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ABSTRACT

Dynamic systems have grown to enormous size and complexity. The

ability to simulate the systems has greatly helped in the design and op-

eration of these systems. Inspite of advancements in model simplification

techniques and refinements in solution procedures, many of todays systems

are prohibitively expensive to simulate with the required accuracy. It

was felt that the equations describing the system could be solved in paral-

lel with savings in computer time. To this end the solution process was

studied to find large scale (macro) parallelism. Macroparallelism was

found both in the equations of the model and in the solution processes.

Once this parallelism was found, requirements for and gains achievable by

multiprocessors which use this inherent parallelism were developed.

An efficient set of model equations is obtained by converting the

differential equations to algebraic equations by the implicit multi-step

integration fomulas. The entire set of equations is then solved by an

iterative algorithm. The Chaotic Relaxation and Newton-SOR Algorithms

exhibit a high degree of parallelism which can be increased by ordering

the equations to the near block diagonal form. This ordering is possible

because of the sparsity present in models of large systems. The Gauss-

Seidel and true Newton Algorithms are not obviously executable in parallel,

but by ordering the equations to a bordered block diagonal form parallelism

is exposed.

The requirements for sharing data are dictated by the form of the

equations, while the control requirements depend on the algorithms. The

near block diagonal form algorithms exchange solution data through shared

memory, and it is the contention over this shared memory which limits the





gains achievable by parallel execution. Simple high order multiproces-

sors can efficiently execute the Chaotic Relaxation and Newton-SOR Al-

gorithms. The bordered block diagonal form algorithms require that

the processors solving the diagonal blocks alternate active solution

periods with the processor solving the border block (cut-set processor).

The cut-set processor exchanges all required information while the other

processors are idle. The gains achievable are limited by the time re-

quired for the cut-set processor to solve the equations. Simple high

order multiprocessors are developed to efficiently execute the Gauss-

Seidel and Newton Algorithms, but the gains achievable are dependent on

the extent to which the equations decompose to the bordered block diagonal

forms.

The algorithms were programmed to determime the control and data

sharing requirements. From these requirements the delays from parallel

solution were estimated. The convergence rates of the algorithms were

not altered by parallel solution, so that a rough ranking of the paral-

lel solution techniques was made.
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CHAPTER I

INTRODUCTION

Dynamic simulation is the prediction of the way in which a system

will change with time. The system can be as simple as a resistor/capacitor

filter or as complex as a modern oil refinery. For the RC filter, dynamic

simulation would predict the voltage levels within the filter for a future

time, based on the known starting voltages and input voltages. For an oil

refinery, dynamic simulation might be used to predict what change in the

quantity of a specific output would result from a change in the inputs,

again based on the initial conditions and the other inputs.

The equations describing the system, called the model, are developed

from the mathematical relationships within the system. Dynamic simulation

is the solution of these equations which predicts the response of the

actual system under the same conditions.

The development of the computer has enhanced the ability to solve the equa-

tions, allowing the system which can be simulated to grow in size and com-

plexity. Without the computer to solve the equations, it would be nearly

impossible to predict the response of large systems except by building and

testing the actual system. The large complex systems of today can be de-

signed and built, because the computer allows the actual system response

to be predicted from the mathematical models of Lhe system.

As the size and complexity of the models has grown, the cost of simu-

lation has increased. The cost is directly related to the time required to

solve the equations defining the system and the size of the equations. There





are uses of dynamic simulation where the time required to solve the problem

is critical for reasons other than cost. An example is the use of dynamic

simulation to provide control signals for the system. In this case, the

changes in the system must be predicted in time to allow the appropriate

controls to be instituted. If the solution cannot be found in real time,

it cannot be used to prevent undesirable changes in system variables.

This thesis investigates the possibility of using a multiprocessor to

reduce the time required to solve the dynamic simulation problem. The multi-

processor is basically many independent computers which can efficiently ex-

change control and solution information. The investigation begins by de-

veloping the parallelism of the algorithms used to solve the dynamic simu-

lation praMe.u and the parallelism inherent in the structure erf tll£ equations

in the model. It then develops the computational requirements of the parallel

algorithms and finally proposes and evaluates multiprocessor structures to

execute the algorithms.

The goal of the use of multiprocessor structures is to achieve a solution

in 1/n the time required for a single processor, where n is the number of

computing elements in the multiprocessor. The restrictions on the size of

n depend on the method of solution and the structure of the multiprocessor.

It is shown that because of the small amount of information exchange needed

for solution of the dynamic simulation problem, a large number of processors

can be used efficiently.

I . A . Dynamic Simulation Problem

Simulation techniques were developed before the computer and involve





more than the analysis of a dynamic system. The first technique to be de-

veloped was iconic simulation, the use of scale models to study a system.

The most recent development is discrete event simulation using random number

generators to model probabilistic events. This thesis studies a third type -

dynamic simulation - which is among the oldest types of simulation. " 1 ]

The more recent discrete event simulation is used within the study of dynamic

simulation.

Dynamic simulation consists of establishing the mathematical relation-

ships between elements of the system, then solving the equations to predict

the changes which will occur in the system. This thesis only studies methods

of solving the equations defining the system. The development of the equa-

tions which define large systems usually is not complicated. Once the mathe-

matical relationships for the elementary parts of the system are known,

their equations can easily be combined to develop the model describing the

system.

Normally, the equations defining elementary systems can be solved ana-

lytically. But when complex systems are modelled, analytical solutions are

available only for simplified linear representations. The first method de-

veloped for solving these equations was the use of numerical methods to

approximate the solution. Originally, it took teams of mathematicians long

periods of time to solve the models of what would be considered a simple

system today. In 1922, the differential analyzer was invented. It allowed

mechanical devices which integrate differential equations to be built. Scon

thereafter the electronic analog computer replaced the mechanical version.

The electronic analog computer allowed the solution of much larger and more

complex systems models. The analog computer lacked the accuracy required





for solution of models over a long period of time. Further, it may require

a difficult and time consuming process to program the model on the analog

computer. When the first digital computer was built, one of the initial

applications was dynamic simulation. As the speed of the digital computer

improved, hybrid computers, a combination of digital and analog computers,

were designed and built. The hybrid computer combined the speed of solution

possible on analog computers, with the accuracy available in digital computers,

to simulate complex models over long periods of time. As the speed of the

digital computer improves it is becoming capable of solving the high fre-

quency component equations previously only economically solved by analog

computer.

Although the digital computer has many advantages over the analog

computer, it is expected that analog computation will remain. Just as the

digital computer has been improved so has the analog computer. The analog

computer started cut a higher level of sophistication so further improve-

ments were more difficult and little research has been done of the ana-

log computer. Digital simulation has been studied to find parallel solution

methods, a feature analog computation has always used.

Dynamic simulation has become an extremely helpful tool in all phases

of system studies, development, operation, and experimentation. The system

designer can use dynamic simulation to insure the satisfactory completion

of the system. Simulation proves the feasibility of a proposed system. The

specifications for the parts of the system are developed by simulating the

operation of the system. Simulation studies help develop operating procedures

for the system by testing its response to numerous possible conditions called

contingency planning. Through the use of dynamic simulation, a system can





be designed and developed with considerable confidence.

Dynamic simulation is also useful for the operation of a system. For

some systems the only means of providing control information is through

simulation. For control purposes the speed with which the dynamic simu-

lation problem can be solved is critical. The response of the system must

be predicted in time for control signals to be instituted which prevent un-

wanted changes in the output.

An example of this use of dynamic simulation for control is the

newest gun-fire control system used by the Navy. This has typically been

an exclusive analog application. However, the speed and maneuverability of

modern aircraft and the need to compute the solution for multiple targets

has resulted in the use of a digital computer.

Scientists also use dynamic zimzlzzion.. It pFUVldgg a means for

scientists to perform experiments which are too costly to develop on the

real system, or which might result in grave damage to the system if actually

performed. Simulation can also provide information on parts of the system

where measurements cannot be made.

For all these and other uses, dynamic simulation provides more infor-

mation at less cost than other possible approaches. Without the ability to

solve the dynamic simulation problem many modern achievements would not be

possible.

The electric power industry is one of the largest users of dynamic

simulation. Because of the high fixed costs and high reliability required

in this industry, it has led the search for improvements in modeling.

The power industry must be positive that the changes it makes in any system

will not have any adverse effects on the system's operation. This is





accomplished by simulating the effect of the proposed changes.

A model for a power system consists of the interconnection of smaller

models representing the generating stations and loads, and the network

interconnecting these parts. The model of a generating station may contain

from two to thirty differential equations depending on the degree of com-

plexity required for the simulation. The equations describe the actions

of the various parts of the station as a result of changes in the power re-

quirements of the network at the location of the station. As the complexity

of the model is increased (usually to allow a longer period of time to be

accurately simulated), more parts are included in the model. For example,

at the lowest level, a model for a generating system might be only a simple

representation of the generator. If more complexity is desired, the generator

model would be. expanded, and the voltage, regulator added. Then, the turbine

and governor, and finally the boiler would be included to give a more com-

plex model.

The vastly different uses of electric power result in a wide variety

in the models which represent these loads. The simplest representation is

by a constant power requirement at each node. Other simple representations

are a constant current requirement or constant impedance. When the power

requirements of load change with time, more complex models are needed. Then

differential equations, similar to the generator station models, are required.

An example of such a load is a large induction motor.

The network supplying the electrical power to the loads from the gener-

ators is represented by algebraic equations. Points where a generator or a

load is connected to the network or where several power lines of the network

are connected is known as a bus. Each bus requires a complex algebraic





equati > i to represent its effect on the time scale of interest. Normally

a bus has only a few power lines and/or a generator or load connected to

it, and only the variables for the connected parts occur in the equation

for the bus. Even though there may be hundreds of busses in the model,

the equation for each bus seldom depends on more than ten variables, and

often fewer. The busses are all interconnected but one bus never

connects to all of the other busses.

The models of the different parts of the power system are easily com-

bined to form the complete model. The generator station equations are

made to depend on the voltage of the bus which connects the generator to

the remainder of the system. Similarly, the nonconstant load models de-

pend on the voltage of their connecting bus. If a bus is to be added,

then the algebraic equation is included and its variable added to all bus

equations which have power lines connecting the existing busses to the new

bus. The addition of a power line requires adding new coefficients to

the busses it connects.

When a model must represent the power system of a large utility company,

which may cover a multi-state region, the number of equations in the model

becomes quite large. It is not difficult to combine the individual parts

to form these large models. Normally, as the parts are more distant from

the object to be studied, the models are simplified. Since the generator

and load models only depend on the bus to which they are connected, and

any one bus only connects to a few other busses, the equations of the model

exhibit a property known as sparsity. Sparsity is the occurrence of only

a small number of the possible variables in each equation and occurs fre-

quently in large sets of equations. For power systems, sparsity results
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from the small number of busses connected to any one bus.

For the power system the variables represent current, voltage, power,

and control signals. Nonlinearities occur throughout the system primarily

as a result of the representation of limits and saturation. A total model

may consist of thousands of nonlinear differential and algebraic equations.

Any large dynamic simulation problem exhibits many of the properties

described for the power systems. The mathematical relationships are de-

fined by large sets of algebraic and differential (or difference) equations

Quite often these equations are simplified to the linear form to ease so-

lution, but the nonlinearities sometimes have to be included in the model

to obtain accurate results. Sparsity also exists in most large dynamic

simulation problems.

This thesii SffSfSSSS the following, form of the differencial and alge-

braic equations for the dynamic simulation problem:

x = F(x(t),y_(t),u(t),t)

I.A.I

= G(x(t),y_(t),u(t),t)

Where x is the state vector, £ the algebraic vector, u is the vector of

inputs, and t is time.

This research uses models of electric power systems wherever examples

are required. These models are typical of all dynamic simulation problems,

and the techniques proposed by this thesis can be used to reduce the time

required to solve the equations of any dynamic simulation problem.





I.B Computer Solution of the Dynamic Simulation Problem

One of the first uses and still one of the largest uses of the com-

puter is the simulation of dynamic systems. Certainly without the computer,

simulation would not have progressed to Its current widespread use. How-

ever, the systems analyst has been able to increase the size and complexity

of the models faster than the computer has progressed. The time required

by currently available computers restricts the size of the model to be

simulated and the availability of the solution. Because of the ease of

developing large models and the degree of interconnection of power systems,

there is a need to solve larger dynamic simulation problems at a faster rate.

Many people have tried to reduce the time required for solution of the

dynamic simulation problem. Some, Gear [4], Davison [5], Dommel and Sato

[6], and Wu [
7"
j have approached the proBIeTH by developlug new algorTCKflTS

for approximating the solution. Other s,Davison [8], Chidambara [9], Undrill

and Turner [ 10] , Anderson [ll], and Van Ness [12] have developed methods

of reducing the size of the model without losing vital information. Neither

group has achieved sufficient success to relieve the modeler's concern over

the costs of performing dynamic simulation. This leaves a vast demand for

the ability to simulate larger systems at more reasonable speeds.

As early as 1959, Gauss [14] realized that for a computer to solve a

problem most efficiently, the structure of the computer must be based on

the requirements of the problem. Lehman [ 15] and Rosenfeld [16] suggested

that a problem must be examined thoroughly to discover the inherent parallel-

ism which can be used effectively, rather than to try to find parallelism

at the instruction level. Korn [17] first suggested the dynamic simulation

problems suitability for parallel processing while Lehman [15] 6c Rosenfeld [16]
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have examined the solution of systems of algebraic equations. None of them

developed the ideas far enough to demonstrate the actual gains or the re-

sulting computer structure, nor did they investigate the problems which

might occur. Much more recently, Wu [7] has again suggested the multiproc-

essor structure for the solution of power system problems. Wu's efforts,

however, are mainly in structuring the "diakoptics" type algorithms, which,

unfortunately are applicable only to linear systems.

There have also been efforts to develop parallel numerical methods to

solve differential equations. Miranker and Liniger [18J structured pre-

dictor-corrector type integration methods so that the prediction and correc-

tion equations could be executed on different processors. Nievergelt [19]

proposed using a large parallel processor to integrate a single differential

equation- by orarlxrg differ ent processors for differ6HC. time intervals. These

methods found a much lower level of parallelism than examined by this thesis,

This thesis will examine the dynamic simulation problem to determine

the major parallel paths available during execution which may be exploited

to increase the speed of execution. Computing structures will be proposed

which best suit the inherent parallelism. Execution speeds for these struc-

tures will be estimated. The underlying hypothesis is that the computing

structure which most resembles the structure of the dynamic simulation prob-

lem will provide the most efficient execution of the model.

I.C Proposed Computer Development

Predominant computer technology dictates that problems must be solved

in a serial fashion. Yet Gonzalez and Ramamoorthy [23], Baer and

Russell [22], and others have shown that many problems can be solved in
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parallel and have developed a graph theoretic methods of demonstrating

the parallelism inherent in a problem or computer program. The numer-

ical methods used to solve the dynamic simulation problem are readily ana-

lyzed by these techniques and may be shown to exhibit a very high degree of

parallelism.

Not only has parallelism been found in computer programs but also advanced

parallel computer designs have been formed and built. ILLIAC IV [24, 25, and 26]

a parallel processor, was built and many other designs proposed (some were

built). ILLIAC IV, in the terminology developed by Flynn [27], is a single

instruction multiple data (SIMD) computing structure. That is, all proc-

essors execute the same instruction, but on different parcels of data.

Another category proposed by Flynn is a multiple instruction multiple data

(ML4DJ computing structure. C.mmp [2Sj is an MIMD computer developed at

Carnegie Mellon University specifically to study artificial intelligence

problems. For equivalent processor features, the MIMD structure is more ex-

pensive but has greater capabilities than the SIMD structure. This thesis

attempts to extract the successes and avoid the failures of these studies,

in order to reduce the solution time of the dynamic simulation problem.

The set of equations representing a dynamic system consists of a

large number of simultaneous nonlinear differential (or difference) and

algebraic equations. Each equation defines a specific variable. The set

of equations exhibit a high degree of sparseness and in general includes

nonlinear terms scattered throughout.

To reduce the time required to solve the large sets of equations of the

dynamic simulation problem, methods are developed to solve many of the equa-

tions concurrently. Since each equation requires different operations to be
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performed on different data and there is no correlation between either the

operations to be performed or the data to be used among the equations

solving the equations concurrently requires independent control of the

processing elements both for the operations to be performed and for the

data to be used. In Flynn's terminology, the computing structure has to

be of the MIMD form. Loosely linked processors each capable of executing

its own independent computer program are required. The other computing

structures fail in some respect to be able to solve completely concurrently

the equations of the dynamic simulation problem.

The major problem in all parallel computation is the sharing of infor-

mation between the parallel processes. This sharing can delay the solution

process in two ways. A processor may have to idle until the information

It requires is computed by another processor. Or a processor may be delayed

by the physical restriction that only one processor can use a single resource

of the multiprocessor. Most often this single resource is shared memory and

the delay is known as memory contention.

This thesis proposes methods to minimize the delays normally resulting

from multiprocessor solution by reducing the information which must be shared.

The primary method used to reduce information sharing is to provide each

processor with a private copy of all information available at the start of

the solution process. This information is stored in a local memory which

only one processor can access, to insure no delays will be encountered in

accessing this data. (Rosenfeld [16] mentioned the use of local memories,

but did not analyze their effects.)

The other method of reducing the amount of information which must be

shared depends on the properties of the equations of the dynamic simulation
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problem. By properly grouping the equations into blocks, the amount of

information which must be shared between blocks can be minimized.

Computing structures are proposed and analyzed to determine the delays

which will result from exchanging data. From this analysis it is possible

to estimate the point where, with the addition of more processors, the re-

sulting increase in the delays from sharing data will negate the gains in

execution speed.

This analysis requires actually programming the numerical methods

used to solve the dynamic simulation problem. From the programs, accurate

estimates of the amoung of shared information and the time available to

exchange the information can be obtained. Time is measured in memory cycles

to make the analysis independent of the actual processor used. The delays

are bai>ed on the ratio of the number of cafiHUWy SCCSSSSS requiring shared

data to the total number of memory references. The actual decrease in so-

lution time is based on the number of memory references in the parallel path

plus the delays encountered, compared to the number of memory references a

single processor would require. The numerical methods are presented in

Chapter Two and analyzed in Chapter Three.

Chapter Four proposes multiprocessor structures which can exploit the

parallelism found in the dynamic simulation problem. The structures are

analyzed to determine the delays encountered and the time required for

solving the dynamic simulation problem.

Chapter Five discusses further methods of reducing the sharing of data

and decreasing the time required for solution of the dynamic simulation

problem.





CHAPTER II

NUMERICAL SOLUTION METHODS

The dynamic system model under consideration consists of a large set

of simultaneous equations of two types (see equation I.A.I). The first

type is a first order differential equation, which may be nonlinear. With

the differential equations, initial conditions must be specified. The

second type is an algebraic equation, which also may be nonlinear. Because

of the nonlinearities, direct solution is normally not possible, and iterative

methods are required to find an approximate solution.

There are three methods of solving a set of algebraic and differential

equations. Either the algebraic equations can be eliminated and the resulting

equations solved, or the equations can be solved separately and the solutions

matched for consistency, or the difference equations which approximate the

solution of the differential equations may be combined with the algebraic

equations and the entire set can be treated as algebraic equations [6].

Elimination of the algebraic equations is a long and difficult process.

The resulting differential equations are nonsparse and require many more

operations to solve than the original equations. When the equations are

solved separately, the sparsity remains and the solution process is efficient

unless the separate solutions are inconsistent. If this happens, the time re-

quired to find this solution has been wasted, and a new attempt must be made

to find a consistent solution. Experience indicates that inconsistent solu-

tions frequently occur in practice.

Recently Dommel and Sato [6] showed that the implicit integration

schemes have many advantages. These schemes require an iteration process

to find the next estimate; this allows the difference equations to be solved

14
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concurrently with the algebraic equations. The concurrent iteration process

insures that the solution found is consistent. The sparsity of the equations

is maintained to include the block parallelism. Finally the implicit inte-

gration schemes allow the step size to be increased beyond that possible

for the other methods. Since the solution of the entire set of equations

in this format is no more difficult than would be required to solve the

algebraic equations, the solution of the dynamic simulation problem by ex-

pressing the differential equations as algebraic equations through the use

of the implicit integration schemes has become the accepted solution method.

II.A Numerical Integration of Differential Equations

Numerical integration methods are a key factor in the solution process

of the dynamic simulation problem. Numerical methods were first used before

mechanical integration machines were developed. Now, even though the actual

solution algorithms are those for algebraic equations, the numerical inte-

gration formulas are needed to express the differential equations as alge-

braic equations. In this section the integration methods are presented,

then in the next section the methods of solving the resulting set of alge-

braic equations are presented.

The simplest method of approximating the solution of a differential

equation is Euler's Method. This method begins with an initial condition

and estimates a new solution point a small time step away along the direction

of the initial derivative. At the new estimate, this method evaluates the

new derivative and again moves a small time step in the direction of the

derivative for the next estimate. By repeating this procedure a series of

points is calculated which approximates the solution to the differential
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equation. The series is calculated successively from the following formula:

x(t+h) = x(t) +h*F (x(t), y(t), u(t), t) II. A.

1

where h is the time step. The accuracy of Euler's Method over many time

steps, depends proportionately (linearly) on the size of the time step. For

almost all uses this high degree of error is unacceptable.

To increase the accuracy of the approximation the amount of information

on which the approximation is based must be increased. Methods with im-

proved accuracy either use more points as a basis for the new estimate, or

use more calculations of the derivative, or both. When the methods provide

direct solution of the new estimate they are said to be explicit methods.

For increased accuracy, the new estimate is included in the formulas and

the solution is obtained by iteration. These methods are known as implicit.

The Runge-Kutta methods use several evaluations of the derivative over

a single step. These methods arc in general the most accurate of the explicit

methods and are simple to apply. They have a disadvantage in that they re-

quire that the step size be much smaller than the time constant of the

highest frequency component of the solution. Quite often these very high

frequencies are of negligible magnitude and could be reasonably ignored.

However, the Runge-Kutta Methods require the accurate approximation of the

high frequency component to be accurate. For this reason the Runge-Kutta

Methods will not be considered in this thesis. (For a complete discussion

of Runge-Kutta methods see [4], [29], [36]. )

The multi-step methods use the estimate of the solution for several

time steps as a basis to predict the next estimate. The explicit multi-step
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methods are less accurate than the explicit Runge-Kutta schemes. With

the multi-step methods the next estimate is easily added as one of the

points of the basis. The addition of this point greatly increases the

accuracy of the solution. An added benefit is the ability to increase the

step size beyond the time constant of the highest frequency component of

the solution without losing accuracy. An explanation of the differences

between the explicit and implicit methods is given in [30] as:

... an intuitive example can be given by using the first order,

K = 1, integration method and the differential equation

X' = -XX x^ o.

In the explicit case, the formula becomes:

X =
:

= X , + hX' , = (l-hX)X ,

n n-1 n-1 n-1

Since the exact solucion X(t) = Ce , X> is a positive

decreasing function we know that 0<X <X , or < 1-Xh < 1.
n n-I

Therefore h < 1/X.

In the implicit formulation of the same example the inte-

gration formula becomes:

X
, _ n-1

X = X . + hX' = .

n n-1 n 1+hX

Since X is a positive decreasing function 1+hX > 1 which

is true for all h > 0.

As one can see in this example, in the explicit case the

step size h is restricted by the size of X while no such obvious

restriction is indicated in the implicit use.

The simplest multi-step implicit method is the trapezoid method.

This method does not provide an analytic estimate of the new solution.

It uses the average of the present and new derivative to step to the new
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point. Since the new derivative cannot be found without knowledge of the

new point the estimate of the new point is obtained by iteration. The

formula for the trapezoid method is:

x
1+1

(t+h) = x(t)+ h
/2 [F{x(t>, y(t), u(t), t) +F(xi

(t + h),

y
X
(t+h), u(t + h),t + h)] II. A.

2

which is an algebraic equation and can be solved by the same techniques

used to solve the algebraic equations in the model. These methods are

presented in the next section.

An easy, accurate method of starting the solution procedure is to use

the current position as the first estimate of the new point. With this

estimate, the first iteration reduces to Euler's Method. When the trape-

zoid method is solved for many steps the error in the estimate of the solu-

tion will be on the order of the square of the step size.

Higher order implicit methods also exhibit the ability to use larger

step sizes. To some extent, the accuracy of the solution also increases

with the order of the method, thus allowing larger step sizes for a desired

solution accuracy. Associated with the use of additional points for pre-

dicting the new estimate in the higher order methods is an increase in the

computation required for predicting this estimate* Both the accuracy re-

quired for the solution and the time available to find that solution must

be used to establish the step size and order of the method to be used. The

results of this thesis are based on the trapezoid method, but no assumptions

are used which would prevent the application of higher order methods.

(More detailed discur.siou of the multi-step methods can be found in [4J,
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[29], C31].)

All integration schemes discussed herein remain valid when a set of

differential equations is to be solved. The only requirement is that all

equations are integrated over the same time step together. With the im-

plicit integration methods, the equation for each variable must be iterated

until all variables have converged. Apparent convergence of one variable

is not sufficient, and in fact, that variable may change as the other

equations are iterated further. Normally, as the number of equations grows,

so will the number of iterations required for convergence.

II. B Numerical Solution of Algebraic Equations

By use of the implicit integration formulas the equations of the dy-

namic simulation problem have all been converted to algebraic equations.

Some of the equations resulting from differential equations and many of

the original algebraic equations are nonlinear. This normally prevents

the direct solution of the equations, requiring that the solution be found

by iteration. This thesis considers two types of iteration methods, the

linear methods and the Newton methods. The linear iterative methods use

the fixed point form of the algebraic equations to calculate the new esti-

mate, and have the property that the present error may be bounded by a con-

stant factor times the previous estimate's error. The Newton methods re-

quire the evaluation of the function and its derivative, to form a set of

linear equations whose solution is the new estimate. The solution of these

equations cause the error of the estimate to be reduced at a quadratic rate.

In general all iterative methods can be expressed as:
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k+1 */ k .

z = 0(y )

where if y_" = 0(y") then = G(y_ ) II.B.l

To simplify the discussion, the remainder of this section will discuss

the general algebraic equations = G(v_) or more generally v = G(y).

To develop the linear iterative methods, assume also that the equations

are linear, v = Gy_. G is then expressed as the matrix sum G = D-L-U where

D is the elements of the diagonal of G and L and U the elements of the

lower and upper triangular parts of G respectively. The general iterative

formula is now

k+1 k
By = (L + U) £ + X II. B.

