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ABSTRACT

In this thesis we extend several results on prediction

intervals that were obtained under the assumption that the

sample observations are independent and identically

p
distributed as N(u,a ). We assume that the samples are

correlated with a prescribed correlation structure and show

that many of the results available for the independent case

apply equally well for the correlated samples. The

correlation structure assumed occurs in variance components

models in Analysis of Variance and the results can also be

applied to the case where the samples have an intraclass

correlation (equicorrelated samples).
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I. INTRODUCTION

A prediction interval is a random interval that contains

the value of a future observation or some function of

future observations and whose end points are functions of

previous sample values. Such an interval provides an

indication of the uncertainty in the future observations.

More specifically, a lOOr percent prediction interval for

the value of a future sample is an interval that is based

on a previous sample and encloses the future observations

with probability r, independent of the values of the

distribution parameters, such as the mean or the standard

deviation. A prediction interval needs to be distinguished

both from a confidence interval and a tolerance interval;

a confidence interval encloses the value of an unknown

parameter and a tolerance interval is an interval within

which a specified proportion of the population values will

lie with a specified probability.

In many practical problems, it would be of interest to

construct a prediction interval for the values of the next

k sample values from a population. For example, if only

one machine is available for testing and we must perform

trials sequentially, a prediction interval could provide

helpful information about the total time needed to complete

the experiment or perhaps the number of trials it would be

possible to perform. Another application of prediction





intervals is in forecasting before a planned experiment is

completed. In an experiment where each observation is

expensive or where they can be made only infrequently,

prediction intervals may be helpful in reaching a decision

on the profitability of continuing the experiment at inter-

mediate points in the experiment. For example, when the

experiment concerns a physical input or output, preliminary

estimates of the ultimate amount of needed input material

or of the ultimate storage needed for the output might be

helpful. In other situations where the random variable is

the "time until occurrence of an event," and where physical

limitations prevent the concurrent running of all planned

trials, prediction intervals might provide helpful infor-

mation concerning the total time until completion of the

planned experiment. Prediction intervals are also of

frequent interest to a typical consumer of one or a small

number of units of a given product. Such an individual is

generally more directly concerned with the future performance

of his specific sample than in the process from which the

sample had been selected. A prediction interval to contain

each of the values of the sample would then provide him

with an interval within which he may expect the performance

of all his units to be located with a high probability.

Based upon his experience with a previous sample of 10 light

bulbs, a consumer might wish to construct an interval which

would have a high probability of including the performance

values of each of three additional bulbs.





In this thesis we derive prediction intervals for one

future sample observation as well as simultaneous intervals

for a specified number of future sample observations when

the samples are correlated. These results are obtained as

extensions of results due to Hahn [5]. He derived similar

intervals for the case where the samples are independent and

2
identically distributed as N(y,c ).

In Chapter III it is shown that Hahn's prediction inter-

val for the standard deviation of a single future sample is

valid even in the case where the sample values are correlated

and have a multivariate normal distribution with mean vector

u = (y s y,y,. . •
,y)' and covariance matrix V having the following

structure:

V = I ( H + H') + a( I - E )

nxn nxn nxn nxn nxn
(1.1)

where H =

nxn

h
l

h
l

h
l

hp hp hp

h
3

h
3

h
3

h
n

h
n

h
n ni

H' is the transpose of H , h
i

(i=l,2,3, . . . ,n) and

nxn nxn

a are positive constants, I is an' nxn identity matrix,
nxn





and E is an nxn matrix all of whose elements are
nyn

unity.

Simultaneous prediction intervals for the standard

deviations of k future samples are also derived and examples

illustrating the results are provided.

A covariance matrix with the above structure occurs in

the study of random effects models in analysis of variance.

If samples are drawn from a normal distribution N(y,a.-)

and It is assumed that y itself is normally distributed

2
as N(n,c ) then it can be shown that the sample values

have a multivariate normal distribution with mean vector

n =
(Jl jl >n > • • • 5 l) ' and covariance matrix

V =

a +a
y

It can be seen that the matrix V has the same structure

as in (1.1) by letting h
1
=h

2
=. . .=h

n
=a 2+a 2 and a=o 2

. A

possible application of the results of this thesis is in

the following situation. From a lot containing a large

number of guns n are selected at random. Each of these

guns is then fired k times and the resulting miss distances

9





from a target are measured. Based on the mean of the

measured miss distances, a prediction interval for the

miss distance for a randomly chosen gun may be predicted.

Chapter IV deals with procedures for constructing a

prediction interval to contain a single additional observa-

tion and also with constructing a simultaneous prediction

interval to contain all k additional future observations,

when the samples are correlated and the covariance matrix

has the structure as in equation (1.1).

10





II. SUMMARY OF KNOWN RESULTS

A. DEFINITIONS AND NOTATIONS

Let X.., 1=0,1,2 ,3 , ... >k and 3=1,2 ,3, • .
.
,n^, be k+1 sets

of random samples of size n. from a normal distribution

N(u,a ). The n samples for 1=0 are considered as the

given sample and the remaining k sets are future samples

for which prediction intervals are needed.

Let

- 1 *

1 n
i 3=1 1J

n
i

and S,
2
=-f- I (X,. - X,)

2
1 n

i j=l 1J

where 1=0,1,2,3. .. ,k and j=l ,2 ,3, . .
.
,n.

