

Calhoun: The NPS Institutional Archive DSpace Repository

Efficiency indicators for education and training

Lukasczyk, Norbert
Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/17744

Copyright is reserved by the copyright owner

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

EFFICIENCY INDICATORS FOR EDUCATION AND TRAINING

 byNORBERT LUKASCZYK

June 1976

Thesis Advisor
K. T. Marshall

Approved for public release; distribution unlimited.
T174989

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMDER ${ }^{\text {a }}$ 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (ma Subtitto) EFFICIENCY INDICATORS FOR EDUCATION AND TRAINING	5. TYPE OF REPORT * PERIOO COVEREO Master's Thesis \qquad c. PERFORMING ORG. REPORT NUMEER
7. AUTHOR(O) Norbert Lukasczyk	a. Conthact or grant nimmeras
9. Performing organization name ano aooress Naval Postgraduate School Monterey, CA 93940	10. PROGRAMELEMENT. PROJECT. TASK
11. CONTROLLING OFFICE NAME ANO AOORESS Naval Postgraduate School Monterey, CA 93940	12. REPORT. OATE June 1976 13. NumEREFPAGES 58 15
T4. MONITORING AGENCY NAME A AOONESSII dilforme Irom Conirolline Ofllico) Naval Postgraduate School Monterey, CA 93940	15. secunity class. (ot into rimort) Unclassified 15a. OECLLASSIFICATION/OOWNGRAOING
Approved for public release; distribution unlimi	

17. OISTRIEUTION STATEMENT (OI the ebetreet antered in Block 20, If difformit treen Report)

The indicators Staff Student Ratio, Cost per Student per Unit Time, and Cost per graduate are discussed with emphasis on the analysis of their properties for the use as indicators for CNET to monitor efficiency of the training estab lishment both overall, and at different levels. The arguments show that the cost per graduate is the most appropriate indicator for a single course. Methods are derived to determine appropriate methods of aggregation for multiple courses. The derived indicators have the mathematical form of the Laspeyres and Paasch indicators, used in economic theory for the cost of
living index. They are applied to 60 courses of SSC San Diego and compared to indicators determined by linear regression based on the same data set. The resulting values of the indicators are helpful to locate the area of interest and detail for further decision making.
40

ABSTRACT

The indicators Staff Student Ratic, Cost per Student $f \in I$ Unit Time, and cost per Graduate are discussed with emphasis on the analysis of their froperties for the use as indicators for CNET to monitcr efficiency of the training establishment both cuerall, and at different levels. The arguments show that the cost per graduate is the most appropriate indicator for a single course. Methods are derived to determine appropriate methods of aggregation for multifle courses. The derived indicators have the mathematical form of the Laspeyres and Paasch indicators, used in economic theory for the cost of living irdex. They are applied tc $\overline{0} 0$ ccurses of sSC San Diego and ccmpared to indicators determined by linear regression based on the same data set. The indicators are also applied fcr different groupings of courses, and different accounting systems. The resulting values of the indicators are helpful to locate the area of interest and detail for further decisicn aaking.

TABLE CF CONTENTS

I. INTFOLUCTION 7
II. TEEORETICAL APPROACH 9
A. SINGLE COURSE 9

1. Staff Student Ratio 9
2. Cost per Student per unit Time 11
3. Cost per Graduate 13
B. MULTIPLE COURSES 13
4. Weighted àverage Approach 14
5. Equivalent Graduates Approach 17
III. DAIA ANALYSIS 20
IV. ACCCONTING SYSTEM. 28
V. CONCIUSIONS AND SUMMARY. 31
Affendix a: Detailed data analysis. 33
LIST OF EEFERENCES 56
INITIAL CISTFIEUTION IIST 57
LIST OF FIGORES 6

LIST OF FIGURES

1. The Input Output Process. 12
2. Total Ccst per Grad. for All Courses 21
3. Elot Cf Total Cost per Grad. 74 vs. 75 24
4. Total Ccst per Grad. 74 vs. 75 on Semi log Scale 26
5. Data Analysis Summary 27

I. INTRODUCTION

The furfose of this thesis is to propose and analyze certain indicators of education and training efficiency for the Chief cf Naval Education and Training (CNET). CNET is seeking a set of indicators that will enable them to
-monitcr the efficiency of the training establisbment bєtwefn given time periods,
-monitor the efficiency at various levels of aggregaticn such as
-all activities of CNET,
-all courses of an activity,
-all courses belonging to a defined group, sucb as a schcols or C schools, -all courses with commen features such as ccurse $l \in n c ̧ t h e t c$.
The term efficiency is defined by CNET in the following way: Efficiency is the achievement of a given training product at the minimum expenditure of total training rescurces within operational constraints.

It is nct the purpose of this thesis to propose methods of measuring educational outpat or effectiveness of trained people on the jok. These very important and difficult areas are beyond the scofe of this work. Ratier, we take the output cf a trained person to be a constant, and develop indicatcrs tc measure how efficiently CNET is producing this given output in a given time period relative to previous time pericds. Thus there is no attempt to measure an absolute level or magnitude of efficiency. The desired indicators are limited to measure changes in the corresponding magaitudes of resources from one time feriod

In chapter 2 the indicators Student Staff Ratic, cost per Student $f \in r$ Unit Time, and Cost per Graduate are dicussed for a single course, emphasizing the analysis of their proferties. The arguments conclude that the cost per Graduate is the preferred measure of efficiency. This measure is then developed for use with multifle courses.

In chapter 3 the cost per graduate indicators are applied tc áata collected from SSC San Diego and compared to a. statistical apfroach. Chapter 4 gives a discription of the accounting system used in the cost report [2,3], from which the data was obiained. In chapter 5 the final conclusicns and summary are made that the derived indicators fulfill the purfcses of CNET. In appendix A the detailed listings, flcts, and analysis of the data are given.

II. THEORETICAL APPROACH

A. SINGLE CCUNSE

$W \in \quad b \in g i r$ the development of indicators by looking at a single course, and investigate three measures of efficiency in light of the objectives of CNET. These are:

Staff Student Ratio,
Cost Per Student Week,
Cost $p \in I$ Graduate.
Our arguafnts conclude that only the last one is usable as a $m \in a s u r e c f \in f f i c i e n c y$.

1. Staff Studㅇnt Ratio

Cne rescurce in education and training is the active staff. A common measure in educational instituitions is the ratio

$$
\frac{\text { number of staff }}{\text { numoer of students }}
$$

called the Staff Student Ratio.
an increase of the ratio indicates for a fixed starf infut that $f \in w e r$ students have been trained in a given period, and this is usually taken to reflect a decrease in resource utilization. On the other hand a decrease of the ratio is usually taken to reflect an improvement of utilizaticn of the same staff.

