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ABSTRACT

Various compater-oriented numerical schemes are

availahle to evaluate the velocity potentials for

inviscid fluid flow past submerged objects. The use cf

a surface distribution of sources of uniform strength

ever panels representing the object's surface requires

a relatively fine grid to obtain accurate results. A

new variation of this scheme using distributed sources

of linearly varying strengths over triangular panels

appears to. reduce the number of panels needed for good

results, thereby reducing computer time and storage

requirements. In the present study, this technique is

applied to the problem of determining fluid forces and

dynamic response resulting from interaction between an

arbitrarily shaped object and surface . waves.
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I. INTRODUCTION

Ocean waves interacting with large marine structures

pi;cduce substantial hydrodynaniic forces. These forces are

experienced ty floating objects such as ships or moored

platforms as well as submerged bodies near the free surface,

such- as sutniarines at periscope depth or bottom mounted

caissons in shallow water.

It is desirable from an engineering standpoint to be

able to determine the wave forces and resulting dynamic

response for any large ocean structure under design. Until

recently, however, such determinations were not possible in

the general case. Application of the well-known Mcrison

equation to calculate wave forces is limited to cases in

which structure dimensions are small compared to wave

length, as in the case of a small diameter pile.

The usual analytical approach in dealing with the

hydrodynamic interaction of large bodies with waves is based

on a mathematical modeling of the fluid flow using potential

flow theory, which assumes the fluid to be inviscid and

irrotational. While such an assumption is unrealistic for

steady flew past bluff bodies (because of boundary layer

separation effects) , experiments indicate that it yields

valid results for the case of unsteady flow past an object

as produced by surface waves provided wave amplitude is

small compared to the characteristic dimensions of the

object.

Numerical schemes based on the use of the Green's

function (cr source distribution) method which utilize





high-speed computer capabilities have had considerable

success in solving problems of wave/body interactions.

Garrison, et. al. [Refs. 1-5] have developed numerical

procedures for calculation of wave interaction with large,

three-dimecsicnal, fixed and floating bodies. These

procedures, which represent the immersed surface by a grid

of distributed source panels of uniform strengths, have

proven to be powerful in practical application as

demonstrated in Refs, 6-9.

The most severe limitation of the above mentioned

procedures is the rather large amount of computer (C.P.U.)

time reguired to obtain an accurate solution . Thus, any

improvements to the method which would improve convergence

of the solution would be of considerable value.

A natural extension of the technique based on a uniform

distribution of sources over each grid panel is to allow the

source strength to vary linearly over the extent of each

panel. Since this is not convenient when using quadrilateral

panels, it is appropriate to divide the source surface into

a grid of triangular panels. The linearly varying source

strength may then be represented in terms of the values of

the source strength at the corners of the triangles.

Webster [Ref. 10] has developed such a scheme for the

case of uniform flow of an unbounded fluid past a

three-dimensional body. The body was represented by use of

the three-diiensional source potential of the form 1/R where

R denotes the distance from the source. In the present study

this general method is extended to the problem of

representing a body of arbitrary shape located in fluid of

finite depth in the presence of a free surface.





The tasic approach used in solving the problem of wave

interaction with large floating objects is to decompose it

into component parts which are more simply analyzed, and

then superimpose the results to yield the overall solution.

A group of boundary-value problems are generated in terms of

velocity potential; one problem is solved for each of the

six possible degrees of freedom of body motion, and one for

the scattering of the incident wave by rhe body. The

solutions are then formulated in terms of the Green's

function. The resulting integral equation is then converted

to a system of linear equations which are subsequently

solved by ccaputer.





II. FOEMULATION OF THE WAVE INTERACTION PROBLEM

A. BESTHICTIONS AND AS50KPTI0NS

All of the usual simplifying assumptions incorporatad in

linear gravity wave theory are adopted in the present study.

In summary, these are:

a The flow is considered to be incompressible,

irrotaticnal, and inviscid.

The wave amplitude to wave length ratio is

small.

The pressure is uniform above the free surface,

and the density is uniform throughout the fluid.

The bottom boundary is represented by a

horizontal, inpermeable plane.

The velocity-squared term in Bernoulli's

equation is neglected.

The waves are regular and periodic.

In addition, it is assumed that

The object has a smooth, rigid, and impermeable

surface.

• The wave amplitude is small compared to the

object's diiensions.

B. PROBLEM EESCRIPTION

The general description of the problem is shown in Fig.

10





1, in which two ccordinate systems are defined. The inertial

coordinate system, positioned at the mean free surface, has

directions defined by x, y and z, while the coordinate

system positioned on the object has directions indicated by

X*, y' and z'. The origin of the body coordinates is taken

to be at the center of gravity of the body, and the body is

sutmerged an arbitrary distance, d, below the mean free

surface. The incident wave is assumed to propagate in the

direction defined by the angle y indicated in Fig. 1.

The analysis of the floating object located in a train

of regular waves is decomposed into seven problems which are

uncoupled and can be solved independently and superimposed

to obtain the complete solution.