,

B. PREDICTION INTERVALS FOR THE STANDARD
DEVIATIONS OF FUTURE SAMPLES

It is well known that n
Q
S
o
2
/c 2 and n

1
S
1

2
/a

2
(1=1,2 ,3. . .

,k)

have a Chi-square distribution with n -1 and n^-1 degree

of freedom respectively and they are mutually independent.

Thus, S. /S follows an F distribtuion with n.-l and

n -1 degree of freedom respectively, 1=1 ,2 ,3, . .
.
,k.

Therefore, a prediction interval to contain the standard

deviation S. of a single future sample of n
i
observations is

11





Pr{S P(n
1
-l,n -l;(l-r)/2)

Ss
< S

±
< S

o
F(n

1
-l,n -l;(l+r)/2)

!5

} = r

(2.1)

where P(n
±
-l,n -l;(l-r)/2) and F(n

1
-l,n -l; (l+r)/2)

are lower and upper 100r# points of F distribution with

n.-l and n -1 degree of freedom respectively.

A two-sided 100r% prediction interval to contain the

standard deviation S. of a single future sample of size n.

is

(Pdi.-l^-lsd-r)^)^, F(n
1
-l,n

o
-l;(l+r)/2)

l5

S
o ) (2.2)

To obtain a simultaneous interval to contain the

standard deviations of k future samples assume that

n.=m, 1=1,2,3,. .. ,k, and let

S.
2

max —« = WT (K,m-l,n -1)
i s

o
2 L

s
i
2

and min —~ = WQ (K,m-l,n -1)
± g

d b o
o

The random variables WT (K,m-l,n -1) and WQ (K,m-l,n^-l) are

known as the student i zed largest and studentized smallest

Chi-square variates, respectively, in the statistical

literature and some tables [1] of the percentage point of

their distributions are available. Let D,
]
(K

) m-l )n -l;r)

and D
L
(K,m-l,n -1,1-r) denote the upper 100r/S and the lower

12





100(l-r)# points of the distribution of WT (K.m-l.n -1)
L O

and W
g
(K,m-l,n -1) , respectively.

Then

Prdnax S^ < DjjCK.m-l.n -l;r)S
Q
2

} = r

and

Pr{min S,
2

> DT (K ,m-l,n -1 ,r)S
2

} = 1-r (2.3)

A simultaneous prediction interval to contain all the

standard deviations S ,S
2
,S ...,S is given by

(D
u
(K,m-l,n

o
-l;r)

J5

S
o

, D
L
(K,m-l .i^-l;!-!-)^)

C. PREDICTION INTERVALS FOR THE OBSERVATIONS IN A FUTURE
SAMPLE

Let X- ,X„ ,X_, . .
.
,X be the values of n given samples

from a normal distribution N(u,a ) and let X
+

. ,X +2 3 X + o>

. .
.
,X + , be the values of k future independent observations

to be drawn from the same distribution. To get a prediction

interval to contain a single additional observation X .,

,

we proceed as follows;

Let

Z
l

= X
n+1 " *o

the expected value of Z is zero and the standard deviation

of Z^ is Z( ^(0(0, (r

x
(i-^)

13





,a&

It is easily seen that that the standardized variable

i
z

n
- X .. - X-

„ _ 1 „ n+1 o

1 pH4— l h

and

s * = i z (x.-x r
o n . , i o yi = l

are independent. Therefore, ^FiTT

)C
Z ' X ,„ - X

T = X = -S±i <^_

(n"1)S
o

2 V 1^
a
2
(n-l)

follows a t distribution with n-1 degrees of freedom.

Thus,

^ Pr{X
Q
+t (n-1; (l-r)/2) (l+l/n)1s <X

+1
<X

Q
+t (n-1; (l+r)/2)a+l/n)'

5
S}=r

(2.4)

where t (n-1; (l-r)/2 ) and t (n-1 ; (l+r)/2 ) are lower and upper

100r/5 points of t-distribution with n-1 degrees of freedom.

Hence, a two-sided 100r# prediction interval to contain

a single future observation X ,, is
n+1

14





,%<Xn ± t(n-l|;(l+r)/2)(l+l/n)\
o r ' o

To determine a simultaneous prediction interval to

contain all k future observations, first, let

Z. - Z
n+ ^ ~ X

Q , i r 1,2,3)..

.

s k.

Then, the expected value of Z. is zero and the variance of

Z
±

is

?
2d+i,

and it can be shown that cov(Z ,Z.) = a /n for all i and j
i J

,

-

i / j. The transformed variables

^W 1 J->' J J> •••)"

have standard normal distributions.

