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ABSTRACT

The pressure amplitude and phase distribution along

the interface between a tapered fluid layer and an under-

lying fast fluid bottom were investigated both theoretically

and experimentally.

Two different theoretical models were compared experi-

mentally: a simple model based on a combination of normal

modes and ray theory and an exact solution based on the

method of images. The experiment was conducted ar 100 KHz

with a wedge of silicon oil separated from a large tank of

fresh water by a thin mylar diaphragmi. The simple model

failed to predict adequately the pressure am^plitude and

phase along the interface. The method of images gave

accurate predictions.
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I. INTRODUCTION

As sound from the open ocean propagates up onto the

continental shelf, lower frequencies become lost to the

water column; energy is transmitted into the bottom. If

the bottom has a speed of sound in excess of that of the

water, then it is predicted [Ref. 1,2] that a highly

collimated beam will form in the bottom.

For a channel of constant depth overlying fast bottom,

normal-mode theory shows that if the frequency of the sound

is less than the cutoff frequency of the mode energy can

be transferred into the bottom. This can be seen if the

normal mode is represented by upward-going and downward-

going rays in the layer. As the frequency of the signal is

decreased, the incidence (grazing) angle between the ray

and the bottom increase. Energy continues to be perfectly

reflected and remains trapped in the layer with no transfer

into the bottom, until the incidence angle becom.es equal to

the critical angle. At that frequency the mode stops propa-

gating in the layer and energy is transferred into the

bottom. This concept can qualitatively be applied to a

tapered layer over a fast bottom. As a propagating mode

travels up the wedge, the incidence angle of the equivalent

ray increases with each bounce unril it reaches the critical

angle, at which point energy will be transmitted into the

bottom.





Theoretical and experimental studies of this phenomenon

have been carried out at the NFS for three years encom-

passing three generations of experimental setups.

Lt. Edwards [Ref. 1] with his thesis adviser, Professor

A.B. Coppens carried out initial investigations in a large

tank filled with brine solution over which a thin layer of

olive oil was carefully added. Since the interface between

the two fluids was horizontal, a wedge-shaped upper layer

was created by inserting a board of pressure-release material

at an angle to the horizontal. The sound field was observed

in the bottom fluid at various distances and depths. When

plotted on properly chosen coordinates , the data were

observed to cluster about a single curve consistent with

the existence of narrow beam of sound enetering the bottom

at a relatively shallow inclination.

In the meantime. Professor Coppens developed a simple

theoretical model that predicted the shape of the beam

pattern.

In an attempt to obtain more precise data, Lt. Netzorg

[Ref. 2], with his thesis adviser, Professor J.V. Sanders,

redesigned the apparatus to consist of a wedge of water

separated from a small tank of brine by a 1-mil Mylar

diaphragm stretched tightly within a frame. The bottom and

sides of the tank were lined with absorbing material to

reduce reflections. The results showed that the entry point

of the beam was close to where it was predicted by the





simple model. Agreement between experiment and theory was

fair but not good enough to verify the model.

Subsequent to these first experiments a more refined

model has been constructed, with silicon oil in the wedge

and a large water tank for the bottom. But the results

obtained in this apparatus by Professor Sanders were still

significantly disturbed by what appeared to be some sort

of interference.

Experimental results from the three generations are

compared to the predictions of the simple model in Table I-l

and Fig. I-l. Significant differences between theory and

experiment were observed on the lower side of the beam

pattern. In one extreme example, two peaks of beam were

observed in a third generation of experiments. Generally,

the observed angle of depression of the beam is shallower

and the beam width narrower than predicted by the simple

model.

At this point, the research effort was redirected to

go back to examining the amplitude and phase distribution

along the bottom; these quantities provide the link between

the acoustic field in the layer and the formation of the

beam in the bottom.

The objective of this research reported herein are to:

1) Develop a simple, closed form expression for the

pressure distribution along the bottom that can be

used to reliably predict the beam pattern to the

bottom.

10





2) Calculate the pressure (including phase) along the

bottom predicted by application of the method of

images and compare with experimental results.

In this report, two different coordinate systems are used.

The first is a special coordinate system applicable to the

simple model; the origin is located at a point on the bottom

where the lowest mode reaches cutoff. The second is a

general coordinate system more suitable for the im.age

calculations and experiment; the origin is located at the

apex. These two coordinate systems are shown in Fig. I-2a,b.

