traffic, destined to the fleet, such that the multichannel (MUX)/single channel fleet broadcast channels are overloaded. In that case auxillary channels of the MUX are activated until internal queues are cleared and the operation returns to a normal state, i.e., a handling time acceptable within Naval communication policy. In order to accomplish MUX auxilliary channel activation in the program, a TRANSFER statement must be added per channel activated, with the new distribution between the main and auxilliary channel branching to a QUEUE, SEIZE, DEPART, ADVANCE, RELEASE sequence for output processing delay time. For example,
fleet broadcast MUX channel NMAA auxilliary channel is NMBB; for NMCC the auxilliary is NMDD, etc. An assumption must be made with respect to the message split between the main and auxilliary channel.
2. Fleet Satellite Communications.

In the future, as NAVCOMPARS adds or deletes incoming and outgoing channels to the system, additions or deletions, may be attached to the model with minimum changes and programming. Of particular interest is the advent of Fleet Satellite Communications (FltSatcomm). Outgoing channel speed will increase from 100 WPM teletype (TTY) to 1200 Baud. This significant change will eventually shift the output bottleneck from teletype output back to internal system processing.

To facilitate this change two items in the model's program must be added. First, to the variable card section include a new VARIABLE to compute the output channel speed. At 1200 Baud approximately 1500 WPM will pass over each additional FltSatComm channel. Therefore, the variable will equal (p3/150) X 1000. The variable will be measured in milliseconds. Secondly, the fleet broadcast section of the program must contain a cumulative TRANSFER statement to the branch that will add the ADVANCE

(
time onto the FltSatComm transaction. ${ }^{5}$ This requires a change to the cumulative distribution of output channel type. ${ }^{6}$

Conversely, for those FltSatComm channels which are input to the NAVCOMPARS, the same input technique is used as with AUTODIN and other traffic type inputs. Here the variables of input speed and processing time must be considered in order to form a closed loop for the FltSatComm.
3. "Other" Inputs.

In the model those inputs other than AUTODIN were considered as "Other." 7 To further improve the model by the modularity technique, these "other" inputs need to be broken down and analyzed in terms of processing delay time incurred in reaching the CCM. These input processing times would include delays resulting from optical character readers, card readers, data speed readers, teletype and over-the-counter service. Each equipment processing time could be modularized as additions to the input channel

[^5]precedence queue. 8 Again using the GPSS sequence, QUEUE, SEIZE, DEPART, ADVANCE and RELEASE, delay time could be calculated and queue statistics generated for each type of input.
4. "Other" Output.

Non-fleet broadcast channels were considered in a single grouping as "Other." Since the application of this model involved output fleet broadcast channels only, any other traffic was not considered. However, another module could be added to the model by analyzing these "other" output processing times. These would include dedicated TTY circuits, electronic courier circuits, AUTODIN, and over-the-counter service, and could be added to the program after the fleet channel ADVANCE computations.
5. Main Processor (UNIVAC $70 / 45 \mathrm{G}$) Model Simulation.

The final module, and possibly the largest is the main frame processor. As an aid to understanding the operation of the internal processing system, a model of the main processor could be developed. This sub-model of the system should involve software items such as: (1) precedence queueing processing; (2) distribution assignment; (3) distribution processing; (4) message entry, filing and

8 Op.Cit.

retrieval; (5) support file maintenance; and (6) generation of daily reports.

The hardware aspect of the system could include timing analysis of video data terminals, paper tape reader, paper tape punch, line printers, disk storage units, mass storage units, and magnetic tape units. ${ }^{9}$

This proposed module would fit into the present model whose input would be received via the ACC or CCM and whose output would terminate in the fleet broadcast or non-fleet broadcast channels discussed in this section. It should be noted that simulation need not replicate events in minute detail. Therefore, the model offers areas of expansion as separate studies into particular subsections of the entire Naval Communications Processing and Routing System.
B. SUMMARY

In developing the NAVCOMPARS model the major concern was to simulate functional relationships. Two days of data was used only to generate statistics in order to observe the operation of the model. The functional representation of the model is in no way constrained by use of this data. The model is flexible because either observed

9
See Figure 2.
atata
or theoretical data may be used to generate the empirical distributions that are the basis of the model's FUNCTION and VARIABLE statements.