2 2 '

Since (n-l)S^ /a is independent of the Z. and has a

Chi-square distribution with n-1 degrees of freedom, each

of the ratios

T, =

(n-l)S
(

(n-l)a'

X
n+i - X

o

V 1+^

15





follows a student's t-distribution with n-1 degrees of

freedom and the T. are correlated. The random variables

T.jTpsT.-, . . . ,T„ are jointly distributed according to the

multivariate generalization of the student's t-distribution

with n-1 degrees of freedom. Tables of the percentage

points of this distribution are given in [4]. If u is

defined as the solution of the integral equation

u u u
r= / / *" / fm m m m dT n , dT~ , dT „ , . . . , dT

-u -u -u
T13 T 2

,T ,. .. ,T
R

dT
1 > dT 2 ' dT 3'-- »-

where f „ _ is the joint probability density

function of multivariate t-distribution with n-1 degrees

of freedom, then •

Pr{X -u(l+i)^S <X , n <X +u(l+-)
i2

S ,.. .,X -u(l+J-)^S <X ,. <X +u(l+^-)
is

S } = r
o n o n+1 o n o' ' o n o n+k o n o

The resulting 100r% simultaneous prediction interval to

contain the values X , , ,X
,

,X ,_....,X ,, of all k additional
n+1' n+2' n+3 n+k

observations is

D. SOME THEOREMS USED IN DERIVING THE RESULTS IN THE THESIS

* Theorem 1 . If X is distributed HCiJijC
2
!), then X'AX/o

2 2
is distributed as x (K,X), where X = p'Au/2a , and k = rank

of A, if and only if A is idempotent.

16





* Theorem 2 . If X is distributed N(y,V), then X'BX is

2distributed as x (k,A), where X = ^u_'Bu_ and k is the rank

of B, if and only if BV is idempotent.

* Theorem 3 . If X is distributed N(y_,V), then X'AX and

X'BX are idependent If and only if AVB = 0.

* Theorem 4 . If X is distributed N(y,V), then Y = C'X and

X'AX are independent if and only if C'VA = 0.

* Theorem 5 - (Hogg and Craig theorem)

Let Q =
Q-L+Qg+Q^.. .+Q

k_ 1
+Q

k , where Q,Q
1 ,Q 2 ,Q

3
, . . . ,QR_ 1 , and

Q. are k+l__random variables that are quadratic forms in the

observations of a random sample of size n from a normal

distribution N(y,a 2
). Let Q/a

2
be x

2
(r) , let Q

±
/a

2
be

the random variables Q, ,Q ?3 Qo, . .
. ,Q< are mutually stochas-

2 2tically independent and, hence, Q, /a is x (r, = r - Z r. )

.

k k
J=1

3

* Theorem 6 . (Baldessari theorem) . Let X be a
nxl

multivariate normal distribution with mean vector jj and
nxl

covariance matrix V , i.e., N(y_,V), and B ,B, ,Bp , . . . ,B,

nxn
be (nxn) idempotent matrices satisfying

k
1

£ B, = I - i E
j =

° nxn nxn

where I is the (nxn) identity matrix and E is
nxn nxn

a (nxn) matrix all of whose elements are unity. Let

a be a positive constant. Then, a necessary and sufficient

17





condition for X'B,X/a, j=l ,2 ,3, . .

.

5 k, to be mutually

Independent and have non-central Chi-square distribution

with r. (r, = rank of B., j=0,l ,2 , . .
.
,k) degree of freedom

J J J

is that the covariance matrix V has the following structure

V = I( H + H' ) + a( I - E )

nxn 2 nxn nxn nxn nxn

where H
, I and E are defined on (1.1).

nxn nxn nxn

18





III. PREDICTION INTERVALS TO CONTAIN THE STANDARD DEVIATIONS

OF FUTURE SAMPLES - CORRELATED CASE

Hahn [5] derived prediction intervals to contain the

standard deviations of future samples of independent and

identically distributed random variables from a normal

distribution with unknown mean and unknown standard devia-

tion. In this chapter we extend Hahn's results to the case

where the samples are correlated and have a special type of

covariance structure.

Section A deals with the procedures for constructing a

prediction interval to contain the standard deviation of a

single future sample of size n, observations, based on a

given sample of size n .

Section B deals with the construction of simultaneous

prediction intervals to contain the standard deviations S.

i = l,2,3j...jk of k future samples of sizes n..

Numerical examples are given in Section C.

A. PREDICTION INTERVAL TO CONTAIN THE STANDARD DEVIATION
OF A SINGLE FUTURE SAMPLE

Let X n , ,Xno ,X__, . . . ,Xn be the values of a given sample
01' 02' 03 'On

o
and X, , ,X, „ .X., _, . . . ,X, , the values of a future sample. It

11' 12 ' 13' ' In, '

is required to construct a prediction interval for the

standard deviation S. of the future sample based on the

standard deviation S of the given sample.

19





Let

- i
ni

x
i

=

q jf a

xu

and

n

.

S
2

= -~ E (X . - X,

)

2
where 1 = 0,1

T
-fJ

Let

_ ! 1 "i
X = rr E E X. . where N = n + n nN

i=0 j=1 U o 1

and

1
n
i

2 1 — 2
S = ± E E (X. - XT

W 1=0 j=l 1J

denote the sample mean and variance of the combined sample

of size N = n + n n .

o 1
— — — 2

Since X, = (NX - n X )/n, , the sum of squares NS can be

partitioned as follows:

? 1
n
i

P 1
n
i

P
NS = E E (X. .-X) = E E (X. .-X.+X.-X)

i=0 j=l 1J 1=0 j=l 1J X X

1
n
i

= E E (X..-X,

)

2
+ n,(X,-X)

2

1 J 1

= n
o
s
o
2+n

i
s
i
2+n

o (V?)2+n
i
{(,«Vo)/nr^

2

='Vo
2

+ n
l
S
l

2
+ ^ (M

o
)2 (3.1)

