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ABSTRACT

The various wave theories, theoretical breaking criteria

and derived breaking criteria are reviewed for shallow water

waves. To account for the non-linear hydrodynamics present

in a shallow water wave breaking on a beach with a sloping

bottom, the perturbation technique of Iwagaki and Sakai is

used to derive a second order expression for the horizontal

water particle velocity for long waves. The kinematic

breaking criterion is applied to the derived c' 2
' and u' 2 '

values to establish breaking. The results indicate that

the ratios of /^ /LQ and hi /HQ provide reliable breaking

criteria. Each of the parameters is dependent only upon

beach slope and H /L . Theoretically derived values for

h^/H compare favorably with field measurements and offer

significant improvement over previous theory. Predicted

breaking depths are less than those present in experimental

data, suggesting extension to higher orders may be warranted,





TABLE OF CONTENTS

I. INTRODUCTION -- - 12

II. THEORETICAL BREAKING CRITERIA 17

A. KINEMATIC BREAKING CRITERION 18

B. DYNAMIC BREAKING CRITERION 18

C. GEOMETRIC BREAKING CRITERION --- 19

III. DERIVED BREAKING CRITERIA 20

A. BREAKING WAVES OF PERMANENT FORM
(SHALLOW WATER, CONSTANT DEPTH) 20

1. Kinematic Breaking Criterion 20

a. Crest Angle 20

b. Wave Steepness 22

c. Wave Height to Depth Ratio 23

2. Dynamic Breaking Criterion 24

a. Water Particle Acceleration 24

b. Vertical Particle Acceleration 24

c. Vertical Pressure Gradient : 25

B. WAVES WHICH DEFORM AS THEY SHOAL
(SLOPING BOTTOM) 25

1. Kinematic Breaking Criterion 25

2. Geometric Breaking Criterion 26

IV. REVIEW OF LONG WAVE SOLUTIONS - 29

A. METHOD OF CHARACTERISTICS --- - 29





B. IWAGAKI AND SAKAI PERTURBATION
TECHNIQUE — 37

C. PHASE SPEED RELATION -- 39

V. DERIVATION OF WAVE-INDUCED VELOCITY AND
WAVE PHASE SPEED USING IWAGAKI AND SAKAI
PERTURBATION TECHNIQUE 44

A. DERIVATION OF u^ - 44

B. SECOND ORDER EQUATIONS FOR n AND u 52

C. DETERMINATION OF THE PERTURBATION
PARAMETER, « 54

D. SECOND ORDER EXPRESSION FOR c 58

E. DETERMINATION OF a 60

VI. BREAKING CRITERION DERIVED 63

A. APPLICATION OF KINEMATIC BREAKING
CRITERION - - 63

B. RESULTS 64

VII. CONCLUSIONS - — 74

APPENDIX A - DERIVATION OF n^ - 75

APPENDIX B - COMPUTER PROGRAMS - 80

LIST OF REFERENCES 92

INITIAL DISTRIBUTION LIST --- 96





LIST OF TABLES

I. Numerical Results of Derived Shallow Water
Breaking Criteria 65-66





LIST OF DRAWINGS

1. Waves on a Sloping Beach 11

2. Enclosed Crest Angle for Kinematically
Limited Wave 21

3. Integration by Finite Differences 32

4. Propagation of Disturbances 42

5. Applicable Range of Solution 56

6. Plot of hb /HQ vs. H /L
Q

68

7. Breaking Wave Profile, Period =10.6 Seconds 70

8. Breaking Wave Profile, Period = 15.0 Seconds 71

9. Program 1

10. Program 2

11. Program 3

Approximation of a 86

Refinement of a 87

First Approximation of x and t

at Breaking 88

12. Program 4: Determination of x and t at
Breaking 89

13. Program 5: Calculation of n^/h^ and h^/L 90

14. Program 6: Plot of n at time of Breaking 91

8





TABLE OF SYMBOLS AND ABBREVIATIONS

a Constant Related to Wave Height

«< Perturbation Parameter

Angle of Bottom to Horizontal

c Wave Phase Speed

g Gravitational Constant

H Wave Height

h Depth of Water Referenced to Still Water
Level = i*x

i Beach Slope tan 3

JQ Zero-Order Bessel Function

J-, First-Order Bessel Function

L Wave Length (feet)

N Zero-Order Neumann (Weber) Function
o

N, First-Order Neumann (Weber) Function

tj Elevation of Free Surface Referenced to
Still Water Level

p Pressure

p(x) 2 a (x/gi) %

p(x) la (x/gi) % - -£-

p Density of Water

<J 2 7T /T

T Wave Period (seconds)





t Time (seconds)

u Horizontal Water Particle Velocity

w Vertical Water Particle Velocity

x Horizontal Distance from the Beach

y Elevation of Wave Crest Above the Bottom

z Vertical Axis

Subscripts

b Value of Quantity at Point Where Breaking Occurs

c Value of Quantity at the Wave Crest

Deep Water Wave Conditions

1 Conditions present at the point where the depth
of water is maximized in applicable range of
solution.

x Derivative with Respect to x

t Derivative with Respect to t

Superscripts

(1) First Order Solution

(2) Second Order Solution

10





N«*

z
o

o
OB

2>

I
U
<

03

a
z
a.

O
_i

<
z
d
(A

>

0)

fa

-11





I. INTRODUCTION

Attempts at deriving breaking criteria have been made

since Stokes (1847) presented his classical development.

Derivations of the many available water wave theories all

involve the solution of Euler's equations of motion coupled

with the continuity equation for incompressible, inviscid,

irrotational flow subject to certain boundary conditions.

Breaking, or near breaking waves have very steep profiles

in which the wave height is large compared to the relevant

length scale implying the hydrodynamics are highly non-

linear. At the onset of breaking strong vorticity is

introduced at the surface near the crest and the assumption

that the motion is irrotational is no longer valid. The

strong non-linearities and induced vorticity make the

analysis of breaking waves mathematically very difficult.

This thesis is concerned with finding an incipient breaking

criterion for waves shoaling on a beach before vorticity

is induced but including non-linear effects. The discussion

will be limited to shallow water wave theory.

Solution of the equations of motion has required the

application of physical assumptions associated with various

wave characteristics. Thus, each formulated theory is
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limited in its range of applicability to regions where

its underlying assumptions are valid. Shallow water wave

theory may be classified according to the bottom being

horizontal or sloping. This is an important restriction

because field and laboratory measurements of breaking waves

suggest that the bottom slope is an important parameter in

the classification of breaking waves.

The simplest form of solution to the wave problem is

to linearize the equations of motion assuming a horizontal

bottom. Peregrine (1972) has shown that the linearized

equations apply to regions where the ratio H/L and H/h are

both much less than one, where H is wave height, L is wave

length, and h is water depth. Consequently, this solution

is restricted to waves of infintesimal height and not

applicable to steep breaking waves.

Stokes (1847) was the first investigator to present a

higher order solution applicable to finite amplitude waves,

though limited to a horizontal bottom. In his development,

he transforms the basic equations to an equivalent set by

using a velocity potential, $ . The solution is obtained

by expanding the velocity potential using a perturbation

scheme which employs H/L as a perturbation parameter. To

the lowest order, Stokes 1 method results in linear theory.

The accuracy of Stokes' solution at a particular order

13





decreases as the ratio h/L decreases. Dean and Eagleson

(1966) attribute this inaccuracy to increasing bottom

influences and a decrease in the importance of vertical

particle acceleration. De (1955) concluded that Stokian

theory should be discarded for values of h/L of 0.125

and less. Dean (1968) expanded a stream function using

a numerical perturbation scheme and was able to raise a

"Stokes" type wave to any desired order. In this manner

he was able to solve for incipient breaking.

When the relative depth is very small, as in very shal-

low water, the vertical acceleration can be neglected and

the fluid path curvature is small. Hence, the pressure

is assumed to be hydrostatic as the vertical component

of motion does not influence the pressure distribution.

The resulting equations are referred to as the "long wave

equations." A sloping bottom and finite amplitude are

allowed by the long wave equations.