This is a management tool of the "If-Then" type and, as such, is possibly the first of its kind for NAVCOMPARS. The observations made from actual simulation runs discussed in Section III indicates the power of this model to evaluate the many varying conditions which may occur at a NAVCOMPARS installation. The model considers fundamental parameters, such as number of messages, message length, precedence, processing times, and output transmissions times, and therefore is not dependent on the equipment currently used at NAVCOMPARS installations. However, as noted in this section, there exists potential for expansion which, when developed, will increase the usefullness of this model.


```
                        APPENDIX A
                        NAVCOMPARS MODEL: FLOW
DIAGRAM FOR GPSS PROGRAM
```

GEN.

Generate arriving messages

Assign Classification $\mathrm{X}=\mathrm{RN} 1$

TRANSFER
.43

Represents 43% of incoming traffic received via AUTODIN Channel AUIA

Hitis
-
$1-1$

4

Tin
童而

Transfer unconditionally to the Fleet Broadcast Output section

Transfer to Fleet Broadcast Channel NRTT

Transfer to Fleet Broadcast Channel NMEE

Transfer to Fleet Broadcast Channel NMCC

Output processing for
Fleet Broadcast Channel
NMAA

Terminate program

GENERATE: allow an expansion in the contents of the "Relative Clock" to equal 3600000 milliseconds, Note 1 clock unit equals 1 millisecond

Transactions flow into this TERMINATE clock one at a time decrementing the counter each time by one. When the counter equals zero the simulation stops for that specified time period

FUNCTION Statement Definitions:

```
FNl= AUTODIN Channel AUIA precedence function
    l = Flash Precedence
    2 = Operational Immediate Precedence
    3 = Priority Precedence
    4 = Routine Precedence
    5 = Other, i.e. those incoming messages which
        could not be automatically identified with
        respect to precedence.
```

FN2 $=$ Classification Function
1 = Top Secret
2 = Secret
3 = Confidential
4 = Encrypted for Transmission Only (EFTO)
5 = Unclassified
6 = Other, i.e., those incoming messages which
could not be automatically identified with
respect to classification.
FN3 $=$ Random generation for determination of message
length in characters.
FN4 = AUTODIN Channel AUIB precedence function,
the same number assignment as FNl.

FN5 = All other traffic function for incoming messages by precedence, the same number assignment as FNl.

PARAMETERS:

```
l = Precedence of messages by incoming channel
2 = Classification of message
3 = Message length in characters
4=Not used
5 = Fleet broadcast output by channel
```


FACILITY SYMBOL DEFINITION:

```
ICHA = Incoming AUTODIN Channel 'A' (AUIA)
ICHB = Incoming AUTODIN Channel 'B' (AUIB)
ICHO = All other traffic incoming to NAVCOMPARS
POUT = Fleet broadcast channels out
CHAA = Fleet broadcast channel NMAA
CHCC = Fleet broadcast channel NMCC
CHEE = Fleet broadcast channel NMEE
CHTT = Fleet broadcast channel NRTT
```

PROGRAM SYMBOL DEFINITIONS:

```
CHAA = AUTODIN Channel 'A' front-end processing
CHBB = AUTODIN Channel 'B' front-end processing
CHOO = Other incoming traffic processing into
    the system
```

QBLO $=$ Main frame (UNIVAC 70/45G) processing time
侸

（2）

QAAA $=$ Computation for output transmission time over fleet broadcast

NRTT = Fleet broadcast channel NRTT output processing NMEE = Fleet broadcast channel NMEE output processing NMCC $=$ Fleet broadcast channel NMCC output processing NMAA $=$ Fleet broadcast channel NMAA output processing GENERAL DEFINITIONS:

RN1 $=$ RN is for Random Number Generation used in GPSS $/ 360$ and is calculated from a set of eight base numbers called SEEDS. The user can specify any one of these seeds RN1-RN8.

