
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1976

Software engineering : tools of the profession.

Williams, Arrena Sue
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/17947

Downloaded from NPS Archive: Calhoun

SOFTWARE ENGINEERING:
TOOLS OF THE PROFESSION

Arrena Sue Wi 1 1 iams

SCHOOL
A 93940

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
SOFTWARE ENGINEERING:

TOOLS OF THE PROFESSION

by

Arrena Sue Williams

September 19 76

Thesis Advisor: G. L. Barks dale, Jr.

Approved for public release; distribution unlimited.

T174984

SECURITY CLASSIFICATION OF THIS PACE (When Data Ini.f.tfj

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE Cnd Subtitle)

Software Engineering: Tools of the
Profession

5. TYPE OF REPORT * PERIOO COVERED
Master's Thesis;
September 1976

4. PERFORMING ORG. REPORT NUMBER

7. AuTHO«f»J

Arrena Sue Williams

• CONTRACT OR GRANT NUMBERraJ

9. PERFORMING ORGANIZATION NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 9 39 40

10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

1 1. CONTROLLING OFFICE NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

September 1976
13. NUMBER OF PAGES
92

U. MONITORING AGENCY NAME a AOORESSft/ dltterent from Controlling Office)

Naval Postgraduate School
Monterey, California

IS. SECURITY CLASS, (ot thlm report)

Unclassified
IS*. OECLASSIFI CATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thl» Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of tho ebetrect entered in Block 20, II dIUoront tram Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rererme aide It neceeeery one- Identity by block number)

software engineering decision tables
modular programming chief and programmer teams
structured programming military software
top-down programming tactical software

20. ABSTRACT (Continue on rovormo aide It neceeeewy end Identity by bleek number)

Software engineering is presented as a new branch of the
engineering disciplines. The tools and techniques of the profes-
sion are examined in an attempt to resolve definitional ambi-
guities and describe the concepts or attitudes generally
associated with three specific programming methodologies.
Language properties supportive of the methodologies are investi-
gated. The professional tools and language characteristics are

I evaluated in terms ..of their effect on DQD software.

DO /JmTn 1473
(Page 1)

EDITION OF I NOV 81 IS OBSOLETE
S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dete BntereeT)

SOFTWARE ENGINEERING: TOOLS OP THE PROFESSION

by

Arrena Sue Williams
Lieutenant. United States Navy

B.A., Southwest Texas State University

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1976

HY KNOX LI8RARY

assBsasr

ABSTRACT

Software engineering is presented as a new branch

of the engineering disciplines. The tools and

techniques of the profession are examined in an

attempt to resolve definitional ambiguities and

describe the concepts or attitudes generally

associated with three specific programming

methodologies. Language properties supportive of the

methodologies are investigated. The professional tools

and language characteristics are evaluated in terms of

their effect on DOD software.

TABLE OF CONTENTS

I. INTRODUCTION 8

II. SOFTHARE CRISIS 10

A. DEFINITION 10

B. CRISIS 11

C. SOLUTION 12

1. Engineering Foundation 12

2. Software Profession 13

III. PROFESSIONAL TOOLS AND TECHNIQUES 16

A. PEOGRAMMING METHODOLOGIES 16

1. Top-down Programming 17

2. Structured Programming 18

a. Control Structures 19

b. Seguencing Discipline 20

c. Abstraction 22

3. Modular Programming 23

a. Multiple Function Modules 25

b. Single Function Modules 26

c. NTDS Module 27

B. DESIGN TOOLS 28

1. Decision Tables 29

2. Chief Programmer Teams 33

3. Text Editors 35

IV. LANGUAGE DESIGN 37

A. LANGUAGE CATEGORIES 37

1. Machine-Oriented Languages (MOL) 38

2. High Order Languages (HOL) 38

a. Procedure-oriented 39

b. Problem-Oriented 39

c. Nonprocedure-Oriented 40

B. METHODOLOGY SUPPORT 40

1. Control Structures 41

2. Block Structure 42

C. NAVY TACTICAL LANGUAGE 43

V. MILITARY SOFTWARE 46

A. RELIABILITY 47

1. Verification and Validation 48

2. Current Navy Research 50

B. PORTABILITY AND ADAPTABILITY 51

VI. CONCLUSIONS 53

Appendix A: DEFINITION OF TERMS 56

Appendix B: ANNOTATED BIBLIOGRAPHY OF SOFTWARE ENGINEERING

LITERATURE 64

LIST OF REFERENCES 67

INITIAL DISTRIBUTION LIST 92

LIST OF FIGURES

1. Professional Scope 15

2. Control Structures 21

3. Rotation Table 32

INTRODUCTION

Initially used less than eight years ago [31], the term

software engineering is used today to describe such

dissimilar activities as programming tools and standards,

software development, and programming methodology. Several

widely known techniques in the design of computer software

today are not clearly defined. People who speak of these

techniques have their own, usually unique impression of what

they mean by such terms as modular or structured

programming. There are those who even disagree over the

meaning of the word "software" and further object to its

design being referred to as an engineering discipline. Yet,

numerous languages, programming methodologies and other aids

are championed by authors offering solutions to the

"software crisis". Software development is a highly

individual activity where the programmer's skills, biases

and motivations often govern the process. It is not

surprising that such diversity of opinion has developed

regarding the terminology, and the conceptual interpretation

and relative value of the proposed tools.

A major goal of this thesis, therefore, is to

investigate the tools and techniques by examining the

problem of varying terminology in the literature and

describing the concepts generally associated with top-down,

structured and modular programming. In addition, an attempt

is made to resolve the controversy regarding the scope of

the software engineering profession, as it clearly offers

solutions to the plaguing problems confronting the military

today in the development, acquisition, deployment and

support of major defense systems. This information is

consolidated into a unified presentation of current theory

by providing a topical, annotated bibliography of software

engineering literature and a dictionary of terms in

Appendices A and B.

When writing short programs of a hundred statements or

less, almost any programming language will satisfy the

requirement; however, when producing large software systems,

the programming language used will be of crucial importance

to the success of the project. Language properties

supportive of structured programming are therefore

investigated, including the Navy High Order Language

requirements. Finally, the effects of program structure on

the design of military software is evaluated.

II. SOFTWARE CRISIS

Before any attempt is made to present the proposed

solutions for designing reliable computer programs, it is

first necessary to arrive at a working definition for the

term "software" and the underlying reasons for the present

software crisis. It was the recognition of this crisis that

implied the need for the design of software to be based on

the theoretical foundations and practical disciplines that

are traditional in the established branches of engineering.

A. DEFINITION

The word software orginated about 1959 or 1960 in the

United States [18]. There are those who still use the term

to encompass only the area of what is commonly known as

systems software; that is, assemblers, compilers and

operating systems. To do so, however, is to imply the

problems associated with developing reliable systems

programs are unique from those associated with application

programs and therefore require disparate solutions. In fact,

the types cf problems that are encountered in constructing

large systems programs are much the same as those

encountered in large applications programs. Yet to use the

term computer software interchangeably with computer program

is to overlook the necessity of considering compatability

between systems and applications programs during the design

process. When used in this thesis, computer programs will

refer to either systems or applications programs, whereas

the term software will mean a combination of associated

10

programs. Formal definitions of these terms are included in

Appendix A and are consistent with those adopted as DOD

standards within the weapon system arena [23].

B. CRISIS

During recent years, there has been increasing talk of a

software crisis. Yet at the Garmisch NATO Conference in 1968

there was no unanimity on the existence of such a crisis

[31]. Some felt that almost all the proponents of the

software crisis were the "university types" who could not

understand how to handle large projects [18]. Some may

question -the choice of the word "crisis", but the fact

remains that, as a percentage of the total data processing

costs of an installation, the cost of systems programming

increased from 5% in 1950 to 50% in 1965. At the proceedings

of a conference sponsored by SOFTWARE WORLD at the

University of Sheffield in 1970, it was predicted that by

1976 this figure was expected to rise to about 80% [14].

There has been a radical shift in the balance of hardware

and software costs; and computer technology has advanced to

an era where hardware development costs are declining and

the cost of computing is now dominated by the cost of

software.

The demands in volume and complexity of software have

outpaced the technology. Computer programs suffer

phenomenal overruns in cost and delivery time, and the

quality of the final product is often deficient in the area

of correctness, adaptability and portability [7]. Often the

maintenance costs have run beyond the original development

price because of poor design and production.

Since the complexity of a program increases non-linearly

11

with size, the tendency for increasingly larger pieces of

software to be developed is a prime factor in what has

become known as the software crisis. The great complexity of

large programs creates major problems both in terms of the

number of errors that are written into programs and in terms

of the difficulty of testing for these errors [14]. Many

articles, phamphlets, and government documents have been

written about "The Software Problem" and what can be done

about it. The fact that there has been an accumulating body

of literature on the topic is, in itself, indicative that

some form of problem exists and that the future of the

computer industry is dependent upon the manner in which

software engineers direct their energies to solve it.

C. SOLUTION

In 1967 the NATO Science Committee, comprised of

scientists representing the various member nations, proposed

that an international conference be held that would focus

attention on the problem of software. The phrase "software

engineering" was deliberately chosen as being provocative in

that it implied the need for software production to be based

on the types of theoretical foundations and practical

disciplines that are traditional in the established branches

of engineering [31].

1 • Engineering Foundation

Recently, an effort has been made to draw a

correlation between the established principles of the

engineering disciplines and the design of computer software.

All of the various engineering disciplines have at least two

things in common. First, they are based on and draw their

12

power from the use of known natural laws. Secondly, they use

a design methodology that permits them to describe their

designs in terms of a hierarchic structure; that is, in a

form capable of detailing the design through successive

levels of structure such as blue-prints and schematic

drawings. Likewise, if the design of software is to be

fundamentally related to the other engineering disciplines,

then "software engineering" will require the formulation of

a set of laws concerning the properties of software. It will

furthermore require a hierarachical design approach that is

discernibly structural in form and which permits the

development of software descriptions equivalent to

blue-prints and schematics. Perhaps software engineering

cannot yet be viewed as the practical application of natural

laws, but many of the same techniques that are useful to the

engineer in designing bridges are useful for designing

computer programs.

2. Software Profession

A computer system consists of hardware, firmware and

software. Hardware deals with the design of the machinery

and includes circuits, chips and peripheral devices. The

design of firmware is concerned with aspects of computer

architecture and organization such as word size, instruction

format, register types, addressing schemes, memory

hierarchies, storage requirements and input/output

interfaces. Software, as noted above, encompasses the

design of both systems and applications programs. When

writing in low level languages, such as machine or assembly

code, the programmer must have intimate knowledge of machine

architecture, regardless of whether the firmware is

hardwired or microprogrammed. As illustrated in Fig. 1, the

software engineering profession includes the design of

computer architecture and organization as well as systems

13

and applications programs [41].

14

CO

a
o

- t4
4-1

CO

a
T-t

r-l

ft
a.

0)

u
CO

a
<

CO (0

V-i

00
o

o u
CO cu

CO

a
cu
4-t

CO

>>
CO

e
M O
<U -H
-u 4J
3 cd

Q. n
S -H
o c
CJ CO

00
gg* U
H cu o
H
CO

CO 1
U

[

ft t-t

w ft <u

3
U u
cu 3

g
U 4-1

3 cj

O (X CU

S 4J
O -H
U X

a
M
<J

rH
CO 4-1

U G
cu cu

JS s
Cu Cw
•H T-t

fu 3
cu cr
ft ft

CU

>-»

CO

T3

5

CO
J COH Cu
3 -H
CJ J3
H CJ
•H
CJ

A

A
cu

CO
'-4

00
o
M
ft

A

u
CU

CU

c
•H
00
c
Ed

CU

M

o
CO

J3
cj

<c

u
cu
-
3
O.
a
o
U

V

A

\K

w
ft
o
CJ
CO

H-l

<z
O
t-t

CO
CO
w
ft
o
ft
ft

ft
ft
13
aM
ft

-
CU

cu

a
00
c
ft

M
CU

4-1

3
Cu
a
o
CJ

V

15

III. PROFESSIONAL TOOLS AND TECHNIQ UES

As with other forms of engineering, software engineering

also has its sets of techniques for solving problems and its

tools for producing results. Whereas the rule of "higher

quality implies higher price" applies to many products, it

is generally acknowledged that programs will be cheaper if

the errors are avoided in the beginning. In quest of this

goal, the trend in DOD is to now place efficiency

considerations subordinate to clear, logical structuring

[7]. As a result, several design approaches and techniques

have been found useful in trying to achieve quality

programs. Known as programming methodologies, each has its

following of steadfast disciples. Software engineers are

somewhat constrained in their choice of methodology by

available computers, languages and support systems.

