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A Co

ABSTRACT

Stauffer (1973) developed a theoretical model for the prediction

of air flow above ocean waves. In this study his results were extended

with the addition of buoyance effects and two different lower boundary

conditions.

Through numerical solutions it was possible to determine that:

1) mean wind velocities at lower levels closely approximate the initial

mean velocity profile for large wave numbers (k >_ 0.45m ) or small

wave amplitudes, 2) mean wind velocities at lower levels fluctuate more

from the initial mean velocity profile as the wave number decreased or

the wave amplitude increases, 3) solutions were very sensitive to the

level where the velocity gradient is computed in the lower boundary

condition, 4) disturbance potential temperature at lower levels in-

creases inversely with wave number, and 5) the presence of temperature

fluctuations has an insignificant effect on the Reynolds stress or on

the stream function. The numerical solutions show general agreement

with the observational analyses of wave modified wind profiles by

Davidson (1974) . However, these comparisons are not conclusive because

of the sensitivity in the lower boundary condition.
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I. INTRODUCTION

The forerunner of this study (Stauffer, 1973) used a

theoretical numerical model to investigate wave-related

momentum transfer. The model was used to obtain the Rey-

nolds wave stress of the perturbation-velocity field in

the atmospheric layer above ocean waves. The study was

similar to that of Yefimov (1970) and utilized an initial

value numerical procedure similar to that of Newman (1969).

Equations were solved by utilizing central differencing in

general but with the turbulence terms evaluated at the pre-

vious time step. Solution separation was avoided by in-

corporating the Matsuno (1966) finite difference scheme

every 50 time steps. Experiments were run varying the in-

dependent variables: wave number (k), dynamic velocity

(U.), roughness parameter (z ), and the coefficient of* o

turbulent exchange (V). The measure of the error in the

change of the stress in air (R) was computed at each time

step and calculations continued until the stress reached

a steady state condition defined by R <_ 1 x 10 . Maximum

Reynolds stress occurred at about one meter above the wave

surface, and the largest momentum transfer was found to

exist for the largest mean wind speeds, lowest wave numbers,

2
and a turbulent coefficient of approximately 0.02m /sec.

The magnitude of the Reynolds stress increased as the
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mean wind velocity approached that of the wave phase

speed in the lowest levels of the boundary layer. Thus

when the wave velocity is close to the mean wind velocity

in the lower levels, the disturbance energy is the

greatest.

The emphasis in this study is on the changes in the

mean wind which are caused by the wave stresses which

were computed by Stauffer (1973). His basic model is

modified to include buoyancy effects which arise during

non-neutral conditions. Also the lower boundary condi-

tion was changed to include the mean wind shear. Two

approximations to this boundary condition were investi-

gated. Experiments were carried out in which the follow-

ing quantities were varied: wave number (k), grid size,

convergence criteria, wave amplitude (a), and lower

boundary condition. It was found that the mean wind de-

parted from the logarithmic profile in the lower region

when the wave number became small and when the wave ampli-

tude was large. Some of these variations were consistent

with the observations of Davidson (1974).

11





II. DEVELOPMENT OF THE MODEL

Development of the model is similar to that of

Stauffer (1973). The Boussinesq equations for two dimen-

sional motion take the following form:

3\V

3t

30
3t

3u 8w
-r— + 3— =
dx dz

+ W • V W =

+ W • V0 =

g 9 k
If,Vtt -

|- (u"
7!"5") - |- (w^T1")

, and
dX dZ

(2.1)

(2.2)

(2.3)

where

F = 3- (-u' ) + 3- (-u'w 1

) ,x dx dz

F = 3- (-u'w«) + 3- (-w- ) ,
Z dx dz

tt = c (p /p) + gz ,
p o o

G = T(p
Q/p)

K = R/c

, and
o

Here T(p /p) is the total potential temperature, is

the mean potential temperature for the whole region, R

is the universal gas constant, c is the specific heat

at constant pressure, x is the horizontal axis, and z is

the vertical axis. Equation (2.1) is the equation of

motion; equation (2.2) is the first law of thermodynamics,

and equation (2.3) is the continuity equation. The

12





quantities u', w', and 9' are turbulent fluctuations. A

straight line above a variable signifies the stationary

part (time averaged) of each variable, and a wavy line

represents the non-stationary part (space averaged). The

velocity (\V) and the potential temperature ( 9) are

broken up as follows:

W = (U(x,t) + u(x,z,t)) |i + w Pc , and

= 0(z,t) + (x,z,t) .