Freidrichs (1948) was able to derive the long wave

equations by a rigorous mathematical approach. Utilizing

quantities h and L which represent typical depth and length

scales, the Airy equations were non-dimensionalized. This

procedure resulted in a large stretching of the horizontal

coordinate relative to the depth coordinate. A perturbation

analysis was then applied with the perturbation parameter

14





2 29 = h /L . He found that to the lowest order the pressure

was indeed hydrostatic and that the long wave equations

resulted.

A third length scale for shallow water theory, which

utilizes the wave amplitude a, is the Ursell parameter

£L 3

L h

Ursell (1953) showed that long wave theory belongs to the

regime

a L
3

L h

Boussinesq (1872) assumed that the pressure was no

longer hydrostatic, which allows inclusion of vertical water

particle velocities, but results in a limitation on the

wave height. The Boussinesq equations apply when

a L 3
,— — ~ j_

h h

implying the waves are not as high and the water is

relatively deeper than for long wave theory.

Korteweg and de Vries (1895) simplified the Boussinesq

equation by considering waves which travel only in one

direction over a horizontal bottom. Extending Boussinesq'

s

equation in this manner they produced a wave theory they

termed "cnoidal." The limiting case of cnoidal theory is

the solitary wave. The cnoidal/solitary theory has received

15





considerable attention by researchers in recent years.

Keller (1948) extended the perturbation analysis employed

by Freidrichs to the first approximation. He found that

to the first order his results were those of Korteweg and

de Vries. Laitone (1960) continued the process further,

obtaining second order approximations to cnoidal/solitary

waves by solving Freidrichs' method to the fourth order.

The assumption of waves traveling only in one direction

precludes a reflected wave and imposes the important

restriction of a horizontal or nearly horizontal bottom.

The long wave equations are used in this study because

it is felt that properly including the sloping bottom is

the most important next step in seeking a breaking wave

criterion. The possible importance of vertical accelera-

tions in the wave breaking process are recognized, but

are assumed negligible in order to obtain mathematical

tractability. A second order solution of the long waves

is sought and a breaking criterion derived based on a

kinematic instability condition.

16





II. THEORETICAL BREAKING CRITERIA

It is desired to formulate breaking criteria which can

be expressed in terms easily observable and measurable.

The several breaking criteria which have been developed

may generally be broken into two categories. First, there

are those which are derived from waves of steady form. The

waves considered are assumed to be in shallow water of

constant depth. Both Stokian and cnoidal/solitary wave

theories have been employed in these investigations. The

second group of derived criteria consists of those con-

cerned with waves which deform as they shoal. Research in

this category of waves has been confined to long wave

theory. The derived criteria for horizontal and sloping

bottoms will be investigated separately.

In order to determine wave parameters which can be used

to predict the breaking of waves, it is necessary to first

formulate some type of limiting value. The physically

significant breaking criteria are the kinematic, dynamic

and geometric criteria.

17





A. KINEMATIC BREAKING CRITERION

Originally formulated by Rankine (1864), the kinematic

breaking criterion states that the limiting value of the

water particle velocity at the wave crest, uc , is the wave

phase velocity, c, uc <c. Physically, this is a logical

limitation, for if the particle velocity is allowed to

exceed the wave phase speed, the particle would separate

itself from the wave form.

B. DYNAMIC BREAKING CRITERION

The dynamic breaking criterion is stated by the vertical

momentum flux equation at the surface (z=?7)

DW = _ lip. + a
Dt P dz B '

The criterion can be formulated in several ways. Assuming

the pressure is a constant at the surface, the maximum

acceleration is

— < g :p constant
Dt .

If the water particle acceleration exceeds the gravitational

acceleration, the water particles leave the surface vertically,

A second statement of the dynamic criterion concerns

the vertical pressure gradient. Laitone (1963) proposed

that the limiting vertical pressure gradient beneath the

wave crest is zero. In his study of cnoidal and solitary

18





waves he determined a value for H/h beyond which the

pressure gradient reverses its sign and the pressure begins

to decrease with depth. He concludes that this is physically

impossible and thus accepts zero as the limiting pressure

gradient value.

C. GEOMETRIC BREAKING CRITERION

As a wave progresses into shallow water, the surface

slope steepens. The geometric breaking criterion places

a limiting value of infinity (vertical face) on the slope

of the water surface. Beyond this value, the wave becomes

unstable and the water particles fall forward ahead of the

wave. Stoker (1957) shows that a vertical slope can be

obtained. An insight into the concept can be obtained by

considering the speed of the shallow water wave disturbance

to be given by c = [g(7^ +h)] 2
. Since the crest of the

wave has a greater depth of water beneath it than the

trough in front of it, it tends to "catch-up" with the

trough. Hence, the forward face continues to steepen as

the wave shoals until it is vertical.

A review of the application of the three breaking

criterion to the separate categories of waves of permanent

form and shoaling waves follows.

19





III. DERIVED BREAKING CRITERIA

A. BREAKING WAVES OF PERMANENT FORM (SHALLOW WATER,
CONSTANT DEPTH)

The theoretical kinematic and dynamic breaking criteria

have been applied to waves of permanent form. The former

has resulted in a number of derived criteria while the

latter has only been applied to cnoidal/solitary theory to

produce single breaking parameters.

1. Kinematic Breaking Criterion

a. Crest Angle

By applying the kinematic breaking criterion

to his formulated wave theory, Stokes (1880) produced the

first derived breaking criteria. He showed that when the

enclosed crest angle, Figure 2, reached ±. r radians,

(120°), breaking would occur. To arrive at this conclusion

Stokes was forced to make two assumptions: 1) that the

crest would be formed by two intersecting straight lines

tangent to the real water surface curvature, and 2) that

the velocity potential, transformed to polar coordinates,

could be approximated by

(|)(r,0) = BrN sin (Nfi)
,

where B and N are to be evaluated and r and are polar

coordinates.

20
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ENCLOSED CREST ANGLE FOR KINEMATICALLY LIMITED WAVE

Figure 2
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Several investigators have verified Stokes 1

criteria (Gaughan, Komar and Nath, 1973) , however the range

of depths over which Stokian theory can be applied places

limitations on this criteria. Therefore, a contribution made

by Chappelear (1959) in which he was able to develop a method

of satisfying the kinematic breaking criterion for all depths

is of particular importance. Chappelear also verified

Stokes' value for the limiting crest angle,

b. Wave Steepness

Another breaking criteria which has gained

acceptance is that of wave steepness in which it is stated

that the wave height is limited to one-seventh of the wave

length. Several researchers, including Michell (1893),

Havelock (1918), Davies (1952), Yamada (1957) and Chappelear

(1959) , have produced results close to this figure. Their

values for maximum wave steepness vary from 0.1412 to 0.1443.

All of their derivations closely followed classical lines.

Dean (1968) used a numerical stream function approach to

examine breaking wave criteria. He found a solution to

the full nonlinear wave formulation that is exact except

for the dynamic free surface boundary conditions. The

solution is found by fitting the dynamic free surface

boundary conditions numerically using an iterative scheme.

Taking the limiting horizontal particle velocity as 98.5%

22





of the wave phase velocity, the resulting maximum wave

steepness value was 0.1723, which differs from those

previously given by about 207».

c. Wave Height to Depth Ratio

The kinematic breaking criterion has been used

by many investigators to obtain limiting values for the

wave height to depth ratio, H/h. The results, however,

have not been at all consistent and vary widely with

different wave theories. Chappelear (1959) analyzed

Stokian waves and arrived at a value of 0.87. For solitary

waves, results obtained by Boussinesq (1871), Rayleigh

(1876), McCowan (1894), Gwyther (1900), Packhan (1952),

Davies (1952), Yamada (1957), Lenau (1966) and Yamada,

Kimura and Okabe (1968), vary from 0.73 to 1.03. Dean (1968)

found a value of 1.0 using his numerical stream function

approach. Gaughan, Komar and Nath (1973) express the

opinion that these differences probably arise due to

approximate fits of the complex velocity potential to the

free surface boundary conditions. As will be discussed

in a later section, Laitone (1963) found values of H/h =

0.73 and 0.81 for solitary waves using different theoretical

breaking criterion.





