
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1976-12

A shipboard report origination system utilizing
a microcomputer.

Holyoak, Joseph Glade
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/17939

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

A SHIPBOARD REPORT ORIGINATION SYSTEM
UTILIZING A MICROCOMPUTER

Joseph Glade Holyoak

nmnmnunwY
WMLmnMHMTE SCHOOL

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A SHIPBOARD REPORT ORIGINATION SYSTEM

UTILIZING A MICROCOMPUTER

by

Joseph Glade Holyoak

December 19 7 6

Thesis Advisor: U. R. Kodres

Approved for public release; distribution unlimited.

T177120

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS •»« (Whan Data Sntarad)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. OOVT ACCESSION NO. I. RECIRIENT'S CATALOG NUMBER

a. TITLE (and Submit;

A Shipboard Report Origination System
Utilizing a Microcomputer

5. TYRE OF REPORT * RERlOO COVERED
Master's Thesis;
December 1976

• PERFORMING ORG. REPORT NUMSER

7. AuTmOR<»>

Joseph Glade Holyoak

• CONTRACT OR GRANT NLMBERf*;

9. PERFORMING ORGANIZATION NAME AND AOORESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT. TASK
AREA * WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

December 1976
11. NUMBER OF PAGES

71
U MONITORING AGENCY NAME * AOORESV// iillmrmni tram Controlling Ottlea)

Naval Postgraduate School
Monterey, California 93940

IS. SECURITY CLASS, lot thia rdport)

Unclassified

IS*. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

l«. DISTRIBUTION STATEMENT (at thta Kapart)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (at lha amatrmtt anlarad In Black 20, II dttiatant ham Raman)

IS. SUPPLEMENTARY notes

report generator error analysis
data element required recurring reports
interactive
formated reports

20. ABSTRACT (CanUmta an tarawaa nam II nacaaaaay and identity ay alaak mama it)

A Report Origination Systems (ROS) has been implemented,
using an inexpensive mir cocomputer system, to help ease the
administrative burden facing Navy shipboard managers. The
system is an interactive line editing system, with optional
prompting, which enables a person who is unfamiliar with the
report format to respond to queries in order to edit a highly
formatted report. Automatic error checking is performed using

DO , ;S"„ 1473
(Page 1)

EDITION OF I NOV •• IS OBSOLETE
S/N 0102-014- 6«01 |

UNCLASSIFIED
SECURITY CLASSIFICATION OF TMIi PAGE fW*i«t Data Kntarad)

UNCLASSIFIED
ftCuWTV CL AS$lFIC * TION OF THIS P*OECW>»n .->»<• £nl«r.<

20 . (cont .

)

a previous edition of the report as a basis. The system allows
creation of new formatted reports. The use of a general
purpose microcomputer system makes the editing system afford-
able to a large number of users and also provides a general
computing facility for other uses.

DD Form 1473
1 Jan 73

S/N 0102-014-6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS P AG €<**•" Dmlm Cnfrad)

A Shipboaro Report Origination System
Utilizing a Microcomputer

by

Joseoh Glade Holyoak
Lieutenant, Un i

t

e<V St at es Navy
B.S., College of Southern Utah, 1969

Submitted in partial fulfillment of the
reguirements for tne degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

f r om the

NAVAL POSTGRADUATE SCHOOL
DECEMBER 197b

""fay ,,

ass?

ABSTRACT

•>CHC:r

A Report Origination System (ROS) has been

implemented/ using an inexpensive microcomputer

system* to help ease the administrative burden

facing Navy shicboard managers. The system is an

interactive line editing system/ with optional

prompting, which enables a person who is unfami-

liar with the report format to respond to aueries

in oraer to eait a highly formatted report.

Automatic error checking has been performed using

a previous edition of the report as a basis. The

system allows creation of new formatted reports.

The use of a general ouroose microcomputer system

makes the editing system affordable to a large

number of users and also provides a general com-

puting facility for other uses.

CONTENTS

I. INTRODUCTION 8

II. BACKGROUND 11

A. RtCENT EFFORTS TO REDUCE REPORTING REQUIREMENTS. 11

1. Composite reoortinq (COMPREP) 11

2. X/C 13 Increment I (COMPREP) 12

3. Composite Ooerat ions Reporting System (CORS) 13

a

.

Alternative 1 14

b. Alternative 2 14

c. Alternative 3 14

d. Alternative 4 14

III. A REPORT ORIGINATION SYSTEM (ROS) 16

A. ROS DESIGN OBJECTIVES 16

1. Ease of Use 16

2. Adaptability 16

3. Aoolicaoility 17

4. Error Detection 17

5. Life cycle costs 17

B. SYSTEM OVERVIEW 17

1. Target Report - NAVFORSTAT 17

2. Data Element » 18

a. Data Label 18

b. Code Area 18

c. Error Command Area. 18

d. Prompting Area 18

3. Program Structure 19

a. ROS 19

b. CREATE 19

c. Line Editor 19

a. Files 20

a. Data Base (DAT) 20

b. Message (MSG) 20

HARDWARE 21

1. Computer 21

2. Display Terminal..... 21

3. Auxiliary Memory 22

ROS SOFTWARE 22

1. Operating System Interface 22

a. Console Output 23

b. Disk Input/Output 23

C. Utility Functions 23

2. Initialize Module 23

a. File Ooerations 24

b. Selecting the forking Set 24

c. Initialize Memory 24

3. Editing with Instructions 25

a. Solicit Information 25

b. Editing 25

4. Editing without Instructions 26

a. Information Entry and Editina 26

5. Error* Analysis. 21

a. Command Recognition 2 7

b. Command Execution 28

6

6. Output 28

E. CREATE 29

1. Initialize 30

2. Input 31

3. Finish 32

IV. RECOMMENDATIONS 33

V. CONCLUSIONS 36

APPENDIX A: User's Guide 38

COMPUTER PROGRAM: POS 53

COMPUTER PROGRAM: CRFATE b9

BIBLIOGRAPHY 79

INITIAL DISTRIBUTION LIST 80

I. INTRODUCTION

The ability to process information gathered from

deoloyea military units throughout the world and the ability

to develop an accurate picture of the world status at the

command and control level has been greatly enhanced with the

advent of the computer. The processing time per amount of

data has sues t ant i a 1 1 y decreased. However/ the auantity and

the numoer of required recurring reoorts has increased.

This verv trend was noted in a recent article which appeared

in the Naval war College Review [1] . The author of the

article noticed a 33% increase in the number of required

recurring reoorts during the time he served as Executive

Officer aboard a destroyer. This increase in reporting

reouirements came during a time when paperwork reduction

programs mere supooseoly in effect.

Consider the method by which the reports have been gen-

erated in the fleet. Presently* aboard the majority of

Naval vessels* report generation follows a pattern similiar

to the following. To aain an overview of what information

is exDectedf the originating officer (normally a division

officer or oeoartment head) refers to previously submitted

reoorts and to the manual which calls for the report. He

tnen proceeds to write out* in long hand* the report content

searcning the various aDoendices of the manual for any codes

8

or other unique features required in the report. The entire

reoort will be written out * even if much of the information

remains unchanged from the previous report. This rough copy

will then delivered to the Executive Officer for his recom-

mendations and possible changes. After aporoval by the Exe-

cutive Officer* the rough reoort will be delivered to the

Commanding Officer for review. If the report has been

approved by the Commanding Officer* it will be prepared in

the smooth for submission. If the reoort is being sent out

as a m e s s a a e * it will be delivered to Radio Central where a

Radioman will type the report while concurrently making a

paper tape. If the report is being sent as a letter* a Yoe-

man will type the reoort in the smooth. The smooth and

rough copies will then be delivered to the originator for

proof reading. If no corrections are needed* the smooth

report will then be delivered to the Captain for releasing.

Aith the increasing administrative burden being gen-

erated by the demand for more reports together with the

archaic methods by which reports have been generated* it is

no wonder shioDoard manaqers feel that their ooerational

duties are being threatened by an administrative overload

This thesis oroooses the use of an inexpensive* mul-

tipurpose* microcomputer system as a tool capable of assist-

ing the shipboard manager in meeting this challenge. The

main oojective of such a system is to let the system take

over the responsibilities of reoort formatting* encoding*

and error detection, thereby reducing the time that the

report originator must s o e n d generating reports.

As a user develops a f ami 1

i

ar i t v with the system execu-

tion, he must be given the option of selecting the amount of

promoting information he is to receive. A user who is

unfamiliar with system execution will have to be prompted as

to what information he must enter.

A summary of the events leading to the proposal of

using a computer prompted reoorting system will be presented

in Chapter II. Chapter III outlines the objectives of a

Reoort Origination System (ROS) and discusses the hardware

and software cons

i

aer a t

i

ons of implementing such a system.

A summary of recommendations for further development of ROS

has been presented in Chapter IV. Some concluding remarks

about ROS are contained in Chapter V.

10

II. BACKGROUND

For some time/ concern over the growing amount of

paperwork has been receiving .increased attention at higher

command levels. This chapter summarizes recent proposals

which have resulted from this concern.

A. RECENT EFFORTS TO REDUCE REPORTING REQUIREMENTS

1. Composite reporting (COMPREP)

Composite reporting was an attempt to reduce the

number of reauired operational reports by combining common

reports into one formatted reoort. A formatted report is

one in whicn the sequence and position of the individual

data elements have meaning. The data in the report has usu-

ally been coded to reduce the amount of information

transmission ana to allow automatic processing at report

rece i v i ng sites.

In 1971 a COMPREP system was designed and testeo by

Commander First Fleet. This system appeared to have consid-

erable merit. However^ due to limited resources/ the system

desion had not been sufficiently developed to prove it an

effective management information system. The main defi-

ciency of the system was a coded output format which was

difficult to understand. Also/ there was no automated

11

i nherent -error checking or correcting caoability.

2. X/C 13 Increment I (COMPREP)

In 1975 an improved COMPREP system 12] was tested

and evaluated. The improvements were:

a. to provide operator intervention in order to allow

on line error correction capabilities at the report receiv-

ing site.

D. to orovide formal classroom as well as hands on

training to fleet Dersonnel users ana receiving site editing

pe r sonne 1 .

c. to utilize oreprinted forms and a single user's

hanaoooK in order to ease the reoort ©reparation burden.

Testing and evalutation of the proposed system was

conducted by a private contractor using four units- of the

fleet and the necessary shore supporting activities. The

main purpose of t^e test was to show that shipboard data

collection, message formatting* approval, release ana dis-

tribution to ashore receiving facilities could work effec-

tively.

The recommendation which came out of the evaluation

phase was that the developmental COMPREP sytem not be

adopted, even trough it met the major goals. This recommen-

dation was made oecause COMPREP was not an integrated

reporting system which used easily drafted, readable, and

flexibly formatted messages.

12

3. Composite Operations Reporting System (CORS)

Following X/C 13 Increment 1/ the basic goals of

COMFRE.P were re-examined. Based on the results of this re-

examination the CORS effort was initiated in 1976.

The purpose of CORS was to describe alternatives of

implementing a reporting system which would:

a. provide timely and accurate data to all cognizant

levels of command.

0. minimize the reoorting burden on the originator by

integrating the reouirements of four independent reporting

systems (employment schedule/ movement report/ casualty

reoort/ and Navy force status report) into one simple/ non-

redundant reoorting system.

c. provide significant improvements in the correct-

ness/ readability of the information/ and communications

system 1 oadi ng.

The Naval Electronics System Command (N A v E L E X) , with

guidance from the the Office of the Chief of Naval Opera-

tions (u P N A V) CORS Steerinq Committee/ proposed implementa-

tion alternatives to meet the objectives. Of twelve origi-

nal proposals/ four were selected by the CORS committee for

further st udy . (31

The four alternatives as they apply to the reoort

originator were:

13

a. Alternative 1

This alternative would require the originator to

manually draft simple/ readable/ formatted messages using

predefined forms and aecision logic tables.

b. Alternative 2

This alternative was identical to Alternative 1

exceDt that the manually drafted messages would be replaced

by a Report Origination System (ROS) which woula guiae the

message drafter in generating error-free CONS messages via

interactive comDuter prompting techniques.

c

.

Alt ernat i ve 3

This proposal was an implementation of the con-

cepts recommenced from the CO^PREP tests. It would involve

the use of an abbreviated check list to ensure that the

information required by the command chain would be provided.

The reoort wouJd be written in narrative or abbreviated nar-

rative English witn minimal formatting reauired. The edit-

ing and formatting functions would be done by data entry

clerks working interactively with the incoming messages at

the receivinq sites.

d. Alternative 4

This alternative was identical to Alternative 3

exceDt that the editing ana formattinq functions would be

done automatically at the receivina site by using a special

la

purpose front-end text processor.

The CORS steering committee was also asked to make a

final recommendation to the Chief of Naval Operations as to

which alternative would be feasible for implementation. The

committee selected alternative 1 as the method to implement

since it provided earliest capability. The committee did

point out that aternative 2 provided the best benefits, but

aue to the cost of the eauipment in relation to immediate

benefits this cost could not be justified at this time.