The first six problems are identical in fori, and

consist cf determining the fluid forces due to oscillation

of the object in the six degrees of freedom, in an otherwise

still fluid. The six modes of oscillation are all considered

to take place with angular frequency, <r = Z7r/T, which matches

the frequency cf the incident waves. These harmonic motions

of the object may be expressed as

X.= Re [X'e-'^^J , k = SZ,..,

CO o
in which X =a 9 when k=4, 5, 6, and where G denotes the

k k k

angular displacement about the x', y' and z* axes,

respectively. The subscripts k=1, 2, 3 correspond to surge,

heave, and sway modes of motion, respectively, while the

subscripts k=a, 5, 6 correspond to the rotational modes of

roll, yaw, and pitch, respectively, as depicted in Fig. 2.

o
The parameter X denotes the complex amplitude of the linear

k

11





modes of motion, while the term a Q denotes rhe complex
k

amplitude of the rotational degrees of freedom.

The seventh proiDlem to be considered is the interaction

of waves with the object held fixed in position. This

interaction cf an incident wave with the fixed body results

in "scattered" waves which radiate from the body. Prom the

solution of this problem the excitation forces and moments

acting on the bo-dy are determined.

EQUATIONS OF i^OTION

For a flcatinc body with linear elastic constraints the

et^uation of motion for the six degrees of freedom is given

in fief. 1 as

I [-v(m;3tM.,VlVN;,.(K;j.Kj^.[C.]e ;i..
(2)

where V - (X/q , and CT'-2TV/t denotes the frequency of the

incident wave and resulting motion. (In Eq. 2 and all

equations which follow, the use of the lower case letter, i,

as a subscript denotes an index. Appearance of i elsewhere

in an equation denotes the imaginary number i= *J

-

1 .) The

surface elevation of the incident wave at the origin is

given by

\- "^"cosCcr-t) (3)

in which '/[ is a real number denoting the half-amplitude of

12





the incident wave. All phase angles are referred to the

wave crest with positive values indicating lag.

In Eg. 2, m denotes the dimensionless body mass tensor
ij

and is defined by

m,j =^ m22 = m33 = m/pa^ (4a)

•^lZ=n^ZJ= ^.3^^3r'^Z3='^3Z=0 C^b)

in which m denotes the mass of the body, p denotes the fluid

density and a denotes the characteristic length scale of the

body. Sifliilaily,

f^l^^^ht^^^^ r, '-^SS^'-^S-.'/^^'', f"ii=A6/^'^^
(tc)

where the mcttents of inertia are defined typically as

.
^..- --^s, =X ^>'^'^ "''

in which the integration extends over the complete mass of

the body denoted by m.

The excitation force and moment coefficients are defined

13





as

where &; denotes the phase shift of the force with respect to

the crest cf the incident wave. A positive value of 8;

denotes a lag. The term F (max), (j=1r 2, ...6), denotes
J

the maximum value of the force (j=1, 2, 3) and moment (j=4,

5, 6) acting en the body.

In the case of the forces (and moments) due to the

motion of the body, it is more common to describe the

hydrodynamic force in terms of the added mass tensor, iS

ij

and damping tensor N . These parameters are defined as
ij

where F (max) denotes the amplitude of the force or loment
ij

in the i-th direction resulting from the motion of the

floating tcdy in the j-th degree of freedom.

The forces defined in Egs. 6-9 are given in terms of

surface integrals cf the hydrodynamic pressure as

^/j^*> = -//Pj'^i^^
.

'>'=^-..-c <^°>

14





where F denotes the i-th component of wave excitation force
i

or moment and F denotes the i-th component of force or
ij

moment arising from the j-th component of body motion. The

functions h are defined as
i

h^ - n^ (12a)

\\^' Hy (12b)

K^ - Xny-(J[+y) n
(12f)

in which n , n and n denote the three components of the
X y z

outward ucit normal vector on the surface of the body.

The parameters P , (j=1, 2, ...6), denote the pressure
J

on the immersed surface associated with motion in the six

degrees of freedom and P denotes the pressure associated
07

15





with the iDcident wave (0) and scattering (7) cf the

incident wave. Finally, in Eg. 2 the dimensicnless

coefficients K denote the hydrostatic restoration force
ij

(or moment) tensor and are defined as

K2^=-^zj\ n^ds = A^/a^ (13a)

K24 = K,,= iJIgZ'nyds (lib,

K.,^= i^ff (/'z'r>,-z'S)as (13=)

'^«=
i^ff ^'^V'"*- ^'^ny)'is (i3f)

where A denotes the waterline area.
w

flooring line reactions depend, in general, on tiie

mooring line configuration, weight, shape (catenary)

,

hydrodynauic and elastic properties. However, it is

generally permissible to disregard dynamic effects and

approximate the reactions by a linear relationship with the

six components of body displacements as indicated by Eg. 2.