20





Expressing the sum of squares in (3.1) as quadratic forms

we can write the equation as

X'B X = X'B n X + X'B.X + X'B-X (3-2)— —o— — —1— — —d.— — —3—

where B , B.. and B~ are idempotent matrices and

B^ = I - N
1
E and B

±
= I - n

±

1
E , 1=0,1.

NxN NxN n
1
xn

i
n'jxrij

If x
01 » x02 » xo3»* •* » x0n »

xn» x
i2»

x
i3»* * * ' Xln,

are

independent and have identical normal distributions with

2 2 2 2 2mean y and variance a , then it is known that NS /a , KS /a

2 2
and n n S n /a have Chi-square distributions with N-l, n -1

J. -L. O
— — 2

and n.-l degrees of freedom respectively and n N(X-X ) /n^

is non-negative. Thus, Hogg and Craig's theorem (theorem 5)

applies to equation (3.1). Therefore, the three quadratic

forms on the right hand side of (3-1) are mutually independent

— — 2 2and n N(X-X ) /n,a has a chi-square distribution with 1

degree of freedom. It also follows that the matrix B^ in

equation (3-2) is also idempotent.

Now, suppose ^ = (X
01

,X
02

,X
03

,...,X
0no

,X
11

,X
12

,X
13

,...,X
lni

)

is a vector random variable having a multivariate normal
t

distribution with mean y = (y,y ,y , . . . ,y) and covariance
Nxl

matrix V which has the following structure.
NxN

V = I( H + h') + a( I - E ) (3.3)

NxN NxN NxN NxN NxN

21





where

H
NxN

I is an NXN identity matrix, E is an NXN matrix whose
NXN NXN
elements are all unity and a and h., i = 1,2,3»...»N, are

positive constant

.

To obtain a prediction interval for S-, we start with

equations (3.1) and (3-2). Since the matrices B , B , B
?

_l
and B_ are idempotent matrices and Bq= E B.= i -N E~3 NxN j = l _J N3cN N3cN

all the conditions of the Baldessari theorem (theorem 6)

are now satisfied. Therefore, the three quadratic forms of

(3.2) on the right hand side have central Chi-square distri-

butions with n -1, n
-i

- l and 1 degree of freedom respectively

and are mutually independent.

Thus, the random variable

X B^X / X B-i X

a a

(nl-^ S
l

a(n
1
-l)

(n -1)S
c

v o o

a(n
o
-l)

follows an F-distribution v;ith n, -1 and n -1 degrees of

freedom and we obtain a prediction interval for S. as;

22





s
2

MF(n
1
-l,n

o
-l;(l-r)/2) < -^ < P(n

1
-l,n

o
-l;(14r)/2)} = r

S
o

or equivalently,

&Pr{S P(n
1
-l,n -l;(l-r)/2)'s

< S
1

< S^P&^-l^-l; (l+r)/2P} = r

(3.4)

where r is the chosen confidence coefficient and

F(n
1
-l,n

o
-l;(l-r)/2) and F(n.,-l,n -l; (l+r)/2) are the

appropriate percentage points of the F distribution with

n-,-1 and n -1 degrees of freedom. This yields the following

two-sided 100r# prediction interval to contain the standard

deviation S, of n, future observations;

(S
o[F(n -l >ni-l;(l4r)/2)

^ F^-l^-l^l+r)^) (3-5)

This prediction interval for S^ is exactly the same as the

one obtained by Hahn [5] for the independent case.

B. A SIMULTANEOUS PREDICTION INTERVAL TO CONTAIN THE
STANDARD DEVIATION OF EACH OF k FUTURE SAMPLES

As in the previous section, let X^, jXn? ,X
n ^. .

.
,X

Q
o

be the values of a given random sample and let

X
i;L

,X
12

,X
13 ,. .

•>X
lni > X21' X22

5X23' ' '
5X

2n
2

5X 31' X 32'
X 33'* * *

,X3n>

. . . »XjQ X„ ,X , ...,XK be the values of K sets of future

samples from a normal distribution with unknown mean y and

unknown standard deviation a.
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Let

- 1 ^
X
i

= ~
± ^ X

iJ

n
i

S
i

2 =
FT

E (X
ij " V 2

'1 n
i j=l 1J

where i = 0,1,2,3, ... ,k and let

K
N = Z n.

.

1=0 x

Also let

, K
n
l

X - w Z Z X.

,

N 1=0 j = l
1J

and

S^ = ± Z S (X,. - XT
N 1=0 3=1 1J

K
be the mean and variance of the pooled sample of N = Z

1=0
observations.

2
The sum of squares NS can be partitioned as

pKi pKi _P
NS = Z Z (X. .-X) = Z Z (X..-X.+X-X)

1=0 j=l V 1=0 j=l 1J x

= Z [ Z (X..-X )

2
+ n (X.-X)

2
]

1=0 j=l 1J x

= n S
2
+n,S

2
+n S

2
+...+n„S

2
+ Z n,(X,-X)

2
(3-6)

o O 11 2 2 I\ K ._« 1 1
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2 2
It follows that (N-l)S /c has a Chi-square distribution

2 2with N-l degrees of freedom and (n.-l)S. /a , 1=0,1,2,3, ... ,K,

have Chl-square distributions with n.-l degrees of freedom

respectively, and the last term of (3.6) is non-negative.