It was the puroose of this thesis to demonstrate that

alternative 2 can oe imolemented with a modest and inexpen-

sive (54§lt) m i

c

rocomout e r based system. This system can

grow to a more complex system when its usefulness has been

demonstrated. This system gives immediate feedback to the

reoort originator so that errors can be detected and

corrected before they contaminate the data base. The system

generates the oroper format for the reports ana the

receoients ao not need to spend the effort to edit or format

the i ncom i no data.

15

III. A REPORT ORIGINATION SYSTEM (ROS)

As pointed out in Chaoter II the CORS steering commit-

tee oroDosed an automated reoort origination system to ease

the burden of report generation. The main objection to

immediate implementation was that the cost of the equipment

could not oe economically justified for only report genera-

tion. This chapter outlines the design objectives and an

implementation scheme of a report origination system based

on a microcomputer. The system provides a low cost imple-

mentation of the reporting system and provioes smaller ships

with a general ouroose comouting facility useable for many

Other apD 1 i c at i ons .

A. ROS DESIGN OBJECTIVES

1. Ease .of Use

A shioboard reoort origination system must not

reauire extensive training to operate the system. The sys-

tem should be self-heloing and tolerant of operator errors.

2

.

Aoapt ability

As the user becomes familiar with ROS Drogram execu-

tion, he aoes not reauire as much orompting as an unfamiliar

user. The user is given control of several levels of

promoting. The user should also have the option of

16

displaying the report in the normal codea form, as it would

oe sent in, or in a decoded interpreted form.

3 . App 1 i cab i 1 i t v

To serve as a useful tool, ROS must be applicable to

a wide spectrum of reporting formats, in soite of the diver-

sity and non-standardization of required reports.

4 . Error Detection

The system must conduct error analysis throughout

the execution of the program. If errors are detected, the

user must have the ability to correct the errors without

having previous work aestroyed.

5. Life cycle costs

The system should be tailored to affordable

hardware. Considerations must be given to purchase or ren-

tal costs as well as nardware maintenance costs. The system

should also be expandable when its general usefulness is

Ji scovereo.

B. SrSTEM OVERVIEW

I. Target Report - NAVFORSTAT

Reoorts submitted by fleet units take on varying

Structures, from strictly formatted reoorts with various

coding schemes to reports written in the natural language.

It would De extremely difficult, if not impossible, to

17

aesian and implement an easy to use system which would be

apolicable to all types of reports. Consequent 1

y

t the Navy

Force Status (NAVFORSTAT) report was chosen as a typical

operational report which contains the basic structures which

a reoort origination system must deal with. The data ele-

ment was such a structure and was widely used in the ROS

program .

2 . Data El e^en

t

A data element within the ROS program consists of

four parts:

a

.

Data Label

A data label is an unique recoqni zeable identif-

ier for the data element.

b. Code Area

The code area is the reportable information

which is pertinent to the data label.

c. Error Command Area

The error commands used to check input informa-

tion at execution time are stored in the error command area.

d . Prompt i nq A rea

Tnis area contains the questions which may be

used to solicit trie necessary information to generate the

reoort .

18

3. Program Structure

A brief introduction to the software programs making

up the Report Origination System follows:

a. ROS

This is the main program with which the user

originates desired reports. The ROS program uses as input a

data base (DAT) file and produces as output an updated OAT

file ana a message (MSG) file. Appendix A contains a user's

guide for executing ROS on the Intellec-8 microcomputer sys-

tem.

b. CREATE

The utility program CREATE was used to create a

DAT file. It was assumed that the command requesting a

report will create the pertinent DAT file and send a copy of

this DAI file to all commands required to submit the report.

In this manner - the requesting command would be able to

SDecify the reoort format/ the prompting questions/ and

degree of error analysis. The user interested in creating a

DAT file for a report which may be uniaue to his unit or for

a reoort in which the DAT file doesn't exist/ may do so by

referring to the user's manual contained in Appendix A.

c

.

Line Editor

A line editing orocedure/ LEDIT/ was implemented

in the programs ROS and CREATE. This line editor allows the

19

user the caoability of editing input information,

a. Fi les

a. Data Base (OAT)

A DAT file must exist for each report originated

with the aid of ROS. The DAT file will either be furnished

by the commana requiring the report or can be created using

the CHEATt program.

The first record (128 bytes) of the DAT file has

been reserved for the record map. The recora map serves as

the data element directory and has been used to randomly

access data elements within the DAT file. Subsequent

records of the DAT file contain the components of the data

elements in a rotating pattern of: code and error command

area (one record) followed by the prompting information

(variable number of records). A portion of a DAT file has

been expanded in Figure 1 to show the structure of the file.

b. Message (MSG)

The message file is created during the execution

of the ROS program and contains the reoort which may be sub-

mitted. The code area portion of the data element will make

up the entries of the M SG file. The carriage return and

line feed characters are aopended to the end of each entry

to allow line by line printing of the data contained within

the MSG file.

20

;---- -Record Map- --

5CUMDR0 1PERSN03...COMDR CDR/W.

----------Code Area--------------- {---------------Error

T. HATCH/018689-20 [binary zeroes... A /

Commands ! --

A/N->WHAT IS YOUR COMMANDING

--------------------Prompt i ng Area-------------------

FFICER'S RANK?/HIS NAME?/HIS

; — code

LINEAL NUMBER?/T ...P E R S N ...

A PORTION OF A DAT FILE

FIGURE 1

C. HARDWARE

Tne hardware system whicn was used to implement ROS con-

si s tea of:

1 . Comput er

An Intel lec-8 mainframe/ which was based on Intel's

8080 microcomputer/ with 16K bytes of random access memory.

2 . Disolay Terminal

A Datamedia Elite 2500 cathode ray tube (CRT)

display.

21

3 . Auxiliary Memory

A Shugart dual drive floppy disk system.

The motivation behind the selection of this equip-

ment was availability. This system does/ however, point the

economic benefits of such a system. Currently the cost for

a system like this is approximately $6000. Of course, the

cost of a system may vary deoending upon the capabilities a

user desires. It was not the ourDOse of this thesis to do a

cost analysis of available equipment/ but rather to demon-

strate that a Report Origination System may be implemented

on a relatively inexpensive system.

D. ROS SOFTWARE

The ROS software package consists of the main program

and a utility program CREATE. The ROS program was designed

to make changes to the DAT file and CREATE was designed to

create a DAT file if one did not exist. This section deals

strictly with the software program ROS whereas CREATE will

be discussed in Section E.

The ROS orogram consists of six modules:

1. Operating System Interface

Certain input/ outout and utility functions were

carried out through system calls to the resident Monitor

Control Program (CP/M). The detailed instructions pertain-

ing to operation under CP/M may be found in the CP/M

22

Interface Guide(7J. Only the actual functions which are

usea within the ROS software will be discussed here.

a. Console Output

(1) Printchar - Outputs ASCII characters to the

di so 1 ay terminal .

b. Disk Input/Output

(1) Search - Search the disk directory for a par-

ticular file.

(2

)

Open - Make a file ready for further opera-

t ions.

(3) Close - Upaate the directory entry for the

particular file after processing operations are completed.

(4) Diskread - Pead the next record (128 bytes)

from the referenced file directly to memory area soecified

by airect memory access (D M A) .

(5) Diskwrite - write a record from the accessed

address in memory to the referenced file on the disk.

C . Utility Func t i ons

(1) Set DMA - Set the 128 bytes buffer address at

which suoseauent disk input and output operations will take

pi ace.

(2) Lifthead - Lift the disk read/write head.

2. Initialize Moou 1

e

The main function of the initialize module was to

initialize main memory with the data elements selected by

23

the user to be included in the report. The submodules that

carried out this function were:

a . File Operat i ons

The proper DAT file* if it exists* is opened and

a MSG file is made

.

b. Selecting the Working Set

To set up the working set* the record map is

reaa into memory and the data labels are displayed* one line

at a time* on the CRT display. The user may then select the

data elements which are to be included in the report. If a

data element is selected* the number of records which the

data element occupies on the disk is calculated and stored

in the working map along with the disk location information.

When all desired data labels have been selected* the user

may enter "
S
" to stoo further display of the data labels.

At this ooint* the working map contains the pertinent disk

accessing information reauired to orocess the report.

C. Initialize Memory

The information Dertaining to the selected data

elements is read into available memory until either memory

is filled or all selected data elements have been read. If

memory is filled* a logical variaole will be set to true

indicating that there are more oata elements to be read from

the disk. After the read operation is completed* pointers

will be establised to allow referencing of the various data

2«

element fields (code/error and prompting). These pointers

are aligned such that each area oointer will reference com-

mon subfields. In figure 1/ for example/ the question con-

tained in subfield 1 of the prompt area is the Drompting

information required to solicit the necessary data to be

inserted in subfield 1 of the code area. Likewise/ the sol-

icited information is to be checked for errors according to

the error commands contained in suofield 1 of the error

area. This oointer alignment is maintained throughout the

execution of the ROS program.

3. Editing with Instructions

The main function of the edit module was to solicit

the necessary information from the operator which may be

correctly entered into the report text. This function was

carried out by the following submodules:

a. Solicit Information

The prompting question is displayed on the CRT

screen. Ihe operator enters a response at the keyboard.

b . Ed i t i ng

The response is checked for errors according to

the error commands pointed to by the error pointer. (The

error analysis technicue will be discussed in Section 5 as

it applies to both editing schemes.) If an error occurs/ a

diagnostic warning is given and the user may reenter the

corrected response. When the solicited information is

25

deemed correct/ it is saved in a code buffer for updating

the DAT file and entry into the reoort.

4 . Editing without Instructions

In this environment* the user acts directly upon the

coded information. This allows the experienced user quick

access to subfields reauiring changes without having to go

through a prolonged question and answer period. The user

uses the features of the line editor (Apoendix A] in editing

the coaeo information. Briefly* the line editor uses two

buffers: the old and new buffers. Information may be passed

between the buffers using the special characters defined to

accomplish different functions. These special characters

are defined in Table 1 of Appendix A.

a. Information Entry and Editing

A copy of the coded information is duplicated in

the old buffer of the line editor. The oata label is

immediately moved to the new buffer where it is protected

from editing by the user. The user may now duplicate any or

all information from the old buffer to the new buffer or may

enter new oata from the keyboara. A carriage return signals

the orogram that the editing function is complete and error

analysis may begin. After the error analysis is complete*

the new buffer contents (new information) is used to update

the code area of the data element in the same manner as in

editing without instructions.

26

5. Error Analysis

Although error analysis is closely connected with

the eaiting process, it actually exists as a separate module

in the prooram. The function of the error analysis module

was to prevent contamination of the data Dase by entry of

incorrect data. No attempt has been made to list all possi-

ble sources of errors and generate countermeasures against

the occurrence of these errors but rather, to develop a sys-

tem which may be expanded as experience may reguire. Thus

the error analysis moaule is broken down into submodules of:

command recognition and command execution.

a. Command Recognition

The error command (one alphabetic or numeric

ASCil character) is compared to entries contained in. the Do

command (DOSCMD) procedure. when the proper match occurs,

an aporopriate procedure call will be made. An error com-

mand listed in. the OAT file for which no execution pro-

cedures exist within the ROS program is an error introduced

at the time the DAT file was created. If no match occurs

during execution, a diagnostic will be given and execution

will terminate. In order to maintain the pointer alignment

to each subfielo, a null error command (0) is used. A match

on the null command s i itid 1 y returns program flow to the cal-

ling procedure without doing any error analysis.

27

b. Command Execution

This submodule consists of all error diagnostics

which may De called to carry out the error analysis. It is

broken down into functional units each of which is a pro-

cedure designed to check for certain error conditions. The

error analysis caoability may be extened by inserting new

commands in the DOSCMD procedure and entering the

cor resoond i ng procedures to check the data for the

occurrence of the error. A difference between the error

analysis techniaues apolied to the input and editing modes

should be pointed out. In the instructional mode, error

analysis is applied to one subfield for each call to the

error* module/ whereas in the non-instructional mode all sub-

fields of the code area are analyzed with one call to the

error analysis module.

to . Output

After all the data elements within memory have been

processed/ an uodateo version of the coded information will

exist in memory. This coded information serves as the basis

for updating the DAT file and actual creation of the report.

Since the coded portion is the only data to have changed

during execution of the ROS Drogram, it is the only informa-

tion reouired to be written to the OAT file. Utilizing the

working map/ which gives the record number within the OAT

file where the code record must oe written/ the proper

access may be maoe and the uodated record written to the

28

proper DAT file. A copv of the coded information with

appended carriage return and line feed characters is saved

in a temporary buffer until a full record has been accumu-

lated. This record is then written to the MSG file.

After completion of the output phasef if more data

elements exist to be processed* the elements will be read

into memory and the pointers will be reset. The editing

orocess will continue until all data elements have been pro-

cessed. After all data elements have been processed/ the

DAT file and the MSG file will be closed.

