

Calhoun: The NPS Institutional Archive DSpace Repository

An investigation of the properties of the exponential moving average point process.

Lo, Tzy-dah Jathro
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/17821

Copyright is reserved by the copyright owner

Downloaded from NPS Archive: Calhoun

appointed -- and published -- scholarly author.

AN INVESTIGATION OF THE PROPERTIES OF THE EXPONENTIAL MOVING AVERAGE POINT PROCESS

Tzy-dah Jathro Lo

NANAL POSTCRADUMTE SCMOOL Wonterey, Califomia

AN TNVESTIGFTION OF THE PROPERTIES

 OF THEEXPONFITIAT MOVING AVERAGE POINT ProCESS

by
Lo, Tzy-dah Jathro

March 1976

Approved for public release; distribution m!imited.

Properties of a stationary sequence of random variables $\left\{x_{i}\right\}$ which have exponential marginal distributions and random linear combinations of order one of an i.i.d. exponential sequence $\left\{\varepsilon_{i}\right\}$ were discussed by Lawrence and Lewis (1976) ; they called this model the EMAl (exponential moving average of order one) point process. This paper will investigate the estimators of the parameter B of the EMAl process, and some basic properties of the EMA2 process, and then extend these results to the EMAK process.

An Investigation of the Properties of the

Exponential Moving Average Point Process
by

Lo, Tzy-dah Jathro
Comander, Chinese Navy
B.S., Chinese Naval Academy, 1959
M.S., University of Iowa, U.S., 1971

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the
NAVAL POSTGRADUATE SCHOOL
March 1976

ABSTRACT

Properties of a stationary sequence of random variables $\left\{X_{i}\right\}$ which have exponential marginal distributions and random linear combinations of order one of an i.i.d. exponential sequence $\left\{\varepsilon_{i}\right\}$ were discussed by Lawrance and Lewis (1976); they called this model the EMAl (exponential moving average of order one) point process. This paper will investigate the estimators of the parameter β of the EMAl process, and some basic properties of the EMA2 process, and then extend these results to the EMAk process.
-

TABLE OF CONTENTS

I. INTRODUCTION 8
II. A BRIEF REVIEW OF THE EMAI PROCESS 10
III. ESTIMATING β IN THE EMAI MODEL 13
IV. COMPARISON OF THE ESTIMATORS 20
V. SOME BASIC ASPECTS OF THE EMA2 MODEL 26
VI. DISTRIBUTION OF SUIAS IN $\left\{X_{i}\right\}$ SEQUENCE OF THE EMA2 MODEL 31
VII. THE JOINT DISTRIBUTION OF X_{i} AND X_{i+1} IN EMA2- \quad - 35
VIIT. SOME BASIC ASPECTS OF THE EMAk MODEL 41
IX. CONCLUSIONS- 49
APPENDIX A. METHODS OF COMPUTING JOINT EXPECTATIONS- 50
APPENDIX B. LIST OF USEFUL JOINT EXPECTATIONS- 53
LIST OF REFEREIJCES- 56
INITIAL DISTRIBUTION LIST 57

LIST OF SYMBOLS

X_{i}	The ith element of the sequence of the time intervals of the point process.
ε_{i}	The ith element of the i.i.d. exponential sequence with parameter λ.
EMAk	Exponential Moving Average of order k.
$\beta{ }_{i}$	Probabilities, $0 \leq \beta_{i} \leq 1, i=1,2,3, \ldots$.
ρ_{j}	The jth order serial correlations.
T_{r}	Sum of $\mathrm{X}_{\mathrm{i}}{ }^{\prime} \mathrm{s} ; \mathrm{T}_{r}=\mathrm{X}_{\mathrm{i}}+\mathrm{X}_{2}+\ldots . .+\mathrm{X}_{\mathrm{r}}$.
$\phi_{x}(s)$	Laplace transform of the p.d.f. of $T_{r} ; \phi_{r}(s)=E\left(e^{-s T} r\right)$
p.d.f.	Probability density function.
$\mathrm{F}_{\mathrm{r}}(\mathrm{t})$	Distribution function of T_{r}.
$N_{t}^{(f)}$	The number of events occurring in the time interval $(0, t]$. (f)
$\psi_{f}(z ; t)$	The generating function of $N_{t}^{(f)} ; E\left(z^{N}{ }_{t}\right.$).
$\psi_{f}^{*}(z ; s)$	Laplace transform of $\psi_{\mathrm{F}}(z ; t)$.
$m_{f}^{*}(t)$	The intensity function of the point process.
$m_{f}^{*}(s)$	Laplace transform of m(t).
λ	Parameter of exponential distributions.
S	Variable of Laplace transform.
$f_{X_{i}}^{*}(s)$	Laplace transform of the p.d.f. of X_{i}; $\mathrm{E}\left(\mathrm{e}^{-s X_{i}}\right)$.
$f_{X_{i}}^{* *} X_{i+1}\left(s_{1}, s_{2}\right)$	Laplace transform of the joint p.d.f. of X_{i} and X_{i+1}.
$\hat{\beta}, \hat{\beta}$	Estimators of β.

Y^{\prime}	Random variable Y divided by its mean value, i.e. $Y^{\prime}=Y / \mu Y$.
$\hat{\rho}_{j}$	Estimator of ρ_{j}.
$\psi(s)$	Laplace transform of the p.d.f. of the ε_{i} distribution.
$f_{\beta_{1} \varepsilon_{i}, \beta_{1} \varepsilon_{i+1}}$	Joint p.d.f. of $\beta_{1} \varepsilon_{i}$ and $\beta_{1} \varepsilon_{i+1}$.
$\mathrm{x}_{\mathrm{i}}{ }^{(k)}$	X_{i} of the EMAk process.
$\rho_{j}^{(k)}$	The jth order serial correlation of the EMAk process.

ACKNOWLEDGEMENT

I am deeply indebted to Professor P. A. W. Lewis for his invaluable assistance and numerous helpful directions throughout the entire period that I was working on this thesis. I must thank Lieutenant Commander M. G. Bell, Ph.D. candidate of Operations Research, for his valuable suggestions and advice during the course of this investigation and computation in the preparation of this thesis.

I also wish to thank Ms. M. N. Marks for her very competent typing of this thesis.

I. INTRODUCTION

Properties of the stationary sequence of positive random variables $\left\{x_{i}\right\}$ which are formed from an independent and identically distributed exponential sequence $\left\{\varepsilon_{i}\right\}$ according to the linear model

$$
X_{i}=\left\{\begin{array}{ll}
\beta \xi_{i} & \text { with probability } \beta, \\
\beta \xi_{i}+\xi_{i+1} & \text { with probability } 1-\beta .
\end{array}(0 \leq \beta \leq 1 ; i=0, \pm 1, \pm 2, \ldots)\right.
$$

were discussed by Lawrance and Lewis [Ref. l]. They gave a fairly complete picture of this model, and called it the EMAl (Exponential Moving Average of order l) process. It is clear that the adjacent elements of this sequence are correlated, but that the dependence is no greater than order one, i.e. x_{i} is independent of X_{i+2}, x_{i+3}, \ldots and so forth for pairs and triples.

In this paper, methods of estimating β and the properties of the estimates of β will be discussed, and then the properties of an analogous second order process are investigated. The new process, called the EMA2 model, is a sequence of positive random variables $\left\{X_{i}\right\}$ defined by

$$
X_{i}= \begin{cases}\beta_{2} \xi_{i} & w \cdot p \cdot \beta_{2} ; \\ \beta_{2} \xi_{i}+\beta_{1} \xi_{i+1} & \text { w.p. }\left(1-\beta_{2}\right) \beta_{1}\left(0 \leq \beta_{2}, \beta_{1} \leq 1 ; i=0, \pm 1, \ldots\right) ; \\ \beta_{2} \xi_{j}+\beta_{1} \xi_{i+1}+\xi_{i+2} & \text { w.p. }\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) .\end{cases}
$$

The purpose in the creation of this model is to provide nodels for data with longer dependencies than that obtained with the first-order
model and to examine any tendencies of the upper bound on the serial correlations to increase. For the EMAl model $0 \leq \rho_{1} \leq 1 / 4$ and $\rho_{k}=0$ for $k=2,3, \ldots .$. For the EMA2 model it is shown that $0 \leq \rho_{1}, \rho_{2} \leq 1 / 4$ and $\rho_{k}=0$ for $k=3,4, \ldots$ In fact, the $\left\{x_{i}\right\}$ form a sequence of exponential random variables, and it will be seen from (l.l) that the successive elements X_{i}, X_{i+1}, X_{i+2} will be correlated. This model is also an alternative model to a renewal process.

The EMA2 model is shown to be a stationary point process. Distribution of the sums of X_{i} are discussed, and the joint distributions of two adjacent intervals X_{i} are derived and appear to be new bivariate exponential distributions. Extensions of the model and estimation problems are briefly discussed.

In developing the properties of the process, the similarities to a backward second order moving average which is defined as

$$
X_{i}= \begin{cases}\beta_{2} \xi_{i} & \text { w.p. } \beta_{2} ; \\ \beta_{2} \xi_{i}+\beta_{1} \xi_{i-1} & \text { w.p. }\left(1-\beta_{2}\right) \beta_{1}\left(0 \leq \beta_{2}, \beta_{1} \leq 1 ; i=0, \pm 1, \ldots\right) ; \\ \beta_{2} \xi_{i}+\beta_{1} \xi_{i-1}^{+\xi_{i-2}} & \text { w.p. }\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) .\end{cases}
$$

will also be pointed out. Properties of the processes are very similar, but those of the forward model (l.l) have simpler derivations.

The EMAl model is a stationary point process with exponential marginal distribution of the intervals $\left\{X_{i}\right\}$. Further X_{i} is dependent on X_{i-1} and X_{i+1}, but independent of all others, so the correlation $\rho_{1}=\operatorname{corr}\left(X_{i}, x_{i+1}\right)=\beta(1-\beta), \rho_{k}=0$ for $k=2,3, \ldots$

The Laplace transform of the p.d.f. of $\mathrm{T}_{r}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{r}$ is

$$
\begin{equation*}
\phi_{r}(s)=\frac{\lambda}{\lambda+s}\left\{\frac{\lambda(\lambda+2 \beta s)}{(\lambda+\beta s)[\lambda+(1+\beta) s]}\right\}^{x-1} \quad x \geqslant 1 \tag{2.1}
\end{equation*}
$$

Let $N_{t}^{(f)}$ be the number of events occurring in the interval ($0, t$] beginning at an arbitrary event; and let $F_{r}(t)$ denote the distribution of T_{r}; then

$$
\operatorname{Prob}\left\{N_{t}^{(f)}=r\right\}=F_{r}(t)-F_{r+1}(t) .
$$

with $F_{0}(t) \equiv 1$ for $t>0$. The p.d.f. of $N_{t}^{(f)}$ gives the generating function as
$E\left[z^{N^{(f)}}\right]=\psi_{f}(z ; t)=\sum_{r=0}^{\propto} z^{r}\left[F_{r}(t)-F_{r+l}(t)\right]=l+(z-1) \sum_{r=1}^{\propto} z^{r-1} F_{r}(t) \cdot(2 \cdot 2)$

Inserting (2.1) in the Laplace transform of (2.2) gives

$$
\begin{equation*}
\psi_{f}^{*}(z ; s)=\frac{\beta(1+\beta) s^{2}+[-\beta(1-\beta) z+2 \beta+1] \lambda s+\lambda^{2}}{(s+\lambda)\left[\beta(1+\beta) s^{2}+(1+2 \beta-2 \beta z) \lambda s+(1-z) \lambda^{2}\right]} \tag{2.3}
\end{equation*}
$$

Differentiating (2.3) with respect to z, then setting $z=1$, gives the Laplace transform of the intensity function $m_{f}(t)$, as

$$
\begin{equation*}
m_{f}^{*}(z ; s)=\frac{\lambda(\lambda+\beta s)[\lambda+(1+\beta) s]}{\beta(1+\beta) s(\lambda+s)\left[s+\lambda /\left(\beta^{2}+\beta\right)\right]} \tag{2.4}
\end{equation*}
$$

and inverting (2.4) gives

$$
m_{f}(t)= \begin{cases}\lambda\left\{1+\frac{\beta(1-\beta)}{\beta^{2}+\beta-1}\left[e^{-\lambda t /\left(\beta^{2}+\beta\right)}-e^{-\lambda t}\right\}\right\} & \left(\beta^{2}+\beta \neq 1\right) \\ \lambda\left(1+\beta^{3} \lambda t e^{-\lambda t}\right) & \left(\beta^{2}+\beta=1\right)\end{cases}
$$

The joint distribution of X_{i} and X_{i+1} is a bivariate exponential. Using a double Laplace transform we get

$$
\begin{align*}
f_{X_{i}}^{* *} X_{i+1}\left(s_{1}, s_{2}\right) & =\psi\left(\beta s_{1}\right)\left[\beta \psi\left(\beta s_{2}\right)+(1-\beta) \psi\left(s_{1}+\beta s_{2}\right)\right]\left[\beta+(1-\beta) \psi\left(s_{2}\right)\right] \\
& =\frac{\lambda^{2}\left(\lambda+\beta s_{1}+\beta s_{2}\right)}{\left(\lambda+\beta s_{1}\right)\left(\lambda+s_{2}\right)\left(\lambda+s_{1}+\beta s_{2}\right)} \tag{2.5}
\end{align*}
$$

and using triple Laplace transform gives

$$
\begin{aligned}
& f_{X_{i-1}}^{* * *}, x_{i}, x_{i+1}\left(s_{1}, s_{2}, s_{3}\right) \\
= & \psi\left(\beta s_{1}\right)\left[\beta \psi\left(\beta s_{2}\right)+(1-\beta) \psi\left(s_{1}+\beta s_{2}\right)\right]\left[\beta \psi\left(\beta s_{3}\right)+(1-\beta) \psi\left(s_{2}+\beta s_{3}\right)\right]\left[\beta+(1-\beta) \psi\left(s_{3}\right)\right]
\end{aligned}
$$

Differentiating (2.5) with respect to s_{2}, setting $s_{2}=0$, and inverting with respect to S_{l} and then dividing by the marginal(exponential) density of X_{i-1}, gives

$$
E\left(X_{i} \mid x_{i-1}=t\right)=\lambda^{-1}\left[\beta \lambda t+\frac{1-2 \beta}{1-\beta}+\frac{\beta}{1-\beta} e^{-\lambda(1-\beta) t / \beta}\right]
$$

Similarly,

$$
E\left(x_{i} \mid x_{i+1}=t\right)=\lambda^{-1}\left[1+\beta-e^{-(1-\beta) \lambda t / \beta}\right]
$$

The two conditional variances are given by
$\operatorname{Var}\left(X_{i} \mid x_{i-1}=t\right)=\lambda^{-2}\left[\frac{1-2 \beta+2 \beta^{3}}{(1-\beta)^{2}}+\frac{2 \beta^{2}(1+\lambda t)}{1-\beta} e^{-(1-\beta) \lambda t / \beta}-\frac{\beta^{2}}{(1-\beta)^{2}} e^{-2(1-\beta) \lambda t / \beta]}\right.$ $\operatorname{Var}\left(x_{i} \mid x_{i+1}=t\right)=\lambda^{-2}\left\{\frac{1+\beta+\beta^{2}-\beta^{3}}{1-\beta}-2\left[\frac{\beta}{1-\beta}+\frac{\lambda t}{\beta}\right\} e^{-\lambda(1-\beta) t / \beta}-e^{-2(1-\beta) \lambda t / \beta}\right\}$.

III. ESTIMATING β IN THE EMAI MODEL

The EMAl model is not time-reversible, and this comes out clearly in higher order joint moments. The results lead to a method for estimating β in the EMAl model.