2. Dynamic Breaking Criterion

a. Water Particle Acceleration

Various limiting values of water particle

acceleration have been determined. Kinsman (1965) gives the

gravitational acceleration, g, as the limiting value for a

crest angle of 120°. Gaughan, Komar and Nath (1973), how-

ever, show that by using Stokes' wave crest equations and a

crest angle of 120 , the limiting value should be §.

b. Vertical Particle Velocity

Laitone (1963) examined the vertical water

particle velocity for cnoidal and solitary waves. Using

a third order velocity equation for cnoidal waves, he found

that values of H/h greater than —

^

, where £> , a prop-

erty of the wave, is restricted to %<$— 1, produced

physically impossible velocities. Hence this ratio was

established as the limiting value. As the value of Q

approaches the limit of 1.0 the cnoidal wave approaches a

solitary wave form. Therefore, the limiting value for a

solitary wave to the third order is H/h = JL = 0.7272.
11

Laitone carried his solution for the solitary wave to the

next higher order and found a value of H/h = V3 - 1 =

0.7321. These two results compare favorably.
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c. Vertical Pressure Gradient

Laitone (1963) developed a different limiting

value for H/h than that previously discussed when he applied

the vertical pressure gradient criterion. In this case he

found that for H/h = (2 £/3)%, %<£<1, the pressure

gradient is zero for cnoidal waves. This expression was

derived to the third order. If the ratio H/h increased

from this value, the sign of the gradient would reverse, a

condition that he concluded could not exist. In the limit-

ing case of (£ = 1.0, which gives a solitary wave, the

limiting value of H/h = 0.812 is obtained. This differs

significantly from his previous limit of 0.7272.

B. WAVES WHICH DEFORM AS THEY SHOAL (SLOPING BOTTOM)

As a wave shoals over a sloping bottom, the wave height

and profile are altered. The theory of long waves has been

most generally applied to research in this region. The

derived breaking criteria have been formulated through the

use of the kinematic and geometric breaking criteria.

1. Kinematic Breaking Criterion

The first attempt at applying the kinematic breaking

criterion to a deforming wave was made by Ayyar (1970). His

derivation made use of the concept of a wave front. Simply

stated, a wave front is the position where a discontinuity

25





in the surface slope occurs. The slope of the surface

will be zero in front of the wave front and negative behind

it. Ayyar's approach was to obtain the slope at the wave

front, integrate to find the free surface tj , and then

apply the kinematic breaking criterion. Assuming the

geometry of the plunging breaker, he then derived the

value of y^/h^ = 2.0, where y^ = height of breaker crest

above the bottom and h^ = depth at breaking point below

the still water level.

Several problems exist in Ayyar's derived criterion.

First, the derivation is based on the geometry of a plunging

breaker and thus excludes the other categories of breaking

waves. Additionally, his formulation assumes that breaking

will occur at the wave front. Gaughan, Komar and Nath

(1973) point out that this may not be a valid assumption.

2. Geometric Breaking Criterion

Use of the geometric criterion has been made by

several researchers in developing long wave breaking

criteria. Stoker (1957) showed that long waves could

obtain a surface slope of infinity. He extended his work

and used a numerical methods technique to arrive at a

solution to the problem. The method, however, is not

satisfying in that it requires a number of approximations

to be made and requires recalculation as the initial

26





conditions are altered. Further discussion of this pro-

cedure will be presented in a subsequent section. Burger

(1967) and Greenspan (1958) used the wave front concept

and the vertical slope criterion to predict the horizontal

distance traveled from the wave front at time t=0 to the

point of breaking. The result was

(l - |S_ \

\ S-H4 /
Xb _±L fl -2S_W3

where, M = slope of the beach, h(x) = h-^-Mx, h-^ = initial

water depth, and S = initial surface slope at the wave

front. Gaughan, Komar and Nath (1973) discuss several

limitations to this result. As was the case in Ayyar's

work, the breaking is assumed to occur at the wave front.

The surface slope behind the front is not examined. Some

other point, such as the wave crest, may become vertical

prior to this condition occurring at the wave front. Also,

the use of horizontal distance to breaking is not a useful

criteria. It is not easily measurable, having a somewhat

arbitrary origin. Prediction of the wave height at breaking

is a much more useful parameter.

Another approach involving the vertical surface

slope was taken by Mei (1966). The basis for his work was

originally proposed by Carrier and Greenspan (1959). The

technique is to produce a set of characteristic equations

27





from the long wave equations and then to make an additional

transformation through the use of a final pair of inde-

pendent variables, <r and X . The equations are reduced

to a single linear equation which involves a velocity

potential , <t> (
<r, X

J
,

(«"*)„.- «"*
x>=0

Mei solves this equation to the first order. He then

follows a procedure used by Carrier and Greenspan whereby

the Jacobian J = d(x,t)/ Mc, X ) is investigated. This

Jacobian will vanish at points for which the surface slope

is infinite. Mei was able to obtain an expression for

h^ /H which was dependent upon HQ , L
Q

and the bottom slope.

The subscript denotes deep water conditions. Unfortunately,

Mei found that his theory compared poorly with experimental

data. Predicted breaking depths were too large, dependence

on the beach slope was too great and the wave profiles were

too sinusoidal. Mei suggests that these discrepancies

could possibly be eliminated by extending the solution to

a higher order.
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IV. REVIEW OF LONG WAVE SOLUTIONS

Essentially two approaches exist which can be used to

solve the nonlinear long wave equations. The first pro-

cedure, initially formulated by Stoker (1947), makes use

of a solution technique known as the method of character-

istics. A final solution utilizing this method can be

made either through numerical calculation or by an analyt-

ical approach. Iwagaki and Sakai (1972) propose a second

solution procedure which involves a perturbation expansion.

An evaluation of each of these techniques follows.

A. METHOD OF CHARACTERISTICS

The application of the method of characteristics to the

long wave equations was explained by Stoker (1958). Neces-

sary to this development is the acceptance of the wave

phase speed relation c = [g(7^+h)] 2
. The validity of this

equation is discussed in a subsequent section. From this

expression it is seen that

and

ct=3 7
?t /^<^- < 2>

29





The long wave equations are

u
t
+uu-x=-37x < 3)

and

Cu(^+h)3 x
=
"7ft . (4)

Substitution of (1) and (2) into these equations yields

u t + uux +Eccx -gh x
=0 (3a)

and

2ct + 2acx + ca x = O ( 4a)

Relations (5) and (6) result from the respective addition

and subtraction of (3a) and (4a)
,

{a/a-t +(u+c)VDx]-(u + ac-Qhx-t)= O (5)

{Vat +(u.-c) a/ax]-(a-ac-qh x-t)= O. (6)

The interpretation of (5) and (6) is essential to the

development. (5) implies that the function (u+2c-ghxt)

remains constant for a particle moving with a velocity of

u+c. A similar evaluation of (6) can be made. In other

words, two characteristic curves, Ci and Co, are defined

such that
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Cx
: dx/d-t = u + c

and

C z : <±x/l± = u-c
where

U.-t"2c-qh
x

"fc a K±= A constant Along C
,

and

U-2C- Q ^
x
t= K^- A COWSTA^T ALONG G ^

The system of equations given by (7) and (8) is equivalent

to that defined by (3a) and (4a), hence, a solution of either

set provides a solution for the other.

It now becomes necessary to determine the character-

istics so that a solution may be obtained. Stoker's

technique was to make use of a method of successive approxi-

mations. He assumed that the initial values of u and 7j

could be observed. Use of c = Cg(7^+h)J 2 could then pro-

vide the phase speed at time t=0. These initial conditions

are assigned values such that for t=0

u(x,o)= u(x) 5

> (9)

c(x,o) = c(x) )

The task is to approximate u and c for small increments of

time. Figure 3 clarifies the discussion.