11
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ŵa
E-i 0)

a x:
r-i -p
3

x:
S^ +i

< ^
-=4 3

CQ
+J

c
0)

6

;̂h
0)

p<
X
<a

(0

+̂>

'H

CJ

03

•H
^'^^
nS

t^ CL,

Q
2:

a 1

h^ •

IxJ

13

2r

- 3
2:

fca

o

(i>c3NiHHdn<a) aiONv MDissandsa '.'r-faa:

13





BOTTOM

A c,

CUTOFF FOR
LOWEST MODE

Fig. [-2a Coordinate system for the simple model

Fig. /-2b General coordinate system
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II. THEORY

A. PRESSURE DISTRIBUTION PREDICTED BY A SIMPLE MODEL

1. Basic Concept

The purpose of this part is to summarize the

theoretical background necessary to conceptualize the

propagation of sound in a tapered fluid layer above a fast

bottom, using a combination of noirmal modes and ray theory.

a. Layer of Uniform Depth

One-dimensional propagation in a fluid layer

of uniform depth H with speed of sound c, and density p-, ,

overlying a second layer with a faster speed of sound

c„, and density p^ can be exactly represented by an equation

of the form

i('ut-K^,x' )

P = y A sin(K ,
z')e ^

(II-l)
^ n 2

n
n

where z' is the depth, x' is the horizontal distance,

K , and K , are the components of the propagation vector
n ' n

-A. th
k for the n mode m the z' and x' direction respectively.

A is the magnitude of the n mode. For propagating modes,

the propagation vector k can be represented as in Fig. II-l.

The angle between k and the horizontal is 6. Snell's law

gives the relationship between the speeds of sound in the

layer and the critical angle 9 .

15





Fig. II-l. The propagation vector k and its components

I = arc cos -^
c c.

II-2)

As long as 6 < 9 the energy is totally reflected. How-

ever, when 8 > 8^ energy is transmitted through the

previously totally-reflecting surface.

To satisfy the requirements of propagation,

k , must be a constant, real number for each mode and from
z
n

Ref . 3

,

tan k , H
z

n

Po Z

1 n
II-3

where

k'
X ^2

(II-4

At cutoff 3=9 and then the geometry of Fig. II-l

implies k ,
= —

'^ X c.
;o that

16





k^, H = (n - |)TT (II-5;
n

and for a mode with frequency just above its cutoff

frequency f there is a pressure antinode at the bottom.

Now by writing Eq. II-l in the form

^ ik^, z' -ik , z'

P = y ^ (e
' ^ - e

' ^ )3i(a)t-kx'

n

i(ajt-k , x'+k ,
2')

T X Z

- - k I i A ie
2 ^ n

n
i(cot-k , x'-k , z'

X z

'

- e
n ""

} (II-6

we have two plane waves that propagate with wave number

k = k ,x ± k tz'. If we assume that the frequency is
n n

slowly lowered^ higher modes are cutoff as the frequency

1 TT

decreases with k , approaching (n - ^) tj
Z Z n

n

b. A Tapered Layer

Let us now consider a wedge with angle 3 as

indicated in Fig. II-2 and II-3, where X' is the distance^ o

from 6=9 to the apex, and x' is the distance of closest

approach (Turnaround distance) of the indicated ray. In

this case each bounce off the bottom increases 8 by 26. At

the point where 9=9 energy begins to penetrate into the

lower layer. The resulting attenuated ray bounces off the

17





^z'

Fig. II-2. The geometry of a wedge
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Fig. II-3. Bounces off the bottom of a wedge

19





top and makes another collision with the bottom, losing

still more energy. This process continues until the wave

reaches the "Turnaround distance" x' defined by:
s

x' = X' (1 - sin 9 ) (II-7)so c

For the wedge then, the frequency remains constant while

9 increases with each bounce off the bottom until that depth

H is reached for which 9=9 where
o c

(n - y) TT

z
n

From Fiq. II-l we obtain at cutoff

k ,
= k sin 6 (II-9

2 C
n

where

k = ^ (11-10)

and substituting Eq. (II-9) into Eq. (II-8) yields

(n-^)X
H = .