(2.4)

(2.5)

Following Yefimov (1970), the turbulent fluxes are approxi-

mated as follows:

3U ,3u 3w,

dz dz dx

u ,2 ,2= W'

-w'e* = K
e 37

+ v II '
and

-u'0 ' = V 36.

3x
*

(2.6)

(2.7)

(2.8)

(2.9)

Here K and K Q are the coefficients of turbulent exchange

for the mean fields, and v and V Q are the coefficients of

the wave-caused fluctuations.

The following vorticity equation is formed by taking

|j • Vx with equation (2.1):

H ., 3? 3
2
U 3£ 3£

3T" + u a
+ w 5" + u "5T"

+ w 2
=

dt dx N 2 dx dz
OZ

2 3 3
3 . 3u ,3u 3w. , . 3 u 3 w,—

o

IK 3— + v (3— + 3—)] - v( - + r-~2 dz dz dx ^2. „ 3
dz dx dz dx

g_ ^0_
3x '

o

(2.10)
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where

_ _ ^u 3w
* ~ 3z " 3x

(2.11)

In this derivation, equations (2.3), (2.4), (2.5), (2.6),

and (2.7) have been used. When equations (2.4), (2.5),

(2.8), and (2.9) are introduced into equation (2.2) it

becomes

:

80
A

30 30 ^ 30 30 3 ,_ 30. „ ,3 3 0,
3T

+ U
3x"

+ w
37

+ u
3x"

+ w
3z"

= 37
(K

37
)+V (7-2 + TT* '

3x 3z

(2.12)

These derivations have used the following assumptions

30 ~ 3u
St - ° • 3T - ° (2.13)

Take the x-average of equations (2 o 10) and (2.12)

ur1 + w-r-2- = (K -5—) ,3x dz ~ 2 3z
dz

(2.14)

30 30 3 , 30
x

3x 3z 3z 3z
(2.15)

Subtract (2.14) and (2.15) from (2.10) and (2.12), respec-

tively, and neglecting products of the fluctuation quanti-

ties gives

:

3£ 3£ 3 U 3 , ,3u 3w,. r 3 u 3 w. g 30

at
u
3x 2 2

3z 3z
3z 3x 2 3

3x 3z 3x
3x

o

30 30 30
r
3

2

3t dx dz 0^2
3

2

] .

(2.16)

(2.17)
3x 3z'
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Since the motion is non-divergent (equation (2.3)), a

stream function can be defined such that:

U
3z ' 3x

* (2.18)

When these relations are introduced into (2.16) and (2.17),

they become:

JLrll* ll*i i,rll*_ O.1 3 * a
2 "

3t
8z

2
3k

2 ' " [

3x 8 z
2

+ ^ +

^I7

-2 „ 2 ~ 2 „2. 2 4 3x
dz dz dx dx dz dx o

(2.19)

36 36 3iJ; 30
r
3
2
6 3

2
9

n

dt dx dx dz 6 „ 2 r. 2
dx dz

(2.20)

In this study the motions are forced by a surface wave of

wave number (k) and phase speed (c). Therefore, the stream

function and the potential temperature departure are

written as

:

ty
= A(z,t) cos [k(x-ct)] + B(z,t) sin[k(x-ct)] ,(2.21)

8 = D(z,t) cos tk(x-ct)] + E(z,t) sin[k(x-ct)] .(2.22)

Substitute relations (2.21) and (2.22) into (2.19) and

separate the cosine and sine terms. Equating the coeffi-

cients of the cosine terms gives:

a
E
i£§ . k

2
A] = k(u - c)( Bk

2 - iff ) + Bk iff
dz dz dz

3
2

. ,3
2 A .. 2. , . .,2 r 3

2 A
+ —

2
[V(^ + Ak

2
)] + Vk

2 [l-| + Ak
2
]- 2|E

3z 3z 3z o

(2.23)
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The coefficients of the sine terms give:

3 r 3
2 B 2 3

2
A, 3

2 U
j^l j - k B] - -k(U-c)(Ak -)- Ak

3z 3z 3z

+ i!2tv(i!B + Bk
2
}] + vk

2
[
lfB + Bk2] +

gkD

3z 3z 3z o
(2.24)

If the same procedure is carried out with equation (2.20),

the cosine coefficients give:

|£ = -k(U-c)E + |i kB - V
fl
[Dk

2
- i!§]

d t dz „ £
3z

(2.25)

The sine terms give:

|f- = -k(c-U)D + 4p kA - V [Ek'
dt dz

3
2 E .