A series of points along the x-axis, which are separated

by a small distance 8 , are considered. Since the valuesJ x'

of u and c are known for each of these points from (9) , the

slope of the characteristics C-, and CL at each point can
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INTEGRATION BY FINITE DIFFERENCES

Figure 3
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also be obtained through the use of (7). These slopes are

used to construct straight line segments from the points

along the x-axis. Location of points 5, 6 and 7 is deter-

mined by the intersection of these line segments. A source

of error is inherent in the use of straight line segments

to approximate the characteristic curves. This error is

restricted to a minimum by using sufficiently small values

of 5 X . For this case, the tangents to the curves provided

by the slopes give good approximations to small segments

of the curves. Equations (8) and (9) give the character-

istics issuing from points on the x-axis as

along (^ : u+2c-Qh x
"t= u.+ Zc

along C
2

: U-Zc -q ^x "t = U.- 2- C

The values of x and t can be obtained for the points 5, 6

and 7 (this could be accomplished graphically, for instance)

Equation (10) can then be used to determine the values of

u and c at these points. The procedure can be continued to

obtain values for u and c at the subsequent points 8, 9 and

10. In this manner, a net of points at which values of u

and c are approximated could be constructed which covered

an entire field of concern. Values at intermediate points

could be found by interpolation. Stoker states that as
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5 -»0, the process will converge to an unique solution

of (7) and (8).

Numerous objections have been raised against this

particular numerical approach. Ayyar (1970) categorizes

these into three areas. First, the solution is not explicit

and requires re-calculation for a change in initial condi-

tions. This alone makes the procedure difficult to use

effectively. A second criticism is that a spilling type

breaker is always predicted; thus the elimination of the

several other breaker types places a severe restriction on

the method. Finally, LeMeliaute (1968) has given evidence

that the technique produces incorrect predictions of breaker

points.

An alternative and more analytical solution to equations

(7) and (8) has been offered by Carrier and Greenspan (1958)

and was discussed in Section III.B.2. Two independent

variables <r and X are used to transform the equations.

Defining a velocity potential 4> ( <r , X ) yields the linear

second order equation

<"**V 'ax s ° >
(u)

to which the authors propose a solution,
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where A = constant to be determined and <£ = a phase lag.

At this point, Carrier and Greenspan made use of the verti-

cal surface slope criterion and determined values of a

Jacobian, J = d (x,t)/ d (cT , A) , which would exist for the

specific case of non-breaking waves. Consequently, the

remainder of their study is of little value to our discussion,

Mei (1966) considered the solution technique of Carrier

and Greenspan as it applied to the case of breaking waves.

He selects

+ ^(^''^^(x/el'^tirZ+S] (13)

where B = a constant to be determined, i = slope of the

beach, J = zero-order Bessel function, and NQ = zero-order

Neumann (Weber) function as his solution. Using this rela-

tion, Mei derived first order equations for u and t\ . The

coefficient B is determined by matching the solution to

that for an outer region where a horizontal bottom Airy

Theory was applied. Mei determined a breaking parameter

by applying the geometric breaking criterion.

Comparison with experimental data indicated that Mei's

results were not accurate. He attributed these deficiencies

to the fact that the solution was not carried to higher

orders. Previous studies conducted by Benney (1966) had
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suggested higher order derivations were required for shallow

water breaking conditions. Solution to a higher order is

required in both the inner and outer regions if the coeffi-

cient B is to be accurately determined. The procedure of

Tlapa, Mei and Eagleson (1966) provides a perturbation

expansion for the outer region. Review of this method

shows that the third order solution must be considered to

uniquely determine the second order coefficients. Assuming

that a successful solution to the outer region expansion

could be found, or that B can be found independent of the

off-shore regime, difficulties still remain in the near

shore area. This is the location of breaking and thus of

concern. The solution would be vastly simplified if a

method could be found in which only the velocity potential

used by Mei need be perturbated. Unfortunately, the single

equation for the velocity potential prevents this approach.

The quantities <f and A are only variables used to trans-

form the characteristic equations and hence perturbations

on them produce no new equations. The only remaining

alternative is to use the next higher order expression of

the Airy equations to form the characteristic equations.

This implies the consideration of cnoidal theory.
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B. IWAGAKI AND SAKAI PERTURBATION TECHNIQUE

Iwagaki and Sakai (1972) proposed a second method of

solution which involved a perturbation expansion of the

long wave equations. The premise of their study was that

the asymmetric profile of shallow water waves and the effect

of the beach slope on wave transformations could be explained

by taking into account the nonlinearity of the long wave

equations. To show this, they developed a second order

solution for 77 from the long wave equations (3) and (4).

In the derivation, the beach slope is represented by i

and the depth, h, is such that h=h(x)=i*x. Iwagaki and

Sakai assume that u and r^ may be expressed as

72 = cx^ a) +o< Z^^-i-- • • (14)

U = o< u^fOf^f.. • (15)

where c* is a small quantity and the superscripts (1) and

(2) indicate the order of the term. Substitution of (14)

and (15) into the long wave equations, and arranging them

2
with respect to ex and cX yields the four equations,

.w w _
*<^k -° (i6)

(z) (1) (ti (A - , 1Q x
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^-,z^y-\u(£> hi^=o (19)

Equations (16) and (17) together give two equations in two

unknowns which can be solved to obtain first order expression

for 7j and u of the form

- sin <rt- N (a<rVA-T ) J (20)

and

uW(x
;
-fc)=^VM" X^ITs.h <ft- Jjfecr V%T )

+cos<rt- Nx (2 ovj"^! ) J (21)

where J ( ) and N ( ) represent Bessel and Neumann (Weber)

functions respectively and a is a constant related to the

wave height. Equations (20) and (21) can be substituted

into (18) and (19), reducing the problem to solution of

(18) and (19) for second order expressions for u and 77 .

(2)The authors presented a solution for ^ v ' in which they

approximated the Bessel and Neumann functions in the first

order solutions with trigonometric functions. They show

that for values of x greater than gi/4o* these substitutions

are valid. The derived formula for 7?^ '(x,t) is

-^>-^H£YH81 (22)





Iwagaki and Sakai presented experimental results which

confirmed that their solution technique produced valid

results for the wave form.

C. PHASE SPEED RELATION

In several of the previous sections mention has been

made of the phase speed relation, c = £g(?7 +h)J
2

. Although

this equation is widely used in the literature on wave

theories and is generally accepted; few discussions have

been presented which establish its validity. The question

deserves some attention prior to application of the kinematic

breaking criterion.

The first inclination toward the use of the relation

comes from the linearized long wave equations for water of

constant depth. Stoker (1958) showed that for these

conditions u satisfies the relation

u. xx - ^r- u_- .

3* tt

?£ can be shown to satisfy the same equation. The implica-

tion of this expression is that the speed of the wave dis-

turbance is given by c = (gh) 2
.

Another indication that the expression may indeed be

valid comes from what Stoker terms the gas dynamics analogy.

Stoker credits the development of this idea to Riabouchinsky

(1932). Consideration is made of a mass per unit area
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expressed by

f =
I 6? + h) (23)

where o = density of water. Thus

(r?7f (24)

The force p per unit width is defined as

p =
)

pda . (25)

By using the hydrostatic pressure relation, p may be

reduced to

P=3«/£ C7?^) = y£ ? p . (26)

Multiplying both sides of equation (3) by o(^+h) gives

^(?p+HX"t+"<s<>-3^(7?+h)7x <«>

which may be re-expressed, using (23) and (26) , as

f'(u^+UU x
")=-p

x
+|^Kx . (28)

Equations (23) and (24) can be used to re-write (4) as

f^") x = -\^ . (29)

Equations (26) , (28) and (29) , when combined, give results

similar to those of gas dynamics for one dimensional flow,
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the only difference being the presence of the term g"ohx

in (28) . For the case of constant depth, this term

vanishes. In gas dynamics, the sound speed is given by

c =L Vdoj • Applying this with (23) and (26),

Although these discussions provide an insight into

using the phase speed relation, they can hardly be consid-

ered as a definitive argument. A satisfactory derivation

can be obtained by returning to the methods of character-

istics. The review of this technique explained that the

phase speed was assumed to be given by c = Cg( 7? +h)] 2
«

The theory could have been derived equally as easily by

simply defining a quantity c = £g( r^ +h)J *. No physical

significance need be immediately applied to c. This being

the case, an identical development can be made resulting

in the same characteristic equations. The task then becomes

to discover the physical meaning of c.