. Q (11-11)
o 2 sm 9

c

Knowing H allows calculation of the value of x' = X' where
^ o o

energy will begin to be transmitted into the bottom-

20





2. Pressure Distribution along the Bottom

A.B. Coppens [Ref. 4] formulated an approximate

model to predict the characteristics of the transmitted

beam in the bottom. The expressions for the pressure ampli-

tude and k , are

:

A = A e~ (11-12)

I o~ / sin 9 „

k ,
= & - k^ = ^ /l - ( r^)2 (11-13)

'^^1 " ^11/ i-i;
o

where x' , X', are defined from the geometry of Fig. II-l,

9 from Eq. II-2, A is the pressure amplitude at x' = 0,

and A defined as

tan 9,2 2 ,

. Cr b c
r

. c +bz • c
A = [—7:— [arc sm —y,^ , - arc sm

' "-^ /^
c(b^z) |b

1

2lb c r . c +bz T

T TTT [arc sm —rr--. - arc sm c]
Z D-1 J J C(i + Z)

•cA^

2

¥
-T- f—-r- [arc sin —t-> r ~ arc sin c] }
2 b+1

I
r-"- c(l-z)

y^c^ 11-14

where

b = 11 (11-15)

21





"^1

c = COS 6 = —

-

(11-16c C2

z = Jl - (1 - 1^)2 (11-17)
o

In the case where :;T-r << ^ cos 9 this model may be simpli-X^ 2 c

fied further

P, tano 1 /^ IT/-,
1 c 2/2, x', 3/2

p 3 \X
(^)

A = A^ e ^ °
(11-18

and

, sin 6 ^
a = - k X' = -X' ^ I -

( -p-) (11-19:

sin 9

X
= arc sin ( ^) (11-20)

1 - X'
O

3. Pressure Distribution under the Bottom

In this part we present without detailed derivation

A.B. Coppens [Ref. 2] work concerning the pressure distri-

bution under the bottom based on the simple model and

obtained through the use of the Green's function and the

method of stationary phase. Two basic assumptions were

considered for this development.

a. The plane wave has wavefrents that are parallel

to the shore line.

22





b. The pressure distribution on the bottom can be

viewed as an acoustical source which generates

the beam of sound projected into the bottom.

The geometry is indicated in Fig. II-4.

The Green's function formulation for this case can be

developed through the geometry of Fig. II-4 as follows:

At the point (x',z') the instantaneous pressure is given by

P = P(r*,t) = P(r')e^'^^ (11-21)

where

P(r') = ^ / P^(x")||^!^,,o dx" (11-22)

The integrand of Eq . (11-22) is formed from the pressure

distribution at the bottom

11-23)

and the Green's function for a line source is

G(r',r") = i ^ H^^N'r'-r"l) (11-24

23





Fig. II-4. Plane wave propagation in the wedge

24





In Eq. (11-23) the term - is an a postiori correction

o

for the cylindrical convergence of sound. In the absence

of losses into the bottom and if there is no energy loss

within for the wedge, the pressure amplitude would behave

as

n.
O

also from the geometry of Fig. II-2 we have

o 1

H 1 - ^
(11-26)

X*
o

so that

P
(11-27)

H L X
o 1

X'
o

The term A(x") is the pressure amplitude on the bottom

and the exponential term is the corresponding phase.

This pressure distribution is an integral of the

general form

G (x )I = / F(x) e''^'^^ dx (11-28)

25





where F(x) varies slowly compared with the exponential

factor. The value of the integral can be well approached

with the method of stationary phase.

Using the above method and assuming the simple

x" 1 2
model for ^r ^"^ J ^^^ 9 ' ^^^ ^^^ small 3 the following

o
expression for the pressure distribution was developed:

Pi ^^^^ 1 3

P
2 ^ 6/2

V

Pi = _,^ ve

where

\I2{1 - cos 6) . sin
1 " tan .
c c

V = ^^^\,,"r = :,; : (11-30)
tan « tan 6

2 . Pressure Distribution along the Bottom Predicted
by the Method of Images

Since the simple model did not yield results agreeing

with the experimental measurements, it was decided to use

the exact but more cumbersome method of images to attempt

to predict the pressure distribution on the bottom.

Let the source be a distance X from the apex of

the wedge and a depth H below the sea surface as indicated

in Fig. II-5.

Define

)j = arc sin — (11-31)
d X

26





and

'o
= ^ "

*d
(11-32)

where 3 is the angle betv/een the sea surface and bottom,

(}) , is the angle formed at the apex between the source and

the sea surface, and (\) is the analogous angle for the source

and the bottom.