3z
2

'
(2.26)

Substitute (2.21) into (2.14) yields

3
2 B 3

2
A,

||_ [A _ _ B

3z' 3z' dz
(2.27)

Equation (2.15) will not be used in this study because it

turns out that the temperature effects are very small.

Therefore is equal to its initial value in this study.

The equations (2.23) through (2.27) form a complete set

in the variables A, B, D, E, and U.

16





III. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

Yefimov (1970) defined the boundary conditions for the

lower boundary of the turbulent layer as:

U(r|,t) + (x,r),t) = -akc cos [k(x-ct)] , (3-1)

w (x,ri/t) = akc sin [k (x-ct) ] , (3-2)

where the height of the wave surface is given by:

r) = a cos [k(x-ct)] . (3.3)

1/2The deep water wave phase speed is: c = (g/k) . (3.4)

If (3.1) and (3.2) are in terms of the stream function

(2.18), they can be written as:

U(n,t) + •— (x,Tlft) = akc cos [k(x-ct)] , (3.5)
02.

a\l)
- -5-*- (x,n»t) = akc sin [k(x-ct)] . (3.6)

ox

The stream function and its derivatives at z = n can be

approximated by the values at z = 0, but U(f|,t) cannot be

approximated by U(0,t) since U has a very rapid change

near the surface. Therefore U(n,t) is expressed with a

Taylor series expansion as:

U(n,t) = U(0,t) + -^ n . (3.7)
a z

Substitute (2.21) into (3.5) and use (3.7) and (3.3) which

gives

:

|^ (0,t) = -a[kc + J^] , (3.8)
dz dz

•|^ (0,t) = (3.9)
dz

17





The condition U(0,t) ~ has been used. When (2.21) is

substituted into (3.6), the following are obtained:

A(0,t) = ac ,

B(0,t) =

(3.10)

(3.11)

The following boundary condition is used for the potential

temperature fluctuation:

(x,0,t) = (3.12)

This condition is not as accurate as the velocity conditions

above, but the results shown later indicate that the tem-

perature effects will be small in any case. Substituting

(2.22) into (3.12) yields:

D(0,t) = E (0,t) = (3.13)

In order to close the problem, the following conditions are

imposed at the top of the region:

A(H,t)= !^(H,t)= B(H,t)= |£(H,t)= D(H,t)=E(H,t)= ,(3.14)

where z = H is the upper boundary.

The initial conditions are given by:

A(z,0) = ac sinh [k (H -z) ] /sinh kH ,(3.15)

and

B(z,0) = ,

D(z,0) = ,

E(z,0) = ,

u *

U(z,0) = — ln(|- + 1)
,

o

(3.16)

(3.17)

(3.18)

(3.19)

18





where: H. = H-Az, U^ = dynamic velocity, z = roughness

parameter, K = 0.35 = von-Karmen's constant, and a = wave

amplitude. The equations give an irrotational initial

state with no temperature fluctuations. The initial mean

wind is logarithmic.

The following fields which are independent of time

take the following form:

K = K U.z ,

= In (— + 1) ,< z
o

(3.20)

(3.21)

where T is the temperature scale.

19





IV. NUMERICAL PROCEDURES

Centered finite differences are introduced into equa-

tions (2.23) through (2.26) with the exception that the

turbulence terms are evaluated at the previous time step.

The left hand side of the equations are solved for the

time tendencies with the Guass elimination technique which

is described in Richtmyer (1957). Centered time differenc-

ing is used except that the solution is restarted every 50

time steps with the finite difference scheme developed by

Matsuno (1966). This procedure eliminates solution

separation.

Note that the value of U given in equation (3.19) with

the coefficient given by (3.20) leads to a zero value for

the right hand side of (2.27). Therefore U can be expressed

as follows:

U(z,t) = — ln(— + 1) + u(z,t) . (4.1)
K Z

O

Substitute (4.1) into (2.27) and integrate three times

•5/
with respect to z which yields

z

T dz (4.2)

o
1. . 9b, 9a . . . ,

.

where T = -uw = - —k [=—A - -k—B

)

(4.3)
2 dz dz

is the Reynolds wave stress. In this derivation the right

hand side of (2.27) was rewritten and the coefficient K was

replaced by the constant V .

20





The boundary conditions (3.8), (3.9), (3.13), and

(3.14) are applied in a straightforward manner with a

one-sided derivative when required.