Define

$$
\begin{aligned}
& c_{1,2}(k)=E\left(x_{i} x_{i+k}^{2}\right)-E\left(x_{i}\right) E\left(x_{i+k}^{2}\right), \\
& c_{2,1}(k)=E\left(x_{i}^{2} x_{i+k}\right)-E\left(x_{i}^{2}\right) E\left(x_{i+k}\right),
\end{aligned}
$$

which when $k=1$ gives

$$
\begin{aligned}
& c_{1,2}(1)=E\left(x_{i} x_{i+1}^{2}\right)-E\left(x_{i}\right) E\left(x_{i+1}^{2}\right) \\
& c_{2,1}(1)=E\left(x_{i}^{2} x_{i+1}\right)-E\left(x_{i}^{2}\right) E\left(x_{i+1}\right) .
\end{aligned}
$$

By the construction of EMAl, we have:

$$
x_{i}^{2}= \begin{cases}\beta^{2} \varepsilon_{i}^{2} & \text { w.p. } \beta^{2} \\ \beta^{2} \varepsilon_{i}^{2}+2 \beta \varepsilon_{i} \varepsilon_{i+1}+\varepsilon_{i+1}^{2} & \text { w.p. }(1-\beta)^{2}\end{cases}
$$

Hence, using straightforward combination, we get the joint expectation of x_{i}^{2} and x_{i+1} as

$$
\begin{gathered}
E\left(X_{i}^{2} x_{i+1}\right)=E\left(\beta^{3} \varepsilon_{i}^{2} \varepsilon_{i+1}\right) \beta^{3}+E\left(\beta^{3} \varepsilon_{i}^{2} \varepsilon_{i+1}+\beta^{2} \varepsilon_{i}^{2} \varepsilon_{i+2}\right) \beta^{2}(1-\beta) \\
+E\left(\beta_{i}^{3} \varepsilon_{i}^{2} \varepsilon_{i+1}+2 \beta^{2} \varepsilon_{i} \varepsilon_{i+1}^{2}+\beta \varepsilon_{i+1}^{3}\right) \beta(1-\beta)^{2} \\
+E\left(\beta^{3} \varepsilon_{i}^{2} \varepsilon_{i+1}+2 \beta^{2} \varepsilon_{i} \varepsilon_{i+1}^{2}+\beta^{2} \varepsilon_{i}^{2} \varepsilon_{i+2}+2 \beta \varepsilon_{i} \varepsilon_{i+1} \varepsilon_{i+2}+\beta \varepsilon_{i+1}^{3}+\varepsilon_{i+1}^{2} \varepsilon_{i+2}\right)(1-\beta)^{3} .
\end{gathered}
$$

Simplification of this result leads to
$E\left(X_{i}^{2} X_{i+1}\right)=\frac{1}{\lambda^{3}}\left(2+4 \beta-2 \beta^{2}-2 \beta^{3}\right)$ which implies that $C_{2,1}(1)=\frac{2}{\lambda^{3}} \beta(1-\beta)(2+\beta)$.

Similarly, we get
$E\left(X_{i} x_{i+1}^{2}\right)=\frac{1}{\lambda^{3}}\left(2+2 \beta-2 \beta^{3}\right)$ which implies that $C_{1,2}(1)=\frac{2^{\beta}}{\lambda^{3}}(1-\beta)(1+\beta)$. Therefore, if we let

$$
\begin{equation*}
r=\frac{C_{2,1}(1)}{C_{1,2}(1)}=(2+\beta) /(1+\beta), \tag{3.1}
\end{equation*}
$$

we have a function of β which decreases monotonically from 2 when $\beta \rightarrow 0$, to $3 / 2$ when $\beta \rightarrow 1$. Thus there is a unique solution for β for any given r; note that when β is 0 or 1 , the ratio is not defined. Solving (3.1) we get

$$
\beta=(2-r) /(r-1)=\frac{2-\frac{c_{2,1}(1)}{c_{1,2}(1)}}{\frac{c_{2,1}(1)}{c_{1,2}(1)}-1}=\frac{2 C_{1,2}(1)-c_{2,1}(1)}{C_{2,1}(1)-c_{1,2}(1)},
$$

For estimating β, define

$$
\begin{aligned}
& \hat{C}_{1,2}(1)=\frac{1}{n-1} \sum_{i=1}^{n-1} x_{i} x_{i+1}^{2}-(\bar{x})\left(\bar{x}^{-2}\right), \\
& \hat{C}_{2,1}(1)=\frac{1}{n-1} \sum_{i=1}^{n-1} x_{i}^{2} x_{i+1}-\left(\bar{x}^{-2}\right)(\bar{x}), \\
& \hat{\beta}=\frac{2 \hat{C}_{1,2}(1)-\hat{C}_{2,1}(1)}{\hat{C}_{2,1}(1)-\hat{C}_{1,2}(1)}
\end{aligned}
$$

Thus

Now we check all the estimators, to see if they are asymptotically unbiased or not.
1.

$$
E\left[\hat{C}_{1,2}(1)\right]=\frac{1}{n-1} \sum_{i=1}^{n-1} E\left(x_{i} x_{i+1}^{2}\right)-E\left(\frac{1}{n^{2}} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{2}\right)
$$

Examining the estimate of the product of the means we have

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} x_{i}^{2} & =\left(x_{1}+x_{2}+\ldots+x_{n}\right)\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right) \\
& =n x_{i}^{3}+2(n-1)\left(x_{i} x_{i+1}^{2}+x_{i}^{2} x_{i+1}\right)+(n-1)(n-2) x_{i} x_{i \pm 2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
E\left(\frac{1}{n^{2}} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{2}\right) & =\frac{1}{n^{2}} \frac{1}{\lambda^{3}}\left[6 n+2(n-1)\left(4+6 \beta-2 \beta^{2}-4 \beta^{3}\right)+2 n^{2}-6 n+4\right] \\
& =\frac{2}{\lambda^{3}}+\frac{4}{n}\left(2+3 \beta-\beta^{2}-2 \beta^{3}\right)+\frac{4}{n^{2}}
\end{aligned}
$$

and when $n \rightarrow \infty, E\left(\bar{x} \bar{x}^{2}\right) \rightarrow 2 / \lambda^{3}$.
Thus, since the estimators of $E\left(X_{i} X_{i+1}^{2}\right)$ and of $E\left(X_{i}^{2} X_{i+1}\right)$ are unbiased, we get that asymptotically,

$$
\begin{aligned}
& E\left[\hat{C}_{1,2}(1)\right]=\frac{2}{\lambda^{3}} \beta(1-\beta)(1+\beta) ; \\
& E\left[\hat{C}_{2,1}(1)\right]=\frac{2}{\lambda^{3}} \beta(1-\beta)(2+\beta)
\end{aligned}
$$

i.e. Both of these are unbiased estimators when n is large.
2. We now look at the ratio estimator of β, namely $\hat{\beta}$ to see if it is asymptotically unbiased. Note that the denominator in the expression for $\hat{\beta}$ is identically zero if $\beta=0$ or $\beta=1$, so that in what follows we assume that $0<\beta<1$. Let
$2 \hat{C}_{1,2}(1)-\hat{C}_{2,1}(1)=Y$ and let
$\hat{C}_{2,1}(1)-\hat{C}_{1,2}(1)=Z . \quad$ Then
$E(Y)=2 E\left[\hat{C}_{1,2}(1)\right]-E\left[\hat{C}_{2,1}(1)\right]=\frac{1}{\lambda^{3}}\left(2 \beta^{2}-2 \beta^{3}\right)=\mu_{y}$; and
$E(Z)=E\left[\hat{C}_{2,1}(1)\right]-E\left[\hat{C}_{1,2}(1)\right]=\frac{1}{\lambda^{3}}\left(2 \beta-2 \beta^{2}\right)=\mu_{z}$.
Now we can write $(Y / Z)=\frac{\mu_{y}}{\mu_{z}} \frac{Y / \mu_{z}}{z / \mu_{z}}=\frac{\mu_{Y}}{\mu_{z}} Y^{\prime}\left(1+\frac{Z^{-\mu} z_{z}}{\mu_{z}}\right)^{-1} \quad$ where $Y^{\prime}=Y / \mu_{y^{\prime}}$, so that
$E(Y / Z)=\frac{\mu_{Y}}{\mu_{z}}\left\{E\left(Y^{\prime}\right)-E\left[Y^{\prime}\left(\frac{Z^{-\mu^{\prime}}}{\mu_{z}}\right)\right]+E\left[Y^{\prime}\left(\frac{Z^{-\mu_{z}}}{\mu_{z}}\right)^{2}\right]-\ldots\right\} ;$
we assume that conditions for this expansion to hold as $n \rightarrow \infty$ are met.

Since $\mu_{y} / \mu_{z}=\beta$ and $E\left(Y^{\prime}\right)=1$, if $\hat{\beta}=Y / Z$ is to be unbiased, we must show the rest of the terms in (3.1) are all zeros.

Thus look at

$$
E\left[Y^{\prime}\left(Z-\mu_{Z}\right) / \mu_{Z}\right]=E(Y Z) / \mu_{Y} \mu_{Z}-1
$$

we have

$$
\begin{aligned}
(Y Z)= & {\left[2 \hat{C}_{1}, 2(1)-\hat{C}_{2,1}(1)\right]\left[\hat{C}_{2,1}(1)-\hat{C}_{1,2}(1)\right] } \\
= & (n-1)^{-2}\left[2 \sum_{i=1}^{n-1} X_{i} X_{i+1}^{2}-\sum_{i=1}^{n-1} x_{i}^{2} x_{i+1}\right]\left[\sum_{i=1}^{n-1} x_{i}^{2} X_{i+1}-\sum_{i=1}^{n-1} x_{i} x_{i+1}^{2}\right] \\
& -(\bar{x})\left(\bar{x}^{2}\right)\left(\sum_{i=1}^{n-1} x_{i}^{2} X_{i+1}-\sum_{i=1}^{n-1} X_{i} x_{i+1}^{2}\right) /(n-1) \\
= & {[(2 U-W)(W-U)] /(n-1)^{2}-\left[\sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} X_{i}^{2}(W-U)\right] /\left[n^{2}(n-1)\right] }
\end{aligned}
$$

where $\quad U=\sum_{i=1}^{n-1} x_{i} x_{i+1}^{2}=\sum_{i=1}^{n-1} U_{i}, \quad$ i.e. $U_{i}=x_{i} x_{i+1}^{2}$,
and $\quad W=\sum_{i=1} x_{i}^{2} x_{i+1}=\sum_{i=1} W_{i} \quad$ i.e. $W_{i}=x_{i}^{2} X_{i+1}$.

In addition $(2 U-W)(W-U)=3 U W-2 U^{2}-W^{2}$.

Further we get

$$
\begin{aligned}
& U W= \sum_{i=1}^{n-1} U_{i} W_{i}+\sum_{i=3}^{n-1} U_{i} W_{i-2}+\sum_{i=2}^{n-1} U_{i} W_{i-1}+\sum_{i=1}^{n-2} U_{i} W_{i+1} \\
&+\sum_{i=1}^{n-3} U_{i} W_{i+2}+\left(n^{2}-7 n+12\right) U_{i} W_{i \pm 3}, \\
& U^{2}= \sum_{i=1}^{n-1} U_{i}^{2}+2 \sum_{i=1}^{n-2} U_{i} U_{i+1}+2 \sum_{i=1}^{n-3} U_{i} U_{i+2}+(n-3)(n-4) U_{i} U_{i \pm 3}, \\
& W^{2}=\sum_{i=1}^{n-1} W_{i}^{2}+2 \sum_{i=1}^{n-2} W_{i} W_{i+1}+2 \sum_{i=1}^{n-3} W_{i} W_{i+2}+(n-3)(n-4) W_{i} W_{i \pm 3} .
\end{aligned}
$$

It can be shown that all these joint expectations have finite expected value so, when $n \rightarrow \infty$, those terms only with coefficients n will go to zero when multiplying by $\left(\frac{1}{n-1}\right)^{2}$. Thus asymptotically,
$E\left[(2 U-W)(W-U) /(n-1)^{2}\right]=E\left(3 U W-2 U^{2}-W^{2}\right) /(n-I)^{2}-\cdots \infty$
$3 E\left(U_{i}\right) E\left(W_{i+3}\right)-2 E\left(U_{i}\right) E\left(U_{i+3}\right)-E\left(W_{i}\right) E\left(W_{i+3}\right)=\left(4 \beta-4 \beta^{2}+4 \beta^{3}-8 \beta^{4}+4 \beta^{5}\right) / \lambda^{6}$,
since
and

$$
\begin{aligned}
& E\left(U_{i}\right)=E\left(X_{i} X_{i+1}^{2}\right)=\left(2+2 \beta-2 \beta^{3}\right) / \lambda^{3}, \\
& E\left(W_{i}\right)=E\left(X_{i}^{2} X_{i+1}\right)=\left(2+4 \beta-2 \beta^{2}-2 \beta^{3}\right) / \lambda^{3},
\end{aligned}
$$

Similarly, $E\left[\sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} X_{i}^{2}(W-U) /\left(n^{3}-n\right)\right] \cdots, n$

$$
E\left(X_{i}\right) E\left(X_{i}^{2}\right)\left[E\left(W_{i}\right)-E\left(U_{i}\right)\right]=\left(4 \beta-4 \beta^{2}\right) / \lambda^{6}
$$

Hence, $E(Y Z)=\frac{1}{\lambda^{6}}\left(4 \beta^{3}-8 \beta^{4}+4 \beta^{5}\right)$, when n is large.
Asymptotically,

$$
E\left[Y^{\prime}\left(Z-\mu_{z}\right) / \mu_{z}\right]=\left(4 \beta^{3}-8 \beta^{4}+4 \beta^{5}\right) /\left(\mu_{Y} \mu_{z} \lambda^{6}\right)-1=0 .
$$

In (3.1), the rest of the terms in the braces will also approach zero when n is large, so $E(\hat{\beta})=\beta$, i.e. $\hat{\beta}$ is an unbiased estimator.