Stoker (1958) presents the following argument. It is

assumed that the initial values of u and 77 are given for

a body of water which is in motion. The value of c for

this instant is given through c = [_g(^+h)J
2

. Figure 4

will aid in the explanation. Consider a disturbance created

over the segment of the x-axis Q-^ Q£. How will this effect

the solution? Each point Q on the x-axis has what is termed
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PROPAGATION OF DISTURBANCES

Figure 4
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as a range of influence. This is the region of the x,t

plane in which the values of u and c are influenced by

the initial conditions at Q. This area is defined by the

characteristics issuing from Q. Consequently, for the

particular case under consideration, the segment Q-, Q«

will have an influence on u and c for the shaded region in

Figure 4. The two curves are given by C-^:dx/dt = u + c

and C£:d /d. = u - c. u is defined as the horizontal

velocity of the moving fluid. The speed of the disturbance

as it moves through the flowing water must therefore be.

given by c. Thus, the validity of the phase speed relation

seems apparent.

One final argument can be formulated by the use of the

method of characteristics. Although he does not discuss this

aspect of his study, Greenspan (1958) outlines this proof.

Again, consider the method of characteristics to be formed

using a term c defined as c= CgC 7?^)!] • A wave which is

progressing into quiescent water is considered. Of concern

dx
is the forward moving characteristic curve, -r— = u + c,

dt

which contains the wave front. Since the water immediately

preceding the wave front is quiescent, the value of u must

be zero at the front. The characteristic, and consequently

the wave front, must be progressing with speed c. Hence,

the phase speed is given by c = £ g( 7f +h)J
2

.
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V. DERIVATION OF WAVE -INDUCED VELOCITY AND
WAVE PHASE SPEED USING IWAGAKI AND SAKAI

PERTURBATION TECHNIQUE

A. DERIVATION OF u^
The second order wave induced velocity u' ' is derived

using the perturbation technique used by Iwagaki and Sakai

to derive a second order surface profile. All terms used

are defined in the list of symbols. The initial equations

employed are (18) and (19),

These equations result when u and 77 are given as power

series expansions of a small quantity c< and these expres-

sions substituted into the long wave equations. Eliminating

77^ ' from (18) and (19), substituting h = i*x and grouping

terms of u^' yields

Using the first order term for u given by Iwagaki and Sakai

and differentiating with respect to x gives
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+

+ cos^t^N^]-^) Nx[p6$)j (3D

where p (x) = 2. <T ( X \
'/2.

Similarly, differentiating (31) with respect to x provides

an expression for ii'"^,
xx

2W-.«)S-V
r

_
n

.

?
u-_6s*)= a(^rx*fs.H^t.J [ p6^]

M^^'fjoW-piJlftt]
+

z*

costrt-fHJCp^-^^p^

+-Co40-t Njp^j}. (32)

An equation for ur ' can be obtained from (31) by-

differentiating with respect to t,

(x/t)= -or (4^*** cosrt-4[p(xS]u
xt

+
a. sr

-5,^t-(MXj>W]--J-,N1[?M])] . (33)
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and

When u^ ' is differentiated with respect to t we obtain

w~t (x/t J
=

a. Or) ^~* *"
( COSart'J^L p(x)J

- S.K^t-N^p^]} . (34)

Similarly, differentiating 77 '(x,t) yields a set of

equations

,

-SlMTt- Nx[p(xTl 3
(35)

- SfNTt-N^pOO 3]

Equations (31) through (36) can be used to find

expressions for the individual terms on the right hand side

of (30) . When these expressions are combined, the right

side of (30) is evaluated as

af x-'f Ji JjpW] Nj
? to]
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+NfCp(x)]-^Ni[p(x)])}

+

The asymptotic expansions of the Bessel and Neumann (Weber)

functions are

J
r
(w)~(^C) 'cos (w- r/£ -%)

and ..

N
r(wV(%^)

/2
s.N ( w-r^-y4) )

r (38)

the approximations being valid for values of w such that

Jw| £ 1.0.

Substitution of (38) into (37) gives as a final expres-

sion for the right side of (30)

,

cos z<rt
5 !£a x

_i
cos^ $>fio ]

W CD
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2. 2- -3 ;

~ °- a >< (39)

where <p6<)= £<T (gTj * ""^
The solution of u^ ' is assumed to be of the form

*W) = A(*) cosZcrt+B^sm 2<rt -t- C (xV (40)

Use of this expression yields equations for the individual

terms on the left side of (30)

,

u^x,t)=A
/
('x)cos^(Jt-tB

/

f><)slN^<rt -fC7*\ (41)

u^(x,t)=X
/

fx)coi2<rt i.B7x)s.MZcrt + c"(x)
j

(42)

U^(x
;
-t) = Z<r{B(^c^2.a--t~Afx)s»H^<rt?

;
(43)

u^(x^)=-"4o-
2
-{A(><Vos2crt +-B(x)5iH2srt]

. (44)

Combination of (41) through (44) can be used to provide an

expression for the left side of (30)

,
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(i) / . (2.) . {£> \ _

+ 5in2«rt [-4<r
3

'B()iVA(:xB
/

'('x)-2.3 L B
/

rx
N

)]

Comparison of (39) and (45) allows a determination of

A(x) , B(x) and C(x) to be made. This is accomplished for

A(x) and B(x) by equating the respective coefficients of

the sine and cosine terms in the two equations while C(x)

is found by equating the terms independent of time. This

procedure gives

A(x)= £.ffi *'***& f(*)l

+ 3/s Irh x~* cos lz ?(»U >
(46)

B(x)-#r(+)V,fe c.sr2ffxV|

and

x r (48)C(x^

Substitution of (46), (47) and (48) into the left side

of (30) yields
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cos

Similar to the development of Iwagaki and Sakai for

<yr ' , the coefficients A(x) , B(x) and C(x) which have been

deduced do not yield an exact solution of (30). Comparison

of (39) and (49) shows that discrepancies exist in the third

term coefficients of cos 2 <f t and sin 2 <r t (i.e., 6/5 versus

1.0) . The three terms which comprise the coefficients of

-2 -5/2 -3
cos 2 <S t and sin 2 cf t involve x , x and x . Use of

in
T = -0=— and h = i*x enables the ratio of the third term

to the first term to be evaluated as

T«l
3rd term/lst term -—

' -fh i
\ '/z. • (50)

It is noted that the first and third term coefficients are

in phase. For the case of i = 1/10, h = 25 cm and T = 3

seconds, (50) indicates that the ratio of the third term

to the first is equal to 0.089. Hence, the difference
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between the coefficients created by the use of (46) , (47)

and (48) is negligible and (40) may therefore be evaluated

as

u

2.
o- 3 -2.

+ Zrrk * - < 51 >

Equation (51) can be simplified to

%^l£(K)\-**io^Uz<r(ff-%]U

+-%+tt «-Ar^ ^v^ij. (52)

In order to make this simplification, it is necessary to

assume that

[Voir + ir«io.77 + 1 J -l.U . (53)

The applicable range of solution for this perturbation

scheme, which is discussed in Section V.C., restricts the

computations to regions where 2 <f (——)
2 — 1.0. If the

lower limit of this relation, i.e. 2<r(-~-)^ = 1.0, is
gi

substituted into the left side of (53) , a numerical result

of 1.166 is obtained. This error appears to be rather
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significant. Utilizing a limit of 2 <T (-JL-) 2 > 4.0, the left
gi

side of (53) is evaluated as 1.044. Consequently, the use

of this ratio as a limit on the range of applicability of

the solution may seem appropriate. Further discussion of

this parameter is presented in Section V.C.