The term K' in Eg. 2 represents the dimensicnless force
ij

(or moment) produced in the (negative) i-direction by a unit

displacement cf the body in the j-direction. Given the

mooring line configuration and elastic properties, the

16





spring constant tensor can be evaluated.

REPRESENTATION BY VELOCITY POTENTIALS

The fluid motion in each of the seven flow situations

previously described can be represented by a velocity

potential. Specification of the velocity potential of a

flew completely describes the flow, since fluid velocities

at any point are obtainable through the relation

(j(x,/,z,i) = V$(x,y.z,t) (14)

where q(x,y,z,t) represents the velocity vector, ^(x,y,z,t)

represents the time dependent velocity potential, and

V$ denotes the gradient of the potential. Thus, for the

six modes of oscillation of the body in still water, the

fluid velocity vector is given by

I (x,y,2,i:)^V$(x,y,z,i:)=ReLv7(f)(x,y,z)e'''^ ] (15)

in which cb (x,y,z) denotes the complex space dependent part
k

of the total potential induced by the k-th mode of

oscillation. The velocity potential associated with tne

seventh problem, waves interacting with the fixed body, is

actually composed of two components. One component is the

potential due to the linear incident wave, the space

dependent part of waich is given by

- ' cosh kh I

17





in which ^ =H/2 denotes wave amplitude (half-amplitude) and

k= ZTC/l denotes wave number.

The second component of the wave interaction potential

is due to the presence of waves whose characteristics have

been altered by interacting with the object. This potential

is referred to as the scattering potential and is denoted by

the subscript (7) . The total potential for the motion of the

body in regular waves is expressed through the superposition

E. THE ECUNEARY-VALaE PROBLEiJ

Each cf tbe velocity potentials ( <i) , k=1,2...7) must

satisfy the continuity equation, which in the case of

irrctaticnal flow takes the form

'^^4>j,f^)/>^>- O , k^o^i....7 (^8)

In addition, the potentials must also satisfy the kinematic

bottom boundary condition

|iK(x,-h,z^=0
, \<=o,i...7 (19)

where h denotes the mean water depth, as well as the

linearized dynamic and kinematic free surface boundary

conditions expressed by

18





where g denotes the acceleration of gravity.

While the free surface and bottom boundary conditions

are exactly the same for all of the potentials, the

kinematic bcundary condition applied on the surface of the

object is different for each case. This boundary condition

results from the assumption that the surface of the object

is rigid and impermeable; it simply imposes the condition

that there be no normal component of fluid velocity relative

to the surface at any point on the surface, and is expressed

mathematically as follows:

For oscillation of the body in the still fluid.

ll=9«----^^<". (21a)

Tin
^*=3^.-L,rx;ny (2ib)

^'^33 = -^<^X>z (21C,

1^* .3^^-Lo-<C(civy)nz*-zn^] (2id)

11^^ a ^-io-e^-Cztlx-Xn^l (21e)

'^t-Q - -Lcr0° Cxny -(d+-y)axl (2if)

where n , n and n denote the x, y and z componenrs of the
X y z

unit outward normal vector on the immersed surface which is

19





defined in its mean position by S(x,y,z)=0.

For wave interaction with the fixed body,

in which )i denotes the angle between the incident wave

propagation direction and the x'-axis. Equations 21 and 22

are applied only on the immersed surface as defined by

S(x,y,z)=0.

20





III. SOLUTION OF THE BOUNDARY-VALUE PROBLEM

GREEN'S FUNCTION SOLUTION

In using Green's funcrion representation of the velocity

potential, each of the seven unknown potentials is

considered to be induced by fluid sources which are

distributed over the surface of the body in a continuous

manner. The strength of the source at any location on the

body surface is a function of position and is denoted ty

f(^,'^ ^) , where (?,^^^) indicates a point on the immersed

surface. (Figure 3 illustrates the concept of the continuous

source distribution.) The velocity potential associated with

each of the boundary value problems is then given by the

surface integral

\ih%z) =ff f^i^,%f) (^U.y,Z;^^-7,f)Js (23)

where G(x,y,z; f,<7, ^ ) is referred to as the Green's

funcrion. Its value depends upon the location of the point

( f ,7^ > ) on the source surface, and the point (x,y,z) in the

fluid field. The Green's function for the present case,

which satisfies the bottom and free surface boundary

conditions, is given by

G ' '/R + !/R' + O^ (2a)

in which

21





R=7(S-X)* ,C^.yf^(?.z)^' (25a)

The G* term is given by Ref. 3 as '

<^*(<.y,z;f,?,?> = 2RV. f

O ^>>) e^^^ cos A r^ r^^h)] cosh Z> ry//^J7 Ĵ O/r)c/^

-h Un r/c^'V^; cozhLk(7^fh)] cosh[k(v^h)]Jjkr)

in which

f^/ix-sfHz-^f <"'

The term J denotes the Bessel function of the first kind,

of order zero, and V represents dimensioniess wave

frequency. E.V. indicates the principal value of the

infinite integral.