A. PROGRAMMING METHODOLOGIES

Programming methodology refers to the method used to

build a computer program. DOD has shown considerable

interest of late in three specific methodologies: modular,

structured and top-down structured programming. Each of the

techniques is in some sense hierarchic in nature, although

the approaches used differ considerably both in the degree

to which they are explicitly hierarchic and in the

implications they draw from hierarchic structuring. Although

they can be implemented separately, the methodologies

logically interconnect and build upon one another, as

suggested by one author who describes a "top-down, modular

16

structured program" [27].

1 • Top-down Programming

Top-down programming is an approach most programmers

have used to some extent, but it is one that was not

explicitly brought out until a few years ago. It was the

topic of considerable discussion at the first NATO

Conference. Perhaps the most succinct remark was made by

Brian Randell on page 47 of the report: "There are two

distinct approaches to the problem of deciding in what order

to make design decisions. The top-down approach involves

starting at the outside limits of the proposed system..."

(by that he means the overall statement of what the program

is to accomplish) "...and gradually working down, at each

stage attempting to define what a given component should do,

before getting involved in decisions as to how the component

should provide this function. Conversely, the bottom-up

approach proceeds by a gradually increasing complexity of

combinations of building blocks" [31].

Normally, the bottom-up approach is used when coding

a simple programming task with a given programming language.

Individual routines are written first, then strung together

to provide a complete program. With the top-down approach,

the programmer starts with the problem and decides what are

the main components that must be considered in order to

solve the problem. It is at this point that the designer

begins to puzzle over the best method to express them in

terms of more primitive concepts.

Designing a program using the top-down approach is

analogous to the formulation of a scientific hypothesis,

which leads to and is confirmed by an experiment. The

subsequent implementation similarly confirms the design, and

17

will include the making of minor adjustments and

improvements to the design by debugging.

The term top-down programming is freguently used

synonymously in the literature with "stepwise refinement",

"levels of abstraction", "stepwise decompostion",

"hierarchical design" or "top-down expansion".

2 • Structured Programming

The term "structured programming" has gained wide

currency in recent years in several different contexts.

About all that the uses of the term have in common is that

they refer to a programming methodology. The term was

originally used by Dijkstra as the title of a paper

presented at the NATO Conference in Rome, 1969 [5]- Later

expanded, the paper was published as part of a book by the

same name [10]. In 1967 Dijkstra reported on a

moderate-sized multiprogramming system that he and his

colleagues had built using his notions of stepwise

decompostion and sequencing. He reported that no significant

errors were found during the design and testing of the

program [11].

Programmers immediately tended to see their own

difficulties as the core of the subject and, as a result,

widely divergent opinions on the theory have emerged. The

controversy will continue as long as structured programming

is approached definitively. Dijkstra uses the term to refer

to the process he and his colleagues used. It is an

approach, a way of thinking; it is not an algorithm. Yet

popular usage of the term in many cases defines structured

programming to be certain language structures or programming

procedures to be followed without fail. In fact, approached

as a collection of good programming practices, the

18

methodology will show encouraging results. If treated as a

collection of inflexible rules replacing good judgment, it

will doubtless lead to inefficiency [12].

a. Control Structures

Much of a program's complexity arises because

the program contains multiple branches, making it difficult

to follow the logic of the program and difficult to be sure

at any given point in the program what the existing

conditions are (such as variable values, and which paths of

the program have already been executed). Futhermore, as the

program undergoes modification during the debugging process,

the complexity of the program grows accordingly. In

maintaining the program, new code is often added if the

programmer cannot find existing code that performs the

desired function or cannot ascertain how the existing code

actually performs the required function. The result is a

program that is nearly unintelligible. Reducing program

complexity is therefore the process of removing obscure

structures, complicated control paths, and redundant and

obsolete code from the program.

Improved program clarity can be attained through

the use of self-explanatory variable and procedure names,

succinct and informative comments, code identation which

reflects the control flow to the reader, and simplification

and limitation of detailed program function to that which

can be readily expressed in less than a few dozen lines of

code (a page) . These simple concepts form the basis for most

of the methodologies which have been advanced for improving

program clarity.

Bohm and Jacopini first proposed that inherently

complicated program control structures were unnecessary and

19

that statement sequencing, conditional branching and

conditional iteration would suffice as a set of control

structures for expressing any flow-chartable program logic

[3]. In a sense, Dijkstra advocated that the theoretically

possible should become actual programming practice.

Fig. 2 summarizes the three structures

identified by Bohm and Jacopini. The first diagram depicts

sequencing from statement to statement. The two statements

are of undefined internal complexity. Each statement could

conceivably be a single instruction or an entire

sub-structure. The center diagram represents the selective

execution of alternative program segments. Again, there is

no implication concerning the internal complexity of the two

statements on the two legs of the condition; in fact, one of

the statements may be empty. In this case only a single line

is drawn and the written form is IF-THEN (without the

ELSE-clause) . Iteration is depicted in the third chart. In

the example chosen here, the conditional test is made before

the statement to be iterated is invoked. This is called a

WHILE-loop, because the statement is performed as long as

the condition stated is true. An alternative function can be

introduced with the test performed after the statement is

performed. Relevant theory makes the choice arbitrary, but

one or the other should be used consistently in a program.

b. Sequencing Discipline

Each of the flowcharts share the property that

they have a single entry (at the top) and a single exit (at

the bottom) . The three structures are alternately referred

to in the literature as "concatenation", "selection" and

"repetition" respectively. Strict adherence to these three

structures is what Dijkstra refers to as a "sequencing

discipline". Flowcharts of programs using only these

20

<u

CU -H

CO J2

CD

G
01

S
0)

o jj

O CO

8

a T3

a
o J-> 4-1

•H a C
U CD 0)

1-t e S
T3 0) OJ

C 4-4 4-1

o CO cd

g o i-i 4-1

o 1 en en

•H —
j-i •H c cu

-r4 CD 7)

13 H £ H
G •h| 4-1 0)

o
a

C/J

W
OS

H
C_>

H
cn

,-J

O
«;
Hz
o

CM

OS

oM

c0 .n

XJ
CO 1

4-1 4-»

c
OJ

s

C
at

s
cu CD

4-1 4_)

(0 CO

4-1 4-1

CO CO

c c
CD CD

e e
0) CD <u
rj XJ -J

fi CO CO

D 4-J 4-1

3 CD CO

a*
0)

C-O

21

decompositions show a straight- line program (restricted

topology) as compared with flowcharts of programs allowing

multiple entry and exit points and lines drawn from any

block leading into any other. Such a restricted flow pattern

makes the program intellectually easier to manage as a

programmer can readily envision a one-to-one mapping of the

textual flow of the program to the computational flow.. More

simply, the structure of the computations is reflected in

the printed structure of the program and the utility of a

flowchart becomes marginal.

c. Abstraction

In addition to a coding technigue and sequencing

dicipline, structured programming embraces the idea of a

design method. Dijkstra refers to it as stepwise

refinement, but intrinsic to the understanding of the method

is the concept of abstraction.

A "variable", for example, is an abstraction

from its current value if it becomes necessary to change its

value in the process of repetitively executing a sequence of

code. There is also an abstraction involved in using some

tool or device to accomplish a goal while totally

disregarding the reason it functions as it does (e.g.,

using a mathematical theorm without considering how it was

originally proved) . A simulation might be regarded as a

program model of an abstract machine. In regards to the

complexity of a program, the concept of abstraction forces

one to recognize the limitations of the mind and to use

those limitations to advantage by writing programs which are

intellectually manageable at each stage of the development.

Abstraction is therefore a tool for coping with

complexity. A complex program should not be regarded

22

immediately in terms of computer instructions, but rather in

terms of functional specifications formulated in some

suitable notation, such as a natural language. In this way,

an abstract program begins to emerge, with each functional

level (or level of abstraction) subjected to the next lower

level of abstraction. The stepwise refinement continues

until a level is reached that can be processed by a

computer. The reason for the restrictive control structures

is easily seen here as they permit the designer to

successively give greater structure to the functions without

introducing new connections.

In essence, a top-down structured program may be

viewed as consisting of a number of layers, the top layer

being the overall definition, the bottom layer being the

individual coded instructions using the basic control

structures, and the various intermediate layers being

definitions of functions in the whole system in terms of the

more primitive concepts.

3 . Modular Programm ing

Another methodology that has received increased

attention is modular programming. The idea of breaking a

large system into a number of smaller parts, or modules, is

much older than the idea of structured programming. As

defined by Liskov, a complex system is "one in which there

are so many systems states that it is difficult to

understand how to organize the program logic so that all

states will be handled correctly" [22]. Even in the early

days of computer programming, the technique of "divide and

rule" was recognized as convenient method of approaching the

problem of complexity. The term "modularization" has since

been applied to the technique. The word "modular" means

"constructed with standardized units or dimensions for

23

flexibility and variety in use". Applied to a programming

methodology, modularity refers to the building of a program

by putting together parts called program modules. In a

modular program the "stardardized units or dimensions" are

standards such that the modules meeting the maxims are

conveniently fitted together to realize a large system. So

the idea envisioned when the term modular programming is

used is dependent upon the standards applied to a module

description.

In its broadest description, the module is viewed as

a group of program statements that are lexically together on

the listing. The statements are bounded by identifiable

boundaries (such as BEGIN and END statements) and are

collectively referenced by a name (the module name) . The

statements can conceivably be called from any other part of

the program. Although a great deal of flexibility is

implied in the concept of a module, it is the primitive

notion underlying the modular programming techniques

espoused in the literature. As in the controversies

surrounding structured programming, programmers in the past

tended to refine the technique of "divide and rule" into

methods that best met the demands of their programming

environments. Individual authors will therefore vary in

their descriptions of modular programming, depending on

their insistance on the significance of such qualities as

module independence, limited functional scope or program

adaptability.

In essence, there are two classes of problems

addressed in the literature: how should modules be

interfaced to each other and how should they be defined.

Interface design is concerned with passing of control and

data back and forth between modules and the restrictions

placed on the internal structure of the data [26]. A

module's knowledge of the outside world is, therefore, an

24

important factor in the initial design process. The degree

and method of interfacing is contingent on the functional

scope (or definition) applied to a module.

a. Multiple Function Modules

One concept is to view the module as a procedure

(subroutine or subprogram, depending on the language) . The

flow of control in a pattern described by a tree is

characteristic of modular programs constructed as

combinations of procedures. The top of the tree is the first

code module; it depicts the program's overall control logic

and functional capabilities. Intermediate modules in the

program tree, in effect, summarize what is done by the

modules below. The bottom modules are short programs which

call no other modules. Thus the program itself becomes a

principle tool of documentation. Using this concept makes it

difficult to limit the number of functions performed by a

module. Normally, modules viewed as procedures will take on

multiple function characteristics, although most authors

insist that an effort be made to keep functional scope to a

minimum.

An example of this view of a module is suggested

by Liskov [22]. At any point during the progress of a

computation, one module (procedure) may initiate the

activation of another procedure by specifying the input

data. The new procedure activation is carried on, possibly

making use of additional procedures, until it terminates,

leaving a set of output data for use by the procedure from

which it was activated. Calling sequences can only be

downward in Liskov's method and return paths are the exact

reverse of the calling paths. Her method further embodies

the notion of stepwise refinement in the actual coding

process as well as the use of Dijkstra's control structures.

25

Thus, higher modules are written first and tested at each

level using stubs to represent the as yet uncoded lower

modules. The performance of the lower level modules tends

to be more or less dependent on the upper levels.

b. Single Function Modules

Other authors tend to be more restricitve in

their definition of functional scope of a module, yet more

restrictive in terms of accessibility to and from other

modules. Maynard proposes that each module perform "a single

logical function (e.g, READ INPUT FILE) or a number of small

related logical functions (e.g., GROSS TO NET COMPUTATION)"

[26]. Once the logical functions have been isolated, each

module is coded and tested on its own. Only when all the

modules are written and tested are they all linked together

for final testing. Adaptability and individual module

testing are considered critical factors by authors claiming

the value of limited functional scope of the module.

D. L. Parnas has considered the problem of

defining modules and proposed a particular strategy to

follow [32]. His arguments are based on the observation

that programmers get into trouble by implicitly assuming

certain conditions to be true. His method is to divide a

system into modules and make explicit statements about the

complete context of each. That is, each module is described

by a function to be performed, a set of inputs and a set of

outputs. The programmer has free rein to build a module as

desired, provided that only the information explicitly given

for it is used. The division of the system is best made,

according to Parnas, by encapsulating a single design

decision in each module. Instead of making each module

correspond to one step in a process, design decisions are

made (for example, the representation of a data structure or

26

an algorithm for searching a table) and then as much as

possible of the information about each decision is hidden in

a module. In this way, it is ensured that any change in a

design decision will cause minimal change in the system.