2

The three linear methods to be presented can be expressed in terms of the de-

composition of the matrix differ only in the location in the algorithm where

k+1
the new estimate, y_ , is used in the calculations of the other new esti-

mates. The Jacobi method solves for all of the new estimates based on the

last value and then updates the variables to the new estimate. (The cal-

culations are all based on the same point for each variable.) The Jacobi

algorithm appears as:

z
k+1 = d-V + U)z

k + d
_1
v

or

k+1 „ k
,

-1
v_ = B y_ + D v II. B.

3
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The Gauss-Seidel method uses the new estimates of the variables in

the calculations as soon as the new estimate is found. This frees the

storage required to save both values of the variables. The Gauss-Seidel

method appears as:

X
k+1

= (D - L)"
1

UZ
k
+(D - D^v

or

v.
k+1

= C % + (D-L)'
1

^ ii. B.

4

The third method, Chaotic Relaxation, was proposed by Rosenfeld [16],

and studied by Chazan and Miranker [3l], for the solution of algebraic

equations by a multiprocessor. Like the Gauss-Seidel method, it updates

the values of the variables as soon as the new estimate is calculated.

Because of the use of a multiprocessor for the calculations, the order with

which the variables is updated is not constant. The decomposition is dif-

ferent for each iteration. This prevents expressing Chaotic Relaxation in

the terms of equations II. B. 3 and 4.

The development of the linear iterative methods for linear equations

does not restrict their application to only the linear equations. For non-

linear equations, each equation is solved for its diagonal variable (i

variable in the i equation).

y
k+1

= 0.(y
k

) for j ^ i II. B.

5

The rate of convergence of the linear iterative methods can be im-

proved by the use of an acceleration factor, a. The acceleration factor
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modifies the update either by reducing or increasing the magnitude of the

correction applied to the variable. The use of an acceleration factor

maybe thought of as altering the eigenvalues of the iteration matrix in

order to increase the rate of convergence. With acceleration the linear

iterative methods appear as:

k+1 k k
£ = a0(v_ ) + (1 -a)v_ < a < 2 II. b. 6

For a < 1 this is known as under relaxation, and for a > 1, over

relaxation.

The other iterative methods considered by this thesis are the Newton

Methods. The Newton algorithms achieve a quadratic convergence rate by

pyai©c.ti-ng along *><> slope of the equations at the current estimate to

the axis. The intersection gives the new estimate. The slope of the equation is

computed from the Jacobian, J = dG(y_) / dy_. The current value of the equa-

tions is also required, G(y_) . The new estimate is:

z
k+1

= yk
. j" 1

G(Z
k

) = 0(z
k
) II. B.

7

The evaluation of the equations, G(y_) , requires approximately the same

amount of time as one complete linear iteration. By interspersing the

evaluation of the Jacobian with the evaluation of the functions, the

Jacobian can usually be calculated with only a few additional operations.

However, the solution of the resulting equations, J5_ = G(y_) , requires on

3
the order of n operations. The increase in the rate of convergence

usually more than compensates for the increase in the number of operations.
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A combination of the Newton and linear methods can be used to reduce

the total number of operations required for solution of the Newton update,

5_. The equations and the Jacobian are evaluated as above. The Jacobian is

partitioned and the diagonal blocks solved. The off diagonal values are then

compensated for by iterating the diagonal solution. If iterated until con-

vergence, then a true Newton update is found. With a set number of iter-

ations of the Newton update, the convergence rate is less than quadratic.

This method, known as Newton-SOR, appears as:

6_

m+1
= J"

1
[G(Z

k
) + J

R i
m

] ii. B . 8

k+1 k *
y_

~ X + i II. B.

9

Where J is the diagonal blocks of the Jacobian and J the off diagonal
D H

jl

blocks. 6_ is the unique solution of II. B. 8.

The Newton-SOR method saves operations because the solution of the

3 3
diagonal blocks requires a, s*n. operations rather than the n operations.

(s is the number of shared variables required by that block, n. the number

of variables in the block, and n the total number of variables). When the

equations are sparse, the number of operations required to solve for the

Newton update can be reduced.

The solution time of the linear methods is reduced by accelerating the

convergence rate. For the Newton methods the rate of convergence is much

higher and further improvement is not needed. However, several methods of

reducing the number of operations required to solve for the Newton update

have been developed. The first method is LU Factorization. After LU
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Factorization was developed, it was found that further savings are possible

by properly ordering the equations. Another improvement was obtained by

sparsity programming.

LU Factorization is an efficient method of solving a set of linear

equations. The matrix of coefficients is decomposed by elementary trans-

formations into a lower triangular and upper triangular matrix. The de-

composition results in two trivial sets of equations which can be solved

by substitution. If J6_ = G then LU = J so Lz = G and U6_ = z_. This method

of solution requires the minimum number of operations for a general set of

equations. [ 59j

When the equations are sparse it was found that by arranging the equa-

tions in the LU Factorizations in the proper order, the number of coefficients

whfc'lY were" filled in (efisnged from zero to nonzero' value) could" Be reduced.

The process of permuting the order of the equations to achieve a sparse LU

Factorization is known as optimal ordering.

The most widely used optimal ordering expresses the equations by a

connection graph. The equations defining a variable become nodes with

branches to all other nodes (variables) which occur in the equation. An

arbitrary node of lowest degree is chosen as the first node to be elimin-

ated. The paths which would be removed by the elimination of that node are

replaced by new branches between the remaining nodes, and the first vari-

able is deleted. Again the node of minimum degree is chosen for elimination,

the new branches added, and the node deleted. This process is repeated

until all nodes are eliminated. The order with which the nodes are elimin-

ated becomes the order the equations should be included in the LU Factori-

zation. This ordering does not produce the true optimal ordering, but the
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increased computation required to find a closer estimate of the true opti-

mal ordering is not normally regained in the solution of the equations in

true optimal order. [33]

When the number of zero coefficients is very large, many additional

operations can be saved by sparsity programming. These techniques omit

the operations whose results are known to be zero before the operations

begin.

Through the use of optimal ordering and sparsity programming, the

number of operations required to solve for the Newton update can be made

proportional to n for large, very sparse sets of equations.

Generally, the linear iterations require a much smaller amount of

computation than the Newton methods, but also have a much slower conver-

g-cnce rate. All three of the linear methods require approximately the

same amount of computation, and the Jacobi method requires a slight in-

crease in the amount of memory required, but not nearly as much more memory

as the Newton methods require. When the methods are arranged into parallel

form other advantages are displayed. To better be able to choose the algo-

rithms which are used to solve the dynamic simulation problem, the conver-

gence properties of the methods must be examined.

The convergence properties of the algorithms can be divided into two

categories, the region of convergence, and, given convergence, the rate

with which the error of the estimate is reduced. The analysis possible on

the convergence properties and on the number of operations required to com-

pute a new estimate does not conclusively support one method. Only because

of the vast reductions in the number of operations required to compute the

Newton update and the experience with the convergence properties of the
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Newton method, has it become the accepted solution method for power

systems solution. Even though the analysis can be extended for the

multiprocessor solution, only experience will establish the superior

method.

For the convergence of the linear iterative methods, the equations

will be restricted to being irreducibly diagonally dominant. That is, the

coefficient of the i variable in the i equation is larger in absolute

value than the sum of the absolute values of the other coefficients of that

equation. Because of the. structure of the network equations of the power

systems, diagonal dominance normally occurs. Proper selection of the time

constant insures diagonal dominance for the differential equations. It is

well known that the linear methods do not converge for some of the power sys-

tem models. This is because the diagonal dominance has been destroyed in these

models by the existence of large capacitor banks and/or other devices which

cause relatively large off diagonal coefficients.

A major difficulty in comparing the rate of convergence of these so-

lution processes is that some methods may converge while other methods

diverge for the same set of equations. Diagonal dominance is a normal

property of the network equations, which, if present, allows the convergence

of the methods to be proven, and the rates of convergence compared.

For linear diagonally dominant sets of equations the true Newton

method is equivalent to direct solution, and the Newton-SOR method can be

shown to converge. In this case the direct solution of the Newton method

produces the highest convergence rate, followed by the. Newton-SOR method.

The Gauss-Seidel method has the highest convergence rate of the linear

methods studied followed by Chaotic Relaxation and then the Jacobi method.

(Actually the Chaotic Relaxation method convergence rate requires all
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equations to be updated equally.)

The notion of diagonal dominance can be extended to nonlinear equa-

tions, called M-functions, and similar results obtained. For nonlinear

equations, the acceleration must be limited to under relaxation to prove

convergence. But it is expected that by monitoring the convergence prog-

ress, over relaxation could normally be used.

For the Newton methods, the equations must exhibit certain continuity

and invertability conditions in order to prove convergence. Diagonal

dominance is not necessary and if singularities exist may not even be

sufficient for the convergence of the Newton methods. The Newton-SOR

method does require conditions comparable to block diagonal dominance for

the convergence of the SOR iterations.

The remaining part of this section shows the theoretical justification

for these claims. The proofs are omitted if the results are unchanged from

the source. The following definitions are required to prove the desired

results.

The convergence properties are established on a compact subspace

DC R , with the following partial ordering, x ^ y_ implies x. < y. for

i = 1,2, ... , n and x < y_ implies x ^ y_ and x. < y. for at least one

i = 1,2,..., n.

A linear mapping A:R -> R is denoted by Ae=£(R ) and may be represented

by a matrix. A nonlinear mapping A is denoted by A:D c R -> R . The map-

pings may also be ordered, where for A, B:D<= R -> R . A ^ B implies

Ax ^ Bx VxeD-If A, Be£(R
n

) A ^ B implies a ^ b i, j = 1,2, . . . , n. A

mapping F:D c R
n

-> R
n

is isotone (antitone) if Fx ^ Fy_ (Fxs Fy_) whenever

x ^
y_ ; x, yeD, and a mapping is inverse isotone if whenever x < _y, then

Fx £ Fy_.
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A mapping F is non-negative if Fx > if xs (also implies F is

isotone)

.

For Aes£(R ) the spectral radius, p (A) , is defined as the magnitude

of the largest eigenvalue of A. It is always true that p (A) ^
||

|a| | .

A matrix Aesc(R ) is an M-matrix if A exists and is nonsingular,

and a.. ^
3

i , j = 1,2,3,..., n.

For Aes£(R), the matrix A is defined as

a. . > i = 1,2,. . . , n

and

a. . = - a.

.

i 5* j
ij ' ij 1

By comparing the results from [32], [35], [37], [38], [39] and [4l], it

can. be shown that if a matrix A xs~ irreducib-ly diagonally domins^-tj. the*v

+ + -1 +
A is an M-matrix and for the iteration matrix B = (I - D A )

;

p(B) ^ p(B
+
) < 1.

The linear iterative methods for Gy_ = v can be expressed in terms of

matrix sums, G = D - L - U. For the Jacobi method the Iteration matrix is

B. = D (L + U) . With Gauss-Seidel the lower triangular matrix L is in-

cluded with D so that the iteration matrix becomes B = (D - L) U. For

Chaotic Relaxation the iteration matrix changes from iteration to iteration

by inclusion of different rows of L (L=L + L"). The matrix is defined as
c c

B = (D - L ) (L" + U) . By the theorems of regular splittings [37] the

following comparison can be made.

p(B ) ^ p(B ) < p(B )

6 *• J

Also the convergence of the SOR iterations of the Newton-SOR method can

be shown.
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. th i i *
The error of the i iterate is e = y - y , and produces an error

of e = p|e on the next iteration. It can be shown that je I
^

p (B) Je {. But because B changes from iteration to iteration the require-

ments of the proof are more complex. These comparisons are helpful in

comparing the convergence rates of the methods.

Chazan and Miranker [32J, developed a notation for all linear iter-

ative methods, which is used in the theorems showing convergence. First

each new estimate is counted as an iteration, j. Then k.(j) the i

component of an n+1 vector k(j), represents the age of the i variable

being used in the calculation of the new estimate of the k , (j) vari-

able. (Age is the number of past iterations.) With this notation the

linear methods are expressed as:

/j-kj (j) . , J-ki+l (j) j
"k
n(j) \

V
i

= 8
i \ Vl

"••> y
i '

yi+l
' "••' y

n J

and

j+l
yi

(l-o:.) y,
j
"k

i
(j) +ay. j if i = \+Al)

J i

if i t k,,(j) II.B.10
y± " x r K

n+1

With this notation the Gauss-Seidel method is represented by k^j) =

for all i, j, and k (j) = (j-l)mod n + 1.

The Jacobi method is represented by k.(j) = k (j) = ... = k
n (J)

=

(j - 1) mod n, and k
. i(j) = (J-l) mod n + 1.

For the Chaotic Relaxation method k.(j) can take on any values, but

to show convergence k.(j) < S for all i, j and k ,(j) = i, i=l,2,..., n
i n+1

infinitely many times.
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Theorem II.B.l Let Aa£(R ) such that A is an M-matrix. Then the se-

quence of estimates y converges for II.B.10 and for a such that

< a < 2/(l+p(B)). [32]

Thus for linear sets of equations, the Jacobian J, is simply the

coefficient matrix, and since if A is an M-matrix A exists so the true

Newton method results in direct solution. Further since the block diagonal

is a regular splitting the SOR iterations of the Newton-SOR method converge.

For linear sets of equations the convergence rates in decreasing order

are Newton, Newton-SOR, Gauss-Seidel, Chaotic, and Jacobi methods.

For nonlinear equations the notion of diagonal dominance is conveyed

by the following two definitions. A mapping G:DClR-> R is off diagonally

antitone if for anyxsR the functions cp . :{ t e R \x+te eD}->R ; cp..(t) =

g.(x + te ) i^ j i,j = 1,2,3,..., n are antitone;and G is diagonally isotone

if for any xeR the functions cp. . :{ teR |
x + te e d] ; cp. . (t) = g. (x+ te )

i = 1,2,..., n are isotone. ({ e} is the orthonormal basis for R such that

e
1

= (0,0,..., 0, 1 ,0,...,0)
t
).

The mapping G : D c R -> R is an M-functions if G is inverse isotone

and off diagonally antitone. Further, the Jacobian of a set of M-functions

is an M-matrix. With these definitions and the notation of Chazan and

Miranker, convergence for nonlinear sets of equations can be proven.

Theorem II. B.

2

Let G:D c R -» R be a continuous, off diagonally antitone

and strictly diagonally isotone. Suppose for some veR there exists

x , y eD such that x < y ; J = {xeR
| x ^ x < y } c D; Gx ^ v £ Gy (a).

Then for ee(0,l] and any sequence {a.}e [e,l] the iterates [x"
1

} and ty }

. ,
given by the solution of II.B.10 (b) starting from x and y , respectively,

are uniquely defined and satisfy
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x°^x j ^x j + 1
^ y

J +1 ^ y
J £ y

°

G xJ ^ v < G y
J

j = 1,2,... (c)

as well as

i * *
lim x = x ^ y = lim yJ Gx ^ v ^ Gy (d)

J-»
00 j_> oo

Proof: The proof follows [35] and proceeds by induction. Suppose for

some j > 0, i >

x <: xJ £ y
J ^ y GxJ ^ v ^ Gy-'

j-k.(j-l) - j-k.(j) . j-k.(j) . j-k.(i-l) , N

i "i
J
i 'i v J

From (a) define the functions

Y(v) - g.CxfV^,...., «J*I-l
(j>

. v, x.^i+1^,...)

Pvv; - g^y-^ J-
,— , yi-i ' ' yi+i

>•••->

are defined for v e[x. , y.]. From (e) and the off diagonal antitonicity

of G

3(v) * Y (x^"
k
i
(j)

) = g._(x
j
) * v. < g.(y

J
)

=

3(yj"
k
i
(j)

) * Y(yf
k
i
(J)

) (
f >
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By continuity and strict isotonicity of y and (3, (f) implies the

existence of a unique x. and y. for which

P(y^) = v. = Y (x?) ; x? i xf £ yJ * y^

where the relation x. ^ y. is a consequence of the tonicity properties

of G. Because a.e[e,l]
J

yH y
j+1

= d-a.)yj + a. y
j > y^ x?

i i J l J i i i

x J
J > x

J = (l-a.) x 2 +a. x.
J > x?

1 1 J 1 IK 1

j j+l j
which shows (e) holds for i = 1,2,..., n. Hence x ^ x ^ y .

From this it follows that

8l (y
3+1

>*
gi

(yj-
k
l
(J)

,..., y{
yJ-VJ>)=v.

and

g.Cx^
1)^.^!^,...,^ ^'Vt,

This completes the induction and proof of (c) . Clearly then the limits

exist.

i * * j
lim x = x ^ y = lim y

Now since
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imply that lim x. = x. and lim y^ = y"
.

1 1 'i J
i

J* CO j^CX,

Therefore Gx = v = Gy .

Theorem II. B.

3

Suppose the conditions of the above theorem holds:12 12
Let k

j

,(j) and k (j) be given such that k.(j) = k.(j) i = 1,2,..., n12
except for I when k (j) < k„ (j) (a). Then for 1 + I , Gx < v.

g.Uf
1^ >f

kl<J>) £ g.(xf
k^\..., xf

k'<J\...,xJ-kn<J>)

and if v < gy then112 2
/ j~k-,(i) j-k.(j) ^ , i-k-(j) j-k (j) N

g
t (yi

1
VJ ',..., y^ i

VJ/ £ g.(y^[ 1
VJ ',..., y^ n VJ

.2 .1 .1 .2

x? £ X J ^ yJ ^ yJ
(c)iii^i

2 1

Proof : From the previous theorem and (a) x„
J ""

£ U; ±S x̂ ~ £ U . The off

diagonal antitonicity of G yields (b) and the inverse isotonicity yields

(c). The same steps hold for y .

.

This shows that for the linear methods discussed, the Gauss-Seidel

method reduces the error in the estimates at the highest rate and the

Jacobi at the lowest, with Chaotic Relaxation in the middle.
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The Newton methods have different requirements for convergence than

the linear methods.

Theorem II. B.

4

Let G:DcRn -> R
n

where x eD, G(x ) = 0, G* is continuous

at x and G (x ) is nonsingular. Then the Newton iterations

k+1 k r ,. k.n-1 „, k,
x = x - [G (x )J G(x ) (a)

*
converge to x . Further, if there exists a y and p such that

||G(x) - G(x )M ^ Y ||x-x"'|i
P

then the Newton method converges superlinearly and if G"(x )hh#0

VheR , h ^ 0, then the Newton method converges quadratically. [38]

For the Newton-SOR method the convergence of the SOR iterations as

well as the Newton iterations must be proved.

Theorem II. B. 5 Let G:D c R -» R be G-dif ferentiable on D and if G is

inverse isotone or an M-function, then for any x£D at which G'(x) is non-

singular, the derivative is inverse isotone or an M-function respectively. [38]

Theorem II. B.

6

If G:DCR -> R is an M-function on D then any subfunction

is also an M-function. [35] Let G'(x) = B(x) - C(x) = D(x) - L(x) - U(x)

be regular splittings of G where B is block diagonal and D is diagonal

then

H
a
(x) = [(l-a)I(x) + aD^Cx) L(x)+U(x)]

H
a
(x) = [(l-a)l(k) +aB

_1
(x
k

) c(x
k
)]
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From these mappings if G (x) is an M-matrix then p(lL) ^ p (H ) < 1 for

CLe(0, 1). Now let m represent the number of SOR iterations.

Theorem II. B.

7

If G'(x) is an M-matrix, then p (H

,

m+
) ^ p (H

m
) < 1 and

as m-> » the rate of convergence of the Newton-SOR iteration approaches

that of a true Newton method. [38]

Thus when all methods converge the rates of convergence is ordered increasingly

as true Newton, Newton-SOR m steps, Newton-SOR 1 st ep,Gauss-Seidel, Chaotic, & Jacobi

II. C Methods of Ordering the Equations

The last section discussed ordering the equations to reduce the cal-

culations required to solve for the Newton update. There are other methods

of ordering which can also increase the parallelism inherent in the algo-

rithms used for solving the dynamic simulation problem. These ordering

methods make use of the sparsity of the equations, to reduce the coupling

between blocks of equations. The blocks are then used as the primary method

of assigning equations to the processors for parallel solution. There are

two forms into which the equations can be arranged which have been found

pertinent for increasing the effective parallelism. The first form attempts

to arrange the equations so that the diagonal blocks have the fewest inter-

connections. Ideally, the equations of one block would have zero coeffi-

cients for all of the equations outside the block. But as the number of

blocks is increased, some equations will exist with coefficients that can-

not all be ordered into a diagonal block. This equation is then included

with the block which minimizes the number of nonzero coefficients outside

the blocks. These nonzero off block diagonal terms occur randomly through-

out the matrix. This form of equations is called the near block diagonal
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form. See Figure II.C.l for a matrix representation of the ordered equations,

The other ordering method also attempts to arrange the equations so that

the nonzero coefficients are in the diagonal blocks or the last block

column. The equations which cannot be ordered into this form are included

in the last block, where nonzero coefficients can occur randomly in any

column.

These equations are known as the cut-set equations, since they cut

the remaining equations into disconnected blocks. The equations of the

diagonal blocks still have nonzero coefficients outside the diagonal

block, but now these nonzero coefficients are grouped into the last block

column. See figure II. C. 2 for the matrix form of these equations ,known

as the bordered block diagonal form.

Ordering the equations to one of these forms can result in benefits

beyond increasing tne parallelism. The concentration of the zero coeffi-

cients greatly reduces the programming efforts normally associated with spar-

sity programming. Furthermore, just as optimal ordering reduced the number of

operations required to solve for the Newton update, these orderings reduce

the number of operations required to solve for the SOR equations to iterate

in the Newton-SOR method. The near block diagonal form also reduces the

number of variables which must be iterated for the Newton-SOR method.

Carre [44], proposed a method of ordering the equations to the near

block diagonal form. The methods used to obtain the bordered block diag-

onal forms can also produce a near block diagonal ordering.

There are several methods of ordering the sparse set of equations

to the border block diagonal form. A true optimal solution exists but
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Example of near block diagonal form

Table II.C.l
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the computation required to achieve this ordering may not be worth the

effort required.

There are three methods of finding a bordered block diagonal form

of the equations used in this thesis. Each is based on the graph model

of the equations, with a node for each variable and a branch for each

nonzero coefficient in the equation defining that variable. By finding

the minimum vertex cut-set of the graph, the equations which should be

ordered to the last block can be isolated. They are the equations which

define the variables represented by the nodes of the cut-set. Once the

cut-set is found, the other equations can easily be ordered to the dis-

connected blocks.

The algorithm of Ogbuobiri, e_t _al [45], for finding the bordered

block diagonal form of a set of equations appears to be the most efficient

method. This algorithm and the others are presented in Chapter Five when

the importance of ordering is discussed. The appendix demonstrates the

performance of these methods on a test set of equations.

II. D Parallel Execution of the Algorithms

The purpose of this thesis is to examine multiprocessor computing

structures for the execution of the dynamic simulation problem. The gen-

eral theory for the parallel execution is to assign blocks of equations

to each processor. The processors would then iterate their equations con-

currently, sharing the required data between the processors. This section

will prove that the algorithms can be iterated concurrently, and still con-

verge to the same solution as serial iteration. The iterations are the

only part of the solution which requires a large amount of time. The
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initialization and other program set up tasks will not be considered for

parallel execution.

A general purpose computer is assumed to be available for the com-

pilation and initialization and of the programs. The general purpose

computer would also perform the formation of the network matrices, and

accomplish the plotting and other output functions. The use of the

general purpose computer for these functions does not mean that the func-

tions cannot be performed in parallel , only it means that the necessary modi-

fications for parallel execution have not been studied. The amount of compu-

tation required for these operations does not appear to be sufficient to

warrant parallel execution.

The most practical method of integrating differential equations is to

convert the equations to algebraic form and iterate the differential equa-

tions with the algebraic equations. The conversion by use of the trapezoid

rule of integration is included in the initialization and is not part of

the parallel algorithms. The major iteration is within one time step, but

the computation required at convergence before starting the next time step

will be considered and included in the parallel algorithms.

The amount of parallelism differs with each algorithm and with the

structure of the problem. First the general linear iterative algorithms

parallel form is shown, followed by the parallel form of the Newton methods.

The exact specifications of the parallel algorithms is left until Chapter Three

where programs to execute these algorithms are developed and analyzed.

The linear iterative algorithms require the evaluation of a function

defining each variable. The algorithms differ only in the sequence in

which the variables are updated. The Jacobi scheme updates the variables

only after a new value is calculated for all of the variables.
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Theorem II.D.l : Let B:R -* R
n

be the Jacobi iterative functions and y°

the initial estimate. Then if the new estimate is found by:

y±
3 = b

i (y_ ) + v II. B.

3

The sequence y_ found by updating the Jacobi variables by a serial

. *k
process and v_ found by updating the Jacobi variables by a parallel

process, are identical for all k.

The proof is obvious because of the Jacobi method's application of

the correction at the end of each iteration.

Because the parallel Jacobi algorithm uses the same data for all

processors, the parallel solution must be synchronized. Convergence is

determined by all processors through the use of control points in the

parallel segments of the code. Control points are used to insure the re-

quired synchronization between processors, and to modify the execution

sequence. Information from all processors is required before the indi-

vidual processor is allowed to pass through the control point.

For the Jacobi algorithm all of the processors must be executing the

same parallel segment of code. The code performs three distinct operations;

computing a new estimate of the variables; applying this estimate to the

variables; and advancing the time step. Control points are inserted in

the code between each of these operations. The control points force the

processors to be idle until all processors reach the point. Chapter Four

discusses the implementation of control points, and their placement in the

parallel algorithms .
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The Chaotic Relaxation algorithm was designed for parallel execu-

tion. It evaluates the same functions as the Jacobi algorithm,

but the new values of the variables are used as soon as they

are calculated. For this reason, the Chaotic Relaxation scheme

does not produce the same sequence of estimates as the Jacobi algorithm.

It was shown [33] that whenever the Jacobi algorithm converges, the Chaotic

Relaxation algorithm also converges to the same point. When over or under

relaxation is used, the optimal acceleration coefficient will be different

than the coefficient used for the Jacobi scheme. Normally the coefficient

will be closer to unity for the Chaotic Relaxation.

The Chaotic Relaxation algorithm allows the elimination of the control

points between the calculation of the new estimate and its application.

All of the algorithms require the control point before the advance of the

time step.