FN = Designator used for FUNCTION, which is basically a numerical value that is computed from a rule defined by the user of either a discrete or continuour function.

NAVCOMPARS MODEL

GPSS PROGRAM

DEFINE FUNCTIONS

 OTHER CHANNEL INC. REC.

 CHANNEL A PRECEDENCECLASSIFICATION
MSG LENGTH CHAR
CHANNEL B PRECEDENCE
OTHER CHANNEL PRECEDENCE
FRONT-END PROC COMPUTION
OTHER CHAN F-E PROC
PRIORITY
3 MSEC EXEC PER CHAR MCPU
XMIT OUT COMPUTATION XMIT OUT COMPUTATION
 $\begin{array}{lll}\text { CA } & \text { VARIABLE } & \text { FN1 } \\ \text { CL } & \text { VARIABLE } & \text { FN2 } \\ \text { MS } & \text { VARIABLE } & \text { FN3 } \\ \text { CB } & \text { VARIABLE } & \text { FN4 } \\ \text { CH } & \text { VARIABLE } & \text { FN5 } \\ \text { HR } & \text { VARIABLE } & 1 * P 3 \\ \text { OO } & \text { VARIABLE } & 3 * P 3 \\ \text { PR } & \text { VARIABLE } & \text { Pl-1 } \\ \text { HT } & \text { VARIABLE } & 3 * P 3+P 3 / 156 \\ \text { OT } & \text { VARIABLE } & (P 3 / 10) * 1000 \\ \text { * } & & \text { MODEL PROGRAM } \\ \text { * GEN } & \text { GENERATE } & 3596 \\ & \text { ASSIGN } & 2, \text { V\$CL } \\ & \text { ASSIGN } & 3, V \$ M S\end{array}$

MAIN CPU PROC.
FLT. BCST. OUT

	TRANSFER	.43, NTRS , CHAA
NTRS	TRANSFER	. 32. QOUT, CHBB
QOUT	TRANSFER	, CHOO
CHAA	ASSIGN	1,V\$CA
	SEIZE	ICHA
	ADVANCE	V\$HR
	RELEASE	ICHA
	TRANSFER	, QBLO
CHBB	ASSIGN	$1, \mathrm{~V}$ \$CB
	SEIZE	ICHB
	ADVANCE	V\$HR
	RELEASE	ICHB
	TRANSFER	, QBLO
CHOO	ASSI GN	1, V\$CH
	SEIZE	ICHO
	ADVANCE	V\$00
	RELEASE	ICHO
	TRANSFER	, QBLO
QBLC	PRIORITY	V\$PR
	QUEUE	Pl, 1
	SEIZE	POUT
	DEPART	Pl
	ADVANCE	V\$HT
	RELEASE	POUT
	TRANSFER	, QAAA
QAAA	TRANSFER	.061, BCTE, NRTT
BCTE	TRANSFER	.055, BCTC , NMEE
BCTC	TRANSFER	. 088, BCTA, NMCC
BCTA	TRANSFER	. 104, DEAD, NMAA
DEAD	QUEUE	10,1
	TERMINATE	