Obviously, Parnas's goal was the design of a highly

adaptable program.

c. NTDS Module

The Navy Tactical Data System (NTDS) represents

a form of modular programming that was developed in response

to a need for a large number of operational programs that

were similar in many instances, but not identical. As the

number of ships employing NTDS increased, it became evident

that developing a unique program for each ship would involve

considerable design and programming effort. Various ships

were furnished with different equipment configurations and

different operational requirements; yet many of the required

functions were the same [30]. The Navy's goal, therefore,

was to develop tactical programs that were highly responsive

to changing mission requirements (adaptable) and equipment

(portable)

.

The methodology used by the Fleet Combat

Direction Systems Support Activities is referred to as

"functional modular programming" [30]. Each module is

viewed as an independent program which may perform one or

more related tasks and is capable of being programmed and

tested on its own. Once the mission, readiness condition and

available equipment is defined, then the required modules

are selected and compiled to form the NTDS package (program)

for that specific ship. kn executive module is installed in

each system computer to provide for control of module

execution. The executive modules vary in each computer only

in their arrangement of the flag tables to provide for

27

either periodic or "upon demand" module execution. In

addition, the executive module can delay low priority tasks

during peak periods of loading.

Communication between modules is accomplished

through the intermodule/intercomputer (IMIC) module resident

in each computer in the system. A module with information

for another module will pack a message in its output buffer

area and reference IMIC. IMIC will then transfer the message

to the receiving module and arrange for its execution by

setting the appropriate executive flag. Obtaining data from

another module is similarly accomplished, by request,

through IMIC. Each module is responsible for its own local

data store. Data that is common to several modules (e.g.,

velocity or track position) is stored in each computer and,

insofar as possible, a single module is given the

responsibility of maintaining a certain type of data within

the common store area.

The method of packing messages for subsequent

processing is a major contributing factor to the portability

and adaptability of NTDS programs, as each module can be

compiled into any of the systems
,
computers. The executive

and IMIC modules together with the common data store provide

the elements necessary for overall program control. As is

true with many software products, compromises to the

original design principles are often forced by time or

budget constraints. In such cases, it is not unusual to

find globally-known information accessed directly rather

than through IMIC.

B. DESIGN TOOLS

When constructing a small program, inconveniences and

28

inefficiences forced on the software engineer by poor

development tools may not be noticed. When constructing a

large system, however, even small losses of time on a

repetitive operation can translate into months of wasted

effort. A fundamental concern, therefore, is to provide the

software engineer with good, reliable tools that fit the

project at hand. The tools should be as general and

powerful as needed for the operations expected on the

project. Several of these tools and their impact on the

design process will be investigated. Even though the "Chief

Programmer Team" approach to a project is normally presented

in the literature as a managerial vice a technical tool, the

software engineer is responsible for the overall design and

development of a project and this, of necessity, includes

the management as well as the coding aspects. Accordingly,

the team approach is presented here as a software

engineering tool. Recognizing the particularly vital

importance of computer languages as tools, a discussion of

their design characteristics is contained in a separate

section of this thesis.

1 • Decision Tables

Ease of development corresponds closely to the

systematic way the program was planned. Using tables to

indicate decision logic is often an indication of a

systematic approach. A decision table is a tabular form for

displaying decision logic [20]. The literature on the

subject refers to two types of tables: limited entry and

extended entry. Limited entry tables frame the terms in the

condition stub so as to constitute a Boolean with only two

possible states (TRUE and FALSE or YES and NO)

.

An algorithm for the rotation of men between sea and

shore billets is given as an example of constructing a

29

decision table. The following four conditions are

considered:

C1 : If a man has been at sea eight or more years, he

must go to a shore billet, whether or not he requests shore

duty.

C2: If a man has been at sea four or more years, he

will go to a shore billet, unless he requests to stay at

sea.

C3: If a man has been at sea less than four years, he

will stay at sea.

C4: If a man is in a shore billet, he will go to a sea

billet.

In a limited entry table, the number of possible

rules is 2**n, where "n" is the number of conditions. In

this case there are sixteen entries. The option of

requesting sea or shore has been added to the original

conditions to demonstrate the ease with which a decision

table can be modified without completely redesigning the

table from scratch. Note that the request will only affect

the decision when an individual has been at sea between four

and eight years. Therefore, it is not necessary to add a

fifth condition. The rules are systematically drawn as

follows:

C1: YYYYYYYYNNNNNNNN
C2: YYYYNNNNYYYYNNNN
C3: YYNNYYNNYYNNYYNN
C4: YNYNYNYNYNYNYNYN

Several of the rules can be immediately eliminated as being

impossible situations. For example, a man cannot

simultaneously be at sea for greater than eight years and

30

less than four. Fig. 3a represents the simplified decision

logic remaining. The blanks indicate "don't care"

situations. Note that the table can be streamlined even

further by combining Rules 1 and 2 (the result is the same

regardless of duty preference) and also rules 5 and 6 in

addition to rules 7 and 8 (for the same reason) . However,

by listing the entire table, all possibilities are shown.

Figure 3b is the resulting program translated directly from

the decision table using the IF-THEN-ELSE control structure.

There are programmers who still persist in using

flowcharts to describe computer logic. Although these

charts are satisfactory in many instances, they have several

inherent disadvantages, including the fact that they are not

suitable for translating directly to code. In addition,

depending on the complexity of the program logic, they can

be particularly difficult to read. Decision tables overcome

the disadvantages of flowcharting as the logic in the tables

is stated precisely and compactly. Furthermore, complex

situations are more easily understood as the decision table

31

ROTATION-TABLE 12345678
At sea i 8 years Y Y
At sea i 4 years Y Y
At sea < 4 years Y Y
On shore Y Y
Request sea YNYNYNYN

Go to sea x X X X X
Go to shore x X X

(a)

IF (at sea i 8 years)

THEN (assign to shore)

;

ELSE IF (at sea < 4 years)

THEN (assign to sea)

;

ELSE IF (on shore)

THEN (assign to sea)

;

ELSE IF (request sea)

THEN (assign to sea)

;

ELSE (assign to shore)

;

(b)

FIGURE 3 - ROTATION TABLE

32

layout enables the programmer to systematically examine each

possible combination of conditions to make sure that no

possibility has been overlooked.

2. Chief Programmer Teams

A programming management technique called the "chief

programmer concept" was developed by Harlan Mills and his

associates at IBM [1]. In a paper describing an experiment

using the concept [8], two major motivations for trying this

approach are cited. One is the realization that, because of

the newness and rapidly expanding nature of computing, many

projects are staffed primarily by inexperienced people; at

the same time, those with technical expertise are pushed

into higher management where their contributions to the

technical aspects of a project are limited. The second

motivation is the observation that not much functional

specialization is used on a project. A single person is

typically responsible for designing, programming, coding,

and testing a single module. The main feature of the chief

programmer concept, as developed by IBM, is a functional

organization centered around a competent, experienced person

(software engineer) who has total responsibility for the

technical development of the system. The chief programmer

personally develops the overall system and programs the most

difficult parts of it.

Other members of the team are chosen and assigned

tasks primarily on the basis of whether or not they can

extend the capabilities of the chief. Thus, other competent

professionals may be placed on the team to help detail the

overall design formulated by (or under the direct leadership

of) the chief. Routine jobs, such as coding programs once

detailed designs are available, removing syntax errors, and

running simple tests, are carried out by junior members of

33

the team who have less experience than the chief and main

assistants. Clerical duties such as key-punching,

maintaining listings, and actually running jobs on the

computer are given to a secretary or clerical worker.

The size of the
,
group was not large. In the

experiment reported by Baker [8], a team consisting of no

more than eleven people produced a system of more than

80,000 lines of source code. For larger projects, division

of the total task into separable parts permits utilization

of the functional- specialization technique in each of the

resultant suttask areas.

As described by Baker, there are three additional

components of the chief-programmer concept: programming

support libraries, top-down programming, and structured

programming. The use of a programming support library is

intended to isolate clerical functions from the technical

aspects of system production. Such a library system

consists of four main parts. There is an "internal library"

of source code, load modules, and test bases in

machine-processable form. An "external library" contains

listings of the internal library and records of superseded

versions cf the system. A set of "machine procedures" for

updating libraries, retrieving modules, link editing,

testing and so on, is established. Finally, "office

procedures" are followed by the clerical help in maintaining

and adding to both the internal and external libraries.

The top-down design of the program and the use of

Dijkstra's control structures is identical in description to

that of Liskov^ technique [22]. The overall control flow

is implemented and executed first using stubs for lower

level routines that have not yet been implemented. The

choice of terms becomes a matter of semantics. Liskov

prefers to view the technique as a form of modular

34

programming; Mills sees the technique as a modification of

structured programming. As pointed out by Baker, the chief

programmer approach basically contains nothing new. Its

contribution, however, is that it has integrated for the

first time in a production environment four existing

techniques— functional specialization, programming support

libraries, top-down design and structured programming.

Additional detail and description of the "experiment" noted

above can be found in Ref. [8].

3. Text Edito rs

Regardless of the programming methodology employed,

a text editor offers considerable advantages to the software

engineer. Text editors for entering and modifying online

textual information range widely in power and usability.

Simple program editors permit changes to be made only to

entire records; more advanced editors operate on a

character-by-character basis, thus eliminating a good bit of

manual retyping. One of the underlying factors in the

usefulness of editors to the software engineer is the unit

of information with which they work. For some operations,

working with an entire record is sufficient; in many, the

aoility to work with characters is a necessity. As a

minimum, a useful text editor should provide for

* the insertion and deletion of source records;

* the global or singular substitution of character

strings within records;

* the location of items both by context and record

number;

* the preservation and retrieval of intermediate edit

sessions in case of system failure;

35

* the ability to display the altered line (with

optional graphic interpretation of non-printing characters)

[36].

Desirable facilities for a text editor might include

* command "macros" for complex processing;

* extended pattern matching within locative strings;

* verbosity control;

* abbreviated notation for the contents of the

locative string in the replacement string;

* reading input (source) from other files;

* moving or duplicating (multiple) records within a

file;

* selective write of (multiple) records to a target

file.

36

IV. LANGUAGE DESIGN

The primary purpose of a programming language is to

serve as a tool for the software engineer in the most

difficult aspect of the profession, namely program design.

A programming language provides both a conceptual framework

for thinking about algorithms and a means of expressing

those algorithms for machine execution [35]. Thus r the

language chosen not only determines how to express a

problem; it also determines the scheme chosen for the

problem solution.

A compendium of computer languages is beyond the scope

of this thesis. The interested reader is referred to

Appendix B where several authors are listed who have

surveyed the primary features of common programming

languages. Rather, an attempt is made here to identify the

broad categories of available languages and the

distinguishing characteristics of each in order to provide a

basis for further study. The primary language design

features supportive of structured programming are

investigated along with requirements of DOD in regards to

languages used in the tactical environment.

A. LANGUAGE CATEGORIES

All computer languages may be roughly categorized as

either Machine-Oriented (MOL) or High Order (HOL) . The MOL

category can be divided into machine, assembly, and

macro-languages.

37

1 . Machine-Oriented Languages (MOL)

Machine language strings together numeric statements

representing the value of the operating instructions to

specify the sequence of operations a particular computer

should perform. In an assembly language, alphanumeric

statements, which generally relate on a one-to-one basis

with the machine language statements for a particular

computer, also give semantic information as to the nature of

the instruction by ordering the alphanumeric symbols. These

statements are also strung together in a sequence for the

computer. Assembly language, as a rule, also contains some

statements which relate to a sequence of several machine

instructions. Macro-language is highly oriented to a

structure which has a distinct sequence of machine

instructions related to each alphanumeric statement.

The main characteristic common to these

machine-oriented types is that they are a vehicle for

communication between the programmer and the computer at the

lowest logic level possible. This characteristic allows an

optimization in both operating time and core space of the

program and facilitates real-time input/output control.

However, for a programmer who is not expert and for a

reasonably challenging problem, the resulting program will

often fall significantly short of the optimum.