E. CREATE

The utility orogram CREATE allows the user the ability

to create a data base file with which a particular report

may be generated. The program was designed with the thought

that persons familiar with computers at the command request-

ing the reoort/ would create the appropriate DAT file and

forward a copy to all reporting commands. Thus the program

execution is somewhat more cryptic and "maaical". However/

tnis is not meant to discourage the shipboard manager from

using the system. A user's guide is provided [Appendix A]

and the system execution may be mastered in a short time.

The DAT file consists of a directory element/ the record

map/ and repetitive entries of code/ error commands and

oromoting information. The entries are organized into

recoras/ each record being 128 bytes. The record map occu-

29

pies the first record of the file. The code area and the

error comrranos for each data element share one record. The

code area is locatea at the first of the record whereas the

error commands are located at the end of the record. Any

unused space between the code and error areas contains

binary zeroes. The prompting area may occupy more than one

record. Since the coce area begins on a record boundary and

together with the error commands will take uo no more than

one records the prompt area will always begin on a record

boundary. This structure allows random access to the record

where each data element begins within the file. To effect

this ranoom access, the data element identifier, the data

label, is stored within the record map, along with the

necessary disk locating information. It then becomes a

matter of reading the record map, selecting the particular

data label and setting up to read the information of the

desired data element.

The CREATE program consists of the following modules:

1 . Initialize

The function of the initialize module was to make a

OAT file, if one aid not already exist. If a DAT file

already exists, a diagonst ic warning will be given and pro-

gram execution will cease. The user may then remove the OAT

file, if no longer desired, or may use it as input for the

RQS program to generate the desired report.

30

Assuming a previous OAT file does not exist? a DAT

file will be made. Specific pointers to available memory

(memory between the CREATE program and the resident ooerat-

ing system) will be established with the first 128 bytes of

available memory being reserved for the record map. All

data to be entered in the DAT file will be entered in a

sequential manner between the record map and the operating

system.

2 . InDut

After the DAT file has been ooened and the pointers

set* the user is free to enter oata into the DAT file.

Since the DAT file is constructed in memory in a sequential

manner? the entries must be in the order of code? error com-

manos? and prompting information. The features of the Line

Editor [Apoendix A] are used to eait the entered text. When

the user is satisfied with the particualar entry? a special

character defined in Table of ADpendix A is entered and the

entered data is storeo in the DAT file memory area.

Editing and error analysis is left up to the user.

The features of the Line Editor allow ample capabilities to

make corrections to entered data. Once the special charac-

ter, denoting the type of entry? is given? the input data is

stored and the user no longer has access to it.

31

3 . Finish

If available memory is filled before all data ele-

ments have been entered* the existing memory image of the

DAT file will be written to the disk and the pointers reset.

After all data elements have been entered* a back slant may

be entered to indicate end of file. At this, time the memory

image of the OAT file is written to the disk file and the

DAT file is c 1 osed.

32

IV. RECOMMENDATIONS

The implementation of a Report Origination System (ROS)

aesignea to help ease the administrative burden facing the

shipboard manager has been discussed. This has been the

first known attempt of implementing such a system and subse-

quently some arbitary design decisions were made that have

become apparent weak points. In addition, complete develop-

ment of the system has been curtailed due to time con-

straints. A follow-on thesis aimed at further development

is planned and therefore this chapter summarizes some of the

areas that could be further developed.

A. DISK DIRECTORY (RECORDMAP)

Currently the record map is limited to 128 pytes which

is insufficient space for storage of long or a large number

of data label's* Admittedly, this method was an ad hoc pro-

cedure and a more efficient method is required. One possi-

ble method may be to use a hash coding scheme to reduce the

size of the entries.

B. FIXED DATA LABEL LENGTH

Presently all data labels must be of eaual length

throughout the DAT file. The CREATE user has the responsi-

bility for ensuring that the length of all data labels will

be the same. Although this restriction simplifies program

33

coding and decreases memory usage (important considerations

in m i

c

POComDut e r usage) it was considered much too restric-

tive for general acceptance. A prime consideration for

fixed data lengths was for ease of insertion in the record

mao. If the method of maintaining the disk directory were

changed/ the emphasis on using a fixed data label length

would lessen. Another use of the data laoel must be con-

sidered before removing the restriction. In setting up the

editing buffers for subsequent edit operations/ the data

labels are movea to the apDropriate buffers dependent upon

the fixed data label size. T h u s / to continue to use this

methoa of editing/ an alternative approach to moving vari-

able length data labels must be sought. One method to han-

dle the variable length problem might be to mark the end of

the data label with a special character. Characters could

then be transferred between buffers until this special char-

acter is encountered.

C. LACK OF MNEMONICS USE IN THE LINE EDITOR

The line editor commands have no mnemonic value. This

resulted as a trade-off for programming efficiency. Rather

than use a series of comparing statements to identify the

input character/ it was decided to use a sequential group of

characters and index to the correct procedure call by a case

statement. A table which translates mnemonic code to the

code used in this program could be added to make the line

editor similiar to other editing systems.

3a

D. BACK UP FILES

No provisions have been provided to set uo a back up

file. This could be accomplished by copying the DAT file to

another file (BAK) before the editing of the DAT file

begi ns .

E. OTHER SUPPORTIVE SOFTWARE

1 . Headings

Software should be developed to assign heading

information (date time arouo* addressees, c 1 ass i f i cat i on

»

etc.). This could be patterned after current techniques

(Aaaressal Indicator Group) in use in the Navy.

d . Optional Display List

As noted in the objectives of ROS, a user should

have the option of displaying reported information in coded

or interpreted form. This option has not been i ncorDorat ed ,

but should oe relatively easv to do. By utilizing a pointer

alignment scheme* Such as previously discussed* the prompt-

ing question together with the subseouent response could be

displayed for each data element edited during the session.

35

V. CONCLUSIONS

ROS provided an interactive feed back loop of computer

generatea promoting instructions* user responses and error

analysis. This system permits error detection and correc-

tion to be carried out by indiviauals who generate the

report ana were therefore most likely to recognize serious

errors in reoort content. Errors in format were unlikely

because format design would be generated in the computer.

In the present method* the recioient of the report was asked

to perform error detection. The recioient was generally

aole to detect errors in format only and was unable to

correct the errors in content without additional information

from the reoort originator.

ROS was an easy to use system with ouilt-in flexibil-

ity. As th'e' user becomes familiar with the report struc-

ture* he mav choose to limit the amount of prompting

instructions he will receive.

Although ROS was designed using the NAVFORSTAT report

as a pattern* it will be aoolicable to any reoort which uses

line by line formatting. Since most Navy reports fit into

this category* ROS should be aoolicable to a wide spectrum

of report s

.

36

The secondary benefits of having an expandable, mul-

tipurpose computing facility aboard naval vessels can not be

ignored. As shiDboara users become familiar with the com-

puting potential available* the base of application develop-

ment will be increasea by orders of magnitude. Many appli-

cation programs have already been developed at the Naval

Postgraduate School and are ready for further testing.

The Reoort Origination System (ROS) has been imple-

mented on an inexpensive microcomputer system and shown to

be an effective tool in helping the shipboard manager meet

the challenge of reouired recurring reports.

37

APPENDIX A: User's Guide

38

ROS Program

1

.

Int roduc t i on

The purpose of this User's Guide is to assist the user

in generating reguired recurring reoorts through the use of

the ReDort Origination System (ROS). The details of the

program logic may be found in the body of the thesis

(Chapter illl. This guide is a step by step overview of

what the user should expect while executing ROS. This guide

describes i mo 1 ement at i on on an Intellec-8 microcomputer sys-

tem which uses the resident operating system.

2 . Initialization

The program ROS is initiated by typing

ROS <f i 1 ename> <c r>

<cr> stanas for carriage return. Tne <filename> must be the

name of a data base (DAT) file which exists on the diskette.

It is assumed that the command reauesting a Darticular

reoort will supoly the user with a diskette containing the

pertinent DAT file. However* if the user is setting up a

file to hanale a recurring report unigue to his command or

if he has not been furnished a DAT file* he may create the

DAT file by referencing Section(7] of this guide.

3

.

Execution

39

If the Droper DAT file exists* it will be opened and

the data labels contained within the file will be displayed

on the CRT screen. The user may now select (by entering a

H Y" or "N" under the data label) the data elements which are

to be included in the report. At this point the user will

be queried whether or not he wishes to be prompted. A user

who is unfamiliar with computer line editing procedures

should select to be prompted. After the user becomes fami-

liar with the line eaitor (Sec t i on (83 J * he may find it

easier to generate a report by using the limited prompting

•noae. A positive response ("Y") to this auery will allow

the user to edit the coded area of the reoort directly using

the features of the line editor (Sec t i on (83] . If a negative

resoonse ("N H
) is given* the user will be prompted by

appropriate questions to solicit the necessary information

for coding into the report.

4 . Limited Instruction **ode

If the user selects to edit the coded information

directly* the coded information last submitted will be

entered into the old buffer and the data label will be

entered into the new buffer (Sec t i on [8]] . Now* using the

features of the line editor* the user may duplicate

unchanaed information to the new buffer or enter new infor-

mation from the keyboara. when the editing process for each

data element is completed* a carriage return may be entered

to signal the ROS orogram to check for errors. If an error

UO

has occurred/ a diagnostic will be given and the old buffer

contents (ola information) as well as the new buffer con-

tents (new information) uo to the Doint of the error will be

displayed. The user may now make the appropriate correc-

tionsr duplicate the remaining information and enter a <cr>.

when the coded information is correct it will be saved in

the coded area for upoating the DAT file. Execution in this

manner continues for each of the data elements selected at

the beginning of the session.

5. Instructional Mode

During the instructional mode of operation* questions

will be written on the CRT screen. The user will key

responses to these question from the keyooard. As inputs

are received by the RCS program, error analysis will be con-

ducted. If an error occurs, a diagnostic will be given and

the user will have an ooportunity to give another response.

Correct responses are retained in the new buffer [Sec-

tioned]] until all inouts for the working data element have

been gathered. After a data element update is complete the

information will be stored in the code area for updating the

DAT file. Execution continues in this manner until all pre-

viously selected aata elements have been processed.

6

.

End Execution

Ahen all data elements have been processed the ROS pro-

gram will write the compiled report to the diskette. The

41

report may be referenced under the file <filename>.MSG

a2

CREATE

1 • Int roduc t i on

The utility Droqram CREATE was designed and written to

allow the user the ability of building a data base (DAT

file). The OAT file contains information specified by the

most recent reoort as well as the prompting questions the

operator is asked to respond to in order to collect the

necessary information.

A portion of a DAT file has been expanded in Figure 2

to show the structure of this file. The first 128 bytes of

the OAT file are reserved for the record map. The recora

mao is a summary of the data labels contained within the OAT

file as well as the aisk storage location of the first

recora of each cart icular data element. Disk locations are

maintained by record extent and record number within the

file.

a3

i- Recora Map---- ----;---------- ----

5COMDR01PERSN03 ...C M D R CDR/rt.

Coae Area---------------!--- Error

T . HATCH/018689-20 [binary zeroes... A /

Commands ! --

A/N-iftHAT IS YOUR COMMANDING

--------------------Prompt i ng Area-------------------

F F I C E J* * S RANK?/HIS NAME?/HIS

!--Code

LINEAL NUMBER?/t...PERSN...

A PORTION OF A DAT FILE

FIGURE 2

Information pertinent to the report is contained within

the aata element. A data element consists of a data label/

a code area f error check commanas and a prompting area. The

aata laoel is a unique recognizable identifier for each line

of the prooosed reoort. For example in the Navy Force

Status (NAVFORSTAT) reoort the data label; COMDR, is used to

reference information pertaining to the Commanding Officer

of the particular reporting activity. The cede area con-

tains the reportable information pertaining to the data

label. Error chec* commands are used to check input infor-

mation at execution time. The questions to be asked to sol-

icit the information needed to generate the reoort are

aa

contained in the prompting area. With the exception of the

record map and the data label PERSN, the example given in

Figure £ represents one data element. Notice that data ele-

ments having more than one subfield description are

separated by a sub-field delimiter " /
" . This delimiter is

used in the error analysis routines to set uo fixed or vari-

able length subfields.

Each subfield of the error analysis command corresponds

to the same subfield of the coded portion. For example com-

mands listed in Figure 2 would indicate a check of subfields

1 ana 2. of the referenced data label for alphabetic charac-

ters only and to check subfield 3 for numerics only.

2. Initiation

The CREATE program is invoked by typing

CREATE <filename> <cr>

The <filename> must be a unique mnemonic (8 or less charac-

ters) for the particular report to be generatea. For exam-

ple/

CREATE NFS <cr>

may be used to create a data base for a NAvFORSTAT report.

At this point execution begins and the user is asked to

specify the length of the data labels to be used within this

particular report. The user should note that since the data

labels are duplicated in the record map/ the lengths should

be minimal ana in no case should they exceed a length of 9.