Although the Gauss-Seidel Algorithm is very similar to the Jacobi

and the Chaotic schemes, the updating procedure for the Gauss-Seidel algo-

rithm makes it difficult to execute in parallel. A straightforward im-

plementation requires the ability to skew the solution process. An example

best demonstrates this problem. Suppose a three variable set of linear

algebraic equations was to be solved by the Gauss-Seidel process. The

functions to be evaluated would be identical to the functions associated

with the Jacobi or Chaotic schemes. In matrix form the iteration equations

are

i+1
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Because of the time of the updating, the actual equations are evaluated

as:

j-l
i+1

n
. i+1 . ^ i

jk J k
k=l k=j+l

jk 'k
v

j
II. D.

2

In order to illustrate the skewing required the evaluation process is

displayed in Table II.D.l. Time is displayed across the table and the

blank areas indicate idle periods for processors. The delays resulting

from, and the control required for, the skewed execution of the Gauss-Seidel

scheme limit the gains achievable by parallel execution.

The Gauss-Seidel Algorithm is executable in a parallel manner much

more efficiently when the equations are in the bordered block diagonal

form. This form allows the updating to proceed in a sequential order and

still use multiple processors. The use of the bordered block diagonal

form exposes parallelism at the block level. A processor can thus be

assigned to update the variables of a block. To illustrate the parallel

algorithm assume the equations are linear. The matrix of coeffi-

cients, A, can be partitioned into the following form:

Au
A
22 °

A
nl

A
n2

"In

nn.

II. D.

3

Now partition y_ into the same blocks, and let the subscripts represent
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the blocks rather than the variables. The Gauss-Seidel algorithm could

then be performed in the following three steps:

(a) z
±
= A^'y^t) ; i=l,2,...,n II. D.

4

n
k+1 T1

if

(b) y* (t) = (o«
:

z
±

- (a) - 1) • y*(t) II. D.

5

i

(c) y*+1 (t) = co-fA^.y^t) + A.
n-y^

+1
(t)} - (a) - l)-y^(t)

i = 1,..., n-1 II. D.

6

The necessity of storing and retrieving the portions of the cut-set update

in steps a and b only slightly increases the number of operations that must

be performed.

Theorem II. D.

2

: Steps (a) and (c) can be executed in parallel for all

blocks, and still maintain the sequential updating of the variables.

Proof : For induction assume the k iteration has been achieved. Cal-

culation of the z's requires only data available before any processor

begins computation. (This is equivalent to the evaluation of the Jacobi

functions.) Therefore the z's can be calculated in parallel. Now the

second step, (b) , must be performed. Evaluation of step three, (c), re-

quires data from the final block, found in step two, and from the diagonal

block. Because of the bordered block diagonal form, no processor requires

data from other than the cut-set variables. Therefore step (c) can be

executed in parallel. Now by updating the variables within a block se-

quentially, the order of updating becomes first the cut-set variables, in
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order: then the diagonal block variables, in order. The fact that all

of the diagonal blocks are updated in parallel does not matter since none

of the new values are required outside the block until the cut-set vari-

ables must be updated.

Basically these algorithms have been modified to allow parallel ex-

ecution rather than developing new parallel algorithms. This insures the

convergence properties remain intact, with only the Chaotic Relaxation

algorithm's convergence rate depending on the number of processors. The

Gauss-Seidel algorithm still convergences at the highest rate and the

Jacobi at the lowest, for linear iterative methods. However, the execu-

tion time must also include the delays which result from controlling the

parallel execution and from the sharing of data.

Parallel execution of the Newton algorithms is much more difficult.

The increased computation required for these algorithms both helps and

hinders parallel execution. Parts of the algorithm are very easily ex-

ecuted in parallel, such as the evaluation of the functions and solving

for the elements of the Jacobian. The largest part of the computation,

the solution of the Newton update, is very difficult to perform directly

in parallel.

Evaluation of the functions, G, and solution of the elements of the

Jacobian, J, require only the previous values of the variables. This is

equivalent to the computations required for a Jacobi iteration, where all

of the data required for the operations is available before the evaluation

begins. Therefore the following theorem is stated without proof.

Theorem II. D. 3: The evaluation of the functions and the evaluation of
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the elements of the Jacobian may be executed in parallel with the same

results as serial execution.

The remainder of the Newton algorithm involves the solution of the

equation for the Newton update, J 5 = G. The linear iterative algorithms

could be used to find 6_ in parallel, but this should be avoided because

of the time required for the linear algorithms to converge. Another

prospect is to invert the Jacobian. Pease [54], proposed two parallel

algorithms for this inversion. The schemes required the sharing of all

the elements of the Jacobian and a high level of control. The methods

are infeasible for a large Jacobian or a high order multiprocessor.

There are two methods which simplify this solution considerably. The

Newton-SOR algorithm overcomes the problem by avoiding the direct solu-

tion of the entire set of equations. The other method uses the bordered

block diagonal form of the Jacobian to allow parallel direct solution.

The Newton-SOR algorithm solves the block equations explicitly then

uses these results to iterate the shared variables to convergence, yielding

a true Newton update. The iterations use Chaotic Relaxation, so that the

Newton-SOR algorithm can be executed in parallel. By ordering the equations

in the near block diagonal form the number of variables which are shared

and thus the number of variables which must be iterated, is minimized.

As the number of shared variables increases, the time required by the

Newton-SOR algorithm increases cubicly. For a small number of shared

variables, the ability to solve the blocks directly increases the region

of convergence and reduces the execution time compared with simply a

linear iterative method to solve the Newton update equations. The parallel

Newton-SOR algorithm has basically the same sparsity and iteration control
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requirements as the Chaotic Relaxation algorithm.

When the equations are in the bordered block diagonal form, the

Newton update equations can be solved directly by block LU Factorization.

As with the bordered block diagonal Gauss-Seidel algorithm, there are

three steps required for solution. Because of the bordered block diagonal

form the equations are already nearly in factored form. The initial equa-

tions are:
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II. D.

7

The first step of the solution process is performed by all processors

other than the cut-set processor. These processors factor the diagonal

blocks into lower and upper triangular parts:

U

(a) J.. = L..v li li

ii
i = 1,2, . . . , n- 1 II. D.

8

and use the factored form, to eliminate the last block row. This elimin-

ation results in the formation of a modification to the equations for the

cut-set update. To the cut-set block must be added J
ni

U^ L^ J
±^

and to the cut-set functions must be added J
ni

IL^ L^ G^(y ). In the

second step the cut-set processor adds in the modifications by:
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resulting in the equations appearing as:
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The cut-set processor continues the second step by solving Z5 = Q for

the cut-set updates. After the conclusion of the solution process, the

non-cut-set processors can solve for their variable's updates in the third

step. In (c) the cue-set variable's updates are used in the back substi-

tution calculations which yield the remaining updates.

(c) U. .6 . + L.7 J. 6 = L.7
1
G.(y

k
) i = 1,2, . . . , n-1 II.D.ll

li i li in n li i

Block LU Factorization when performed in parallel results in the processors

being idle for periods of time. During step (a) the cut-set processor is

idle and the others are active. Then in (b) the cut-set processor is

active and the others idle. Finally the others are active again and the

cut-set processor is idle. The ability to solve in parallel is shown by:
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Theorem II. D.

4

: The blocks of the Jacobian can be decomposed in parallel

and the back substitution can be performed in parallel for the Newton

iterative algorithm in bordered block diagonal form.

Proof : Since the Jacobian is in the bordered block diagonal form, de-

composition of the diagonal blocks requires only the data within the

blocks. The last row can also be eliminated in parallel, but this requires

the summation of the elements of the cut-set block. Back substitution within

the blocks requires only the previously found values of the cut-set vari-

ables, to solve for the variables within each block. Therefore, parallel

solution of these two parts is possible.

Again the Newton methods were not altered to arrange the algorithms

into parallel form. This preserves the convergence characteristics of

these algorithms, and the increase in the speed of solution will depend

only on the delays resulting from the sharing of data between processors

and the control of the execution. The true Newton methods provides the

highest rate of convergence, but the method requires the bordered block

form for parallel execution. The Newton-SOR algorithm has a much faster

execution rate if che equations arc ordered to the near block diagonal

form, but neither the convergence properties nor parallel execution de-

pends on achieving a block form.
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II. E Sparsity Programming

Sparsity programming has been discussed in several sections. It

can be defined as a programming technique to be used to avoid computations

whose result is known to be zero before the computation begins. Sparsity

must be considered in all programs which require matrix like operations

on a large number of variables. The solution time of the dynamic simu-

lation problem can be reduced through use of sparsity programming.

Sparsity programming began as methods to try to fit a large sparse

matrix into a small core memory. Later it was realized that a large

amount of computation could also be saved. The savings in memory and

execution speed vary with the number of nonzero elements. Sparsity tech-

niques usually require at least three memory locations to store a coeffi-

cient, whereas nonsparse methods would require only one. For sparsity

techniques to save execution time, an even higher ratio of zero elements

fs required.

There are three basic sparsity programming techniques. [33]. The

first is to use an index array to point to nonzero elements. Another is

to use linked lists. The third is to use linear code. The first two

methods are primarily to save momory, but the linear code increases the

storage required. Linear code greatly reduces the execution time and

uses secondary storage efficiently. Linked lists are used when the exact

number and location of the nonzero elements is unknown prior to execution.

Linked list techniques are used to allow the addition and deletion

of nonzero elements. Typically there are two arrays. One is the list of

the beginning of each row, the other the list of the column numbers and

the values, followed by the memory location of the next element of the
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row. By changing the memory location of the next nonzero value, an

addition or deletion to the list can be made. Quite often the pro-

grammer needs not only the next element of a row but also the next

element of the column. With the addition of an array pointing to the

start of each column and two addresses after each value, the matrix

could be stepped through by rows or columns. The additional address

would point to the next element of the column.

Linear programs are created by a special compiler, which unwinds

the "DO LOOPS" normally used in matrix operations to a linear string of

instructions. With the linear code, the coefficients are treated as

single variables rather than as matrix elements. Unwinding the "DO

LOOPS" requires a great amount of code, usually much more than is saved

5y the oCher sparsity programming methods. The advantage is that only

a small amount of this code is required in memory at one time. The

reduction of core required results from moving sections of the code in

and out of main memory as the sections are needed. Since most modern

computers are capable of moving these sections of code without interrup-

ting the execution stream of the computer, an overall savings in execu-

tion time is achieved.

The last method to be discussed is similar to the linked list,

except that the location of the next nonzero element is always the next

memory location. By always using the next memory location, the address

of the next nonzero element can be omitted. This saves approximately

one third of the linked list memory requirements. However, it requires

knowledge of all the nonzero elements before the computation begins.

Additions or deletions to the list require a complete relisting of the
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nonzero elements. This is still less work than is required for the

linear code method.

More general programming techniques which might be included under

sparsity programming are the ordering methods discussed in section II. C.

By ordering the coefficients to block diagonal or bordered block diagonal

form, several smaller more dense matrices may be stored rather than the

large sparse matrix. This allows the omission of a large percentage of

the zeros without the other expenses associated with sparsity pro-

gramming.

Quite often a combination of these techniques is used. For the

programs of this thesis, the near block diagonal and the list methods

will be combined. The diagonal blocks will remain as matrices, but the

off diagonal elemenCs will appear as single variables. It Is expected"

that with the bordered block diagonal form, the submatrices will provide

a sufficient reduction in the zeroes so that other sparsity methods will

not be required.

For the multiprocessing environment, sparsity programming maps di-

rectly into the reduction in sharing of data. It would be extremely

wasteful to access a shared variable only to multiply it by a zero co-

efficient. The sparsity which exists in the dynamic simulation problem,

allows the equations to be ordered into the block forms and reduces the

sharing of data between the processors executing these blocks to a small

value, so that parallel processing is an efficient solution process.
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CHAPTER III

ANALYSIS OF PARALLEL ALGORITHMS

In section II. D. it was shown that the algorithms required for the

dynamic simulation problem may be stated in a form suitable for parallel

execution. It is still questionable whether it is practicable to execute

these algorithms in their parallel form. This chapter analyzes the al-

gorithms in detail to determine the requirements for and advantages of

parallel execution of the dynamic simulation problem.

In this chapter, the algorithms for the simulation of dynamic systems

will be shown to generate far greater savings in execution time than costs

from complexity. The major costs to be examined are the requirements for

sharing data and the control required for parallel execution. The advan-

tage is an increase in execution speed.

Parallel execution of algorithms requires the exchange of data between

processors. The dynamic simulation problem can be arranged to a form with

a high degree of parallelism because only a small amount of data must be

shared. Costly additional hardware is required for each piece of data

which must be shared concurrently. If only one path is provided for sharing

data, then quite often a processor must sit idle waiting its turn to use

this path. With the dynamic simulation problem one path is all that is

required for a high order multiprocessor.

Traditionally, multiprocessors have taken advantage of the ability of

multiple banks of memory to provide data faster than the processor could use it.

In this way several processors can share the same memory space. Delays for

sharing memory result only when two or more processors require a memory
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location in the same bank. Sometimes when more than one processor

requires the same memory location, it is because the processors are

executing the same instructions, and the memory location contained the

next instruction. This contention over the instructions is easily

solved by providing multiple copies of the frequently executed segments

of code.

Although both processors and memories have increased in execution

speeds, the cost of the increase in memory speed has been disproportionate.

For most commercially available processors it is possible to buy memory

faster than required. However, the cost of this memory is many times

more expensive than memory which operates at the speed required by the

processor. Since multiple copies of the programs are required, two levels

of memory can be used to avoid the use of expensive high speed memories

(faster than the cycle time of the processor). The local level of memory

contains the information (program and data) required only by its associated

processor. The second level provides for the sharing of data required by

one of the other processors. By using shared memory for only the data

which must be shared, a large number of processors can retrieve the needed

data with little delay.

This simple look at the multiprocessor structure is required for the

development of the algorithms. Chapter IV presents the details of and

comparison of different structures.

The programs to be presented in this chapter are actually the parallel

segments of the algorithms. Except where indicated each segment is executed

by a different processor. Unlike the algorithms of Chapter II, these pro-

grams show the entire requirements for each processor, rather than just
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the procedure within a single time step. The programs include the control

points showing the number of times the processors must be synchronized.

The actual methods of achieving synchronization will be left until Chapter IV.

Synchronization forces data to be shared within sections of the code rather

than throughout all of the operations. The parallel segments of code es-

tablish the rates with which data must be shared.

In this chapter the advancement of the time step upon convergence

of the equations is included in the analysis.

The increase in execution speed of the parallel algorithms is based

on the ratio of the longest parallel instruction stream compared to the

single processor instruction stream. The delays which result from the

parallel execution must be added to the execution time for the longest

stream. The speed advantage will never be n-fold for n processors because

of the delays resulting from sharing data and achieving synchronization.

The algorithms are designed to achieve the highest possible increase in

execution speed. The delays depend on the multiprocessor configuration

and control structure, and as such are presented in Chapter IV.

The input of data and the output of results is not discussed. Even

though this is an extremely important part of the solution process, it

requires almost no execution time. There are many direct memory access

devices which perform these functions without interrupting the execution

of the processor. Another possibility is to assign I/O to the controller,

which can retrieve the required outputs as they are exchanged between proc-

essors. Since a General Purpose Computer is considered available to com-

pile the multiprocessor program, it could also handle the I/O conversion

and plotting requirements.
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With dynamic simulation, the sparsity of the problem being solved

affects the rate at which data must be shared and the number of operations

the programs must execute. When a specific problem is required to com-

plete the analysis of data rates and execution time, one block of the

Commonwealth Edison high voltage distribution system is used. By using

an actual system, some assurance is gained that the results are "typical"

of all systems. The analysis uses typical blocks from the decomposition

algorithms of section II. C. A detailed description of the system and all

the blocks of the decompositions are in Appendix A. No attempt is made

to use any parallelism below the block level.

All of the data derived in this chapter are based on the number of

operations each algorithm requires to advance the time step and the number

required to perform one iteration within the time step. Since it is diffi-

cult to compare the convergence rates of the different algorithms the over-

all increase in execution speed possible with the different algorithms is

based on the experimental results that the Newton iteration converges from

five to seven times faster than the linear iterations. [58]

The analysis in this chapter is used in Chapter IV to propose actual

computing structures and to predict the performance of each structure.

Analysis of the algorithms shows only two classes of multiprocessor

structures are required.

III. A. The Parallel Jacobi Algorithm

The updating process of the Jacobi Algorithm requires the evaluation

of a function for each variable. After all functions are evaluated, the

correction (solution of the function) is added to each variable. All
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functions include those functions assigned to different processors. This

is the first point in the Jacobi algorithm where the controller must exert

its power to insure all processors are synchronized in the instruction

stream. After evaluation of all the functions the correction to the

variables must be applied and tested for convergence. If convergence is

achieved by all processors for all the variables, then the controller

causes the advancement to the next time step. If convergence is not

achieved then the processors repeat the function evaluations based on

the new values of the variables. Again the processors must be synchro-

nized to insure this evaluation uses the new values of the variables.

The three control points required for the proper execution of the Jacobi

Algorithm divide the algorithm into three distinct solution steps; the

evaluation of the functions, the correction of the variables, and the

advance to the new time step.

The other difficulty of the parallel algorithms is sharing data.

The Jacobi algorithm shares data in all three steps. First the evaluation

of the functions requires the value of variables from outside the block,

of variables being updated by the processor. Next when the variables

are being corrected, the block variables which are required by other

processors, must be stored in the shared memory. (They are also stored

in local memory since they are required at high frequency by the local

processor.) And finally after the variables have converged, the time

step is advanced and the new predicted value of the variables required

by other processors will be stored in shared memory. The sharing of data

is restricted by the control points. The control points also require

information from the other processors.
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The instructions for the parallel segments of the algorithm appears

to be just a smaller problem using the Jacobi algorithm. The only visi-

ble difference is the control requirements. Basically for the parallel

algorithm the number of operations required is one-n the total number,

where n is the number of processors. The reduction in sharing by grouping

the variables into the near block diagonal form prevents the exact di-

vision into equal parts. The fastest execution is achieved when the

differences in block size are minimal. Except for the delays resulting

from sharing variables and the delays from synchronizing processors the

parallel Jacobi algorithm is n times as fast as the single processor

algorithm.

Further analysis of the parallel algorithm requires a detailed list

of the instructions necessary for execution of the algorithm. The in-

structions required for one of the parallel segments is given in Appendix B.

Only the instructions for one generator are shown in the block because the

differences between generator models is small. More generators would re-

quire duplication of that part of the instructions. This is not the most

complicated model of a generator nor is it the simplest. It is the sim-

plest possible model still representing all the different parts of a

generating station. Since each block normally contains more than one

generator, the number of operations required for the generator variables

is multiplied by the number of generators. The network equations are

regular so they can be executed by matrix operations. Sparsity is con-

sidered more for reducing execution time than the reduction of storage,

but some storage is saved. The actual location of the use of shared

variables requires knowledge of the block of variables. One typical
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block from the Commonwealth Edison system is shown in Table III.A.l.

The actual values of the coefficients are only useful in predicting

the rate of convergence of this model compared to another model. They

provide no information on the convergence of this algorithm compared to

another algorithm. The synmetry of the network equations allows the

delineation of the block variables which are required by other proc-

essors. Any equation which requires an external variable for its evalu-

ation, defines a local variable which will be required by another proc-

essor.

From the instruction list and the table of sparsity the actual

number of operations required for execution can be developed. Table III.A.

2

summarizes the operations in general and for this specific block. The

variables for the general case are:

NGEN is the number of generators of the block.

NROW is the number of network variables.

NNZRO is the number of nonzero coefficients.

NVS is the number of variables required from outside the

block (number of variables shared).

NLS is the number of local variables required outside the

block.

All of these variables are easily found for any specific block of a

model. More general variables are:

ITS is the number of iterations for convergence within the

time step.

INS is the number of memory accesses for machine instructions.
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Summary of Required Operations for the Jacobi Algorithm
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For the Generator Equations

Memory Divisions Multiplications
Accesses

function evaluation 141

variable updating 143

advance time step 144

'lications Additions

47 36

39 39

40 28

For Network Equations

function evaluation 18*NR0W+ 4*NGEN+ 8*NGR0W+
i2 ; :iCE:;-r z*mm 8*nge*t+

10*NNZR0 4*NNZR0

7*NR0W+
8*MGE1H'

5*NNZR0

variable updating 18*NR0W 4*NR0W 5*NR0W

For the Designated Block

Generator
function evaluation

Network
function evaluation

Generator
variable updating

Network
variable updating

Advance time step

423 141

952 56 408

429 117

396 88

432 120

106

438

117

110

84

Table III. A.

2
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From Table III. A. 2 expressions for the usage rate of shared variables

can be developed. Without considering the control points, the access rate

of shared memory would be

ITS* [ 2*NVS + 2*NLS ] + 2*NLGVR
III.A.l

ITS* [ 296*NGEN + 36*NROW + 10*NNZRO + INS ] + 144*NGEN + INS

This is the ratio of the shared variable accesses compared to the total

number of memory accesses. The Jacobi algorithm requires synchronization

at different points of the instruction stream. This means III.A.l

is incorrect and the ratios must be compared within the separate steps of

the solution process. The first step is the evaluation of the functions.

The goytiyOTiaTift for shared variables comes from the function requiring

external variables. The ratio of shared variables during this period is:

2*NVS
III. A.

2

153*NGEN + 20*NROW + 10*NNZRO + INS

The next step in the solution process is the variable updating period.

Here the values obtained in the previous period are used to correct the

variables. The access to shared variables comes from the updating of

local variables required by external processors. The ratio of shared

accesses during this period is

2*NLS
III. A.

3

143*NGEN + 20*NROW + INS
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The final step of the instruction stream is the advance to the next

time interval. This section of code is only entered once every ITS

iterations. Delays in this section of code have much less effect on

the overall increase in execution speed. The only shared variables in

this section are the generator voltages that are required by external

processors for function evaluation. The ratio of shared access during

this final step of the iteration process is:

2*LGVR

III.A.4
144*NGEN + INS

These ratios indicate the very low rate with which data must be shared

between processors. Ihe rate depends on the sequence in which the in-

structions are executed. If the acceleration coefficient were applied

during the function evaluation, the ratios would be significantly differ-

ent. The ratio for the function evaluation is

2*NVS

263*NGEN + 32*NROW + 10*NNZRO + INS

and the ratio for the variable update is

2*NLS

III. A.

5

33*NGEN + 8*NR0W + INS

III. A.

6

This coding method is inefficient because the rates required for sharing
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data between processors vary to such an extreme. The multiprocessors

would have to be able to supply the data at the higher rate even though

this rate is required only for a short period. In the coding of the

algorithms the rate of sharing data will always be spread as evenly as

possible throughout the program.

To estimate the actual rates required the values of the variables

for the Commonwealth Edison System are as follows:

NGEN = 3

NROW =22

NNZRO = 52

NVS = 12

NLS = 9

LGv* = I

When the instructions are executed on the CDC6400, the number of machine

instructions for each section of the program is as follows:

INS FCN EVAL - 154*NGEN+ 80*NR0W + 8*NNZR0

INS VAR UPDT = 124*NGEN + 8*NR0W

INS THE ADV = 130*NGEN

The most crucial section of the program for sharing data is the variable

updating procedure. For the Commonwealth Edison System during this section

approximately 1.3% of the accesses would be for data within the shared

memory. The function evaluation requires the lowest access rate or 0.087o

of the accesses to shared memory. However, if the code was not properly

ordered and the acceleration coefficient were applied during function

evaluation, the shared memory access rate would be 3.6%, or almost three

times the rate of the proper code. This demonstrates the importance of

careful coding of the parallel algorithms.
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III.B. The Chaotic Relaxation Algorithm

The Chaotic Relaxation Algorithm was designed to be a parallel al-

gorithm. It evaluates the same functions as the Jacobi Algorithm to

compute an update for each variable. But, rather than waiting until all

updates are computed before they are applied, the Chaotic Scheme corrects

the values of the variables as soon as a new value is predicted. This

means that the values used to compute the correction may use the estimated

values from different iterations, In fact, it is an advantage that the

Chaotic Algorithm uses the latest possible value without regard to which

iteration produced that estimate. The correction procedure repeats until

all of the variables converge.

The Chaotic Algorithm depends on the number of processors. If the

number of processors is equal to the number of variables to be updated,

then the Chaotic and Jacobi Algorithms are identical. At the other limit,

if there is only one processor, the Chaotic Algorithm is identical to the

Gauss-Seidel algorithm. For the number of equations in the power system

model, it is infeasible to have a processor for each equation, and the

execution rate is not increased with just one processor, so the equations

are grouped into blocks with each block assigned to a processor. To

minimize the sharing of variables between processors, the equations are

ordered to the near block diagonal form. With the Chaotic Scheme's inde-

pendence from iteration numbers, as soon as a processor completes updating

the variables of the block assigned to it, it can immediately restart the

updating procedure. There is no requirement to synchronize the processors,

The deletion of the synchronization required in the Jacobi Algorithm re-

sults in the increase of the efficiency of the processors.
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This approach is different from that of the designers of the algorithm.

They intended the algorithm for a general purpose multiprocessor with

totally shared memory. In the original form each processor would update

all of the variables, as if it were the only processor. Actually, several

processors would be updating the variables, each remaining approximately

equidistantly separated in the list of variables. If the blocks of vari-

ables required equal computational time, these two methods of applying

the Chaotic Relaxation Algorithm would be equivalent. With different

computation times for each block, the convergence rate depends on the

least frequently updated variables.

The instructions for the Jacobi and Chaotic schemes are identical,

with only the order changed. However, the application of the update, as

soon as it is computed, slightly reduces the total computation. The real

savings in computation time comes from the elimination of the synchroni-

zation. The synchronization at the advance of the time step remains be-

cause of the requirement of convergence of all variables. Because of the

updating during the evaluation, the access rate of shared memory is not

restricted to the short interval of variable update as in the Jacobi.

This results in a much lower rate of use of shared variables. The re-

arrangement of the instructions into the Chaotic Relaxation Algorithm is

shown in the appendix. The same block variables (Table III.A.l) are used

when sparsity is used for the prediction of access rates. A summary of

the operations required for the execution of the algorithm is given in

Table III.B.l.

Using the variables presented in the previous section the requirements

for the access to shared memory for the instructions within a time step
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can be expressed by the following ratio

2*NVS + 2*NLS

III.B.l
290*NGEN + 36*NROW + 10*NNZRO + INS

After convergence the advance of the time step is identical to the Jacobi

Algorithm and results in the following ratio of access rates:

2*LGVR

III. A.

4

144*NGEN + INS

The combination of the two sections of code from the Jacobi algo-

rithm results in reducing the shared memory access rate to 0.8% for the

Commonwealth Edison System. This is lower than the rate required for the

time step advance, but so seldom is this code executed that the smaller

value should be used.