In many civilian instituitions such as universities, colleges, purlic schools, etc. the teaching fotential is a
major infut and the Staff Student Ratio in successive time periods is often used as an overall efficiency indicator. However modern education and training methodologies and techniques, especially those used in Navy technical training, often substitute computers or other aids to instructicn. These can lead to an increase in overall efficiency, Lut also increase the Staff Student Ratio at the same time. Ccnsider the following two situations:

Situation A. The required course oojectives can be achieved $k y$ using the normal lecture type process under the following ccnditicns: one staff member can instruct thirty students in two weeks with no technical support.

With the growing use of selfpaced, individualized couputer aidea methods, a 50 \% reduction in course length might be fcssibie. Thus let us assume that by introducing new technclogy we have

Situation B. $^{\text {. }}$ Two staff members can instruct thirty students in cne week using thirty computer terminals.
The Staff Student Ratios for situation A and B are 1/30 and 1/15 resfectively, indicating a 50\% decrease in efficiency.

Hcwever, let us take a more careful look. Assume that a staif member is paid $\$ 300$ per week, and a student $\$ 200$ per wefk. In situation A, if all students successfully complete the course in two weeks then the cost per graduate will be

$$
[(200 * 2 * 30)+2 * 300] / 30=\$ 420 .
$$

In situaticn B it is easy to see that if the computer costs are less than $\$ 200$ per week the cost per graduate will $b \in$ less than $\$ 420$. Clearly the Staff Student Ratio gives risleading results caused by a basic change in the technology of teaching.
2. Cost fer Student per Unit Time

Ihe next indicator investigated is the cost per Student $F \in I$ Unit Time. Although not as widely used as the Staff Student Ratic it still finds acceptance as a measure of educaticn and training efficiency.

Let us consider our two situatuions again and assume the follcwing parameters:
Situation A:
Staff 3 CO\$/man week

Student $200 \$ /$ man week
Situation B:
Staff $3 C 0 \$ /$ man week
Staff $300 \$ / \operatorname{man} w e \in k$

Technical
Support ncre Support 100\$/man week.

The cost per student week under situation A is $\$ 210$, and under B is $\$ 320$, whereas the cost fer graduate is $\$ 420$ and $\$ \equiv 20$ respectively. Thus the cost per student per Unit $T i \mathbb{m}$ indicator also gives misleading results.

3. Ccst per Graduate

The training and education process in a given course can be thcught of as in Fig 2.

Figure 1 - The Input Output Process
The rescurcesenter the process and produce a certain output. $T h \in$ preferred measure of efficiency is rescurces divided $k y$ output. The total resources are usually measured in dollars. The output is more difficult to measure in educational systems. Recall that we assumed that quality of output remains constant. Let us define the output in a given ti四e period to be

Total man months trained

and call this the total number of qraduates produced in a given period. The reader should realize that this rumber may not agree with the number who formally graduate due to missmatches of the course timing and the acccunting feriod. However, the term graduates used here does measure the output cf the education process. It follows that the apprcpriate $\mathbb{E} \in a s u r \in$ to use for a single course is the cost per graduate. In the remainder of this thesis the term graduate will be used in the sense of equation (1).
$L \in t \quad c(t)$ be the cost of resources necessary to prcduce cone graduate in time period t, called the cost per graduate. A useful measure is one which comfares efficiency
in two successive time periods. Therefore let us take the ratio $b \in t w e \in n$ the costs per graduat \in of the time periods. The indicator has the form

$$
\begin{equation*}
I(t-1, t)=c(t) / c(t-1) \tag{2}
\end{equation*}
$$

wherethe period $t-1$ is used as base. The indicator reflects rainly three situations:

Thus the cost per graduate ratio reflects the changes of efficiency in the correct way. All resources can be included if they are representable in cost units. It is invariant to unit changes since those would be applied to numerator and denominator and cancel out in the divisicn. It has the time reversal property

$$
I(t-1, t)=1 / I(t, t-1)
$$

that is ky changing the base period, one indicator is rerely the recifrocal of the other. Fcr example, if $I(t-1, t)=0.8$, then $I(t, t-1)=1.25$, which shows that if the cost per graduate in feriod t was 80% of that in $t-1$, then in $t-1$ it was 125% of what it was in period t. Changes in efficiency as shown by the example should be easily understocd and meaningful tc people not familiar with the development of the indicatcr.

B. MUITIEIE CCURSES

After develofing the cost per graduate ratio as an indicator for a single course the problem now is how to
combine these indicators to obtain a meaningful indicator reflecting efficiency changes in a group of courses. In what follows the $s \in t$ a represents a group of $n(\geq 1)$ courses. Two approaches are discussed. In the following Σ means $\sum_{i \in A}$.

First, $l \in t I_{i}(t-1, t)={ }^{\circ} c_{i}(t) / c_{i}(t-1) \quad b \in$ the indicator for the single course i as in equation (2). Let w_{i} be a weight attacked to course i, and define

$$
\begin{equation*}
I(t-1, t)=\sum I_{i}(t-1, t) w_{i} \tag{3}
\end{equation*}
$$

where $\Sigma_{w_{i}}=1, w_{i} \geq 0$. We call this the $w \in i g h t e d$ average approach.

For the $s \in$ con approach let $x_{i}(t) b \in$ the $n u m b \in r$ of graduates from course i in period t. The total cost cf the group in period t is $\Sigma c_{i}(t) X_{i}(t)$. Let ϵ_{i} be a weight associated with the graduates of course i which reflects differences in graduates from different courses. The total number $c f \quad " \in q u i v a l e n t "$ graduates in period t is $\sum_{i}(t) e_{i}$. Define $c(t)=\sum_{C_{i}}(t) X_{i}(t) / \sum_{i}(t) \epsilon_{i}$, the cost per equivalent graduate in period t. Then let the efficiency indicator $b \in \in$ the ratio

$$
I(t-1, t)=c(t) / c(t-1)
$$

He call this the equivalent graduate approach.