Applying Hogg and Craig theorem (theorem 5) we can conclude

that the last term of (3.6) also has a Chi-square distribu-
K

tion with K[(N-1)- Z (n.-l) = (N-1)-(N-(K+1) )=K] degrees
1=0

of freedom and that all the sums of squares on the right

hand side of equation (3.6) are mutually independent.

Expressing these sums of squares as quadratic forms we

can write equation (3-6) as;

X'BX = X'B^X + X'BqX + X'B^X + . . . + X'U + X'EL^X (3-7)

where

B= I - N
_1

E and B . = I - n.~\ , 1=0,1,2,.. .,K,K+1,
NxN NxN x

n.xn. n.xn,

are idempotent matrices (see theorem 1).

Now, suppose X is a random vector having a multivariate
Nxl

normal distribution with mean y = (y ,y ,y, . . .
,y) ' and

Nxl
covariance matrix V which has the form (3-3).

NxN „

The partition of NS given in equations (3.6) and (3-7)

are valid for this case also. Thus, we know B and B.

,

1=0,1,2 ,3, ... ,K, are idempotent matrices and B = I - N E
NxN NxN
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B m j _ n
_1

e . So, the conditions of Baldessari
_i n7xn

i
n
i
xn

i

theorem (theorem 6) are all satisfied. Therefore, X'BX/a

has a Chi-square distribution with N-l degrees of freedom,

X'BjX/a, I"0i.l,2,3,...,K, have Chi-square distributions

with n.-l degrees of freedom and X'B_
k+1

X/a has a Chi-square

distribution with K degrees of freedom. Further the k+2

sums of squares on the right hand side of (3-7) are mutually

independent. Thus, each of the random variables

X'B.X / x'B^X _ (n^DS. 2
/ (n

Q
-l)S

o

2

=
S^

2

7~
/ a aCn^l)/ a(n

Q
-l) S

Q

where i = 1,2,3,...,*, follows an F distribution with n
±
-l

and n -1 degrees of freedom.

Now, assume n
1

= n
2

= n
3

= ... = n
k

= m
-

Then >

s _2 /s 2^ 1=lj2> 3,. .. ,K, has an F distribution with m-1 and

n -1 degrees of freedom.

Define the random variables

WT (K,m-l,n -1) = max —*
L o i S

o

and

S
2

W„(K,m-l,n -1) - min —
?s ° i S

i-, 1=1,2,3,-. •
,K.
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The distributions of WT (K,m-l,n -1) and Wc (K,m-l ,n -1)
Li O O O

are known as the studentized largest and studentized

smallest Chi-square distributions, respectively. The upper

percentage point D
TT
(K,m-l,n -l;r) of W (K,m-l,n -1) and

the lower percentage point DT (K,m-l,n -l;l-r) of WQ (K,m-l,n -1)
1j o o o

were tabulated by Armitage, J.V. and Krishnaiah, P.R. and

are available in [1].

Then,

Pr{W
L
(K,m-l,n

o
-l) < DyCK.m-l ,n

Q
-l;r)

}

= Pr{max -±~ < D (K,m-l,n -l;r)} = r
1 S

u °
o

and

Pr{max S
±

2
< D

u
(K,m-l,n

o
-l;r)S

o

2
} = r.

Thus, an upper 100r$ simultaneous prediction limit to

exceed the standard deviations of all k future samples

each of size m is

S
o
D
u
(K,m-l,n -l;r)

1
'2 (3-8)

Similarly, a lower 100(l-r)# simultaneous prediction limit

to be exceeded by the standard deviations of each k future

samples of size m Is
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S D
L
(K,m-l,n -l,l-r)

i'2 (3-9)

This result is also the same as the one Hahn [5] obtained

for independent samples.

C. NUMERICAL EXAMPLES

Suppose a gun is selected at random and fired r\
Q

= 6

times and the resulting miss distances from a target are

measured. Let S =1.00 be the standard deviation of these

observations. A prediction interval for the standard devia-

tion S of n, = 10 future attempts is desired.

Then, a two-sided 95$ prediction interval to contain

the standard deviation S
1

for a single future sample of 10

observations is obtained as follows;

For n = 10, n
Q

= 6 and r = 0.95, F(9,5;-975) = 6.68 and

F(5,9;0.975) = 4.48 and S
Q
F(9, 5 \Q.915)

h
= (1. 00) (6. 68)"2 = 2.584

S
o
F(5,9;0.975)"

1'5 = (1. 00) (4. 48)
_!l

= 0.472.

Substituting the above in equation (3-5) the required

prediction interval for S
]
_
is (0.472,2.584). Next, an upper

95% simultaneous limit to exceed the standard deviation of

all 3 future samples of size 10 is;

For m = 10, n = 6, K = 3 and r = 0.95, D
y
(3, 9,5 ;0 . 95) - 6.4l

o

and D
u
(3,9,5;0.95)

l5

S = (6.41)^(1.00) = 2.762 (see table 28

page 41 [1]).
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IV. PREDICTION INTERVALS FOR THE ADDITIONAL
OBSERVATIONS IN A FUTURE SAMPLE -
CORRELATED CASE

A prediction interval to contain a single future

observation and a simultaneous interval to contain each

of k additional observations of a random sample from a

p
normal distribution with mean u and variance a were obtained

by Hahn t53« In this chapter we extend these results to the

case where the samples are correlated and the covariance

matrix has the form defined in (3-3). In section A a

prediction interval to contain a single additional observa-

tion based on correlated observations is obtained, and

section B deals with the construction of simultaneous

prediction intervals to contain k additional correlated

observations. Numerical examples are given in section C-

A. A PREDICTION INTERVAL FOR A SINGLE FUTURE OBSERVATION

Let X, ,Xp ,X,, . . . ,X be indegend^jit and have identical

normal distribution with unknown mean u and unknown

standard deviation a. It is required to construct a

prediction interval for an additional observation X + ,

based on the given n samples.