From the shared memory usage rates established in these two sections,

and from the convergence rates shown in the previous chapter, the con-

clusion is drawn that the Chaotic Scheme is preferable to the Jacobi

method for multiprocessors. Since the requirements of these two algorithms

on the multiprocessor structure are identical only the Chaotic Relaxation

Algorithm is studied further.

The execution speed of the Chaotic Algorithm is important for com-

parison with the other algorithms. Comparison is much more difficult with

the other algorithms, than with the Jacobi algorithms because of the dif-

ferent requirements the algorithms make on the multiprocessor, the differ-
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ences in the regions of convergence. By combining rate of convergence

and execution speed, general comparisons are possible. However, only

experience with a wide variety of problems will be conclusive.

The measure of execution speed is based on the number of memory

accesses required for one iteration of the algorithm. This value can

easily be obtained from the information contained in Table III.B.l.

The Chaotic Algorithm requires the following number of memory references:

625*NGEN + 89*NROW + 18*NNZR0 III . B.

2

For the Commonwealth Edison System block of Table III.A.l. approxi-

mately 5800 memory references are required for one iteration.

II1.C The Bordered Block Diagonal Gauss-Seidel Algorithm

The Gauss Seidel Algorithm is a linear algorithm like the Chaotic

and Jacobi Algorithms. It uses the same functions to compute the updates

for each variable. The algorithm differs from the Jacobi in that the up-

dates are applied as soon as computed. Unlike Chaotic Relaxation, the

Gauss-Seidel Algorithm updates the variables in strict sequential order.

The immediate updating of the variables is not difficult with parallel

processing. However, the strict sequential order with which the update

is computed requires a high degree of control to implement. The difficulty

of sequential updating can be avoided by ordering the variables to the

bordered block diagonal form. With this form there is parallelism even

in the sequential updating. After the cut-set variables are updated, the

other blocks can be updated in parallel without destroying the sequential
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order. This results from the lack of dependence on the variables in a

block on the variables of another block other than the cut-set. By

simply updating the variables of a block sequentially, the entire list

of variables is updated sequentially. This divides the algorithm into

three parts: the updating of the cut-set variables, the updating of

the other variables, and the advance of the time step.

An unexpected advantage of the bordered block diagonal form is the

method by which this form shares data. The only requirement for the

sharing of data is between the cut-set processor and another processor.

Only two processors need share a piece of data. Of course the cut-set

processor must share data with each other processor. Each processor

must provide different information to the cut-set processor, but it

provides exactly the same information to each other processor. By

providing a separate shared memory between each processor and the cut-set

processor, only two processors will have to share the same memory. To

the cut-set processor, part of this shared memory could appear as a single

shared memory. The cut-set processor could store its variables for all

processors with a single instruction per variable value. With only two

processors sharing a memory, the contention over that memory can be made

incons equent ia 1

.

The lack of parallelism in the correction of the cut-set variables

can be overcome by several methods. The simplest is for each processor to

compute its portion of the update. The last block row depends only on

the block variables, and could be solved by the block processor by sharing

the portion of the update rather than the variables required to compute

that portion. The cut-set processor would have to sum these partial
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corrections with the correction for its block. This still leaves the

other processors idle for the final steps of the cut-set variable

correction, and the cut-set processor idle while the other variables are

being corrected. This implementation provides some parallelism with

only a small degree of control. The control synchronizes the processors

after each stage of the program to insure completion of that section of

the program. The processors require synchronization after the separate

portions of the correction to the cut-set variables, and after complete

correction to the cut-set variables. Synchronization is always required

for the advancement of the time step.

By increasing the control, the idle time of the processors can be

lowered. First, assume the representation of numbers by the processors

allows a symbolic representation of a number which would not be encoun-

tered in normal computation, say minus infinity. To start the algorithm,

fill shared memory with this number. Then, allow the processors to begin

to compute their portion of the cut-set correction. After a correction

is computed it replaces the minus infinity stored in that location. Thus

the cut-set processor can also begin to compute the correction. If when

accessing shared memory for a portion of the update, a minus infinity

is encountered, the cut-set processor would wait for the other processor

to compute the correction. The added testing occurs during time the

processor would be idle. After the cut-set processor successfully reads

a portion of the update, it refills that location with minus infinity for

the next iteration. Likewise, after the other processors have computed

their portions of the update, they can begin to correct their variables.

The cut-set processor will update its variables and store them in shared
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memory, replacing the minus infinity stored there. If another processor

finds a cut-set variable equal to minus infinity it will know that the

cut-set processor has not yet corrected that variable. The processor

then waits until the new value for that variable is stored. The last

time a processor uses a variable, it replaces that variable with minus

infinity. The major idle periods have been removed, and the parallelism

has been extended at slight cost. The cut-set processor is still idle

for a large part of each iteration but it does not delay the other proc-

essors as greatly with this form. If the other processors had generator

and/or load models included in their variables, but the cut-set did not,

then the other processors would seldom have to wait for cut-set variables.

The generator model solution time would more than cover the cut-set vari-

ables updating.

Another possibility, if the simulation includes extensive generator

and load modeling, is to have the cut-set processor update the cut-set

variables with no help, while the other processors update the generator

and load equations. (This prevents the cut-set variables from including

these variables, but this does not restrict the cut-set choice.) The

other processors would then share the value of their variables rather

than the portion of the cut-set update. With the same use of minus in-

finity, the correct value of an iteration would be insured. To make this

scheduling feasible, the number of computations for the generator equations

must cover the computation of the cut-set update. This requires, on the

average, at least three generator equations for every cut-set variable.

Again the cut-set processor would be idle for part of each iteration, but

this is the fastest method per iteration when the generator equations cover

the cut-set equations.
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The same basic instruction sequence is used for each implementation.

Appendix B contains a listing of this code. For the first implementation,

synchronization would occur after the first block of network equations,

and again after the second block. For the other implementations these

synchronizations do not occur. For the third implementation the cut-set

processor executes all the instructions required to correct the cut-set

variables. This eliminates the loop of code which computes the partial

updates. Further the loop of code for correcting the cut-set variables

is identical to the code required by the other processors for their net-

work equations. The number of operations for each of these sections of

code is given in Table III.C.l. From this table the summaries for all

the implementations of this algorithm can be derived.

Since the sharing of data is not a restrictive problem with the

bordered block diagonal form, the critical information is the speed of

execution. The Gauss-Seidel Algorithm is known to converge faster than

the Chaotic Relaxation Algorithm. Comparison of the execution speeds of

the two algorithms is difficult because of the differences in the require-

ments made on the multiprocessor structure by each algorithm. A typical

bordered block diagonal decomposition of the Commonwealth Edison High

Voltage Distribution System is given in Table III.C.2. As with the near

block diagonal decomposition of Table III. A. 2, this decomposition is for

a five processor structure. (For the near block diagonal form there are

five diagonal blocks; for the bordered block diagonal there are four

diagonal blocks plus the cut-set.)

One method of measuring speed of execution is by counting the number

of operations required for one iteration of the update of the variables.
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From Table III.C.2 this is an easy task. For the first implementation

with the code synchronized at the network equations, the number of memory

accesses per iteration is

625*NGEN + 30*NROW(Partials) + 18*NNZR0(Partials)

+ 90*NROW(cut-set) + 18*NNZR0(cut-set) + 22*NPARS

+ 83*NR0W + 18*NNZR0 + Synchronization delays III.C.l

This is significantly larger than the number of accesses required for the

Chaotic Scheme. The other implementations reduce the total required memory

accesses, however, the delays become less predictable. The third imple-

mentation requires the fewest memory accesses per iteration, but it requires

the computation time for the generator variables to cover the computation

time of the cut-set variables. The number of memory accesses required is

625*NGEN + 83*NROW + 18*NNZR0

or

83*NROW + 18*NNZR0 + 83*NR0W + 18*NNZR0
cut-set cut-set

III.C.2

whichever is greater. This third implementation, with the cut-set proc-

essor updating the cut-set variables while the other processors update the

generator variables, requires approximately the same number of memory ref-

erences for the program parts as does the Chaotic Algorithm. One difference

is that the generator and load models for the Gauss-Seidel Algorithm are
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divided among one fewer processor than they are for the Chaotic Algorithm.

For the Commonwealth Edison System the different algorithms compare as

follows. The Chaotic Algorithm requires approximately 5800 memory refer-

ences and the first implementation of the Gauss Seidel Algorithm requires

approximately 7000 memory accesses, but the third implementation requires

only 5200 memory references. For the third implementation the four gen-

erator models cover the updating of the cut-set variables. Since a com-

pletely different multi-processor structure is required for these algorithms,

this small speed advantage is not significant. Both algorithms are carried

on into the next chapter for the design of multi-processing structures.

III.D. The Newton-SOR Algorithm

The Newton algorithms are very different than the linear algorithms

discussed in the previous sections. The Newton Algorithms develop a set

of equations, the solution of which yields the new estimate of the variables

of the dynamic simulation problem. The development of the equations and

their solution requires many times the computation effort of the linear

algorithms. However, this additional computation results in quadratic

rather than linear convergence, and normally produces convergence when

the linear methods fail. The additional computation divides the Newton

Algorithms into four steps.

The first step of the Newton methods is the solution of the function

defining the variables. This function is similar to the functions used to

predict the new estimates of the linear methods. The second step is the

formation of the Jacobian. The Jacobian consists of the partial derivatives

of these functions with respect to each variable, and is the coefficient
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of the set of equations. Quite often the solution of the function is found

at the same time the Jacobian is formed. Both of these sections can re-

quire the value of any variable; sharing may be required. The Jacobian

and the solution of the functions define a linear set of equations. The

third step of the algorithm is the solution of these equations to provide

the new estimate of the variables. Since the equations are linear, they

can be solved directly. It is the direct solution of these equations

which requires the largest amount of computation, and is the most difficult

section to arrange in parallel form. For the Newton-SOR Algorithm a so-

lution to the Jacobian equations is found by direct solution of the diagonal

blocks and iteration of the off-diagonal elements. Since the Jacobian ex-

hibits the same sparsity pattern as the functions of section one, the

sparsity from the Chaotic Algirthm carries over to this section. The

difficulty of the Newton-SOR Algorithm is the iteration of the off-diagonal

elements, each of which requires variables from outside the block diagonal.

By using the near block diagonal form of the equations, the number of off-

diagonal elements is minimized. A processor can be assigned to each block

for parallel execution, by sharing the values of the variables of the off-

diagonal elements. This requires a high rate of sharing data between proc-

essors. The fourth step of the algorithm is the advancement to the next time

interval. It is almost identical to this step in the previous algorithms.

As with the other algorithms the variables are of two types, state

variables and algebraic variables. The functions of the first part differ

for the two variables types. For the state variables, the functions repre-

sent the change in the derivative for this time step from the previous

iteration to the present iteration. The solution has been found when the





79

derivative does not change from one iteration to the next. Calculation

of the derivative is identical to the linear algorithm method. The code

for this section, given in Appendix B, appears different because of the

use of matrix representation of all of the variables, and the calculation

of the Jacobian interspersed with the function evaluation. The functions

for the algebraic variables are different from the linear algorithms.

The functions are in the original form given, rather than the fixed point

problem. The value of the function defines the error of the variables

from a functional value of zero. For the power utilities simulations,

the algebraic variables are further divided into current and voltage. The

functions for the current variables define the difference between the cur-

rent of the generator or load and the current of the node connecting to

that device. The voltage functions define the imbalance between the nodes.

In the previous algorithms the current equations are combined into the nodal

equations for the loads. The voltage equations are similar to the equations

of the previous algorithms.

The evaluation of the functions often includes calculation of the elements of

the Jacobian. This can be used to reduce the total computation by interspersing

the solutions. The number of iterations required for convergence, may not

increase significantly if the Jacobian is not recomputed at every iteration.

Usually the Jacobian is recomputed and resolved only if the solution requires

more than a few iterations, or if the step size or some other major variable

is changed. (Such as the change due to the occurrence of a fault.) Because

of the large amount of computation required to solve the Jacobian equations,

the added iterations may actually result in a reduction in computation time.

After tbe Jacobian equations are solved once, the next solution can be ob-
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tained in only a few operations.

For the Newton-SOR Algorithm the solution of the Jacobian equations

is not completely direct. Symbolically the inverse of each block of the

Jacobian multiplies its block row and function. This process is

totally parallel, requiring no information from another processor. If

the Jacobian is not going to be recalculated after every iteration then

the inverse must be saved for multiplication by the next functions. Com-

putationally this procedure is inefficient. A matrix can be inverted and

multiplied times another matrix in the same number of steps as it can be

inverted. Computationally the block diagonal is decomposed into an upper

and lower diagonal matrix. The new values for the off diagonal elements

and the functions are found by solving the lower triangular equations then

the upper triangular equations. The triangular form allows direct solution.

The solution of these equations tends to fill in the off-diagcnal columns.

Columns of the Jacobian which were all zero remain such, but columns with

one or more nonzero elements tend to be completely full after solution.

This is a result of the fill in of the matrix inverse. The fill in does

not increase the number of variables which must be shared between processors

but it does require every variable to depend on the external variables. The

iterations to correct for the off-diagonal elements require only the external

variables. These external variables depend in return on the iterated values

of other external variables, including some of the local variables. 3ut

only a small number of the local variables are required by other processors.

Only these variables must be iterated to convergence. The variables not

required by other processors are simply corrected after the convergence of

all the shared variables.
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To show the fill in and near block diagonal form, the block of the Common-

wealth Edison System of Table III.A.l is repeated, with one of the sets of

generator variables. In this version, Table III.D.l, the fill in due to

the LU Decomposition is denoted by an F, the original elements by X, and

the fill in due to inversion by I. The off-diagonal elements need all the

values for the corrections. This shows the optimal ordering of the generator

and network variables.

In the actual computation it is easier to find the error in the previous

estimate than the actual new estimate. For this reason the last part of the

solution of the. Jacobian equations is the addition of the correction to the

old estimate of the variables. The use of the error allows convergence

testing before solving the Jacobian equations.

The Mm Ion- SOR Algorithm requires the sforrirrg- of data in three of the

steps. Data must be shared for the evaluation of the functions and for the

solution of the elements of the Jacobian. The other period requiring the

sharing of data is during the third step of the solution process. The iter-

ation of the corrections due to the off-diagonal elements requires the values

of external variables. The later sharing rate is the critical rate. Control

of the algorithm is required to insure that the evaluation of the functions

and elements of the Jacobian use the new estimates of the variables. Con-

vergence must be tested over all processors in two places. First, for the

convergence of the variables, after the evaluation of the functions, and

again for the convergence of the corrections due to the off-diagonal elements.

All of the control points are shown in the program code.

The sparseness of the functions is still used for their evaluation.

Since the generator and other models of the block diagonal are themselves
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block diagonal, it is possible to reduce the computation of the decomposition

by sparsity techniques. The entire block diagonal matrix is stored, but

arrays indicate the last element of each column and row to reduce the compu-

tation. The off-diagonal values are compressed to successive columns.

To determine the rates required for sharing data and the increase in

execution speed, the summary of Table III.D.2 is provided. The variables

used in that table and in the equations to follow are defined below:

NVBLS Number

LARU Length

LACL Length

NGEN Number

NLOAD Number

NROW Number

NNZRO Number

NEXV Number

NITS Number

NLVR Number

NSTV Number

of variables in the block

of the average row beyond the diagonal

of the average column below the diagonal

of generator models in block

of load models in block

of network nodes in block

of nonzero Y matrix entries in block

of nonlocal variables used in model

of iterations used for convergence of inner loop

of the local variables required by other processors

of state variables in the block

From the summary of table III.D.2 the extremely high rate of sharing new

values of the corrections during the iterations is shown. The ratio of

shared memory accesses to all memory accesses is presented in III.D.l.

(NEXV + 1)

(54 + 9*NEXV)

III.D.l
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This is a favorable ratio only for a small number of external variables.

The ratio can be improved by sacrificing convergence speed. By using a

Jacobi updating scheme rather than the Chaotic replacement, the external

variables would only have to be accessed once a loop. This would lower

the ratio to the value in III.D.2.

(NEXV + 1)

III.D.2
(54 + 9*NEXV)*NLVR

For the Commonwealth Edison System of Table III.D.2, the Chaotic Replace-

ment would require 7.5% of the memory accesses to be to shared memory.

For the Jacobi replacement only YL would be required. This would allow

more, processors to share the same shared memory. The execution time would

not be changed, but the convergence rate would be slower.

For the Newton-SOR Algorithm the iterations due to the off-diagonal

elements is almost the only time data that must be shared between processors.

Shared data is required for the function and Jacobian evaluation and for the

advance of the time step, but the rate during these periods is many times

slower than that required during the iterations.

Also from the Table III.D.2, an estimate of the time required for one

Newton iteration can be found. The number of iterations of the SOR loop

is an unpredictable parameter which varies with problem and even with exact

decomposition. The time in terms of memory accesses is shown in

III.D.3.

TIME = 838*NGEN + 107*NL0AD + 34*NROW + 40*NNZRO +

NVBLS*[28 + LACL*(36 + LARU*12)] + 10*NEXV +

15 + (NVBLS - 1)*[29 + NEXV* (20 + LARU*9) + LARU-9] +

NITS* [NLVR*(54 + NEXV*9)] + NVBLS* (28 + NEXV*8) III.D.3
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After the direct solution time is shown in the next section, a reasonable

upper bound on the number of inner iterations required for convergence can

be developed.

III.E The Bordered Block Diagonal Newton Method Algorithm

The bordered block diagonal Newton method follows the same four steps

used by the Newton-SOR method. But as the bordered block diagonal Gauss-

Seidel Algorithm differs from the Chaotic Algorithm, so the bordered block

diagonal Newton Algorithm differs from the Newton-SOR Algorithm. The

differences appear in the third step of the solution process, where the

Jacobian equations are solved. By arranging the variables in the bordered

block diagonal form, these equations can be solved directly, rather than

iterated to convergence. The cost of the direct solution is increased

computational requir ements, idle time for processors, and more stringent

sparsity requirements. As with the bordered block diagonal Gauss-Seidel

Algorithm the unexpected benefit is lowered memory contention.

The bordered block diagonal Newton Method requires decoupling the

variables into blocks and a cut-set. The network variables provide all of

the interconnections and form the entire set of variables which must be

examined for decomposition. Since all other processors are idle while the

cut-set processor is solving for the new cut-set variables maximum effi-

ciency is obtained by minimizing the number of cut-set variables. Thus even

the load models connected to nodes of the network are not included in

the cut-set variables. These loads are included in the other diagonal

blocks.

The solution of the functions defining the error of the variables and
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the elements of the Jacobian can require the values of the cut-set vari-

ables as well as the local variables. But none of the other processors'

variables are required. The equations are identical to those required in

these sections in the Newton-SOR Algorithm. The fourth section, advance-

ment of the time step, is also identical to the Newton-SOR Algorithm.

The third section of the program, the solution of the Jacobian equa-

tions, is the only point where the programs differ. Since the Jacobian

has the same sparsity as the functions, the Jacobian is in the bordered

block diagonal form. To solve a set of equations the last chapter showed

that the matrix of coefficients should be decomposed into the product of

an upper and lower triangular matrix. The bordered block diagonal Jacobian

is already very near this form because of the sparsity pattern. The diag-

onal blocks can be decomposed in parallel so they are each of this form,

leaving only the block row of the cut-set variables. When the other proc-

essors eliminate these rows for the complete LU Decomposition, they modify

the diagonal block of the cut-set variables. The cut-set processor must

add in the modifications before this block can be decomposed. After de-

composition is complete, the process of back substitution can begin. First,

the back substitution of the cut-set variables is accomplished. Then the

other processors can perform the back substitution for their variables in

parallel. The completion of the back substitution yields the correction

to each variable, which can be applied completely in parallel. After cor-

rection the process repeats.

The bordered block diagonal Newton Algorithm requires every processor

to be able to share data with the cut-set processor, and the cut-set processor

to provide the cut-set variables to every processor. It requires the cut-set





83

processor to be idle while the other processors are decomposing the Jacobian

and performing the back substitution for computation of the correction.

These other processors are idle while the cut-set processor performs the

same computations on the cut-set. The idle periods provide all of the

synchronization required by this algorithm. The only other control function

required is the determination of convergence across all processors. This

could be included in the duties of the cut-set processor with little difficulty

The instructions required to execute this algorithm are given in Appen-

dix B. The instructions for the cut-set processor are set off from the other

instructions in their proper sequence. The bordered block diagonal form

of the variables was given in Table III.C.2, however it is repeated here

in Table III.E.l, so that the fill-in which results from the LU De-

composition eaii be designated. Tl\e summary of the operations is

given in Table III.E.2.

As with the bordered block diagonal Gauss-Seidel Algorithm the sharing

of data is not difficult with the bordered block diagonal Newton Algorithm.

Since only two processors are required to share any one piece of information,

the data rates need never be as high as for the other algorithms. This

leaves the time required for execution as the major point of analysis.

This time is given in terms of memory accesses in III.E.l.

838*NGEN + 107*NLOAD + 34*NR0W + 40*NNZRO +

NVBLS* [30 + LACL*(38 + 8*LARU)] + NP*(5*NCSV
2
+ 3*NCSV)

+ 4*NCSV
3
/3 +44-VNCSV

2
+ 79*NCSV - 19 +(NVBLS - 1)*

[46 + 7*IARU + 7*NCSV] III.E.l
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Both the bordered block diagonal Newton and the Newton-SOR Algorithms con-

verge at the same rate, thus to compare their solution rates only the time

required for one Newton iteration need be compared. Using the Commonwealth

Edison System the ratio of memory accesses yields the execution rates of

III.E.2.

NSOR 810*NITS + 46600 + Jacobian eval
= _ III.E.2

BBDN 50000 + Jacobian eval

This suggests that 4 SOR iterations can be allowed before the Newton Algo-

rithm will be faster. But the summation of the modifications to the cut-

set block can be accomplished during the modification process by using the

software flag as in the bordered block diagonal Gauss-Seldel Algorithm.

The ratio then reduces to the value of III.E.3.

NSOR 810*NITS + 46600
= III.E.3

BBDN 37000

This shows that the true Newton Algorithm should probably be used if

the equations can be arranged into the bordered block diagonal form. The

vast differences required in the multiprocessor structures which can execute

these algorithms weakens the apparent superiority of the true Newton method.

III.F Comparison of the Algorithms

This chapter presented four algorithms which are suitable for parallel

execution of the dynamic simulation problem. In the next chapter multi-

processor structures are presented that are capable of executing these
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algorithms. In this section the algorithms are compared to show the

similarities that exist among them. It is shown that only two different

types of multiprocessing structures are required.

The most obvious similarity is that the Chaotic Relaxation and the

Newton-SOR algorithms use the near block diagonal form of the equations,

while the Gauss-Seidel and true Newton methods require the bordered block

diagonal form. The form of the equations determines the type of data

sharing that is required for the solution.

The near block diagonal form algorithms share a small portion of the

variables among all processors. Each processor uses one or more of the

shared variables during the calculation of the new estimate of the local

variables. However, since only data is shared, no processor will try to

obtain access to shared memory on the cycle immediately after receiving

the value of a shared variable. The Chaotic and Newton-SOR algorithms

require access to shared data at different rates. The memory contention

resulting from the use of shared memory is also different for these two

algorithms. The Chaotic Relaxation algorithm requires access to the shared

variables at a much lower rate than the Newton-SOR algorithm. The Newton-

SOR algorithm requires one additional control point, but any processor

which can efficiently execute the Newton-SOR algorithms can efficiently

execute the Chaotic Relaxation algorithm.

The bordered block diagonal algorithms share solution information

in an entirely different manner. With these schemes only the cut-set

processor requires information from the diagonal processors, and the cut-

set processor must supply information to the other processors. Both the

Gauss-Seidel and the true Newton algorithms require the cut-set processor
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and the other processors to alternate execution periods. Since the proc-

f

essors alternate execution periods, memory contention does not cause

delays. The control requirements for the two algorithms are identical.

Prediction of the delays due to parallel execution requires infor-

mation about the multiprocessor structures. The convergence rates of

the algorithms were compared in the last chapter. This chapter has pre-

sented the number of operations that are required to compute a new esti-

mate. As was the case when comparing the convergence rates of the algo-

rithms, there is difficulty in comparing the number of operations required

to compute the new estimate. The delays encountered in parallel solution

differ with the form of the equations. Table III. F. 1, developed from the

equation? of this chapter, shows the number of operations the algorithms

require for equations with 5% nonzero elements within the blocks. Stagg

[59], suggested that 5 to 7 linear iterations are required for every Newton

iteration allowing a rough comparison of the algorithms solution time.

The number of operations do not include the delays which result from

parallel execution, so the resulting comparison cannot be final. It does

suggest that the linear methods should converge in less time than the

Newton algorithms. This is contrary to the experience gained with the

single processor implementation, where the Newton method solves the model

in less time. The use of the linear iterative methods raises doubts about

convergence since these methods are known not to converge for some sets

of equations. When the delays are estimated in the next chapter, the

comparison will be refined.

In spite of the analysis available, questions remained on the proper

utilization of the SOR iterations with the Newton-SOR method. Solution
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time and sharing ra'.e are dependent on the number of SOR iterations re-

quired. Further the SOR iterations can be stopped before convergence

is reached, and the Newton iterations should still converge. To test

the effect of variation in the number of SOR iterations the load flow

problem for the Commonwealth Edison system of Appendix A was ordered to

the near block diagonal form and solved by the Newton-SOR method. The SOR

iterations were repeated until convergence, repeated seven times (approxi-

mately half the number required for convergence), and only computed once.

The highest overall convergence rate was obtained with the convergence of

the SOR iterations. Because of the computer time required, the slower

algorithms were only iterated ten and fifteen times respectively. The

seven SOR iteration algorithm converged at approximately the same rate as

the converged SOR iteration algorithm. The single iteration algorithm

was much slower converging requiring
,
ten Newton iterations for every five

of the other two algorithms when convergence was approached. The first few

iterations were approximately the same. It is expected that more detailed

study of the convergence properties of the Newton algorithms would find

that the highest convergence rate would be achieved by increasing the accu-

racy required of the SOR iterations as the Newton iterations approached

convergence.





CHAPTER IV

PROPOSED MULTIPROCESSOR STRUCTURES

Before the parallel algorithms were developed in Chapter Three, the

rudiments of a computing structure were discussed. The computing structure

consists of two levels of memory, multiple processors and a controller.