B. SECOND ORDER EQUATIONS FOR 7^ AND u

Originally, it was assumed that r? and u could be

expressed as

and

It is therefore necessary to combine the expressions for

7\ and 7T* ' and for u^ and u' ' to determine the

final relations. It is noted that for 77(x,t), Iwagaki

and Sakai neglected the second part of (22) which is inde-

pendent of t. They felt justified in so doing since these

terms effect only the Stillwater depth. Their study was

concerned with wave heights and profiles and consequently

the Stillwater depth was not required. This simplification

is not valid for the present study since the phase speed,

given by c = £g(7^+h)] 2
, is effected by the Stillwater

depth. Furthermore, the ratio of the coefficients of the

first term independent of t to the first term on the right
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side of (22) is ["JL_ (-&_)^ i] . Utilizing the upper

limit for T (•&)
2 of 4Tr/i given by Iwagaki and Sakai, the

importance of including these terms is apparent. (The upper

limit of T (§)
2 is discussed in Section V.C.)

n

When the first order equations for u and 77 given by

Iwagaki and Sakai, equations (20) and (21), are expressed

using the asymptotic approximations for the Bessel and

Weber functions the following results are obtained,

* zr(-£f- - "A} <s«

and

U%t)=-a&W&YV*coS {<rt

(55)

?M= o<

Equations (22), (52), (54) and (55) can now be used to

arrive at second order expressions for 7? and u,

2. / A

I

a.

~f"4fr<r

(56)
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and

u. "t

+*f-yr(fi
,V!& cos&^t + artful

.V, +t^{^V^]]. (57)

C. DETERMINATION OF THE PERTURBATION PARAMETER,

The next question which must be addressed is how should

the perturbation parameter, o< , be defined. The first step

in this determination, as outlined by Iwagaki and Sakai, is

to formulate a region of applicability for the solution.

In their study, they begin by considering a wave celerity

of c = (gh) 2
. This is cause for some concern in that it

differs from the accepted expression of c =]^g(77+h)] 2
.

The problem, however, is to find a region of water where the

theory can be applied; hence, use of an average velocity

for the entire area seems appropriate. Prior to the arrival

of the wave form and after its passage, the surface is at

the Stillwater depth and r^ = 0. Therefore,, 77 = provides

an average value for r? over the region and c = (gh) 2 gives

a representative average speed. In addition, over a large

portion of the region 77 will be small compared to h. Ayyar's

(1972) calculations indicate that even at the extreme point
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of breaking, the phase speed at the crest will only vary

from this value by a factor of (2) 2
.

Using this value for c, Iwagaki and Sakai derive the

relation

hA =
"^TVhf" • (58)

The authors conclude from this that an upper limit on h/L

gives a lower limit for T(g/h) 2
. They then considered

I,

establishing an upper limit for T(g/h) 2
. For this purpose

they recalled that the approximations used for the Bessel

and Neumann functions required that

' *_Y/a

V2<r \~sru) ^ i. o. (59)

This in turn, implies that

Vzt(VO - *«AI
• (60)

Thus, (60) defines the upper limit of T(g/h) 2
. Figure 5

shows how (58) and (60) are combined to define the region

of applicability for the solution.

Iwagaki and Sakai select as the perturbation parameter

the ratio h, /L , where h is the largest depth in the
l o 1

applicable range of the solution and L is the deep water
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2wave length given by L = gT /2tT . Use of this ratio may

at first seem rather arbitrary. The motivation for this

choice becomes more apparent when the derivation of the

long wave equations by Freidrichs is recalled. His per-

turbation parameter involved a representative length and

depth quantity for the wave. Consequently, a similar ratio

seems logical when considering the small value of o< .

The ease with which this ratio may be evaluated pro-

vides an additional incentive for its selection; examina-

tion of the range of applicability of the solution is all

that is required to obtain its value. An additional

comment about this region is required. The upper limit

to be placed upon h/L has not been previously discussed.

In fact, two values for this parameter are shown in Figure

5. For their numerical calculations, Iwagaki and Sakai

use h/L ^. 1/20. The selection was arbitrary but conforms

to general usage in wave theory. The theory was developed

for shallow water where the pressure is hydrostatic;

for this region, h/L 4=. 1/20 provides a reasonable limit.

When this value is assumed, (58) requires that

Applying L
o

= ^ T>£^ to (61),

J-r./L = O. 015*7. (62)
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Equation (62) will be adopted for the value of ©< throughout

the majority of this presentation.

Iwagaki and Sakai discuss the fact that use of (62)

restricts the discussion to waves for which H/L £=, 0.006.
o' o

For greater H /L values, the theoretical energy flux curves

predict that the deep water waves will break prior to

arriving at the point where h-t/L = 0.0157. In order to

extend the theory to situations where H /L exceeds 0.006,J o o '

it is necessary to increase the upper limit placed upon h/L.

Several cases for which h/L is 1/15 are investigated in this

study to determine the applicability of the theory to a

domain of H /L values greater than 0.006.
o o °

A final comment may now be made concerning the approxima-

tion of (53). Use of (59) evaluates (60) as 1.16, not the

assumed value 1.0. However, when these values are multiplied

2
by the quantity c* , as is required by (56) and (57) , the

difference becomes negligibly small. Hence the determina-

tion by Iwagaki and Sakai for the limit 2 cT (-4-) 2 > 1.0

seems appropriate.

D. SECOND ORDER EXPRESSION FOR c

A second order expression for the phase speed c can be

found by substituting (56) into the phase speed relation,

c " [g( ^T+n)] > giving

58





(jr<r)'/

-v,n

-+ ac >< J
(63)

The negative square root is utilized due to the fact that

the wave is progressing in the negative x-direction.

E. DETERMINATION OF a

Prior to applying the kinematic breaking criterion to

the preceding equations, the value of the term a in (56),

(57) and (63) must be determined. This evaluation follows

closely that which was outlined by Iwagaki and Sakai. As

mentioned previously, these authors neglected those terms

in n which were independent of t. Although these terms

are included for the determination of c, they can be elim-

inated for the purpose of establishing the value of a. The

validity of this simplification stems from the fact that

the value of the constant will be evaluated at the point
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where h = h-, , the deepest depth in the applicable range of

the solution. Examination of the terms independent of time

in (56) shows that they decrease in absolute value for

increasing x; the terms becoming negligibly small at the

point where h = h-. . Consequently, for the determination

of a, 77 will be assumed to be expressed by

+* +ta*-[V ^-V^J (64)

Substituting °< = h-j^/L into (64) yields

where

r{Ax - A co S <Sr + A
1

cos (z&t-s) (")

-tt/4
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If A and A are used to denote A^ ' and a' 2' at

h h- , then from (66)

A?^-'(H/LT(aAY. \
(67)

1 2- it

In addition, at h = tu, tan" (J- (2tt)" 2 i(h/L
Q
)" 2

)

becomes negligibly small compared to Tt/2 and can therefore

be neglected.

The wave profile at h = h, , represented by 7\ , is

now given by,

7.A = Af f(e) (68)

where

?(<?) = cos (9" -bs,nZ&,
b = Af/a? .

J

(69)

At h = h-. , the wave height is assumed to be twice the

amplitude, r{ , , hence,

where &c is evaluated from df/dO^ = 0. Iwagaki and Sakai

determine &c as

61





#c = o.*cs,n
{ [Xb " ( A£bV2.)

'

/Z

"J/2. ?. (71)

The problem now is to find a value for H, /h, . Use of

the theoretical curves for wave height change, which are

based upon wave energy flux, provides a value for H^/H

when h-^/LQ is known. HQ /L , the ratio of the deep water

wave height to the deep water wave length, can be deter-

mined for various wave conditions and then H, /h-. is found

through the identity

HxAa= K/K,XV0/(VO • <
72 >

Equations (67) , (69) , (71) and (72) can now be substituted

into (70) to evaluate a. Simple computer techniques, as

discussed in Appendix B, provide a determination of a for

specific values of i, H /L and period T.r o o
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VI. BREAKING CRITERION DERIVED

A. APPLICATION OF KINEMATIC BREAKING CRITERION

The derived horizontal wave induced velocity and wave

phase speed are used to derive a breaking criterion. As

stipulated by the kinematic breaking criterion, breaking

will occur when the horizontal particle velocity equals

the phase speed velocity. Theoretically, this condition

may exist for several points in space and time. Of con-

cern, however, is the specific case for which the horizontal

distance from the beach at which u equals c is maximized.