Let

1
n

X = - Z X,
n n

i=1
i
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S = - E (X, - X )n n . - i n'

, n+1
E X,

n+1 n+1 1=1 1

2 x
n+1

2
S
n+1 ~ H+T

1f 1
(X

1 " X
n+1 }

Since

n+1
Cn+l)X

n+1
- nX

n , _ x^ -^ *** + " *»\

2
the sum of squares (n+l)S can be partitioned as follows:

3 n+1 P n P ?
(n+1)s

n+i
-

1=\ «rW "J^^rW + WrW «

n - - -
y
? - P

= E (X.-X +X -X ... ) + (X ,,-X ,, ) "

._, i n n n+1 n+1 n+1

n ' *

= E (X.-X )

2
+ n{X - -j=-(X xn +nX )}

2
+{X ,,- -^-(X .,+nX )}

. , in n n+1 n+1 n n+1 n+1 n+1 n

y
o X ,,-X" g n(X ,,-X ) 2

_ c 2 , n+1 n>.2 , n+1 n -.

= nS + n( Tn—) + i zt—

)

n n+1 n+1

= ns
2
+ -£y (x .. - x )

2 ^ (4.D
n n+1 n+1 n

Expressing the sum of squares in (4.1) as quadratic forms

we get

V%* = ¥h* + V®2- (i,
' 2)
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where B and B, are idempotent matrices and—o —l

B = I - (n+1)
1
E

(n+Dx(n+l) (n+l7x(n+l)
and B = I - n

1
E.

nxn nxn

2 2 2 2
Since (n+l)S ,/a and nS /a have Chi-square distribu-

tions with n and n-1 degrees of freedom respectively and

p
n(X ., - X ) /n+1 is non-negative, Hogg and Craig's theorem

(theorem 5) applies to equation (4.1). Therefore, the two

quadratic forms on the right hand side of (4.1) are mutually
' — 2 2

independent and n(X ,, - X ) /(n+l)c has a Chi-square

distribution with 1 degree of freedom. It also follows

that the matrix B„ in equation (4.2) is also idempotent.

Now, suppose X is a vector random variable having
(n+l)xl

a multivariate normal distribution with mean y = (y ,ii,y, . ; . ,y)

'

(n+l)xl
and covariance matrix V which has the following

(n+l7x(n+l)
structure.

V = £( H + H') + a ( I - E ) (4.3)
(n+lTx(n+l) (n+l7x(n+l) (n+l)x(n+l) (n+l7x(n+l) (n+l)x(n+l)

where

H
(n+1 )x (n+1)

/

\

\

h
l

h
l

h
l

h
l

h« hp hp hp

h-, h_ h_ h„

• • • •

h
n+l

h
n+l

h
n+l

hn+l/
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H' is the transpose of H, a and h, , 1=1,2, 3, . .
.
,n+l are

positive constant, I is an (n+l)x(n+l) identity matrix and

E is an (n+l)x(n+l) matrix whose elements are all unity.

Since the matrices B~ , B, , and B
?

in equation (4.2) are

idempotent and

2

(n+l)x(n+l) * -j
=

(n+l)~x(n+l) ~ (n+1)
(n+l)x(n+l)

we may apply the Baldessari theorem (Theorem 6) to equation

(4.1) to conclude that the two quadratic forms on the right

hand side of the equations have central Chi-square distri-

bution With n-1 and 1 ^gnjPg^nf^ppgrlr.TTi T^gppnf-,1 y_gTj^_ an

H

are mutually independent.

Thus, the random variable

X'B
2
X / X'B

"a / "a
siS. .

(HTT»*n+l-*n
)2 / ("; 1)Sn

2

a / a(n-l)

has an F distribution with 1 and n-1 degree of freedom.

We obtain a prediction interval for X ., as

Pr{F(l,n-l;(l-r)/2) < (^)(X
n+1
-x//s

n
2

< F(l,n-l;(l+r)/2)} = r
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or equivalently

Pr{VS
n (l +^)^(l Jn-l;(l-r/2)

1'5
<X^ <

< ^1
+S
n
(l + i)

l

%(l,n-l;(l+r)/2)
Js

} = r

where r is the chosen confidence coefficient and

F(l,n-l;(l+r)/2) and F(l,n-1; (1+r )/2) are the appropriate

percentage points of the P distribution with 1 and n-1

degree of freedom.

Now recall that F(l,n-1; (l-r)/2)* = t (n-1; (l-r)/2)

and P(l,n-l;(l+r)/2)
Js

= t (n-1; (l+r)/2)

This yields the following two-sided prediction interval

to contain the additional observation X , .