2- High Order Langua ges (HOP

HOL's allow the programmer to communicate with the

computer in a language close in syntactic and semantic

structure to the language in which a human thinks. This

contrasts with MOL's which are close in structure to the

38

language with which the computer operates. It has been

found that, in practice, programmers think in a class of

languages too broad to be adaptable to a programming

language [42]. High Order Languages are therefore designed

to operate with a particular interest area in mind, and the

syntax and semantics of the language are most compatible

with the language of this area (e.g., FORTRAN with

mathematics or C030L with business) . Thus, the programmer

is freed from the job of guiding the computer through the

task the program is to perform and can concentrate on how

the problem should be solved and how the program should be

organized to optimize the use of available resources.

a. Procedure-Oriented

Procedure-Oriented languages are used to

describe algorithms. The coded algorithm consists of a

group of ordered source statements. These source statements

must be translated into a machine-executable form such that

the execution order corresponds to that described in the

algorithm. Thus the source statements control the order in

which the machine- executable statements are performed. In

addition, bookkeeping functions are involved which are not

really part of the algorithm (e.g., assigning data

storage)

.

b. Problem-Oriented

This language type is designed for a narrow

class of problems where the programmer writes the program in

terms of the problem formulation. An example is CSMP

(Continuous System Modeling Program) which is a language for

the scientific user who wishes to simulate a continuous

dynamic system modeled by systems of differential equations.

39

Languages of this type differ from Procedure-Oriented

languages in that the procedure for solving the problem is

imbedded in the compiling program. Procedural languages

require the procedure for solving the problem to be

specified as part of the source program.

c. Nonprocedure-Oriented

This group of languages is sometimes called a

"Very High Order Language" category in order to convey the

notion of languages which in some sense are "higher" than

COBOL, FORTRAN or PL/I. They are more commonly referred to

in the literature as nonprocedure-oriented (or

nonprocedural) because these languages are more concerned

with the programmers goals than specific solution methods;

that is, they seek to ask the question "what" rather than

"how" [21]. For example, the programmer would be able to

write "FIND INTEGERS A AND N SUCH THAT A**N<1000." Here the

programmer has stated the problem, but is not concerned with

how the compiler actually solves it.

B. METHODOLOGY SUPPORT

In theory, there is no computer language for which the

basic concepts of structured programming cannot at least be

simulated. However, the complexity of a program diminishes

and clarity increases to a marked degree if algorithms are

described in a language in which appropriate control

structures are primitive or easily expressed. As aptly

stated by one author: "Programmers should never be

satisfied with languages which permit them to program

everything, but to program nothing of interest easily" [16].

40

1 . Control Structures

Since the concept of restricting control structures

followed rather than preceded the development of the

majority of HOL's, it is not surprising that many current

compilers do not directly support the methodology. Thus the

control logic must either be simulated, using the native

characteristics of the language [17], or a revised language

syntax (language extension) must be introduced which is

consistent with structured programming requirements. The

latter may be accomplished in several ways. McGowan

demonstrates a technique using the OS/360 Assembler F and a

set of macros to realize the structures. The macros were

based on a similar design developed and used by IBM for

several years [27].

Another approach is to design a preprocessor to

convert the source language into a format which the language

compiler can readily translate. There are several types of

preprocessors discussed in the literature (with particular

concentration on FORTRAN) , but there are basic similarities

among them. A preprocessor is normally executed immediately

preceding a program compilation (hence, the synonym

"precompiler" or occasionally, "front end") . Its input is a

set of programming statements, of which all or part are

unacceptable to the compiler, and its output is a program in

a syntax acceptable to the compiler. For example, a more or

less FORTRAN-like structured language is designed along with

a preprocessor to convert the programs written in this

structured language into statements that the existing

compiler will accept.

One of the major advantages of a preprocessor is

that it does not require modifications to the existing

41

compiler. Conversely, its major disadvantage is that the

programmer must contend with two variations of the program

when tracing errors: the one coded using the language

extensions and the output of the preprocessor which the

compiler receives as input.

The use of preprocessors to achieve structuring in a

language should be regarded as an interim solution. The

long term objectives should be to modify current language

capabilities. However, at this time, it is a valid

mechanism. The primary function of a preprocessor is to

improve the productivity of an installation by expanding the

capabilities inherent in a compiler and its language. In

accomplishing this, preprocessors also provide a test

environment for various prospective control structures, thus

giving the software engineer the opportunity to observe the

effectiveness of each without actually changing the

compiler. In addition, gradual changes in an existing

language are less likely to cause discontent within the

programmer community where there is a tendency to be

protective toward a "favorite" language.

2. Block Structure

31ock structure is another language characteristic

that is, at least implicitly, associated with the structured

programming methodology. In a block-structured language

each program or subroutine is organized as a set of nested

blocks, usally delimited as in ALGOL by the symbols BEGIN

and END. Each block begins with a set of declarations which

serve two purposes. First, each declaration sets up

associations for one or more identifiers. These form the

local referencing environment for the block. Secondly, some

of the declarations may also define data structures or

simple variables to be created upon entry to the block. The

42

psychological advantage of the block structure is to make

the levels of nested logic (abstraction) immediately visible

to the programmer. In addition, the block may be viewed as a

parameterless subroutine (or module) that is coded in line

at the point of call. Recognizing the advantages of such a

nested feature as opposed to a strictly left- justified code

sequence, several indentation aids have been developed.

Meissner proposes a mechanism that is fully compatible with

existing FORTRAN language features [28]. However, as with

the simulation of control structures in an existing

language, such aids should be regarded as only interim

measures. Eventually, the step will have to be taken to

change exisiting compilers.

C. NAVY TACTICAL LANGUAGE

It is generally agreed that MOL's facilitate program

optimization, input/output handling, real-time control and,

perhaps, debugging. Although each of these characteristics

is vital within the Navy tactical community, the

disadvantages of an MOL far outweigh the advantages.

Machine-Oriented languages challenge the programmer with the

details of coding, require difficult organization of the

programming, and extend programming time and cost. Their

key disadvantages, however, are that they do not offer the

adaptive and portable characteristics necessary for the

modular programs required by the tactical community. As a

result, the Navy developed an HOL which contained the

facilities for performing certain functions not common in

most commercial High Order Languages.

In an article published in the 1973 AFIPS Conference

proceedings [37], Raymond Rubey attempted to enumerate the

peculiar characteristics of tactical military languages and

U3

compilers. It should be noted, however, that of all the

facilities listed by Rubey, there is not one which cannot

already be found in several general purpose commercial

compilers, albeit to varying degrees. For example, Rubey

emphasizes the need for a military HOL to allow for the

definition and manipulation of logical. Boolean, textual,

and character data. Also, since the debugging and

validation of a tactical military program is the most

expensive part of the development, Rubey feels that the

language itself must have a minimum number of error-prone

features or syntactic constructions. However, time and

expense alloted for the testing phase of software

development is not peculiar to the military environment;

therefore, neither is the user's desire for an error free

compiler limited to the military community. There are even

HOL's that provide for easy regression to MOL's, thus

satisfying the military's need for input/output operations,

real-time control and interrupt processing.

The difficulty, therefore, was not defining new, unique

characteristics, but rather finding one language that

encorporated all of tne desired facilities identified by the

tactical community. Rather than modify an existing

extensible language, the Navy chose to define their own.

The HOL CS-1 was the first such standard developed in 1960

[40]. It has since been superceded by the CMS-2 family,

although NTDS still supports CS-1.

Reference [40] enumerates the High Order Programming

Language requirements of the Navy's Tactical Digital Systems

User community. It is interesting to note, requirements

specifically state that the language must be supportive of

structured programming. Although the usual control

structures and block structure are included in the

description of the methodology, it has been expanded to

include recursion, modularity and the use of GOTO's (limited

44

to the containing block) . Machine-dependent code may not

appear in the source language program, thus insuring there

are no conflicts between compilers of different host

machines. The programmer must be able to control I/O

operations in the HOL.

The compiler must be unforgiving; that is, defaults

should be limited to implementation requirements vice user

conveniences. For example, the type and initial values of

each variable must be explicitly specified in the source

program. In essence, the compiler should never attempt to

read the programmers mind. Most critical, however, the

compiler should be amenable to future changes that may

result from technological advances in software and hardware.

45

MILITARY SOFTWARE

The software "crisis" reported earlier is not limited to

the commercial world. Total annual expenditures for system

analysis, design and programming of software in DOD are

estimated at $3-3.5 billion, divided among the services as

fellows: Army 23 percent, Navy 36 percent, Air Force 36

percent and other DOD agencies 5 percent [15]. Within the

Air Force, for example, it is estimated that this

expenditure represented four to five percent of the total

service budget. By 1985, it is predicted that software will

possibily represent up to 90 percent of the total

hardware/software budget for DOD L 7]«

The rapidly decreasing costs of computation resulting

from new technological advances has caused an expansion in

the variety of applications within the tactical community.

The result is not only more computer usage, but also the

need for more software. In a speech presented to the

National Aerospace and Electronics Conference in May 1976

[24], the Assistant Secretary of the Navy for Research and

Development suggested that the software costs within the

Navy tactical community could partly be attributed to the

problem of "proliferation" (i.e., each system provides its

own computer, compilers and support software) which in turn

affects the portability of tactical programs. He further

suggests that the Navy will be seeking to capitalize on the

law of "supply and demand" by looking more closely at the

investments and advancements in the commercial sector in

order to seek more commonality with commercial systems.

The commercial sector realizes more profit with a

46

reduction in software costs; DOD simply realizes a reduced

budget. Regardless, their goals are the same. As in the

case of programming languages, authors have attempted to

define the unique characteristics of military tactical

programs [6]. It will not be debated that perhaps

efficiency is important in a tactical computer system where

real-time response is critical; however, an unreliable

program is worthless no matter how efficient. Therefore,

whether the computer program to be produced is tactical or

commercial in nature, the designers have one goal in

mind—quality; and the quality of the final product cannot

be divorced from its structure and design. It is not

surprising, therefore, that the interest in structured

programming has brought with it a wave of optimism within

DOD where the expenditure of funds is more subject to public

scrutiny.

Within the tactical community, a quality program is

usually viewed in such terms as reliability, portability,

adaptability and ease of verification and validation. Each

of these characteristics is a primary factor in the overall

development cost. The ways in which program structure can

enhance these characteristics is discussed below.

A. RELIABILITY

The reliability of a program is defined in terms of its

behaviorial pattern over time; that is, whether or not it

will satisfy the stated operational requirements over a

certain time interval. It is usually measured in terms of

the degree to which a program is "free of errors"

(validation) and whether or not the program does what it

purports to do (verification) . Dijkstra has stated that

testing can be used to show the presence of bugs but not

47

their absence [10]. In short, the only way to guarantee a

program is free of errors, is to write it correctly to begin

with. However, as suggested by R. H. Graham at the Garmish

NATO Conference, the all too frequent approach is to "build

systems like the Wright brothers built airplanes— build the

whole thing, push it off the cliff, let it crash, and start

over again" [31]. Therein lies Catch-22. How does one

guarantee that a program has been designed and written

correctly from the start? D. L. Parnas argues that

reliability and correctness are not synononymous. Program

reliaaility can be improved by use of several techniques,

while the production of truly correct software remains

beyond reach [33]. It is fairly hopeless to establish the

correctness of a program beyond even the mildest doubt,

without taking structure into account.

1 • Verification and Validation

The basic purpose of verifying and validating is to

ensure that a program will perform its intended function at

the time those functions are needed by the user. Large

programs are never completely verified and validated for it

would require the execution of an astronomical number of

tests designed to exercise combinations of data through

every data path in the program. Such a degree of testing is

neither feasible nor practical. Structured programming

(combined with some traditional coding practices, such as

good annotation, descriptive lables, and judicious spacing

in the source code) greatly clarifies source coding. The

increased clarity and the reduced complexity of structured

programs can contribute considerably to the testing process.

Since the flow of control is less complicated in a

structured program, the development and execution of test

cases to adequately debug the program is simpler. Also

since the program is more understandable, its correctness

48

can occasionally be proved by desk checking.

Program verifiers make use of formal specifications

of the the program 1 s intent that are written in some formal

assertion language (such as predicate calculus) . An input

assertion defines the input domain of the program, and an

output assertion defines the computation the program is

intended to perform. Starting with the input domain, the

verifier "walks through" the program and mathematically

proves that the output assertions are satisfied whenever the

input data meets the conditions specified by the input

assertions [19]. Although such a mathematical approach to

verification may never be practical, a corollary approach

may prove of some practical significance. If a programming

language especially designed to make verification easier is

used, and if programs are structured to make it easier to

state relevant assertions, then verification may become

practical.