This will be the first position at which the approaching

wave may break and hence all other cases are purely

imaginary. The numerical solution technique employed is

relatively simple. Subtracting the second order relation

for u, (57), from that for the phase speed c, (63), equating

the resulting expression to zero, and solving for x and t

gives points in space and time at which the kinematic

breaking criterion is satisfied. Examination of this

solution set yields the maximum horizontal distance at

which u equals c. The computer techniques employed are

discussed in Appendix B.
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B. RESULTS

The numerical results obtained are summarized in Table 1

Several wave conditions are investigated in which the values

for the beach slope, wave period, and deep water wave height

to deep water wave length (H /L ) are varied. The specific

selection of 0.119298 for the beach slope and 8.6 seconds

for the period was made to conform with a future study

(Hulstrand, 1976) in which experimental data will be used

to verify these theoretical results. All other choices

are strictly arbitrary.

The first result of interest is that of the ratio

7[ ,/L , where *?, is the free surface elevation at the

point of breaking. Table 1 shows that for each combination

of beach slope and H /L in the second order solution, the

ratio is essentially constant (some small variations occur

in the second significant figure) . The value of the ratio

is independent of the wave period. The consistency of

the ratio suggests the use of this parameter as a breaking

criteria for specific beach slopes and H /L conditions.

A second parameter listed in Table 1, that of h, /H
,

where h, is the depth at breaking referenced to the still-

water level, has often been utilized in the measurement of

breaking waves. The theory under investigation yields

consistent results for this ratio for specific beach slopes
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and H /L
Q

combinations. Mei (1966) derived a first order

solution for this parameter of

h
tA-(W/3 (HyLy3

G-r
/3

.

Examination of Figure 6 shows that Mei's calculations do

not compare favorably with experimental data. Mei

attributed this difference to the fact that his solution

was confined to first order theory. Figure 6 shows that

the theory presented here yields a much closer approxima-

tion to the observed experimental data. It is noted that

much of the observed data has been accumulated for values

of HQ/L greater than those applicable to the current

calculations. Plots for h/L £^1/20 and h/L ^1/15 have

been extended through the theoretically derived points for

purposes of comparison. Within the concurrent regions of

applicability, the theoretically derived values for the

various limiting values of h/L are similar. This suggests

that the extension of these graphs into the domain of

greater H/L values provides at least an indication of the

breaking criteria which would be derived by utilizing h/L

ratios applicable for these regions.

The theoretically derived values of h, /H decrease

with increasing values of H /L . This conforms with the

trend displayed by the field measurements. In contrast,
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Mei's results show an increase in the ratio with increasing

o o

Of concern is the fact the current theory predicts

breaking depths less than those observed in the experimental

data. Table 1 and Figure 6 include data for the first

order solution resulting from the theory presented. Figure

6 shows that the extension to the second order solution pro-

duces results which compare more favorably to the experi-

mental results. This suggests that higher order solutions

would yield improved results. An additional source of

error present in this study results from the fact that the

vertical water particle accelerations have been neglected.

A final comment can be made concerning Mei's calcula-

tions. The first order solution which is derived from the

procedure utilized in this study yields considerably

improved results over those of Mei. Therefore Mei's

descrepancies cannot be attributed entirely to the restric-

tion to the lowest order solution. The source of error may

possibly be due to the use of the geometrical breaking

criterion.

Figures 7 and 8 depict representative wave profiles at

breaking for the current theory. These indicate that

breaking occurs prior to the attainment of a vertical

surface slope. The figures also show that the predicted
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, xyz.

be valid for 2 ^("TH - 1 «° • Substitution into this

breaking occurs at the wave crest. Figure 8 shows an

unrealistically deep trough in front of the crest. The

use of the Bessel function approximation has been shown

to

relation of the values of the terms used to construct

Figure 8 requires x^: 21.89 feet. It is seen, therefore,

that the excessively deep trough is predicted in a region

where the Bessel function approximation is not valid. The

predicted breaking for the specific instance shown in the

figure is at x = 33.73 feet, which is in the applicable

region for the approximation. For each case investigated,

the predicted breaking point occurred well within the

region where the approximation is accurate; hence the

derived breaking criteria is deemed valid.

Ayyar (1970) , utilizing the kinematic breaking criterion,

produced the additional shallow water breaking criterion of

y^/hb=2.0. Table 1 summarizes the values obtained in the

present study for this ratio, all of which are considerably

larger than 2.0. Ayyar f

s ratio does not account for the

variations associated with HQ /L suggested by the observed

h^/HQ data. In addition, his theory is limited to waves

which have the geometry of a plunging breaker. Ayyar also

assumes that breaking occurs at the wave front, which may

not in fact take place. The limitations placed upon Ayyar'

s





formulation and the random values of the ratio displayed

in Table 1 prevents this from being considered a valid

indication of breaking.

The most significant disadvantage associated with the

breaking criteria derived from the theory presented in

this study is that the ratios require re-calculation for

changes in beach slope and deep water wave height to wave

length ratio. This objection is similar to that which

was raised against Stoker's use of the method of charac-

teristics. The complex dependence of the values of a,

u and c upon both the beach slope and H /L , however,

leaves the investigator with little choice but to resort

to a numerical solution. In defense of the approach, the

solution technique applied to specific situations is

relatively simple and requires minimal computations once

the beach slope and H /L are known. Selected data pointsr o o

may be used to construct graphs which approximate the

hv,/H ratio for each specific beach slope. This can be

used to provide an indication of breaking for varying

H /L
Q

values.
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VII. CONCLUSIONS

Two shallow water breaking criteria have been formu-

lated through the application of the kinematic breaking

criterion to a second order solution of the long wave

equations. These are the ratios of ^u/Lq and h,/H .

Both of these criteria are dependent only upon the beach

slope and the ratio of the deep water wave height to the

deep water wave length. Each ratio requires re-calculation

as these two parameters vary. Comparison with previous

theory indicates that the theoretically derived values

for h. /H offer significantly improved approximations to

the assembled experimental data. The increased accuracy

is partially attributed to the use of a higher order

solution to the long wave equations. First order solutions

obtained indicate that the solution technique applied

offers improvement over previous theory. The predicted

breaking depths are somewhat less than those observed in

field measurements. It is believed that the extension of

the theory to higher order solutions of the long wave

equations would reduce the error associated with the pre-

dicted breaking depth. Inclusion of vertical water particle

accelerations would also increase the accuracy of the solution,





APPENDIX A

1DERIVATION OF -"^

Iwagaki and Sakai have obtained a second order solution

for the free surface, 7?(x,t). The relation derived com-

pared favorably with experimental data. Several approxi-

mations made in the solution, however, warrant discussion.

(2)Combining equations (18) and (19) so that u v is

eliminated, gives

-D^o^ +D*vA« +U«^uVli . (A-D

Iwagaki and Sakai substituted their first order equations

(20) and (21) into the right side of (A-l). They then

offered approximations for the Bessel and Neumann (Weber)

functions of

JrW~ (^wY/2
-c o s (vJ - v- V2--^A) (A "2)

and

,'/:

N r(wV (fi<<t*) *>* (
w ~ '"V2--^ )• (A " 3)

The authors provide evidence which shows that for |w| >1.0,

these asymptotic expansions are accurate. Defining





p (x) = (2<r(x/gi)^- Tf/4), use of (A-2) and (A-3) allows

the right side of (A-l) to be expressed as

ft
lK<r

it-
a- J

- ^fcOV^CosQ^J. (A-4)

(21
The solution of "7£

v ^~ was assumed: ta be

P^XJ) =A(*} COS £fft + &6<) S 'N &rt + C 60.