BCST. CH. NRIT
BCST. CH. NMEE
BCST • CH. NMCC
BCST • CH. NMAA

	INITIAL	X1,36	0000			
$\stackrel{*}{*}$	DEFINE FUNCTIONS					
1	FUNCTION	RN1	D5			
. 001	5	. 03		4	. 435	3
. 999	2	1.0		1		
2	FUNCTION	RN1	D6			
. 001	1	. 01		2	. 244	3
. 688	4	. 98		5	1.0	6
3	FUNCTION	RN3	C2			
. 000	1000	1.0		25		
4	FUNCTION	RN1				
. 001	5	. 08		4	. 572	3
1.0	2					
5	FUNCTION	RN1	D5			
. 001	5	. 06		4	. 509	3
972	2	1.0		1		
$\stackrel{\star}{\stackrel{\star}{*}}$	DEFINE VA	LLES				
1	VARIABLE	FN1				
2	VARIABLE	FN2				
3	VARIABLE	FN3				
4	VARIABLE	FN4				
5	VARIABLE	FN5				
6	VARIABLE	1*P3				
7	VARIABLE	3*P3				
8	VARIABLE	P1-1				
9	VARIABLE	3*P3+	$3 / 1$			
10	VARIABLE	(P3/1) * 1			
$\stackrel{\star}{\star}$	MODEL PRO					
1	GENERATE	3596				
2	ASSIGN	2	V2			
3	ASSIGN	3	V3			
4	TRANSFER	. 430	4	7		
5	TRANSFER	. 320	6	12		
6	TRANSFER		17			
7	ASSIGN	1	V1			
8	SEIZE	1				
9	ADVANCE	V7				
10	RELEASE	1				
11	TRANSFER		22			
12	ASSIGN	1	V5			
13	SEIZE	2				
14	ADVANCE	V7				
15	RELEASE	2				
16	TRANSFER		22			
17	ASSIGN	1	V6			

18	SEIZE	3		
19	ADVANCE	V8		
20	RELEASE	3		
21	TRANSFER		22	
22	PRIORITY	V9		
23	QUEUE	Pl	1	
24	SEIZE	4		
25	DEPART	Pl		
26	ADVANCE	V10		
27	RELEASE	4		
28	TRANSFER		29	
29	TRANSFER	. 061	30	35
30	TRANSFER	. 055	31	41
31	TRANSFER	. 088	32	47
32	TRANSFER	. 104	33	53
33	QUEUE	10	1	
34	TERMINATE			
35	QUEUE	6	1	
36	SEIZE	5		
37	DEPART	6		
38	ADVANCE	V11		
39	RELEASE	5		
40	TRANSFER		59	
41	QUEUE	7	1	
42	SEIZE	6		
43	DEPART	7		
44	ADVANCE	V11		
45	RELEASE	6		
46	TRANSFER		59	
47	QUEUE	8	1	
48	SEIZE	7		
49	DEPART	8		
50	ADVANCE	Vll		
51	RELEASE	7		
52	TRANSFER		59	
53	QUEUE	9	1	
54	SEIZE	8		
55	DEPART	9		
56	ADVANCE	V11		
57	RELEASE	8		
58	TRANSFER		59	
59	TERMINATE			
60	GENERATE	X1		
61	TERMINATE	1		
	START	1		

(

APPENDIX C

NAVCOMPARS MODEL STATISTICAL DEVELOPMENT

INCOMING TRAFFIC STATISTICAL PRESENTATION

In order to exercise the model to ascertain its useability, statistics were generated from two separate days activities at NAVCOMPARS Norfolk, Va. While only two days data points were used to test the model's validity, an assumption is warranted to refine the output, increase the number of data points used as input.

Figure C.l shows the total incoming traffic received by precedence over a two-day period. Figure C. 2 and C. 3 displays the AUTODIN input over two days. Function one (FN1) and function five (FN5) are cumulative distributions of the arithmetic means of two days input via AUTODIN channels AUIA and $A U I B$ respectively, see Appendix A. Function six (FN6) is a cumulative distribution by precedence of all other incoming traffic determined by the difference of $A U T O D I N$ input and the total traffic received over the two day period, see Appendix A.