3

.

Execution

45

The operator is now free to enter text from the console

using the features of the line editor [Section [9]] and spe-

cial characters required to specify the type of input.

These special characters are summarized in Table 1. Keep in

mind CREATE expects text input in the order of code/ error

check commands, and ouestions.

Text is stored in memory until an end of file is

encountered or the memory region is filled. At this time

the memory image of the DAT file is written to the disk and

memory pointers reset or the system reboots in the case of

eno of file. The end of file is signalled by entering a

bac k s 1 ash .

CHARACTER DESCRIPTION ASCII

J Bar 7CH

Tilae 7EH

t Up-arrow 5EH

\ Back slant 5CH

FUNCTION

end of code area

end of error commands

end of prompt area

end of file

TABLE 1

SPECIAL CHARACTER MEANINGS IN PROGRAM CREATE

46

Li ne Editor

1 . Int roauc t i on

ROS ana CREATE use the features of a line editor which

is incorporated in the programs as the procedure LEDIT and

is called when the console is to be read for input.

The procedure LECIT uses two 90 bytes buffers* the old

buffer and the new buffer. As the names imoly, the old

buffer contains information entered at the last console read

ooerat ion. The new buffer contains information which is

currently being read. The information in the buffers may be

transferred between the buffers by entering control charac-

ters which are summarized in Table 2.

CONTROL
CHARACTER DEFINITION

Acts as a backspace and rub-out commana on the new
line only. (same as rub-out on many terminals).

Replace the old line with the contents of the new
line* empties the new line.

Copy one character from the old buffer to the new
ou f f er

.

Copy the remaining characters from the old line to

the new line echoing each character. Then ter-
minate the ecit.

Toggle the insert mode. Begin insert prints "<",

end inserts prints ">". Position of the old

47

pointer does not change during insert.

Delete the new line without updating the old line
Terminate the edit.

Display contents of the old and new buffers with
control characters interDreted (e.g. " T I" for TAB,
H TG" for BELL, etc.).

Copy remaining characters from the old line to the
new line, echoing each. Do not terminate the edit.

Tab. A tab stop is defined every four characters
Same as TAB on many terminals.

J Line feed. Terminate the edit.

(not used)

Copy remaining characters of ola line to new
without echoing. Do not terminate the edit.

1 i ne

w Carriage return Terminate the edit.

N Backspace ola buffer and new buffer one space.

Copy Characters fom the current position of the old
pointer to the next character typed.

Delete characters from the current position of the
old oointer to the next occurence of the next char-
acter typed. Echoes a " % " for each character
ae 1 et ed

.

Q Delete the new line and reset the old pointer to
the start of the old buffer.

uisDlay the remaining contents of the old buffer
and all of the new buffer.

S Delete one character from the old buffer. Echo a

ua

for the deleted character.

Only used in CREATE to transmit information in the
new buffer to storaqe in memory. Used when input
from the console exceeds one crt line.

U Copy characters from the old buffer
buffer ud to the next TAB character.

to the new

Escape character. Turns off any special meaning of
character which follows. Enters the character
into the new buffer and echoes the characters (e.g.
"CTLvCTLm" wi 1 1 echo tm) .

(not usea)

Deletes characters from current position
buffer through next character typed.

of old

Cooy the remaining characters from the old buffer
to the new buffer echoing each; replace the old
buffer with the new buffer. Do not terminate the
edi t .

Copy characters from the old buffer to the new
buffers through the next occurence of the next
ch a rac t er t voed

.

NOTE:' The control character is entered by depress-
ing the CTRL key ana then simultaneously depressing
the the desirea function key.

TABLE d

LINE EDITOR FEATURES

49

A Samp 1 e Sessi on

This is an example of how a portion of a Naval Force

Status (NAVFORSTAT) data base file may be created ana then

subsequently updated to generate a report. The brackets < >

are used to indicate keyboard entries. Comments; as they

apply* are enclosed within /* comment */. Text produced

during program execution will be as it would appear on the

sc reen .

A. CREATE Execution

A> /* system is ready to start */

<CRtATE NFS> <cr>

LENGTH OF DATA LABELS TO BE USED?

<5> <cr>

EXPECTING CODE INFO /* prompt message */

<C0MDH CDH/J." P. JONES/0001 1 1-10 !> <cr> /* the bar (!) will

not oe echoeo */

EXPECTING ERROR COMMANDS

<A/A/N-«> <cr> /* "• will not be echoed */

EXPECTING PROMPT INFO

<wHAT RANK IS YOUR COMMANDING OFFICER?/HIS NAME?/HIS LINEAL

MUMbER?t> <cr> /* t will not be echoed */

EXPECTING CODE INFO

<PERSN NE/0236/0230/0210!> <cr>

EXPECTING ERROR COMMANDS

50

<A/N/N/N-o <cr>

EXPECTING PROMPT INFO

<TYPE OF PERS0NNEL7/STRUCTURED STRENGTH?/ AUTHOR IZED

STRENGTH7/ASSIGNED STRENGTH?T> <cr> /* t will not be echoed

*/

EXPECTING CODE INFO

< > /* that is enough for now */

A>

/* A file (NFS. DAT) now exists */

B . RQS Execution

To send out personnel information, a user simply uses

ROS.

A> /* system is reaav */

<RCS NFS> <cr>

SELECT DATA ELEMENTS YOU DESIRE TO WORK WITH

COMDR PERSN

<N> < Y> <cr>

ARE DATA LABELS TO BE INCLUDED IN THE REPORT

<Y> <cr>

DO YOU WISH TO BE PROMPTED

<Y> <c r>

TYPE OF PERSONNEL?

<NE> <cr>

STRUCTURED STRENGTH?

<0256> <cr>

AUTHORIZED STRENGTH?

51

<0230> <cp>

ASSIGNED STRENGTH?

<0218> <cr> /* gained 8 people */

A> /* only one oata element was selected */

/* without promoting */

/* execution is the same to question: */

DO YOU rtlSM TO BE PROMPTED

<N> <cr>

PERSN NE/0236/0230/0210

PERSN <ctlZ> <1> <cr> by a 1 (not echoea) */

PERSN NE/0236/0230/021<8> <cr> /* no new line created* just

filled in current line */

PERSN NE/0236/0230/0218

A>

/* in either case* message looks like: */

PERSN NE/0236/0230/0218

52

/* ************************ ******************************

A REPORT ORIGINATION SYSTEM DESIGNED FOR SHIPBOARD
USE IN THE GENERATION OF REQUIRED RECURRING REPORTS.
THE SYSTEM USES AS INPUT A DATA BASE (DAT) FILE AND
PRODUCES AS OUTPUT A MESSAGE (MSG) FILE. THE
SOFTWARE SYSTEM CONSISTS OF TWO PROGRAMS: ROS AND
CREATE. CREATE IS USED TO CREATE A DAT FILE AND ROS
IS USED TO UPDAIE THE DAT FILE AND CREATE A MESSAGE.

THE ROS PROGRAM IS MADE UP ON THE FOLLOWING MODULES:

1. OPERATING SYSTEM INTERFACE
2. INITIALIZE
3. EDITING
4. ERROR
5. OUTPUT

THE CREATE PROGRAM IS MADE UP OF THE FOLLOWING
MODULES:

1. INITIALIZE
2. INPUT-EDITING
3. FINISH

BOTH PROGRAMS WERE DESIGNED FOR EXECUTION ON THE
INTELLEC-8 MICROCOMPUTER SYSTEM, WITH CROSS COMPILATION
BEING DONE ON AN IBM 360/65.

** */

100H: /* PROGRAM TO BE LOADED INTO MEMORY STARTING HERE */

/* **

OPERATING SYSTEM INTERFACE DECLARATIONS.

** */

DECLARE
LIT
BOOT
ENTRY
TRUE
FALSE
FOREVER
CR
LF
CTI
CTS
DCNT
3DOSA
SBDOS

LITERALLY
- LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT

0005H

WHILE TRUE'

,

0DH' ,

0AH«,

'LITERALLY'

,

/* ENTRY POINT TO OS */

BYTE,
ADDRESS INITIAL (0006H)

,

3ASED BDOSA ADDRESS;

• * **

INITIALIZE DECLARATIONS

** */

DECLARE
PROMPT BYTE INITIAL (FALSETE INITIAL(FALSE),

ADDRESS INITIAL (BOH) ,

BASED RM BYTE,
BYTE,
BYTE,

ADDRESS,
BASED WORKSMAP BYTE,
BASED WORKSMAP ADDRESS,

RM
RMPTR
DLSLEN
NUM3REC
WORKSMAP
WMPTR
EXTJBN
NUMSELEMENTS BYTE,
ESRSA ADDRESS,
ER BASED ERA BYTE,

53

NRSREAD BYTE.
NR BITE,
SAVESEXT BYTE,
SAVESRN BYTE,
DATSAREA ADDRESS,
DAT BASED DATSAREA BYTE,
BASEDATAREA ADDRESS,
TSDATSAREA ADDRESS,
CODESA ADDRESS,
CODE BASED CODESA BYTE,
BSCODESA ADDRESS,
TOPIMEM ADDRESS,
MSGSAREA ADDRESS INITIAL (80H)

,

HSG BASED MSGSAREA BYTE,
MORE BYTE INITIAL (FALSE)

,

HOLDSWM ADDRESS;

/* **

EDITING DECLARATIONS
** *^

DECLARE
EUFFER (180) BYTE,
SIZESNBUF LIT '90'

,

NEWJBUF ADDRESS,
NBOF BASED NEWSBUF BYTE,
NPTR BYTE,
OLDSBUF ADDRESS,
OBUF BASED OLDSBUF BYTE,
OPTR BYTE,
NB ADDRESS,
TN BASED NB BYTE,
OB ADDR
INSERT BYTE
PERCENT LIT
BS LIT
BELL LIT
TAB LIT
EOP LIT
EOC " LIT
ZfiR LIT
CTLZ LIT
RUEOUT LIT
ENDSFILE LIT
CHAR BYTE,

BYTE INITIAL (FALSE)

,

25H
08 H
07H
09H
5EH
7CH
7EH
1 AH
7FH
5CH

/* BACKSPACE */

/* UP-ARROW; END OF PROMPT */
/*BAR; END OF CODE */
/* TILDE; END OF ERROR */

/*BACK SLANT */

EECMPTSAREA ADDRESS;

/* **

ERROR DECLARATIONS

** */

DECLARE
ERRA
EC23E
BERRA
WARN

ADDRESS,
BASED ERRA BYTE,
ADDRESS,
BYTE INITIAL (FALSE) ;

/* **

OUTPUT DECLARATIONS

** */

DECLARE
DATSFCB ADDRESS INITIAL (5CH) ,

DFCE BASED DAI$FCB BYTE,
MSG3FCB(33) BYTE,
PRINTSLABEL BYTE INITIAL (FALSE)

;

54

/* **

OPERATING SYSTEM INTERFACE MODULE

FUNCTION: SERVES AS AN INTERFACE TO THE RESIDENT
OPERATING SYSTEM. IT ALLOWS INPUT/OUTPUT OPERATIONS
TO EE HANDLED BY SYSTEM CALLS.