In the testing approach to program validation, the

program is tested over a finite set of data by executing the

program on that data. It is considerably easier to test a

program in this manner than to prove its correctness over

ail cases. Several projects have been carried out to

standardize and automate the program testing process. Some

of the work has been directed toward the construction of

program preprocessors which automatically insert

"instrumentation statements" into a program [39]. The

instrumentation statements keep track of how many times each

statement or branch in a program has been executed during a

run. The resultant statistics can be analyzed by the

programmer to determine which parts of the program have been

checked out.

49

2. Current Navy Research

Program structure analysis is concerned with the

analysis of control paths of a program and the generation of

test cases which systematically exercise the different

paths. Research in this area is presently being conducted

at the Naval Postgraduate School, supported by the Naval Air

Development Center [4,38]. Working under the hypothesis

that the ease of debugging and testing is related to

structural complexity, researchers have developed simulation

and analytical models to measure the relationship between

error detection capabilities and program structure.

In the model, a program flow is represented in the

form of a directed graph consisting of various nodes and

arcs. The nodes represent merge and/or branch points within

the program and the arcs represent sets of sequentially

executed instructions between the nodes. Each test input

defines a unique path from the start node to the exit node.

The input proceeds along its predetermined path until an

error is detected. It is then corrected and restarted along

the same path, with the dexecting-correcting-r estarting

process continuing until the end node is reached by the

input. Por each error encountered, measurements of test and

correction time are made. In addition, statistics are

accumulated on the number of errors detected in a fixed

time, number of errors detected with a fixed number of

inputs, mean time between errors, percent arcs traversed by

one or more inputs, and percent errors remaining.

Complexity is measured in terms of the number of nodes,

paths, arcs and source statements; path length; and

correctivity and reachability. In the simulation model,

various probability functions are used to generate

statistics such as the number of instructions per arc, the

50

number of instructions between errors, the arc traversed by

an input at each branch node, and test and correction times.

The authors suggest several uses for the model.

Comparing the error detection characteristics of several

design alternatives can enable the software engineer to

select the design that will be the least costly in the

testing phase of development. Also, the model can be used

to indicate the additional testing which may be caused by

the increased program complexity. The relationship between

complexity and error detection will assist the test manager

in allocating resources to the programs to be tested.

B. PORTABILITY AND ADAPTABILITY

Portability and adaptability are particularly critical

program characteristics within the tactical community where

different equipment configurations and operational

requirements are the rule rather than the exception. If the

programmer is cognizant of the fact that the architecture or

user needs may change, the program can be structured to

accomodate the change using a high degree of modularity.

Those program functions which will need the most attention

upon transfer often can be isolated and functionally

identified as distinct modules. The modules, if organized

and documented properly, can be worked on with little

reference to the rest of the program.

Adaptability and portability can also be enhanced by

avoiding or isolating code that is difficult to transfer.

For example, CMS-2 permits the programmer to intermix

assembly code with high-level statements. One approach is

to require that all assembly code exist in unique

procedures. The most effective approach is to modify the

51

CMS-2 compiler to permit low-level macros, thus only the

macros would require modification [25],

A program may be dependent upon aspects of system

configuraticn in ways that make it infeasible to transfer

the program to a system in which those aspects differ

significantly. For example, a program written for a machine

with a large amount of storage may be impossible to move to

a machine with less storage unless initially written with

this in mind.

52

71. CONCLUSIONS

Although there is consensus in the literature on what

constitutes quality software^ there are almost as many

approaches to building quality software as there are

software designers. Most of these approaches do, however,

have at least one common facet in that they are all in some

sense hierarchic. Hierarchic design approaches have proved

so far the most convenient way of simplifying the connection

patterns in complex software.

The engineering analogy has had two effects on software

development. First, the equivalent of production in

traditional engineering fields is straightforward

replication in software. What is referred to as software

production is really analogous to building a prototype. It

has important implications for management in that management

of a software project is more research and development

management than production management. Second, developments

in the last decade have led to the production of software

becoming an activity of an increasingly industrialized

nature. With talk of software engineers' workshops and

software factories, software production techniques have

evolved rapidly and now the programmer has a wealth of

design methodologies, tools and aids from which to choose.

Small software projects are frequently reported in the

literature by authors and researchers who claim their

success can be directly attributed to their use of sound and

advanced programming techniques. Glowing reports on the

success of large scale projects are noticeable scarce.

Perhaps the success of the smaller projects is due more to

53

their size than to the techniques and tools of

implementation. Regardless, it is difficut at times to

distinguish between new, sound, software engineering

principles on the one hand, and good sounding new ideas that

would never work in practice, on the other hand. Complex

systems require a very high caliber of staff who specialize

in both the development and maintenance of software.

Preprocessors were developed to provide appropriate

control structures in deficient languages. Yet, even in

languages where the structures advocated by Dijkstra are

primitive, programmers persist in their old coding methods.

In January 1974, an analysis was made of a representative

sample of General Motors' production PL/I programs. It was

concluded that "programs were quite large, more difficult

than necessary to read, and almost impossible to comprehend"

[13]. These characteristics were attributed to several

factors. For example, modularization was essentially

avoided in order to conserve storage and call/return

overhead. Variable names were not indicative of their

functions, declarations were inconsistently indented and

descriptive comments were sparse. Programmers appeared

unfamiliar with the language they were using. The

IP-THEN-ELSE form was used in only 17 percent of the

IF-statements. The DO-WHILE structure appeared only 11

times out of 7385 total DO statements.

A study was conducted to describe the "average coder"

involved in producing Navy tactical software £9]. The goal

was to determine the level of user at which the complexity

of a language should be targeted. It was found that, on the

average, coders have two years of college, know two

languages and have two years of experience. Yet, their

personalities are "basically that of introverts. They are

naive, lack aggressiveness, are non-gregarious and are

54

reluctan t to venture into the unfamiliar". Such

observations suggest a relationship between the personality

traits of programmers and the coding practices observed in

the General Motors 1 study.

At the Garmish NATO Conference it was suggested that

those who felt a crisis existed were the "university types".

The software crisis is, in fact, a crisis in education. The

benefits to be reaped from modular, structured or top-down

programmming are no longer open to debate, only to

refinement of the techniques. However, as hinted above, the

"good word" has not filtered down to the average coder. The

language study further concluded that average coders are

"under managed..." and under educated, "...which results in

poor working habits and a lack of a sense of obligation to

communicate technically" [9]. Well-trained and disciplined

software engineers are needed so that there will be a

professional standard by which to judge performance and to

make comparisons. Only an experienced, highly trained

professional should be given the responsibility of deciding

which combination of tools and methodologies best meets the

needs and constraints of the system under development. The

major problem affecting DOD software is an institutional

one. DOD should provide better incentives, education and

career paths within the services for good software

engineers.

55

APPENDIX A

DEFINITION OF TERMS

The following definitions are provided in an attempt to

cope with the problem of ineffective communication in the

field of software engineering. Although freguently

amplified, if a particular author's definition adequately

expressed, either in whole or in part, the generally

acknowledged connotation, then appropriate references are

cited. Freguently such definitions were not available as

writers on a particular subject often tended to apply a

narrow definition in the process of developing the thesis of

their material. In such cases, an attempt was made to render

a sufficiently clear and concise interpretation of the term

as it was encountered in the major portion of the

literature.

ADAPTABILITY: A measure of the ease with which a program

can be altered to fit changing user requirements [34],

Less frequently used terms are "modifiability ", and

"changeability ".

APPLICATIONS PROGRAM: A computer program such as payroll,

inventory control, operational flight, satellite

navigation, automatic testing, crew simulation and

engineering analysis.

ASSEMBLES: A program which inputs a program written in

assembly or macro-language and translates this into a

program written in machine language.

56

ASSEMBLY LANGUAGE: A programming language in which there is

a one-to-one correspondence between each assembly

language statement and a machine language statement.

Assembly language statements use alphanumeric symbology

which suggests the statement function. The assembly

language is in direct correspondence with a machine

language and therefore relates to only one computer.

CALLED MODULE: A module that receives control from another

module at an entry point and expects to return control

to that module via a return point [26].

CALLING MODULE: A module that passes control to the entry

point of a called module and expects control to be

returned (via a return point in the called module) to

the statement following the call [26].

CERTIFICATION: The process of endorsing a program as being

of a certain quality [19].

CLARITY: The ease with which a person unfamiliar with a

program reads code to determine its function and

implementation

.

COMPILER: A program which inputs a program written in a

High Order Language and translates this to a program

written in an assembly or, more usually, a machine

language.

COMPUTER: Electronic machinery which, by means of stored

instructions and data, performs rapid, often complex

calculations or compiles, correlates and selects data.

Examples: analog and digital processors, data

processors, information and real-time control

processors, electronic calculators, hybrid computers and

communications processors [23],

57

COMPUTER DATA: A representation of facts, concepts or

instructions in a structured form suitable for

acceptance, interpretation or processing by

communication between computer equipment. Such data can

be external in computer-readable form or resident within

the computer equipment and can be in the form of anolog

or digital signals [23].

COMPUTER EQUIPMENT/COMPUTER HARDWARE: Devices capable of

accepting and storing computer data, executing a

systematic sequence of operations on computer data or

producing computer outputs. Such devices can perform

substantial interpretation, computation communication,

control and other logical functions. Examples: central

processing units, terminals, printers, analog/digital

converters, tape drives, disks and drums [23].

COMPUTER PECGRAM: A series of instructions or statements,

in a form acceptable to computer equipment, designed to

cause the computer equipment to execute an operation or

operations. Computer programs include systems and

applications programs and may be either

machine-independent or -dependent and general purpose in

nature or designed to satisfy the requirements of a

specialized process or particular user [23].

COMPUTER SOFTWARE: A combination of associated computer

programs and data required to command the computer

equipment to perform computational or control functions

[23].

COMPUTER SYSTEMS: An interacting assembly consisting of

computer equipment, computer programs and computer data

CORRECTNESS: A computer program is "correct" if it actually

58

does what it purports to do and is free of all errors.

DATA BASE MANAGEMENT SYSTEM: A term which refers to a group

of computer programs and files schema which, together,

will associate the files and the data in various ways

such that predefined and unanticipated information needs

are satisfied. In the literature, a DBMS is also called

a "data management system", or an "information retrieval

system.

"

DEBUGGING: The process of locating and correcting an error

that has been discovered as a result of testing.

DUMMY MODULE: An artificial module inserted in a object

deck to satisfy a CALL from a module under test. A

dummy module consists only of an entry point and a

return point. Sometimes referred to as a stub.

EFFICIENCY: That quality of a program which relates to

storage space and execution time.

EMBEDDED COMPUTER SYSTEM: A computer system that is

integral to an electro-mechanical system such as a

combat weapon system; tactical system; aircraft, ship,

missile, spacecraft, certain command and control system;

and civilian systems such as automated rapid transit

systems. Its key attributes are:

* it is physically incorporated into a larger

system whose primary function is not data processing.

* it is integral to such a larger system from a

design, procurement and operations viewpoint.

* its outputs generally include information,

control signals and computer data [23].

FIBMWARE: A program which is so basic it would be

impossible to operate the computer without it and which

59

can therefore be thought of as being part of the

machine. Often referred to as "hardwired-software".

FUNCTION: A description of what a program does. When

speaking of a module function, then it is the

transformation (input to output) that occurs when the

module is called. In other words, a module's function is

"what happens when the module is called" [29].

GENERALITY: A measure of the scope of functions that a

program performs [29].

LANGUAGE: A set of symbols, with rules for the grouping of

the symbols, that provides a means of communication

between man and the computer.

LINKAGE EDITOR: A computer program which combines the

outputs of language translators (assemblers and

compilers) into executable phases. The linkage editor

will attempt to resolve all external references in the

routines being edited [26].

MACHINE INDEPENDENCE: Those qualities of a program making

it independent of the details of the computer structure

such as word length and types of registers.

MACHINE LANGUAGE: A programming language that can be

interpreted directly by the computer for which it is

intended; the internal operating language of the

computer.

MACRO-LANGUAGE: An assembly language with the additional

capability of providing a set of multiple-instruction

blocks which are commonly used in programs [26].

MAINTAINABILITY: A measure of the effort and time required

60

to fix bugs in the program.

MODULAB PBOGBAMMING: A programming methodology which

defines a program as a set of interrelated individual

units (called Modules) which can later be linked

together to form a complete program [26],

OBJECT PBOGBAM: The program in terms of the

computer— presented in assembly or, more usually,

machine language. This program is the "object" of the

assemblers or compiler's efforts.

PEBFOBMANCE: A description of how well a program performs

its function. It is measured in such terms as execution

speed, storage size, resource usage, and mean-time-to

failure.