RECEIVED BY PRECEDENCE

7 MAY 1974

MESSAGES RECEIVED

VIA AUTODIN
7 MAY 1974

Figure C. 2

MESSAGES RECEIVED

VIA AUTODIN
17 AUGUST 1973

Figure C. 3

RECEIVED BY CLASSIFICATION

7 MAY 1974

17 AUGUST 1973

FLEET BROADCAST OUTPUT CHANNELS

(By Percent of Messages per Channel)

7 MAY 1974

CHANNEL DESIGNATOR NMAA NMCC NMEE NRTT OTHER MESSAGES XMITTED
(536) (526) (236) (281) (3510)

17 AUGUST 1973

Figure C. 5

MAIN FRAME (UNIVAC 70/45G)

PROCESSING TIME COMPUTATION

The Main Frame processing time is the combination of the main computer (UNIVAC 70/45G) processing time plus the transfer rate from disk storage, i.e., the storage area to which an incoming message is routed via the ACC (UNIVAC 1600).

Main Computer Processing Time:
Assume: (a) 400 instructions required per character throughput
(b) 8 microseconds execution time per instruction

Therefore 3.2 milliseconds is required per characier throughput. However 3 milliseconds was used in the GPSS program (Variable HT) due to the requirement of GPSS to use integers as variables.

Disk Transfer Time:

Assume: (a) 156,000 characters per second transfer rate from disk to main processor

Therefore $\frac{(156000 \text { characters per second) equals }}{(1000 \text { milliseconds per second })}$
156 characters transferred per millisecond to the main processor, thus the relation message character length 156 characters/msecond
equals the transfer time in milliseconds.

incoming message length, therefore total processing time is equal to: $(3 \mathrm{XP} 3)+(\mathrm{P} 3 / 156)\{$ Variable HT$\}$.

FLEET BROADCAST OUTPUT

CHANNEL TRANSMIT COMPUTATION

Known: (a) Transmit speed of fleet broadcast
teletypewriter $=100$ words per minute.
Assume: (a) Six characters per word as average Therefore 600 characters per minute Then 600 characters per minute $\div 60$ seconds per minute $=10$ characters per second

Parameter 3 (P3) = message length in characters Then P3 $=$ seconds per message 10 characters per second transmission time X 1000 milliseconds per second $=$ transmission time in milliseconds per message.

Therefore Variable OT in GPSS program equals
(P3) $\times 1000$
(10)

APPENDIX D

GPSS GENERATED STATISTICS

GPSS STATISTICAL PRINTOUT DISCUSSION:

On the first line of a GPSS printout there appears the "Relative Clock" and "Absolute Clock" values. The Relative clock measures simulated time since the model was last CLEARED. If no RESET cards have been used, the Absolute Clock will equal the Relative Clock and thus provide no additional information. In this model one clock unit equals one millisecond.

The "Block Count" information shows a running account of transaction movements in total, and the number of transactions remaining in a block upon conclusion of the simulated time, denoted "Current". Block numbers correspond to the compiled program. ${ }^{10}$ See Figure D.l. GPSS NAVCOMPARS MODEL PRINTOUT TERMS:

```
ICHA = Incoming facility channel 'A', which accounts
    for 43% of all incoming traffic in this model.
ICHB = Incoming facility channel 'B', which accounts
    for 18% of all incoming traffic in this model.
```


\qquad

in

Queue 5 = Flash precedence traffic

Queue $6=$ Fleet broadcast channel NRTT
Queue 7 = Fleet broadcast channel NMEE
Queue $8=$ Fleet broadcast channel NMCC
Queue $9=$ Fleet broadcast channel NMAA
Queue $10=$ Other output channels, not considered in this model.