** */

CRTIN: PROCEDURE BYTE;
DO WHILE INPUT (CTS) ;

END:
RETURN NOT INPUT (CTI) AND 07FH;
END CRTIN;

READC: PROCEDURE BYTE;
DECLARE C BYTE;
IF (C:=CRTIN) >= 110$0001B /* LOWER CASE A /

AND C <= 11 IS 10 1 0B /* LOWERCASE Z */ THEN
C = C AND 10 1S1111B; /* BECOMES UPPER CASE */

RETURN C;
END READC;

MON1: PEOCEDURE (FUNC, INFO);
DECLkRZ FUNC BYTE, INFO ADDRESS;
GO TO ENTRY;
END MON1;

MON2; PROCEDURE (FUNC, INFO) BYTE;
DECLARE FUNC BYTE, INFO ADDRESS;
GC TO ENTRY;
END MON2;

PRINTCHAfi: PROCEDURE (3) ;

DECLARE B BYTE;
CALL MON1 (2,B) ;

END PRINTCHAR;

PRINTCHARI: P-ROCEDURE (C) ;

DPCTARF C 3 Y T^*
1

•

IF (C AND 0110S0000B) = /* CONTROL CHAR */ THEN
DO;

CALL PRINTCHAR (EOP);
CALL PRINTCHAR (C OR 40H) ;

END;
ELSE
CALL PRINTCHAR (C) ;

END PRINTCHARI;

CRLF: PROCEDURE;
CALL PRINTCHAR (CH) ;

CALL PRINTCHAR(LF) ;

END CRLF;

PRINT: PROCEDURE (A) ;

DECLARE A ADDRESS;
CALL MON1 (9, A) ;

CALL CRLF;
END PRINT;

SETSDMA: PROCEDURE(A) ;

DECLARE A ADDRESS;
CALL MON1 (26, A) ;

END SETSDMA;

DISKREAE: PROCEDURE(A) BYTE;
DECLARE A ADDRESS;
RETURN MON2 (20, A) ;

END DISKREAD;

55

DISKWRITE: PROCEDURE(A) BYTE:
DECLARE A ADDRESS;
RETURN MON2 (21 .A) ;

END DISKWRITE;

OPEN: PROCEDURE(A)
DECLARE A ADDRE

BYTE;
SS •

RETURN MON2 (15, A) ;

END OPEN;

CLOSE: PROCEDURE (A) BYTE;
DECLARE A ADDRESS;
RETURN MON2 (1 6 , A) ;

END CLOSE;

SEARCH: PROCEDURE (FCB) BYTE;
DECLARE FC3 ADDRESS;
RETURN MON2 (17, FCB) ;

END SEARCH;

MAKE: PROCEDURE (FCB) BYTE;
DECLARE FCB ADDRESS;
RETURN M0N2 (22, FCB)

;

END MAKE;

LIFTHEAE: PROCEDURE;
CALL M0N1 (12,0) ;

END LIFTHEAD;

MOVE: PROCEDURE (SOURCE, DEST
DECLARE (SOURCE, DEST) ADU

(S BASED SOURCE, D BASED DEST, N) BYTE
DO WHILE (N:=N-1) <> 255

D=S; SOU"'
END;
END MOVE;

ad5ress

RCE=SOURCE+1 ; DEST=DEST+1

ERROR: EROCEDURE(I) ;

DECLARE I BYTE;
DO CASE I;
/* CASE OVERWRITING ERROR CODES */
CALL PRINT
CALL PRINT
CALL PRINT
CALL PRINT
CALL PRINT
CALL PRINT
CALL PRINT
CALL PRINT

END;
GO 10 BOOT;
END ERROR;

l:

OVERWRITING ERROR CODES
DISK READ ERROR $')

;

$

ERROR COMMAND NOT FINED
A MESSAGE FILE EXISTS
DISK WRITE ERROR $'
OUT OF DIRECTORY SPACE
DAT FILE NOT PRESENTS') ;

MSG FILE NOT PRESENTS' ;

$•)

);

$•

)

!•

)

INITIALIZE MODULE

FUNCTIONS: TO OPEN THE APPROPRIATE DAT FILE, MAKE
A MESSAGE FILE AND ALLOW THE USER TO SELECT A SET OF
DATA ELEMENTS TO WORK WITH. IT THEN INITIALIZES
MEMORY WITH THE SELECTED DATA ELEMENTS.

** V

MAKEMSGFILE: PROCEDURE;
CALL MOVE (. 'MSG' ,. MSG$FCB + 9,3);
MSGJFCB,MSG$FC3 (12) ,MSGSFCB(32) =
IF SEARCH (. MSGSFC3) <> 255 THEN

CALL ERROR (3) ;

IF MAKE(.MSGSFCB) = 255 THEN

56

CALL ERROR (5) ;

IF OPEN (. MSG$FCB) = 255 THEN
CALL ERROR (7)

;

END MAKEiMSG$FILE;

INIT: PBOCEDURE;
CALL MOVE(5DH, .MSG$FCB+1 r 8) ;

CALL MAKEiMSGSFILE;
CALL MOVE (. 'DAT' , DAT$FCB+9, 3) ;

DECEM2) ,DFCB[32) =0:
IF CPEN (f>AT$FCB) =255 THEN

CALL ERROR (6) ;

IF (DCNT:=DISKREAD(DAT$FCB)) <> THEN
CALL ERROR(1) ;

CALL LIFT HEAD;
END INIT;

INC$RM: PROCEDURE;
RM = RM + 1 ;

END INC$RM;

INCS^M: PROCEDURE:
WORKSMAP = WORK$MAP + 1;
END INC$WM;

PRINISDATAiE: PROCEDURE;
DECLARE (I, J) BYTE;
DO I = 1 TO NUM$ELEMENTS:

IF RMPTR = EOC THEN /* END OF RECORD MAP */
DO; RM=101H; NUMELEMENT5=I-1; RETURN; END;

DO J = 1 TO DL$LEN;
CALL PRINTCHAR (RMPTR)

;

CALL INC$RM;
END;
CALL PRINTCHAR (' •)

;

RM = RM 2;
END;
END PRINT$DATA$E;

SAV2EXRN$NR: PROCEDURE;
WMPTR = E-R; /* EXTENT */
CALI INCSWM;
WMPIR = ER (1) ; /* RN */
CALL INCSWM;
MPTR = ER(DL$LEN + 3) - ER(1); / NUMBER OF RECORDS */
CALL INC3WM;
END SAVE$ZX*RN$NR;

PRINTSPACE: PROCEDURE;
DECLARE I BYTE;
DO I = 1 TO DLSLEN;

CALL PRINTCHAR (' *) ;

END;
END PRINTSPACE;

CHKSRESPONSE: PROCEDURE;
DECLARE (I,C) BYTE;
DO I = 1 TO NUMSELEMENTS;

CALL PRINTCHAR (C:=READC) ;

IF C = »Y» THEN
CALL SAVE$EX3RN$NR;

ELSE
IF C = 'S' THEN

DO; RM=101H; RETURN; END;
ERA = SRA + DL$LEN + 2;

CALL PRINTSPACE;
END;
END CHK$RESPONSE;

SEL$HE: PROCEDURE;
DL$LEN = RMPTR;

57

CALL INCSRM;
WORKSMAP = .MEMORY;
NUMSELEMENTS=11

:

CALL PRINT (. 'SELECT DATA ELEMENTS TO WORK WITHS')
ESR$A = RM DL$LEN;
DO WHILE RM < 100H;

CALL PRINTDAIASE;
CALL CRLF;
CALL CHKSRESPONSE;

END
END SEL$WE;

S2TSMEM: PROCEDURE:
DATSAREA, BASESDATSAREA = WORKSMAP;
TOPSMEM = SBDOS - 1

;

WORKSMAP = .MEMORY;
DFCB(32[= WMPTR(1); /* RN TO START READ */
NR = WMPTRJ2) ;

NRSREAD = 0;
END SETSMEM;

OPENSEXT: PROCEDURE:
BFCBJ12) = WMPTR;
IF CPEN (DATSFCB) =

CALL ERROR (1)
END OPENSEXT;

255 THEN

READDREC
IF EFCBM2)
CALL OPENSE

PROCEDURE:
<> WMPTR THEN

XT;

<> THEN
CALL SETSDMA(DATSAREA) ;

IF (DCNT: =DISKREAD (DATSFCB)

)

CALL ERROR(1) ;

NRSREAD = NRSREAD + 1;
DATSAREA = DATSAREA + 128;
CALL SETSDMA (80H) ;

END READSDSREC;

READSDAT: PROCEDURE;
DO wHILE DATSAREA+128 < TOPSMEM;

IF NRSREAD = NR THEN
IF (WORKSMAP: =WORKSMAP+3) >= BASESDATSAREA-1 THEN

DO; /* FINISHED */ MORE = FALSE; RETURN; END;
ELSE

DO; DFCB(32) = WMPTR(1): NRSREAD = 0;
NR = WMPTR (2) ; END;

CALL READSDSREC;
END;
MORE = TRUE;
SAVESEXT = DFCBM2) ;

SAVESRN = DFCB(32);
HOLDSWM = WORKSMAP;
2ND READSDAT;

READSMORE: PROCEDURE;
DECLARE HOLD ADDRESS;
HOLD,WORKSMAP = HOLDSWM;
DFCE (12) = SAVESEXT;
DECE(32) = SAVESRN;
DATSAREA = 3ASESDATS AREA

;

CALL READSDAT:
WORKSMAP = HOLD;
TSCATSAREA = DATSAREA;
DATSAREA = BASESDATSAREA;
END READSMORE;

/* ********************** ********************************

EDITING MODULE

FUNCTION: TO ALLOW ENTRY OF DATA AND EDITING OF

58

ENTERED DATA BY USE OF LINE EDITING FUNCTIONS. THE
USEE MAY SELECT TO ENTER DATA DIRECTLY INTO THE
CODED AREA OR BE PROMPTED AS TO WHAT INFORMATION IS
REQUIRED.

/* PROCEDURES OF THE LINE EDITOR */

BACKSUP: PROCEDURE;
IF NPTR > THEN

DO;
NPTR = NPTR - 1:
CALL PRINTCHAR (3S) ;

CALL PRINTCHAR (« ') ;

CALL PRINTCHAR (BS) ;

END;
ELSE

CALL PRINTCHAR (BELL)

;

END BACK3UP;

MOVEiTOSOLD: PROCEDURE:
CALL MOVE (NEWSBUF+1 ,OLD$BUF+1 , (OBUF: = NPTR)) ; .

OPTR = 0; NPTR = 0;
END MOVESTOJOLD;

OLDITCSNEW: PROCEDURE;
NBUF (NPTR:=NPTR+1) = OB UF (OPTR:=OPTR+ 1) ;

END OLDiTOSNEW;

ECHOiON: PROCEDURE;
CALL PRINTCHAR (NBUF (NPTR : =NPTR+ 1) : = (OBUF (OPTR : =OPTR+ 1))) ;

END ECHOiON;

COPYSONE: PROCEDURE;
IF OPTR <= OBUF THEN

CALL ECHOiON;
ELSE CALL PRINTCHAR (BELL) ;

END COPYSONE;

PSMQVEiCN: PROCEDURE; /* PARTIAL MOVE OLD TO NEW */
DC WHILE OPTR < OBUF;
CALL ECHOiON;
END;
END PiMOVESON;

ENTER: EROCEDURE;
IF INSERT THEN

CALL PRINTCHAR ('>')

;

ELSE
CALL PRINTCHAR ('<') ;

INSERT = NOT (INSERT) ;

END ENTER;

PRINTSCLD: PROCEDURE;
DECLARE I BYTE;
DO 1= 1 TO OBUF;
CALL PRINTCHARI (03UF (I)) ;

END;
CALL CRLF:
END PRINTiOLD;

PRINTiNEW: PROCEDURE;
DECLARE I BYTE;
DO I = 1 TO NPTR:
CALL PRINTCHARI (NBUF (I)) ;

END *

END'PRINTSNEW;

PRINISBOTH: PROCEDURE;
CALL PRINTiOLD;

59

CALL PRINTSNEW;
END PRINT$BOTH;

COPYRH0$N: PROCEDURE;
/* COPIES REMAINING CHARACTERS FOR OLD TO NEW BUFFERS */

DO WHILE OPTR <= OBUF;
CALL OLDTONEW;

END:
CALL PRINTCHAR M-*-') ; /* INDICATES WHEN DONE */
END COPYRM0$N;

BS0N: PROCEDURE:
/* EACKSPACE OLD PTR AND NEW PTR 1 CHAR */
IF (OPTR > 0) AND (NPTR > 0) THEN

EO *

OPTR = OPTR - 1

;

NPTR = NPTR - 1

:

OBUF = OBUF - 1

;

END;

CALL PRINTCHAR (BELL)

;

END BSSOSN;

COPYSON: PROCEDURE (C) ;

DECLARE (C,I) BYTE;
I=OPTR;
DO WHILE OBUF(I:=I+1) <> C;

IF I > OBUF THEN /* NO MATCH */
DO:

CALL PRINTCHAR (BELL) ;

RETURN;
END;

END; /* DO WHILE */
DO WHILE OPTR < I;

CALL ECHOSON;
END;
END COPYSCN;

DELETE: PROCEDURE (ECHO) ;

DECLARE (I,J,P1,CHAR1,ECHO) BYTE;
P1=OPTR: .