One level of memory, the local level, is private to each processor. The

other level of memory, shared memory, is connected to the processors by

a common bus. The information required to be exchanged between processors

is stored in this shared memory. The other processors can then read the

information from shared memory. The difficulty is that only one processor per

memory cycle can access a single shared memory. The other processors must wait

until the shared memory is free to exchange information. In addition to

exchanging data, the processors must pass information required to control

the execution sequence. This information is much simpler, consisting of

a signal from each processor designating which part of the execution se-

quence the processor is performing and the status of the iterations. A

controller would assimilate these signals and provide other signals to each

processor to alter the sequence of instructions. The most common signal

would indicate convergence of an iteration, and would instruct the processors

to advance the time step.

This simple description indicates all of the major components required

for every computing structure. First, each of the components is explained.

Then the components are assembled into different structures. The ability

of each structure to execute the dynamic simulation problem is predicted.

The structures are only capable of efficiently executing one of the two

classes of algorithms, either the algorithms using the near block diagonal

96
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ordering of the equations of the simulation, or the algorithms requiring

the bordered block diagonal ordering.

After each structure is developed, the execution speed is predicted.

The structures are modeled to estimate the delays which will result from

contention over shared memory. The contention models used are derived

from the multiprocessor model developed by Skinner and Asher [61]. The

model yields a multipicative factor, called the stretching factor, which

shows the amount by which the execution time is increased due to memory

contention. This factor does not include the effects of the variation of

the convergence rate between the parallel algorithms.

IV.A Multiprocessor Components

There are three parts to the computing structures considered here.

The first part is the computing elements. The computing element consists

of the processor and local memory, and any other devices required for an

independent computer. The second component of the structure provides for

the exchange of data. For the near block diagonal algorithms it consists

of a shared memory, a common bus, and an arbiter. For the bordered block

diagonal algorithms, the cut-set processor handles the sharing of data.

The final component is the controller. It may be as simple as a few ex-

ternal logic devices, or as complicated as another processing element. In

fact, the control functions may be assigned to one of the processing elements,

In this discussion, as few specifications as possible are made on the

processing element. It is assumed to be a commercially available minicom-

puter, although micros or full GP computers might as easily fill the position.

A few features will enhance the execution of the dynamic simulation problem.
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The major requirement is the efficient execution of arithmetic operations

on floating point numbers. The sparsity programming of the dynamic simu-

lation problem can more easily be performed for a processor with some in-

dexing capabilities. The actual instruction set and execution speeds do

affect the final structure, but the analysis of this thesis is based on

a high level language implementation of the algorithms. The local memory

associated with each processor is of any form efficient for that processor.

The only requirement is that it is of sufficient size to contain the en-

tire parallel portion of the program and data required by that processor.

The ability of the structure to exchange information between processors

determines the success or failure of the structure. If the information can-

not be efficiently exchanged, the use of parallel processing is not effi-

cient. For the near block diagonal form algorithms, the simplest device

which is used for exchanging data is the single shared memory. All processors

can gain access to this memory by a common bus. Only one processor may gain

access to the bus (and shared memory) during one shared memory cycle. When

more than one processor requests the bus, an arbiter grants access to the

bus to only one processor. The bus, arbiter, and the shared memory appear

as one unit. If a processor gains access to the bus, then the requested

information is provided at the end of the memory cycle. The other processors

must wait until the next memory cycle and repeat the request. Because of

the structure of the algorithms, after a processor gains access to shared

memory, that processor waits several memory cycles before there is another

request for shared memory. To insure against unreasonable delays, the

number of processors should be limited so that, on the average, no processor

will make two requests for shared memory before every processor requesting
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shared memory has had at least one opportunity for access.

The arbiter is a simple hardware device which insures only one proc-

essor is granted access to the bus during a shared memory cycle. Because

of the number of memory cycles between a single processor's request for

shared memory, any scheme used by the arbiter to grant access should result

in a "fair" order of selection. A true random, or round robin system

would be preferred. But even sequential polling, giving priority to the

closest processor on every poll, would net significantly alter the delays.

A true random arbiter was used for the models.

The cut-set processor accomplishes the sharing of data for the bordered

block diagonal algorithms. This could be achieved by a common bus connecting

the cut-set processor to the other processors. The cut-set processor needs

access to the local memory of these other processors only while they are idle,

This eliminates the need for separate shared memory and an arbiter.

If the portion of the local memory of the diagonal processors where

the cut-set variables are stored appears as a single memory to the cut-set

processor, the efficiency of the bordered block diagonal algorithms will be

increased. In this case, the cut-set processor will be able to store a

copy of each of its variables for every processor with only one store in-

struction per variable.

The final part of the computing structure is the controller. The con-

troller insures that the execution process proceeds in the prescribed manner

by all processors. Action is required by the controller at the control

points within the algorithms. The controller achieves synchronization of

the processors at these points of the programs, and signals changes in the

program, such as iuoving to the time step advance. The controller is not
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expected to be able to provide all of the control required for major

program changes, such as beginning execution of a new simulation.

There are two possible devices to act as the controller. One, a

totally external controller, uses logic hardware to provide control

signals based on the signals provided by each processor. The other con-

troller, one of the processing elements, would examine shared memory for

the status of all of the other processors and, based on this information,

provide signals to alter the execution sequence of the other processors.

However, the use of a processor as a controller implies the control func-

tions will require many memory cycles to implement since the processor

would have to perform operations to determine the control required.

The simplest control scheme is achieved by each processor setting

hardware flags with Cue information representing that processor's current

status. External logic would then use the information from these flags

to determine the need for altering the execution sequence. If a change

is needed the external logic either could interrupt the processors, with

the interrupt providing the information required to alter the instruction

sequence, or set flags which, upon reading by the processor,

would indicate the new instructions to execute. By using external logic

for control there is less delay than would result from the software

approach of exchanging semaphores through shared memory.

With the bordered block diagonal algorithms, the cut-set processor

can perform the control functions without the delays which normally result

from using a processor to control a general purpose multiprocessor, since

the controlling functions occur when the cut-set processor is otherwise idle.
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With all of the parts of the computing structures defined, the next

sections show how they might be combined to execute the algorithms required

for the solution of the dynamic simulation problem. The structures are

divided into two groups: the structures for the near block diagonal algo-

rithms, and the structures for the bordered block diagonal algorithms.

First the model which predicts the actual execution times is described.

IV. B The Multiprocessor Model

The structures proposed must be evaluated to predict the delays that

will result from sharing data, and the accompanying increase in execution

time. The multiprocessor model developed by Skinner and Asher [63], is

modified slightly to provide this prediction.

The Skinner and Asher model use the theory of Markov Chains to predict

the stretching effect on execution time delays due to memory contention.

A one step transition matrix is developed. The elements of the matrix

are the probabilities of the processors being delayed due to the other

processor's actions. Skinner and Asher assumed each processor attempted

to access shared memory by Bernoulli trials with probability p. When more

than one processor attempts access, access goes to one processor with

probability II. The processors failing to receive access to shared memory

repeat the request on the next memory cycle. Skinner and Asher assumed

that a processor could repeat the request even if it was granted access

the previous cycle. When the probabilities for each processor are the

same, the model can be simplified to represent the major states of the

multiprocessor. For example, a major state might represent three processors

delayed waiting for shared memory. This is essential for models the size

required for this thesis.
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The model of Skinner and Asher was modified primarily to reflect

the fact that a processor, would not request shared memory immediately

after receiving it. The modification involved splitting the no processor

delayed state into a state of no processors requesting shared memory and

a state of one processor requesting shared memory . With the state

split, the probabilities can be modified to reflect the restrictions on

the processors' repetition of requests to shared memory, and the actual

usage rates of shared memory can be predicted. If the probabilities

were not modified this model would provide the same values as Skinner

and Asher 1

s.

By solving the Markov Chain model (finding the steady state prob-

abilities) the expected value of the occurrence of the different states

can be predicted. These probabilities provide the information needed to

predict the additional time that will be required to execute the problem

because of memory contention. This information is expressed as the stretching

factor and is computed as the inverse of the probability that a processor

will not be delayed. The ratio of the multiprocessor total execution time

to that of the single processor is the stretching factor divided by

the number of processors.

IV. C Structures for the Near Block Diagonal Algorithms

The Chaotic Relaxation and Newton-SOR Algorithms, are enhanced by

ordering the equations of the simulation to a form with diagonal blocks

and as few interconnections as possible. This near block diagonal form

minimizes the sharing of data between processors, and improves the conver-

gence rate of the Nawton-SOR Algorithm. The near block diagonal form is
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not essential for these algorithms. Likewise, the structures of this

section are designed for near block diagonal equation solution, but they

will execute the algorithms for nonsparse equations. The cost of non-

sparse problems would be smaller problem size and increased delays due to

memory contention.

The Chaotic Relaxation Algorithm requires the ability for all processors

to share data. Analysis in Chapter Three showed each processor will try

to access shared data not more than two percent of the memory cycles.

Control is required only to insure all processors advance the time step

when all variables have converged. The Newton-SOR Algorithm has the above

requirements, with seven and one half percent of the memory cycles going

to shared memory during the iterations, and in addition, requires control

to insure convergence of all processors during the secondary iteration.

The simplest multiprocessor structure is the use of a common bus to

connect a number of processing elements. Figure IV.C.l shows one such

structure. The common bus consists of address, data and, control lines.

An arbiter would control access to the bus. The controller would consist

of logic devices connected to each processor. This is the model assumed

during the development of the Chaotic and Newton-SOR Algorithms. The ar-

biter grants access based on the next processor desiring access in the

loop. Graph IV.C.l shows the stretching effect as more processors are

added to the structure for the Chaotic algorithm. It also shows the ex-

pected decrease in execution time. This is expressed as the percent of the

time a single processor would require. The corresponding quantities are

repeated for the Newton-SOR Algorithm in Graph IV. C. 2.

From the first graph it is apparent that the delays from memory
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contention do not have a significant effect until almost all of the memory

cycles are used. After all of the cycles are used, a further increase in

execution speed is not attainable by increasing the number of processors.

Saturation (10G7o usage) of shared memory does not occur as expected when

the number of processors is the reciprocal of the individual processors

shared memory access rate. This number of processors and their expected

problem solution time are called the idealized number of processors and

idealized multiprocessor execution time respectively. Because of the

stretching effect, the number of processors required to saturate shared

memory is larger than the idealized number, and even with this larger num-

ber of processors the execution time is longer than the idealized execution

time. For example, with Chaotic Relaxation, each processor could be expected

to use shared" memory for Ztio percent of itTs' Co Lai Memory cycles. FifLy

processors would be used in the idealized multiprocessor structure, achieving

solution in 2% of the time that a single processor would require. However,

because of the stretching effect of memory contention, fifty processors use

shared memory for only 957=, of the total possible access to shared memory,

and solution would require 2.11% of the time that a single processor would

require. Addition of approximately twenty five more processors would only

reduce the time required for solution down to 2.1% of the single processor

solution time. The idealized two percent can never be reached.

To chose the number of processors which should be included in the

multiprocessor is a difficult problem. It requires setting a value on the

cost of an additional processor and a value on the time saved by using an

additional processor. Clearly the addition of processors beyond the number

which saturates shared memory gains no decrease in execution time. Below
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this number, every additional processor results in a smaller reduction

in execution time. The graph of the solution time versus the number of

processors becomes almost level when the number of processors reaches

between two- thirds and four- fifths of the idealized number. For general

simulation studies it is expected that this range includes the appropriate

number of processors to include in the multiprocessor. It is difficult to

foresee using more than this number of processors.

The easiest method to improve the performance of this structure is to

increase the rate with which the shared memory can provide data. If the

shared memory had an access rate twice that required by the processors,

or if shared memory had multiple access ports then the data could be sup-

plied to two processors every memory cycle. Graphs IV. C. 3 and 4 present

the results for Llri' strnrdnire slCa even multiples of the shared memory

access rate.

Similar results are obtained with a multiprocessor having multiple

shared memories. Figure IV. C. 2 shows a two memory version. Each processor

is connected to two common buses. Each bus has its own arbiter and shared

memory. With two shared memories each processor would access one of the

shared memories roughly half as often. (Equal portions of the shared data

is stored in each memory.) Each of the buses in the multiple shared memory

version would be equivalent to the single bus of the first structure.

Graphs IV. C. 5 and 6 show the results for the multiple shared memories.

(As the structures become more complicated the models of the structures must

be simplified for solution.)

The multiple memories can also be further improved by increasing their

access rate.
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Another structure uses multiple shared memories but does not connect

all processors to each memory. Depending on the problem the decomposition

of the dynamic simulation problem may be structured so all of the shared

variables are not required by all of the processors. A savings in cost

could be achieved by minimizing the connections. Modeling such a structure

for the number of processors typically used requires many states to be

represented. With this structure the individual probabilities for each

group of processors would have to be specified, leading to a prohibitively

large model. A typical structure of this type is shown in Figure IV. C. 3.

IV. D Structures for the Bordered Block Diagonal Algorithms

The bordered block diagonal algorithms use the parallelism of the

cq-utttioTTJ- erf the exhalation- tfr er-jrett-fee the Gauoo Coidol and the- Newton-

method in parallel. This decomposition of the equations requires that the

cut-set processor be capable of communicating with all of the other proc-

essors. The other processors need not communicate with each other. This

places the cut-set processing element in a central location, with all of

the other processing elements connected to this processor. The controller

must still receive data from all processors, and disseminate signals to

alter the execution sequences of all processors. Because of the central

location cf the cut-set processor, it is very capable of performing the

necessary control.

The structures of the bordered block diagonal algorithms need to be

divided further. Both the Gauss-Seidel and Newton Algorithms can be im-

plemented with the cut-set processor's instructions overlapping the other

processor's instructions, or with the cut-set executing only when the
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other processors are idle and vice-versa. With no overlap of instructions,

the multiprocessor structure is simplified because of the removal of memory

contention. Thus no arbiter or even shared memory is required. There is

cost in terms of execution speed and in the usage of the cut-set processor.

The cut-set processor could be used for convergence testing and step size

control.

Figure IV.D.l shows a suggested computing structure for an implementation

with no overlapping of instructions. This structure is simpler than the

first multiprocessor of Section C, because there is no possibility of memory

contention. The shared memory is actually part of each of the processing

elements local memory. The cut-set processor can address locations of the

other processors memory over the bus. It is suggested that part of the

lo~c~a"I nreiTOTies have Che same address, so that when the cut -set processor

stores the values of its variables, each processor receives a copy. The

cut-set processor can also address each local memory individually for the

values of the local variables it requires. When the cut-set processor is

idle, the bus is off so the other processors do not interfere with each

other. A simple external controller, or the cut-set processor itself, is required

to signal the cut-set processor to begin execution after the other processors

have gone idle. The cut-set processor can signal the other processors to

resume execution as its last instruction before going idle or into its control mode.

The cut-set processor could also detect convergence and deposit information

to signal the processors to advance the time step.

In Chapter Three a possible increase in execution rate was shown by

having the cut-set processor and the other processors execute instructions

concurrently. This complicates the structure of Figure IV.D.l greatly.
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Now there must be separate sections of shared memory, and arbiters to

control access to these memories. Figure IV. D. 2 shows the suggested

additions to be made to the structure. One advantage is that now the cut-

set processor is capable of providing all of the control functions.

Even with the overlapping of instructions the delays which result from

memory contention are inconsequential. However, there is another problem

dependent feature which extends the execution as the number of processors

grows. When a problem is decomposed into more parts the number of vari-

ables in the cut-set grows. Since the execution of the cut-set equations

demands time proportional to the number of cut-set equations, an increase

in their number greatly affects the execution rate of the entire problem.

Each separate problem will decompose into blocks which will call for a

processor Lot each block. An increase in the rrccrrber of processors should

be viewed as an increase in the size of the problem to be executed rather

than a method to reduce the time required to execute a single problem.

Graph IV.D.l shows how the execution time decreases as more

processors are added. The execution rate of the bordered block diagonal

algorithms depends on the number of cut-set variables. As their number

increases the largest portion of the processors are idle for longer periods.

The increased idle time of the processors prevent the solution time from

decreasing further.

One feature which if added would slightly increase the

execution rate, but would be of more benefit by removing the need for the

many arbiters, is dual port shared memory. The local processors could be

assigned the first of the two possible memory cycles and the cut-set

processor the second. Synchronizing the processors out of phase would be
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much simpler than the control required to insure single processor access

requirements. The added cost comes from the increased memory speeds.





CHAPTER V

DECOMPOSITION EFFECTS

This thesis has studied the dynamic simulation problem to determine

the parallelism inherent in the problem and the requirements of a computing

structure to exploit this parallelism. In the process of this study, the

problem of decomposing the equations into blocks with the minimum number

of interconnections has surfaced as a strategic factor for parallel ex-

ecution. Although each system of equations only has to be decomposed the

first time it is to be simulated, the methods of achieving this decompo-

sition are haphazard at best. The algorithms which do exist are too in-

efficient to apply to sets of equations of the size described in this

thesis. In addition, the actual decomposition has different effects on

each of the algorithms. The least affected algorithm is Chaotic Relaxa-

tion and the most affected is the true Newton. The convergence rates of

the Chaotic Relaxation and Newton-SOR schemes are affected by the actual

decomposition, but only the number of operations required to compute the

iteration is affected for the bordered block diagonal form Gauss-Seidel

and Newton Algorithms. In fact, the same number of iterations are required

for the parallel bordered block diagonal form algorithms as for the serial

Gauss-Seidel and Newton Algorithms.

In this chapter the difficulties of the decompositions are studied

and the effects are described.

V.A The Problems of Decomposing Equations

Kron [44], suggested solving large sets of equations by "tearing"

the problem into smaller parts. For the power system problem, Kron
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proposed tearing the network equations into small parts by eliminating

some connecting lines. The solution of the individual parts was then

iterated to balance the values on either side of the torn line. The

modifications used to produce the convergence of the iterations, required

that the equations of the smaller parts be linear. The requirement of

linearity is considered too restrictive for for the dynamic simulation

problem. Even with Kron's method, the choice of which lines to tear de-

pended mainly on the intuition of the system analyst.

The notion of cutting the sets of equations comes from the use of

optimal ordering for LU Factorization. By properly ordering the equations,

the number of nonzero coefficients formed by the LU Factorization can be

minimized. This minimizes the number of operations required to solve

the equations. Several methods have been developed to properly order the

equations, but only by trying all possible orderings is a true optimal ordering

achieved. Associated with the optimal ordering is the construction of

computer programs to perform operations only on nonzero coefficients.

The sparsity programming techniques require a large amount of computation

to calculate the next nonzero coefficient. The data structure problems

can be simplified by concentrating the nonzero coefficients into blocks.

The blocks can be programmed without the use of sparsity programming.

The use of these blocks reduces the execution time of the algorithms com-

pared to the nonblock methods with sparsity programming.

The methods used to find block orderings are related to the methods

used for optimal ordering. To find the decompositions which minimize the

nonzero coefficients outside the blocks would require essentially trying

all possible orderings. Methods are presented to find approximation to
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this block decompositions.

Carre [46] proposed a method of ordering the equations to the near

block diagonal form. This method minimizes the value as well as the number

of off block diagonal nonzero coefficients. The minimization of the value

of these coefficients reduces the number of iterations that the Newton-SOR

method requires. This scheme begins by forming a graph model of the equa-

tions. The branches are then listed in the order of the absolute value

of the coefficient of that branch. The branches are added in decreasing

order of the value of their coefficients until a tree is formed. (Non-

tree branches are skipped when necessary.) The disconnected parts of the

tree correspond to the different blocks of equations. If a block turns

out to be larger than permissible that block can be subdivided by applying

the same procedure to it. After choosing the variables the equations within

each block should be put in optimal order for the LU decomposition.

The bordered block diagonal form also orders the equations so that

the nonzero terms are in diagonal blocks. When the number of blocks is

increased, the equations with coefficients of noncut-set variables which

cannot be ordered into a diagonal block become a member of the cut-set.

The cut-set equations form the last block. Two methods of finding this

ordering are presented. Each is based on a graph model of the equations.

To find the smallest set of equations, the cut-seL, whose deletion will

divide the remaining equations into non-interacting sets, is equivalent

to the min-cut max-flow Graph Theoretic Problem. The graph theoretic

procedures can be used to find the cut-set. To do this, the highest degree

vertex of the graph model of the equations is labeled the source. The





122

next highest mode not directly connected to the source is labeled the

terminal. The minimum vertex cut-set is then found between the source and

the terminal by an algorithm such as the one presented by Frank and Frisch

[49]. If the number of vertices in this cut-set is equal to the degree of

the terminal vertice then the source vertex becomes a member of the last

block. If the minimum cut-set is smaller, then the cut -set is put in the

last block. In either case the nodes of the last block are eliminated and

the graph reduced again. If only the source vertex was added to the cut-

set then the process is repeated until the graph is disconnected.

For graphs representing power systems networks, finding a useful decom-

position may be difficult. The power system has been designed to insure con-

tinued operation in spite of failures in the system. Deletion of the cut-

set is equivalent to those buses failing. The cut-set is therefore much

larger for the power system network, than for a typical random graph for

the same size and sparseness. When the algorithm presented by Frank and

Frisch [49J is applied to a power system graph, the cut-set is typically

the nodes adjacent to the terminal node. This produces the diagonal

block of only the terminal node. A block size of one is not efficient for

parallel execution, so the algorithm must be forced to find larger blocks.

This increases the computation and reduces the optimality of the solution.

Further the algorithm dees not provide for finding more than two blocks

at a time except for symmetric graphs. The minimum cut-set for dividing

a graph into two subgraphs may not be contained in the cut-set for dividing

the graph into three subgraphs. There is speculation in the literature

that optimal ordering and block decomposition is an NP Complete problem

in graph theory. [72]
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A much more direct solution process has been proposed by Ogbuobiri,

et al [45] for power systems. This method overcomes

some of the problems of the graph theoretic procedures by attacking the

problem in a different manner. The method groups the most highly connected

nodes, allowing the cut-set to be chosen as the least connected nodes. The

method does not help to decompose a large block into smaller ones. It

can also be used to find the near block diagonal form by not extracting

the cut-set variables.

A great deal of computation can be saved in the decomposition problem

by reducing the graph model. The reduction process combines all nodes of

degree two or less with their adjacent node. Further, all parallel paths

and self loops are deleted. The resulting reduced graph can be shown to

be either 1) a graph of five or more nodes all of degree three or greater,

2) a complete graph of four nodes, or 3) two nodes connected by a single

branch. The latter two of these reduced graphs can be put into bordered

block form easily. The complete graph of four nodes requires three of

the nodes to form the cut-set. Depending on how the reduction proceeded

there will be one, two, or three other blocks for the diagonal. A graph

of two nodes with one branch comes either from parallel paths or one path

of nodes of degree two. For parallel paths the cut-set is the two re-

maining nodes and each path is another block. For one path a center node

is the cut-set with either side the other blocks. Only the reduced graph

of five or more nodes needs further study to find the cut-set. [50]

The power system networks do provide some benefits. The graph can

be related to geographical locations which can aid in locating possible
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cut-sets. Experience with the system will lead the analyst to knowledge

of the weakest links in the network. These weak links are natural choices

for the cut-set. For power systems, reliability studies may show which

buses are the weakest links in the network.

For the transient stability problem, there is one feature which can

be used to always identify a cut-set. By reducing the network equations,

the resulting non-sparse block of equations acts as a cut-set for the

generator and load models. These models only connect through the network.

This method is used in [29] to reduce the execution time for a single,

processor by simplifying the sparsity programming task.

V.B Effects of Decomposition on the Near Block Diagonal Algorithms

The difficulty of finding the optimal ordering for both the near

block diagonal form and the bordered block diagonal form was presented in

the last section. In this section the effects of the ordering are pre-

sented to allow the analyst to choose the degree of decomposition allowable.

For the Chaotic Relaxation and Newton-SOR schemes, the decomposition aids

in reducing the amount of sharing of data required and by improving the

convergence rates. However, these two algorithms will achieve the correct

solution without the decomposition.

For the Chaotic Relaxation the exact decomposition does not affect

the number of operations required to perform one iteration. It does vary

the individual processor's rate of requesting shared memory. This rate is

directly related to the number of nonzero off block diagonal coefficients.

But even for dense equations the highest rate of requesting shared memory

is trivially small.

The remaining effect is the change in the convergence rate of the
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Chaotic Relaxation with different decompositions. Proper decomposition

can improve the convergence rate considerably. With improper decomposi-

tion the updating of the variables could become a Jacobi scheme, where

the values for the variables used to compute the update are an iteration

or more old. With block diagonal decomposition the updating sequence

could be a Gauss-Seidel scheme. Without the block diagonal decomposition

the equations are not updated exactly in sequential order. This reduces

the convergence rate to a value less than that of the Gauss-Seidel method.

The convergence rate is reduced further when an old iteration value is

used to compute an update. This can only occur from a shared variable.

The possibility of using an old iteration is reduced primarily by in-

suring that each processor requires approximately the same number of

operations to compute an iteration. (Equally sized blocks is the simplest

measure of this time.) Also minimizing the number of external vari-

ables required by a processor reduces the possibility of using an old

iteration value.

For the Newton-SOR Algorithm the rate of using shared memory is in-

dependent of the decomposition (except for totally disjoint equations).

This results from only the nonzero off block diagonal entries being used

during the iteration for the Newton update. The actual number of opera-

tions required for each iteration and the convergence rate of the Newton

update does depend on the decomposition. The number of Newton iterations

is not affected by the decomposition.

To minimize the number of operations, the number of columns outside

the block diagonal part of the Jacobian which contain nonzero values must

be minimized. The actual number of nonzero entries in each of these
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columns is not significant. Thus when the decomposition is found, the

number of external variables required by each block is the value which

must be reduced.

The convergence rate of the Newton update is maximum when the proc-

essors all require the same number of external variables. However, the

convergence rate is not as significant as the increase in the number of

operations caused by the addition of more external variables. (The number

3
of operations grows as n .) If given the prerogative the off block diagonal

entries should be of the smallest absolute magnitude, to provide the highest

possible convergence rate.

To summarize, the decomposition for the Chaotic Relaxation Algorithm

should strive for equal sized blocks even if additional off block diagonal

entries are required. For the Newton-SOR Algorithm the number of external

variables must be minimized.

V . C . Effects of Decomposition on the Bordered Block Diagonal Algorithms

The decomposition of the network equations provides the only high

level parallelism possible in the true Newton and Gauss-Seidel Algorithms.