$-=$
 $-$

CCNTEATS CF FULLACHU SAVEVALUES
SAVEVALUE NR,
SALUE

APPENDIX E

añN~NNNOOO

10800000
1COCOUCO ABSOLUTE CLUCK

angano onnio wハーグクロハ

$$
\begin{aligned}
& \text { PREEMPTING } \\
& \text { TRANS. NC. }
\end{aligned}
$$

∞
$\underset{\sim}{2}$

$\frac{2}{2}$
$\frac{1}{2}$
2
3
3

CCNTENTS CF FULLhCRU SAVEVALUES
SAVLVALUE NR．

$$
\begin{aligned}
& 78101 \\
& 79 \\
& 79 \\
& 89 \\
& 59 \\
& 14 \\
& 18 \\
& 24 \\
& 24 \\
& 24 \\
& 74 \\
& 70101
\end{aligned}
$$

苞
144COOCO ABSULUTE CLOCK

むี̈ñiñomnina a

1HECUUCO ABSTILUTE CLUCK
 IRELATIVECLCCK
BLOCK CCLATS
BLOCK CURFENT
1
2


```
        Lgragungrozzo a
```



```
    _~00000000vor点
```



```
2160000
    #00000000000
z1tcooco alsjlute clock
MRELSTVE CLOCK
~~
```



```
        BVENAGEEN
        FACIlitY
        l
        MREILING
        * 8
        lalue
        &
```

\square

(2)

방 4

4int l

11

11

(1)

 \qquad

ICTAL는

$$
78101
$$

0000000000

```
음z
\(\stackrel{\rightharpoonup}{\alpha}\)
\(\stackrel{y}{3}\)
\(\stackrel{y}{3}\)

SEIZING
TRANS．NO．TREMPTING
TRANS．AC．

NR,
enribies
value na.


F
Vy1／ヨW「1 f？Vサ1ヘV＝












\(35 c ̧ c J O\)
10144
1430
1536
1536
1536
14174
171
382
322
322
322
        TUTAL

        aimusinnins


\section*{=}




43200000


432CJOCO absolute cluck

ILITY
1 CHA
1 CHA
1 CHC
CHTT
CHEE
CHCC
CHA

~ \(\quad\) ~




TCTAL
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \underset{\sim}{2} 006 \\
& \alpha \\
& \alpha \\
& \alpha \\
& \vdots
\end{aligned}
\] & 20000000 \\
\hline \[
\begin{aligned}
& x \rightarrow 1 n^{x} \\
& \text { ummm } \\
& 0 \\
& 0
\end{aligned}
\] & 14AONTONO Tmmmmmms \\
\hline
\end{tabular}
46800000






\(\stackrel{\rightharpoonup}{a}\)

\begin{tabular}{|c|c|}
\hline NR, & value \\
\hline \[
\begin{aligned}
& \text { TAULE } \\
& \text { NUYUER }
\end{aligned}
\] & CURRENT CONTENTS \\
\hline & 2 \\
\hline & 1730 \\
\hline
\end{tabular}

SOACOOCO AUSOLUTE CLOCK




\(\stackrel{a}{a}\)

57600000


\(\therefore 000\)

NR. VALUE
TABLE CUKRENT
NUMBR CCNTENTS



ENrikles
8


0 or


FACillity
\(1 C H A\)
\(1 C 1+B\)
\(1 C H C\)
\(C C U T\)
\(C H 1\)
\(C H E L\)
\(C H C\)
\(C H A B\)

SEIZING PREEMPTING
TAAS.NO. TRANS. NC.
\(\frac{x}{z}\)









01200030



612CUOCO

\(\begin{array}{cc}\text { IRELATIVE CLOCK } \\ \text { ELGCK CCUNTS } \\ \text { BLCLK CUFREFT } \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 4 & 0 \\ 5 & 0 \\ 0 & 0 \\ 7 & 0 \\ 8 & 0 \\ 9 & 0 \\ 10 & 0 \\ \text { BIGCK CURRENT } \\ 31 & 0 \\ 52 & 0 \\ 53 & 0 \\ 34 & 0 \\ 5 \zeta & 0 \\ 50 & 0 \\ 57 & 0 \\ 58 & 0 \\ 53 & 0 \\ 6 J & 0\end{array}\)
\[
\begin{gathered}
\text { SEILING } \\
\text { TRANS. NO. } \\
14
\end{gathered}
\]
\[
\begin{aligned}
& \text { PREEMPTINC } \\
& \text { THANS. NC. }
\end{aligned}
\]



0
\(\cdots\)
\(\sim\)
CURRENT
CCNTENTS



\begin{tabular}{ll} 
NR, & VALUE \\
\\
TABLE & \\
NUMOER CURRENT \\
&
\end{tabular}


NK.





Ar．
VALUE
TABLE
NUMBER．CCURRENT
CCATENTS

        clrrent
        clrrent
        HLCCK
        HLCCK


684CUOCO ASSULUTE CLJCK
38400000
        1Nヨカカกํ
            Z0000000000

        気
        気
        各
        各
        各




11
26
32
15
PREEMPI ING
TRANS．NU．
SKEIZING．
        NR.









        Znomngoanvn=出




        EXCLULING LEKC ENTKIES


 \(\circ\)





72CCUOCG AUSCLUTE CLITCK
72000000