CHAR1 = READC:
DO WHILE (0BUF(P1:=P1+1) <> CHAR1);

IF P1 > OBUF THEN /* NO MATCH */
DO;

CALL PRINTCHAR (BELL)

;

RETURN;
END;

END; /* DO WHILE */
IF ECHO THEN

DO I = OPTR+1 TO P1 ;

CALL PRINTCHAR (PERCENT)

;

END;

/* NOW CONDENSE THE BUFFER */
J=OPTR;
I=P1:
DO WHILE I <= OBUF;

OBUF(J:=J + 1) = OBUF (I:=I + 1) ;

END:
OBUF = OBUF - (P1-OPTR+1);
END DELETE;

DELSN: PROCEDURE;
CPTB,NPTR = 0;
OBUf = 0;
CALL PRINTCHAR (ENDSFILE) ;

CALL CRLF;
END DELJN;

DISPLAY3RM0N: PROCEDURE;

60

DECLARE I BYTE;
1 = 0;
CALL CRLF;
DO WHILE (I: =1+1) <= OBOF;

IF I <= OPTR THEN /* EVEN LINE */
CALL PRINTCHAR (• •) ;

ELSE CALL PRINTCHAR (OBUF (I)) ;

END;
CALL CRLF;
CALL PRINTSNEW;
END DISPLAYRM0$N;

DEL$0: PROCEDURE;
IF CPTR > THEN

DO;
DECLARE I BYTE;
I = OPTR-1;
DO WHILE (I:=I+1) < OBUF;

OBUF (I) = OBUF (1+1) ;

END;
CALL PRINTCHAR (PERCENT)

;

OBUF = OBUF - T;
END;

ELSE CALL PRINTCHAR (BELL) ;

END DEL$0;

ESCAPE: PROCEDURE;
/* TURNS OFF SPECIAL MEANING OF CHARACTER TO FOLLOW

AND ENTERS CHARACTER IN NEW BUFFER */

CALL PRINTCHARI (CHAR:=READC)

;

NBUF (NPTR: = NPTR+1) = CHAR;
END ESCAPE;

PRINTSTAB: PROCEDURE;
IF (NPTR 5) > SIZESNBUF THEN

CALL PRINTCHAR (BELL) ;

ELSE
NBUF (NPTR:=NPTR+1) = TAB;
CALL PRINTCHAR (TAB) ;

END PRINTJTAB;

/* END OF PROCEDURES CALLED FROM THE LINE EDITOR */

INCSDA: PROCEDURE;
DATSAREA" =• DATSAREA +1;
END INCSDA;

INCiCA: PROCEDURE:
CODESA = CODESA + 1 ;

END INCSCA;

INCSER: PROCEDURE;
ZRRA = ERRA + 1 ;

END INCSER;

MOVE3DLSNEW: PROCEDURE:
DO WHILE NPTR <= DLSLEN;

IF PROMPT THEN CALL OLDTONEW;
ELSE CALL ECHOSON;

END;
NB = NEWSBUF + NPTR + 1;
OPTR = NPTR;
END MOVESDLSNEW;

MOVEiCODESOLD: PROCEDURE;
DECLARE DEST ADDRESS, D BASED DEST BYTE;
DEST = OLDSBUF+1;
OPTR, NPTR, OBUF = 0:
DO WHILE DAT <> EOC;

61

D = DAT:
IF NOT (PROMPT) THEN CALL PRINTCHAR (D) ;CALL INCSDA;
DEST = DEST +1

;

OBUF = OBUF +1

;

END:
CALL CRLF:
CALL MOVESDLSNEW;
END MOVE$CODE$OLD;

SETSPTE: PROCEDURE;
DO WHILE DAT <> ERR;

CALL INCSDA;
END;
CALL INCSDA;
3ERRA.ERRA = DAT3AREA;
CALL INC$DA;
DO WHILE DAT <> ERR;

CALL INC$DA;
END;
CALL INCSDA;
PROMPTSAREA = DAT$AREA;
END SETSPTR;

NEXTSDE: PROCEDURE;
CALL MOVEiCODESOLD;
CALL INCSDA:
CALL SETSPTR;
END NEXTSDE;

UPDATE$CAT: PROCEDURE;
DECLARE T ADDRESS. (I, A) BYTE;
INSiINC: PROCEDURE;

CODE = N3UF (I) ; 1= I + 1

;

CALL INCSCA;
END INSiINC;

CODE3A = B$CODE$A + DLSLEN;
I = DLSLEN+1;
DO WHILE (A:=I <= NPTR) AND (I <= OBUF)

;

CALL INSSINC;
END:
IF A THEN /* CODE LINE HAS GROWN */

DO;
DO WHILE I <= NPTR+1

;

IF CODE = ERR THEN /* AT ERROR CMDS */
CALL ERROR (0) ;

ELSE
CALL INSSINC;

END;
CODE = EOC;

END;
ELSE

DO;
CODE = EOC; T = OLDSBUF+OBUF+1

;

DO WHILE (CODE$A :=CODE$A +1) <= T;
CODE = 0;

END;
END;

END UPDATESDAT;

/* **

ERROR MODULE
FUNCTION: TO CHECK FOR POSSIBLE ERROR CONDITIONS.

ERROR COMMANDS ARE DEFINED IN DO$CMD PROCEDURE.

** */

RE3ENTEB: PROCEDURE;
CALL MOVESTOSOLD;
CALL PRINTSOLD;

62

NPTB = NB - NEW$BUF;
CALL PRINTSNEW;
END RE$ENTER;

WARNING: PROCEDURE (I) ;

DECLARE I BYTE;
WARN = TRUE;
DO CASE I;

CALL PRINT
CALL PRINT
CALL PRINT

END; /* CASE */
CALL CRLF;
END WARNING;

•WILL DESTROY OLD INFO $•);
'EXPECTING ALPHABETIC CHAR $•);
•EXPECTING NUMERIC CHAR $») ;

INCINB: PROCEDURE;
NB = NB + 1 ;

END INC$NB;

SP$?D$CCM: PROCEDURE BYTE;
DECLARE SPACE LIT '20H'

PERIOD LIT '2EH«,
COMMA LIT «2CH' ;

RETURN ((TN = SPACE)
END SPPDCOM;

ALPHA: PROCEDURE BYTE:
DECLARE LCA LIT ' 61 H

»

R

OR (TN = PERIOD) OR (TN = COMMA))

;

LCZ LIT 'IkU*
ETURN (((TN >= 'A') £ND (TN <= 'Z'))

AND (TN <= LCZ)) OR SPSPD$COM)

;

END ALPHA;

OR ((TN >= LCA),

CHKIALPHA: PROCEDURE;
DO WHILE TN <> •/'

;

IF NOT (ALPHA) THEN
DO;

CALL WARNING(1) ;

RETURN;
END;

CALL INC$NB;
END;
END CHKSALPHA;

NUMERIC: PROCEDURE BYTE
RETURN (((TN - '0')

OR SPSPDSCOM)

;

END NUMERIC;

CHKSNUMERIC: PROCEDURE;
DO WHILE TN <> '/'

;

IF NOT (NUMERIC) THEN
DO: CALL WARNING (2) ;

CALL INCSNB;
END;
END CHK$NUMERIC;

NEXTSSF: PROCEDURE;
DO WHILE CODE <> •/'

;

CALL INC$CA;
END;
CALL INCSCA;
DO WHILE DAT <> •/*

;

CALL INC$DA;
END;
CALL INCSDA;
CALL INCSNB;
CALL INCSER;
END NEXTSSF;

DOSCMD: PROCEDURE;
IF ECMD = '0' THEN RETURN; ELSE

<= 9) OR (TN = 2DH /* MINUS */)

RETURN; END;

63

IF ECMD = 'A' THEN CALL CHKSALPHA; ELSE
IF ECMD = »N' THEN CALL CHK$NUMERIC; ELSE
CALL ERROR (2)

;

END DOSCMD;

CHKSERR: PROCEDURE;
WARN = FALSE;
DO WHILE ECMD <> ERR;

IF ECMD = •/' THEN
CALL NEXT$SF;

CALL DO$CMD;
IF WARN THEN RETURN;
CALL INCSER;
END;
END CHKSERR;

ASKSQUESTION: PROCEDURE;
CO WHILE DAT <> •/'

1

CALL PRINTCHAR (DAT) ;

CALL INC$DA;
END;
END ASKSO.UESTION;

CHK$ANSWER: PROCEDURE;
WARN = FALSE:
DO WHILE ECMD <> »/'

J

CALL DOSCMD;
IF WARN THEN RETURN;
CALL INC$ER;

END;
END CHKSANSWER;

ENDSIP: PROCEDURE;
OB = OLD5BUF + DL$LEN 1;
IF (NB:=NEW$BUF+DL$LEN+1) > NEW$BUF + NPTR THEN

DO;
CALL WARNING (0)

;

RETURN;
END;

NBUF(NPTR-H) = »/'
J

CALL CHKSERR;
END END5I-P;

LEDIT: PROCEDURE;

DO WHILE NPTR < SIZESNBUF;
IF (CHAR:=READC) <= CTLZ THEN /* CONTROL CHAR */

DO CASE CHAR;
/* CAS NULL */
f

/* CASE 1 CONTROL A */
CALL BACKUP;

/* CASE 2 CONTROL B */
CALL MOVETOOLD;

/* CASE 3 CONTROL C */
CALL COPYSONE;

/* CASE 4 CONTROL D */
DO;
CALL P$MOVE$ON;
GO TO ENDEDIT1

;

END;

/* CASE 5 CONTROL E */
CALL ENTER;

/* CASE 6 CONTROL F */
GO TO ENDEDIT2;

64

/* CASE 7 CONTROL G */
CALL PRINTSBOTH;

/* CASE 8 CONTROL H */
CALL P$MOVE$ON;

/* CASE 9 CONTROL I */
CALL PRINTSTAB;

/* CASE 10 CONTROL J */
GO TO ENDEDIT1

;

/* CASE 11 CONTROL K */

/* CASE 12 CONTOL L */
CALL COPYRM0$N;

/* CASE 13 CONTROL H */
GO TO ENDEDIT1;

/* CASE 14 CONTROL N */
CALL BS0N;

/* CASE 15 CONTROL */
CALL COPYSON (READC) ;

/* CASE 16 CONTROL P */
CALL DELETE (TRUE) ;

/* CASE 17 CONTROL Q */
CALL DELSN;

/* CASE 18 CONTROL R */
CALL DISPLAYSRM30SN;

/* CASE 19 CONTROL S */
CALL DEL$0;

/* CASE 20 CONTROL T */
t

/* CASE 21 CONTROL U */
CALL COPY$ON (TAB) ;

/* CASE 22 CONTROL V */
CALL ESCAPE;

/* CASS 23 CONTROL W */
;
/* LATER */

/* CASE 24 CONTROL X */
CALL DELETE (FALSE) ;

*CASE 25 CONTROL Y *//*C
DO;

CALL P$MOVE$ON;
CALL MOVETOOLD;

END;

/* CASE 26 CONTROL Z */
CALL COPYiON (READC) ;

END;
ELSE /* CHECK SPECIAL CASES */
IF CHAR = RUBOUT THEN

CALL BACKUP;
ELSE

DO;
CALL PRINTCHAR(CHAR) ;

NBUF(NPTR:=NPTR+1) =CHAR;

65

IF NPTR = 72 THEN CALL PRINTCHAR (BELL)

;

IF NOT (INSERT) THEN OPTR = OPTR +. 1;
END;

END; /* DO WHILE */

/* ARRIVE HERE IF BUFFER FULL */

CALL PRINTCHAR (BELL)

;

ENDEDIT1:
ENDEDIT2: CALL CRLF;
END LEDIT;

/* **

OUTPUT MODULE

FUNCTION: TO UPDATE THE DAT FILE AND'THE
INFORMATION JUST EDITED TO THE MESSAGE FILE.

** */

INCSMSG: PROCEDURE;
IF (MSG$AREA:=MSG$AREA 1) < 100H THEN

RETURN;
IF DISKWRITE (.MSGSFCB) <> THEN

CALL ERROR (4) ;

MSGSAREA = 80H;
END INCSMSG;

MOVESMSG; PROCEDURE;
IF PRINTSLABEL THEN DATSAREA = BSCODESA;
ELSE DATSAREA = BSCODESA + DLSLEN + 1;
DO WHILE DAT <> EOC

;

MSG = DAT;
CALL INCSMSG;
CALL INCSDA;

END;
MSG = CR;
CALL INCSMSG;
MSG = LF:
CALL INCSMSG;
END MOVESMSG;

WRITESMSG: PROCEDURE;
MSG = CTLZ;
IF DISKWRITE (.MSGSFCB) <> THEN

CALL ERROR (4)

;

END WRITESMSG;

CLOSESFILES: PROCEDURE
IF CLOSE (.MSGSFCB)

CALL ERROR(7)

,

DFCB(12) = SAVESEXT;
DFC3(32(= SAVESRN;
IF CLOSE (DATSFCB) =

CALL ERROR (6)
END CLOSESFILES;

= 255 THEN

255 THEN

BLANKSBUF: PROCEDURE;
DECLARE A ADDRESS, (B BASED A, I) BYTE;
A = .BUFFER;
DO I = 1 TO 180;

B = 0; A = A + 1;
END;
END BLANKSBUF;

BASESNEXTSDE: PROCEDURE;
DECLARE I BYTE;
DO I = 1 TO WMPTR (2) ;

B$CODE$A = BSCODESA + 128;
END:
WORKSMAP = WORKSMAP + 3;

66

END BASE$NEXT$DS;

UPDATEDATFILE: PROCEDURE;
WORKSMAP = . MEMORY;
BSCODESA = BASEDATAREA;
DO WHILE B$CODE$A < TSDATSAREA;

CALL MOVESMSG;
DFCB (12) = WMPTR;
DFCB (32) = WMPTR(1) ;

CALL SETDMA (B$CODE$A)

;

IF DISKWRITEfDATSFCB) <> THEN
CALL ERROR j4)

;

CALL BASE$NEXT$DE;
END;
CALL SETSDMA (80H) :

END UPDATE5DAT$FILE;

EDII: PROCEDURE;
CONTINUE:
DO WHILE {DAT$AREA < T$DAT$AREA) ;