An alternate series form of the complete Green's

function is given by

k^h-v^h^->^

22





^...2..

in which Y denotes the Bessel function of the second kind,

of order 2ero, K denotes the modified Bessel funcxion of

the second kind, of order zero, and ^- represents the real

positive roots of the equation

J^l^ hn U^h) ^))-0 (29)

In numerical evaluations either form of the Green's

function may be used with the exception of the case where r

approaches zero. Here the series form given in Eg. 28 is

singular so the integral form given by Eg. 26, which has a

well-defined 1/R singularity, is used. However, when r is

not small the series form is generally used for numerical

calculation because it reguires less computer time for

evaluation.

The Green's function representation of the potential

given by Eg. 2U satisfies the laplace equation as well as

the free surface and bottom boundary conditons fcr all

cases. The source strength function f ( f^^ <^ ) is unknown

and is determined by application of the kinematic boundary

conditions en the body surface (Egs. 21 and 22). This

results in the following integral equation:

(30)

in which "^^an denotes the deriviative of the Green's

function in the outward normal direction, which is given by

23





1|(X,V,2.,?,,,^^ ^ \7&(X,A2,f,^,,).n (30a)

where n represents the outward unit normal vector at (x,y,z)

and where (x,y,z) now represents a control point on

S(x,y,z) =0.

For the seven problems, all quantities in Sq. 30 are

known except for the source strength functions f
( $ ^ ^ )

,

(k=1,2, ...7), However, the integral equation cannot be

solved analytically for an arbitrarily shaped body, and a

numerical approach must be adopted. The numerical approach

developed herein involves discretizing both the source

strength function and the body surface boundary condition

functions, g , (k= 1 ,2, . . . 7) .

k

DISCRETIZATION 0? TH2 PROBLEM

"I • Uniform Source Strength Element Method

The technique previously used [Ref. 1] to discretize

the integral equations given by Eg. 30 is to divide the

source distribution into a grid of N quadrilateral panels,

and to assume that the source strength has a distinct,

constant value over each panel. Hence, for any of the seven

flew problems of interest here, f denotes the strength of

the source everywhere on panel j, (j=1,2...N), for the k-th

problem (k=1,2 ...7). The area of panel j is denoted by

ASj and the induced potential anywhere in the fluid thus

results frcffi a summation of the effects of all the source

24





panels. Figure 4 depicts the discretized source surface and

resulting potential.

Additionally, the noraal boundary condition

functions g {x,y,z), (k=1,2...7), of Eg. 30 are discretized
k

by applying the kinematic body surface boundary condition at

only M selected points on the surface. In practice, the

number of boundary condition ("control") points are chosen

to be equal <M=N) . For convenience, the control points are

chosen to lie at the centroids of the source panels. Thus,

for each discretized integral equation, a system of N linear

equations in N unknowns results:

iff 4;/k. JJ^j. ^n ^^-Skj i-,i,z...H (31)

in which (x ,y ,z ) represents a control point i on the body
i i i

surface, at which the boundary condition is being ap£;lieQ,

and g denotes the value of g (x,y,z) at point i. Equation
k|^ k

31 is expressed in matrix form as

t°<] W "^ K) l<= 1.2... 7 (32)

where [o<] is an NxN matrix composed of elements

-U-i: )i
^('-^^-^'^'^^^5 (33)

The vectors ^f ] and \q \ represent the N unknown source

strengths and the kinematic boundary condition applied at

the N ccntrcl points, respectively, for the k-th flow

25





problem. It should be noted that the matrix [ o< ] depends

only on the body configuration, water depth, and period of

the motion ard is the same for all seven cases.

The discretized potential which is induced by the N

source panels is specified by a matrix equation similar to

Eg. 20:

W = W [Q ^--'^^'

The martix [p] is composed of elements

(Su-ht I G'(r,%fJ^:J;Z-)Js (35)

As in the case of matrix [o<J, matrix [^] is the same fcr all

seven flew cases.

Integration of the Green's function and its

derivatives in E<js. 33 and 35 poses no great difficulty. It

is most convenient to separately integrate the singular

terms. Special " considerations in performing these

integrations and necessary formulas are provided in Ref. 2.

A ccmputer solution of 2q. 32 is accomplished using

matrix inversicn and multiplication, yielding the previously

unknown values of the source strengths. Values of velocity

potential at the control poinrs (panel centroids) are then

obtained directly using Egs. 34 and 35. Fluid velocities at

the control points are similarly obtained after first

differentiating the elements of the IfS} matrix with respect

to the x,y and z directions. Dynamic pressures are

calculated from the linearized form of Bernoulli's equation.

Finally, the forces acting on the object are determined by

pressure integration (or more precisely, summation) over the

26





surface area of the object as indicated by Egs. 10 and 11.