```

0000000000

```

                NivNivinisñon


\(\begin{array}{rrr}72 U 000 J O \\ \text { TUTAL } & \text { BLUCK } & \\ 1550 & 21 & 0 \\ 654 & 22 & 0 \\ 654 & 23 & 0 \\ 654 & 24 & 0 \\ 654 & 25 & 0 \\ 654 & 26 & 0 \\ 1417 & 21 & 0 \\ 1477 & 28 & 0 \\ 1477 & 29 & 0 \\ 1477 & 3 U & 0 \\ \text { TOTAL } & \text { OLOCK CURKENT }\end{array}\)



\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{かNNNーががN} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\(\stackrel{\rightharpoonup}{a}\)

7S，2LJÜCO AESELUTE CLCGK


a
\(\stackrel{\rightharpoonup}{\circ}\)




Bohl, M., Information Processing, Science Research Associates, Incorporated, 1971

International Business Machines Corporation Manual Number GH20-0304-4, General Purpose Simulation System/360 Introductory User's Manual, 5th ed.. November 1969.

International Business Machines Corporation Manual Number GH20-0326, General Purpose Simulation System/360 User's Manual.

Martin, E. W. and Perkins, W.C., Computers and Information Systems, Irwin-Dorsey, 1973.

Martin, J., Design of Real-Time Computer Systems, PrenticeHall, Incorporated, 1967.

Martin, J., Systems Analysis for Data Transmission, PrenticeHall, Incorporated, 1972.

Martin, J., Teleprocessing Network Organization, PrenticeHall, Incorporated, 1970.

McManis, R. B., Computerized Management Tools for Use in the Analysis of AUTODIN Automatic Switching Centers and Associated Tributaries, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1973.

Naval Command Systems Support Activity Document Number 84CO12A FD-01, Automation of CNO Communications Center Functional Description, March 1971.

Naval Command Systems Support Activity Document Number 84CO12A OM-01 Volume I and II, Automation of CNO Communications Center Computer Operation Manual, July 1973.

Naval Command Systems Support Activity Document Number 84C012A SS-01, Automation of CNO Communications Center System Description, June 1973.

Naval Command Systems Support Activity Document Number \(84 \mathrm{CO} 37 \mathrm{FD}-01\), Automation of NAVCOMMSTA Norfolk Functional Description, April 1972.


Naval Command Systems Support Activity Document Number 84CO37A SS-01 Volumes I, II and III, Naval Communications Processing and Routing System (NAVCOMPARS) System/Subsystem Specification, January 1974.

Naval Command Systems Support Activity Document Number 84CO41 FD-01, Automation of NAVCOMMSTA Guam Functional Description, February 1974.

Naval Command Systems Support Activity Document Number \(84 \mathrm{CO} 41 \mathrm{PT}-01\), Naval Communications Processing and Routing System (NAVCOMPARS) Test and Implementation Plan (Draft), September 1973.

Naval Command Systems Support Activity Document Number \(84 \mathrm{CO} 42 \mathrm{FD}-01\), Automation of NAVCOMMSTA Honolulu Functional Description (Draft), August 1973.

Naval Command Systems Support Activity Document Number \(84 \mathrm{CO} 43 \mathrm{FD}-01\), Automation of NAVCOMMSTA Italy Functional Description (Draft), February 1974.