An alternative way to estimate β is to use

$$
\hat{\hat{\beta}}=\left[\lambda^{3} \hat{C}_{1,2}(1)\right] / 2 \hat{\rho}_{1}-1
$$

where $\hat{\rho}_{1}$ is an estimator of ρ_{1} the first order serial correlation of EMAil, and $\rho_{1}=\beta(1-\beta)$. [Ref. $\left.1, p .5\right]$
Define

$$
\hat{\rho}_{1}=\lambda^{2}\left[\sum_{i=1}^{n-1} x_{i} x_{i+1} /(n-1)-(\bar{x})^{2}\right]
$$

Then

$$
E\left(\hat{\rho}_{1}\right)=\lambda^{2}\left\{\sum_{i=1}^{n-1} E\left(X_{i} X_{i+1}\right) /(n-1)-E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right] / n^{2}\right\}
$$

Again using the same argument as above, we have

$$
E\left(X_{i} X_{i+1}\right)=\left(1+\beta-\beta^{2}\right) / \lambda^{2}
$$

Also

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i=1}^{n-1} x_{i} x_{i+1}+2 \sum_{i=1}^{n-2} \sum_{j=2}^{n-i} x_{i} x_{i+j}
$$

so that

$$
\begin{aligned}
& E\left[(\bar{x})^{2}\right]= n^{-2}\left[2 n / \lambda^{2}+2(n-1)\left(1+\beta-\beta^{2}\right) / \lambda^{2}\right. \\
&\left.+(n-1)(n-2) / \lambda^{2}\right] \cdots \cdots \\
& n \rightarrow \infty
\end{aligned}
$$

Consequently $E\left(\hat{\rho}_{1}\right)=\lambda^{2}\left\{(n-1)\left(1+\beta-\beta^{2}\right) /\left[\lambda^{2}(n-1)\right]-E\left[(\bar{x})^{2}\right]\right\} \cdots \cdots(1-\beta)$. Thus $\hat{\rho}_{1}$ is an unbiased estimator for ρ_{1} when n is large. Now assume $n \rightarrow \infty$ and let $Y=\lambda^{3} \hat{C}_{1,2}$ (1) and $Z=2 \hat{\rho}_{1}$. Thus

$$
\begin{aligned}
& E(Y)=2 \beta(1-\beta \times 1+\beta), \quad \text { and } \quad E(Z)=2 \beta(1-\beta), \\
& \mu_{Y} / \mu_{z}=1+\beta, \quad \mu_{Y} \mu_{z}=4\left(\beta^{2}-\beta^{3}-\beta^{4}+\beta^{5}\right)
\end{aligned}
$$

and by the expansion used above

$$
\begin{equation*}
E(Y / Z)={ }_{\mu_{z}}^{\mu_{Z}}\left\{E\left(Y^{\prime}\right)-E\left[Y^{\prime}\left(\frac{Z-\mu_{z}}{\mu_{Z}}\right)\right]+E\left[Y^{\prime}\left(\frac{Z-\mu_{z}}{\mu_{z}}\right)^{2}\right]-\ldots .\right\} \tag{3.2}
\end{equation*}
$$

We want to show that the terms in (3.2) beyond the first are zero, so we look at

$$
E\left[Y^{\prime}\left(Z-\mu_{Z}\right) / \mu_{Z}\right]=E(Y Z) / \mu_{Y} \mu_{Z}-1
$$

We have

$$
\begin{aligned}
(Y Z)=2 \lambda^{3} \hat{\rho}_{1} \hat{C}_{1,2}(1)= & 2 \lambda^{5}\left[\sum_{i=1}^{n-1} X_{i} X_{i+1} /(n-1)-\left(\sum_{i=1}^{n} X_{i} / n\right)^{2}\right] \\
& {\left[\sum_{i=1}^{n-1} X_{i} X_{i+1}^{2} /(n-1)-\sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} X_{i}^{2} / n^{2}\right] }
\end{aligned}
$$

$E(Y Z) \xrightarrow{n \rightarrow \infty} \rightarrow 2 \lambda^{5}\left[E\left(X_{i} X_{i+1}\right) E\left(X_{i} X_{i+1}^{2}\right)-E\left(X_{i} X_{i+1}\right) E\left(X_{i}\right) E\left(X_{i}^{2}\right)\right.$

$$
\begin{aligned}
& \left.\quad-E\left(X_{i}\right) E\left(X_{i}\right) E\left(X_{i} X_{i+1}^{2}\right)+E\left(X_{i}\right) E\left(X_{i}\right) E\left(X_{i}\right) E\left(X_{i}^{2}\right)\right] \\
& =4\left(\beta^{2}-\beta^{3}-\beta^{4}+\beta^{5}\right)
\end{aligned}
$$

so that,

$$
E\left[Y^{\prime}\left(Z-\mu_{z}\right) / \mu_{z}\right]=E(Y Z) / \mu_{Y} \mu_{Z}-I=1-1=0 .
$$

Similarly, we can show the rest of the terms in the braces of (3.2) all approach zero when n is large. Hence

$$
E(\hat{\hat{\beta}})=E(Y / Z)-1=1+\beta-1=\beta
$$

i.e. $\hat{\hat{\beta}}$ is also an unbiased estimator of β when n is large.

IV. COMPARISON OF THE ESTIMATORS

It has been shown in the last section that the two estimators $\hat{\beta}, \hat{\hat{\beta}}$ are unbiased asymptotically, provided that $\beta \neq 0$, or $\beta \neq 1$, but when the sample size n is not large enough, the bias term should be considered. For simplification, any finite term divided by the second or higher power of n will be neglected.

For \hat{B}, let $Y=2 \hat{C}_{1,2}(1)-\hat{C}_{2,1}(1) ; \quad Z=\hat{C}_{2,1}(1)-\hat{C}_{1,2}(1)$. All the astimotors here are defined as before. Thus

$$
\begin{aligned}
& E(Y)=2 \beta^{2}(I-\beta) / \lambda^{3}-4\left(2+3 \beta-\beta^{2}-2 \beta^{3}\right) / n \lambda^{3}=\mu_{Y} ; \\
& E(Z)=2 \beta(I-\beta) / \lambda^{3}=\mu_{z} ; \\
& E(Y / Z)=\mu_{Y} \mu_{Z}^{-1}\left\{I-\left[E(Y Z) / \mu_{Y} \mu_{Z}-1\right]+\ldots\right\} .
\end{aligned}
$$

Using those results listed in APPENDIX B and neglecting the higher power terms, we have

$$
E(Y Z)=E(Y) E(Z)+\left(-12-560 \beta+1472 \beta^{2}-1148 \beta^{3}+532 \beta^{4}-1120 \beta^{5}\right.
$$

$$
\left.+740 \beta^{6}+248 \beta^{7}-164 \beta^{8}\right), \lambda^{6} n .
$$

Hence $E(\hat{B})=\left[2 \mu_{Y} \mu_{z}-E(Y Z)\right] / \mu_{z}^{2}$

$$
\begin{aligned}
&=\beta+\frac{1}{4 \beta^{2}(1-\beta)^{2}} \cdot \frac{1}{n}\left(12+528 \beta-1488 \beta^{2}+1212 \beta^{3}-516 \beta^{4}\right. \\
&\left.+1088 \beta^{5}-740 \beta^{6}-248 \beta^{7}+164 \beta^{8}\right)
\end{aligned}
$$

For $\hat{\hat{\beta}}$, let $\mathrm{Y}=\lambda^{3} \hat{\mathrm{C}}_{1,2}(1) ; \quad \mathrm{Z}=2 \hat{\rho}_{1}$.

Again all the estimators here are defined as before. Thus

$$
\begin{align*}
& E(Y)=2 \beta(1-\beta)(1+\beta)-4\left(2+3 \beta-\beta^{2}-2 \beta^{3}\right) / n=\mu_{Y}, \quad \text { and } \\
& E(Z)=2 \beta(1-\beta)+\left(2+4 \beta-4 \beta^{2}\right) / n=\mu_{Z} . \tag{4.2}
\end{align*}
$$

In (4.2), the maximum value of $\left(2+4 \beta-4 \beta^{2}\right)$ occurs at $\beta=1 / 2$, and equals to 3 , when divided by n, it can be neglected, so $\mu_{z}=2 \beta(1-\beta)$. Similarly as above we have

$$
E(Y Z)=E(Y) E(Z)+\left(4-16 \beta+34 \beta^{2}+24 \beta^{3}-26 \beta^{4}+8 \beta^{5}-24 \beta^{6}\right) / n,
$$

and consequently

$$
E(\hat{\hat{\beta}})=\beta+\frac{1}{4 \beta^{2}(J-\beta)^{2}} \frac{1}{n}\left(-4+16 \beta-22 \beta^{2}-32 \beta^{3}+14 \beta^{4}+24 \beta^{6}\right)
$$

Now compare (4.1) and (4.3); both of them are divided by $4 \beta^{2}(1-\beta)^{2}$. When β approaches 0 or 1 , the values of bias term will be very large, though both of the sums of the coefficients of the β 's in the parentheses are zero when B approaches 0 or l. Figures 1 to 4 give the shape of the curves of $f(\beta)$ and bias for different values of β. From the figures it is obvious that $\hat{\hat{\beta}}$ is better than $\hat{\beta}$.

The variances of those estimators are very messy for hand computation, and have not been worked out for this thesis.

V. SOME BASIC ASPECTS OF THE EMA2 MODEL

The simplest aspect of the EMA2 model is the exponential marginal distribution of the intervals $\left\{\mathrm{X}_{\mathrm{i}}\right\}$; in point process terminology [Ref. 2] this is the synchronous distribution of intervals and refers to the distribution of the interval from an arbitrarily chosen event to the next two events. For the Laplace transform of its probability density function (p.d.f.) $f_{X_{i}}(x)$, we write

$$
\begin{align*}
\hat{I}_{X_{1}}^{*}(s) & =E\left\{e^{\left.-s X_{i}\right\}}\right. \\
& =E\left\{e^{-s \beta_{2} \varepsilon_{i}}\right\} \beta_{2}+2\left\{0^{-3 \beta_{2}-s \beta_{1} \varepsilon_{i}+1}\right\}\left(1-\beta_{2}\right) \beta_{1} \\
& +E\left\{e^{-s \beta_{2} \varepsilon_{1}-s \beta_{1} \varepsilon_{i}+1-s \varepsilon_{i}+2}\right\}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) \tag{5.1}
\end{align*}
$$

using (ll). Since the i.i.d. random variable ε_{i} have exponential distributions with parameters λ, their Laplace transform is $\lambda /(\lambda+s)$. Thus (5.1) becomes

$$
\begin{aligned}
f_{X_{1}}^{*}(s)= & \frac{\lambda}{\lambda^{+} \beta_{2} 3} \cdot \beta_{2}+\frac{\lambda}{\lambda^{+\beta} \beta_{2}^{s}} \frac{\lambda}{\lambda^{+} \beta_{1} s}\left(1-\beta_{2}\right) \beta_{1}+\frac{\lambda}{\lambda^{+} \beta_{2}^{s}} \frac{\lambda}{\lambda+\beta_{1} s} \frac{\lambda}{\lambda+s}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) \\
& =\frac{\lambda}{\lambda+8} .
\end{aligned}
$$

This demonstrates that the X_{i} have identical exponential distributions as asserted. The parameter λ is the number of events per unit time or the rate of the point process.

The correlation between X_{i} and X_{i+1} can be obtained on considering the product of X_{i} from (1.1) with

$$
x_{1+1}\left\{\begin{array}{l}
\beta_{2} \varepsilon_{1+1} \\
\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2} \\
\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2} \varepsilon_{1+2}+\varepsilon_{1+3}
\end{array}\right.
$$

$$
w_{0} p \cdot \beta_{2}
$$

$$
\text { wop. }\left(1-\beta_{2}\right) \beta_{1},\left(0 \beta_{2}, \beta_{1}<1 ; 1=0,21,22, \ldots, 0\right)
$$

$$
\text { wop. }\left(1-\beta_{2}\right)\left(1-\beta_{1}\right)
$$

$$
\begin{aligned}
& E\left(X_{1} \cdot X_{1+1}\right)=E\left(\beta_{2}^{2} \varepsilon_{1} \varepsilon_{1+1}\right) \beta_{2}^{2}+E\left(\beta_{2}^{2} \varepsilon_{1} \varepsilon_{1+1}+\beta_{2} \beta_{1} \varepsilon_{1} \varepsilon_{1+2}\right) \beta_{2} \beta_{1}\left(1-\beta_{2}\right) \\
& +E\left(\beta_{2}^{2} \varepsilon_{1} \varepsilon_{1+1}+\beta_{2} \beta_{1} \varepsilon_{1+1}^{2}\right) \beta_{2} \beta_{1}\left(1-\beta_{2}\right) \\
& +\pi\left(\beta_{2}^{2} \varepsilon_{2} \varepsilon_{1+1}+\beta_{2} \beta_{1} \varepsilon_{1} \varepsilon_{1+2}+\beta_{2} \varepsilon_{1} \varepsilon_{i+3}\right) \beta_{2}\left(1-\beta_{1}\right)\left(1-\beta_{2}\right) \\
& +E\left(\beta_{2}^{2} \varepsilon_{1} \varepsilon_{1+1}+\beta_{2}\left(\beta_{1} \varepsilon_{i+1}^{2}+\beta_{2} \varepsilon_{1+1} \varepsilon_{1+2}\right) \beta_{2}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right)\right. \\
& +E\left(\beta_{2}^{2} \varepsilon_{1} \varepsilon_{1+1}+\beta_{2} \beta_{1} \varepsilon_{1} \varepsilon_{1+2}+\beta_{2} \beta_{1} \varepsilon_{1+1}^{2}+\beta_{1}^{2} \varepsilon_{1+1} \varepsilon_{i+2}\right)\left(1-\beta_{2}\right)^{2} \beta_{1}^{2} \\
& +E\left(\beta_{2}^{2} \varepsilon_{1} \varepsilon_{1+1}+\beta_{2} \beta_{1} \varepsilon_{1} \varepsilon_{1+2}+\beta_{2} \varepsilon_{1} \varepsilon_{1+3}+\beta_{2} \beta_{1} \varepsilon_{1+1}^{2}+\beta_{1}^{2} \varepsilon_{1+1} \varepsilon_{1+2}\right. \\
& \left.+\beta_{1} \varepsilon_{1+1} \varepsilon_{j+3}\right)\left(1-\beta_{2}\right)^{2} \beta_{1}\left(1-\beta_{1}\right) \\
& +E\left(\beta_{2}^{2} \varepsilon_{1} \varepsilon_{1+1}+\beta_{2} \beta_{1} \varepsilon_{1} \varepsilon_{1+2}{ }^{*} \beta_{1} \beta_{2} \varepsilon_{1+1}^{2}+\beta_{1}^{2} \varepsilon_{1+1} \varepsilon_{1+2}+\beta_{2} \varepsilon_{1+1} \varepsilon_{1+2}\right. \\
& \left.+\beta_{1} \varepsilon_{1+2}^{2}\right)\left(1-\beta_{2}\right)^{2} \beta_{1}\left(1-\beta_{1}\right) \\
& +1\left(\beta_{2}^{2} \varepsilon_{1} \varepsilon_{i+1}+\beta_{2} \beta_{1} \varepsilon_{1} \varepsilon_{i+2}+\beta_{2} \varepsilon_{1} \varepsilon_{1+3}+\beta_{2} \beta_{1} \varepsilon_{i+1}^{2}+\beta_{1}^{2} \varepsilon_{1+1} \varepsilon_{1+2}\right. \\
& \left.+\beta_{1} \varepsilon_{1+1} \varepsilon_{1+3}+\beta_{2} \varepsilon_{1+1} \varepsilon_{1+2}+\beta_{1} \varepsilon_{1+2}^{2}+\varepsilon_{1+2} \varepsilon_{1+3}\right)\left(1-\beta_{2}\right)^{2}\left(1-\beta_{1}\right)^{2} .
\end{aligned}
$$

and simplification of this result leads to

$$
\begin{equation*}
\rho_{1}-\operatorname{corr}\left(x_{1}, x_{1+1}\right) \frac{\operatorname{cov}\left(x_{2}, x_{1+1}\right)}{\left(\operatorname{var} x_{1} \cdot \operatorname{var} x_{1+1}\right)^{\frac{1}{2}}}=\beta_{1}\left(1-\beta_{2}\right)\left[1-\beta_{1}\left(1-\beta_{2}\right)\right] \tag{5.2}
\end{equation*}
$$

Similarly we have
$\rho_{2}=\cos \left(x_{1}, x_{1+2}\right)=\beta_{2}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right)$

By the construction of EMA2, $\rho_{j}=0$ for $j \geq 3$. The result for ρ_{1} equals zero when $\beta_{2}=0$ and $\beta_{1}=1$, or $\beta_{2}=1$, or $\beta_{1}=0$; and will approach its maximum value at $\beta_{1}\left(1-\beta_{2}\right)=1 / 2$. This occurs when $\beta_{1}=1 /\left[2\left(1-\beta_{2}\right)\right]$. The result for ρ_{2} (5.3) equals to zero when $\beta_{2}=0$, or $\beta_{1}=1$, or $\beta_{2}=1$; and will approach its maximum value at $\beta_{2}=1 / 2$ and $\beta_{1}=0$. Therefore, the serial correlations of EMA2 are all nonnegative and bounded above by $1 / 4$.