If the equations could not be decomposed, there is no straightforward

method of using a multiprocessor to reduce the time required for the so-

lution of the dynamic simulation problem by these algorithms. Experience

indicates it is reasonable to assume that the equations can be decomposed

to the bordered block diagonal form. In this section the properties of

the cut-set are related to the execution rate.

Since the parallelism is found in the equations to be solved and not

in the algorithms used to solve them, the convergence rates of the algorithms
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are. not altered. All of the solution steps required by the algorithms are

performed in the same manner as they would be for serial execution. This

results in the solution being found in the same number of iterations, re-

gardless of the number of processors used to calculate the iterations.

With the bordered block diagonal form algorithms, the number of op-

erations per iteration is the sum of the operations for the parallel blocks

and the cut-set block. By increasing the number of blocks, more processors

can be used to reduce the time required to compute the diagonal blocks

portion of the iteration. But the solution time of the cut-set is not

reduced, further the size of the cut-set is typically increased by decom-

posing the equations into more blocks. With more equations to solve, the

cut-set processor requires a larger portion of time, so that increasing

the number of blocks may actually increase the time required for solution.

Since the Newton and Gauss-Seidel algorithms require such differing amounts

of computation per iteration, the effects of increasing Lhe size of the

cut-set is different.

For the Gauss-Seidel Algorithm the cut-set variables must be iterated

while the other processors are idle. This requires the cut-set processor

to sum the portions of the update from each processor. But not all cut-set

variables are affected by all processors. Thus the computation for the cut-

set processor only grows as the sum of the number of cut-set variables

affected by each processor. There is no difference to the cut-set processor

between only one variable of a diagonal block affecting a cut-set variable,

and all variables of the diagonal block affecting the cut-set variable.

Since so little computation is required by the cut-set processor, for the
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bordered block diagonal form of the Gauss-Seidel Algorithm, an increase

in the size of the cut-set has only slight effect.

For the true Newton algorithm the cut-set processor must sum the

modifications from all of the other processors and then solve the resulting

3
equations. The solution time for these equations grows as n , where n is

the number of cut-set variables. Since the equations of the cut-set are

dense after the modifications are summed, more operations may be required

to solve a smaller number of equations than the other processors require

to solve a larger number of sparse equations. Thus when the number of

blocks is increased, increasing the size of the cut-set, the computation

time of the cut-set is dramatically increased while the time for the diag-

onal processors is only partially decreased. The true Newton Algorithm

requires that the number of cut-set variables be minimized to yield the

fastest possible solution.

For the bordered block diagonal form Gauss-Seidel Algorithm it is

possible to use more than one cut-set processor, by assigning different

cut-set variables to each processor to update. The cut-set variables would

have to be assigned so that the variables would not depend on variables

assigned to the other cut-set processors. However, seldom do the cut-set

variables depend on other cut-set variables. The cut-set processors would

have to compeLe for the available accesses to the local processor's mem-

ories for the cut-set processors the available accesses are sufficient for

several processors to share without serious contention. The use of several

cut-set processors would relieve the bottleneck caused by the solution of

the cut-set variables, resulting in even higher execution rates than pro-

eted in this thesis.
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To use multiple cut-set processors for the bordered block diagonal

form Newton Algorithm requires a different philosophy in finding the cut-

set. The cut-set variables must be divided into layers, and the solution

process itself gains another layer where processors are idle. The cut-set

is cut into nearly disconnected parts whose complete solution requires

another cut-set processor. To find a decomposition which is itself de-

composed into disconnected parts is not difficult. First the set of equa-

tions are cut into two near equal subsets. This first cut is the lowest

level of the cut-set. The large subsets are then cut into smaller blocks.

But the cut-set from each subset is not dependent on the equations of the

other subset. Solution of the Jacobian equations can now proceed in five

steps. First the diagonal blocks are triangularized and the last block

row eliminated. The subset cut-set processor then sums the modifications

to its variables, and forms the modification to the lower cut-set. This

lowest cut-set is solved and the back substitution begins. The subset

cut-set uses the lowest level cut-set variables to find the new value of

the subset cut-set variables. Finally the diagonal blocks can use the two

level of cut-set variables to complete the required back substitution for

the remaining updates.

Using the decomposed form of the cut-set variables can save execution

time even when only one cut-set processor is used. The decomposed form

forces sparsity into the final cut-set equations, greatly reducing the

number of operations required to solve for the cut-set updates.





CHAPTER VI

CONCLUSION

The dynamic simulation problem can be structured so that a high

degree of macroparallelism exists in the solution techniques. The macro-

parallelism results not only from the algorithms used to solve the dyna-

mic simulation problem but also from the actual equations of the models.

Simple multiprocessors have been proposed which can use this macroparal-

lelism to greatly reduce the time required to solve the dynamic simulation

problem.

The model of a dynamic system has been considered to consist of a

large number of nonlinear differential and algebraic equations. In order

to efficiently solve these equations the differential equations are ex-

pressed as algebraic equations through the use of implicit multistep inte-

gration methods. The entire set of equations is now solved by the numer-

ical methods applicable to nonlinear algebraic equations. Four algorithms

have been studied in detail, Chaotic Relaxation, Gauss-Seidel, Newton-SOR,

and true Newton. Macroparallelism is present in the Chaotic and Newton-SOR

algorithms. The Gauss-Seidel and Newton methods depend on the parallelism

for the actual equations for parallel solution.

The convergence properties of the parallel solution methods are basi-

cally the same as the serial convergence properties. Where convergence

can be proven, the rates of convergence of the methods have the same rela-

tive ordering as they have in a serial implementation. The true Newton

and Newton-SOR methods converge most rapidly, followed by then the Gauss-

Seidel and Chaotic Relaxation Algorithms. The Newton-SOR method requires

130
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two levels of iteration. The major iteration converge at the same rate

as the Newton method, while the minor iterations converge at a linear

rate. The Gauss-Seidel method can be shown to converge at a higher rate

than the Chaotic Relaxation, but the rate is only slightly higher.

A feature of almost all large sets of equations, especially those of

the dynamic simulation problem, is sparsity. Because of the sparsity

present in the equations of the models, the equations can be ordered to

either the near block diagonal form or the bordered block diagonal form.

These forms concentrate the nonzero coefficients of the equations into

diagonal blocks. The parallel solution techniques then solve the blocks

of equations in parallel. Information must be exchanged between the

parallel solution streams for those nonzero coefficients which cannot be

arranged into a diagonal block.

The near block diagonal form of the equations reduces the required

sharing of solution data between the processors for the Chaotic Relaxation

and Newton-SOR algorithms. This form also decreases the number of opera-

tions and increases the convergence rate of the Newton-SOR method. But

arranging the equations to this form is not an absolute requirement for

parallel execution.

By arranging the equations into the bordered block diagonal form,

macroparallelism can be obtained in the Gauss-Seidel and true Newton

methods. For these methods the degree of parallelism depends entirely

on the actual decomposition of the equations. Parallel solution methods

for these two algorithms only slightly increases the number of operations

that must be performed for an iteration, even though many processors are

performing the operations concurrently. The convergence rates of the
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algorithms is not affected by parallel solution,

The algorithms can also be ranked by the number of operations each

requires to compute a new estimate of the variables. In general for the

same problem the Newtcn-SOR algorithm requires the largest number of op-

erations per iteration. The Newton method is next followed by the Gauss-

Seidel and then the Chaotic Relaxation. There are several orders of mag-

nitude difference in the number of operations required for the Newton

methods, compared to the linear methods. It has been reported that the

linear iterative methods require on the average 5 to 7 iterations to re-

duce the error an amount equal to one iteration of the Newton methods.

To find an overall ranking, the delays due to parallel execution must be

included with the convergence properties.

The two methods of ordering the equations basically determine the

requirements for sharing data and thus the structure of the multiprocessor.

The algorithms determine the rates at which the data must be shared and the

control required for execution. The sharing of data causes delays in the

execution either because the required information has not yet been computed

or the device containing the information is busy servicing another processor.

By minimizing the amount of information which must be shared, the delays due

to sharing this data are reduced. The delays due to control of the solution

process are inherent in the algorithms. Some of the control delays can be

reduced, but the gains achievable are not as significant as possible for

the sharing of data.

The algorithms of the near block diagonal form, exchange solution data

conveniently through shared memory /flies e algorithms, the Chaotic and Newton-

SOR, have the same control and shared data requirements for parallel execution,
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and thus can be executed on the same multiprocessing structures. However

since the Chaotic Relaxation algorithm requires shared data at a much lower

rate than the Newton-SOR algorithm, approximately three times the number of

processors can be executing this algorithm in the same structure with approx-

imately the same delays from memory contention. The Newton-SOR algorithm

requires several times as many calculations per iteration as the Chaotic

method, and will converge at a higher rate. Since the number of operations

and the convergence rate is heavily dependent on the actual problem, an

actual ranking in terms of solution time requires problem solution experi-

ence.

The bordered block diagonal form algorithms exchange data in an entirely

different manner so that contention from shared memory is not a problem.

From the memories' point of view the Gauss-Seidel and true Newton algorithm

appear to be executed by a single processor. This is because the cut-set

processor accomplishes the exchange of data while the other processors are

idle. Thus the delays in parallel execution result from processors being

idle waiting for data to be computed, and the delays become longer as the

number of variables in the cut-set are increased. As a result the advan-

tages derived from parallel execution depend on the particular problem

being solved. Experience has shown that usually , sparse sets of equations

can be arranged into the bordered block diagonal form. By combining the

information presented, estimates of the actual decreases in execution time

can be predicted. By comparing the number of operations required for

serial execution to the number of operations in the longest parallel

stream plus any concomitant delays ,the decrease in execution time can be





134

predicted. If the estimates of the convergence rate are included, a rough

ranking of the parallel algorithms can be obtained.

For the Chaotic Relaxation algorithm a single processor implementation

would execute the same instruction sequence but for more variables. However

the convergence rate of the single processor (Gauss-Seidel) would be higher

than that of a multiprocessor. Arranging the equations in the near block diag-

onal form, to reduce the sharing of data between processors, prevents the equations

from being divided equally between the parallel processors. Therefore,

if p is the number of processors, 6, the fraction of additional operations

in the longest parallel path, and s is the stretching factor due to memory

contention; then a multiprocessor could execute an iteration of the Chaotic

Relaxation algorithm in (l+5)s/p of the time a single processor would re-

quire. Sample coding indicates that on simple single shared memory multi-

processor, the Chaotic Relaxation algorithm could be solved by 40 processors

in parallel in 2.7 percent of the time that a single processor would re-

quire. By increasing the complexity of the multiprocessor, even further

reductions in execution time are possible.

With the Newton-SOR algorithm comparison is more difficult since

there is usually no reason to use the Newton-SOR algorithm on a serial

processor. The true Newton solution could be found in fewer operations.

When the equations are too dense to be able to achieve the bordered block

diagonal form or the linear iterative method does not converge, then the

Newton-SOR method must be used. For completely dense sets of equations

it does represent a possible savings in execution time over the true Newton

method. Because of the higher rate required for sharing data, fewer
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processors can share the same memory efficiently. A multiprocessor with

10 processors could execute the Newton-SOR algorithm in \ the time a

serial processors could solve the true Newton algorithm. (This figure

is based on the sparsity and decomposition of the power system problem used

in Chapter Three and discussed in Appendix A.)

The bordered block diagonal form algorithms are even more problem

dependent than the Newton-SOR Algorithms. The parallelism of the Gauss-

Seidel and true Newton algorithms depends on the achievable decomposition

of the equations. The delays of parallel execution are based on the time

required to solve the cut-set equations. The number of processors capable

of executing the algorithms in parallel depends on the number of diagonal

blocks into which the equations decompose. If the number of operations

required to solve the cut-set equations is equal to the number of operations

required for the largest diagonal block, then the solution time for the

multiprocessor is 2/p of the single processor time. For the problem used

for the Newton-SOR algorithm the decomposition indicates five processors

could efficiently execute the problem. Other decompositions exist that

could use more processors, and if larger problems were used for a basis

then it is expected that many more processors could be used. For this

problem the Gauss-Seidel algorithm could be solved in 1/3 Che time of a

serial processor and the true Newton algorithm could be solved in 2/3 of

the time.

Methods have been discussed to improve the decompositions and increase

the complexity of the multiprocessors to reduce the time required for par-

allel solution even further. With these improvements the bordered block
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diagonal form multiprocessors would probably provide the fastest solution

of the dynamic simulation problem. However, since the Chaotic Relaxation

Algorithm is capable of being executed on higher order multiprocessors,

the increased parallelism may provide the fastest solution. Only through

actually solving many problems by all algorithms can a preferred method

be established. The results do indicate that parallel solution of the

dynamic simulation problem is feasible and the multiprocessors structures

required to execute the parallel algorithms need not be highly complex.

This thesis has shown many directions for further research, from

theoretic numerical methods to hardware controller implementation. The

most obvious missing data is experimental evidence that these multiproc-

essors can easily be built. Unfortunately, the time requirements pro-

hibited this approach, even though it is expected that low level parallel

dynamic simulation could be performed on the Computer Science Research

Network of Northwestern University. Another possibility is to model the

proposed multiprocessor structures with a microprocessor network which

would test the control requirements and delays from sharing data. Still

for complete assurance of success, the multiprocessors must be built and

the algorithms tested for many problems.

An unsolved problem which seems to be reappearing in the literature

is the decomposition and optimal ordering procedures [72]. Efficient

solution procedures would greatly benefit this class of problems.

There is still a wide gap between sets of equations which can be

proven to converge under an algorithm, and actual convergence. The re-

strictions necessary to prove convergence limit the ability to compare the

algorithms execution rates.





APPENDIX A

A POWER SYSTEM EXAMPLE OF A DYNAMIC SIMULATION PROBLEM

Whenever a specific problem has been required to complete the analysis

of this thesis the Commonwealth Edison High Voltage Distribution System has

been used. The distribution system consists of twelve generating stations,

ninety-five busses, and 143 lines, seven of which are parallel to other

lines. The loads are all modelled by constant loads.

The equations of the model are equivalent to those of [29], and are

developed in [58J. The equations can be found in the programs of Appendix B.

A list of the busses and lines connecting each bus is given in Table A.l and

A«*2. After the network has been modelled by a graph, it is reduced by the

procedures of Section V.A. The reduced graph is a much more manageable

size with forty nodes and sixty-nine lines. The reduced graph model is

presented in Figure A. 3. The reduced model can be decomposed, enabling

the entire network to be decomposed. A typical near block diagonal form

decomposition is given in Figure A. 4, and a bordered block diagonal form

decomposition in Figure A. 5. Neither of these decompositions are unique

nor are the decompositions optimal.

13:
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BUS NAME
5 ALSIP 345 235 NELSON 345

TO ALSIP TP .345 240 NW S*W 345
15 APTAKIS 345 245 N.A.L. 345
20 BEDFORD 345 250 N. BROCK 345
25 BLGCM 345 255 PLANO 765
30 BLUE IS 345 260 PLANO 345
35 BRAIDWOCID765 265 CAROL CO.,785
40 BRAIDWCD 345"" 275 PCNITAC 345
43 BRCKAW 345 * 280 PCwERTON 345
45 BURLNGTN

BURLNGTN
765
345

285 PROSPECT
290 QUAD CTY

345
50 765
55 BURNHAM 345 295 QUAD CTY 345
60 BYRCN 765 300 RIDGEFLD 765
65 BYRCN~ '345 305 RIDGEFLD 3^5
70 CALUMET 345 310 RND.LKTP 345
75 CHERRY

COLLINS"
345 315 ROSECRAN 765

80 "765 320 ROSECPAN 345
85 COLLINS 345 335 SILVER 345
90 CRAWFORD 345 340 SKOKIE 345
95 "CRETE "345 345" STATELINE345

100 DAVIS CK 345 350 STA.M 765
105 DESPLAIN 345 355 STA.M 345
ri(r-DRESDEN- 345" 360 TAYLOR 345
115 DUNDEE 345 365 TNWD 345

120 EARLVILE
E.FRANiC

765
345

370 WATERMAN 345— 125 375" WAUKGEAN 345
N 130 ELEC.JCT 345 380 WAYNE 345

135 ELMHURST
FISK

345
345

385 WEMPLETN 345

140 390 WILL CO. 345

145 6ENESE0 765 400 WILTON 765

150 GOLFMILL 345 405 WILTON 345

155 GOCDINGS 345 410 ZICN 345

160 HIGHLAND 345 415 ARCADIAN 345

170 ITASCA 345 420 BARSTON 345

175 JOLIET- 345 425 BREED" 765
. 180 KINCAIO 345 430 8RKAW EX 345

185 KIRKLAND 765 435 DAVENP0RT345
_

LASALLE" 765 440 DUMCNT 765190
195 LASALLE 345 445 LATHAM EX345
198 LATHAM E 345 450 LK.GEO 345

200 LK.GEC TP345 455 OLIVE 345

205 LIBERTY 345 460 PANA 345

210 LISLE 345 465 PAWNEE 345

213 LCCKPCRT 345 " 47r RACINE 345

215 LOMBARD 345 475 ROCKDALE 345

220 MANVILLE 345 480 ROXANA 345

225 MCHENRY 765 485 TAZEWELL 345

230 MCCOOK 345
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PROGRAM JACOdl ( I NPUT . OUTPUT

>

(#*

.<***
THIS OSEi JACOol ITERATIONS Tu SulVE ThE TRANSIENT

STAdlITY PROBLEM
*******
*******

COMPLEX C.V»Y»SUM»COX»ONE *P
DIMENSION YI1J3, ZO ) , V

(
10 J ) ,P<100 )

,

IB< 10 ) ,C( ICO) ,NRO« ( 100) . 1 V1100.1OO

J

— 2—4—»

—

o «n' , < 100 ) .—I-SV-f -2-94 ——

—

****
_»_ jut-*

*****

DATA SHOULD 5E INSERTED HERE *******
ALL INFORMATION I j AS S UMED To uC PRESENT AND F I LLILO I K

OY THE DATA CARDS *******

•**

t •***

J. Jti_

-****

t****
f****

Y IS STORED IN SPARSt. FORM* The. FIRoT ELEMENT OF
nACh ROa' IS ThE INVlRSE OF THE OlAGuNAL ELcMcNT

A LL OTn^R NONZERO ELcMiNTS mkE CO piP RlSSl^ Tu Tnc NcX T-

*******
******
-»»*»*»

oTART OF PARALLEL ITERATIONS
ALL. P ARPA-R A-T-H^iVS—t4At^t: PR IO R To ENTERING Lw^P

TI, 'iE WILL tin ADVANCED oY CODE AFTcR CONVERGENCE
CODE WILL REINTIALIZE FOR NE* TIME 5TEP

*******
-*-*-* * * V

*******
*******

loS = Io( L-l ) + 1

IoL = Io(L)
_ -J4-WT—-~d

KNT =

'* "i-L P ROCESSORS MUST SYNCHRONIZE AT T n iS POI NT"

—

IN EACH I T ERATION *

ICONV =

CDCl - REAt_( C( I ) ) * S4-M T H U14 AIMG1C ( I ) )
" COM T rt Ol )

CQOl = REALl C( I ) ) *COS( TH01 ) + A IMG ( C I I ) ) *o I N ( TH0 1

)

»*»*»* GcNERATOR STATE VARIA aLES »»»»»»

DTHJl = W01
o *i*l =—KMol* (PMJ1

1 - D;1*ao1 )

PEUol = TID01*(VFC1-
V DEO:. I. -l±i -JUtA\ A\jfA^v-fr'\;"tf

4-gOPJl»CUJl -t- Eu P 0i » Ci;jl fXOXuCl'< C^Cl » CDOl )

l-XDXDCi*CD01 - SOI )

04 c 0.0 1 )

****** GENERATOR STATE VARIABLES ******

VDOl = EDjI-RA jl*CDDl + XQ01*CU01
VQ01 = E0J1 - RA;>1*CQ01 - XDol*CD0l

-V( I ) = C-M+*L- X(VD01*S H*< THQl i-t-Vigft* *CtrSi-T-t

1 SIN(THOI) )

Vol = SsjRT ( v031*\/uZl + V001*V^oi )

hCx75-T 1 I+VU01*

\i





Wf** tXCITtR/REGULATGR oTATc. VARIABLES

l*^_'AI01* (_^^^l + ^^yi-V01-TFlNCl*{VF01-VDEJl) -VmOI )

ft-VAji .LT. J.j .ANJ.- OVAU.L .LI. U.J ) 0VAU1 = 0.0
|f/A01 .GT. VAMXOi .ANi). OVAGi .GT. 0.0 ) OVAGI' = 0.0

iOl = TFIul*(VF01-VDE01 )

E-S-oi: —

******

TMPC .LT. 0.0 ) T.VPO 0,0
»1 = T^P0*TMPj*CSI0l»SGN(VF01)
i = TLI01*

( VA -ji - TN£Cl * VFul - jVF01 )

tXCITO.N/R-GJLATOR STATE VARIABLES

= G<j1*a01*TIT6u1
= TUQl*(Y2ol-V6201J
- 31 T<»ul»yiCl » QI-iTT01«VjIQ1

SUPPLEMENTARY S T ATE VARIAdLES

ol = Y101
= T^K1*( Y101-VS101)

01 -—YOGI VsOvl * T I G ul

SUPPLEMENTARY STATE VARIABLES

= T5v,l*YC31 + 0MTT6Ql*VSGul
VS^l .oT. VSHJ1) VS01 = VSM01
jfW4—

.

LT.—VS .-. H—'/-SOI - -VjriJl

= Ploi -TT<Gi**'31
= P2 1 - 4- PJo. 1

X201 .LT. 0.0 ) X201 = 0.0
X2J1 .GT. PMX01 ) X201 = PMX01

f -TvJlOi.*( ^<4: 01 * X101 )

= Tj l01*(Xiwl-P^01 )

= TiU01*<ON!K.201*X201-P<nU)

******

******

******

TURoiNE / Governor ^tate variables ******

i

TURdlNE / GOVERNOR oTATE VARIAoLco

- P <» G1—KK2 Jl » X20l

NETWORK EOUATIONS

******

*******

NRvJrt STORES Tht. NjHdcR OF w^O.yZlRo ELEMENTS ur cACH K^a *******

iv THEN PuiNT^ To THE APPROBATE NODE VulTmoc FuR ;iACn ******
NoAiZERJ ENTRY IN Y ******

I I = I GO » I GL
j - (0.0*0.0)





NR = NROW( I

)

DO 115 J = 2.NR
JJ = I V( I . J)
SJM(I) = SUM(I) + Y< I J)*V( JJ)

-4-t < i .-G4-. t-o-fcrt )
'JvTij—1 l o

C(I) = ISUMtl) * ONE ) /Y ( 1,1) + P(I) / CONjG<V(1))
16 SGM(i» = PI I )*y ( I D/Cj.NJGlVl I ) ) - sjmU)

. l£ CONTINOg — —
****** NETWORK cGuATIONS *******

******

ALL PROCtiGQRS KuoT SYNCHRONIZE AT THIS POINT IN tACn ITERATION *

—UPDATE ALL VARI A-oL-E-^ *»»« »

DO 1C00 I = IdS.IdL
-C-w-X—=

—

^jj/,1 I )
—> A * *V I I )

-

IP ( CAoGlCuX) .uT. ERR) IC«jixV

V( I ) = VII) + COX
-IE—J—I—.J3 T . LNVR ) GOTOiOCO
15 = ISV( 1

)

V( IS) = V( I

)

CONTINUE
COR =w*(TH01P + r-fH*_,TH01 ) + A**TH01
IF ( COR .GT. ERR ) ICONV = 1

TnO i—=—4-t4^4—* COR
Z^R = W*(..0IP + HH*OW01) +Aa'*a/C1
IF ( COR .GT. LRR ) ICONV = 1

,
.

. :! = .
-... i +--C^-R

COR = w*(tv.01P + nrt*DcQ0l ) + m**E'o,G1
IF ( COR .GT. £RR ) ICONV' = 1

—E <=m-4—=—E-«rO-l—+—£-GR -

COk = Ai*(£O0iP + .-in*OtD01) + A*'*cDGl
IF ( COR .GT. ERR ) ICONV = 1

-Ero- .l_=- EDul
VD01 = EDG1 - RA31 * CDOl + XGJ1 * CO01
VOOl = EQ01 - RAol * CQOl - XDG1 * CDOl
V-W-) -= CMPLXtVDGl ^ ii -i-M-T-riOl ) tV.jl<CJ>,'ITH,I ) » VOU 1* b I N ( THO 1 )-VJCii*CuG

1 ITHOl ) )

CuR = rt*(VA01P + nrt*JVAjl) + Art*VA01
I-F-—(

—

GG*—» ol . et-k-R—h—I CO rVV—»—

i

~~

Vm^I = VAGI + COR
CuR = **(vJLw<lP + HH*OVOECll + AW*VD£01
+P—<—GO«—.-G4-. t-R-it—)

—

ICONV 1

VDEUl = VDEOl COR
CJR = **<>/FQlP + HH*DVF01 ) + A**VF01
-4-£—'—COR—

.

GT . &R-R—)

—

KtGtW— —1

VFOl = VFul + COR
"

COR = W*(V5201P + HH*Dvs2Ql) + A W *vS20l
-fF—( COR -t-otF-t irRft—1

—

ICONV = 1

Vo2v>l = Vo^Ol + COR
Z^* = tf*tVS101P + HH*DV5101 ) + AW*VS101
-J£—(—CO*—.-*T-. il H H )

—K-Or» V " 1

VSlol = VolJi + CuR
COR = //*(VG0olP + nd*JVS0ol ) A^*VG001





IF ( COk .GT. ERK ) ICONV = 1

VSo^l = V6001 + CUR
CuR = W*(P101P + HH*DP101 ) + A/i/*P101
IF ( COR .GT. ERR ) ICOMV = 1

p iCl = PU1 + CJ K
COR = W*(P201P + HH*DP201 ) + AW*P201
IF ( COR .GT. ERR ) ICONV = 1

_ P ^Ol = P2 4- » COR
IF ( COR .GT. ERR ) ICONV = 1

C>JR = W*(P401P + nri*DP40l ) + Aa'*P<*01
ptOl = P^ul—* CO R

****** UPOATE ALL VARIAdLES *******

H<.-vr- KNT 1

IF ( ICONV ,NE. ) GOTO 50
-"**** SfcT CONVtRGtNCt FLAo Tu CONTROLLER *********»** <t* +1

—

ALL 00
IFCKNT .GT. =3 > GOTO 900

NOT SIG N A L C Lm-VERGE,\C=T RETuR.M To b\ ****###

****** AOVA^CE TIMc STcP ******

" Ti -;P > = Th w i

ThUl = Trlwl + 2.*nri*0TH01
THulP = TMPO + rlrl*OTh01
THP< ~

* J 4-

'auI = WJl + i.*riH*L)w01
W01P = T.VPO + riH*JA'01
T.v.P, - t-^4 .