Naval Command Systems Support Activity Document Number \(84 \mathrm{CO} 47 \mathrm{TN}-01\), Remote Information Exchange Terminal (RIXT) Technical Note, August 1973.

Naval Command Systems Support Activity Document Number \(84 \mathrm{CO} 51 \mathrm{TN}-01\), Automation of Crystal Plaza Telecommunications Center Technical Note, February 1973.

Naval Command Systems Support Activity Document Number \(84 \mathrm{CO} 57 \mathrm{TN}-03\), ADP System Specification for a Message Exchange Center Technical Note (Draft), December 1973.

Naval Command Systems Support Activity Document Number 84CO70A TN-01, IDMX/NAVCOMPARS Conversion Feasibility Study Technical Note, January 1974.

Naval Telecommunications Command, Naval Communications Automation Plan (U) Subsystem Project Plan (SPP), May 1972.

Pelton, R. L., Evaluating Naval Communications, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1973.
(evene

Price, J. D., The Local Diqital Message Exchange: A Description and Analysis, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1973.

Schriber, T. J., preliminary printing of A GPSS Primer, The University of Michigan, 1972.
1. Defense Documentation Center ..... 2
Cameron Station
Alexandria, Virginia ..... 223] 4
2. Library, Code 2012 ..... 2
Naval Postgraduate School
Monterey, CA. 93940
3. Professor Sam H. Parry ..... 1
Code 55Py
Department of Operations Research and Administrative
Sciences
Naval Postgraduate School
Monterey, CA. 93940
4. Professor N. F. Schneidewind ..... 1
Code 55Ss
Department of Operations Research and Administrative Sciences
Nava?. Postgraduate School
Monterey, CA. 93940
5. Commander Eugene J. Normand ..... 1
Code 52No
Naval Postgraduate School
Monterey, CA. 93940.
6. Chairman, Department of Operations Research ..... 1
and Administrative Sciences, Code 55
Naval Postgraduate School
Monterey, CA. 93940
7. Commander Naval Telecommunications Command ..... 1
4401 Mass. Ave
Washington D.C. 20390
8. LCDR Wm. R. Lawrence, 1110/170-34-4854, USN ..... 1
23 Fairview Road
Paoli, PA. 19301
9. LCDR M. D. Barker ..... 1
U.S. Naval Cormunications Station
Box 582
Fleet Post Office
New York, N. Y. 09544
10. Naval Command Systems Support Activity ..... 1
Washington Navy Yard
Washington D. C.
Attn: Mr. Mohn Springett
11. Commanding Officer, U.S. Naval Communication Station, ..... 1 Norfolk
Fleet Post OfficeNew York, N.Y. 09544123

12. Commanding Officer, U.S. Naval Communication Station

Italy
Fleet Post Office
New York, N.Y. 09544
13. Commanding Officer, U.S. Naval Communication Station

Honolulu
Fleet Post Office
San Francisco, CA. 96601
14. Commanding Officer, U.S. Naval Communication Station

Guam
Fleet Post Office
San Francisco, CA. 56601
15. Commander, Naval Telecommunications Command
4401 Massachusetts Ave., N.W.
Washington, D. C. 20390
```


[^0]: 1
 Naval Telecommunications Command, Naval Communications Automation Plan (U) Subsystem Project Plan (SSP), May, 1972.

[^1]: "Total messages by precedence and classification.

[^2]:
 \pm

[^3]: 3
 See Appendix D.

[^4]: 4 One cycle corresponds to one increment of 500 characters per message in Figure 8.

[^5]: 5 See Appendix B
 6 See Appendix C

 7
 See Figure 5