:

n+1

(Xn
+S
n
(l + ^-)

li
t(n-l;(l-r)/2),X^+S

n
(l + I)

i5

t(n-l;(l+r)/2)) (4.4)

B. SIMULTANEOUS PREDICTION INTERVALS FOR k
FUTURE OBSERVATIONS

Let X i ,Xp ,X,, . .
.
,X be the values of a given sample and

x xt J
X j.->>X .......X ., , the values of k future observations

n+1' n+2' n+3 n+k'

V/e assume that the sample observations X, ,Xp ,X_ , . . . ,X ,

X + ,,X p,...,X .. are correlated and have a multivariate

normal distribution with mean y = (y ,y ,y , . . . ,u) ' and

covariance matrix V which has the form (4.3).

33





In order to construct a simultaneous prediction interval

for Xn+l ,X
n+2'

Xn+3'" *

'

X
n+k we first establish that

n (Xi" X
n
)2

nS 2

(i) E — — = -^— has a Chi-square distribution
1-1 a a

with n-1 degree of freedom,

(ii) the vector variable Z_ = ( Z ,Z„ ,Z_ , . . . ,Z, ) '
, where

Z* = X , . - X , has a multivariate normal distribu-
i n+i n '

tion and

(ii3) the vector variable Z_ and nS are statistically

independent

.

2
n _ 2

If nS = E (X. -X ) is expressed as a quadratic form
1=1 x n

X BX, where X r (X^jX2>X-5j...
5^-n'^j^+i '^n+2 ' ' ' ' ' Xn+k '

then a necessary and sufficient condition for X'BX to have

a Chi-square distribution is that BV is idempotent (see

Theorem 2)

.

To show that BV is idempotent, let the matrices H, H
'

,

and E (^.3) and the matrix V be partitioned as follows:
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H =

/* \ it. - '

"i
h
1

- • •

hl
\

h h
2

t\ • • « h
2

h
2

- • • h
2

/

h3

•

h
3

•

h • * *

3

•

h
3
•

•

h * • *

3
•

•

h
3

•

h
n

•

h
n

•

h • • •

n

•

h
n

•

h • • •

n

•

h
n

Vl h
n+l Vl

n+k n+k n+k

n+1

n+k

n+1

n+k

n
J ^r

n+1

n+k

"l
nxn

\ km

nxk

H4

kxk

H» =

/ ill"

nxn nxk

kxn

a,'

J

kxk /
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and

1

1

1

1

1

1 •

1 .

1 .

E =

n

1 . . 1

1

nxn

^3
kxn

*2

nxk

E
4

kxk

V =
nxn

^3
kxn

^2
nxk

In
kxk /
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h
nxn \

I. =

in
kxk

where V
1

=
g- %+£,/) + aCl^-E^)

and V
2

= ^(H
2
+H

3
') + a(0-E

2
)

We know

B*
(nxk)xTn+k)

Si
nxn

I

°

where B-, = — ( I—1 a —
nxn nxn

n"
1

E )

nxn

' 5i

and BV

/ 2i

/ u
V I B^ 5A\

v,
4 \

(4.5)
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In equation (4.5), B.V, and —nX? can be simplified as

follows:

B
1V1 = ^(I1-n*

1
E
1
){%(H

1
+H

1
«) + oC^-^)}

- £<% + ^ + a^ - a^ - ^g^- ^H^

" fel
1
!

+ n^lV

- |(% +
^i'

+
«ii " a

*l ~ s£l " 55?!

n-l n -1

= (I -1e,)+1(L --E)—1 n —

1

2a —1 n —

n
where a = E h

1=1 1

and B^ = ^(Ij-n 1E
]L

) {JsCH^+H-* ) + a(0-E_
2
)}

" |(^ + ^3
' " °^> - 2^2 " 2l£lV +

fel^'

IC^ + yj
3

' - aE
2

- ^E
2

-^ + HnE
2

)

= n— (Hn — —E - )2a —2 n—

2
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Thus

/ hXi
BV =

\ °

*iV

But

ii-n~V&Si-&i 5 K<5a-k>>
\

\

and

/ *ih
(BV)(BV) =

^ ^
/ B^

/

5lM

o ./

(*iXi y
(B

1
V
1
)(B

1
V
2

)

\

(4.6)

lh%L* - {(I.-n- 1^) + ^(H
1
-|E

1
)}

;
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h - hi + fchrHi-hA +Mih)
n

+ H^Si-l^i-ISi^+^EA 5

4a n

II -H-E.^C^-lE.-lE^^ny

+
sr (ai-|=i-&5i + ^i«i)

4a n

I. - - E. + ^r-(K n
-- E, )—1 n —1 2a —1 n —1

and (B^
)
(B Ta ) = (

(^ 4*1 ) + 2^ ( *1 " I =1 )

}

x^(H
2
-|E

2
)}

^HI.-^E,)^ + ^-lE^Hg

a- 2:(T _i-E
n )E

n v -l n-1 -2 2an -1 n-l'-2
1

'(H n -|E-,)E }

E„ -- E,
*- ru fL v + — h
2a -2 n -2 2a -2 2an -2 n

+
an

E . -,gL H^ + a n
„ E,}

n
2 -2 2an -2

2 an
2 -2'

2a —2 n —

2

/
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Therefore

ii-fei + ?5%-|ii>
(BVMBV)

^5a-SSa) \

I

BV

Since BV is idempotent, X'BX/a has a chi-square distribution

with n-1 degree of freedom.