1. WEighted Average Approach

Ire simplest form of weighted average is to take the arithmetic mean. Recall that n is the number of elements in

A and set $W_{i}=1 / n$ for all i. Then

$$
I(t-1, t)=1 / n \sum c_{i}(t) / c_{i}(t-1)
$$

The courses might be of equal importance to the Navy, but may not be equal in their utilization of resources. Thus they should influence the efficiency differently. The following example will demonstrate this. Consider two courses $i=1,2$ for periods $t-1$ and t, and assume the parameters fur

$$
\begin{array}{ll}
\text { pericd } t-1 & \text { period } t \\
c_{1}(t-1)=100 & c_{1}(t)=100 \$ / \text { grad } \\
x_{1}(t-1)=10 & x_{1}(t)=10 \mathrm{grad} \\
c_{2}(t-1)=1200 & c_{2}(t)=1000 \$ / \text { grad } \\
x_{2}(t-1)=15 & x_{2}(t)=12 \text { grad }
\end{array}
$$

The resulting overall indicator is
$I(t-1, t)=1 / 2[(100 / 100)+(1000 / 1200)]=1 / 2[1+.833]=.917$
since the re of resources shown by the cost per graduate of course 2 is almost ten times that of course 1 the change in effiency cf course 2 is expected to contribute more to the overall efficiency than an equal share. Our intuitive expectation arcut the overall indicator would be

$$
(1+10 * 8.33) / 11=.85
$$

Thus let us construct other weights which agree more closely with our intuition.

Cone way to weight the courses is to take their amount of output into consideration and relate it to the total course group output, that is let

$$
w_{i}=x_{i}(t) / \sum x_{i}(t)
$$

where $\Sigma_{i}=1, w_{i} \geq 0$. Thus

$$
I(t-1, t)=\sum\left[c_{i}(t) x_{i}(t) / c_{i}(t-1)\right] / \sum x_{i}(t)
$$

Applying the n umeric example yields

$$
I(t-1, t)=(10+10) / 22=.909
$$

which is a small improvement towards our intuitive exfectaticn. We fcllow this line and take bcth the cost per graduate and the amount of output of the corresponding course intc consideration. Let us use the relaticn cf the total expenditures for course i to the total expenditures for the whcle group in period $t-1$. Then

$$
w_{i}=c_{i}(t-1) x_{i}(t-1) / \sum_{i}(t-1) x_{i}(t-1)
$$

where $\sum_{w_{i}}=1, w_{i} \geq 0$. Using these weights

$$
\begin{equation*}
I(t-1, t)=\sum c_{i}(t) x_{i}(t-1) / \sum c_{i}(t-1) x_{i}(t-1) \tag{4}
\end{equation*}
$$

Apflying cur numeric example the overall efficiency change would $b \in$

$$
I(t-1, t)=(1000+15000) /(1000+14400)=.842
$$

which is clcse to our intuitive value.

The indicator in equation (4) has a mathematical form commenly found in economic theory. There it is kncwn as the Laspeyres indicator and is used in the computation (see Mald[5]) cr approximation (see Allen[1]) of the cost of living indicator. The properties of the cost of living index are si凹ilar to those properties desired for a CNET indicator.
felating the economic interpretation of the indicator tc the training and education situation the Laspeyres indicator reflects the relation between the total expenditures for the base period, here t-1, and the total expenditures which would have been caused by producing the output of feriod $(t-1)$ in period t at period $t \operatorname{costs} c_{i}(t)$.

From this interpretation another forll of an indicator ccmes to mind, one which relates the expenaitures caused when frcducing the output of the current pericd at
last periods prices. This indicator is known in eccnomic theory as the Faasch indicator

$$
\begin{equation*}
I(t-1, t)=\sum c_{i}(t) x_{i}(t) / \sum c_{i}(t-1) x_{i}(t) . \tag{5}
\end{equation*}
$$

It is alsc used for the determination or apfroximaticn of the cost cf living indicator (see wald[5], and Allen[1]). Tc derive this form of the indicator the weights have to be

$$
w_{i}=c_{i}(t-1) x_{i}(t) / \sum c_{i}(t-1) x_{i}(t)
$$

where again $\Sigma w_{i}=1, w_{i} \geq 0$. The numeric example would yield an $c v \in r a l l$ efficiency indicator of

$$
I(t-1, t)=(1000+14400) /(1000+12000)=.844
$$

also clcse to the intuitive value.

2. Equivalent Graduates Approacin

Until now the numbers of graduates of different ccurses $w \in r \in$ used in an equal fashion. But the question arises does the change in the number of graduates from one course cause the same effects as an equal change in the number of graduates from ancther course. To overcome this froblem let rs relate all course graduates tc a common unit and determine their equivalence factors e_{i}. The total costs of the course-group could be related to the sum of equivalent graduates and the form of the indicator for the single course could be applied correspondingly to the group. $W h \in n$
(6)

$$
\begin{gathered}
c(t)=\sum c_{i}(t) x_{i}(t) / \sum e_{i} x_{i}(t) \text { then } \\
I(t-1, t)=c(t) / c(t-1) .
\end{gathered}
$$

The problem is to find meaningful exfressions for the equivalence factors e_{i}.

Cone way is to relate courses by their cost per graduate, that is let $e_{i}=c_{i}(t-1)$. The overall efficiency indicator will $b \in$ then

$$
\begin{aligned}
I(t-1, t) & =\frac{\left[\sum c_{i}(t) x_{i}(t) \sum c_{i}(t-1) x_{i}(t-1)\right]}{\left[\sum c_{i}(t-1) x_{i}(t) \sum c_{i}(t-1) x_{i}(t-1)\right]} \\
& =\sum{c_{i}}_{i}(t) x_{i}(t) / \sum c_{i}(t-1) x_{i}(t)
\end{aligned}
$$

which is Equivalent to equation (5), the paasch indicator. Thus setting $e_{i}=c_{i}(t-1)$ in (6) is equivalent to setting

$$
w_{i}=\left[x_{i}(t) c_{i}(t-1)\right] /\left[x_{i}(t) c_{i}(t-1)\right]
$$

in equation (3).

$$
\begin{aligned}
& \text { If } w \in \text { let } \epsilon_{i}=c_{i}(t) \text { then } \\
& I(t-1, t)=\left[\sum_{c_{i}}(t) x_{i}(t-1)\right] /\left[\sum_{c_{i}}(t-1) x_{i}(t-1)\right]
\end{aligned}
$$

which is equivalent to equation (4), the Laspeyres indicator. In relating this equation to (3) we obtain

$$
W_{i}=\frac{\left[x_{i}(t) c_{i}(t-1) \sum_{c_{i}}(t) x_{i}(t-1)\right]}{\left[\sum_{i}(t) c_{i}(t) \sum_{c_{i}}(t-1) x_{i}(t-1)\right]} .
$$

Note that in this case $\sum_{i} \neq 1$.

The indicators in both equations (4) and (5) are easily computable and understood, and both have desirable properties. For a detailed discription of these indicators see Allen [1] and Pisher[4].