If fi is the angle formed at the apex between the

n image and the bottom then Fig. II-5 reveals

^1 " ^ ^ ^d " ^^ " *o

-2 = 3<\>^ + 2(S-'^q) = 26 + (})q

1^ = 3(j)^ + 4(6-9^) = 46-^^ (11-33)
3 o o o

or more generally

d) = (n+l)ii + n(3-4) ) = nB + ^ for n even
^n ^o ^o o

(J)
= n0 + (n+1) (S-*:!) ) = (n+1) 6 - ^ for n odd

^n o '
' ^o o

11-34)

27





Fig. II-5. Geometry of a wedge by the method of images
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This set of equations can be reduced further to one

expression:

^n
" in + |[l-(-l)'^] }e+ (-l)^'1>o = 2 lNT[2±l]s+(-l)'^.t)^

(II-35a)

Also for the syroiaetric member n' of the paired images

we obtain

^^, = {n' +i[l-(-l)'^']}S - (-l)'''^^ = 2 lNT[2-!-tl]B + (-l)^%
n z o 2 o

(II-35b)

where INT [ ] denotes the largest integer which is equal

to, or smaller than the argument.

Considering the geometry of Fig. II-5 and II-6 we

can derive expressions for the distances r and r , which
n n

represents the distance between a receiving point on the
X. L_

-f- Vl

bottom at distance x from the apex and the n and n'

image respectively. Also we can derive expressions for

the angles 9 and 9 , which formed at the receiving point
^ no n o ^ ^

between the bottom and the images n and n' respectively.

These expressions are:

r = 'Vx^ + x^ - 2Xxcosq) (II-36a)
n / ^n

r ,
= l/X^ 4- x^ - 2Xx cos.^)

,
(II-36b)

n V n

29





Fig. II-6. Geometric development of the image' s position

with respect to the receiving point
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sin (p

)^^ = arc tan [
2—_] (II-37a)

cos 4)^ - -

sin ^ ,

e , = arc tan [ ] (II-37b;no ^ x'
cos 4)^, - -

Let us now define 9 and 9 , as the angles ofnm n m ^

incidence for the m bounce from the bottom for the n

and n' image respectively, m = 1,2,3, ... (The o bounce

is the last-one before reaching the receiver.) From the

geometry of Fig. II-5 and Fig. II-7 we obtain expressions

for 9 as follows:
nm

'21 = «20 - 26

31 = ^30 - 28

41 = ^40 - 28 (11-38)

'42 = «40 - ^8

'51 = ^50 - 2i

The general expression is

I = 9 - 2m6 (II-39a)
nm no

31





Fig. II-7. Geometric development of reflection angles
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Also for the symmetric member n' of the n pair we obtain

^n'm = \'o - ^'"S (II-39b)

and the maximum number of bounces of the n and n'

image is

max
m__ = M = |(n-l) + |-fl - (-1)^^ "}

|{n'-l) + i 1 -{(-l)'''''^}

INT [^] = INT
[2J-]

(11-40)

If the receiving point is on the bottom., then from. Fig. II-l

we obtain:

1. The distance from each member of a pair of

images (n,n') to the receiving point is the

same, i.e., r = r ,

.

n n

2. The number of reflections (from the bottom)

from the n' image to the receiving point is

one more than the n image

.

3. The grazing angle to the bottom is the same

for each corresponding bottom bounce so that

the reflection coefficients for corresponding

bounces are equal, except the last bounce for

4.U ,
th .

the n image .
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Fig. II-8. Geometry of syiranetric images
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Consequently R = R , where R and R , are the reflec--nm -n m ~nm ~n m

tions coefficients for the m bounce of the n and n'

image respectively.

The reflection coefficients for the n image are

given by

where

and

with

R
"nm

P2C2

-nm

P2C2

PiCn ~nm

(11-41)

^2 2 2
1 - (-4) cos^e

cl nm
for 9 > 6 (11-42)

\b = sin 9 nm — c
Inm nm

^2,2 2, ,— ) cos - 1
c, nm

\b = -1 '
: for 9 < 9

-nm sm d nm c
nm

11-43'

'^l
I = arc cos {-^) (11-44;
^ ^2
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Let us now consider the pressure P(x) at a point x on the

bottom. The contributions from the paired images are

" -ikr " INT
["-'I'

li:^ e n R ^ (-1) ^ } (11-45:r ~nm
n=0 ^ ra=l

and

N
. M n ' +1

I {-^ e ^ n R . (-1) 2 ^

r
,

~ n- m
n=0 ^ m=0

(11-46

(The n and n' images differ only in that n image has

no R reflection.