Now the stationarity of the EMA2 process will be discussed.

$$
\begin{align*}
\text { Define } & E\left(X_{i}\right)=m(i) \tag{5.4}\\
& E\left[X_{i}-m(i)\right]\left[X_{i+k}-m(i+k)\right]=\operatorname{Cov}\left(X_{i}, X_{i+k}\right)=\sigma(i, i+k) . \tag{5.5}
\end{align*}
$$

A stochastic process with a discrete time parameter is said to be "stationary" (or stationary in the strict sense) if the distribution of $x_{i}, x_{i+1}, \ldots . ., x_{i+j}$ is the same as the distribution of x_{i+k}, $x_{i+l+k}, \ldots . x_{i+j+k}$, for every finite set of integers $\{1,2 \ldots j\}$ and for every integer k. This definition is equivalent to requiring that the probability measure for the sequence $\left\{x_{i}\right\}$ be the same as that of $\left\{\mathrm{X}_{\mathrm{i}+\mathrm{k}}\right\}$ for every integer k. If the first-order moments exist, stationarity implies that $E\left(X_{i}\right)=E\left(X_{i+k}\right)$ for all $i, k=0, \pm 1, \pm 2, \ldots$ (5.6) Since $\left(X_{i}, X_{i+1}\right)$ has the same distribution as (X_{i+k}, x_{i+l+k}), existence of the second-order moments and stationarity imply

$$
\begin{equation*}
\sigma(i, i+j)=\sigma(i+k, i+j+k) . \tag{5.7}
\end{equation*}
$$

Setting $k=-i-1$ gives $\sigma(i, i+j)=\sigma[i-(i+j)]=\sigma(j)$.

In the normal case properties (5.6) and (5.7) determine that the stochastic process is stationary.

A stochastic process is said to be stationary in the wide sense or weakly stationary or stationary of second order if the mean function and the covariance function defined as in (5.4) and (5.5) exist and satisfy the relations (5.6) and (5.7); i.e. the mean is a constant, independent of time, and the covariance of any two variables depends only on their distance apart in time. Obviously, any process which is stationary in the strict sense and has finite variance is also stationary in the wide sense. In the normal case discussed above stationary in the strict sense and in the wide sense are equivalent.

We have proved that the X_{i} have identical exponential distributions, which implies that $E\left(X_{i}\right)$ exists and $E\left(X_{i}\right)=E\left(X_{i+k}\right)$ for all $i, k=0, \pm 1,+2$, ... Also we have $\operatorname{cov}\left(X_{1}, X_{1: 0}\right)=1 / \lambda^{2}$

$$
\operatorname{cov}\left(x_{1}{ }^{0} X_{j+1}\right)=\frac{1}{\lambda^{2}}\left\{\beta_{1}\left(1-\beta_{2}\right)=\left\{\beta_{1}\left(1-\beta_{2}\right)\right]^{2}\right\}_{0}
$$

$$
\operatorname{cov}\left(X_{1}, X_{1+2}\right)=\frac{1}{\lambda^{2}}\left[\beta_{2}\left(100 \beta_{2}\right)\left(1-\beta_{1}\right)\right]
$$

$$
\operatorname{cov}\left(X_{1} ; X_{1+K}\right) \times O_{0}
$$

for $=5.4 .58$

All these expectations and covariances are independent of time i, so we conclude that the EMA2 process is stationary in the wide sense.

The independent exponential sequences and EMAl models are the special cases of the EMA2 model; these aspects of the EMA2 model are described in the following table:

values of $\beta_{2} \& \beta_{1}$ in EMA2 nodel	When we set	X_{1} eequence reduces to
$\beta_{2}=0 ; \beta_{1}=\beta_{1}$	$\beta_{1}=\beta_{2} \quad \varepsilon_{2+1}=\varepsilon_{2}$	miall model
$\beta_{2}=\beta_{2} ; \beta_{1}=1$	$\beta_{2}=\beta$	EMis model
$\beta_{2}=\beta_{2} ; \beta_{1}=0$	$\beta_{2}=\beta_{i} \varepsilon_{i+2}=\varepsilon_{i+1}$ Now the adjacent elcments axe indep. If keep ε_{1+2} no change	EMM1 model
$\beta_{2}=1 ; \beta_{1}=\beta_{1}$	$\mathrm{X}_{1}=\varepsilon_{1} \quad$ W.p. 1	Foisson process (i.i.d)
$\beta_{2}=0 ; \beta_{1}=1$	$\mathrm{X}_{1}=\varepsilon_{\underline{p}+1} H_{6} \mathrm{p}_{0} 1$	Poisson process (1.1.d)
$\beta_{2}+0 \beta_{1}=0$		Poirson process (i.j.d)

This gives checks on most of the results, for the serial correlations. In the 3 rd case X_{i} and X_{i+1} are independent, so $\rho_{1}=0$; but X_{i} and X_{i+2} are dependent, so $\rho_{2}=\beta_{2}\left(1-\beta_{2}\right)$, which is the same expression of ρ_{1} in EMAl. The serial correlations in the last three cases are all zero, since all of them have i.i.d. elements.

Also, even the backward model (1.2) could be equally treated to produce similar but different results. However, there is no time-reversibility in the process, in the sense that $\left\{X_{1}, x_{2}, \ldots . x_{k}\right\}$ does not have the same joint probability distribution as $\left\{x_{-1}, x_{-2}, \ldots x_{-k}\right\}$ for all finite k, where $k \geq 2$.

VI. DISTRIBUTION OF SUMS IN $\left\{X_{i}\right\}$ SEQUENCE OF THE EA 2 MODEL

In the point process theory of the model, the distribution of the sums $T_{r}=X_{1}+X_{2}+\ldots+X_{r}$ are very useful; if these can be obtained then the distribution of counts, both in the synchronous and asynchronous mode, can then be derived. It would, therefore, be a particularly attractive feature of the EMA2 model if the distribution of the T_{r} could be obtained. Unfortunately, it is not possible to get a simple expression of the Laplace transform of the p.d.f. of T_{r} as in EMAI.

However, a general derivation will now be given. Define $\psi(s)$ as the Laplace transform of the p.d.f. of the ε_{i} distribution; except where otherwise remarked this distribution is exponential of parameter λ and so $\psi(s)=\lambda /(\lambda+s)$. Define the triple Laplace transform of the p.d.f. of T_{r}, ε_{r+1} and ε_{r+2} as

For $r=1$, we have

$$
\begin{aligned}
& \phi_{1}\left(s_{1}: \varepsilon_{2} \varepsilon_{3}\right)=E\left\{e^{\left.-s_{1} x_{1}-s_{2} \varepsilon_{2}-s_{3} \varepsilon_{3}\right\}}\right. \\
& =E\left\{e^{\left.-s_{1} \beta_{2} \varepsilon_{1}-s_{2} \varepsilon_{2}{ }^{-\varepsilon_{3}} \varepsilon_{3}\right\}} \beta_{2}+E\left\{0^{-\beta_{1}}\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{2}\right)-\sigma_{2} \varepsilon_{2}-s_{3} \varepsilon_{3}\right\}\left(1-\beta_{2}\right) \beta_{1}\right. \\
& +E\left\{e^{\left.-s_{1}\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{2}+\varepsilon_{3}\right)-s_{2} \varepsilon_{2}{ }^{-s_{3}} \varepsilon_{3}\right\}\left(1-\beta_{1}\right)\left(1-\beta_{2}\right), ~(1)}\right. \\
& =\psi\left(\beta_{2} s_{1}\right)\left[\beta_{2} \psi\left(s_{2}\right) \psi\left(s_{3}\right)+\left(1-\beta_{2}\right) \beta_{1} \psi\left(\beta_{1} s_{1}+s_{2}\right) \psi\left(s_{3}\right)\right. \\
& \left.+\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) \psi\left(\beta_{1} s_{1}+s_{2}\right) \psi\left(s_{1}+s_{3}\right)\right]
\end{aligned}
$$

Now we relate $\phi_{r}\left(s_{1}, s_{2}, s_{3}\right)$ and $\phi_{r-1}\left(s_{1}, s_{2}, s_{3}\right)$ using the expression

$$
r_{r=1} T_{r=1}+X_{r}= \begin{cases}r_{r-1}+\beta_{2} \varepsilon_{r} & \text { rip. } \beta_{2} \\ r_{r-1}+\beta_{2} \varepsilon_{r}+\beta_{1} \varepsilon_{r+1} & \text { wop. }\left(1-\beta_{2}\right) \beta_{1} \\ T+\beta_{2-1} \varepsilon_{r}+\beta_{1} \varepsilon_{r+1}+\varepsilon_{r+2} & \text { 上.p. }\left(1-\beta_{2}\right)\left(1-\beta_{1}\right)\end{cases}
$$

Then we have

$$
\begin{aligned}
& +2\left\{\theta^{\left.-s_{1}\left(T_{x-1}+\beta_{2} \varepsilon_{x}+\beta_{1} \varepsilon_{x+1}+\varepsilon_{x+2}\right)-\sigma_{2} \varepsilon_{2+1}-s_{3} \varepsilon_{x+2}\right\}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right), ~(R)}\right. \\
& =\phi_{2-1}\left(s_{1}, \beta_{2} s_{1} s_{2}\right) \psi\left(s_{3}\right) \beta_{2} \\
& +\phi_{1-1}\left(s_{1} \circ \beta_{2} s_{1} * \beta_{1} s_{1}+s_{2}\right)\left[\beta_{1}\left(1-\beta_{2}\right) \psi\left(\beta_{3}\right) \div\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) \psi\left(s_{1}+s_{3}\right)\right] .
\end{aligned}
$$

Continuing, we can write

$$
\phi_{r-1}\left(s_{1} \cdot \beta_{2} s_{1} \cdot s_{2}\right)=\phi_{r-2}\left(s_{1} \cdot \beta_{2} s_{1}: \beta_{2} s_{1}\right) \psi\left(s_{2}\right) \beta_{2}
$$

$$
\begin{aligned}
&+\phi_{1-2}\left(s_{1}, \beta_{2} s_{1}: \beta_{1} s_{1}+\beta_{2} s_{1}\right)\left[\beta_{1}\left(1-\beta_{2}\right) \psi\left(s_{2}\right)+\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) \psi\left(s_{1}+\beta_{2}\right)\right] \\
& \phi_{I-1}\left(s_{1}, \beta_{2} s_{1} \cdot \beta_{1} s_{1}+s_{2}\right)= \phi_{r-2}\left(s_{1}, \beta_{2} s_{1}, \beta_{2} s_{1}\right) \psi\left(\beta_{1} s_{1}+s_{2}\right) \beta_{2} \\
&+\phi_{I-2}\left(s_{1}, \beta_{2} s_{1}, \beta_{1} s_{1}+\beta_{2} s_{1}\right) . \\
& {\left[\beta_{1}\left(1-\beta_{2}\right) \psi\left(\beta_{1} s_{1}+s_{2}\right)+\left(1-\beta_{1}\right)\left(1-\beta_{2}\right) \psi\left(s_{1}+\beta_{1} s_{1}+s_{2}\right)\right] . }
\end{aligned}
$$

and solve it recursively; the procedure is difficult by hand but could possibly be manipulated on a computer. Setting $s_{2}=0$ and $s_{3}=0$, we have the Laplace transform of the p.d.f. of T_{r}.

The first few sums have transforms as follows:
$\phi_{1}(s, 0,0)=\frac{\lambda}{\lambda+s}$ which implies that $T_{1}=X_{1} \sim$ exponential (λ) as is
expected. For T_{2} we have:
$\phi_{2}(s, 0,0)=\frac{\lambda}{\lambda+s} \frac{\lambda\left[\left(\lambda+\beta_{2} s\right)\left(\lambda+\beta_{2} s+2 \beta_{1} s\right)+\beta_{2} \beta_{1}^{2} s\left(2-\beta_{2}\right)\right]}{\left(\lambda+\beta_{2} s\right)\left(\lambda+s+\beta_{1} s\right)\left(\lambda+\beta_{2} s+\beta_{1} s\right)}$
If we let $\beta_{1}=1,(6.2)$ reduces to $\frac{\lambda}{\lambda+5} \frac{\lambda\left(\lambda+2 \beta_{2} s\right)}{\left(\lambda+\beta_{2} s+5\right)\left(\lambda+\beta_{2} 8\right)}$ which is the Laplace transform of the p.d.f. of T_{2} in EMAl. [Ref. l, p. 8] If we let $\beta_{1}=0,(6.2)$ reduces to $\left(\frac{\lambda}{\lambda+S}\right)^{2}$ which implies that T_{2} is the sum of two independent exponential random variables.

For T_{3} we have

$$
\begin{align*}
& \phi_{3}(s, 0,0)=\frac{\lambda}{\lambda+3} \frac{\lambda^{2}[(A)(B)+(C)(D)]}{\left(\lambda+s+\beta_{1} s+\beta_{2}^{s}\right)\left(\lambda+\beta_{1} s+\beta_{2} s\right)^{2}\left(\lambda+s^{2}+\beta_{2}^{3}\right)\left(\lambda+5+\beta_{1}^{3}\right)\left(\lambda+\beta_{2} 6\right)^{2}} \\
& \text { Where } A=\left[s^{2}\left(2 \beta_{2}^{2}+3 \beta_{1} \beta_{2}+\beta_{1}^{2} \beta_{2}\right)+\lambda s\left(3 \beta_{2}+2 \beta_{1}\right)+\lambda^{2}\right]\left(1-\beta_{2}\right) \tag{6.3}\\
& \operatorname{Bes}^{3}\left(\beta_{1} \beta_{2}+\beta_{1} \beta_{2}^{2}+\beta_{1}^{2} \beta_{2}^{2}+\beta_{1}^{2} \beta_{2}\right)+\lambda s^{2}\left(\beta_{2}+\beta_{2}^{2}+3 \beta_{1} \beta_{2}+\beta_{1}^{2} \beta_{2}+2 \beta_{1}\right)+\lambda_{s}^{2}\left(1+2 \beta_{1}+2 \beta_{2}\right)+\lambda^{3} \\
& \cos ^{2}\left(\beta_{2}+\beta_{2}^{2}+\beta_{1} \beta_{2}^{2}+2 \beta_{1}\left(\beta_{2}+\beta_{1}^{2} \beta_{2}\right)+\lambda s\left(\beta_{2}^{2}+2 \beta_{2}+2 \beta_{1} \beta_{2}\right)+\beta_{2} \lambda^{2}\right. \\
& \quad D=s^{3}\left(2 \beta_{2}^{3}+4 \beta_{1} \beta_{2}^{2}+2 \beta_{1} \beta_{2}^{2}\right)+\lambda s^{2}\left(5 \beta_{2}^{2}+5 \beta_{1} \beta_{2}+\beta_{1}^{2}\right)+s^{2} \lambda_{1}\left(4 \beta_{2}+2 \beta_{1}\right)+\lambda^{3}
\end{align*}
$$

If we let β_{1}, β_{2} equal to zero or one, we have some interesting results. When $\beta_{2}=0,(A)(B)=\lambda^{2}(\lambda+s)\left(\lambda+2 \beta_{1} s\right)^{2}$ and (C) $(D)=0$, so that (6.3) reduces to

$$
\frac{\lambda}{\lambda+c}\left[\frac{\lambda\left(\lambda+2 \beta_{1} s\right)}{\left(\lambda+\beta_{1} s \div s\right)\left(\lambda+\beta_{1} s\right)}\right]^{2}
$$

which is the Laplace transform of the p.d.f. of T_{3} in EMAl for $\beta=\beta_{1}$.