EO01 = E0J1 + 2.*HH*DcQ01
EQ01P = TMPO HhOEOOl
TttPO = EOol

1 + 2.*riH*DtD01
PO Mri*L>ED01

1 + 2.*riH*DVA01
PO hH*OVA01
34 :

E01 + 2.*Hh*DVDE01
MPU + nH*DVt01

1 + 2.*rtri*DVFCl
PO + Hri*OVF01
04
201 * 2.*MH*DVS201
MP j + Hn*DVS201
04

101 + 2.*nn*DVSi01
MPO + Hri*DVSl01
04 -
001 + 2.*HH*DVS001
MPC + HH*DViC01

1 + 2.*hH*DPl01
PO + Hrl*OPl01





c

I—G-

TMPU = P201
P201 = P201 + 2.*HH*JP20l
P201P = TMPO + HH*DP201
TMP<J = P401
-POOl - P 'i

'") 1—t—g-> "i l i MB P ^Ql

jt**Jt*Jt

PMOl = P^Ol + C^231*(P201 +P001 )

ADVANCL TIML 3TEP

IF( IPMT . LT. NPNT ) GOTO 2

END

--**-*-»*"*"





148

NORMAL CDC 6600 FTN V3.0-P336 CPT = 2 07/19/76 11

- - SUBROUTINE CHAOTIC ( C»V.Y,P )
- - --

C
c «m«» THIS USES CHAOTIC RELAXATION TO SOLVE THE TRANSIENT ••*»••
c «<K-f>«<>o STABLITY PRCRLEM <hk><k>o«

COMPLEX Cf V,Y,SUM,CCX»CNE »P

DIMENSION YdO'J. 20) »V<100) iP(lOO) IP(IO) jC(]00) .fJROW(lOO) tlV(lOO.lOO)
1 20) t ISV(20 )

C
q •«««»«« • DATA SHOULD HE INSERTED HERE .__..--._ »«»««»«
C •••*•• ALL INEORMATIOM IS ASSUMED TO BE PRESENT AND FILLED IN

C ooooooou BY THE DATA CARDS »*v»*»*

C
_..-..— ..- - -- -- -

c

c <nm*« Y IS STORED IN SPARSE FCRMi THE FIPST ELEMENT OE «»«»«»»
c **<,<,<><, EACH ROW IS THE INVERSE OF THF DIAGONAL ELEMENT «<»*»*»

c *«4>*« a LL OTHER NONZERO ELEMENTS ARE COMPRESSED TO THE NEXT ««<«»*»
C

c »m»« START OF PARALLEL ITERATIONS - - ««•«»»*

c »»»««« ALL PARPARATIONS MADE PRIOR TO ENTERING LOOP «*©»*»
c ••*««« TIME WILL BE ADVANCED KY CODE AFTER CONVERGENCE «h*h
c *««»*9 CODE WILL REINTIALI7E POP NEW TIME STEP ••»•##»-

C
IBS - IB(L-l) 1

IBL = IH(L)
1 IPNT = Q
2 KNT =

5-1 1C0NV = - -" •

CD01 = REAL (C (I) .•SIN(THCl) - ATMG (C < T J) «COS (THOl

)

COOl = REAL(Cd) )°COS (TH01) A I MG ( C ( I ) ) *S I N ( TH01 )

C

c ««««« GENERATOR STATE VARIABLES ««o*o*

C
DTH01 = W01
COR sWMTHOlP HH#DTHQl > * AW*TH01
IE ( COR .GT. ERR > ICCNV = 1

TH^l = THC1 COR
DW01 = RMC1»(PM01 -(EOf/Ol^COOl CDF'Ol ^CDOl *X0X00l °CQ01«CD01 )

1 - DOT owO 1 >

COR = WMWHIP HH'DWOl) *AW*WOl ""

IE C COR .GT. ERR ) ICCNV = 1

VJOl - fc'Ql COR
|)E0f>1 E TIOOl«(VFOl-EOOl-XDXDOl*Cnol - SO! )

....
COR - W*<LQOlP HH*DE001 >

+ AW*£001
IF ( COR .GT. ERR ) ICCNV = 1

Ef.Ml = F Of>] COR
(iE(n)l - TlfvOl»(XOX001»CQOl - EDOl )

COP ~ l'*itr«OlP HH«DED01) Aw«EDOl
IF < COR pC}l , ERR ) ICCNV = 1

EDOl = E0C1 COR

ooottuoo GENERATOR STATE VARIABLES -•»•*«>«
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VPC1 = EOC1-HA01*C[)0] + XOOl^COOl
V001 = E0C1 - KA01*Cfi01 - *D01*CDf)l
V(I) = CMPLX(Vnoi«SIN(THol)*V«01»CSS(THni>,-v001*CCS(TH01)*VQ01«

1 SlN(THfH) >

.
V01 = SORT (VD0l*VD0l V001»VG01 )

O O O <-• U <i i> EXCITER/REGULATOR STATF VARIABLES C U O c C '-

DVAOl- TAIoi«(V001»VS01-VO]-TF^01«(VF01-vrjEol) -VAOl )

IF( VAOl .LT. 0.0 .AN0.0VA01 .LT, 0,0 ) 0VA01 = 0.0
IFCVAol .GT. VAMX01 .AND. DVA01 .GT. O.n ) DvAOl = 0.0
COR = W<MVA01P HH*»UVAO!) AW*VAQl
IF ( COH .GT. ERR ) ICCNV a 1

VAOl = VAOl COR
• DVL'EOl = IFI01»(VF0l-VnE0l ) - - - .......

COR. = W»tVDfc*01P KH«DV0E01) * AW«vOE01
IF ( COR .GT. ERR ) ICCNV = 1

VOEOl = VOEOl COR —
-
- - -

TMPC - AMS(VIOI) - ES01
IF ( TMP(j .LT. 0.0 ) TMPO = 0.0
SVF01 = TMPO^'TMPO^CSIOl^SGNCVFOl)
DVFQ1 a TFI01*(VA01-TKEC1*VF01-5VF01)
COR = l.'»(Vf-OlP HH»OVF0) ) AW^VFOl
IF ( COR .GT. ERR ) ICCNV = 1

VF01 = VF01 * COR

Cr i> C-O w it & EXCIIOR/REGUl.ATOR STATE VARIABLES «<*»«»•

Y201 = GK0)*W0l»TIT60l
YlCl - T1201<MY2Q1-VS201)
YOGI b T3IT401«Y101 CMTTOl * VS1 01

on <t oo o <i SUPPLEMENTARY STATE VARIABLES

DVS201 = YlOl
COR = WMVS2U1P HH»0VS201) * AW«v/S201
IF ( COR .GT. ERR ) ICCNV = 1

VS?0) - VS201 COR
UVS101 = TAIOl«MY10l-VSl0l>
COR = tf»(VS10lP MtK-OVSlO). ) A'-'aVSlOl

IF ( COR .GT. ERR ) ICCNV = 1

VSlCl = VS101 COR
UVS001 = Y'Vjl - VS00)*TI601
COR = W*tVS001P * HH»OVSP01 ) AW«VS00l
IF ( COR .GT. ERR ) ICCNV = 1

VS001 = VSOOl COR

«<h)() <> « t> SUPPLEMENTARY STATE VARIABLES

VS01 = TS01*YOOl 0MTT60l <> VS001

IF ( V501 .GT, VSMQl ) VS01 = VSM01
IF ( VSul .LT.-VSMQl) VSOl =-VSM01

o««««<-

4«6(|l»«

110
XI 01 b RJC1 -T1K01*W01
X201 - P?C1 ROOT

i
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IF ( X20I ,LT. O.o ) X2C1 = 0.0
IF ( X201 ,6T. PMXOl ) A201 u PMX01

«««»«» TURBINE / GOVERNOR STATE VARIABLES »c««»*

C

c

c

c

c

c
c

c

c

c

c
- c

DPlcl =-TUI0l««CK13l*Xl01 )

COP = W»<P10lP HH*PP101 ) AWoplOl
IF ( CCR .GT. ERR ) ICCNV = 1

PI 01 = Pic 1 CCR
DP2C1 = T3loi»(Xicl-P201)
CCR = WMPT01P HH*OP201 ) AW^P201
IF ( CCR .GT. EPR ) lCCr/V = 1

P201 - P201 + CCR
OPAol = TKI01* (CMK?0)»X20l-P*01

)

CCR = tf»<P601P HH«[#PA01 ) * Aw»p<+01
IF ( CCR .GT. ERR ) ICCNV = 1

PA 01 - P'tCl CCR

o*»«««» TURBINE / GOVERNOR STATE VARIABLES

pMOl = P^Cl *(*201*X201

«#«*<'« NETWORK EQUATIONS

»<e«»«

«»««/«»

«»»«»« o NROW STORES THE NUMBER CF NONZERO ELEMENTS OF EACH ROW ««o«n>«»

oooftu^cw jv THEN' POINTS TO THE APPRCIAfE MODE VOLTAGE FOR EACH »»«*«*
«««•» NONZERO LNTRY IN Y ««•»«

DO 100 1 = IKStIRL
SUM = (O.U , 0.0 )

MR = NROW (I) -• ..-—-- - — —
DO 11 =» J = 2.NR
JJ = I V { I , J)

115 SUM s SUM 4 Y(I»J) • V(JJJ —
IF ( 1 .GT. LGEN ) ROTO 116
CU> - < SUM CUE )/Y(I.l> < P(I ) /CCNJGiV(I) )

116 SUM = P(I)»YUtl)/CCNJG(V(I) ) - SUM
COP - W«SUM-AW*tf (I)
1F{ CARS(CCR) .GT. ERR ) ICCNV = 1— - v(U - v a ) ccn •

IF ( ] .GT. LNVH ) GOTO 100
IS = ISV(I)
V(JS) = V C I )

CONTINUE100
c

c

c

c

c

c

(HKtBOO NETWORK EOUAT I CMS OC#« t>\K>

KNT = KN1 1

IF ( ICCNV .ME. ) GOTO SO
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SET CONVERGENCE FLAG TO CONTROLLER
IF ALL DO NOT SIGNAL CCNVEP&ENCE RETURN TO 50

: i

O i> i f t- O

THPO =

TH01 -

- TH01P
TMPC =

W01 =

- WHIP -

TMPO =

EQ01 =

EOOIP
TMPO =

ED01 =

- EOOIP
V0C1 =

VGO) =

V ( I ) =

I (TH01
TKPO =

- VAOi =

VA01P
TMPO =

vocoi :

VDE01F-
TMPO -

VFC1 =

VF01P :

TMPQ =

-VS201 =

VS201P
TMPO =

-VSlOl =

VS101P
TMPO r

-V5G01 =

VS0G1P
TMPo =

P I I =

P 1 1 P =

TMPO r

P2C1 =

P201P =

IKPo =

P4 01 =

PA01P =

PM01 =

ADVANCE -TIME STEP

ThCl
ThOl 2.*HI(OfjTH01

= 1MP0 HH«DTH01
W01

2,»HH*f)W0l
« HH»DW01

OI»4«Di)

2.«HH»nE00]
• HH«DE001

X001
*U01

cool
CD01

WOl
TMPO
E(JO]

EC'Cl
= TMPQ
EDO!
EC'Cl • 2.*HH*PED01

= TMPO HH»nED01
ED01 - RAQl « COO]
Euci - RAOl *> COO]
CMPLX(VD01«SIMTH01)*V001»CCS(TH01)

VAOI
VAC! * 2.*HM<V DVA01

= TMPO HH«DVA0]
VPEO]

= VTJFTJl • ?»*HR«dvT)£0]
- TMPO
VFCl
VKl 2.»HH«DVF01

= TMPO HH«DVF01
VS201

•V001»SIN(TH01)-VD01«COS

HH*DVE01 D\ZO£0|

i VS2Q1
= TMPO
VSlO)
VS101

= TMPO
vscoi
VSOOl

= TMPO
P10I
PIG) -

TMPO
P ? C \

P201 * 2.*HH«0P201
TMPO HH«DP201

P4C1
P4(.l * 2.*HH*DPA0J
TMPO HH»0P401
P^Ol CK201**(P201

2.*HH«f'VS201
HH»0VS201

2,*HH»DVSl01
HH»DVS10i

2.*HH»nvsooi
HH**DV ci001

2«*HH«DP101
HH»DP101

P001 )

Q O O <4 O O ;> ADVANCE TIME STEP
ALL PROCESSORS MUST SYNCHRONIZE AT THIS POINT IN EACH ITERATION

on o »

«

o

IF (1 PUT LT. NPNT ) GOTO.

?
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SUBROUTINE GUASS(PtV,C*Y»I(J)
c
c
C »»«««» THIS USES THE BORDFcfd Bl OCK DIAGONAL FORM TO ALLOW »«»»««
C ««»« GUASS SEIDFL ITERATIONS TO PtF PFRFORMf-n IN PARai I PI oonoooo
C

C

THIS USES THE BORDFcpQ BLOCK DIAGONAL FORM TO ALLOW
GUASS SEIDFL ITERATIONS TO nE PERFORMED IN PARALLEL

COMPLEX CfVtYiSUMtCOXtONE \f^ iP
DIMENSION Y(100, 20) t v(lC0) t p(l00),m(l0),C(lO0) ,MROW(100) , IV (100, 100

1 20).TV(?S f 20) »NDR(1O0) »IVP(?0i20)

IATA SHOULD BE INSERTED HERE •«

ALL INFORMATION I« ASSUMED TO BE PRESENT AND FILLED IN
nY THE Data CAROS »<

C «*<n>«»ot> DATA SHOULD BE INSERTED HERE ««o««»«
C »»»««» ALL INFORMATION I« ASSUMED TO BE PRESENT AND FILLED IN
C «»oo«»«o nY THE DATA CARDS oooooe*
C
c

C »«»oo y IS STORED IN SPARSE FORM, THE FIRST ELEMENT OF o«o«o«i>

C »»«««» FACH RQV/ IS THE INVF"SE 0^" THE DIAGONAL ELEMENT oooo&o
c o««»« A LL QlHER NONZERO ELEMENTS ARE COMPRESSED TO CHE NEXT ««»*«••

C
c

C »e»«o« START OF PARALLEL ITERATIONS »»06«««
C «»«<»«« ALL PREPARATIONS M*OE PRTOR TO ENTERING LOOP ««oooo

c «««»»« TIME WILL RE ADVANCE PY CODE AFTER CONVERGENCE »o«o*oo

c »»«»«« C0D£_ W jll REINTIALTZE FOR NEW TIME STEP »»o«*««

C
IBE = IR(N)

I UN = IR(N-l) • 1

IBS = IB(T-l) M
IBI = IB(T)

1 IPNT =

2 KNT =

50 ICONV = n

CD01 = °EAL(C(T) )*«?IN(TH01) - AI "G ( C U )
) "COS

(

THQ 1

)

CQOl = BFALtC(I))»COS(THOlJ A I MG (C « I )
I °SI N ( THO 1

)

C
C <k>«oo<»« GENERATOR STATE VARIABLES oo«o«*

C
DTH01 = wol
COR rW»(THf)lP • MH*DTH0l ) AW»TH01
IF < COR ,GT. ERR ) ICONV = 1

TH01 = TM01 COR
DWQl = RMnl«(PMQl -(EQP0J tt CQ0l*EDP0l*CD0l»*QXO01*C<)0l«CD0])

1 - DC1*W11 )

COR = WMwQlP t-,H*Dw01) *AW*wOl
IF ( COR .GT. ERR ) ICONV = 1

W01 = W01 COR
DEOol = TTn01*<VFOl-FQ0l-XDXO', l»CD0l - SOI )

COR = W°(FO01P HH«OEQOl > AW«EO0l
IF ( COR ,GT. ERR ) ICONV e 1

EO01 = EO01 COR
DEOCl = TTO01* (XOXOni »CO0l - p 00l )

COR "• WMFO01P HhonEDOU Av^EOOl
IF ( COR .GT. ERR 5 ICONV = 1

ED01 = EDOl COR
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C *»«»»»» GENERATOR STATE VARIABLES oo»ai>*

C
VD01 = Enol-RA01«CD01 XG01*<"O01
VG01 = EOOl - Ha01«Co01 - XD0l<iCD01
V(I) = CmolX (VO01«SIn(TH01) VO01»CnS(TH0i) i -VDO l«COS ( TH01 ) VQOi*

1 SlN(THOi) )

V01 = SORT (VOOUVOOI VQ01*>VO0l )

c

C •*«««» EXCUEP/REGULATOW STATE VARIARLES *»»«»»
C

DVAC1= TAT0l*<V001*VS0l-V01-TPIK01»(VFOl-VOE0l) -VAOl )

IF < VAOl ,|T. 0.0 .AmO.OVAOI .LT. 0.0 ) OVA01 = 0,0
IF(VAO) .GT. VAMX01 ,ANO. DVAM .GT. 0,0 ) OVA01 s 0,0
COR = WMVAU1P * HH»QVA01) AW*VA0 1

IF ( COR .GT. ERR ) ICONV = 1

VAOl = VAOl COP
DVOEOl = TFIOl" (VF01-VOE01 )

COR = W<MvnEOiP HMoDVDEOl) AW^VQEOl
IF ( COR .GT. ERR ) ICONV = !

VOE01 = VnFOl • COR
TMPfl = ARS(VFOl) - ES01
If ( TMPfl .LT. n.o ) Tf'PO = 0.0
SVFQl = TMPO»TNPO*CSrOl*SGN(VP01)
DVFol = TFI01*»»VAOl-TKEOl°VFO1-SVF01)
COR a wofv/FOlP HH«OVF01 ) AU»VFQl
IF { COR .GT. ERR ) ICONV = 1

VFOl = VF«1 • COR
C
C ««»«««« E X CITOR/REGULATOR STATE VARIARLES oooooo
C

Y?01 = GK01«W01«TIT601
Y101 = T!?ol*tY?nl-VS20l)
Y001 = T3TT^01<»Yl01 • OMTTOlavslOl

C
C «»«»««« SUPPLEMENTARY STATE VARIARLES ••*•••

C
DV5201 = Yl 01

COR = W*(vS20lP * HH»OVS201) AW«VS20l
IF ( COR .GT. EPR ) ICONV = 1

VS201 = V<;20! COR
DVS101 = T4lOl« (Y101-VS101)
COR = W*»(vSl0lP HHoOVSlO* ) AW<>VSlOl
IF ( COR .GT. tWR ) TCONV = 1

VSlOl r VS101 COR
DVSOOl = Y001 - VS001»TI601
COR = W«(VS801P HMoDVSOOl ) AW«VS00l
IF ( COR ,GT. E^R 5 ICONV = 1

VSOO'l = VS001 • COR
C

j C ••«»*«* SUPPLEMENTARY STATE VARIABLES «*«t>»o

C

VSOl = T-r,l«Y001 OMTT6Ol»VS«0l
IF ( VSOl .GT, VSM01) VSOl = VSM01
IF ( VSOl .LT.-VSM01) VSOl =-VSM0l
X1C1 = P1M -TTKOJ«WOl
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xzoi = p?nl Pool
IF ( X?01 .LT. 0.0 ) X201 = 0.0
IF ( X201 .GT. PMXOl X201 = PMXOl

C

C »«»««« TUP31NE / GOVERNOR STATE VARIABLES . ©*>«««•
C

OPlOl =-7HT01<MCl<l01*X101 )

COR a W«(P101P HH»r>Pl01 ) * AW»P101
IF ( COR .GT, ERR ) ICONV = 1

P101 = P\ 01 COR
OP201 = T?T01*«X101-P201)
COR =.W«(P2Q1P HH»np2()i ) AW»P201
IF ( COP .GT. EPR ) ICONV = 1

P201 = P?01 COR
DP401 = TXT 1*» <OMK201*X201-P4ri>
COR = W»(P40lP HHor)P401 ) AW*P401
IF < COR .GT. EPR ) ICONV = 1

P401 = ?401 COR
C
C »»««<>» TURBINE / GOVERNOR STATE VARIABLES **»»»*
C

PM01 = P4M CK201*X?01
C
C *«oooo NETWORK EQUATIONS oov****
C
c

'C mneot NROW STORES THE NlJuPER OF NONZERO ELEMENTS OF EACH ROW oo*«*oo
C

C *-***»»»» IV T-H£W POIH7 3 TO THC aPPROIATE "-ODZ VOLTAGE FOP EACH o*e**>o

C «ooo« M0N7ER0 ENTRY IN Y ««*««
C
c
««»o<»o» THE NETWORK EQUATION* ARE SOLVED RY BLOCKS ««*«<>*««
oooocoo* j Ht FIRST 8L0CK IS THE "LOCK LAST ROW FOR THE IMTERMIDATE °** u

«««<>*»<> RESULTS THAT WILL °E SUMMED BY THE LAST PROCESSOR »•«''""
C

DO 105 J a IBNtlBE . , ,_ , ./
s
\ (:q n \ r ,, ,- p •

l}
r'

sum = (O.,o.) -• lpC^^(.i).'^-OJ ^'-' '*!

N'R = NROW (J) -
"

DO 110 L = li.NR

JJ = IV(j,L)
110 SUM = SUM * Y<J,L)*VUJ) !

105 TV(J,I) =: SUM
c ' '' "5 c o *> 1 1 •> w/ -

C*4»«»^fto L AST BLOCK dARTIALLY SOLVED BY EACH PROCESSOR oo»«o»

C
C
«»*o<n>oo THF PROCESSOR ASSIGNED Tn THE LAST BLOCK MUST SUM «*o«oo*«
««»»»»« ALL INTEPMTDATE RESULTS FROM aLL PROCESSORS TO <x»««>o*o<,

»»*>»»«>*« FIND THE ITERATION RESULTS FOR THE CUT SET VARIAPLFS °"""°
C
oo«n>*«> SYNCHRONIZATION REQUIRED HERE
C
»oix»a<j*i> THF NEXT SECTION OF CODE APPLIES ONLY TO THE PROCESSOR •••••••«

«m»M» ASSIGNED TO THE CUT SET VARIABLES • •••«o*o«<-
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DO 200 J = IRN , IHE
NR = NOR(.I)
DO 205 L = 2,NR
LL = IV(J,|J

205 SUM = SUM Y(JiL)«V(LL)
NR = NROV(J)
DO 210 L = 1,NR
LL = IVP(.i-IPNiL)
SUM = SUM TV<J.LL)

210 TVU.LL) = MINF
SUM ='p(T)»Y(I»l)/COMJG(V(I>) - SUM
COX = W»SIIM-AW*V<I)
IF( CABS(fOX) .GT, ERR ) ICONV = 1

V(J) = V(j) COX200
c

c

END OF CODE FXCLUSIv'ElY FOP PROCESSSOR ASSIGNED TO CUT SET

. IRIDO 300 J = IBS
SUM = (0..0.)
MR = NROW(J)
DO 305 L = 2tNR
JJ = IV(J,L)

30^ SUM = SUM Y(JtL) tt V(JJ)
IF ( I .GT, LGEN ) GOTO 311
CtJ) = (Sum OmE)/Y(J,1) P'J)/C^NJG(V(J)

)

311 SUM = P(T)*Y(Iil)/C0MJ6(V(I) > - SUM
COx = W«Sl|M-AW«V(I)
IK t CAPS(rOX) .GT. ERR » ICONV s i

V (J) = V (j) COX3C0
C

c

SYNCHRONIZATION REQUIRED HERE
NETWORK EQUATIONS

KNT = KNT
IF ( ICONV

1

,N£,

o«««o«

) GOTO 50

ADVANCE TIME STEP

#»«««««

d<H>«QQ

TMPo = THnl
TH01 = ThM 2.«HH*nTH01
TH01P = T»-'P0 HH»OTH0l
TMPO = WOl
W0.1 = WOl + ?.*HH«DW<U
W01P = TmdO HH«DW01
TMPO = EOM
EO01 = EQM 2.<>HH<»r)F.Q01

EQ01P = TmpO HH«OEQ01
TMPO = ED*1
ED01 = Enol 2.»HHonED01
ED01P = TMPO HH»DEnOl
VD01 = EnM - RA01 <» CD01 xrcl » CQ01
VOOl c EOM - HAOl « CO 01 - XnOl ° f.OOl

VII) = CMPl* (VU01«SIM(TH01 ) VC0l*>COS (THOl) i VOOl "SIN (THOl ) -VD01 "COS

1 (THOl ) )
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JRROUTINE OUASS

THPq =

VAOl =

VAOlp :

TMPC =

VDEOl :

VDF.01P

TMPO =

VFOl =

VFOIP :

TMPO =

VS?yi =

VS201P
TMPO =

VSIQI :

VS101P
TMPO =

VSOQl :

VSOOIP
TMPO =

PlOl =

PlOlP :

TMPO =

P201 =

P201P :

TMPO =

P<r(M
"

PoOlP :

PMOl i

<o«e««

N M H A L

V A r> I

VAOl
TMPO

VDFOl
vnF'Ji

= TMPO
Vp«l
VFOl
TMPO

V5?Ol
V s ?. 1

= TMPO
V?1 M

= TMPO
VSnOl
vsooi

= TMPO
P1M
Pinl

: T"P0
P?Sl
P?M

: T^PO
P4«l
P4-. \

: TMPO
: P401

COC 6600 FTN V3.0-P336 OPT = ? Q7/2\/lb

2.*HH*»nVA01
HH'OVaOI

?.*HH»OVDE01
HH»DVEQ1

2.«HH«nVF01
HH*OVF01

?.«KH«nvS201
HH*nVS201

?««HM*DVS101
4 HH«OVS101

?.«Hh«DVS001
HH*OVS001

2.*HH«nP101
HH»OP101

2.<»HH«nP20l
HH*0P?01

hh'OpaOI
CK201MP201 *P', Ol )

ADVANCE TImE STEP »««fl«»

IF IIPNT . LT. NPNT ) GOTO 2

GOTO 1

RETURN

ENO

[T CHANGES MADF BY THE OPTIMIZER
)

; S OF INVARIANT RLIST REMOVED ^OM THE LOOP STARTING AT LINE 173





157

- NORMAL- COC 66Ji ^Tri V3.C-P336- CPT-2 S7/JJ/

- ...Mr WTON-SOR ALGORITHM

SUBROUTINE HSCR ( X,Y,H t ICNTRI

_5-
OIH-MSTON XC333) ,Y(i3C, ICO) ,7(3;.:, ',•:> ,cn;0) ,0( 101) ,D*(30C> .HP(

! 3 GO ,NROW(UC ) t IV(iaC.i2Q) tlNCaGO.IRSdJG) ,IRN(1S0» ,IREVC1.C>

3 ,LV( ICC) .OTHER C 260 C )--

.5

15

_-20-

?3

JO

35

ftAftftftftft*

_»*»»
THIS Air.COITMM SOV--: c THE DYNAMIC SIMULATION PROPLEM

__ LY—IMPLICIT- INTERGRATICN AND NEWTON UPATING -OF—THE

VARIABLES.