CALL NEXT3DE;
IF PROMPT THEN

DO WHILE DAT <> EOP;
CALL &SKSQUESTION;
WARN = TRUE;
DO WHILE WARN;

CALL LEDIT;
NBUF (NPTR:=NPTR+1) = •/'

5

CALL CHK$ANSWER;
END;
CALL NEXT$SF;

END;
ELSE

DO:
CALL LEDIT;
CALL ENDSIP;

END:
IF WARN THEN CALL RESENTER;
ELSE
DO;

CALL UPDATESDAT;
CALL BLANKSBUF;
CALL BASESNEXTSDE;
DAT$AREA,CODE$A = B$CODE$A;

END;
END; /* DO WHILE */

CALL UPDATEDATFILE;
IF MORE THEN

DO;
CALL READ$MORE;
GO TO CONTINUE;

END;
CALL WRITESMSG:
CALL CLOSESFILES;
GO TO BOOT;
END EDIT;

/******* START MAIN PROGRAM HERE ****** */

OLDSBUF = (NEW$BUF := .BUFFER) +90;
OBUF = 0;

CALL INIT;
CALL SELSWE;
CALL SETSMEM;
CALL READSDAT;
CALL LIFTHEAD;
TSDATSAREA = DATSAREA;
3$C0D£$A,C0DE$A.DAT$AREA = BASEDAT AREA;
WORKSMAP = .MEMORY;

67

CALL CRLF;
CALL PRINT(.'DATA LABELS TO BE IN THE REPORT?$')
CALL PRINTCHAR(CHAR := READC)

;

CALL CRLF;
IF CHAR = ! THEN PRINT$LABEL = TRUE;
CALL PRINT(.'DO YOU WISH TO BE PROMPTED?$«)

;

CALL ?RINTCHAR(CHAR:=READC)

;

CALL CRLF;
IF CHAR = Y» THEN PROMPT = TRUE;
CALL EDIT;
EOF

68

LIT LIT
BOOT LIT
ENTRY LIT
TRUE LIT
FALSE LIT
FOREVER LIT
CR LIT
LF LIT
DCNT
CTI LIT
CTS LIT

/ * **

PROGRAM DESIGNED TO CREATE DAT EXECUTABLE FILES USED
IN CONJUNCTION WITH REPORT ORIGINATION SYSTEM (ROS)

.

ROS IS DESIGNED TO GENERATE FORMATTED REPORTS.

** * •

100H:

/* **

INITIALIZE DECLARATIONS

** * /

DECLARE
tALLY 'LITERALLY 1

,

•OOOSH 1
,

M' f
•0»,
•WHILE TRUE' ,

•ODH' ,

•OAH' ,

BYTE,
•o«,
•V;

/ * **

INPUT AND EDITING DECLARATIONS

** */
DECLARE

BS LIT '08^, /* BACKSPACE */
PERCENT LIT '25H',
BELL LIT »07H»,
TAB LIT '09H',
EO? LIT '5EH', /* UP-ARROW; END OF PROMPT */
ENDSFILE LIT •5CH«, /*BACK SLANT */
EOC LIT «7CH», /*BAR: END OF CODE */
ERR LIT '7EH', /* TILDE; END OF ERROR */
CTLZ LIT MAH',
RUBOUT LIT '7FH',
DAT3FCB ADDRESS INITIAL (5CH)

,

DFCB 3ASED DATSFCB (33) BYTE,
NUMSREC BYTE,
DLSLEN -

• BYTE,
TMEM ADDRESS,
RECORDSMAP ADDRESS,
BMPTR BASED RECORDSMAP BYTE,
EXT BYTE INITIAL (0),
STORE ADDRESS,
SP 3ASED STORE BYTE,
BSTORE ADDRESS,
SPTR ADDRESS,
BUFFER (180) BYTE,
SIZEaNBUF LIT '90',
NEWSBUF ADDRESS,
NBUF BASED NEW$3UF BYTE,
NPTR BYTE,
OLDSBUF ADDRESS,
OBUF BASED OLD$BUF BYTE,
OPTR BYTE-
INSERT BYTE INITIAL (FALSE)

,

CHAR BYTE,
MOD128MASK LIT • 0FF80H', /* GIVES MEMORY SIZE

IN MULIPLES OF 128 BYTE BLOCKS */
BDOSA ADDRESS INITIAL (0006H)

,

SBDOS BASED BDOSA ADDRESS;

69

CRTIN: PROCEDURE BYTE;
DO WHILE INPUT (CTS)

;

END *

RETURN NOT INPUT (CTI) AND 07FH;
END CRTIN;

READC: PROCEDURE BYTE;

/* GET A CHARACTER FROM THE CONSOLE AND TRANSLATE TO
UPPER CASE */

DECLARE C BYTE;
I? (C:=CRTIN) >= 110S0001B /* LOWER CASE A */

AND C <= 01111010B /* LOWER CASE Z */ THEN
C = C AND 10 1S1111B; /* BECOMES UPPER CASE */

RETURN C;
END READC;

MON 1 : PROCEDURE (FUNC, INFO)

:

DECLARE FUNC BYTE, INFO ADDRESS;
GO TO ENTRY;
END MON1;

MON2: PROCEDURE (FUNC r INFO) BYTE;
DECLARE FUNC BYTE, INFO ADDRESS;
GO TO ENTRY;
END MON2;

PRINTCHAR: PROCEDURE (B)

;

DECLARE 3 BYTE;
CALL MON1 (2,B) ;

END PRINTCHAR;

PRINTCHARI: PROCEDURE (C)

;

EECLARE C BYTE:
IF (C AND 11030000B) = /* CONTROL CHAR */ THEN

DO;
CALL PRINTCHAR (EOP) ;

CALL PRINTCHAR (C OR 40H) ;

END:
ELSE CALL PRINTCHAR (C) ;

END PRINTCHARI;

CRLF: PROCEDURE;
CALL PRINTCHAR (CR)

;

CALL PRINTCHAR (LF) ;

END CRLF;

PRINT: PROCEDURE (A) ;

DECLARE A ADDRESS;
CALL MON1 (9, A) ;

CALL CRLF;
END PRINT;

MOVE: PROCEDURE (SOURCE ,DEST , N) ;

DECLARE (SOURCE, DEST) ADDRESS,
(S BASED SOURCE, D BASED DEST, N) BYTE;

DO WHILE {N:=N-1) <> 255;
D=S; SOURCE=SOURCE+1 ; DEST=DEST+1;

END;
END MOVE;

FILL: PROCEDURE (START, DEST, CHAR) ;

DECLARE (START, DEST) ADDRESS,
(S BASED START, CHAR) BYTE;

DO WHILE START < DEST;
S = CHAR;
START = START 1

;

END;
END FILL;

ERROR: PROCEDURE (I) ;

70

DECLARE I BYTE;
DO CASE I;
CALL PRINT (.'LACK ERROR COMMAND SPACE $');
CALL PRINT (.'DISK WRITE ERROR $»);
CALL PRINT (.'FILE NOT PRESENT $');
END;

CALL CRLF;
GO TO BOOT;
END ERROR;

INPUT AND EDITING MODULE

PROMPT: PROCEDURE(I) ;

DECLARE I BYTE-
CALL MON1 (9,. 'EXPECTING $');
DO CASE I:

CALL PRINT
CALL PRINT
CALL PRINT(. 'PROMPT INFO

END;
END PROMPT;

(. 'CODE INFO $•) :

(. 'ERROR COMDS $') ;

(. 'PROMPT INFO $•) ;

INCSRM: PROCEDURE;
RECORDSMAP = RECORDSMAP + 1;
END INCSRM;

GO$NEXT3REC: PROCEDURE:
/* INCREMENTS STORAGE POINTER TO NEXT EVEN

RECORD SECTOR */
DO WHILE SPTR < STORE:

SPTR = SPTR + 123;
NUM$REC=NUM$REC+1

;

IF NUMSREC = 128 THEN
DO;

EXT = EXT + 1 ;

NUMSREC = 0;
END;

END;
STORE = SPTR-1;
END GO$NEXT$REC;

MOVESDL: PROCEDURE:
DECLARE A -ADDRESS, I BYTE;
1=0; A=RECORD$MAP+DL$LEN;
DO WHILE (RECORDSMAP :=RECORD$MAP+1) <= A;

RMPTR = 03 UF (I: =1 + 1) ;

END;
RMPTR = EXT;
CALL INCSRM;
RMPTR = NUMSREC;
END MOVE3DL;

WRITE: PROCEDURE:
DECLARE A ADDRESS;
A = .MEMORY;
DO WHILE (A:=A+128) < STORE;

CALL MOVE(A,80H, 128);
IF (DCNT := MON2 (21,DAT$FCB)) <> THEN

CALL ERROR (1) ;

END:
STORE=8STORE; SPTR =B STORE;
CALL MON1 (12,0) ; /* LIFT READ WRITE HEAD */
END WRITE;

INCSSTORE: PROCEDURE;
/* CHECKS FOR MEMORY OVERFLOW INCREMENTS STORAGE PTR */
IF (STORE:=STORE+1) > TMEM THEN

CALL WRITE;

71

END INCSSTORE;

MOVESSTORE; PROCEDURE:
/* STORES INFORMATION FROM INPUT TO FILE MEMORY AREA */
DECLARE I BYTE;
DO 1=1 TO OBUF;

CALL INCSSTORE;
SP = OBUF(I) ;

END;
END MOVESSTORE;

FILLSCODESZERO: PROCEDURE;
DECLARE (A,T) ADDRESS, B BASED A BYTE;
A = STORE; T = SPTR + 128;
DO WHILE (A:=A+1) < T;

B = 0;
END;
END FILLSCODESZERO;

ENDSDL: PROCEDURE;
/* CHARACTER IS A BAR (!) INDICATES END OF CODE AREA */
CALL GOSNEXTSREC;
CALL MOVESDL;
CALL MOVESSTORE;
CALL INCSSTORE;
SP = EOC;
CALL FILLSCODESZERO;
CALL CRLF;
CALL PROMPT (1) ;

END ENDSDL;

ENDSREC: PROCEDURE;
/* CALL WHEN A UP-ARROW IS ENTERED FROM THE KEYBOARD.

INDICATES END OF DECODED INFORMATION */

CALL MOVESSTORE;
CALL INCSSTORE;
SP = EOP-
CALL CRLF;
CALL PROMPT (0)

;

END ENDSREC;

ENDSERR: PROCEDURE;
/* CALLED WHEN (TILDE) ENTERED AT KEYBOARD

INDICATES END OF ERROR CHECKS */
BACKSSTORE: PROCEDURE:

STORE = SPTR + 127; /* TO NEXT RECORD - 1 */
SP = ERR;
STORE = STORE - 1;
OBUF = OBUF + 1

;

DO WHILE jOBUF:=OBUF-1) <> 0;
IF SP = EOC THEN

CALL ERROR (0) ;

SP = OBUF(OBUF) ;

STORE = STORE - 1

;

END;
SP = ERR:
END BACKSSTORE;

CALL BACKSSTORE;
CALL GOSNEXTSREC;
CALL CRLF;
CALL PROMPT (2) ;

EIL ENDSERR;

ENDSF: PROCEDURE:
/* CALLED WHEN END FILE () BLACKSLASH ENTERED INDICATES

END OF FILE */
DECLARE {EX,NR) BYTE;
CALL MOVESSTORE;
CALL INCSSTORE;
SP=ENDSFILE;

72

CALL WRITE;
CALL INC$RM;
EMPTR = EOC; /* MARK END OP RECORD$MAP */
RECORDSMAP = RECORDIMAP + DLlLEN; /* SAVE EXT AND RN OF

NEXT RECORD TO BE WRITTEN */
HMPTR = DFCB (12) ;

CALL INC$RM;
EMPTR = DFCB (32) ;

EX = DFCB (12); NR = DFCB(32);
DFCB(32) ,DFCB(12) =0;
CALL MOVE (.MEMORY. 30H, 128) ;

IF (DCNT := MON2 (21,DAI$FCB)) <> THEN
CALL ERROR (U J

DFCEM2) = EX; DFCB (32) = NR;
IF M0N2M6, DATSFCB) = 255 THEN /* CLOSE FILE */

CALL ERROR (2) ;

GO TO BOOT;
END END$F;

3ACK3UP: PROCEDURE;
IF NPTR > THEN

DO:
NPTR = NPTR -1

;

CALL PRINTCHAR (BS) ;

CALL PRINTCHAR (' •) ;

CALL PRINTCHAR (BS) ;

END;
ELSE

CALL PRINTCHAR (BELL)

;

END BACK-UP;

MOVETOOLD: PROCEDURE:
CALL MOVE (NEWSBUF+1 ,OLD$BUF+1 , (03UF;=NPTR))

;

OPTR = 0- NPTR = 0;
CALL CRLF:
END MOVETOOLD;

ECH030N: PROCEDURE;
CALL PRINTCHAR(NBUF (NPTR : = NPTR + 1) := (OBUF (OPTR : =OPTR+ 1))) ;