2. Method of Linearly Varying Source Strength Elements

An alternative method of discretizing tne Green's

function integral equations, proposed by Webster [ Hef . 10]

for uniform unbounded flow past a submerged body, utilizes

triangular source panels over which the source strength

function is considered to vary linearly. In this aay, the

discontinuities or "jumps" in source strengths at adjoining

panel edges (which existed in the previous scheme) are

eliminated. Also, since source strengths are not held

constant over the extent of each panel, the discretization

results in a less crude approximation of the continuous

strength function. An additional "smoothing" effect on the

velocities induced near the body is achieved by submerging

the source panel surface inward a selected distance from the

actual body surface, although the kinematic body boundary

condition is still applied at points on the true body

surface. It is noted that while some smoothing effect can

be accomplished ty submerging the sources, this is not a

necessity as long as the singularity is accounted for

properly.

Figure 5 depicts the linearly varying source

strength function for a single triangular panel. The local

coordinate sjstem for each panel is defined such that two

triangle corners (denoted by a and d) lie on the local

X-axis, and the third corner (b) lies on the positive

y-axis. Appendix A gives the transformation between the

body coordinate system and the local coordinate system for a

given pacel.

In panel coordinates, the linearly varying source

strength function may be written
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f (?,f)- «^+f3?f3'f (36)

in which oC
,

/i and K denote constant coefficients and the

tildes indicate local coordinate values as defined in Fig.

5. The values of the source strength at the three corners

are

(37a)

(37b)

(37c)

Substitutuion of Egs. 37 into Eg. 36 allows the

constant coefficients to be expressed in terms cf the

triangle geometry and the values of the strength at the

corners:

(38a)^-(f.-fi)/(a-Jl)

°^^(afj-JfjAci-A) (38b)

V -- Li<l-i)h -^^J 1-d fal/bCa-^O (38C)

Thus, the contribution to the potential at {x,y,z) due to

the single panel of area AS is denoted by A^ii^fYf^) and is

given by:
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where ^ and "^ denote local panel coordinates and (x,y,z)

denotes a general point expressed in terms of local

coordinates.

Substituting Egs. 38 into Eg. 39 and collecting

terms allows the contribution to the potential to be

expressed in terras of the values of the source strength at

the corners cf the panel:

in which

(41c)

For convenience A4>^ ^^i^ ^^'^ ^^d ^'^H ^^ referred to as

simply the "corner integrals" associated with corners a,b

and d, respectively, for a given triangular panel.

The velocity induced by a single source panel is

ottained by taking the gradient of Eg. 40:

^l(x,Y,z)'-f^^Myf^V(A^^)^fj,V{A(l>j) ( 42)
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The gradients of the corner integrals are given by

v('a*0--JI ^^'7(.ilr,^7i.'^^)^s cab)

The evaluation of the three corner integrals (Eg.

41) and their gradients (Eg. 43) must be accomplished in

local coordinates for each panel. In performing the

integrations, it is most efficient to separate the Green's

function into its singular and non-singular components, and

treat the integrals separately, as follows:

A*d -|£^ ^i ('/R)as f
[f

Wi ('/R')ds ^£ Wj (&*)cls <""<='
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in which W , W , and W are linear functions in f and '/7 and
a b d ^

are given by

(46a)

Wl,- -^^2 (46b)

HITb (a-J)

(46c)

Appendix B provides foraulas developed by Webster

[E€f. 10] for the closed form evaluation of those integrals

in Egs. 44 and 45 which involve derivatives of 1/R and 1/R'

as well as similar formulas developed by Yeung and Bai [Ref.

11] for integrals of 1/R and 1/R'. The integrands are

singular, and it is therefore necessary to evaluate the

integrals analytically.

Integration of the G* components of Egs. 44 and 45

is made possible by assuming that the G* function and its

gradient vary linearly over the triangular panel, (as was

done for the source strength function) . This is a

reasonable approximation since G* is a well-behaved function

that varies slowly with position on the body surface. The

wave length of its oscillation is approximately the same as

the wave length of the incident wave, and this tends to be

large relative to the panel dimensions in typical

applications.

With G* and VG* expressed as linear functions of

their values at the panel corners, the terms in Egs, 44 and

45 involving these two functions may be expressed as
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iS^sW^\7&*c(s - j;! ^fl.b.d, ^G-/^ ^V, ^^/) '''^^'

where I , I , I , I '
, I' , I ' , represent the integrals cf the

a b d a b d

product cf the two linear functions over the triangular

ar€a. The integrals in Eqs, 47 and 48 were evaluated using

the formulas given in appendix C for integrating the product

of two linear functions over a triangular area and the

resulting integrals are given in Appendix D

The total potential and velocity at any point in the

fluid is a result of the combined effects of all the source

panels. For a grid composed of a panels, the potential is

given by

and the velocity vector is given by

32





in which f ,f , t , denote the strengths at the three

corners of the k-th panel.

It should be emphasized that the corner integrals

and their gradients are evaluated in their own individual

panel coordinate systems. Transformation back to the global

coordinates, described in Appendix A, must be accomplished

prior to performing the summations of Eqs. 49 and 50.