* X IS .A. VECTOR OF- THF -VARI ABLES CF THE MODEL BOTH. STATE

.»»-..»** fiN ALGEBRAIC. Y IS THF WS ADMITTANCE MATRIX ,

*»».** 7 IS TH r JACOBTAN CF TH- -TUATIONS. F IS THE

.. FUNCTIOMAL-SP.ROr-CF Till VARIABLES, - THE OIRIVATI

CF THE STATE. VAFIARLES, 0" THE PAST DERIVATIVE.

ft

-ft ft A * 4 ft * *

*»»»»
ft «• *.*»*»>

ft. ft ft ft ft • ft •

OPTIMAL CROERING-IS IMPORTANT SINCE THE JACCBIAN MU_T 3c-

SOLVFC . TH^ ORO-pinG STATES WITH THE TU*eiNS/GOVENROR

TH-N TO THf SUPPL C M£NTAL Arm REGULATOR, FINALLY TO THc

MACHINE VAPIABLES..-NEXT ARE THE CURREMT..EO AFTER ALL—
QP THE GENERATOR POOELSi FINALLY THE VOLTAGE LAST

.1 T_=-lU -~

2 B - l./(00*H)
KNT =

.5 ICCNV—=-Q
<NT = KNT 1

.„...TU = F.IKE - GOVERNOR VARIABLES-

•» .» » •* -. -< ft * SYNCHRONIZATION REQUIRED HE = E FOR ALL PROCESSSORS

<.o

45

s n ; i

csci
cooi
CC31
vo:i

_ vc;i
Z(l,
L ( 1,

= SIN(X(10) )

= C C S ( < <
1

"- ) 1

___X.(l-U._SNGi-.X(15)^CSGi
= x(i>)*csci »y(i5)*sN0i
= X(1D - =>ACl"CD3l * XQ01*COH
.=_ X ( 1.3 )_.rRACi?CCC 1- .-XOCi 'COC 1 -

1) = TI5G-31-8
1) s T I <G a 1

x2g:: = *(

IF( X2G01
IF ( X2G01

-_50

55

)_* PCC1
LT. G.C ) X2G01 = O.C

.GT. PHAXG1) X2GC1 = PMAXG1

DJ1> = Zfl«3J»X2GCl - TI5GC.*XU)

F ( 1) = 0P(1> -0(1)
TP(1) = 0( 1)

IFCAMSCF(l-).)— CT. ^R ) ICONV-_-l

Z(2, 7
) = -T 1 10 CI - B

Z( 7 ,12) - -T:iG0l*GlKUl*OMfTCl

„0(2J = Z(2tI2).^X!12»--TIiGCl*XC2J

F (2) = DP 12) - 0(2"'

OP ( 2) = 0(2)
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toeum:- MSCR NORMAL - -

IF(A ri3 (F {?.) ) . GT. E?P ) TGOMV = 1

- - X l GO 1 = v < ;m - r, K ,3 1 » T 2 1 T 1 C 1 * X < 1 2 >

Z(3,2) = TUG 01
Z(3,3) = -TI3GQ1 -

Z(.3,12> - TK1TSI —
0(3) = T!3G r:l* (X 1GC1-X (3) )

F (3) = TP(3) - (3)
OP<3) =0(3) <_._
IF(A'13 C7 (3) ) . GT. EPF ) IGOrJV = 1

PH01 = X(l) G2KC1"X2GC1

CHC GGo: FTN V3.C-P336 0PT = 2 Q7/13/76- 1

SUPPLEMENTAL VARIABILES

ZC.12
D(U =

F(h) r

OPU)
IF(AOS
Z ( 5 , f* >

7.i = ,Z)

Z(5,12
0< 3)- =

F (5) =

p ( 5

)

IF(A/JS

Z (6,'.

)

Z (6,5)
-Z(6,3)
0(6) =

F(6) =

OP(G)
IF(AJS
73 Gl =

IF- (-

V

IF ( V

(F

T

3 3

S]

-T2T
= G< T

i2s:i
PC)
0( '»)

IU) ) .

-.-•T-I2

-Tic
= TKG
.15.12
P( = )

r. ( =)

(3) )

.

-T3T
OUTT
.-Tic
T I 6 1

P(6)
0(&>-

(>S) ) .

5SC1-
t_. GT

1 .LT

601--- ~
2T6
* (Z (U,12) »X(12)-XU) )

GT. ERF ) ICOMV = 1

ai - e

TTOl
) *.X(i2)- -.TI2U0t*-X.U)_*T.Ii»<U-*.Xl5J
- (5)

GT. . FPR .). ICONV-= 1

TQ1
dOl

*X(6) 0MTT«*C1*X(5) -T3TTvJl*XU)
-0(6)

GT. ERR ) ICONV = 1

(T3IT«4Cl*0(u)+C' , TT:i*X(5)) f C1TT6Q1*X(6)
. VSKXC1 ) -VSCi = VSMX01
. VSfNCl ) VSG1 = VSMN01

- * . *« . « -REGULATOR VAPIABLES

MCI
XT^

KC1
(7,7
(7.1
(7)

(7)

P (7)

F (&3

MP -

F (

VP01
S£fu
FUT
(3,3
('3,0

= (X
i *.X (

1

= sc
) = T

)._= -.

= TIP
= 0P(

= C(
5 (F ^7

AB3(
TMP .

= SI
1 = s

M P . L

) = T

) = T

:vgo
..) )

T { V M

IFC1
TIFC
CI" (

7) -

7) ...

) ) .G
X IP )

LT.
GM( T

IGN<
T .

I EC 1

IcC 1

l)tPTCl"X(lU)-XT;i»X(l?)>* J'2KX(IVG01H)*RTCl , X(15)»

3D
- B

X ( 7 ) - X ( 8

)

0(7)
)

T. ERP ) ICON'V = 1

) - ESRC1
0. 3 ) -TUP = Q.-C- —
KP»TMP*CSI01.X(«) i

2.*X(8)*CSI01.y(8J
.: ) PSFflai = c.c-
•(EKCl-PSEflOD - n
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.

-SU3Rcunr:£— msor normal. CP.C &63J F.TN -V J.GaP-136 CPT = ? 17/-12Z7J

:a

-5C

h *»****

0(4) = Tr"Cl"(X(C)-P:K3i»X('U
F (81 s .DP (81. -0(8)
DPfSl = 0(8)
XFHlSIFmt.GT. ERR ) ICONV = 1

. Z (-J,.,)- = -T7SC1 ' _
Z (9,5) = TOMT C 1

Z(9t r>) = TZOHT
Z(9,7) _=-F!<TTF.:i

Z(9,S) = PKTTFC1
Z(9,91 = TIAC1 -

Hl t '~Z) - T7KGC1-
Z{ !3ii*l=-riACl''(X(IVGuIl*RTCi*
zn,i5> = •iiA:t*(xiivr.ci>i)^
-Z(9,IVG31) = --TIACl*(X(IVGOi>
ZC9,IVG01*11 = -TIAC1*(X(IVGC1
EC1 = V3S1 » VSQ1-V01- FKTTPC1
IF ( X 11) .LT ...VN.f.Cl. .ANO— FC1
IF { X(9> ,GT, VNX01 . ANO. EC!
DC91 = TIACfEGl
F(9) -=- 0P(<)) .- -0(9)
0°(9) = 0(9)
IF(A0S(F(911 .GT. FRR ) ICONV =

GENERATOR VA^IAPLES

SVFJl)

y (iv
TC l-
+ RTC
1) »

* (X(

-.LT
• GT

GjI
x <:

1»X
RTC
^) -

« v

.

HI *x
VGlil

1 • X (

1

X(7) )

.: )

.0 )

TJ1*RT
•XT31*
xt: rx
5) *xto
-X(9)
.".01 -=-

£01 =

XTCl fc X

R T X T •„ 1

(151—1
l*X(l<i

. - -

0.0

(lM )/
*X(1S )

)

/VM01 -

) )/VMO

VMCt
/VHC1

^0

55

- >U

?5

—

Z

(10,1
7(10,1
0(10)

—F (101.
P ( 1 J

)

IF(A3S
7(11,1
Z (11,1
Z(ll,l

- z ( : i , i

0(11)
F (11)

-OP Ml)
IF(A3S
7.(12,1

- 1 (12,1
21) )

7(12,1
-Z(12,l

7. (12,1
Z(12,l

.2 sr:3i~

Z(12,l
2 CS01
— 0(12)
F (12)
0P(12)

-IF (AflS

Z(i3, 1

Z(13,l

2) = 1.

= x(12>
= 0P(1C)_- .0(131
= "KIO
(F(1Q1) .GT. ERR ) ICONV = 1

Gl.-s -T I CO 1^X0X0j 1*003-1
1) = -TIC31
U) - TI0C1*XQXQC1*CSC1
5) - s-XOXCs- 1*SN51"-TI0C1
=-TI031*(X(lll -XOXQ'jl"CO01)
s OP (111 - 0(111

(PUD) .GT. ERR ) ICCNV = 1

) = RMC1
o_.= .riici* ,(xc4.3i*C03i vx(ii) *cc:i»xaxo;i*.(co;i^coci-cQ;i ,'Cca—

1) = -pmci*cooi

5) = -CMCi*COCi
u)- -RNQ1M(X<13) XQXO0i*CDm*CS31* (X(ll) «-xovo : l^COO 1) *

5) = -s MQ1* ( (X (13) +X0X0C1»C0?1) *SNC1- ( X(iD ^-XOXDCl % C0G1) *

)

- RHU* (PMCl-X (13) *COCi-X(ll) •CO01*XQXDul *CO0 l'CO," 1-)

r no (i?) - o (12)
= 0(12)
(F(12J) .GJ. ERR ) .ICONV- =-1 .- —
L) =-TI031*( .X0X0C1*C0G1 * PSG01)
3) =-TI031MCPSGai!





160

.•SUDRCUTINF.. NS03 NORMAL COC 6633 FTN V3.C-P336 0PT = 2 Q7/30/.'

z(u,iu) = - rinci»ixoxooi*SNOi pscci )

zii3, is> -= Tiij:H*(xoxooi + csci - psgxoi- )

Z ( 1 3 , 8 ) = T I D 1

2(11.11) = -TIC01*PSG01
D(il).= Tin01*(V(p) - X(13)--XCX0Gl*C03l - -SfifllK
FC131 = OP (131 - 0(13)
OP (13) = T (13)
IF-CA3S (F (13> )- .GT.-ERR .)._T.CONV— 1

:5 current equations FOR GENERATOR

•5

ztn»,iu = -pa:i*ccci -xnc i*cog i-vnoi
Z(U,11) = l.C

-Z(Ht»l«* ) -= -RA01*SN01* XOGl'OSOl
Z<1<*,15> = =?AC1»CSC1 » XOGl'SNCi
Z(i*,ivr»ci) = -snci

— I ( 1U, J VGCi HI -.= CSC1 : ._
F(l<*) = VilCl - * (IVG01)*SNP1 - X(IVGC1H)*CS31
Z(15,1C) = RASl'CDGl -XDCl'COCl » VOfll

7(15, iu) = -ra:i-csci - xo:i»snci
Z<15,15) = -PACl'SNCl XOG1*CS01

z (15. :vg: if i) = - sn3i
F(15) = VQ01 - X (iVG.ji) CSC'i f X(IVGC1»1>*SN51

**• THESE EQUATIONS APE REPEATED FOR ALLL GENERATOR MODELS

itJL±.± _EiaST__IIM£...TH !'.ClJGH LCCF . MUST ..START WITH 'ADVANCING 7 1 ME.

IF( ICNTR . EO.- ) GOTO IOC

CURRENT EQUATIONS FOR LCAOS

STEP .

• »*»* *

?5

1C

15 --

?R

7LC1 = CA3S(CMCLXfX(IVLCi> ,X < IVL3 1 H) > I

VILOi = 1.C/VLG1
SICl- = -VL3t---—VL31AVLC1/—V0LC1
spci = i.o - ( vL

,

:i j'VL:i)/(yoL ji»volgi)
zcl;i,il:i) = -x(ivlci)
z ( :l;i , iL.:ifi ) .= -xcivlch-d
7 ( II . 1 , I vi •; ll = -> (TL'l) >nn=> ,:i*y (TVLCH*(»/IL31-V?TLC1-PRIVC11
Z ( IL : 1 ,IVLC1*1 ) = -X (ILClf 1) fQONjl*X(IVLCiH)*<VIL.:i-V2IL0i-P ,'IV3tl

F(It:i) = -X( I VL:i)*X(ILQD-X(IVL01f i)*X(IL3i *1> HOP.cl* SIC 1*PCRC1"SP Jl

2 *sp;i
z ( iL.;if i,:l::: ) ? x(ivloi*d ~—~~
z ( : l ; i f i , : l : i f i ) = - x ( i v l : 1

)

i ( il: if i, ivlcii = -xcilcii fCox:i*x{ivL3i)*<viLGi-v2Lci+pxv:n
Z ( IL ". 1 'l. I VLC-1 !)- =- X(ILCl) frOX:i*X(IVL-Jl*ll * (VI LG 1-viLG 1 vPXVC 11

F(iL3i*u = > ( ivlc if i) *x (ilc i
» -< (i vl: 1) *X( il: 1 ^1» fCOXO l*SICi-rcxr-i

z *sp:i

Cm 4

NO If VOLTAGE EQUATIONS
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CP.C.-6GJJ rjll \13.Z-P33L~CPTz2 J7/.33/76

DO US I = t»IP.Nt2

-I VL = I t-Iv/S

IC = INC (1/2*. SI

F(IVL) = X(IC>
F(IVL+1> = X( IC* 1)

MP - HR0W<I/£».51
:)0 11J i = l t N*
JJ = IV(J) -
FCIVU = FITVH -Yd ,J) "X< J J)

IIJ- ...

LCC CCNTINl'E

IF-I LCOIW—.EO. C-J--GQTO -10CC-

*•»**««* T c Sr F09 ERROR K^CUIRMNETS IF NE£T AOVANCE TIKE

L_i»*.*.i^ii •
COMV£RG£riC£_I£ST£0_FOR-ALL. PROCESSORS

...» 3TA-T LU DECOMPOSITION CP 11CCK DIAGONAL
"

» _ c-rc-ry.n ij3"r. .jc?-."^i:cr com-'ijtatio:; - ,-i.^s a?

...-..» tc TH
- START AND "NO OF EACH ROW, I £ V IS ST A«

T

.»«».* F.XTEKNAL V.ARlAOLES, INC IS ENO IF COLUMN (START

ISP. = IRS in
ZH= = IRNfl)

I CM = IMC I II

OIV = i.c/zci , I>

QC 215 K - II » IC f -

Z(<tl) = Z<KfI>*CIV
30 22J -J- .=_II*-INR

*

22J 7«,J) = Z(<.J) -ZCK,I)*ZCI»J>

00 225 J = IiVtlEK :
:

225 _ Z.CKt-11 - = -Zt:<, J> - -Zl K» H "ZCI » Jl

P(<) - F(K) - ZCKiI)*PIII

215 CCMTINI'E

2CJ --CCNT-IMU5 -
.

;.„»*• OAC< SUBSTITUTION TC COLLET* ;3L 00< INVEPSICN ANO

..,«.•.«« .__ .".LLTIPLY TINcS-THE-ELCCK -?-0H -—

STEP

:0-IRN
OF
IS 01 XG0NAL1

«;
VJJ

niv = l.C/ZCM.N)
00i;5 J = -IFS.IEK-
*<NtJ> = ZCN,J>*CIV
p (M> = Fi»n *niv
.00. *:l IT =-2 tN

I - NO - II

I p 1 ' = 1*1
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j. CUORCUTINE NSCR NORMAL COC 6600 FTN V1.C-P31& -CPTs? 37/10/

OIV = 1.G/-ZCI ,1)
on 3D k =- ifs t ien - _.. ;.

00 315 J = IP1.INF
313 Z<Ii"0=/(I,K)-Z(I t J>»Z(J»Kl

h 2ftc _-3:c— Z(i,K) = zci«K»*niv -,..,

2fl5

DO 3,?.J J - IPi ,IKP
32J F(I> = F U> - 7(I,J)*F(J)

F(I) ^ F(II-*OIV
3G0 CONTINUE

**•**•*• SHARED VAFIA3L r S ITERATED TO CONVERGENCE

290 oo «»:j I = 1,MS
II - LV (I>

DO *J5 J = IE S, I EN
j j = i v ( t , j >

-205 SUM =. SIjv. k-7 (IL-»J)*OX (JJ)
uC5 CONTINUE

COR = W*fF(IL)-SUHJ - AWOXdL)
L .•

'. DX(IL) = JDXCD -. »_CCR
IF ( CCR ,GT. ER* ) ICCNV = 1

I

?j-8- <»03 CONT'NUI

IF( ICCNV ,NE. ) GOTO 301
-.^ 4 »*. CONVERGENCE TESTFQ FG? ALL PROCESSORS

305 .***. AFTE^ CONVERGENCE PEfAINIMG VARIABLES UNDATED

do s:c i - itN
IL = LV(I)

-_sum -=•_:.:^310
JJ = IV(I,J>
DC 5:5 J = IFS»IEN

ii05 SUM = SUM-.*- Z(IL»J)-"0X (JJ) 1 —

-

E'.-j DX(IL ) = F(IL) - SUM
315

L -••*•*• ADC- -CORRECTION TO VAFIA3LIS -

*

DC 63 J I = 1,N
I .'_. .'.o:— x ( i)=-x ri >~k-cx (i)

220 *»«•** TIST.FCF CORRECTNESS OF VAPIATLES REQUIRES FUNCTION EVALUATJC!

723 -- =

-•"*-****-- ADVANCE- TINE STE?

10:0 IF ( T . GT. TEND ) RETURN
-L..IF-( .KNT .IT. —) H = i.25*H

IF ( KNT ,GT. 6 ) H = H*.75
33C 00 1J1C I - l.NSV
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;UBROUTinc-.~NSO-: NOR.'IAI
...cnc.o6)C-FiN-v3.c-r-c--CPT = 2- w/ja/-

<<i> r xii) n(i>*H

np(i). = oil)

l£10 COtlTIMUE
T = T * H

135 . ICNT.J. = - 1

GO TO 2

£N0

;tep allocation
»gi*ters Assicnro o;E9 THF. loop

JgISTSRE -ASSIGNED 0;£S THE-LOOP

REGISTERS *S3I r-NiC OVr* THE LOOP

EMORY -MOULD HAV: RE3ULT£0 IN 0"

BEGINNING AT LIHi

_3eg inning- at-l-i-ns-

r-ginning at line

tt t r optimization

270
213-

312
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M
_

0DM
.

AL

_
CDC 660 ° F1N V3«0-f336 OPT = ? 07/31/76

* NCWTON METHOD FOR POHDERED BLOCK DIAGONAL FORM

SUBROUTINE NEWT ( X , Y,H, IFNTR)

\ ^ i;T? (

Jr
,

!-
,r nnO,2D, * lNr(l00),TRSn 00».lRN(l00).IRtSuj0)

3 • LVClOn>.arMbB<26on)tFM{2o.lo>.ZM<? 0f 2o,lo)EOUIVALEMCr (OTH!-R M).NROW(l)), (OTHER ( 101), IV(l,l)),(0THFPI2lnn.

O i> O DO HO ('

i R EV(l )
j , (OTHER(2501 ),LV{1 ) )

THIS ALGORITHM SOVES THE DYNAMIC SIMULATION PROPLFM
PY iMPLTrlT INTFRPRATION AND NEWTON UPATlNG OF THF
VARIAPLES. _... ._.___

• !•«•!!!
X " * VtCT ° n ° F THE VARIABLES OF THE MODEL ROTH ST A T E

Z IS THF JACCHIAN OF THE EQUATIONS. F IS THF

llllll" FUNCTIONAL ERROR OF Th E VARIABLES, D THE DERIVATIVE
•

OF THF STATE VARIABLES, DP THE PAST DERIVATIVE. --

nPTTMAL ORpFRXNG IS IMPORTANT 5IN C E THE JACOBlAN MUST BE
-»«••••.. 52cJ!

E
?«"

TH
c

0RDEPIN<3 ^ATES WITH THE TURBINF/60VLNR0R
«*„„«>

° THtN T0 ™F SUPPLEMENTAL AND REGULATOR, FINAIIV TO THF*»»*»°°° MACHINE VARIARLES. NEXT A Rfc THE CURRENT EQ AFTFR Al L

P*"?- ---OF- THE GENERATOR MOflELS, F INALLY • Tr->„ V-O^TaW^T -—
1 T = 0.
3 B = l./(RO«H) .___: J

a O O <t O O O 'r

I

KNT = C

5 ICONV =

KNT = .KNT- ) -

IF ( ICONV .£Q. o ) HOTO 1000
_«••«««»« -CONVERGENCE TESTEO FOR ALL PROCESSORS •

» -

«»*o««->o START-LU- DECOMPOSITION OF RLOCK DIAGONAI""""' SPARSTTY IS USED TO REDUCE COMPUTATION , IPS AND IRN**M"" IS ThE START AND END OF EACH ROW, IFV IS START OF.•••••••• --EXTERNAL-VARIADLFS. INC IS END OF COLUMN -(STaPT -IS DIAGONAL)-*

ISR s iRsci)
INR = IRN(I)
IEV = IRr V (I)
ICN = INr(I)
DIV. s 1 . 0/7 (1,1) —
II = 1*1
DO 215 K = IT, ICN
Z(K,I). - 7 (K, IMP IV
DO 220 J r. IT, INR

220 2MK,j) = 7(K,J) -2 (K,I)»Z(I,J)
DO 225 J = IFV, I EN

225 /(K,j) = 7<K,J) - I IK, I)«>/(I, J)
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5UH ROUTINE NEWT

215

MOpMAL CDC 6600 FTN V3.0-P336 OPT = ? 07/11/76

235

2<f0

F (K) = F (K5 - I (K, I)«F(I)
CONTINUE
DO 230 K = IFV.Ihn
Z(k, i) = z(K,i)«niv
DO 235 j = IT.INR
Z(K,J> = /<K,J) - 7<K t I)»Z<I,J) -
DO 240 J = iFVtIPN
ZM(KtJ,lP) = -/ (K, T)«z(i, j)

-FMiKtIPI = -Z(K,I)a 7(I ,j)
230 CONTINUE
200 CONTINUE
«« _ . .__

•**»*»»*
EN'O PARALLEL PROCESSING FOR CUT-SET SOLUTION

SOH^^Mo^HSStlMS^H^tfOMO.MdOttMHtmMttHH.HtH,,,,,,,, e«>«{^i»^e«4(t««<t«wj

a

CUT-SET PROCESSOR INSTRUCTIONS START HERE

ADO -UP MODIFICATIONS niJE TO CUT-SET ROW

DO «?50 J =-lnS»IRN
DO 255 K = InS»IRN
SUM = p .

DO 260 I = ltNP —
26 SUM = SUM ZM<J»K»I)

Z(JtX) = Z(JtK) SUM
DO 265 I = 1 ,rjp

F ( J) = >" (J) *FM< Jt I)
CONTINUE

265
250

DECOMPOSE CUT-SFT P-LOCK

330

315
300

Ki k> a o r, >> » u

*

DO 300-1 = IRS*IRN
DIV =

l •n/Zdtl)
DO 3J5 K = 'IT»IRN
UK, I) =-Z(KtI)«niV
DO 330 j = n v tRN
ZIK»J) - 7(K,j> - Z(KiD»Z(ItJ)
K<K) = FfK) - F(IJ«Z(KiI)
CONTINUE
CONTINUE

BACK SUBSTITUTION OF LAST BLOCK VARIABLES

4C5
AOO

OX(IRN) = F(T«N)/Z(IRN»ION)
DO 40 l T = P,l N
I = IBNO-II
IPl = 1*1 - -

DIV sr l,l)/ZCl»I) *

sum = n.
DO 405 J = TP1 »

.

IPN
SUM = SUM _ 7<

I

, J) • OX (J)

DMi) = sijM«niv

CUT-SET PROCESSOR INSTRUCTIONS END HERE
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THIS RETURNS TO PARALLEL PROCESSING

RACK SUBSTITUTIONS VARIABLES OF OTHER PROCESSORS

a

SUM = 0.
_. __•. 00 505 I = IRSilBN —
505 sum s sum -z l N , I)*ox(i)

DX(N) = 9IJM/7(N,N)
DO 500 It =-?,N
I = NO - II
IP* = I I

DIV . = l./7(I,I)
SUM = 0.
INR = IRM(I)

__. __D0 51 C J = I Pi, INR
51 C sl j M = SUM . 7(I f J)»DX|JJ

DO 515 J = IRSt IRN
515 .. SUM = SUM.- 7<I,J>-«nv(J)

ox (i j = suM«mv

ADD C0PRECTI0N TO_ VARI AOLES-

500 X(I) = X(I) DX(I)

«0«Oi>SHH>

GO TO 5

TEST FOR CORRECTNESS OF VARIABLES REQUIRES FUNCTION EVALUATION

»'>(tvHtt;c tt

1000 IE ( T ,r,T. TEND ) RrTURN
If" ( KNT ,LT. A) h = 1.2«5»H

ADVANCE TIME STEP

_, IF.( KMT .6t.«-6..)_H-a_H«.75
DO 1 0l I = 1 iNSV
X(I) s X(T) 0(Ii*H
DP<I) = n<I)

101 CONTINUE
T = T h
ICNTR =_]
GO TO 2

END

OCATION
i ASSIGNED OVER THE L^nP BEGINNING AT LINF 79
ASSIGNED OVER THE I.OOP BEGINNING AT LINF In6-

<S ASSJf-r.LO OVER THE j.onp BEGINNING AT LINE 119
IS ASSIGNED OVER THE LOOP BEGINNING AT LINF 1?8
.ASSIGNED OVER..THF- LOOP WEGInMmG AT LINE - 130
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