PORTABILITY: A measure of the ease with which a program can

be transferred from one machine environment to another.

A highly portable program is one in which the effort

required to move it is much less than that required to

implement it initially [34]. Sometimes referred to as

"transferability", particularly in the United Kingdom.

PB0CED0BE-OBIENTED LANGUAGE (POL) : A language used to

describe an algorithm by using code consisting of a

group of ordered source statements.

PBOGBAM MAINTENANCE: Correcting, improving, adapting and

extending of computer porgrams to further use.

PBOGBAMMING METHODOLOGY: The "building" method used to

produce a computer program from nothing.

PBOPEB PBOGBAM: A program with one entry and one exit; that

is, control is received with the 1st instruction and

61

returned with the last [3].

RELIABILITY: That quality of a program which can only be

defined in terms of its behaviorial pattern over time;

that is, whether or not it will satisfy the stated

operational requirements for a specified time interval.

REL0CATA3ILITY: A measure of the ability to write a section

of code without being aware of the core storage address

which the code will eventually occupy.

SEGMENT: A term that is often used synonymously with

"module", although many authors prefer to differentiate

between the two. In such cases, a segment is a group of

statements that are lexically together, bounded, and may

or may not have a collective name. Modules would then be

made up cf one or more segments and be referred to by

name.

SEMANTICS: The relationship between meaning or concept, and

expressions (symbol groupings) in a language. For

example, the symbol "+" can have two meanings. It can

denote an operation (summing) or it can denote a state

(positive) . The semantics of the language consists of

the meanings assigned by the compiler to expressions.

SOURCE PROGRAM: The program written in assembly language or

KOL by the programmer. This program is a "source" to

the assembler or compiler.

STRUCTURED PROGRAMMING: A programming methodology which

embraces the concepts of a design method, a sequencing

discipline and a coding technique.

SYSTEMS PROGBAM: A computer program which forms a part of

62

the operating environment utilized by an applications

program; examples include operating systems, assemblers,

compilers, interpreters, data management systems,

utility programs, sort-merge programs and

maintenance/diagnostic programs.

SYNTAX: The rules of a language governing how the symbols

of the language may be grouped to have meaning. Syntax

does not relate to the meaning of symbols or groupings,

but rather may be considered synonymous with the

"structure" of the language.

TESTING: The process of supplying inputs and observing

outputs to a program. The tester frequently has no

knowledge of the program structure; normally he needs

only to understand the function [38].

TRANSLATOR: A computer program which accepts as input a

communication in a language interpreting the meaning of

the communication. An assembler, a compiler and an

interpreter are special cases of a translator [2],

VALIDATION: The process of determining whether executing

the program in a user environment causes any operational

dificulties [19].

VERIFICATION: The process of determining whether the

results of executing the program in a test environment

agree with the specifications [19].

63

APPENDIX B

ANNOTATED BIBLIOGRAPY OF SOFTWARE ENGINEERING LITERATURE

Seven topical categories were chosen as a means of

indexing the principle software engineering reference

material available at the Naval Postgraduate School. The

individual listings are available through the Dudley Knox

Library, the W. R. Church Computer Center Library, or the

extensive collection of published and unpublished material

maintained by Professor G. L. Barksdale, Department of

Computer Science. Only material dated since 1970 was

included. The exceptions were publications and articles

which have become classics in the field. The list is by no

means exhaustive. Rather, an effort was made to annotate

material which provided sufficient general information to

cover the topic or which contained a bibliography for

further investigation. Cross-references to other categories

are also provided. The seven categories are as follows:

A. General Concepts

B. Methodologies

C. Design Tools

D. Languages

E. Quality Characteristics

F. DOD Software

G. Management

64

A. General Concepts

**

ACM Computin g Surveys , Special Issue: Programming, v. 6,

No. 4, December 1974.

This issue covers a range of viewpoints about good

programming by several well-known authors in the field

of software engineering. The first two papers in the

issue focus on the environment in which programmers

work. Top-down and structured programming are addressed

by Niklaus Wirth's article while Donald Knuth gives a

concise, balanced view of the GOTO controversy.

Kernighan and Plauger also contribute to the issue with

a capsule presentation of several points made in their

book, The Elem ents of Programming Style.

(B,G)

AFIPS Conference P roceedings, v. 44, p. 263-377, 1975.

This issue contains a special section consisting of

position papers which concentrate on a number of

fundamental issues related to software. Included are

papers under the following categories:

Software—Portability and Reliability; Programming— Art,

Science or Engineering; Issues in Programming Language

Design; COBOL 74— Its Impact on Software Engineering;

Software Engineering; Operating System Theory; and

Program Verification in 1980.

(E,D)

Bauer, F. L., Advanced Course In Software En g ineerin g,

Springer-Verlag, 1973.

This book represents the consolidated effort of a group

of experts, prepared in a two-week seminar in Garmish

and later presented at a course in February-March 1972.

65

The goal of the course was to taJce the first step toward

identifying and making available teaching material on

software engineering. Practically every aspect of the

profession (including its tools and techniques) are

covered in a series of lectures that are concise, yet

easily understood. It serves as excellent introductory

material for the student who eventually intends to

conduct further investigation into a particular area of

the profession.

(B,C,D,E,G)

Buxton, J. N. and Randall, Brian, So ftware Engineering

Tech nigues , Report on a conference sponsored by the NATO

Science Committee, Rome, Italy, 27 to 31 October 1969.

This conference is a direct sequel to the NATO

conference on software engineering held at Garmish,

Germany the previous year. The report summarizes the

discussions held at the conference and includes a

selection of working papers prepared by the

participants. The major difference between the two

conferences is that this conference was devoted to a

more detailed study of technical problems rather than

including the managerial problems which figured so

largely at Garmish.

(B,C,D,E,G)

Cheatham, Thomas E., The Higji Cost of Software , proceedings

of a symposium held in Monterey, California, NTIS, AD

777121, September 1973.

The objective of the symposium was to consider what

research was needed to achieve a major reduction in

software costs. Five workshops considered the areas of

understanding the software problem, semantics of

languages and systems, programming methodologies,

software-related advances in computer hardware and

problems in large systems. (B,C)

66

Compute r, "Hardware vs Software: The Two Faces of

Computers", v. 6, No. 11, November 1973.

The recent rapid developments in semiconductor

technology have resulted in hardware being designed with

insufficient regard for the special requirements of

supervisory software. This issue addresses the problem

of how hardware technology can most effectively reduce

total computer system costs by attacking the predominant

software portion; that is, moving significant portions

of operating systems to firmware/Hardware.

Computer , "Software Engineering: The Age of the Software

Factory Is Here", May 1975.

This special edition contains three articles on software

engineering which respectively examine the basic

principles and goals, the software factory, and

reliability modeling.

(C,E)

Graham, fiobert M., Prin ciples of Systems Programming, John

Wiley and Sons, Inc., 1975.

Systems programming is a broad field that encompasses

many specialities. The author addresses such topics as

operating systems, assemblers, compilers, loaders,

memory managers, I/O and security at an introductory

level of systems programming. A basic knowledge of

assembly language for some computer is assumed.

Joslin, Edward 0., Software For Computer Systems , College

Readings Inc., 1970.

The first half of the book consists of a series of

essays on various aspects of software engineering and is

gearad toward the manager rather than the technician.

The second section consists of primers on COBOL and

FORTRAN. The compendium is concerned with teaching the

67

basic concepts of the two languages without regard to

any particular hardware configuration.

(D,G)

Kernighan, Brian 9. and Plauger, P. J., The Elements of

Programming S tyle, McGraw-Hill Book Company, 1974.

This book consists of a large number of programs in

FORTRAN and PL/I which provides one or more lessons in

style. The authors discuss the shortcomings of each

program, rewrite it, then draw a general rule from the

specific case. Each chapter ends with a summary of the

rules presented. The book has become a classic in the

literature and is frequently referenced by noted authors

in the field. It is excellent reference material for

the beginner as well as the experienced programmer.

(B,C)

Naur, Peter and Randall, Brian, Software E ngineering, report

of a conference sponsored by the NATO Science Committee,

Garmish, Germany, 7 to 1 1 October 1968.

The Garmish conference is notable for the range of

interests and experience represented amongst its

participants. The goal was to identify, classify and

discuss the problems, both technical and managerial

which faced the various different classes of software

projects. Thus, sections of the report are written for

those who have no special interest in computers but who

are concerned with its impact on society. Other

sections are specifically directed toward managers,

university officials or researchers in fields other than

computer science. The major outcome of this conference

was the realization of the full magnitude of the

software crisis.

(B,C,D,E,G)

68

Proceedings of the _1st National Conference on Software

Engineering, sponsored by the National Bureau of

Standards and the IEEE Computer Society, Washington, D.

C, 11 to 12 September 1975.

This publication consists of a collection of papers

submitted to the various conference committees.

Although some are technical in nature, the majority are

broad overviews of methodologies, techniques and tools

of interest to the manager.

(B,C,D,E,G)

Software World, Software 72, proceedings of a conference

held at the University of Kent at Canterbury, 24 to 26

July 1972.

The Software 12 Conference, together with its

predecessors S oftwar e 70 and Software 7J, were a trio of

conferences sponsored by Software World on the state of

the art in the United Kingdom. They provide a basis for

comparison with the problems faced in the United States.

Certain terminology will be unfamiliar to the U. S.

reader at first but can usually be interpreted from its

contextual use. "Middleware", for example, is similar

to firmware. Software refers strictly to systems

programs.

(B,C,B,E,G)

Stewart, S. L. , Concepts in Quality Software Design,

National Bureau of Standards Technical Note 84 2, August

1974.

An edited summary is given of five seminars on quality

software held at the National Bureau of Standards in

1972. The first three seminars provide a motivation for

studies in quality software and a review of top-down and

structured programming. The fourth provides a table of

programming proverbs of use to the novice. The final

69

seminar is an introduction to a review of

proof-of-correctness techniques.

(B,E)

Tou, Julius T., Softw are Engineering, Volume I and II,

Academic Press, 1971.

These two volumes consist of papers presented for

discussion at the Third Symposium on Computer and

Information Sciences held in Miami Beach in December

1969. The first volume contains papers concerning

computer organization, systems programming and

programming languages. The second volume is devoted to

information retrieval, pattern processing and computer

networks.

(B,C,D,E,G)

Van Tassel, Dennie, Program Style, Design, Ef ficiency,

Debugging and Testing, Prentice-Hall, Inc., 1974.

The book provides excellent introductory material for

the beginning programmer on the style or readability of

programs, program design, efficiency or optimization of

programs, debugging, and testing. The five topics are

augmented by a large number and wide variety of

programming problems.

(E,G)

B. Methodologies

**

Armstrong, Russell M. , Modular Programming In COBOL, John

Wiley and Sons, 1973.

The book provides a well-defined framework and detailed

guidelines for the implementation of modular programs in

COBOL. The chapters are organized in blocks of

progressively more technical material. Information of

70

primary interest to system managers, analysts and

designers is placed early in the book, while material

directed toward system project leaders and programmers

appears in later chapters.

<D,G)

Computer , "Structured Programming: Highlights of the 1974

Lake Arrowhead Workshop", June 1975.

The goal of this workshop was to determine the

industry-wide applicability of structured programming.

It was therefore slanted toward applications and

objective descriptions rather than technical material.

Several chairmen summarized their sessions, while others

submitted position papers and speeches.

(G)

Dijkstra, E. W., "Notes on Structured Programming",

Structu red Programming, Academic Press, 1972.

This article is a classic in the field of software

engineering. It is tutorial on the methods of

structured programming and the rationale for Dijkstra's

techniques.

Griszl, L. R., Co mputer Program Modularization, TG 1223,

Johns Hopkins University, September 1973.

The paper presents a five-step procedure for writing a

complex computer program in such a way that the product

is modular to the user as well as to the designer. The

example used is that of a computer-reliant war game.

The publication will be of interest to the programmer

who is already familiar with the fundamentals of modular

programming.

71

Maynard, Jeff, Modular Programmin g, Auerbach Publishers,

1972.

The author gives a concise yet thorough presentation of

modular programming. It is primarily written to enable

programming managers and programmers to comprehend and

then implement the technigue for their own use.

Managers with some computer experience will get an

appreciation of the potential benefits of modular

programming from the first two chapters as the design of

programs is discussed in some detail before explaining

the actual workings of the method.

(G)

McGowan, Clement L. and Kelly, John R., T op-Down Structured

Programming Techniqu es, Petrocelli/Charter, 19 75.