The time integration of the system of equations is

accomplished by first solving the finite difference form

of (2.23) through (2.26), and then computing the new U

from equation (4.1). Integration is continued until a

steady state is reached. The following quantity is used

as a measure of the steadiness of the solution:
H,

R =

l-
Az

i = l

[T(z
±
,t) - T(z ±f t-At)]

1
2

(4.4)

The integration is continued until R > R, where R will3 m — m

take on three different values.

21





V. NUMERICAL SOLUTIONS

The following constants were used in all numerical in-

tegrations :

U #
= 0.167 m sec ,

z = 7.9 x 10~ 5
m , (5.1)o

~ -,, 2 -1V=0.24m sec .

Three forms of the boundary condition (3.8) were used

in these numerical integrations. Stauffer (1973) used the

9ufollowing condition which neglects the -~— term:
dZ

1^(0, t) = -akc . (5.2)
dz

The direct use of (3.19) in equation (3.8) leads to a

singularity when applied at z = 0. In a private communica-

tion, Professor R. Davis has suggested that this problem

can be alleviated by computing the derivative at a false

level z = z . In this case the boundary condition becomes

3A °*
-P(0,t) = -a[kc + — r] . (5.3)
dz K (z, + z )

1 o

This formula reduces to (5.2) when z is very large. This

procedure does not take into account changes in the mean

wind near the surface through u.

A third boundary condition was used which changes

as the mean wind changes. This takes the form:

22





•||<0,t) = -a[kc +
"<^,t)

A
- U(0 >t)

] (5>4J

Numerical solutions were obtained varying six indepen-

dent parameters as shown in Table I. These were wave

number (k), wave amplitude (a), measure of the error in

the change of the stress in air (R ), false level (z,), tem-
m 1

3Aperature scale (T.), and the boundary condition -~— (0,t).* dz

Experiments were carried out as exhibited in Table II for

the different values shown in Table I.

Figures 1 and 2 show the distribution of mean wind

velocity (U) with height (z) for series 1 and 2, respective-

ly. These experiments use the lower boundary condition

used by Stauffer (1973). Both figures show that the mean

wind is close to the logarithmic profile for the largest

wave numbers. They also show large variations as the wave

number decreases. These departures are principally in the

lower layers below approximately six meters. The smallest

wave number (k = 0.050 m ) shows a much larger velocity

than the logarithmic profile with a first maximum at approxi-

mately 1.5 meters. The character of the solutions for the

two values of R are similar, but for particular wave
m

numbers there are considerable differences.

Figures 3 and 4 represent series 3 for wave numbers

k =.0.35 m and k = 0.20 m , respectively. These actually

represent the Reynolds wave stress (t) as a function of

height. Curve six in each figure is for the case z =

infinity which corresponds to the boundary condition used

23
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Figure 1. Distribution of the mean wind velocity (U in
m sec" 1

) with height (z in meters) utilizing series 1 for
wave number (k) equal, respectively to: 1) initial mean
velocity profile; 2)

5) 0.175 m
-1

; 6) 0.100
475
m-1

m - 1
; 3) 0.375 m-1; 4) 0.275
0.050 ,-1

m
-1
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Figure 2. Distribution of mean wind velocity (U

with height (z in meters) utilizing series 2 for
in m sec )

wave number
(k) equal, respectively, to:
file; 2) 0.475m
6) 0.100 m" 1

; 7)

-1. 3)

0.050 m
0.375

1

1) initial mean velocity pro-
1. A \ A 11 C. ,r,

_ l " « " • —f— -1-

m 4) 0. 275 m 5) 0.175m
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Figure 3. Distribution of the wave-caused stress (t in
0.08 m 2 sec~ 2

) with height for wave number (k) equal to
0.350 m-1 and utilizing series 3. Variation in
equal, respectively, to
3) 0.225m; 4) 0.075m;

1) 2.025 m; 2) 0.675 m;

5) 0.025 m; 6) infinity.

is
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Figure 4. Distribution of the wave-caused stress (T in
0.09 m 2 sec~ 2

) with height for wave number (k) equal to
0.200 m- -1-, and utilizing series 3. Variation in z^ is
equal, respectively to: 1) 2.025 m; 2) 0.675 m ; 3) 0.225m;
4) 0.075 m; 5) 0.025 m ; 6) infinity.
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by Stauffer (1973). These two curves are very similar to

the curves for z = 2.025 m. As z .. decreases, the curve

changes rapidly in such a way that the maximum stress for

z
1

= 0.025 m is at least one order of magnitude greater

than the case z .. = infinity. These experiments show the

sensitivity of the solutions to this lower boundary condi-

tion.