END ECHOSON;

COPY30NE: PROCEDURE;
IF OPTR < OBUF THEN

CALL ECHOiON:
ELSE CALL PRINTCHAR (BELL) ;

END COPYSONE;

PSMQVE$ON: PROCEDURE; /* PARTIAL MOVE OLD TO NEW */
DO WHILE OPTR < OBUF;
CALL ECHOSON;
END;
END P$MOVE$ON;

ENTER: PROCEDURE;
IF INSERT THEN

CALL PRINTCHAR (• >')

;

ELSE
CALL PRINTCHAR (• <•)

;

INSERT = NOT (INSERT) ;

END ENTER;

PRINTSOLD: PROCEDURE;
DECLARE I BYTE;
DO 1= 1 TO OBUF;

CALL PRINTCHARI (OBUF (I)) ;

END;
CALL CRLF:
END PRINT$OLD;

PRINTSNEW: PROCEDURE;
DECLARE I BYTE;
DO I = 1 TO NPTR;

73

CALL PRINTCHARI (N3UF (I)) ;

END;
END PRINTSNEW;

PRINTSEOTH: PROCEDURE;
CALL PRINT$OLD;
CALL PRINT$NEH;
END PRINT$BOTH;

COPYBM0$N: PROCEDURE;
/* COPIES REMAINING CHARACTERS FOR OLD TO NEW BUFFERS */

DO WHILE OPTR <= OBUF;
NBUF(NPTR:=NPTR+1) = OBUF (OPTR: =OPTR+1)

;

END:
CALL PRINTCHAR (' + •) ; /* INDICATES WHEN DONE */
END COPYRM0$N;

BS0N: PROCEDURE;
/* EACKSPACE OLD PTR AND NEW PTR 1 CHAR */
IF (OPTR > 0) AND (NPTR > 0) THEN

DO:
OPTR = OPTR - 1

;

NPTR = NPTR - 1

:

OBUF = OBUF - 1

;

END;
ELS E

CALL PRINTCHAR (BELL)

;

END BSSOiN;

COPYSON: PROCEDURE (C,NEXT) ;

DECLARE (C, I, NEXT) BYTE;
I=OPTR;
DO WHILE 03UF(I:=I+1) <> C;

IF I > OBUF THEN /* NO MATCH */
DO*

CALL PRINTCHAR (BELL) ;

RETURN;
END;

END; /* DO WHILE */
IF NOT (NEXT) THEN 1=1-1;
DO WHILE OPTR < I;

CALL ECHOSON;
END *

END'COPYSON;

DELETE: PROCEDURE (ECHO) ;

/* ECHO TRUE INDICATES TO START FROM THE CURRENT
POSITION OF OLD BUFFER AND ECHO A % (PERCENT) FOR THE
DELETED CHARACTER. ECHO FALSE INDICATES TO START AT
IHE BEGINNING OF THE OLD BUFFER AND DON' I ECHO FOR
THE DELETED CHARACTERS. */

DECLARE (I, J,P1,CHAR1,ECH0) BYTE;
IF ECHO THEN P1 = 0;
ELSE P1 = OPTR;
CHAR1 = READC:
DO WHILE (OBUF(P1 :=P1+1) <> CHAR1);

IF P1 > OBUF THEN /* NO MATCH */
DO;

CALL PRINTCHAR (BELL)

;

RETURN;
END;

END; /* DO WHILE */
IF ECHO THEN

DO I = OPTR+1 TO P1

;

CALL PRINTCHAR (PERCENT) ;

END;

/* NOW CONDENSE THE BUFFER */
J=OPTR;

74

I=P1;
DO WHILE I <= OBUF;

OBUF(J:=J+1) = OBUF (I:=I + 1) ;

END :

OBUF = OBUF - (P1-OPTR+1) ;

END DELETE;

DELSN: PROCEDURE;
NPTR=0: OPTR=0;
CALL PRINTCHAR (END$FILE)

;

CALL CRLF;
END DELSN;

DISPLAYSRMSOSN: PROCEDURE;
DECLARE I BYTE;
1 = 0;
CALL CRLF;
DO WHILE (I:=I+1) <= OBUF:

IF I <= OPTR THEN /* EVEN LINE */
CALL PRINTCHAR (• •) ;

ELSE
CALL PRINTCHAR (OBUF (I)) ;

END;
CALL CRLF;
CALL PRINTSNEW;
END DISPLAYiRMSOSN;

D£L$0: PROCEDURE;
IF OPTR > THEN

DO;
DECLARE I BYTE;
I = OPTR - 1

;

DO WHILE (I:=I+1) < OBUF;
OBUF(I) = OBUF(I+1) ;

END;
CALL PRINTCHAR(PERCENT)

;

OBUF = OBUF - T;
END:

ELSE CALL PRINTCHAR (BELL)

;

END DELSO;

ESCAPE; PROCEDURE;
/* TURNS' OFF SPECIAL MEANING OF CHARACTER TO FOLLOW

AND ENTERS CHARACTER IN NEW BUFFER */

CALL PRINTCHARI (CHAR :=READC)

;

NBUF(NPTR:=NPTR+1) = CHAR;
END ESCAPE;

CONTSFILL: PROCEDURE;
CALL MOVESSTORE;
CALL CRLF;
END CONTSFILL;

PRINT$TAE: PROCEDURE;
IF (NPTR + 5) > SIZESNBUF THEN

CALL PRINTCHAR (BELL) ;

ELS E
NBUF (NPTR: = NPTR+1) = TAB;
CALL PRINTCHAR (TA3) ;

END PRINTSTAB;

LEDII: PROCEDURE:
/* READS CHARACTERS FROM THE CONSOLE AND ALLOWS EDITING
USING THE PROCEDURES OF A LINE EDITOR */

OPTR = 0; NPTR = 0;
DO WHILE NPTR < SIZESNBUF;
IF (CHAR:=READC) <= CTLZ THEN /* CONTROL CHAR */

DO CASE CHAR;
/* CAS NULL */

75

/* CASE 1 CONTROL A */
CALL BACKUP;

/* CASE 2 CONTROL B */
CALL M07EST0S0LD;

/* CASE 3 CONTROL C */
CALL COPY$ONE;

/* CASE 4 CONTROL D */
DO:
CALL P$MOVE$ON;
GO TO ENDEDIT1

;

END;

/* CASE 5 CONTROL E */
CALL ENTER;

/* CASE 6 CONTROL F */
GO TO ENDEDIT2;

/* CASE 7 CONTROL G */
CALL PRINTSBOTH;

/* CASE 8 CONTROL H */
CALL PSMOVESON;

/* CASE 9 CONTROL I */
CALL PRINTSTAB;

/* CASE 10 CONTROL J */
GO TO ENDEDIT1

;

/* CASE 11 CONTROL K */

/* CASE 12 CONTOL L */
CALL COPYRM0$N;

/* CASE 13 CONTROL H */
GO TO ENDEDIT1

;

/* CASE 14 CONTROL N */
CALL BSSOSN;

/* CASE 15 CONTROL */
CALL COPISON (READC, FALSE)

;

/* CASE 16 CONTROL P */
CALL DELETE (TRUE) ;

/* CASE 17 CONTROL Q */
CALL DEL$N;

/* CASE 18 CONTROL R */
CALL DISPLAY$RM30*N;

/* CASE 19 CONTROL S */
CALL DEL$0;

/* CASE 20 CONTROL T */
CALL CONTSFILL;

/* CASE 21 CONTROL U */
CALL CO?Y$ON(TAB, FALSE)

;

/* CASE 22 CONTROL V */
CALL ESCAPE;

/* CASE 23 CONTROL W */
; /* LATER */

76

/* CASE 24 CONTROL X */
CALL DELETE (FALSE)

;

/CASE 25 CONTROL Y */
DO;

CALL P$MOVE$ON:
CALL MOVEiTOSOLD;

END;

/* CASE 26 CONTROL Z */
CALL COPY$ON(READC,TRUE)

;

END:
ELSE /* CHECK SPECIAL CASES */
IF CHAR = RUBOUT THEN

CALL BACKUP;
ELSE
IF CHAR = EOC THEN /* INDICATES END OF CODED INFO */

DO; CALL MOVE$TOSOLD; CALL ENDSDL; END;
ELSE
IF CHAR = ERR THEN

DO; CALL MOVESTOSOLD; CALL END$ERR; END;
ELS E
IF CHAR = EOP THEN /* END OF PROMPT INFORMATION */

DO; CALL MOVESTOSOLD; CALL END$REC; END;
ELSE

IF CHAR = ENDSFILE THEN /* END OF FILE */
DO: CALL MOVETOOLD; CALL ENDSF; END;
ELSE

DO;
CALL PRINTCHAR(CHAR) ;

NBUF (NPTR: = NPTR+1) =CHAR;
IF NOT (INSERT) THEN OPTR = OPTR + 1;
IF NPTR = 72 THEN CALL PRINTCHAR (3ELL)

;

END;
END; /* DO WHILE */

/* ARRIVE HERE IF BUFFER FULL */

CALL PRI-NTCHAR(EELL) ;

ENDEDIT1: CALL MOVESTOSOLD;
ENDEDIT2:
END LEDIT;

/* START MAIN PROGRAM HERE */

OLDSBUF = (NEWSBUF := .BUFFER) +90;
OBUB = 0;
CALL MOVE (.'DAT', DATSFCB+9 , 3) ;

EFCB.DFC3 J12) ,DFC3 (32) = 0:
IF M0N2(17, DATSFCB) <> 255 THEN /*FILE EXISTS */

DO:
CALL PRINT(.' FILE ALREADY EXISTS $•);
GO TO BOOT;

END;
IF MON2(22, DATSFCB) = 255 THEN

DO:
CALL PRINT (.' OUT OF DIRECTORY SPACE $);
GO TO BOOT;

END;
IF (DCNT: =MON2(15, DATSFCB)) = 255 THEN /* CAN'T OPEN */

CALL ERROR (2)

;

CALL MCN1 M2,0); /* LIFT READ WRITE HEAD */
/* ARRIVE HERE WITH NEW FILE CREATED */
DPCB(32) = 1 ; /* RESERVE FIRST RECORD FOR RECORD MAP */
TMEM = (SBDOS - 1) AND MODS1 28SM ASK;
CALL FILL (.MEMORY, TMEM, 0) ;

SPTR/RSCORDSMAP = .MEMORY;
33T0RE = .MEMORY + 128;
STOBE = BSTORE;

77

NUM$REC = 0;
CALL PRINT (. 'LENGTH OF DATA LABELS TO BE USED?*')
CALL PRINTCHAR (CHAR ; =READC)

;

CALI CRLF:
HEMCRY,DL$LEN = CHAR AND OFH;
CALL BROMPT (0) ;

DO FOREVER:
CALL LEDIT;

END;
EOF

78

BIBLIOGRAPHY

1. Tollefsen, T.S., LCDR, USN, "Reports or Readi-
ness"/ NAVAL WAR COLLEGE REVIEW, Vol.26,
pp. 74-82

2. Naval Electronic Systems Command, TEST AND
EVALUATION REPORT X/C 13 INCREMENT I (COMPREP)
REPORT 27437-A006-RU-00, June 30, 1975

3. Naval Electronic System Command, FLEET COMMAND
CENTER COMPOSTITE OPERATIONS REPORTING SYSTEM,
REPORT PME-108-P0001 1, August 20, 197b

4. Office of the Chief of Naval Operations,
STEERING GROUP PRESENTATION, September 13,
1976

5. CP/M Interface Guide, DIGITAL RESEARCH, 1975

6. Office of the Chief of Naval Operations
Instruction C3501.66A, January 5, 1976

7." PL/M Programminq Manual, INTEL CORPORATION,
1975

79

INITIAL DISTRIBUTION LIST

1. Defense Documentation Center
Cameron Station
Alexandria? Virginia 22314

2. Library, Code 0212
Naval Postaraduate School
Monterey, California 93940

3. Chairman, Code 52
Computer Science Department
Naval Postgraduate School
Monterey» California 93940

4. Assoc Professor U. R. Kodres, Code 52Kr
Computer Science Department
Naval Postgraduate School
Monterey, California 939a0

5. Assoc Professor G. A. Kildall, Code 52Kd
Computer Science Department
Naval Postgraduate School
Monterey,' California 93940

6. LT Joseph G. Holyoak
Supervisor of Shipbuilding
Conversion' and Repair
574 Kash i ngt on S t

.

Bath, "Maine 04530

No . Copi es

2

80

I

"7283 Holyoak
c 1

A shipboard reportor g natfon syste.

rl Z,ng a mf cro-
computer.

*V«W 25 752
60 2 7 117

261^7-
5 0CT82 .2 74 06

^7 ^2^

Thesis " ^ ri
°';5

H7283 Holyoak
c *l A shipboard report

origination system
uti 1 izing a micro-
computer.

thesH7283

A shipboard report origination system ut

3 2768 002 06952 8
DUDLEY KNOX LIBRARY