When

$$
\begin{gathered}
\beta_{1}=1, A=\left(1-\beta_{2}\right)\left(\lambda+\beta_{2} s+2 s\right)\left(\lambda+2 \beta_{2} s\right), \quad B=\left(\lambda+\beta_{2} s\right)(\lambda+2 s)\left(\lambda+s+\beta_{2}^{s}\right), \\
\cos \beta_{2}(\lambda+2 s)\left(\lambda+2 s+\beta_{2} s\right) \text { and } D=\left(\lambda+2 \beta_{2} s\right)\left(\lambda+s+\beta_{2} s\right)^{2},
\end{gathered}
$$

and this will give the same result as above for $\beta=\beta_{2}$. When

$$
\beta_{2}=1, \quad(A)(B)=0,(C)(D)=\left(\lambda+2 s+\beta_{1} s\right)\left(\lambda+s+\beta_{1} s\right)^{3}(\lambda+2 s),
$$

(6.3) reduces to $\lambda^{3} /(\lambda+s)^{3}$, indicating that the $\left\{x_{i}\right\}$ sequence are i.i.d. exponentials.

When

$$
\begin{aligned}
\beta_{1}=0, A & =\left(1-\beta_{2}\right)\left(\lambda+\beta_{2} s\right)\left(\lambda+2 \beta_{2} s\right), \operatorname{Be}\left(\lambda+\beta_{2} s\right)\left(\lambda+s+\beta_{2} s\right), \\
c & =\beta_{2}(\lambda+s)\left(\lambda+s+\beta_{2} s\right) \text { and } \quad 1=\left(\lambda+\beta_{2} s\right)^{2}\left(\lambda+2 \beta_{2} s\right)
\end{aligned}
$$

so that (6.3) reduces to

$$
\left(\frac{\lambda}{\lambda+5}\right)^{2} \frac{\lambda\left(\lambda+2 \beta_{2} s\right)}{\left(\lambda+\beta_{2}^{s}\right)\left(\lambda+5+\beta_{2} s\right)} .
$$

which means x_{1} and x_{3} form an EMAl model, x_{2} is exponential (λ) and independent of x_{1} and x_{3}.

VII. THE JOINT DISTRIBUTION OF X_{i} AND X_{i+1} IN EMA2

We now discuss the joint distribution of X_{i} and X_{i+1} which will be a bivariate exponential distribution. Several authors have discussed bivariate exponential distributions, including Downton (1970), who makes some comparisons with those of Gumbel, Moran and Marshall-Olkin. The distribution to be discussed here does not appear to be one of the earlier ones, although it is fair to say that in common with earlier ones, it is not the 'perfect' bivariate exponential.

The double Laplace transform of the joint p.d.f. of X_{i} and X_{i+1} is easily calculated using (1.l); the required expectation is

$$
\begin{aligned}
& \mathbb{E}\left\{e^{-s_{1} X_{i}-s_{2} X_{i}+1}\right\}=f_{X_{1}}^{* *}, x_{i+1}^{*}\left(s_{1}, s_{2}\right) \\
& \omega\left\{\left\{e^{-\beta_{2} s_{1} \varepsilon_{1}-\beta_{2}^{s} \varepsilon^{2}+1}\right) \beta_{2}^{2}+\varepsilon\left\{0^{-\beta_{2} s_{1} \varepsilon_{1}-s_{2}\left(\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1}+2\right.}\right\} \beta_{2} \beta_{1}\left(1-\beta_{2}\right)\right. \\
& +\varepsilon\left\{0^{-\beta_{2} s_{1} \varepsilon_{1} \sigma_{2}\left(\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2}+\varepsilon_{1+3}\right)}\right\} \beta_{2}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) \\
& +\mathbb{E}\left\{e^{\left.-\beta_{1}\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{1+1}\right)-\beta_{2} s_{2} \varepsilon_{1+1}\right\} \beta_{1} \beta_{2}\left(1-\beta_{2}\right)}\right. \\
& +E\left\{e^{\left.\left.-\beta_{1}\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{1+1}\right)-s_{2}\left(\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1}+2\right)\right\} \beta_{1}^{2}\left(1-\beta_{2}\right)^{2}{ }^{2} \beta_{1} \beta_{1}+\beta_{1}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +E\left\{e^{\left.\left.-\beta_{1}\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{1+1}+\varepsilon_{1+2}\right)-\beta_{2} 2^{2} \varepsilon_{1+1}\right\} \beta_{2}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) . \beta_{1}\right)}\right. \\
& +\mathbb{E}\left\{e^{-\beta_{1}}\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{i+1}+\varepsilon_{i+2}\right)-\beta_{2}\left(\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{i+2}\right)\right\} \beta_{1}\left(1-\beta_{2}\right)^{2}\left(1-\beta_{1}\right) \\
& +E\left\{0^{-s_{1}}\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{i+1}+\varepsilon_{i+2}\right)-s_{2}\left(\beta_{2} \varepsilon_{i+1}+\beta_{1} \varepsilon_{i+2}+\varepsilon_{i+3}\right)\right\}\left(1-\beta_{2}\right)^{2}\left(1-\beta_{1}\right)^{2}
\end{aligned}
$$

which can be written

$$
\begin{aligned}
& +\beta_{2}\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)\left[\psi\left(\beta_{2} \beta_{2}\right) \psi\left(\beta_{1} s_{2}\right) \psi\left(\varepsilon_{2}\right)+\psi\left(\mathcal{1}_{1} s_{1}+\beta_{2} \varepsilon_{2}\right) \psi\left(s_{1}\right)\right] \\
& ++\beta_{1}^{2}\left(1-\beta_{2} \beta_{2}^{2}\left[\psi\left(1_{1} s_{1}+\beta_{2} \varepsilon_{2} \varepsilon_{2}\right) \psi\left(\beta_{1} s_{2}\right)\right]\right. \\
& \left.+\beta_{1}\left(1-\beta_{2}\right)^{2}\left(1-\beta_{1}\right) \mid \psi\left(\beta_{1} s_{1}+\beta_{2} s_{2}\right) \psi\left(\beta_{1} s_{2}\right) \psi\left(s_{2}\right)+\psi\left(\beta_{1} s_{1}+\beta_{2} \varepsilon_{2}\right) \psi\left(s_{1}+\beta_{1} s_{2}\right)\right] \\
& \left.+\left(1-\beta_{1}\right)^{2}\left(1-\beta_{1}^{2}\right)\left\{\psi\left(\beta_{2} \sigma_{1}\right) \psi\left(\beta_{1} s_{1}+\beta_{2} \varepsilon_{2}\right) \psi\left(s_{1}+\beta_{1} \beta_{2}\right) \psi\left(s_{2}\right)\right]\right\}
\end{aligned}
$$

We note that (7.1) is not symmetrical in s_{1} and s_{2}, and this is to be expected since the process is not time reversible; this is one feature which distinguishes it from earlier bivariate exponentials. The backward moving average model (1.2) corresponding to (ll) has the joint interval distribution which is specified by (7.1) with S_{1} and s_{2} interchanged.

An explicit form of the joint distribution (7.1) can be obtained directly, rather than by inversion of the transform which is less informative. By the structure of the model the joint distribution of
$\left(X_{i}, X_{i+1}\right)$ is a mixture of the joint distributions of

$$
\begin{aligned}
& \left(\beta_{2} \varepsilon_{1}, \beta_{2} \varepsilon_{i+1}\right),\left(\beta_{2} \varepsilon_{i}, \beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{i+2}\right),\left(\beta_{2} \varepsilon_{1}, \beta_{2} \varepsilon_{i+1}+\beta_{1} \varepsilon_{i+2}+\varepsilon_{i+3}\right), \\
& \left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{i+1} \cdot \beta_{2} \varepsilon_{i+1}\right),\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{1+1}, \beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2}+\varepsilon_{2+3}\right) \text {, } \\
& \left(\beta_{2} \varepsilon_{i}+\beta_{1} \varepsilon_{1+1} \cdot \beta_{2} \varepsilon_{i+1}+\beta_{1} \varepsilon_{i+2}\right) \cdot\left(\beta_{2} \varepsilon_{i}+\beta_{1} \varepsilon_{i+1}+\varepsilon_{i+2} \cdot \beta_{2} \varepsilon_{i+1}+\beta_{1} \varepsilon_{i+2}\right), \\
& \left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{i+1}+\varepsilon_{i+2} \cdot \beta_{2} \varepsilon_{i+1}\right),\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{i+1}+\varepsilon_{i+2} \cdot\left(\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{i+2}+\varepsilon_{i+3}\right) .\right.
\end{aligned}
$$

with corresponding probabilities

$$
\begin{aligned}
& \beta_{2}^{2}, \beta_{1} \beta_{2}\left(1-\beta_{2}\right), \beta_{2}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right), \beta_{1} \beta_{2}\left(1-\beta_{2}\right), \beta_{1}\left(1-\beta_{2}\right)^{2}\left(1-\beta_{1}\right), \\
& \beta_{1}^{2}\left(1-\beta_{2}\right)^{2}, \beta_{1}\left(1-\beta_{2}\right)^{2}\left(1-\beta_{1}\right), \beta_{2}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right),\left(1-\beta_{2}\right)^{2}\left(1-\beta_{1}\right)^{2} .
\end{aligned}
$$

These joint p.d.f.'s can be listed in an obvious notation as follows:

$$
\begin{aligned}
& \tilde{i}_{\beta_{2} \varepsilon_{1}, \beta_{2} \varepsilon_{1}+1}\left(x_{1} y\right)=\left(\lambda / \beta_{2}\right)^{2} \exp \left(\cdots \lambda x / \beta_{2}\right) \exp \left(-\lambda y / \beta_{2}\right) \quad\left(x_{0} y>0\right) \\
& \hat{f}_{\beta_{2} \varepsilon_{1} \cdot \beta_{2} \varepsilon_{2+1}+\beta_{1} \varepsilon_{i+2}}(x, y)=\lambda^{2} /\left[\beta_{2}\left(\beta_{1}-\beta_{2}\right)\right] \\
& \cdot \exp \left(-\lambda x / \beta_{2}\right)\left[\exp \left(-\lambda y / \beta_{1}\right)-\exp \left(-\lambda y / \beta_{2}\right)\right] \quad(x, y>0) \\
& \tilde{\beta}_{\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{2+1}: \beta_{2} \varepsilon_{1+1}}(x, y)=\left(\lambda / \beta_{2}\right)^{2}\left\{\exp \left[-\frac{\lambda}{\beta_{2}}\left(x \cdots \beta_{1} y / \beta_{2}\right)\right] \exp \left(-\lambda y / \beta_{2}\right)\right\}\left(\beta_{2} x>\beta_{1} y>0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \exp \left(-\lambda x / \beta_{2}\right)\left\{\exp \left(-\lambda y / \beta_{2}\right)-\exp \left(-\lambda y / \beta_{1}\right)-\exp (-\lambda y)+\exp \left[-\lambda y\left(1+\frac{1}{\beta_{1}}-\frac{1}{\beta_{2}}\right)\right]\right\} \quad\left(x_{0} y>0\right)
\end{aligned}
$$

Pa

为

The other terms are more difficult. For example, take

$$
\begin{aligned}
& \left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{1+1} \cdot \beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2}\right) \\
& \text { Let xs } \beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{1+1} \cdot y=\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2}, z=\beta_{1} \varepsilon_{1+2}, \quad \text { thus } \\
& \varepsilon_{1+2}: 2 / \beta_{1} \cdot \varepsilon_{1+1}=(y-2) / \beta_{2} \cdot \varepsilon_{1}=\left[z=\left(\beta_{1} y=\left(\beta_{1}:=\right) / \beta_{2}\right] / \beta_{2}\right.
\end{aligned}
$$

and the Jacobian canals to

$1 / \beta_{2}^{2} \beta_{1}$ and $\beta_{2} x=\beta_{2}^{2} \varepsilon_{1}+\beta_{2} \beta_{1} \varepsilon_{1 \div 1}=\beta_{2}^{2} \varepsilon_{1}+\beta_{1} y-\beta_{1}=$ which 1uplios that $\beta_{2} x>\beta_{1} y-\beta_{1} z \Rightarrow \beta_{1} z>\beta_{1} y-\beta_{2} x \Rightarrow z>y-\beta_{2} x / \beta_{1}$.

Thus when $\beta_{2} x>\beta_{1} y$, we integrate with respect to z from zero to y, but when $\beta_{2} x<\beta_{1} y$, we integrate with respect to z from $y-\beta_{2} x / \beta_{1}$ to Y . Hence we have:
when

$$
\beta_{2} \gg \beta_{1} y>0
$$

$$
\left.{ }^{1} \beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{2+1}+\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2}\left(x_{1}, 7\right)\right)^{2}\left(\beta_{2}^{2}-\beta_{1} \beta_{2}+\beta_{1}^{2}\right)^{-1} \cdot \operatorname{exxp}\left(-x x / \beta_{2}\right) .
$$

$$
\left\{\exp \left[-\lambda \Sigma\left(\beta_{2}-\beta_{1}\right) \beta_{2}^{-2}\right\} \operatorname{coxp}\left(-\lambda v / \beta_{1}\right)\right\}
$$

when $\quad \beta_{1} \gg \beta_{2} x>0$

$$
\begin{gathered}
\sum_{\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{1+1} \cdot \beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2}(x, y)=\lambda^{2}\left(\beta_{2}^{2}-\beta_{1} \beta_{2}+\beta_{1}^{2}\right)^{-1} \cdot \exp \left(\cdots \lambda / \beta_{1}\right)} \\
\left\{\operatorname{axp}\left[\cdots \lambda\left(1-\beta_{2} / \beta_{1}\right) / \beta_{1}\right] \exp \left(-\lambda x / \beta_{2}\right)\right\}
\end{gathered}
$$