)

-no

The complex pressure is

N -ikr INT[^^] ,
^^

p(x) -I {^ e ^ (-1) 2 (1+^) n R
n=0 n -no m=0

}
nm'

(11-47)

A computer program was constructed to calculate this

complex pressure (amplitude and phase) . This program,

with the corresponding flow chart, is presented in Appendix A,

In case of a source so distant that it can be

assumed to be at r ^ °° then the geometry of Fig. II-

9

yields the approximation
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Fig. II-9. The geometry of distance source approximation
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> = (11-48)
no n

which simplify the mathematics significantly. Here

R = R(e ) = R((|) ) (11-49)
-no - no - ^n

In this case, the expression for reflection coefficients

are (see Appendix B)

M
n R = R = R(0 )

m=0-oni ~o ~ ^o

M
n R, = R, = R(^^ )

M
n R„ = R^R, = Ri^JRi^,) (11-50)

m=0~2m ~o~l - o - 1

M
n R^^ = R, R^ = R(0^ )r('k:

MM M
n r = hr ^ • R = HR - • R(^'

:

m=0-'^ m=0~^-2'"^ ^^ in=0~^-2'"^ ~ n

for n > 2

where the right hand sides of Eqs . (11-50) depend

only on n, then define
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R for n =

r(n) = R^ for n = 1 (11-51)

r(n-2)R^ for n ^ 2

Also, the geometry of Fig. II-9 gives

r = r - X cos t (11-52
n ^n

Substitution of Eq. ((11-50), (11-51), (11-52) into

Eq. (11-47) yields

1 -iVr- ^ ikxcos-t INT[^^]
I

P(x) = i e ^^^ le "" (-1) 2 (i + _i_}r(n)

n=0

(11-53)

The last expression for pressure is the approximation for

a distant source, which is described in detail elsewhere

[Ref. 4].

The advantage of Eq. (11-53) with respect to Eq. (11-47)

is that because the elimination of product term, the

calculations are greatly simplified.
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III. EXPERIMENT

Initially it was intended that the beam pattern in the

bottom would be exhaustively investigated, and a larger

experimental system with silicon oil in the wedge and a

large water tank for the bottom was designed. But, even

in the new system, it was observed that the beam pattern

was being significantly disturbed by unknown interferences

that caused the apparent angle of the beam to move to

shallower angles than predicted by the simple theory des-

cribed in II-A and made the beam seem narrower than predicted.

This interference was definitely not from the walls or

bottom of the water tank. It might have been associated

with the wedge, but whether it was an inherent property of

wedge propagation omitted from the theory II-A or merely

an artifact of the experimental setup was the question.

In an attempt to study this question more thoroughly,

the experiment was redirected to investigate the amplitude

and phase of pressure on the bottom of the wedge.

A. APPARATUS

The experimental facility consisted of a wedge of sili-

con oil overlying a large tank of fresh water; the two

fluids being kept apart by a thin Mylar membrane. A photo-

graph of the apparatus is shown in Fig. III-l. The sound

source, positioned at the end of the silicon-oil wedge,

sent a pulsed signal toward the apex of the wedge. It was
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possible to position the receiver anywhere within the fresh

water region, but in this experiment the receiver was mainly

placed close to the bottom of the wedge. The geometry is

shown in Fig. III-2.

1. Water Tank (Fig. III-3a,b,c)

The water tank, constructed of 3/4 in. thick

plywood, had the inside surfaces painted with Varathane

but were otherwise uncoated. It was filled with tap water

at room temperature.

2. Wedge (Fig. III-4)

The silicon oil was contained in a frame whose

sides were made of 1/2 in. x 2 in. aluminum and whose

bottom consisted of a thin Mylar sheet. Half-m.il thick,

aluminum-coated Mylar was fastened to the bottom of the

frame by first taping a sheet of Mylar, metalized side up

to a flat surface. Then the aluminum frame was placed on

the Mylar, and the edges outlined by a sign pen. A bead

of "Royal bond GRIP" contact cement was applied to the

bottom of the frame and to the marked areas of Mylar. After

the cement was completely dry (about 15 minutes) , the

frame was placed on the Mylar and about 50 pounds of weight

placed on top of the frame- After the contact cement had

cured for 12 hours, a coat of "Silver print conductive paint"

was applied to the outside joint between the Mylar and the

frame. This provides electrical contact between the Mylar

and the frame. (This was necessary to allow measurement of

the slope of the wedge as will be explained in a later
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section.) The excess Mylar was triiraned flush with the

outside edge of the frame by a razor blade. As a final

step, a thin coat of the "Silicone rubber sealant" was

applied to both the outside and inside of the Mylar-frame

interface to prevent leaks. Because the tension in the

Mylar tended to bend the walls of the frame inward, a

3/8 in. diameter aluminum rod was used as a "frame spreader"

to spread the frame and keep Mylar flat. The length of

the frame spreader was adjustable. It was placed across

the shorter dimension of the frame and adjusted until the

Mylar film was mirror flat. Aluminum arms at each end were

used to suspend the wedge from the top of the water tank.