Both indicatcrs play a central role in the remainder of this thesis, and we use the following notation

$$
I(t-1, t)=\frac{\left[\sum c_{i}(t) x_{i}(t-1)\right]}{\left[\sum c_{i}(t-1) x_{i}(t-1)\right]},
$$

and

$$
P(t-1, t)=\frac{\left[\sum c_{i}(t) x_{i}(t)\right]}{\left[\sum c_{i}(t-1) x_{i}(t)\right]} .
$$

III. DATA ANALYSIS

In this chafter data of sixty different courses at the activity $S S C$ San Diego are analysed. They are taken from the annual cummulative cost reports $[3,4]$. The data were collected during the time periods of 1974 and 1975, and are listed fartially in Fig 2, and in appendix A. The data are groufed into the main group of all sixty courses and the two sukgroups of thirtynine $C-s c h o o l s, ~ a n d ~ t h i r t e e n ~$ A-schools. Fcr each group an anlysis is done with regard to the

Total csst E er graduate which includes all costs of rescurces which are considered to determine the total operating budget of a course.
Dirfct ccst $p \in \underline{r}$ graduate which includes only costs accounted to the direct course and the correspcnding overtead share.
Indirect cost per graduate the difference betwefn the twc akove including resources like hosfital, housing, student salaries, etc.
More details about the different costs are given in the next chapter.

Applying the cost indicators derived in the last chapter to the data listed in Fig 2 the following results are determined. The single course indicators are given in the last column of Fig 2, their arithmetic mean yields 1.167 which is, as expected, much higher than the
Laspeyres indicatcr $L=1.081$, and the
Paasch indicatcr $\quad P=1.014$.

ECCST NET RAD EP RN-E $I C-\triangle P S C$ hELD NPFW WELC NPFO 2M-A CIVE SECENC RN-TT NCE28 hELD FFHLLL RM-MORSE CD NCT VNF IC-A CRUG SPEC $\triangle C \& R$ hELC HFPIPE NF-A HT-A-PH-2 INTER/CLASS IC-APS MT EM-A CF SYS $\triangle N A$ ET-C IC-NC2 MC-2 [:-1 LF ISM $2 \in 0$ CK ASCLL YN-A $S K-A \quad \Delta F L T$ NCT LSEI $S K-\Delta \Delta S \vdash$ EC-A SCCL FN-A CIV SClea EERECS CF FERTRAN CP PRG $A \subseteq \subseteq Y$ NCI RI-N ACT RI C 6M-A IAST-NAVRES SHOC EARBER NCT RACSAF FN TT LLK ACMIN/COLNS CP-SYS ©PS SH-C CLERK INST SHIPED IC-CRAI-CQI EN hASH-EXT $\triangle C E R$ CEATRL NGNT/SLFV EN-1GNN NT SR-C LNDRY EN GUAL CON CRLE ALVISR SK-FIN SYS CSVETS $\Delta C E R$ DRYAIR SK-FCEL

The square rect of $\mathrm{F} * \mathrm{~L}$ is an indicator which has the time reversal frcferty (see Allen [1]), $\sqrt{\mathrm{P} * \mathrm{~L}}=1.047$.

This indicates an increase in costs of about 5\% from period 1974 tc period 1975.

In Fig 3 the sixty pairs of sample chservations on the total cost per graduate $[c(74),(75)]$ are represented on a scatter diagram. Assuming the $c_{i}(74)$ as fixed and the $c_{i}(75)$ as random variables a reasonable statistical model would be

$$
c_{i}(75)=a+b c_{i}(74)+u_{i}
$$

where a and b are parameters which have to be estimated based on the data, and u_{i} are error terms, which are assumed to be multivariate normally distributed with mean zero, variance ∇^{2} and covariance zero.

Using the theory of simple linear regression the estimates for the parameters based on the data given in Fig 2 are, for the intercept and the slope:

$$
a^{\prime}=52.69, \text { and } b^{\prime}=1.083 .
$$

The r^{2} value is 0.924 and indicates a very high correlation $b \in t w e \in n$ the 74 and 75 data.

Due to the assumption about the $u_{i}^{\prime}{ }^{\prime}$ the estimates $a^{\prime} \cdot b^{\prime}$ as functicns cf u_{i} are also normally distributed and we can do a hypothesis testing on a and b as follows. Denote ky c74 the mean value $E\left(C_{i}(74)\right)$, and by I the level of significance. Then the $100(1-1)$ per cent confidence intervals for a and b respectively are

and

$$
b^{\prime} \pm t_{1 / 2} v^{\prime} / \sqrt{n \sum\left(c_{i}(74)-c 74\right)^{2}},
$$

Where $t_{1 / 2}$ is $t h e$ corresponding value of the student t distribution. For testing the joint hypothesis $a=0$ and $b=1$, the F value is determined and compared tc the table value for the corresponding 1 level and degrees of freedom.

Applying this to the data of Fig. 2, the confidence intervals for the intercept a and slope b with $1=10 \%$ are

$$
-151.61<a<256.80
$$

and

$$
1.016<b<1.15
$$

The \bar{f} value $=5.71$.

The single hyp gothesis $a=0$ is accepted, since zero is in the interval. The single hypothesis $b=1$ is rejected, since it is outside the confidence interval. The joint test $a=0$, and $b=1$ is also rejected since the F value is greater than the corresponding table value $\mathrm{F}_{(2,58)}(90)=2.39$.

Taking the tested hypothesis into consideration, the line

$$
c_{i}^{\prime}(75)=b^{\prime} c_{i}(74)
$$

yields a good approximation to our data for $c_{i}(75)$, and the indicator derived from this model would be

$$
I(74.75)=c^{\prime}(75) / c(74)=b^{\prime}=1.083
$$

which is equal to the value determined by the Laspeyres inciicator.

Figure 3 - Total Cost per Graduate 1974 vs 1975
for all sixty Courses

Since the most data pairs are squeezed in at the kottom end of the scale, they were also ploted on semi log scaling as shown in Fig 4 to investigate the model

$$
\log \left(c_{i}(75)\right)=a+b \log \left(c_{i}(74)\right)
$$

The simfle linear regression yields

$$
a^{\prime}=0.693 \text { and } b^{\prime}=0.921,
$$

the value of $r^{2}=.866$ indicates a good correlation, thus the model

$$
c_{i}^{\prime}(75)=2 c_{i}(74)^{.921}
$$

is a gocd fit for the data.

The values expected ror a' should $b \in$ about $z \in r o$. Therffore let us force a to be zero and investigate the model

$$
\log c(75)=b \log c(74)
$$

The regressicn determines b' = 1.014 in this ase, a value which is equal to that given by the Paasch indicator. The corresponding curve is drawn in Fig. 3, at it's lower value part it is almost linear and bends slowly at very high values of c(74).