The summations given in Eqs. 49 and 50 can be

re-arranged by reversing the order of the summation. That

is, if coefficients of the strength at a given node are

first summed, then the summation may ce written

M

4>()(>'/jZ) = ? fj A(t)j (X,y/I) (51)

^(X,/,Z):= ^ f^ 9'(Act,(X4,Z)) (52)

in which f denotes the source strength at corner node j

(j = 1,2...N) and A CJ> represents the sum of the corner

integrals associated with node j, for all panels which share

node j as a mutual corner. A graphic representation of the

meaning of A4) .
^^ provided in ?ig. 6 for clarity, since it

is difficult to express mathematically. As indicated in

Fig. 6 A(J>.(X/y,z) denotes the contribution to the

potential at (x,y,z) from the panels surrounding node j.

Each of the surrounding panels may be considered to have

unit strength at the corner coincident with node j and zero

at the other two corners as depicted in Fig. 6.
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The kinematic boundary condition at the body surface

may now he applied at N selected points. It is convenient

to use points on the surface which lie directly outward from

the corner nodes of the submerged source surface. In

practice, it is best to initially define the nodes en the

actual body surface, and then establish the points on the

submerged grid at seme pre-selected submergence distance

along the corresponding inward normal vectors.

Application of the kinematic boundary conditions for

each of the seven problems of interest results in the

discretized version of the integral equation:

where the repeated index j indicates summation. The term

denotes the sum of the corner integrals for node j,

evaluated at control point i. The derivative with respect

to the outward normal vector is obtained by

2lMiA r \7(ACt>|:)-n; (54,

where n is the unit outward normal vector at the control
i

point i, en the body surface.

Equation 53 may be expressed more simply as

where the NxN matrix, [o< ], is composed of elements
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Equation 55 is solved by computer, (for k=1,2...7)

using matrix inversion and multiplication, yielding the

unknown source strengths. Substitution of the source

strengths into Egs. 51 and 52 with evaluation at (x ,y ,z )

i i i

(i=1, 2, . . .N) , gives the values of the potential and the

fluid velocities at the control points on the body surface.

Ihe dynaaaic fluid pressure is determined using the

linearized form of Bernoulli's equation. For oscillation of

the body in its six degrees of freedom, the pressures at the

surface nodes (denoted by i) are given by:

P,^.= Refiner (t^^.e'""^] ,
k^i>:i-..7 (57)

(58)

where J=> denotes fluid density, and P and cj) denote

dynamic pressure and potential, respectively, at node i

(denoted by the subscript i) due to motion in the k-th mode

of oscillation.

The pressure integrals given by Eqs. 10 and 11

cannot te utilized directly to obtain total forces and

moments, because only discrete values of pressures are

available. However, it is consistent with the numerical

scheme to assume that the pressure varies linearly over each

triangular panel. Based on this assumption, the pressure at

any point on a surface panel is expressed as a linear

function of the panel geometry and the values at the corner
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nodes, which are given by Egs. 57 and 58.

The forces and moments are then calculated using

/* = ' '^^^S^'

where F denotes the i-th component of wave excitation force
i

or moment and F denotes the i-th component of force or
ik

moment arising from the ic-th component of body motion. The

suamations of Egs. 59 and 60 are carried out over the M

panels on the actual body surface. The functions h are
i

given by Eg. 12 and are functions of position on the

immersed surface. It appears to be consistent with the

numerical scheme to approximate these functions as linear

functions so that they may be defined at interior points by

their values at the corners of the triangles. Thus the

integrands of Egs. 59 and 60 contain the products of two

linear functions. The integrals are evaluated in a

straight-forward manner using the integration formulas given

in Appendix C .

The resulting forces F {i,k=1 ,2. . .6) and F
ik i

(i=1,2...6) are substituted into Egs. 6, 1, 8 and 9 to

evaluate the excitation force coefficients C ( j= 1 , 2, . . . 6)

,

J

and the added mass and damping coefficients, M , and N ,

ij ij

(i, j= 1, 2, . . . 6) . Finally, the eguations of motion for the six

degrees of freedom (Eg. 2) are applied to determine the
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ccmplete dynanic response of the body.
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IV. NUMERICAL RESULTS

A computsr code based on the numerical method outlined

was developed to calculate the hydrodynamic coefficients as

well as the dynamic response of a floating body in waves.

Using this program, example calculations were made for two

simple geometric shapes: a vertical circular cylinder which

extends from the bottom and passes through the free surface,

and a semi-immersed sphere. Computer produced drawings of

the grid configurations used are shown in Figs. 7-10.