The longer arm was connected to the apex side of the wedge

and extended in the propagated direction. The slope of the

wedge was set by raising the end of this arm with wooden

blocks. The other arm, perpendicular to the propagation

direction, was connected to the source side of the wedge.

The horizontal level of the wedge was adjusted by means of

screws at the ends of this arm.

3 . Source Transducer

The source transducer was made by Lt. Netzorg.

Construction details are discussed in his thesis [Ref . 2]

.

The design of the transducer was quite well done: it has

sufficient horizontal directivity so that sound is not

reflected from the side of the frame, there is negligible

sound propagation in the backward direction, and its active
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face, 2 cm high by 8 cm wide, is the largest size allowable

in the wedge. The experimentally measured directivity is

very close to the directivity predicted for a rectangular

source (Fig. III-5a,b,c). The theoretical directivity

is described as follows:

sin (ykL- sinQ) sin (ykL-SincJ))
H{e,c))) = —^ ± . —^ ± [Ref. 3,5]

ykL^ sin0 :r-kL^sin0
^ -^ ^ (III-l)

where

L, = Horizontal dimension of an active face
of a rectangular source.

Lp = Vertical dimension of an active face of
a rectangular source.

K = — = __ Wave number
c X

9 = Horizontal angle measured from a majoj
radiation axis.

4) = Vertical angle measured from a major
radiation axis

.

As a matter of convenience, the directivity measurements

were done in the water instead of silicon oil. The fre-

quency used in these measurements was adjusted to give the

same wavelength as produced when the source operates at its

prescribed frequency in silicon oil. A frequency of

127.8 kHz in fresh water (c- = 1503.8 m/sec) produces the

same wavelength as 100 kHz in a silicon oil (c, = 1176.5 m/sec)
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For more accurate comparison between the experimental

results and the method of images, the vertical directivity

was employed in the computer model "WEDGE 0" (APPENDIX-A)

.

The source transducer was mounted on a support that

allowed it to be located anywhere in the upper fluid layer.

Vertical adjustments were made by means of a micrometer with

1/2 in. of travel.

4. Receiver and Attachment (Fig. III-6a,b)

A LC-10 hydrophone, manufactured by Celesco Indus-

tries, was used as the receiver. It was possible to locate

the receiver anywhere in the fresh water. Since the main

purpose of the experiment was to investigate the sound

pressure distribution on the bottom, the hydrophone was

usually located as close to the bottom as possible. The

attachment mounted on the frame of the wedge as shown in

Fig. III-6a.

At the beginning of this thesis, some measurements

were made of the beam pattern in the lower fluid. Then a

different attachment was used (Fig. III-6b) which was mounted

on the large arm.

In both cases, the depth of they hydrophone was

adjustable. In all cases, measurements were made in the

vertical plane that contained the acoustic axis of the source

transducer.

5. Slope-measurement Assembly (Fig. III-7a,b,c)

The slope measurement assembly consisted of a pin,

micrometer, and attachment. Fine vertical adjustments of

44





the pin were made by means of the micrometer with 1/2-in.

of travel. The attachment was mounted on the wedge frame

and could be located anywhere in the wedge. The pin was

electrically insulated from the frame, so that when an

Ohmjneter was attached between the frame and the pin, the

precise depth at which the pin contacted the metalized

Mylar could be determined.

6 . Electrical Setup

Figure III-8 is a block diagram of the electrical

setup which consists of a driving system, a receiving system,

and a measuring system. The transducer was driven by a

General Radio Oscillator (Type 1310) and Tone Burst Generator

(Type 1396-A) , polarized by a 300 Volts D.C. biasing-voltage

[Ref. 2]. The driving frequency (100 kHz) was measured with

a Hewlett Packard electronic frequency counter (Type 5233L)

and the driving wavefonn displayed on one channel of a

Tektronic Dual-Beam Oscilloscope (Type 565) . The received

signal was amplified (40 dB) by a Hewlett Packard Amplifier

(Type 465-A) , and band passed (40kHz - 200 kHz) through a

Spencer-Kennedy Laboratories Band Pass Filter (Serial 1683

Model 302) . The received signal was displayed on the other

channel of the Tektronix Dual-Beam Oscilloscope (Type 565)

and the amplitude was measured on this display. The received

signal also went to a Hewlett Packard Oscilloscope (Model

120B) where its phase was compared to that of the driving

signal

.
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7 . Auxiliary Apparatus

To measure the speeds of sound and densities of

fluids, other pieces of equipment were used.