Thus in the value range of our investigation the linear model is a gcod approximation and is used for the statistical approach to determine b' as the cost efficiency indicator between the corresponding time periods.

In affendix a the reader can find the detailed listings, flcts, and regression values for the three groups with regard to tctal-. direct-, and indirect cost per gracuate. In Fig. 5 a summary is given where + means acceptance of the hyfcthesis, and - means rejection.
data analysis sumuary
ALL COURSES
C SCHCOLS
A SCHOOLS

ICTAL DRECT INDRT TOTAL DRECT INDET TOTAL DEECT INDRT
Faasch $\quad 1.014 \quad 1.1460 .9681 .2901 .4981 .1920 .860 \quad 0.9320 .839$
Laspeyres $1.081 \quad 1.3031 .0041 .4091 .725 \quad 1.256 \quad 0.882 \quad 0.994 \quad 0.849$
$\sqrt{E * L}=\quad \begin{array}{llllllllll}1.047 & 1.222 & 0.986 & 1.348 & 1.608 & 1.224 & 0.871 & 0.963 & 0.844\end{array}$

b' $\quad 1.083 \quad 1.265 \quad 0.9561 .0031 .017 \quad 0.951 \quad 0.717 \quad 0.807 \quad 0.717$
Cor.fact. 0.9240 .8060 .9360 .8220 .6860 .8340 .6640 .6770 .625
$\begin{array}{lllllllllllll}H: a=0 & + & + & + & - & - & - & + & + & + \\ H: L=1 & - & - & + & + & + & + & - & + & - \\ H: a=0, b=1 & - & - & + & - & - & - & - & + & -\end{array}$

Figure 5

IV. ACCOUNTING SYSTEM

The values computed for the indicators with regard to the total-, direct-, and indirect cost fer graduate among the grouf cf all sixty courses or the subgroups of A-schools, and C-schools vary remarkably, indicating cost increases as well as decreases. Therefore let us take a close lock at the costs and the way they are determined.

The data used in chapter 3 are taken from the the school cost refcrt[2,3]. The total cost per graduate for a single course is determined by the sum of the direct cost per graduate and the indirect cost per graduate, and thus includes all resources listed in that report. The direct cost is aggregated from the following single resource cost:

Resource name

Direct ccurse costs
Ccmmand $l \in v \in 1$ cuerhead
Division $l \in v \in I$ overhead Group level cverhead

Abreviation

NameDir
C/A
Div
Grcup

The indirect cost includes the following resource costs:

Resource name

CNET share
Host activity
Hoscital
Family housing
Equipment defreciation
Activity staff travel
Student travel
Student salaries

CNNT
Host
Abreviation

ноsf
Fam
Eq. Dep.
Act.Stf.Trv.
Stu.Trv.
Stu.sal.

The cost of a single resource is broken into the fcllowing categoriєs:
military labor ML
civilian labor CL
supply costs SC.
contract costs CC
miscellaneous costs MC

The listing and summation for a single course is illustrated by the following example. Data are taken from the Dive seccnd school in 1974. The horizontal sumation Yields the resource subtotal, the vertical summation yields the cost factor suctotal for the direct cost level, which summed hcrizcntally yield the course direct cost.

Course Name :	ML	CL	SC	CC	MC	Total
Dive Se Lr			33362	225	4038	37625
C/A	36967	2395	1429	881	1091	42763
Div	4173	1081	10		234	5498
Group	125272		503		881	126656
Difect Cost per grad.	166412	3476	35304	1105	6244	$\begin{aligned} & 212542 \\ & 1076.4 \end{aligned}$
CNNT	2341				2176	4517
Host	39337				36249	75586
Hosp	1900				700	2600
Fam					200	200
Eg.Dep					800	800
Stu.Trv.					300	300
Stu.Sal	100500					100500
Indirect c. per grad.	352168	3476	35304	1105	85094	$\begin{aligned} & 477147 \\ & 2416.6 \end{aligned}$
Total cost per grad.						$\begin{aligned} & 689689 \\ & 3492.9 \end{aligned}$

V. CONCLUSIONS AND SUMMARY

In chafter 2 cost efficiency indicators are derived, and their prcperties analyzed. They have the mathematical form equivalєot tc the Laspeyres and Paasch indicators, known in eccnomic theory and used to determine the cost of living index. In chapter 3 the indicators are applied to data from sixty ccurses of SSC San Diego. The same data is analyzed using linear regression.

The indicator for the total cost per graduate fcr all courses is 1.047 with tine Laspeyres and Paasch having 1.081 and 1.014. Note that the slope of the line in Fig. 3 that passes through the origin is 1.095 and the linear regression line has slcfe 0.083. All these indicate a cost increase in the range cf the infiation rate. Due to the similarity in the overall trend and the magnitude, one is tempted to explain the decrease in efficiency by thcse influences. However, by looking at the values for the subgroups cf a courses and C courses or for direct-, and indirect cost per graduates $w \in s \in e$ that this conciusion is nct valid.

The reader should remember that the purfcse of a single indicator is to determine an overall trend. The fcrm of aggregaticn used $\pi a k e s$ detailed conclusicns about which resource causes what effect difficult.

One way tc get more detailed informaticn on the area of resources cr courses causing the change in efficiency is by sefarating the ccsts and using different aspects of accounting, cr by grouping courses due to their features, or membershif at locations. Examples are given in chafter 3.

The direct cost per graduate for the whcle group yields indicatcrs reflecting a 15\% to 25\% decrease in efficiency whereas the indirect cost per graduate yields indicators reflecting almost no change. Applying the indicators to the sukgroups shows an increase of efficiency in the a schools and a decrease in the C schools. Thus attention should be directed to these groups to find out the reasons tc make further decisions.

As a summary we can say that the derived indicators are $a b l \in:$

- tc monitor the efficiency of the trainig estaflishment, and to do this at different $l \in v \in l s$ of acccunting or grouping.

Thus they are usable for the purposes of CNET.

APPENDIX A

DETAILED DATA ANALYSIS

In this appendix the reader can find the detailed listings of the data taken from the cost report [2,3, the scatter diagrams plotting the corresponding cost per graduate of period 74 versa period 75 , the couputed indicators derived in chapter 2, the parameters determined by afplying simple linear regression, and the correspcnding confidence interjals and F vaiues. The sequence of listings, flcts, and data are:

Total ccst per graduate

 listing cf all sixty courses, plot cf these data pairs, listing of thirteen A schools, plot of these data pairs, listing cf forty C schools, plot of these data pairs, computed values.[^0]Indirect cost per graduate listing of all sixty courses, plot of these data pairs, listing of thirteen a schools, plot of these data pairs, listing of forty C schools, plot of these data pairs, computed values.