For $\quad\left(\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{1+1}, \beta_{2} \varepsilon_{i+1}+\beta_{1} \varepsilon_{1+2}+\varepsilon_{3+3}\right)$
Let $\quad x=\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{i+1}, y=\beta_{2} \varepsilon_{i+1}+\beta_{1} \varepsilon_{1+2}+\varepsilon_{i+3^{*}} \quad z=\beta_{1} \varepsilon_{i+2^{\prime}}$ " $=\varepsilon_{i+3^{\circ}}$ than $\varepsilon_{1+3}=\varepsilon_{3+2} z / \beta_{1}, \quad \varepsilon_{1+1}=(y-2-n) / \beta_{2}, \quad \varepsilon_{1}=\left[x-\left(\beta_{1} y-\beta_{1} z-\beta_{1}=1\right) \beta_{2}\right] / \beta_{2} ;$

implies that $\beta_{2} x>\beta_{1} y-\beta_{1} z=\beta_{1} w \Rightarrow \beta_{1} x>\beta_{1} y-\beta_{1} z-\beta_{1} x \Rightarrow H>y-z-\beta_{2} x / \beta_{1}$: for $y<z+\beta_{2} x / \beta_{1}$, integrate w from zero to y, for $y>z+\beta_{2} x / \beta_{1}$, integrate n From $y-z-\beta_{2} x / \beta_{1}$ to y : and in the and step, since $y<z+\beta_{2} x / \beta_{1}$ indices that $z>y-\beta_{2} x / \beta_{1}$, in $\beta_{1} y<\beta_{2} x$, integrate a from zero to y, in $\beta_{1} y>\beta_{2} x$, integrate z from $y=\beta_{2} x / \beta_{1}$ to y; also $\left.y\right\rangle z \div \beta_{2} x / \beta_{1} \Rightarrow z\left\langle y o n \beta_{2} x / \beta_{1}\right.$, thus if $\beta_{2} x<\beta_{1} y$, integrate w from zero to $y-\beta_{2} x / \beta_{1}$; if $\beta_{1} y<\beta_{2} x, f(z)=0$; hence for the expression of $\varepsilon_{\beta_{2}} \varepsilon_{1}+\beta_{1} \varepsilon_{i+1}, \beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{i+2}+\varepsilon_{i+3}(x, y)$.
when

$$
\begin{aligned}
& \text { hen } z>y=\beta_{2} x / \beta_{1} ; \quad \beta_{2} x>\beta_{1} y>0 \\
& f(x, y)=\left(\beta_{2} \lambda\right)^{2}\left[\left(\beta_{2}^{2}+\beta_{1}^{2}-\beta_{1} \beta_{2}\right)\left(\beta_{2}^{2}+\beta_{1}-\beta_{2}\right)\right]^{-1} \cdot \operatorname{cxy}\left(-\lambda x / \beta_{2}\right) \cdot \\
& \left\{\exp \left[-\lambda y\left(1 / \beta_{2}-\beta_{1} / \beta_{2}^{2}\right)-\exp (-\lambda y) \operatorname{coxp}\left(-\lambda y / \beta_{1}\right)+\exp \left[-\lambda y\left(1+1 / \beta_{1}+\beta_{1} / \beta_{2}^{2}-1 / \beta_{2}\right)\right]\right\}\right.
\end{aligned}
$$

when $z>y-\beta_{2} x / \beta_{1} ; \quad \beta_{1} y>\beta_{2} x>0$

$$
\begin{aligned}
f(x, y)= & \left(\beta_{2} \lambda\right)^{2}\left[\left(\beta_{2}^{2}+\beta_{1}^{2}-\beta_{1} \beta_{2}\right)\left(\beta_{2}^{2}+\beta_{1}-\beta_{2}\right)\right]-1\left\{\exp \left(\lambda \lambda / \beta_{2}\right)-\operatorname{sxp}\left[-\lambda x\left(1-\beta_{2} / \beta_{1}\right) / \beta_{1}\right]\right\} \cdot \\
& \left\{\exp \left[-\lambda y\left(1+1 / \beta_{1}+\beta_{1} / \beta_{2}^{2-1 / \beta_{2}}\right)\right]-\exp \left(-\lambda y / \beta_{1}\right)\right\}
\end{aligned}
$$

when $z<y-\beta_{2} x / \beta_{1} ; \quad \beta_{1} y<\beta_{2} x$

$$
f(x, y)=0
$$

when $\quad z<y-\beta_{2} x / \beta_{1} ; \quad \beta_{1} y>\beta_{2} x>0$

$$
\begin{aligned}
& f(x, y)=\lambda^{2}\left[\left(\beta_{2}^{2}+\beta_{1}-\beta_{2}\right)\left(1 \sim \beta_{1}\right)\right]^{-1} \\
& \left\{\exp \left[-\lambda x\left(1-\beta_{2}\right) / \beta_{1}\right] \exp (-\lambda y)-\exp \left[\left(-\lambda / \beta_{1}\right)\left(x+y-x \beta_{2} / \beta_{1}\right)\right]\right\} \\
& -\left(\lambda \beta_{2}\right)^{2}\left[\left(\beta_{2}^{2}+\beta_{1}^{2}-\beta_{1} \beta_{2}\right)\left(\beta_{2}^{2}+\beta_{1}-\beta_{2}\right)\right]^{-1}\left\{\exp \left[-\lambda\left(x / \beta_{2}+y\right)\right]\right. \\
& \left.\quad-\exp \left[-\lambda x\left(1-\beta_{2} / \beta_{1}\right) / \beta_{1}\right] \exp \left[-\lambda y\left(1+1 / \beta_{1}+\beta_{1} / \beta_{2}^{2}-1 / \beta_{2}\right)\right]\right\}
\end{aligned}
$$

The rest can be derived in a similar way. We thus see that the joint p.d.f. of X_{i}, x_{i+1} will be continuous in both variables but will have different analytical expressions over the regions $\beta_{2} x>\beta_{1} y$ and $\beta_{2} x \leq \beta_{1} Y$; there appears to be no compact analytical form for $\mathrm{f}_{\mathrm{X}_{1}, X_{i+1}}(\mathrm{x}, \mathrm{y})$. This is unfortunate because it makes it difficult to derive maximum likelihood estimates of the parameters λ and β in the model.

Different bivariate exponentials also can be compared through their conditional properties and so we will derive these for the present contribution. Conditional p.d.f.'s are not succinct enough, and so we concentrate on conditional moments. These may be obtained from (7.1). For instance, to obtain $E\left(X_{i} \mid X_{i+1}=t\right)$, differentiate with respect to s_{1}, set $s_{1}=0+$, multiply by -1 , invert with respect to s_{2} and then divide by the marginal (exponential) density of X_{i+1}. Thus

$$
\begin{aligned}
& E\left(X_{1} \mid X_{1+1}=t\right)=\lambda^{-1}\left\{1+\beta_{1} \beta_{2}+\beta_{1}-\beta_{1}\left(1-\beta_{2}\right) \operatorname{eran}\left[-\lambda t\left(1-0 \beta_{1}\right) / \beta_{1}\right] /\left(\beta_{1}-\beta_{2}\right)\right. \\
&\left.+\left(\beta_{1}-2 \beta_{2}+\beta_{1} \beta_{2}\right) \exp \left[-\lambda t\left(1 \infty \beta_{2}\right) / \beta_{2}\right] /\left(\beta_{1}-\beta_{2}\right)\right\}
\end{aligned}
$$

Examining this regression function more closely we see that $E\left(X_{i} \mid X_{i+1}=t\right)$ is equal to λ^{-1} for $\beta_{2}=0$ and β_{1} equals either 0 or 1 ; otherwise it increases exponentially from $\left(\beta_{1} \beta_{2}+\beta_{1}\right) \lambda^{-1}$ to the constant value $\left(1+\beta_{1} \beta_{2}+\beta_{1}\right) \lambda^{-1}$ as \pm increases. But when $\beta_{2}=1$ and $\beta_{1}=0$, $E\left(X_{i} \mid X_{i+1}=t\right)=3 / \lambda$ which is the maximum value for large t. The conditional moment $E\left(X_{i} \mid X_{i-1}=t\right)$ can be obtained similarly by interchanging s_{1} and s_{2}.

VIII. SOME BASIC ASPECTS OF THE EMAK MODEL

By the constructions of EMAl and EMA 2 model, we can write the general form of EMAk as:

$$
\begin{align*}
& x_{1}=\beta_{k} \varepsilon_{1}, \\
& =\beta_{k} \varepsilon_{i}+\beta_{E-1} \varepsilon_{i+1}{ }^{\prime} \tag{8.1}\\
& =\beta_{K} \varepsilon_{1}+\beta_{E-1} \varepsilon_{1+1}+\beta_{i-2} \varepsilon_{1+2} \\
& \text { F.D. } \beta_{k} \\
& \text { w.p. }\left(1-\beta_{k}\right) \beta_{\mathrm{k}-1} \\
& \text { н. ․ } \quad\left(1-\beta_{i k}\right)\left(1 \sim \beta_{i-1}\right) \beta_{k-2} \\
& : \beta_{k} \varepsilon_{1}+\beta_{k-1} \dot{\varepsilon}_{1+1}+\ldots+\beta_{1} \varepsilon_{1+i-1}+\beta_{1}+k \\
& \text { W.F. }\left(1-\beta_{k}\right)\left(1 \cdots \beta_{k-1}\right) \ldots\left(1 \infty \beta_{1}\right)
\end{align*}
$$

Methods of mathematical induction will be used to prove some basic properties of the EMAk model.

1. The general closed form of $\operatorname{EMAK}(k=1,2,3, \ldots)$ is

$$
\begin{equation*}
x_{1}=\sum_{j=0}^{k} \beta_{k-j} \varepsilon_{1+j} \prod_{n=0}^{j} I_{1}^{(k+1-\Omega)} \tag{8.2}
\end{equation*}
$$

where β_{0} and $I_{i}^{(k+l)}$ are defined to be identically l for all i;
$I_{i}^{(m)}$ is an i.i.d. sequence of Bernoulli random variables with $I_{i}^{(m)}=1$ w.p. $\left(1-\beta_{m}\right), 0$ otherwise for all m;
i is the serial number of the ith element of the series;
k is the order of the process; j and n are indices.

$$
\begin{array}{ll}
\delta_{i}=\beta_{1} \varepsilon_{i} I_{i}^{(2)}+\beta_{0} \varepsilon_{i+1} I_{i}^{(1)}, & \\
==\beta_{1} \varepsilon_{i}, & \text { wop. } \beta_{1} \\
=\beta_{1} \varepsilon_{i}+\varepsilon_{i+1} \cdot & \text { wop. } 1-\beta_{1}
\end{array}
$$

When $k=2$

$$
\begin{aligned}
x_{i} & =\beta_{2} \varepsilon_{i} I_{1}(3)+\beta_{1} \varepsilon_{i+1} I_{i}^{(3)} I_{i}(2)+\beta_{0} \varepsilon_{i+2} I_{i}^{(3)} I_{i}(2)_{I}(1) \\
& =\beta_{2} \varepsilon_{i}, \\
& =\beta_{2} \varepsilon_{1}+\beta_{1} \varepsilon_{1+1} \quad \beta_{2} \\
& =\beta_{2} \varepsilon_{i}+\beta_{1} \varepsilon_{i+1}+\varepsilon_{i+2^{\circ}}
\end{aligned} \quad \text { wop. }\left(1-\left(1-\beta_{2}\right) \beta_{1}\right)\left(1-\beta_{1}\right) \quad l
$$

Assume the result is also true when $k=m$ then, when $k=m+1$

$$
\begin{aligned}
x_{i} & =\sum_{j=0}^{m} \beta_{n=j} \varepsilon_{i+j} \prod_{n=0}^{j} I_{i}^{(n+1-n)}+\beta_{n+1-j} \varepsilon_{i+j} \prod_{n=0}^{j} I_{i}^{(n+2-n)} \\
& =\sum_{j=0}^{n+1} \beta_{n+1-j} \varepsilon_{i+j} \prod_{n=0}^{j} I_{i}^{(m+1+1 \sim n)} .
\end{aligned}
$$

[^0]2. The distribution of the intervals $\left\{\mathrm{X}_{\mathrm{i}}\right\}$ are also exponential.
\[

$$
\begin{align*}
& \text { Proof: } f_{X}^{\mu}(s) \operatorname{mg}\left(e^{-s K_{1}}\right) \text {. 1.0. } \\
& \left.f_{K}^{*}(s)=N_{1}-s \beta_{K} \varepsilon_{1}\right) \beta_{K}+E\left(0^{-s \beta_{K} \varepsilon_{1}-s \beta_{K-1} \varepsilon_{1}+1}\right) \beta_{K=1}\left(1 \ldots \beta_{K}\right)+\ldots \\
& +E\left(e^{-\varepsilon \beta_{12} \varepsilon_{1}-s \beta_{I-1} \varepsilon_{1+1} \ldots=s \beta_{1} \varepsilon_{1+1-1}-s \varepsilon_{1+2}}\right)\left(10 \beta_{I_{0}}\right)\left(1-\beta_{i=1}\right)_{000}\left(1-\beta_{1}\right) \\
& =\frac{\lambda \beta_{k}}{\lambda+\beta_{5} s}+\frac{\lambda^{2}\left(1-\beta_{5}\right) \beta_{k-1}}{\left(\lambda+\beta_{k} s\right)\left(\lambda+\beta_{k-1} s\right)}+\ldots+\frac{\lambda^{k+1}\left(1 \cdots \beta_{1}\right) \ldots\left(1-\beta_{2}\right)}{(\lambda+s)\left(\lambda+\beta_{1} s\right) \ldots\left(\lambda+\beta_{L} s\right)} \tag{8,3}
\end{align*}
$$
\]

When Ix.

$$
f_{X}^{*}(s)=\frac{\lambda \beta_{1}}{\lambda+\beta_{1} s}+\frac{\lambda^{2}\left(1 \sim \beta_{1}\right)}{(\lambda+s)\left(\lambda+\beta_{1} L\right)}=\frac{\lambda}{\lambda+\beta_{1} s}\left[\beta_{1}+\frac{\lambda\left(1-\beta_{1}\right)}{\lambda+5}\right]=\frac{\lambda}{\lambda+5}
$$

When $k=2$

When $k=m-1$, the last term of (8.3) is

$$
\frac{\lambda^{n}\left(1-\beta_{n}\right)\left(1-\beta_{1-1}\right) \ldots\left(1-\beta_{2}\right)}{(\lambda+5)\left(\lambda+\beta_{a} s\right)\left(\lambda+\beta_{1 n}-1 s\right) \ldots\left(\lambda+\beta_{2} s\right)}
$$

Assume the result is also true when $k=m-1$, then, when $k=m$ the last two terms become

- 0

but all the terms before these two are still the same as $k=m-1$, thus simplifying (8.4) gives

$$
\begin{aligned}
& \frac{\lambda^{m}\left(1-\beta_{n}\right)\left(1-\beta_{m+1}\right) \ldots\left(1-\beta_{2}\right)\left[\beta_{1}(\lambda+3)+\lambda\left(1-\beta_{1}\right)\right]}{(\lambda+s)\left(\lambda^{+}+\beta_{n 1}^{s}\right)\left(\lambda^{+}+\beta_{m-1}^{s}\right) \ldots 0\left(\lambda+\beta_{2}^{s}\right)\left(\lambda^{+}+\beta_{1}^{s}\right)} \\
& =\frac{\lambda^{n}\left(1 \cdots \beta_{m}\right)\left(1-\beta_{n-1}\right) \ldots\left(1-\beta_{2}\right)}{\left(\lambda^{+b}\right)\left(\lambda^{+}+\beta_{15}^{s}\right)\left(\lambda^{2}+1-1\right.} .
\end{aligned}
$$

which is exactly the last term of $f_{X_{i}}^{*}(s)$ when $k=m-1$. Hence, we proved that if the result is true when $k=m-1$, then the result is also true when $k=m$. This completes the proof.
3. The fth order serial correlation of EMAk is

$$
\begin{aligned}
\rho_{j}^{(k)} & =\sum_{i=1}^{k-j+1} \beta_{k+1-i} \prod_{n=0}^{i-1}\left(1-\beta_{K+1-m}\right) \beta_{K+1-j-1} \prod_{n=1}^{1+j-1}\left(1-\beta_{k+1-n}\right), & \text { for } 1 \text { raja } \\
& =0 & \text { for } k<j
\end{aligned}
$$

where $\beta_{0}=1$, and $\beta_{k+1}=0$.