Transducer

Two Hydrophones LC5-2

Analytical Balance

ASTM Vessel

B. PROCEDURE

Before beginning the experiments, the speeds of sound

and densities of the fluids (a silicon oil for the upper

layer, fresh water for the bottom) and the slope of the

bottom was measured with high accuracy.

1. Sound Speed iMeasurements (Fig. III-9)

The speeds of sound were measured in a pan which
«

had dimensions 10 3/4 in. x 7.0 in. x 1 3/8 in. About 1500 cc

of a test fluid was carefully poured into a pan to prevent

the entrapment of air bubbles. Two LC5-2 receivers and a

transducer were used to measure the speeds of sound. The

distance between two receivers was set at exactly 20.0 cm.

And the transducer was driven by a 150 kHz pulsed signal.

The time of transit for one receiver to the other was measured

using the time-delay feature of the dual-beam oscilloscope.

The speed of sound was then calculated by dividing the

distance by the transit time.

2

.

Density Measurments

The densities of the two fluids were found by first

weighing a 100 ml, ASTM vessel on an analytical balance
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readable to one-tenth mg. The vessel was then filled to

the 100 ml mark and weighed again. By subtracting the first

weight from the second weight, the weight of 100 ml of the

test fluid was determined. The weight of the test fluid in

grams divided by the 100 ml volume and, the quotient times

1000, gave the density of the test fluid in kg/ra^.

3

.

Measurement of the Slope Angle

The approximate slope was set by raising the end

of the long arm a precalculated height with the use of

wooden blocks. Then 3500 cc of silicon oil were slowly

poured into the wedge, and the frame-spreader was adjusted

to keep the bottom flat. The water level in the tank was

then adjusted to keep the apex line (shore line) straight.

The source transducer was set at about middle depth on the

wedge centerline. The slope angle was accurately measured

with the slope-measurement assembly described in the appara-

tus section. Because the top and bottom of the frame of

the wedge are parallel, if the Mylar sheet is flat the

distance from a reference level to the bottom should be the

same at all points. The distance from a reference level to

the surface and to the bottom were measured at several points

on the wedge centerline, and the data were plotted. The

slope was calculated from the plot as shown in the example

illustration in Fig. III-IO.

4

.

Measurement of Pressure Amplitude along the Bottom

The electrical setup of the measurements was shown

in Fig. III-8. The oscillator output, set at 100 kHz, was
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fed into the tone burst generator. A pulsed signal of

36 cycles of the 100 kHz input with a closed-gate duration

time of 10 msec (repetition rate was about 100 Hz) went

through the transducer biasing network and then to the

source transducer. The driving signal was displayed on one

channel of the dual-beam oscilloscope and adjusted for a

peak-to-peak voltage of 10 Volts. The receiving signal was

displayed on the other channel of the same dual-beam oscillo-

scope. This was very convenient because the receiving sig-

nal was always compared with the driving signal on the same

oscilloscope. Reflections of the receiving signal were not

observed.

5 . Measurement of Pressure Phase along the Bottom

The phase of the receiving pressure was compared to

that of the driving signal on an oscilloscope. Fig. III-8

also shows the electrical setup for these measurements. The

signal from the oscillator was directly fed into the x-axis

of the oscilloscope. The receiving signal was amplified

and filtered, then fed into the y-axis of the same oscillo-

scope. The signal on the x-axis was continuous with a con-

stant amplitude (adjusted to 10 Volts peak-to-peak voltage)

.

On the other hand, the signal applied to the y-axis was

pulsed and had an amplitude that depended on the receiver

position. The pattern observed on the oscilloscope was an

ellipse crossed by a line on the x-axis (like "9" of the

Greek alphabet) . The line occurred during the time the

received pressure was zero, i.e., between pulses. When the
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signal, generated by the oscillator, was sent directly to

the transducer, bypassing the tone burst generator, the

pattern on the oscilloscope was the same ellipse but without

the line on the x-axis. This indicates that the pulse is

sufficiently long to allow accurate phase determinations.

(It also showed that reflections in the tank were negligible.;

But measurements were still difficult, because the amplitude

of the receiving signal was not constant and the phase

changed very quickly with changes in the receiver position.