$s \cos t / \operatorname{crad}(1975)$

cclrse name	tyfe	$C(74)$	$\times(74)$	$C(75)$	$x(75)$	I (74,75)
RM-A	A	2672.74	1296.10	3129.56	2840.65	0.85
IC-A	1	2567.05	927.86	2373.85	1064.16	0.80
NR-A	A	2862.95	473.24	2806.80	505. ${ }^{5}$	0.
EN-A	${ }^{\text {A }}$	$25 \in 2: 32$	1633.11	1725.00	1169.8\%	$0 \cdot 6$
CP-A	A	2082.54	655.21	2472.07	1466.42	1.19
CK \triangle SCCL	A	17¢1.	436.02	2363.76	70.00	$1: 32$
YN-A	A	178 2.67	614.25	1515.78	151.00	0. 25
¢K-A AFLT	A		963.88	1095.39	307.54	0.6
SK-A ASH	A	1604.88	164.07	1492.19	27.28	O. 93
FC-A FN-A SCCL	A	1562.96	136.59 541.80	1170.61 1431.43	175.95	0. 75
¢N-A $6 N-A$	${ }_{0}$	¢58.81	50¢.64	1447.51	288.45	1.51

$\$ \cos t / \operatorname{rarad}(1975)$

Total Cost per Graduate 1974 vs 1975
for A Schools

Colrse name	TYPE	$C(74)$	X 774 ）	$C(75)$	$x(75)$	！（74，75）
NCT RAL OP	C	6402.84	54.28	5432.60	67.48	0.85
IC－AFSC	C	5084．15	47.60	5637.75	57.20	1.11
WELD NPFW	C	4707.92	116.54	5278.08	138.84	1.12
WELC NFFC		$4504 \cdot 52$	64．72	4575.60	54.17	1．02
RN－ITPMCL28	C	3161.40	268.24	4021.46	480.52	1.27
RN－MORSECL	C	30 c 8.15	300.53	2872．5	534.38	0． 94
NCT VNF	C	300 － 82	86.97	3336.72	74.75	1.1
CRUG SFEC	C	2912.70	112.13	2540.83	96． 23	0． 87
$A C$ \＆R	C	2888.64	323.51	2874．24	328.26	1.00
HELD HFPIPE	C	2880.03	262.08	3641.99	324.07	1． 26
IC－APS ${ }^{\text {NT }}$	C	2621．43	14．00	2947：90	101． 110	析
CP SYS ANA	C	254t．25	16.40	1954．80	32.00	0．78
ET－C	C	248 － 2	996.10	6000.45	554.82	． 42
IC－NC2 MD－2	C	2234.80	56.20	3205.25	37.20	1.42
DP IBM ミ60		182 L －5	10 t． 38	241 ． 88	75.15	1．32
ACT LSEI	C	1625.98	50.72	$\frac{1}{2} 71.40$	47．75	O． 57
OF FCRTRAN	C	1025．72	9.75	2449.84	4.37	$2 \cdot 25$
	C	1020．54	23.25	$1420 \cdot 12$	10.83	
NCT RI C	C	1005.74	21.67	1727：24	6.50	71
INST－NAVRES	C	920．84	26．co	555.69	26.00	C． 60
SH－C EARBER	C	S15．88	166．19	1257.63	100.22	1． 37
NLT RACSAF	C	910.22	8． 50	1046.20	21.50	－15
RN TT LLK	C	ع 56.75	74．63	876．94	65.41	02
CP－SYS CPS	C	812.06	45.48	1064.56	12.00	1．21
SH－C CLERK	C	80\％． 5	176.70	810.30	24.67	
INST SHIPEC		744.03	452.51	850.70	217.51	1.14
IC－CRAI－DRT	C	589.15	50.67	987.60	47.67	1.4
EN WASt－EXT		688.96	78.25	738.94	97.50	，
ACER CEATFL	C	664.42	95．51	750.78	78.00	－13
NGMT／SLPV		S58．51	$1215 . \varepsilon ¢$	747.70	878．72	1.14
EN－16MN MT	C	632.12	221.00	781.64	177．50	1． 24
SH－C LACRY		517.36	56.50	723.34	65.00	40
RM QUAL CON	c	50 50．45	294.25	965.76	214.36	8
SK－FIN SYS	C	4 E ¢ 52	29．00	449.59		－ 5
ACER CFYAIR		401.77	¢ $\in .44$	381.06	17.0 C	－．${ }^{\text {－}} 5$
SK－FOOL	C	三2Є．78	95.00	604．18	22：00	．85

$\$ \cos t / \operatorname{Grad}(1975)$

Total Cost per Graduate 1974 vs 1975
for C Schools

tCTAL CEST PER GRaduate

ALL CCLRSES
the arithmetic mean of the indicators is $=1.167$
THE LASFEYRES INEICATOR IS =1.0ع1. THE PAASH INOICATこR IS = 1.014
FCR THE MCDEL $(T)=C(T-1) * B$ THE ESTIMATE FCR B $=1.055$
FOR THE MDDEL $C(T)=A+C(T-1) * B$ THE EST. $A=52.648$ FDR $E=1.093$
CCNFICENCE INTERVAL FOF A -151.E12 256.عO
CENFICENCE INTERVALFGF 1.0161 .150
tre fvalue $=$ E.717 the table value $=2.390$
THE HYFCTHESIS IS $A=0, \exists=1$, BCTH AT LEVEL 10%

A SCHCCLS

The arithmetic nean of the indicators is $=0.946$
THE LASFEYRES INEICATOR IS $=0.882$ THE PAASH INDICATCR IS $=0.860$ FCG THE MCEEL $C(T)=C(T-1) * B$ THE ESTIMATE FCR $B=0.893$

FOR THE MODEL $C(T)=A+C(T-1) * B$ THE EST. $A=424.250$ FQR $R=0.717$
CCNFICENCE INTEFVAL FOR A -152.840 1001.420
CCNFICENCE IATERVAL FER E 0.4630 .970
tre fvalue $=2 . \in 1 E$ tre tasle value $=2.860$
THE HYFCTHESIS IS $A=0,8=1$, BOTH AT LEVEL 10 \%

C SCHCCLS

THE ARITHMETIC NEAN OF THE INDICATORS IS = 1.241
THE LASFEYRES INEICATOR IS $=1.409$ THE PAASH INOICATJR IS $=1.250$
FGF THE MOCEL C(T)=C(T-1)*B THE ESTIMATE FOR B $=1.111$
FOR THE MODEL $C(T)=A+C(T-1) * B$ THE EST. $\Delta=325.722$ FDR $E=1.003$
CCNFICENCE INTERVAL FOR A 3 E.535 E18.SOS
CCNFICENCE IATERVAL FOF B 0.8791 .127
tre fvalue $=4.645$ the table value $=2.440$
THE HYFOTHESIS IS $A=0, B=1$, BOTH AT LEVEL 10 \%