Next, Z_ = (Z.. ,Z_,Z_, . . . ,Z, ) ' can be expressed as

kxl C' X
kx(n+k) (n+k)xl

where C =
( — E , I )n

kxn kxk

Z_ has a multivariate normal distribution with mean C'y_ = 0_

and covariance matrix C'VC as shown below:

O'y = ( =± E,I) y = y ( Zi n + l) =
n kxn kxk (k+n)xl

n

HI





-1
C'V = ( — E , I )

n kxn kxk

»Hj

\h

u\
2\ 'Si'

+

H
4 J

I V

*3'\

3<'

ii \

- a

A I h

M
E4/

x"

1

2

(— + h .. )E
n n+1 -

(Z& + h ,
)E

v n n+2 —

(— + h .. )Ev n n+k —

lx(n+k)

\ {^VV* '
(irVh2^ --- (lThn+k

+h
n+k^

L kxl kxl kxl

a( =± E , I ) - o( =± n + 1) E
n , \rv\r IfYlTkxn kxk kxn+k
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1
2

<TT
+ h

n+l } *

(— + h .. )Ev n n+k —

+ a( =± E , I ) (4.7)n
kxn kxk

lxn+k

m

/^ +hn-KL^

C'VC = J f (— + h X0 )E
n n+2 —

(— + h .. )Ev n n+k —

+ «(# E , I )

kxn kxk

lx(k+n)

/ if
nxk

\ kxk /

^T^l^? + (T+h
n+l

)]^

".Tp'W^ + ^2^
[(—+h .. )(— ) + (—+h ,. )]EL v n n+k n n n+k —

lxk

+ a(-^- E E + I )

n kxk kxk kxk
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= o(
n kxk

I )

kxk

a

k+1
1

n
1

n

1
n

i+1
n

1
n

1

n
1
n

1

n

1

n

•

1

n

n n

Therefore, Z~ N(0, a( -E + I_ ) )

Also, Z_ = C'X and X'BX are statistically independent since

(see Theorem 4)

c'vb = i -i

<1T*W £

(—+h x0 ) E
n n+2 —

(—+h .. ) E
n n+k —

lx(k+n)

+ *c =r e , i ) ykxn kxk

I -

nxn
n- 1 E

nxn \

/

HH





1

2

--a.

- — E
n kxn

.-a
v n n+k —

lxn

_1_
2n

(^+hn + p)nE

(^-+h .. )nE
v n n+k —

lxn

"% n E
n kxn

=

Thus, each Z±3 1=1,2 ,3, . . .
,k, is normally distributed

with mean and variance o(l + 1/n) and is independent

of S
2

.
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Let Z
i

' , 1=1,2,3, ... ,k, be the standardized variables

defined by

7 ' =
Z. -

(a(l + ±)} h

X
n+1 - X

{a(l + ±)) h

the variables

T =
V X . . - X

n+i

\|(n-l)S 2

V a(n-l) 8(1 + ±) h

1 J-j<-) jj • • • jK

are jointly distributed according to the multivariate

generalization of the Student t-distribution with n-1 degree

of freedom and correlation matrix I defined by

Z =

1 1

n+1 n+1

1
1

n+1

1
1n+1

n+1
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To find a two-sided 100r# simultaneous prediction

interval to contain each of k additional observations, let

U be such that

U U U

_u -U -U l
i>

1
2 3 y"' 3l

k
1 J K

dt-,dtp. . .dt,

(4.8)

Then
X — X X - X

Pr{-U < -2il < u and . .
.

, and -U < -^ < U} = r

The resulting 100r$ simultaneous prediction interval to

contain the values X _ ,X
+
~,X , . .

.
,X , of all k future

observations is

X ± U(l + ±) h S . (4.9)

For selected values of r, the values of U to satisfy the

equation (4.8) were tabulated by Hahn and are available

in m.

C. NUMERICAL EXAMPLES

Based upon a random sample of observations from a normal

distribution whose mean and standard deviation are unknown,

the following data is obtained.

51.4, 49.5, 48.7, 49.3 and 51.6
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Prom the data, the sample mean X and sample standard

deviation S are calculated as

x = (51. *» + **9.5 + 48.7 + ^9.3 + 51. 6)/5 = 50.10

and S
2

= {(51. 4-50. I)
2

+ (49. 5-50. I)
2

+ (48. 7-50. I)
2

+ (49. 3-50. I)
2

+ (51.6-50.1)
2
}/5

= 6.9/5 = 1.38

S = 1.175

Then, a two-sided prediction interval to contain a single

future observation X + , with 95ft probability is (see

equation (4.4):

For n=5, r=0.95 5 from the Student's t-tables

t(4, 0.975) = 2.776. Substituting the observed values

in (4.4) a 95$ prediction interval for X ., a future

observation is given by

(46.527, 53.673)

Next, a two-sided 95% simultaneous prediction interval to

contain each of 10 future observations is obtained using

equation (4.9) :

For k=10, n=5 and r=0.95 from the tables in [4]

U(l+^-)
1
'1 = 5.23. Thus X ± Ud+pjO^S = 50.1 ± 5.23(1.175)

and the required prediction interval is given by

(43.855, 56.145)
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