The vertical circular cylinder represents the only

three-dimensional geometry for which a closed-form solution

exists (of the type of interest in the present study), and

therefore, it is of interest for making a comparison of

numerical results computed by the present method. MacCamy

and Fuchs [Ref. 12] have developed a closed form solution

for the horizontal force acting on the cylinder and this

result is plotted in in Fig. 11 in the form of the

dimensionless amplitude of the force versus the wave length

parameter, 27ra/L,

Corresponding results computed by the triangular panel

method using grids of two different finenesses are shown on

Fig. 11 for comparison with the results of MacCamy and

Fuchs. These results indicate rather rapid convergence of

the solution, particularily at small values of 27Ta/L. The

slower convergence (or greater error) at the larger values

of 2 TT a/L apparently indicates the inaccuracies associated

with the assumption of linearly varying source strength. As

2 Tf a/L teccmes large (the wave length becomes small) the

variation of the G* part of the Green's function with
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distance beccmes more rapid. Thus, as 21Ta/L increases, a

point is reached where the assumption of the linear

variation of the Green's function becomes appreciably

invalid. Of course, as the fineness of the grid is

increased the numerical results tend to agree witn the

clcsed-fcrm exact results up to higher values of 2na/L.

Havelock [Ref. 13] has presented results for the added

mass and damping coefficient in heave for a semi-immersed

sphere and these results are presented in Fig. 12 for

comparison with nuinerical results computed by the present

method. The figure shows the heave added mass and damping

coefficients, M and N , respectively, for the
22 22

semi-immersed sphere along with the numerical results

computed using grids of two different finenesses. These

results indicate -char the numerical results are tending to

converge although even for the finer grid the results are

not yet converged.

Moreover, given the damping coefficient, the wave force

coefficient can be computed by use of the Hasxind's

relations which, in general, relate the force coefficients

to the far-field solutions of the corresponding radiation

problem. For the case of the heaving motion of an

axi-symmetric body a closed form relationship exists between

the heave damping coefficient and heave excitation force.

Thus, Havelcck's results for the damping coefficient in

heave were used to compute the heave excitation force and

this result is presented in Fig. 13 for comparison with the

numerical results.

The numerical results presented for comparison with

Havelock's results in Fig. 13 show a trend toward

convergence and, in fact, the results corresonding to the

finer grid indicate adequate agreement.
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Finally, the dynamic response in heave and surge for the

case of the semi-imiaersed sphere are shown in Fig. 14.

These results, showing the dimensionless response in terms

of the response amplitude to wave amplitude ratio, indicate

very little difference between the the two grid finenesses.
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CONCLUSIONS

A new numerical procedure based on the use of triangular

source panels has been developed for computing the

interaction of fixed or floating bodies with waves.

Numerical results based on this procedure compare well with

existing results, and, in general, the procedure appears zo

converge to the correct solution.

The value of the triangular panel procedure as coapared

to the procedure based on guadrilateral panels of uniform

strength remains uncertain. This will be determined only

through experience in application of the two methods.
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APPENDIX A

COORDINATE TRANSFORMATION

In the following, the coordinate transformation is

developed which relates the local coordinates attached xo a

particular panel, as indicated in figure la, to the global

coordinates with origin located at the mean water level. The

global system is denoted by 0(x,y,z) and the local

coordinate system is denoted by 0(x,y,z).

Figure 1a-Coordinate System Locations

The location of the origin of the local coordinate

system expressed in global coordinates is given by

[Xo Jo.^J = [(Xj 1-«fV^j)), [Yi +« ( V/^)), UA ^(2.-^j))]
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in which (x ,y ,z ) , (x ,y ,z ) and (x ,y ,z ) are the globalaaa fcbb ddd
system coordinates of the triangle corners a,b and d,

respectively, and where

(Xa-X^)2. ^ (y^-yd)Z v(Za-Zji)^

The unit vectors in the x,y and z directions of the

local coordinate system are given in terms of their

respective global system components as

in which i, j and k are the unit vectors in the x, y and z"

directions, and i, j and ic are the unit vectors in the x, y

and z directions.

The terms u , u , ...u are defined as fellows;
^1 ^1 ^3

Ux3=(z^-2^)/ia;i
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where

and

U2^ = Ux,Uy^-Ux^Uy,

i dal =/()(^-X4)%(/,-yj)S(z.,-2^)^

|obl =V('^=-^.)' ^(y.-^)' K^.-z./'

The transformation matrix is then defined as

[T]^

Ux ^y ^^

Uy U. C/^

^z. U. U,

Transformation between global coordinates and local

coordinates is accomplished in the following manner;

>

X fx-x,]

y '=[TJ
1

f-Yo

z z-z^
J l^^^J
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in which [T] denotes the transpose of the matrix [T].

Similarly, a vector quantity, F, evaluated in the local

coordinate system is transformed back to global coordinates

using

Fx^

^ [rf
V

1

in which I , P and F are the x, y and z components in
X y z

local coordinates and F , F and F are the corresponding
X y z

components in the global system.
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APPENDIX B

FOHaUL^S FOB EVALUATING INTEGRALS INVOLVING 1/R AND l/H'

The terms ot Eg. 44 which involve 1/R and 1/E' are

evaluated as follows, using the panel geometry defined by

Fig. lb.

Figure lb- Panel Geometry

X,?