Series 4, 5, and 6, which use the finite difference

estimate of the wind shear in the boundary condition, were

carried out with three values of R . The solutions for
m

R =10 and R = 10 showed some significant differ-
m m

ences while the solutions for R =10 were nearly identi-
m

-6
cal for those of R = 10 . Figures 5 and 6 show the mean

m r

wind profile for series 5 which employs R =10
m

-6

-1

These

figures show that for k >_0.450 m the wind profile is

very close to the initial mean velocity profile. Also

note the large departures from the logarithmic profile at

low levels for k = 0.1 m or less. A disturbing feature

of the solutions is the oscillation of the mean wind be-

tween adjacent values of the wave numbers.

Figure 7 shows the solutions for the mean wind for

series seven. These solutions are the same as those of

series 4 except that the grid size has been cut in half

and the time step has been reduced to one-fourth. These

solutions are generally similar to those in figures 5 and

6, except that in the lower levels the wind is larger than

the logarithmic value for k <0. 42535 m . These results
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Figure 5. Distribution of the mean wind velocity (U in
ec" 1

) with height (z in meters) utilizing series 5

number (k) equal, respectively, to: 1) initial
_.. _ . _i _ .

m s

fcr wave
mean velocity profile; 2) 1.000 ,-1

4) 0.450 m -1 5) 0.400 m-1
3) 0.500 m _1 ;

6) 0.350 m-1. 7) 0.300 m
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Figure 6. Distribution of the mean wind velocity (U in
m sec - !) with height (z in meters) utilizing series 5 for
wave number (k) equal, respectively, to: 1) initial mean
velocity profile; 2) 0.250 m -1 ; 3) 0.200 m-1 ; 4) 0.150 m -1

5) 0.100 m" 6) 0„050 m'
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Figure 7. Distribution of the mean wind velocity (U in
m sec -

-'-) with height (z in meters) utilizing series 7

for wave number (k) equal, respectively, to: 1) initial
mean velocity profile; 2) 1.000 m -1 ; 3) 0.42535 m-1;
4) 0.400 m _1 ; 5) 0.200 m" 1

; 6) 0.175 m_1 ; 7) 0.150 m"l.
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are qualitatively consistent with the empirical relation

developed by Davidson (1974). His data show departures

from the logarithmic wind profile which are proportional

to 0.16 (— - 26.3). For this condition in these experi-

ments, this quantity is positive for all wave numbers

shown except for k = 1.0 m for which it is slightly nega-

tive. This behavior is consistent with the curves given

in figure 7. One further test was made in this series

— 1 — 6
for k = 0.200 m but with R = 10 . In that experiment

m

the maximum wind velocity in the lower levels was very much

larger than any shown in figure 7. This further emphasizes

the sensitivity of the solutions to the lower boundary

condition

.

Figures 8 through 11 are comparisons of data already

presented for certain wave numbers. Figure 8 shows identi-

cal solutions for the reduced grid size for k = 1.0 m

These solutions have a slightly smaller velocity in the

lower layers than for the logarithmic profile. Figures 9,

10, and 11 which are for wave numbers k = 0.40 m ,

k = 0.20 m , and k = 0.15 m , respectively, show ir-

regular variations about the logarithmic profile for dif-

ferent values of R , but systematically higher values of
m

wind speed for Az = 0.125 m.

Figures 12 and 13 contain the solutions from series 8

for wave numbers k = 0.40 m and k = 0.15 m , respective-

ly. In all other experiments the wave amplitude is given

by :
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Figure 8. Distribution of the mean wind velocity (u in
m sec -

) with height (z in meters) for wave number (k)
equal to 1.000 m 1

. Comparison is made where
mean velocity profile;
4) series 7

.

2) series 4; 3) series
1) initial

5 and 6

;
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Figure 9. Distribution of the mean wind velocity (U in

m sec
-1

) with height (z in meters) for wave number (k)

equal to 0.0400 m -1 . Comparison is made where:
mean velocity profile; 2) series 4; 3) series 5

4) series 7.

1 ) initial
and 6

;
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Figure 10. Distribution of the mean wind velocity (U in
m sec -1 ) with height (z in meters) for wave number (k)
equal to 0.200 m -1 . Comparison is made where: 1) initial
mean velocity profile;
4) series 7.