Proof: By definition

$$
\begin{aligned}
& P_{j}^{(k)}=\operatorname{corr}\left[X_{i}^{(k)}{ }_{i} X_{i+j}^{(k)}\right]=\frac{\operatorname{cov}\left[X_{j}^{(k)} X_{i+j}^{(k)}\right]}{\left\{\operatorname{var}\left[X_{i}^{(k)}\right] \operatorname{var}\left[X_{i+j}(E)\right]\right\}^{\frac{T}{2}}} \\
& =\frac{E\left[X_{i}^{(k)} X_{1+j}^{(k)}\right]-E\left[X_{1}^{(k)}\right] E\left[X_{1}^{(k)}\right]}{\left\{\operatorname{var}\left[X_{i}^{(k)}\right] \operatorname{var}\left[X_{i+j}^{(k)}\right]\right\}^{2}},
\end{aligned}
$$

where $X_{i}^{(k)}$'s are intervals of EMAk process, and have been proved to be marginally exponentially distributed with parameter λ. Thus

$$
\begin{aligned}
& \left\{\operatorname{var}\left[x_{i}^{(k)}\right] \operatorname{var}\left[x_{1 \div j}^{(k)}\right]\right\}^{\frac{1}{2}}=1 / \lambda^{2}, \text { and } \\
& \rho_{j}^{(k)}=\lambda\left\{E_{j}\left[\begin{array}{l}
(k)_{1}(k) \\
X_{1}+j
\end{array}\right]-E\left[X_{i}^{(k)}\right] E\left[X_{1}^{(k)}\right]\right\} \text {. }
\end{aligned}
$$

Since $X_{i}^{(k)}$ and $X_{i+j}^{(k)}$ are probabilistic linear combinations of i.i.d. exponential (λ) random variables ε_{i} and ε_{i+j}, and

$$
E\left(\varepsilon_{i} \varepsilon_{i+j}\right)=E\left(\varepsilon_{i}\right) E\left(\varepsilon_{i+j}\right)=1 / \lambda^{2}
$$

the only nonzero term of $\rho_{j}^{(k)}$ will be the sum of

$$
B \lambda^{2}\left[E\left(\varepsilon_{i+j} \varepsilon_{i+j}\right)=E\left(\varepsilon_{i+j}\right) E\left(\varepsilon_{1+j}\right)\right]=B \lambda^{2}(2-1) \lambda^{-2}=B_{j}
$$

where B is a combination of β_{i} and $\left(1-\beta_{i}\right)$, for $i=1,2,3, \ldots$ Hence when $k=1, j=1$,

$$
\begin{aligned}
Q_{1}^{(1)} & =\sum_{i=1}^{1} \beta_{1+1-1} \prod_{1=0}^{1-1}\left(1-\beta_{1+1-m}\right) \beta_{1+1-1-1} \prod_{n=1}^{1+1-1}\left(1-\beta_{1+1-n}\right) \\
& =\beta_{1}\left(1-\beta_{2}\right) \beta_{0}\left(1-\beta_{i}\right)=\beta_{1}\left(1-\beta_{1}\right)_{0}
\end{aligned}
$$

When $k=2, j=1$,

$$
\begin{aligned}
\rho_{1}^{(2)} & =\sum_{1=1}^{2} \beta_{3-1} \prod_{m=0}^{1-1}\left(1-\beta_{3-m}\right) \beta_{2-1} \prod_{n=1}^{1}\left(1-\beta_{3-n}\right) \\
& =\beta_{2}\left(1-\beta_{3}\right) \beta_{1}\left(1-\beta_{2}\right)+\beta_{1}\left(1-\beta_{3}\right)\left(1-\beta_{2}\right) \beta_{0}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) \\
& =\beta_{2} \beta_{1}\left(1-\beta_{2}\right)+\beta_{1}\left(1-\beta_{2}\right)^{2}\left(1-\beta_{1}\right)=\beta_{1}\left(1-\beta_{2}\right)-\left[\beta_{1}\left(1-\beta_{2}\right)\right]^{2}
\end{aligned}
$$

When $k=2, j=2$,

$$
\begin{aligned}
\rho_{2}^{(2)} & =\sum_{1=1}^{1} \beta_{3-1} \prod_{n=0}^{i-1}\left(1-\beta_{3-m}\right) \beta_{1-1} \prod_{n=1}^{i+1}\left(1-\beta_{3-n}\right) \\
& =\beta_{2}\left(1-\beta_{3}\right) \beta_{0}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right)=\beta_{2}\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) .
\end{aligned}
$$

When $k=h$, assume the result is also true, then, when $k=h+1, j \leqslant h+1$,

$$
\begin{aligned}
& P_{j}^{(E)}=\sum_{i=1}^{h-j+1} \beta_{h+1-i} \prod_{n=0}^{1-1}\left(1 \sim \beta_{h+1-m}\right) \beta_{h+1-j-1} \prod_{n=1}^{i+j-1}\left(1-\beta_{h+1-n}\right) \\
& +\beta_{n+1+1-(n+1-j+1)} \prod_{j=0}^{i-1}\left(1-\beta_{n+1+1-m}\right) \beta_{n+1+1-j-1} \prod_{n=1}^{1+j-1}\left(1-\beta_{n+1+1-n}\right) \\
& =\sum_{i=1}^{1+1-j} \beta_{i+1-1} \prod_{m=0}^{1-1}\left(1-\beta_{i n+1-m}\right) \beta_{\underline{k}+1-j-1} \prod_{n=1}^{i+j-1}\left(1-\beta_{\underline{k}+1-n}\right) .
\end{aligned}
$$

This completes the proof.
4. All the correlations are non-negative and bounded above by 1/4.

Proof: From above

$$
\begin{aligned}
& Q_{j}^{(k)}=\sum_{i=1}^{k-j+1} \beta_{k+1-1} \prod_{m=0}^{i=1}\left(1-\beta_{k+1-m}\right) \beta_{k+1-j-1} \prod_{n=1}^{i+j-1}\left(1-\beta_{I+1 \infty n}\right) \quad 1 \leq j \leq \xi_{k} \\
& =\beta_{E} \beta_{k-j}\left(1-\beta_{E}\right)\left(1-\beta_{k-1}\right) \ldots\left(1-\beta_{k+1-j}\right) \\
& +\beta_{K-1}\left(1-\beta_{K}\right) \beta_{K-j-1}\left(1-\beta_{\Sigma}\right)\left(1=-\beta_{I-1}\right) \ldots\left(1-\beta_{I-j}\right) \\
& +\beta_{K-2}\left(1-\beta_{K}\right)\left(1-\beta_{K-1}\right) \beta_{K-j-2}\left(1-\beta_{k}\right)\left(1-\beta_{K-1}\right) \ldots\left(1-\beta_{k-j-1}\right) \\
& \vdots \beta_{j+1}\left(1-\beta_{k}\right) \ldots\left(1-\beta_{j+2}\right) \beta_{1}\left(1-\beta_{k}\right)\left(1-\beta_{k-1}\right) \ldots\left(1-\beta_{2}\right) \\
& +\beta_{j}\left(1-\beta_{k}\right)\left(1-\beta_{k-1}\right) \ldots\left(1-\beta_{j+1}\right)\left(1-\beta_{k}\right)\left(1-\beta_{k-1}\right) \ldots\left(1-\beta_{1}\right) .
\end{aligned}
$$

When $k=1, j=1, \quad \rho_{1}^{(1)}=\beta_{1}\left(1-\beta_{1}\right)$,

$$
\begin{aligned}
& \min . \operatorname{value}=0 \text { at } \beta_{1}=0 \text { or } 1, \\
& \max . \operatorname{value}=1 / 4 \text { at } \beta_{1}=1 / 2 .
\end{aligned}
$$

When $k=2, j=1, \quad \rho_{1}^{(2)}=\beta_{1}\left(1-\beta_{2}\right)-\left[\beta_{1}\left(1-\beta_{2}\right)\right]^{2}$,
min. value =0 at $\beta_{1}=0$ or $\beta_{2}=1$,
max. value $=1 / 4$ at $\beta_{1}\left(1-\beta_{2}\right)=1 / 2$.
When $k=2, j=2, \quad \rho_{2}^{(2)}=\beta_{2}\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)$,
min. value $=0$ at $\beta_{2}=0$ or $\beta_{1}=1$ or $\beta_{2}=1$,
\max. value $=1 / 4$ at $\beta_{2}=1 / 2$ and $\beta_{1}=0$.
When $l \leq j \leq k, \quad$ min. value $=0$ at $\beta_{m}=0, m=j, j+l, \ldots, k$
or $\beta_{m}=1, m=k$, or $k-1, \ldots$ or $k-j+1$,
max. value $=1 / 4$ at $\beta_{m}=1 / 2$ and $\beta_{n}=0$ for $m \neq n$, where $m=k, k-1, k-2, \ldots, j$.
5. Define the i+lst element of EMAk to be

$$
\begin{aligned}
& \text { wp. }\left(1-\beta_{k}\right) \beta_{k-1} \\
& x_{1+1}^{(k)}\left\{\begin{array}{l}
\beta_{1} \varepsilon_{1+1}+\beta_{k-1} \varepsilon_{i+2} \\
\beta_{k} \varepsilon_{i+1}+\beta_{k-1} \varepsilon_{i+2}+\beta_{k-2} \varepsilon_{i+3} \\
\beta_{i} \varepsilon_{1}
\end{array}\right. \\
& \text { Hope }\left(1-\beta_{k}\right)\left(1-\beta_{\text {k-1 }}\right) \beta_{k=2} \\
& \left(\beta_{k}^{\circ} \varepsilon_{i+1}+\beta_{k-1} \varepsilon_{1+2}+\ldots+\beta_{2} \varepsilon_{1+k-1}+\beta_{1} \varepsilon_{i+k}+\varepsilon_{1+12+1} * \text { Nope }\left(1-\beta_{k}\right)\left(1-\beta_{1-1}\right)\right. \\
& \text {... }\left(1-\beta_{2}\right)\left(1-\beta_{1}\right)
\end{aligned}
$$

and define the th element of the $k+\underline{\text { st }}$ order process to be $X_{i}^{(k+1)}$, then we can write

$$
x_{i}^{(k+1)}=\left\{\begin{array}{ll}
\beta_{k+1} \varepsilon_{i}, & \text { wop. } \beta_{k+1} \\
\beta_{k+1} \varepsilon_{i}+x_{i+1}^{(k)} & \text { wopo } 1-\beta_{k+1}
\end{array}\left(0 \in \beta_{k+1} \in 1 ; 1=0,+1,+2, \ldots\right)(8,5)\right.
$$

Proof:

$$
\begin{aligned}
& \text { When } k=1, X_{i+1}^{(1)} \beta_{1} \beta_{1+1} \text {, } \\
& \text { wop. } \beta_{1} \\
& =\beta_{1} \varepsilon_{2+1}+\varepsilon_{1+2} . \\
& \text { w. } p_{0} 1-\beta_{1} \\
& \text { Then } \quad x_{1}^{(2)}=\beta_{2} \varepsilon_{1} \\
& =\beta_{2} \varepsilon_{1} \div \beta_{1} \varepsilon_{i+1} \\
& =\beta_{2} \varepsilon_{2}+\beta_{1} \varepsilon_{2+1}+\varepsilon_{1+2} \\
& \text { W.D. } \beta_{2} \\
& \text { w.p. }\left(1 \cdots \beta_{2}\right) \beta_{1} \\
& \text { w.p. }\left(1-\beta_{2}\right)\left(1-\beta_{1}\right) \\
& \text { When } k=2, \quad x_{2+1}^{(2)}=\beta_{2} \varepsilon_{2+1} \text {, } \\
& =\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2} \\
& \text { w.p. } \beta_{2} \\
& \text { w. . . }\left(1-\beta_{2}\right) \beta_{1} \\
& =\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2}+\varepsilon_{1+3} \text {. ․ p. }\left(1-\beta_{2}\right)\left(1-\beta_{1}\right)
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
X_{1}^{(3)} & =\beta_{3} \varepsilon_{1} & \text { w.p. } \beta_{3} \\
& =\beta_{3} \varepsilon_{1}+\beta_{2} \varepsilon_{1+1} & \text { w.p. }\left(1-\beta_{3}\right) \beta_{2} \\
& =\beta_{3} \varepsilon_{1}+\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{1+2} & \text { w.p. }\left(1-\beta_{3}\right)\left(1-\beta_{2}\right) \beta_{1} \\
& =\beta_{3} \varepsilon_{1}+\beta_{2} \varepsilon_{1+1}+\beta_{1} \varepsilon_{i+2}+\varepsilon_{1+3} \cdot w \cdot p \cdot\left(1-\beta_{3}\right)\left(1-\beta_{2}\right)\left(1-\beta_{1}\right)
\end{array}
$$

When $k=m-1$, assume it is also true, then when $k=m$, do the same job, will get exact the correct result, this completes the proof.

Note that this expression is not convenient for the purpose of examining the properties of the EMAk process, since $X_{i}^{(k)}$ and ε_{i} are dependent; however, it may be used to generate the $\left\{X_{i}\right\}$ sequences.

IX. CONCLUSIONS

1. Both estimators of β are not very good, since the bias terms are very large when β approaches to zero or one. But $\hat{\hat{\beta}}$ looks pretty nice when β is in the interval (0.1, 0.8).
2. Estimation of β in the EMA2 process is rather difficult, because it is impossible to get the unique value of the estimators.
3. In successive stages of queucing lines, all the waiting time '(waiting time in the queue plus the service time) in each stage will not be independent; this is the basic purpose of constructing this model, the size of the order k depends on the number of stages.
4. The general expression of the EMAk model is not convenient for the purpose of examining the properties of the EMAk process, since $X_{i}^{(k)}$ and ε_{i} are dependent; however, it may be used to generate the $\left\{X_{i}\right\}$ sequences.

METHODS OF GETTING JOINT EXPECTATIONS

1. The standard way to calculate the expectation of two or more jointly distributed random variables is to integrate the function with respect to the joint p.d.f. of the random variables; egg.

$$
E(X, Y)=\int_{X} \int_{Y} \quad X Y f_{X, Y}(x, y) d x d y
$$

This is not convenient for the expectations we require.
2. In the EMAl model, a better method of getting joint expectations is to write out the expressions from the basic construction and compute them directly. For example: $\quad X_{1}=\beta \varepsilon_{1} \quad$ H. $P \cdot \beta$,

$$
=\beta \varepsilon_{1}+\varepsilon_{1+1} \quad \text { wo } p
$$

$$
x_{1+1}^{2}\left\{^{2} \varepsilon_{i+1}^{2} \quad \text { we. } \beta\right.
$$

$$
\beta^{2} \varepsilon_{1+1}^{2}+2 \beta \varepsilon_{1+1} \varepsilon_{1+2}+\varepsilon_{1+2}^{2} \text { No p. }(1-\beta)
$$

thus

By direct computation we haves

$$
\begin{aligned}
E\left(x_{1} x_{i+1}^{2} x_{i+2}^{2}\right) & =4 \beta^{5} / \lambda^{5} \quad \text { wop. } \beta^{3} \\
& =\left(12 \beta^{5}+28 \beta^{4}+28 \beta^{3}\right) / \lambda^{5} \quad \text { w. p. } \beta^{2}(1-\beta), \\
& =\left(12 \beta^{5}+56 \beta^{4}+76 \beta^{3}+52 \beta^{2}+4 \beta\right) / \lambda^{5} \quad \text { w. p. } \beta(1-\beta)^{2} \\
& =\left(4 \beta^{5}+28 \beta^{4}+48 \beta^{3}+52 \beta^{2}+16 \beta^{2}+4\right) / \lambda^{5} \quad \text { w. p. }(1-\beta)^{3} .
\end{aligned}
$$

$$
\begin{aligned}
& X_{1} x_{1+1}^{2}=\beta^{3} \varepsilon_{1} \varepsilon_{1+1}^{2} \\
& =\beta^{3} \varepsilon_{1} \varepsilon_{1+1}^{2}+\beta^{2} \varepsilon_{1+1}^{3} \quad \text { н. p. } \beta(1-\beta) \text {. } \\
& =\beta^{3} \varepsilon_{1} \varepsilon_{1+1}^{2}+2 \beta^{2} \varepsilon_{1} \varepsilon_{1+1} \varepsilon_{i+2}+\beta \varepsilon_{i} \varepsilon_{i+2}^{2} \quad \text { н.p. } \beta(1=\beta) \\
& { }^{m} \beta^{3} \varepsilon_{1} \varepsilon_{1+1}^{2}+2 \beta^{2} \varepsilon_{1} \varepsilon_{1+1} \varepsilon_{1+2}^{+} \beta^{2} \varepsilon_{1+1}^{3}+2 \beta \varepsilon_{1+1}^{2} \varepsilon_{1+2}+\beta \varepsilon_{1} \varepsilon_{i+2}^{2}+\varepsilon_{1+1} \varepsilon_{1+2}^{2} \\
& \text { Hap. }(1-\beta)^{2}
\end{aligned}
$$

$$
E\left(x_{1} x_{i+1}^{2} x_{i+2}^{2}\right)=\left(4+4 \beta+20 \beta^{2}-20 \beta^{3}+8 \beta^{5}-12 \beta^{6}\right) / \lambda^{5}
$$