(f -hi+h^+dv
{zp'zf-+dRad +
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«' ba.-b?-a^ ^S _ ; C -a

+(b^ad)Fab/e^ - F^ f [a^^-'- (b>ad)(2^+ffjjlj;/

in which the following definitions are applicable

--/i X-^)^ f 7^ a-Td^Tb^

Vb - VxT(y - b) ^ t Z

+ w^ ^5"

.^ z ^

f--^^.-'i:-%^^ H- /..- r^i^lr-)-^]2© ^

^ i, ^, J ^ J, ^^ JZ^'a
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Raa =
*'a (x-^)-^d(x-d)

'

'^A'^
'- Ijb

F^b '' A ^6 -^ 'It

F^fa - ^i>' ^. -^''V ^^^"^ad

Formulas for evalaating the terms of Eg. 45 which

involve the gradients of the 1/R and 1/R' integrals are

given by Webster [Eef. 10] as

b^-bf --^7

A5

"^^"^^^
2_f/p)^5 ri f'/J-^a ^ZT, k-(r-rA

C^ -^/j

c(^^--c/;

ZiS

ZiS

U8





J) Hir'hla-d) ay^ (. hla-d) e

-J2J..;?

^^jii^f 2,(./„),, .^j^ ^^T-4^>z4'

L?rM'''^^^'--Uy^-'^-.U'J^^^'-^'^:]
'AS
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APPENDIX C

ICBMULAS fOR INTEGRATION 0? LINEAR FUNCTIONS OVER TRIANGQLAJ

AREAS

All formula-3 given are applicable for a xriangle

positioned as shown in Fig. ^c, vfith a>d and b>0.

Figure 1c- Triangle Geometry

If f (x,y) and g(x,y) are any linear functions expressed

as

and the function values at the triangle corners are denoted
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by f , f , f , g , g^, g / then:
a t d a b a

a-d
^'=^6d-%^

^^ f<X-fct /3'= 3a -^Jl

a-d

hia-d)

and the integrals of f(x,y)ds and f (x,y) g (x,y) ds are given

by

/!
S ' 3 '

and

RX»/) 9(X,/)J-S -o<cxV, h(pc<'fc</3')W;

+ (<X'X -ho^ 2(0^3+ (Y/3V/3^')w^ t/2/5\v^ ^y^'W^

where

w.-5(d.-(^

Wz =

G
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^^,-lyAs-A^

w,

W,-f( yVi:r bf{^
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APPENDIX D

INTEGBATICN FORIIULAS FOR INTEGRALS INVOLVING G* AND VG=*

The assumption of a linear variation of G* { ^^7^ ; x,y , z)

over a given triangular panel, and the subsequent

application of the formula for the integral of the product

of two linear functions, given in Appendix C, leads to the

following expressions for Eqs. 47 and 48 which involve the

G* term. (refer to Fig. lb for applicable triangle

geometry .

)

^ hub (a-4)
^"^ kr^[_a'4)^ m^^^^B^^^^.l

^s

fi,.^E-^*^^' -iTbU^)l^'^'-'^^^^^^^s']AS

in which
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^3 - y.

5j -C2_ta}_b

:^^ ;^H

The integrations involving the gradients of G* similarly

result in the following expressions:

AS
^-^Mi^ ^^*^' -- ^%:ZF^-.)^VC^OA.K^g/;J

wh€re

' Bx -ay 3Z
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S(x,y ,z)=0

TTTTTTTTTTTTTTTTTTT

Fig.~l- Problem Definition
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(^^ X, (YAW)

( HEAVE

)

X. (r.OLL)

X^ (SURGE)

Xg (PITCH)

T777T7T7-nTT7T77777

Pig. 2- Definition of Body Motion
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y,n

(x,y ,z)

S(x,y,z)=0

x,€

z,C
= /g(C,n , C)G(^,ri ,C;x,y,z)ds

Fig. 3_ Potential Due to Distributed

SOTJLTCeS
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(x,y ,z)

S(x,y,z)=0

Pig. 4- Uniform Source Strength Discretization
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f(^,n)

x,l

Fig. 5- Panel of Linearly Varying Source

Strength
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Fig. 6- Contribution to Potential at Node iFrom Panels Surrounding Node j
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Figure 7 - QUARTER 0? A 13 NODE HEMISPHERE
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I

Figure 8 - QUARTER OF A 25 NODE HEMISPHERE
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Figure 9 - QUARTilR OF A 48 NODE ClfiCULAH CYLINDER
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Figure 10 - QUA5TER OF AN 80 NODE CIRCULAR CYLI.NDER
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2.0

1.6

1.2

0.8

0.4

Added Mass and
Damping Coefficient

X 13 node hemisphere

• 25 node hemisphere

— Havelock (Ref. 13)

Fig. 12- Heave Added Mass and Damping Coefficients
for a Floating Hemisphere
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2.5

2.0

1.5

1.0

0.5

P(max)//>ga^

X 13 node hemisphere

• 25 node hemisphere

Havelock (Ref. 13)

0.4 0. 1.2 1.6 2.0

cT^a/g

Pig. 13- Heave Excitation Porce for a Ploating
Hemisphere
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