CCUFSE MAME	TYPE	C(74)	X (74)	$C(75)$	$x(75)$	I (74,75)
ECCST	p	3991.47	92.04	6481.57	63.20	1.t 6
NCT RAC GP		3371.94	54.38	258 203	67.48	0. 77
RM-E	8	1565.27	334.30	1415.05	391.44	O. 50
IC-AFSC	C	170 ¢ 61	47.60	2368.55	57.20 138.34	1-25
WELC NFFC	C	133 ¢15	154.72	1978.80	54.17	1.4
RN-A	A	¢55.91	1296.10	698.68	2840.6c	0.82
[IVE SECOND		107 ¢. 46	157.45	1324.01	193.95	1.
FN-TT NC[28	C	1079.42	268.24	1854.71	170. 23	
hELC FFHCLL	c	885.21	453.27	1065.17	480.52	1.20
RM-MORSE CD	C	882.48	300.53	690.43	534.38	0.
NOT VNF	C	1079.45	86.57	1100.08	74.75	1.02
IRUG SFEC	$\stackrel{ }{\text { a }}$	¢42,	927.86	1049.14	1064.16	$0 \cdot 9$
AC E $\overline{\text { a }}$	C	¢24.76	323.51	-972.49	328.26	1.0
hELD FFPIPE	C		263.08	1320.24	324.07	1.41
NR-A	A	691.06	473.24	754.38	505.25	1.09
HT-A-Pト-2	A	565.63	1633.11	561.95	2393.85	0.99
INTER/CLASS	C	650.92	97.85	1128.27	101.37	1.72
IC-APS MT	C	こ22.4.9	14.00	262.80	11.70	1.
EM-A	A	¢2\%.78	869.29	547.75	1169.38	0.87
CF SYS ANA	C	1170.35	16.40	68.55	32.00	0.5
ET-C	C	1214.48	996.10	3409.75	554.83	-
[F-A	A	-687.20	655.21	- 93.62	466.43	1.1. ${ }^{\text {a }}$
CP IBN 360	C	557.02	106.38	1231.25	75.	2.
CK \triangle SCCL	A	337.56	436.02	437.64	70.00	1.29
YN-A	Δ	407.12	614.25	392.28	151.00	
SK-A AFLT	$\stackrel{\square}{\square}$	318.29	963.88	$28 \in .47$	307.54	0.90
NCT LSEI	C	502.2ϵ	50.72	474.44	47.75	
SK-A ASF	A	275.91	154.07	371.91	27.28	1-3
FN-A	A	302006	541.80	307.23	$12{ }^{\text {c }}$	
CIV SClEA	F	408.78	162:32	560.03	165.92	1: 27
EERECS	P	$25 \epsilon 50$	541 ¢.08	286.50	6721.31	1.12
CF FORTRAN	C	117.95	9.75	282.52	$4 \cdot 37$	
NETRRI-N	C	$\frac{1}{2} \frac{1}{1}$	23.0	290.70	10.8	
NCT RI C	c	$307.2 \overline{4}$	21.67	796.32	6.50	
GM-A	A	235.55	506.64	432.67	288.45	1.81
INST-NAVRES	C	364.11	26.00	$211.4 t$	26.00	0. 5 ¢
SH-C EARBER	C	292.31	166.19	477.84	100.22	1. ϵ^{2}
NCT RACSAF	C	210.94	8.50	233.54	21.50	-1
RN TT LLK	$\stackrel{+}{C}$	115.78	74.63	151.69	65.41	1.31
ACMIN/CULNS	$\stackrel{\square}{\square}$	12 12.71	399.53	470.39	96.11	3.74
CP-SYS GPS	C	120.80	45.48	192.40	12.00	1.59
SH-C CLERK	C	132.09	176.70	294.66	24.07	4
IC-CRAI-CRT	C	144.95	452.51	202.35	217.51	4
EN hASt-EXT	C	190.63	78.25	285.62	97.50	
ACER CENTRL	C	1 c 4.75	95. 51	220.96	78.00	.13
NGNT/SLFV	C	120.tt	$1215 . \varepsilon \epsilon$	$18 \mathrm{S}$.	878.72	1.57
EN-1 $\mathrm{SNM}^{\text {N }}$ N	C	271.24	221.00	420.64	177.50	1.55
St-C LACRY	C	167.00	56.50	380.70	65.00	-28
CRLG \triangle CVISR	C	115.42	290.00	167.06	271.65	
SK-FIN SYS		207. 25	35.00	35.41	22.00	0.12
CSVETS	S	80.50	717.47	172.50	675.50	colt
$\begin{aligned} & A C E \overline{E F Y A I R} \\ & S K-F C C C \end{aligned}$		$13 \epsilon \cdot 95$ $1 \geq 1.53$	96.44 95.00	54.59 390.00	17.00	2.6s

$\$ \operatorname{Cost} / \operatorname{Grad}(1975)$

Direct Cost per Graduate 1974 vs 1975
for A Schools

$\stackrel{4}{\sim}$	
＊	
\cdots	
$\stackrel{n}{\sim}$	 \rightarrow－ron main in -1 N ∞ Nol
\times	
	oinmonntrootnnminnuntintnimitain tomasomorogting －••••••••••••••••••••••••••••••••••••
の	
－	
U	
\checkmark	
\bar{x}	
U	
0	
に	
Σ	
8	
$<$	以оण
）	
，	¢い
O	
U	

$\$$ Cost/frad (1975)

Direct Cost per Graduate 1974 vs 1975
for C Schools

ALL CCLRSES

THE ARITHETIC MEAN OF THE INDICATOPS IS = 1.421
THE LASFEYRES INCICATOR IS $=1.303$ THE PAASH INCICATDR IS $=1.14 \epsilon$ FOR THE MODEL C(T)=C(T-1)*B THE ESTIMATE FCR B $=1.274$ FCR THE NCEEL $C(T)=A+C(T-1) \neq E$ THE EST. $\Delta=13.1 \in 1$ FOR $B=1.265$ CCNFICENCE INTERVAL FOR A -114.059 140.381 CCAFICENCE INTERVAL FCR E 1.lヨ1 l.ミSc
tre flalue = lC.ezs tre taele value $=2.390$
THE HYFOTHESIS IS $A=0, B=1,30 T H$ AT LEVEL 10%