The authors present a very detailed and extensive

.interpretation of structured programming. First

proposing a preliminary answer to "what is structured

programming", the authors then give an account of its

major aspects including correctness considerations,

structured coding, top-down design and integration, the

chief programmer team approach to project organization

and an extended example in PL/I. Excellent reading

references are also provided. Highly recommended as

initial reading material on the subject prior no any

further investigation in the literature.

(G)

Parnas, D. L. , A Review of "Structured Programmi ng", NTIS,

PB 223572, June 1973.

The report contains a detailed review of topics treated

in S tructured Programming in the form of three informal

"open letters" to the three authors (Dahl, Dijkstra, and

Hoare)

.

72

Parnas, D. L., "Some Conclusions From an Experiment in

Software Engineering", AFIPS Conference Proceedings, v.

41, Part 1, p. 325-329, 1972.

This paper describes the outcome of an experiment to

test the validity of some proposed software engineering

techniques. The experiment showed that it was possible

to combine the work of many programmers to produce

systems which could exist in many versions. The results

support the validity of the techniques being tested and

conclusions about project management.

(G)

***************** ***********************

C. Design Tools

**

Gales, Laurence E., "Structured Fortran With No

Preprocessor", SIGPL AN, v. 10, No. 10, October 1975.

Numerous articles are available in the literature on the

design cf preprocessors. This paper offers an

interesting contrast by proposing a method of designing

structured FORTRAN programs using the native

characteristics of the language.

(D)

Humby, Edward, Programs From Decision Tables, Macdonald and

Co., 1973.

This book is concerned primarily with the translation of

decision tables to computer programs and is not intended

as a primer on drafting decision tables. The author

demonstrates that for any given decision table there are

several flowchart equivalents, some better than others,

depending on the criteria set (i. e., storage

requirements or average run time) . Several methods of

guaranteeing the best solution are demonstrated. An

73

extensive bibliography is provided for further reference

material on the subject.

Kernighan, Brian W. and Plauger, P. J., Softw are Tools,

Addison-Wesley Publishing Company, 1976.

The authors concentrate on two subjects. The first is

how programmers can view substantial parts of what they

do as tool building and tool using. By studying

specific examples of general purpose tools, the authors

show how programs can be packaged as tools, so other

programmers will use them in preference to building

their own. The second concern is how to write good

programs. Rather than devoting specific chapters to

ideas like structured programming and top-down design,

the authors continually demonstrate their use throughout

the numerous programming examples. All the programs are

written in RATFOR (RATional FORtran) which is easy to

read, write and understand by anyone having even a

cursory knowledge of FORTRAN.

(B)

Ramamoorthy, C. V. and Ho, S. F., "Testing Large Software

with Automated Software Evaluation Systems", IEEE

Transactions on Software Engin eering, v. SE-1, No. 1, p.

46-58, March 1975.

The authors contend that software tools are valuable in

improving software reliability and attacking the high

cost cf software. This paper describes in detail the

many features of automated software tools and some

software evaluation systems that are currently

available.

(E)

74

******* ************************ *********

D. Languages

**

De Reiner, F. and Kran, H. , "Programming in-the-large

Versus Programming in-the-small", SIGPLAN, proceedings

of the International Conference on Reliable Software, p.

114-121, June 1975.

The authors argue that two different types of languages

are needed for programming in-the-small; i. e., one for

writing the modules, and a "module-linkage language" for

knitting the modules together. The software reliability

aspects of such a module-linkage language are explored.

- (B)

Elshoff, J. L., "An Analysis of Some Commercial PL/I

Programs", IEEE Transactions on S oftware Engineering, v.

SE-2, No. 2, p. 113-120, June 1976.

The author scanned the source code for 120 production

programs from several General Motors* computing

installations, both manually and automatically, to

consider five attributes: size, readability,

complexity, programmer discipline and use of the

language. Although the programs were written in PL/I,

the author indicates that the observations and

conclusions are typical of many installations.

(E)

Gannan, J. D. and Horning, J. J., "Language Design for

Programming Reliability", I EEE Transa ctions on Software

Engineering , v. SE-1, No. 2, p. 17 9-191, June 1975.

This paper identifies language features that enhance the

reliability of programs and presents impirical evidence

concerning the effects of some specific features. An

75

excellent bibliography is provided for further

investigation.

(E)

Groams, David W. , Programming Lan guage Design, (A

Bibliography with Abstracts) , NTIS/PS~75/588 , August

1975.

The bibliography contains 127 abstracts of research

papers on the design, development and implementation of

programming languages. The research includes

specifications and applications for the programming

languages in systems development and their use in

specific cases such as interactive graphic systems,

tJNIVAC computers and others. The report also includes

research on language compilers, syntax, semantics and

logic modules. It covers the period 1970 to July 1975.

Hoare, C. A. R. , Hints on Programming Language Design ,

NTIS, AD 773391, December 1973.

This paper presents the view that a programming language

is a tool. It discusses the objective criteria for

evaluating a language design, and illustrates the

criteria by application to language features of both

high level languages and machine code programming. An

annotated reading list is also provided.

Meissner, Loren P., "On Extending FORTRAN Control

Structures to Facilitate Structured Programming",

SIGPLAN, v. 10, No. 9, September 1975.

The author attempts to identify some of the common

features that can be perceived from the numerous

preprocessor designs that have recently been espoused in

the literature. He primarily is concerned with those

language extensions designed for control structure

augmentation.

(C)

76

Pratt, Terance tf . , Programming Languages: De sig n and

I mplementation, Prentice-Hall, Inc., 1975.

Computer programming language design and implementation

are the two central concerns of this book. The software

engineer, faced with the task of choosing a language

appropriate to a given problem solution, needs to be

able to evaluate the strengths and weaknesses of a

language. The author organizes the study of language

around the central areas of data operations, seguence

control, data control, storage management, operating

environment and syntax. Example analyses of seven

languages are given.

SIGPLAN , Proceedings of a Symposium on Very High Level

Languages, v. 9, No. 4, April 1974.

A "Very High Level Language" has been described as one

which is used to specify "what" is to be done, rather

than "how" it is to be done. The purpose of the

symposium was to more adequately identify and define the

characteristics of this class of languages. The papers

are grouped according to the topics: Introduction, Set

Oriented Languages, Data and Program Structures,

Simulation and Modeling, and Specific Languages.

E. Quality Characteristics

Brooks, F. P., "The Mythical Man- Month", The Mythical

Man- Month, Addison-Wesley Publishing Company, 1975.

This essay presents and interprets statistics on

prediction versus actual time spent coding and debugging

the development of various large software systems. The

77

booJc itself contains other essays relative to the

management problems inherent in large programming

projects.

(G)

Edwards, N. P., "The Effect of Certain Modular Design

Principles on Testability", SIGPLA N, proceedings of an

International Conference on Reliable Software, p.

401-410, June 1975.

This paper is a nonprogrammers view of design principles

which are considered essential to testability of complex

structures. The principles are are related to the

programming problem.

(B)

Elspas, B. and others, "An Assessment of Techniques for

Proving Program Correctness", ACM Comp uting Su rveys , v.

4, No. 2, p. 97-147, June 1972.

While techniques of Proof of Correctness to verify

software are not yet ready for practical application,

many approaches offer promise for improving the

correctness of software systems of the future. This

survey indicates the current state of the art.

Fleiss, Joel E. and others, Programming for Transf erability,

NTIS, AD 750897, September 1972.

This document presents the results of an investigation

of design and documentation techniques used in

programming in order to develop recommendations and

guidelines for program portability. The first part of

the study presents guidelines that are language

independent. The second section includes specific

suggestions for improvements of FORTRAN, JOVIAL, and

COBOL program design.

<B,D,E,G)

78

Linden, T. A. # "A Summary of Progress Toward Proving

Program Correctness", AFIPS Conference Proceedings, v.

41, Part I, p. 201-211, 1972.

This paper provides a summary of progress in developing

techniques for proving that programs satisfy formally

defined specifications. An extensive bibliography is

provided for further research.

LisJcov, B. H., Guidelines For The Design and Implementation

2l Reliable S oftwar e Sy stem s, NTIS, AD 757905, February

1973.

This document describes experimental guidelines

governing the production of reliable software systems.

Both programming and management guidelines are proposed.

Mostly the material covers information on structured and

modular programming found elsewhere in the literature.

However, the section on how to effectively select levels

of abstractions provides several good suggestions.

(B)

Richards, F. Russell, Computer S oftware : Te stin g,

Reliability Models, and Quality Assuranc e, NPS5 5RL, 74

71A, Naval Postgraduate School, July 1974.

The problems of measuring and assuring the quality of

computer software are addressed. Mathematical models

for estimating a quantitative measure of software

quality is presented. Also included is a discussion of

the customer's role in software quality assurance.

Schneidevrind, Norman F., Analysis of Error Processes in

Computer Soft ware, NPS-55ss74071 , Naval Postgraduate

School, July 1974.

This paper describes a mathematical model for

statistically analyzing software error detection and

correction processes during software functional testing.

79

Using error detection histories as inputs, the model

outputs forecasts of the future behavior of error

detection and correction processes. Also, definitional

ambiguities are resolved for key software error terms.

Schneidewind, Norman F. and others, Str ucture and Error

Detection in Computer Software, NPS55Ss75021 , Naval

Postgraduate School, February 1975.

This paper reports on a FORTRAN simulation error

detection model developed to investigate the

relationship between program structure and error

characteristics. A directed graph representing the

program flow is input to the model as a node arc

incidence matrix. The authors felt that it was not

possible to draw firm conclusions from running three

successive inputs into only 20 programs of increasing

complexity. However, since the publication of this

paper, several NTDS program modules have been placed in

the form of directed graphs and used as inputs to the

model.

Schneidewind, Norman F. and others, System Test Method ology ,

Volume I and II, NPS55ss75072A, Naval Postgraduate

School, July 1975.

These volumes report the results of a research project

covering the period 30 June 1974 to 30 June 1975 under

the sponsorship of the Naval Air Development Center.

The project addressed the areas of prototype testing,

maintenance testing, software error detection analysis

and issues in systems testing. Noting the impossibility

of completely testing a complex system, the authors

attempt to answer the question "How can a subset of the

test inputs best be selected to thoroughly test the

system?"

80

**

F. DOD Software

**

AFIPS Conference Proceedings, v. 42, p. 787-816, 1974.

In a series of four articles, several authors attempt to

identify the unique characteristics of military computer

systems. Included in the discussion are tactical

executive systems, hardware, languages and compilers,

and operational programs.

(D)

Cooper, CDR John D. and Perkins, John D. , Informal R eport :

k Descri ption of the Average Coder Involved in Producing

Navy Tactical Software, prepared for submission to the

ODDR and E Committee on High Order Languages (HOL) , May

1975.

This report presents a composite of characteristics

which describe the individual at which the complexity of

a new language should be aimed; that is, the "average

coder".

(D)

Defense Management Journal, "Hardware/Software", October

1975.

This special issue addresses the problem of the

increased use of, and dependency on, software in weapons

systems and the management and production methods

necessary to control its direct and indirect costs.

(G)

Department of Defense Directive Number 5000 .29, Management

of Computer Resources in Major Defense Systems.

This is an instruction which establishes policy for the

management and control of computer resources during the

development, acquisition, deployment and support of

81

major Defense systems. It directs that particular

emphasis be placed on the review, analysis and

validation of software. DOD recognizes that a primary

means of accomplishing this objective is "to establish

and/or maintain appropriate education, training, and

experience career paths" for computer professionals.

(G)

Fisher, P. and others, Steps Toward Re liable Sof tware:

Proc eedings of a Works hop Held at Falls Church , Virginia

on November 19-20, 1974, NTIS, AD A0 10396, January 1975.

This report describes the proceedings of a workshop

sponsored by the U. S. Army Computer Systems Command

Research and Development Program. The objective was to

identify potentially beneficial research approaches for

improvement of software reliability in the military's

software production environment. The group focused on

abstract program development and refinement, modular

top-down design, and program verification. A

bibliography of references related to reliable software

is provided.

(B,E)

Manley, LT Col John H. and Lipow, Myron, Findings and

Reccommendations of the Joint Logistics Comm anders

Software Reliability Work Group , Volume II, November

1975.

This report documents over a year's work by 30 software

professionals from DOD, civilian industry and the

academic community. Volume II states the major problem

and proposes solutions concerning the question of how to

improve reliability of computer software embedded in

military electronic systems. A bibliography of

literature on software reliability is inculded.

(E)

82

Pryor, C. Nicholas, A Comparative Descr i ption of S evera l

High Level Computer Languages, NTIS, AD A0153 35, 9 July

1975.