All the expressions listed in APPENDIX B were computed in this way.
3. Take the derivative of the Laplace transform of the joint p.d.f. with respect to s_{i}, and then setting s_{i} equal to zero will also give the joint expectations, e.g. Lawrence and Lewis gave the general expression of Laplace transform of the joint p.d.f. of r adjacent intervals. [Ref. l, p.17] Converting it gives:

$$
\begin{aligned}
& \hat{S}_{X_{1} X_{1+1}+X_{1}+2}^{*} X_{1+3}\left(s_{1}, s_{2}: s_{3}, s_{4}\right)= \\
& \frac{\lambda^{4}\left(\lambda+\beta s_{1}+\beta s_{2}\right)\left(\lambda+\beta s_{2}+3 s_{3}\right)\left(\lambda+\beta s_{3}+\beta s_{4}\right)}{\left(\lambda+s_{1}\right)\left(\lambda+\beta s_{2}\right)\left(\lambda+\beta s_{3}\right)\left(\lambda+s_{1}+\beta s_{2}\right)\left(\lambda+s_{2}+\beta s_{3}\right)\left(\lambda+s_{3}+\beta s_{4}\right)\left(\lambda+s_{4}\right)}
\end{aligned}
$$

Take the derivative of this with respect to s_{1} twice, s_{2} once, s_{3} twice, and s_{4} once. Then set $s_{i}=0(i=1,2,3,4)$ to get $E\left(x_{i}^{2} x_{i+1} x_{i+2}^{2} x_{i+3}\right)$. Note that when the order of the derivative is odd, one should change the sign of the expression. This is a messy job by hand but one done easily by computer.
4. An alternative way is to use "cumulants" or "semi-invariants" [Refs. 8, p. 253 and ll, p.55-93]. Let L be the Laplace transform of the joint p.d.f. and $L^{*}=\log \mathrm{L}$. Let $\mathrm{L}^{*}{ }_{2 l l 2}$ denote the derivative of L^{*} with respect to s_{1} twice, s_{2} once, s_{3} once, and s_{4} twice. Since $L^{*}{ }_{1}=L_{1} / L$ and $L^{*}{ }_{2}=\left[L_{2} \cdot L_{-}\left(L_{1}\right)^{2}\right]^{2} L^{2}$ and $L(0)=1$, these imply that $L^{*}{ }_{1}(0)=L_{1}(0)=-E(X)$ and $L^{*}{ }_{2}(0)=L_{2}(0)-\left[L_{1}(0)\right]^{2}=\operatorname{var}(X)$.

If we denote $L^{*}{ }_{j m}(0)=K_{j m}$ and $E\left(X_{i}^{j} X_{i+1}^{m}\right)=E_{j m}$ we get from this relationship the following:

$$
\begin{aligned}
& E_{11}=K_{11}+K_{1}^{2} ; \\
& E_{21}=-K_{21}-K_{1}\left(2 K_{11}+K_{20}\right)-K_{1}^{3} ; \\
& E_{12}=-K_{12}-K_{1}\left(2 K_{11}+K_{02}\right)-K_{1}^{3} ; \\
& E_{22}=K_{22}+2 K_{1}\left(K_{12}+K_{21}\right)+2 K_{11}^{2}+K_{20} K_{02}+2 K_{1}^{2}\left(2 \pi_{11}+K_{20}\right)+K_{1}^{4} ; \\
& E_{13}=K_{13}+K_{1}\left(K_{03}+3 K_{12}\right)+3 K_{11} K_{02}+3 K_{1}^{2}\left(K_{11}+K_{02}\right)+K_{1}^{4} ; \\
& E_{31}=K_{31}+K_{1}\left(K_{30}+3 K_{21}\right)+3 K_{11} K_{20}+3 K_{1}^{2}\left(K_{11}+K_{20}\right)+K_{1}^{4} ;
\end{aligned}
$$

where

$$
K_{1}=K_{10}=K_{01}=-1 / \lambda=-E_{01}=-E_{10}
$$

Also

$$
\begin{aligned}
& \mathrm{K}_{11}=\left(\beta-\beta^{2}\right) / \lambda^{2} \\
& \mathrm{~K}_{20}=\mathrm{K}_{02}=1 / \lambda^{2} \\
& \mathrm{~K}_{12}=\left(2 \beta^{3}-2 \beta\right) / \lambda^{3} \\
& \mathrm{~K}_{21}=\left(2 \beta^{3}-2 \beta^{2}\right) / \lambda^{3} \\
& \mathrm{~K}_{22}=\left(6 \beta^{2}-6 \beta^{4}\right) \lambda^{4} \\
& \mathrm{~K}_{03^{-k}}=x_{3}=-2 / \lambda^{3}
\end{aligned}
$$

LIST OF USEEUI, JOIMT EXPECTATIONS

$$
\begin{aligned}
& E\left(X_{i} X_{i+1}\right)=\left(1+\beta-\beta^{2}\right) / \lambda^{2} \\
& E\left(X_{i}^{2} X_{i+1}\right)=\left(2+4 \beta-2 \beta^{2}-2 \beta^{3}\right) / \lambda^{3} \\
& E\left(X_{i} X_{i+1}^{2}\right)=\left(2+2 \beta-2 \beta^{3}\right) / \lambda^{3} \\
& E\left(X_{i}^{2} X_{i+1}^{2}\right)=\left(4+8 \beta+8 \beta^{2}-14 \beta^{3}-2 \beta^{4}\right) / \lambda^{4} \\
& E\left(X_{i}^{3} X_{i+1}\right)=\left(6+24 \beta-18 \beta^{2}-6 \beta^{4}\right) / \lambda^{4} \\
& E\left(X_{i} X_{i+1}^{3}\right)=\left(6+12 \beta^{2}-6 \beta^{3}-6 \beta^{4}\right) / \lambda^{4}
\end{aligned}
$$

$$
E\left(X_{i}^{3} X_{i+1}^{2}\right)=\left(12+36 \beta+60 \beta^{2}-48 \beta^{3}-36 \beta^{4}-12 \beta^{5}\right) / \lambda^{5}
$$

$$
E\left(X_{i}^{2} X_{i+1}^{3}\right)=\left(12+24 \beta+24 \beta^{2}+12 \beta^{3}-48 \beta^{4}-12 \beta^{5}\right) / \lambda^{5}
$$

$$
E\left(X_{i}^{3} X_{i+1}^{3}\right)=\left(36+108 \beta+180 \beta^{2}+216 \beta^{3}-324 \beta^{4}-144 \beta^{5}-36 \beta^{6}\right) / \lambda^{6}
$$

$$
E\left(X_{i}^{4} X_{i+1}\right)=\left(24+96 \beta-24 \beta^{2}-24 \beta^{3}-48 \beta^{4}+24 \beta^{5}-24 \beta^{6}\right) / \lambda^{5}
$$

$$
E\left(X_{i} X_{i+1}^{4}\right)=\left(24+24 \beta-24 \beta^{3}+48 B^{4}-48 B^{5}\right) / \lambda^{5}
$$

$$
E\left(X_{i}^{5} X_{i+1}\right)=\left(120+600 \beta-120 \beta^{2}-120 \beta^{3}-120 \beta^{4}-120 \beta^{5}-120 \beta^{6}\right) / \lambda^{6}
$$

$$
E\left(X_{i} X_{i+1}^{5}\right)=\left(120+120 \beta \cdots 120 \beta^{6}\right) / \lambda^{6}
$$

$E\left(X_{i}^{2} X_{i+1}^{4}\right)=\left(48+96 \beta+96 \beta^{2}+48 \beta^{3}+48 \beta^{4}-240 \beta^{5}-48 \beta^{6}\right) / \lambda^{6}$.
$E\left(X_{i}^{4} X_{i+1}^{2}\right)=\left(48+192 \beta+432 \beta^{2}-240 \beta^{3}-192 \beta^{4}-144 B^{5}-48 \beta^{6}\right) / \lambda^{6}$.
$E\left(X_{i}^{4} X_{i+1}^{4}\right)=\left(576+2304 \beta+5184 \beta^{2}+8640 \beta^{3}+12096 \beta^{4}-16704 \beta^{5}-8064 \beta^{6}\right.$ $-2880 \beta^{\left.7-576 \beta^{8}\right) / \lambda^{8} .}$
$+$

$$
\begin{aligned}
& E\left(x_{i} x_{i+1} x_{i+2}\right)=\left(1+\beta-\beta^{3}\right) / \lambda^{3} . \\
& E\left(x_{i}^{2} x_{i+1} x_{i+2}\right)=\left(2+6 \beta-4 \beta^{2}-2 \beta^{3}\right) / \lambda^{4} . \\
& E\left(X_{i} x_{i+1}^{2} x_{i+2}\right)=\left(2+6 \beta-8 \beta^{3}+2 \beta^{4}\right) / \lambda^{4} . \\
& E\left(X_{i} x_{i+1} x_{i+2}^{2}\right)=\left(2+4 \beta-2 \beta^{2}-2 \beta^{3}\right) / \lambda^{3} .
\end{aligned}
$$

$E\left(X_{i}^{2} X_{i+1}^{2} X_{i+2}\right)=\left(4+16 \beta+36 \beta^{2}-96 \beta^{3}+96 \beta^{4}-88 \beta^{5}+36 \beta^{6}\right) / \lambda^{5}$.
$E\left(X_{i}^{2} X_{i+1} X_{i+2}^{2}\right)=\left(4+12 \beta-4 \beta^{2}-14 \beta^{3}+12 \beta^{4}-6 \beta^{5}\right) / \lambda^{5}$.
$E\left(X_{i} X_{i+1}^{2} X_{i+2}^{2}\right)=\left(4+4 \beta+20 \beta^{2}-20 \beta^{3}+8 \beta^{5}-12 \beta^{6}\right) / \lambda^{5}$.
$E\left(X_{i}^{2} X_{j+1}^{2} X_{i+2}^{2}\right)=\left(8+32 \beta+48 \beta^{2}-56 \beta^{3}-40 \beta^{4}+8 \beta^{5}+8 \beta^{6}\right) / \lambda^{6}$.
$E\left(X_{i} X_{i+1}^{3} X_{i+2}\right)=\left(6+6 \beta+42 \beta^{2}-54 \beta^{3}+16 \beta^{5}-10 \beta^{6}\right) / \lambda^{5}$.
$E\left(X_{i}^{2} X_{i+1}^{3} X_{i+2}\right)=\left(12+96 \beta-36 \beta^{2}+60 \beta^{3}-156 \beta^{4}+204 \beta^{5}-168 \beta^{6}\right) / \lambda^{6}$.
$E\left(x_{i} x_{i+1}^{3} x_{i+2}^{2}\right)=\left(12+168 \beta-276 \beta^{2}+348 \beta^{3}-312 \beta^{4}+72 \beta^{5}\right) / \lambda^{6}$.
$E\left(X_{i} X_{i+1}^{2} X_{i+2}^{2} X_{i+3}\right)=\left(4+16 \beta+68 \beta^{2}-132 \beta^{3}+104 \beta^{4}-160 \beta^{5}+124 \beta^{6}+4 \beta^{7}\right.$ $\left.-24 \beta^{8}\right) / \lambda^{6}$.
$E\left(X_{i}^{2} X_{i+1} X_{i+2}^{2} X_{i+3}\right)=\left(4+20 \beta+12 \beta^{2}-28 \beta^{3}-24 \beta^{4}-4 \beta^{5}+56 \beta^{6}-44 \beta^{7}\right.$

$$
\left.+12 \beta^{B}\right) / \lambda^{6}
$$

$E\left(X_{i}^{2} X_{i+1} X_{j+2} X_{i+3}^{2}\right)=\left(4+24 \beta-44 \beta^{2}+80 \beta^{3}-108 \beta^{4}+60 \beta^{5}-20 \beta^{6}+12 \beta^{7}\right.$

$$
\left.-4 \beta^{8}\right) / \lambda^{6}
$$

$E\left(X_{i} X_{i+1}^{2} X_{i+2} X_{i+3}^{2}\right)=\left(4+16 \beta+4 \beta^{2}-36 \beta^{3}+52 \beta^{4}-64 \beta^{5}+36 \beta^{6}-16 \beta^{7}\right.$ $\left.+8 \beta^{8}\right) / \lambda^{6}$.

$$
\begin{aligned}
& E\left(x_{i} x_{i+1}^{2} x_{i+2} x_{i+3}\right)=\left(2+8 \beta-4 \beta^{2}+2 \beta^{3}-14 \beta^{4}+10 \beta^{5}-2 \beta^{6}\right) / \lambda^{5} . \\
& E\left(x_{i} x_{i+1} x_{i+2}^{2} x_{i+3}\right)=\left(2+8 \beta+2 \beta^{2}-26 \beta^{3}+26 \beta^{4}-6 \beta^{5}-12 \beta^{7}+8 \beta^{8}\right) / \lambda^{5} . \\
& E\left(x_{i} x_{i+1} x_{i+2} x_{i+3}^{2}\right)=\left(2+6 \beta-2 \beta^{2}-4 \beta^{3}-2 \beta^{4}-2 \beta^{5}\right) / \lambda^{5} . \\
& E\left(x_{i} x_{i+1}^{4} x_{i+2}\right)=\left(24+120 \beta+48 \beta^{2}-96 \beta^{3}-168 \beta^{5}+96 \beta^{6}\right) / \lambda^{6} .
\end{aligned}
$$

1. Lawrance, A. J. and Lewis, P. A. W. (1975). A Moving Average Exponential Point Process (EMA1). Naval Postgraduate School Report NPS55Lw75061.
2. Lawrance, A. J. (1972). Some Models for Stationary Series of Univariate Events. In Stochastic Point Processes (P. A. W. Lewis, ed.) Wiley, New York, 199-256.
3. Cox, D. R. and Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events. Methuen, London and Wiley, New York.
4. Anderson, T. W. (1971). The Statistical Analysis of Time Series. Wiley, New York.
5. Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis Forecasting and control. Holden-Day, San Francisco.
6. Billingsley, P. (1968) . Convergence of Probability Measures. Wiley, New York.
7. Rosenblatt, M. (1962). Random Processes. Oxford, New York.
8. Gnedenko, B. V. (1962). The Theory of Probability. Chelsea, New York.
9. Rosenblatt, M. (1971). Markov Processes. Structure and Asymptotic Behavior. Springer-Verlag, New York.
10. Feller, W. (1966) An Introduction to Probability Theory and its Application. Volume 2. Wiley, New York.
11. Kendall, M. G. and Stuart, A. (1952). The Advanced Theory of Statistics. Volume 1. Hafner, New York.
12. Defense Documentation Center Cameron Station
Alexandria, Virginia 22314 2
13. Library, Code 0212 2
Naval Postgraduate School
Monterey, California 93940
14. Department Chairman, Code 55 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940
15. Professor Peter A. W. Lewis, Code 55Lw 3
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940
16. Professor Donald P. Gaver, Code 55Gv
Department of Operations Research Naval Postgraduate School
Monterey, California 93940
17. Assoc. Professor Paul R. Milch, Code 55Mh 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940
18. Assoc. Professor Francis R. Richards, Code 55Rh 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940
19. Assoc. Professor Donald R. Barr, Code 55Bn 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940
20. Dr. B. J. McDonald, Program Director 1
Probability and Statistics Program
Arlington, Virginia 22217
21. Dr. Merlin G. Bell, (LCDR, USN) 1
Class No. 59
Armed Forces Staff College
Norfolk, Virginia 23511
22. CDR. Lo, Tzy-dah Jathro, Chinese Navy, SMC 2540 1 Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

An investigation of the properties of th

32768001033459
DUDLEY KNOX LIBRARY

[^0]: This completes the proof.