A SCHCCLS
THE ARITHMETIC MEAN DF THE INDiCATGRS IS = l. oge
THE LASFEYRES INCICATOR IS $=0.994$ THE PAASH INCICATJR IS = J. 9 I 2
FOR THE MCDEL $C(T)=C(T-1) \neq B$ THE ESTIMATE FCR B $=1.007$
FER THE MCDEL $C(T)=A+C(T-1) * B$ THE EST. $A=114.545$ FOR B $=0.807$
CCNFILENCE INTERVAL FOF A -33.617 262.706
CCNFICENCE INTERVAL FOR B 0.530 1.08E
the fvalue $=$ C.c 72 Tre taele value $=2.800$
THE HYFOTHESIS IS $\Delta=C, B=1, B C T H$ AT LEVEL 10%

C SCHCCLS

THE AfITHMETIC MEAN DF THE INDICATDRS IS $=1.475$
THE LASFEYRES INCICATOR IS $=1.725$ THE PAASH INDICATOR IS $=1.458$ FOR THE MCDEL $(T)=C(T-1) \neq B$ THE ESTIMATE FOR B $=1.155$

FCR THE MCDEL $C(T)=A+C(T-1) * B$ THE EST. $A=176.225$ FOR $B=1.017$
CCNFICENCE INTERVAL FOR A 15.755 336.702
CCNFICENCE INTERVAL FOR B 0.834 1.200
THE FVALUE $=$ z. 648 THE TARLE VALUE $=2.440$
THE FYFCTHESIS IS $A=C, B=1$, bCTH AT LEVEL 10\%

 \rightarrow

ost/Grad(1975)

\$Cost/Grad(1375)

Indirect cost per Graduate 1974 vs 1975
for A Schools

$\stackrel{W}{N}$	
$\stackrel{+}{+}$	
\cdots	
-	
!	
N	
x	
in	
r	
ω	
	trotmrio onmmrt uovontmato om truvoainumiotoon in
N	
x	\sim
t - - •••••••••••••••••••••••••••••••••••	
m	
Ξ	
\boldsymbol{w}	
0	
$\underset{\sim}{2}$	
\sum_{2}^{4}	
u	
5	
-	

$\$ \operatorname{Cost} / \operatorname{Grad}(1975)$

IACIRECT CCST PER GRACUATE

ALL CCLRSES
The arithmetic mean of the indicators is $=1.051$
THE LASPEYRES INCICATOR IS $=1.004$ THE PAASH INCICATCR IS $=0.968$
FCR THE MCCEL $C(T)=C(T-1) * B$ THE ESTIMATE FOR B $=0.995$
FOR THE MCCEL $C(T)=A+C(T-1) * B$ THE EST．$A=115.882$ FOR $\varepsilon=0.956$
CONFILENCE IATERVAL FOR A 0.337 231．427
CCNFICENCE INTEFVAL FCF E 0.5031 .010
the flalue $=1.4 \equiv 2$ The taele valle $=2.390$
TrE HYFCTHESIS IS $\Delta=C, B=1$ ，BOTH AT LEVEL 10%
\triangle SCRCCLS
the arithmetic nean of the indicaters is＝0．sce
THE LASPEYRES IN［ICATJR IS $=0.845$ THE PAASH INCICATOR IS $=0.839$
FCR THE MCCEL $C(T)=C(T-I) \neq B$ THE ESTIMATE FOR B $=\mathbf{C . 8 6 0}$
FOR THE MCDEL $C(T)=A+C(T-1) \approx 8$ THE EST．$\Delta=264.55 G$ FOR $E=0.717$
CCAFICENCE INTERVAL FDR A－193．433 722．Eミえ
CCNFICENCE INTERVAL FCR E 0．455 0．S7S
The fValue $=4.51 \varepsilon$ The table valle $=2.860$
TrE FYfCTHESIS IS $A=0, E=1$, SOTH AT LEVEL 10\％

C SCRCCLS
the arithinetic nean of the indicatcrs is＝ 1.155
TrE LASPEYRES iNCICATOR IS $=1.256$ THE PAASH IACICATDR IS＝ 1.152 FCR THE MCCEL $C(T)=C(T-1) * B$ THE ESTIMATE FOR $B=1.055$

FGR THE MCDEL $C(T)=A+C(T-1) * B$ THE EST．$\Delta=199.476$ FOR $E=0.951$
CCAFICENCE INTERVAL FOR A 24．71も 274． Z E
CEAFICENCE INTERVAL FCF B 0.838 1．064
the fValue $=2 . \varepsilon 10$ the table valle $=2.440$
THE FYFCTHESIS IS $A=0, B=1, B O T H$ AT LEVEL 10%

LIST OF REFERENCES

1. K.G.. .Allen, Index Numbers in Theory and practice, p. all, Aldine Eublishing Company, 1975.
2. CNTECHTFA, School<Cost Report\&oIC.No Cumpulative Cost as of $\underline{0} \underline{\underline{6}} \angle \underline{3} \underline{0} \angle 74$, E. all, Chief of Naval technical Training, Naval Air Station MEmphis (25), 1S75.
 Cumpulative Cost as of $\underline{\underline{0} 6} \angle 30 \angle 75, p$, all, Chief of Naval Technical Training, Naval Air Station Memphis (25), 1S76.
3. I Fisher, The Making of Index Nưbegers, E. all, Bcston, 1922.
4. Wald.a., "A New Formula for the Index of cost of Living", Econometrica, v. 19, p. 319-331, 1959.

5. Defense Documentation Center
6. Library, Code 0212

Naval Ecstgraduate School Monterey, California 93940
3. Department Chairmang Code 55

Department of Operation Research Naval Pcstgraduate School Monterey. California 93940
4. Professcr K.T. Marshall, Code 55 MT

Thesis Adviser
Naval pcstgraduate School
Monter \quad y, California 93940
5. Asscc. Erofessor G. Howard, Code 55 HK

Seccnd $f \in a d e r$
Naval pcstgraduate School
Monterer, California 93940
6. Norkert Lukasczyk

Student
$2300 \mathrm{Ki} \in 1$
pestalozzistr
97
Federal Fepubiic of Germany
7. Marineamt - A1-

1
2940 wilhelmshaven
Federal fepublic of Germany
8. Dokumentationszentrale der Bundeswehr (See)

1
5300 BCnn
Friedrich-Ebert-Allee 34
Federal Republic of Germany

[^0]: Direct csst per graduate listing cf all sixty courses, plot cf these data pairs, listing cf thirteen a schools, flot cf these data pairs, listing cf forty C schools, plct of these data pairs, computed values.