Several high level computer languages in use or

considered for military applications are described,

including FORTRAN, BASIC, ALGOL, PL/I, CMS-2, JOVIAL,

CS-4 and SPL-1. The author investigates the basic

statement types that are common to all the languages and

compares them on a side-by-side basis.

(D)

SECNAV NOTICE 5230, Department of the Navy Short-Range Plan

for ADP (FY 76-77), 14 January 1976.

This plan presents general guidance concerning the

objectives, major strategies and significant actions to

be pursued in the ADP Program of the Department of the

Navy during the period 1976-1977. The general

objectives of the program are listed as well as

constraints faced by Navy management in the form of

federal regulations and DOD policy. Of particular

interest is the plan to develop an improved ADP career

management program for both military and civilians.

(G)

SHAPfl Management Strategy (Softwar e) ; A Handbook , developed

under the aegis of the Submarine Subcommittee, ASW

Advisory Committee, and National Security Industrial

Association, November 1975.

This paper is the draft of a handbook prepared for Ship

Acquisition Project Managers (SHAPM) on how to plan and

manage a submarine acquisition project so as to assure

scheduled delivery of software. Three major events,

called "gates", are outlined for management attention,

as well as several inter-gate activities, which serve as

a checklist on the effective utilization of project

time. The stragety is summarized in a foldout chart at

83

the back of the handbook.

(G)

Syms, G. H. , Notes on Modular Operating System D esign:

Specialization and Simu lation of Basic Modules, Naval

Electronics Laboratory Center, San Diego, California,

January 1974,

The problem addressed is that of specifying and

simulating basic operating system modules for the All

Application Digital Computer System. The programs are

useful for instructional purposes as well as research in

modular OS specification and design. The report

presents the results of basic modeling that is

considered preliminary to the development of modular

operating systems.

(B)

Tactical Digital Systems Office, IK S^ Navy Tactical Digital

Systems Dser 's Requirements of a High Order Progr amming

Language (HOP , Naval Material Command, MAT-09Y, 12

November 1975.

The document contains the High Order Programming

Language (HOL) requirements of the Navy's Tactical

Digital Systems Oser community. It is expected that the

present standard, CMS-2, will eventuallly be superseded.

The purpose of the document, therefore, is to answer the

question "What are the user's requirements of an HOL?"

(D)

84

*#X**#* ******************** *************

G. Management

***** ***********************************

Baker, F. T. r "Chief Programmer Team Management of

Production Programming " , IBM Systems Journal, v. 2, No.

1, 1972.

This paper is representative of the works of both Mills

and Baker in their efforts to improve reliability of

software through new programming approaches. See

SIGPLAN, International Conference on Reliable Software

for other articles on chief programmer teams by these

authors.

(B,C)

Ridge, Warren J. and Johnson, Leann E. , Effective

Management of Computer Software, Dow Jones-Irwin, Inc.,

1973.

A new approach to cost problems in computer software is

presented—the value engineering approach. This

approach was originally designed to be used with

hardware. Value engineering identifies and isolates the

basic "function" of the study object, suggests

alternatives, then evaluates each alternative in such

terms as cost, practicability and potential roadblocks.

The book is not written as a technical treatise for

programmers. It is addressed to members of general

management that are subjected to the impact of

computers.

SIGPLAN , International Conference on Reliable Software, v.

10, No. 6, June 1975.

The purpose of this conference was to examine the

meaning of software reliability and the problems

involved from the standpoint of the customer, producer

and user. The impact of reliable software on the public

85

at large is discussed as well as the importance of

safeguarding the individual's right to privacy. The

governments contribution to improving software quality

is presented. Articles of particular interest from the

conference are listed individually in this Appendix.

(E)

Weinberg, Gerald M. , The Psychology of Computer

Programming , Van Nostrand Reinhold Company, 1971.

The book is basically an expose of entirely

under-estimated human factors in programming. Even

factors like the size of a chair or distance to the

nearest candy machine should be considered in the

day-to-day programming environment. Weinberg's book

contains numerous well-documented examples of the

influence of these factors on the success or failure of

a programming project. The concept of "egoless

programming" is also introduced.

Weiss, David H., The MUDD Report: A Case Study of Navy

Software Development Practices, Naval Research

Laboratory Report 7909, 21 May 1975.

The MUDD report chronicles the development of a

fictional system with requirements typical of Navy

tactical systems. Material for the study was obtained

from interviews with individuals responsible for the

development of comparable Navy systems. A history of

the decisions made during the development of the system

is first given, followed by an analysis of the impact of

each on the development and life-cycle of the software.

The author makes recommendations on how the mistakes can

be avoided in the future.

(G)

86

LIST OF REFERENCES

1. Baker, F. T., "Chief Programmer Team Management of

Production Programming", IBM System Journal , No. 1, p.

56-73, 1972.

2. Bennett, Richard K. , A Base for the Definition of .

Computer Languages, AD 664 086, Clearinghouse For

Federal Scientific and Technical Information, October

1967.

3. Bohm, C. and Jacopini, G., "Flow Diagrams, Turing

Machines, and Languages With Only Two Formulation

Rules", Comm ACM, v. 9, No. 5, p. 396-371, May 1966.

4. Bradley, Gordon H. and others, Structure and Error

Detection in Computer Software, NPS55Ss75 021 , Naval

Postgraduate School, February 1975.

5. Buxton, J. N. and Randall, B., Software Engineerin g

Technigues, Report on a conference sponsored by the

NATO Science Committee, Rome, Italy, 27 to 31 October,

1969.

6. Chapin, George G., "What's Different About Tactical

Military Operational Programs", AFIPS Conf erence

Proceedings, v. 42, p. 787-795, 1974.

7. Cheatham, Thomas E. and others, The High Costs of

Software, AD 777121, National Technical Information

Service, September 1973.

8. "Chief Programmer Teams: Principles and Procedures",

Report No. FSC 71-5108, IBM, Federal Systems Division,

Gaithersburg, Maryland, June 1971.

87

9. Cooper, CDR John D. and Perkins, John D. , In forma l

Report: A Description of the Average Coder Involved in

Producing Nav^ Tacti cal Software, prepared for

submission to the ODDR and E Committee on High Order

Languages (HOI) , May 1975.

10. Dijkstra, E. W., "Notes on Structured Programming",

Str uctured Programm ing, Academic Press, 1972.

11. Dijkstra, E. W. , "The Structure of the •THE 1

Multiprogramming System", Comm ACM, v. 11, No. 5, p.

341-346, 1968.

12. Donaldson, James R. , "Structured Programming",

Datamation , p. 52-54, December 19 73.

13. Elshoff, James L., "An Analysis of Some Commercial

PL/I Programs", IEEE Transactions on Software

Engineerine , v. se-2, No. 2, p. 113-120, June 1976.

14. Evans, D. J., "The Current Software Situation",

SOFTWAR E 70, Proceedings of a Conference Sponsored by

SOFTWARE WORLD, University of Sheffield, p. 19-29,

April 1970.

15. Fisher, David A., "Programming Language Commonality in

the Department of Defense", Defense Management Journal,

v. 11, No. 4, October 1975.

16. Fisher, David A., Control Structur es For Programming

Languages, Ph. D. Thesis, Carnegie-Mellon University,

Pittsburg, Pennsylvania, May 1970.

17. Gales, L. E., "Structured Fortran With No

Preprocessor", SIGPLAN, v. 10, No. 10, October 1975.

18. Gill, S., "The Origins and Meanings of Software

Engineering", Software Engineering, International state

of the Art Report, p. 217-242, 1972.

88

19. IBM, Federal Systems Division, Structured Programming

Series. Valid ation and Verification Study , Volume XV,

AD-AQ16 668, prepared for Rome Air Development Center

Army Computer Systems Command, 22 May 1975.

20. Kirk, H. W. , "Ose of Decision Tables in Computer

Programming", Coram ACM, v. 8, No. 1, p. 41-43, January

1965.

21. Leavenworth, Burt M., "An Overview of Nonprocedural

Languages", SIGPLAN Proceedings of a Symposium on Very

Hic[h Level Languag es, v. 9, No. 4, p. 1-12, April 1974.

22. Liskov, B. H., "A Design Methodology For Reliable

Software Systems", AFIPS Conference Proceedings, v. 41,

Part I, p. 191-199, 1972.

23. Manley, John H., - "Embedded Computer Systems", Fi nding s

and Becpm mend at ions of the Joint Logistics Commanders

Software Reliabilit y Work Group , v. 2, p. 33-38, 1975.

24. Marcy, H. Tyler, To Master Evolution in Tactical

Systems, speech presented at the National Aerospace and

Electronics Conference (NAECON) 76, Dayton, Ohio, 18

May 1976.

25. Mathis, N. S. , CMS-2 Software Transferability Study ,

AN/UYK-7 to AADC, Naval Electronics Laboratory Center,

AD 755133, San Diego, California, 13 November 1972.

26. Maynard, Jeff, Modula r Programm ing, Auerbach Publishers

Inc., 1972.

27. McGowan, Clement L. and Kelly, John R., To p-Down

Structured Pr ogramming, Petrocelli, 1975.

28. Meissner, Loren P., "A Compatible 'Structured*

Extension to Fortran", SIGPLAN, v. 9, No. 10, p.

29-36, October 1974.

29. Meyers, Glenford J., Reliable Software T hrougn

89

Com posite Design, Petrocelli, 1975.

30. Naval Tactica l Data S ystem Programmers Guide, Volume I,

prepared by Fleet Computer Programming Center, Pacific,

San Diego, California, Manual M-5002, 1 December 1969.

31. Naur, Peter and Randall, Brian, Software Engineering,

report en a conference sponsored by the NATO Science

Committee, Garmish, Germany, 7 to 1 1 October 1968.

32. Parnas, D. L., "On the Criteria To Be Used In

Decomposing Systems Into Modules", Comm ACM, v. 15. No.

12, p. 1053-1056, December 1972.

33. Parnas, D. L. , "The Influence of Software Structure on

Reliability", SIGPLAN International Conferen ce on

Eeliable Software, p. 358-362, 21 to 23 April 1975.

34. Poole, P. C. and Raite, w. M., "Portability and

Adaptability", Advanced Course In Software Engine ering ,

Springer-Vertag, 1973.

35. Pratt, Terrence W. , Programmin g Langu ages: Design and

Implementatio n, Prentice-Hall, Inc., 1975.

36. Procedure For Ranking The Software Bases of Candidate

Architectur es For the Military Compu ter F amily ,

prepared by The Software Evaluation Methodology

Subcommittee of the Computer Family Architecture (CFA)

Selection Committee, 5 April 1976.

37. Rubey, Raymond J., "What»s Different About Tactical

Military Language and Compilers?", AFIPS Conf erence

Proceedings, v. 42, p. 807-809, 1974.

38. Schneidewind, Norman F. and others, System Test

Methodology, Volume I, NPS55ss75072A , Naval

Postgraduate School, July 1975.

39. Stucki, L. G. , "A Prototype Automatic Program Testing

Tool", AFIPS Conference Proceedings, v. 41, p. 82 9-836,

90

1972.

40. Tactical Digital Systems Office, 0_. S^ Navv_ Ta ctica l

Digital Systems gser' s Requirements of a Hig_h Order

Programming Language (HOL}_, Naval Material Command,

MAT-09Y, 12 November 1975.

41. Tou, Julius T., Software Engineering , Volume I,

Academic Press, 1970.

42. Weinberg, Gerald M. , The Psycology of Co mputer

Programming , Van Nostrand Reinhold Company, 1971.

91

INITIAL DISTRIBUTION LIST

No. Copies

1. Department Chairman, Code 52 1

Department of Computer Science

Naval Postgraduate School

Monterey, California 93940

2. Library, Code 0412 2

Naval Postgraduate School

Monterey, California 93940

3. Professor G. L. BarJcsdale, Code 52Ba 1

Naval Postgraduate School

Monterey, California 93940

4. Professor Norman F. Schneidewind, Code 55Ss 1

Naval Postgraduate School

Monterey, California 93940

5. Defense Documentation Center 2

Cameron Station

Alexandria, Virginia 93940

6. LT Arrena S. Williams, DSN 1

Bureau of Naval Personnel

Pers-3C21

Washington D. C. 20370

92

Thesis 16S501*
W5955 Williams
c -' Software engineering-

tools of the profession.

. 31

21 JUL 02

? 5 3 6

27^1 7
27 748
23243

Thesis

c.1

16G50<*
W 1.1 1 1 ams

Software engineering:
tools of the profession.

thesW5955

Software engineering

3 2768 001 95831 7
DUDLEY KNOX LIBRARY