2) series 4; 3) series 5 and 6;
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Figure 11. Distribution of mean wind velocity (U in
m sec -1 ) with height (z in meters) for wave number (k)
equal to 0.150 m~ . Comparison is made where: 1) initial
mean velocity profile; 2) series 4; 3) series 5 and 6

;

4 ) series 7

.
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Figure 12. Distribution of the mean wind velocity (U in
m sec -1 ) with height (z in meters) utilizing series 8 for
wave number (k) equal to 0.400 m -1 . Variation in wave
amplitude (a in meters) is equal, respectively , to

:

1) initial mean velocity profile; 2) 2.00 m; 3) 1.00 m

;

4) 0.50 m; 5) 0.25 m= .1/k; 6) 0.10m.
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Figure 13. Distribution of mean wind velocity (U in
m sec~l) with height (z in meters) utilizing series 8 for
wave number (k) equal to 0.150 m -1 . Variation in wave
amplitude (a in meters) is equal, respectively, to:
1) initial mean velocity profile; 2) 2.00 m; 3) 1.00 m

;

4) 0.6 7 m = ,1/k; 5) 0.50 m; 6) 0.10 m.
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a = 0.1 k
-1

(5.5)

In these figures, the amplitude ranges from 0.10 m to

2.00 m. The smaller values of amplitude gives wind pro-

files which are very close to the logarithmic profile.

The larger wave amplitudes lead to increasingly larger

departures from the logarithmic profile. This is to be

expected since u is proportional to the square of the

disturbance amplitude (equation 4.2).

Figure 14 contains the disturbance potential tempera-

ture as a function of z, from series 9 with three values

of k. These curves show that the largest temperature

amplitudes occur at about one meter in height; above these

maxima the temperature decreases rapidly. The largest

amplitude occurs for the smallest wave number. The

numerical solutions showed that the stream function ampli-

tudes were not significantly affected by the presence of

temperature fluctuations. This was true for both T^ =

+0.15 and T = -0.15. This behavior may be interpreted

as follows. If it is assumed that the horizontal advec-

tion is balanced by the vertical advection, then equation

(2.17) becomes

:

i an
(5.6)9 = =— -k— if) .

U-c 9z

This expression is used to estimate the last term in (2.19).

It can be seen that the buoyance term will be much smaller

than the vorticity advection term with the possible
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Figure 14. Distribution of disturbance potential tempera-
ture (0 in °K) with height (z in meters) utilizing series
9 for wave number (k) equal, respectively, to: 1) 0„275
2) 0.125 m_1 ; 3) 0.050 m _1 .

m 1.
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exception of the point where U = c. The numerical solu-

tions show that the presence of such points does not change

the conclusion that the buoyancy term is that unimportant.
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VI. CONCLUSIONS

In this study the numerical results of Stauffer (1973)

were extended with the addition of buoyancy effects and

two different lower boundary conditions. The buoyancy

effects have no appreciable affect on the stream function

and wind stress fields; however, the presence of buoyancy

effects could affect the Reynolds wave stress through modi-

fications in the mean wind profile. These effects were

not considered in this study.

In this thesis, emphasis was placed on modifications

in the mean profile which arose from the Reynolds wave

stress. The two new boundary conditions which were inves-

3 U
tigated involved two methods of estimating *— in one of

dz

the lower boundary conditions. This term was entirely

neglected in the study by Stauffer (1973). In the first

method the derivative was evaluated from the logarithmic

wind profile evaluated at a false level (z ). This pro-

cedure leads to very large wave stresses near the surface

when z became small.

8U
In the second method, -^— was evaluated by finite dif-

dz

ferences. Many solutions were performed with this

boundary condition involving different values of the wave

number, convergence criteria, and the grid size. Those

solutions showed that the wind profile was near the loga-

rithmic profile for the larger wave numbers of order one.
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Smaller wave numbers showed considerable fluctuation

about the logarithmic profile in the lower layers with

the tendency toward wind speeds larger than those given

by the logarithmic profile. Figure 7, which employs the

smallest grid size, shows this tendency clearly. However,

further investigations with this profile suggest larger

fluctuations if a finer convergence criteria is used.

In general the computed wind profiles are consistent with

observational data analyzed by Davidson (1974).

Further investigations of this type must carefully

consider the lower boundary condition which was shown to

be very sensitive in this study. Perhaps a full two-dimen-

sional treatment of the air flow over the wave surface is

required. Also it is very important to obtain accurate

expressions for the turbulent exchange coefficients at

different locations near the wave surfaces. These studies

should be coordinated with careful analysis of observa-

tional data.
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