This expression was substituted into the left side of

equation (A-l) and the result compared to (A-4) . From this

comparison, the coefficients A(x) , B(x) and C(x) are deter-

mined as

~^(4f x^ Cos[2^ (A "5)
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l^x^S.N^^]. (A-7)- CL2-

lCtr<r

Use of (A-5), (A-6) and (A-7) gives the left side of (A-l)

as

Cos

ircT

-27A© a*-a Cyy^ x-%S/r<Ezffrfl ?

-rro-

rrcrz

Examination of (A-4) and (A-8) shows that use of the

expressions for the coefficients A(x) , B(x) and C(x) does

not yield an exact solution. Differences occur in the

third term constants in each of the coefficients of

cos 2 eft and sin 2 eft. In addition, the segment of (A-8)

independent of t contains a fourth term not present in (A-4)

.
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Instinctively, these differences would seem to limit

the accuracy of the solution. Iwagaki and Sakai substan-

tiated their solution, however, by considering the relative

significance of the terms. It was noted that the terms of

the coefficients of sin 2 <7~t and cos 2<rt involved the

-3/2 -2 -5/2
values x , x and x , while the fourth term inde-

pendent of t in (36) contained x . Using <T = 2tt/T and

comparing the second, third and fourth terms to the first,

the following ratios were found,

2nd Term/lst Term ~* £ j (^ I /Zlf) /(] hV )
c

-1 >

3rd Term/lst Term ^

and

C{(3T^V^cX2

4th Term/lst Term ~ [^ $ (^
T/ZiV )/(g ; C J •

The interpretation of these ratios is that the successively

higher terms become relatively smaller in proportion to i.

Iwagaki and Sakai considered the specific case of i = ~
,

h = 20 cm and T = 3 sec. Examination of the first and third

terms show that they are in phase. For these particular

conditions, the ratio between the third and first terms is

less than — . The conclusion is that the difference
10

between the constants for the third terms is negligible.
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Similarly, the fourth term is compared to the second,

which is in phase with it, and seen to be negligible. The

use of (A-5) , (A-6) and (A-7) can therefore be used to

(2)provide an accurate expression for yn as

+ pa •£ (vt ys.-
3*- co si>foon

rrcr
2"

(2)
The final solution for 7^ (x,t) offered by Iwagaki

and Sakai was

r- 2-
o

^Wf^-^H- (a - io)
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APPENDIX B

COMPUTER PROGRAMS

The results which are summarized in Table 1 were calcu-

lated through the use of a series of simple computer pro-

grams. They are essentially a series of do-loops designed

to perform a number of iterations over an interval. The

results are examined to determine the desired solutions.

The first two programs used are concerned with estab-

lishing a value for the quantity, a, found in equations

(56), (57) and (63). As was discussed in Section V.E.,

this evaluation can be made through the use of (67), (69),

(71), (72) and (70). The first step in the process is to

employ (72)

,

%/h! = (H^HoKVL^/Chx/Lo), (72)

to find H-^/h . In this expression, h-j^/L is known for the

particular case under consideration. Equation (62) gives

this term as h, /L = 0.0157 for the limiting condition of

h/L 6l 1/20. Entry into the wave energy flux curves of

hyperbolic wave theory with the value of h,/L = 0.0157

gives a value of H../H = 1.28. The remaining quantity in

the right side of (72) , H
Q
/L , is a known value for the





specific wave conditions. It can be determined from deep

water observations of the wave. Therefore, once this

value is specified for a certain set of wave conditions,

(72) yields a value of H-^/h, . For instance, when H
Q /L

is equal to 0.001, Hj/1^ = (1.28) ( .001) /. 0157 = 0.0815.

Equation (69) provides a relation for the quantity b

as b = a| /A^
1). Use of (67), which defines A^ and

A- , allows this equation to be evaluated as

Since ill = 0.0157 and L fi
T

. (B-l) is equivalent to
LQ

° 2-r

b-A* :* (b./O^ ?%^7> (b-2)

The next value which must be determined is that of f (& )
c

in (70) which is defined in (69) as

Use of the identity

reduces (69) to

f(6£)- c^s C^c - J^'"^- . (B-3)
I + to.^ <Sl

*





Equation (71) gives ^c as

Defining x as,

and using the identities which exist when o< = arc sin x of

COSex' -
x) i

- x^-

and

I.Q.M <=< — ) \

4 i-x2-

results in (B-3) being given by

p (<*?)=n^ - z-h,
X

*i-x?

I +(-=&=.>? (B-6)

(1)
A, is determined from (67) as

Equations (B-6) and (B-7) can now be combined to express

,^ (B-7)

H^/h-i in terms of the quantity a. The requirement then is

that of determining the value of a for which the right side

of (70) equals the value of H-^/h-^ as given by (72).

The first computer program used defines a function F

as the difference of the right hand value of (70), obtained
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through (B-6) and (B-7) , and the left side evaluated by

(72) . The program is designed to plot F as a function of

a. The value of a for which F equals zero is the required

solution of (70) . Examination of the graph produced by

the first program can thus give a first approximation to

the quantity a.

The second computer program employed is simply an

iteration routine used to refine the value of a. It begins

with a first estimate of a determined from the graph of F

versus a. The value of a is then incremented in steps of

0.001 and the corresponding values of F calculated. The

program is designed to determine the value of F closest to

zero and to print the value of a for this case. This is

the value of a which satisfied (70)

.

The next series of programs are designed to determine

the maximum value of x at which the kinematic breaking

criterion is satisfied and the time at which this occurs.

This can be accomplished by finding a solution set of (x,t)

combinations for which the difference between the right sides

of equations (63) and (57) is equal to zero. The technique

used is similar to that used in establishing the value of

a. The presence of two dependent variables, however,

makes the procedure somewhat more complex.

83





The first program in this determination utilizes the

method employed for the plot of F as a function of a. A

function is defined which equals the difference between

(63) and (57), (c-u) . This is plotted as a function of x

for a series of times t. Examination of the graphs provides

a first guess at the maximum x for which the kinematic

breaking condition is satisfied and the time at which it

occurs. As was the case for determining a, a second pro-

gram is now utilized to obtain a more refined solution.

Here, time is varied over one second in steps of 0.05

seconds and x is incremented in intervals of 0.01 feet.

The value of the function defined as (c-u) is printed for

these specific (x,t) combinations. These results are

examined to determine the point at which the kinematic

criterion is first satisfied.

These first programs have thus determined the maximum

x at which the kinematic breaking criterion is satisfied

and the time at which it occurs . The remaining programs

utilize this result to produce the breaking criteria

summarized in Table 1. The fifth program in the complete

series simply calculates the value of ti (the free surface)

and the depth of the bottom for the point specified for

the solution of (xb ,t). This is accomplished by using

(56) to define 77 and h = i*x,. The ratios of
7j
^/h^ and
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and h, /L are then calculated. A similar program is also

provided which graphs rn as a function of x.

Pages 86-91 contain flow charts for the programs

employed in these determinations.
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FOR 0.1
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PROGRAM 1i APPROXIMATION OF a

Figure 9
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C START
J

Read hx /L ,

VL
o>

H
l
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l
Slope, Period

i
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10000

Program 1
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Figure 10

87





'< START
J

u

Read a,W
Slope,
Period

Do J=]
incren
time ]

steps
perioc

.,20
lent
.n

?20
1

i

1 f

1

1

1

r
Do 1-1,1500

1

1—
1 !

1 1

1

1 1

1 1

1 1

i

Calculate
c-u for 0.

1

ft. incre-
ments of X

•
1

1

1

i .

tfrite time
t, Plot
c-u vs. X

__i

1
N

f STOP
I

PROGRAM 3: FIRST APPROXIMATION OF x AND t AT BREAKING

Figure 11
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^b/hb ,hb /LQ

Write

h
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L
o

C STOP

PROGRAM 5: CALCULATION OF T u /h. AND h,/L
D D DO

Figure 13
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f START
J

Read a,W
Slope,
Period , time

Do 1=1,1500

Calculate zf

for 0.1 ft
increments
of x

Plot 7\ vs.
x

( STOP J

PROGRAM 6: PLOT OF r\ AT TIME OF BREAKING

Figure 14
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