The phase measurements were done independent of the ampli-

tude measurements. The position of the receiver was recorded

when the phase was 0°, 90°, 180° and 270°. (Corresponding

to a straight line with positive slope, a symmetric ellipse

and a straight line of negative slope.)
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Fig. ///-5b Horizontal directivity pattern H(9.0)

and boundary of the wedge
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Fig. f J /-5c Vertical directivity pattern H(0.(p)

and boundary of the wedge
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Fig.//f-6a Receiver and attachment (l)
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Fig. [//-6b Receiver and attachment (2)
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IV. RESULTS AND COMPARISON

Measurements were conducted under two different

conditions

:

Common Parameters

Speed of sound in the wedge c^ = 1176.5 m/sec
(silicon)

Speed of sound under the bottom c- = 1503.8 m/sec
(fresh water)

3Density of a silicon oil p, = 1015.0 kg/m

3
Density of a fresh water p„ = 995.0 kg/m

Frequency f = 100 kHz

Pulse length L = 36 wavelengths

Closed gate duration t = 10 msec^ c

Pulse repetition rate f = 100 Hz
P

CASE 1

Slope angle S = 0.047 rad

Source distance from the apex X = 7 0.0 cm

Source depth H = 1.6 4 cm

CASE 2

Slope angle 3 = 0.042 rad

Source distance from the apex X = 7 5.5 cm

Source depth H = 1.57 cm

The speeds of sound and the densities of the fluids were

measured at 18.5°C. The two cases differed mainly in the
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slope angle: for the first case 3 = 2.7° and for the

second 3 = 2.4°. These are fairly realistic values;

according to Sverdrup-Johnson' s - Fleming [Ref. 6], con-

tinental slopes off mountainous coasts have, on the

average, a slope of about 3.5°, whereas off coasts with

wide, well-drained coastal plains, the slope is about 2°.

However, there are many different estimates based on differ-

ent measurements at different locations. For extreme

examples, estimates of the average continental slopes range

from about 5° to about 0.1° [Ref. 7].

The distance from the apex to the source was limited

to less than about 6 times the lowest possible cutoff

distance x (x = 9.92 cm for CASE 1, x = 11.34 for CASE 2)
o o o

A. EXPERIMENT VS. SIMPLE MODEL

1. Pressure

Figures IV-la,b show the experimentally-obtained

pressure distribution along the bottom. In both cases

there was a dominant pressure peak near the lowest cutoff

point but shifted slightly in the direction away from the

apex. To compare the simple model with the experiment,

data and the theoretical curve were plotted on the same

graph for the interval <_ x ^ 2x (Fig. IV-2a,b) . There

are significant differences between the experimental results

and the simple model. The theoretical curves decay quickly,

and the model predicts that there should be no energy

transmitted into the bottom, outside the region x < x < X^
-^ s — — o
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(the small amount observed in the simple model results

from the approximations). On the other hand, the experi-

mental curves have a long tail with energy transmitted

continuously into the bottom all the way to the apex, and

a pressure peak shifted significantly, so that energy is

leaked into the bottom before the cutoff depth, x > x .^ o

2. Phase

The phase distribution was measured in the region

<_ X <_ 6x for CASE 2. The rate of change in the measured

phase was almost constant but with small irregular fluctua-

tions. Figure IV-3 compares the experimental results within

the region <_ x <_ 2x with the results of the simple model

calculated from Eq. (11-13)

For comparison with the experiment, the phase was restricted

to the interval -it to +tt.

Figure IV-4 shows the apparent angle of incidence

sm sm 9
c c

= arc sin (
-) = arc sin (

)

3^" x~ IV -20)
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which is calculated from the phase (-k ,x') as discussed

in Section II-A2. The graph shows that comparison between

the simple model and the experiment is better accomplished

by studying 6 . The rate of change in the phase is almost

constant when x _> x , but the incident angle 9 changes

significantly in this region. The incident angle 9 increases

with decreasing distance x. At x = x the incident angle

9 becomes the critical angle 9 and Eq. (IV-1) shows that

-k ,x' = 0. Subsequently the incident angle increases more

rapidly as x decreases from x to x . At the turnaround

point X = X the angle 9 becomes 90° and again -k ,x' = 0.

Thus, energy can be transmitted into the bottom only for

X < X < X according to the model. Precise experimental
s — — o ^ "^

investigation of the incident angle was difficult because

the rate of change in the phase was very small. Significant

differences between experiment and the simple model were

observed. From the experiment, there is no turnaround

point. The experimental pressure distribution has a long

tail which means energy can transmit into the bottom all

the way to the apex. And the slopes of the phase curves

(Fig. IV-3) show significant differences between experiment

and the simple model.

B. EXPERII4ENT VS. METHOD OF IMAGES

The computer program "WEDGE 0" was designed for a com-

parison between experiment and the method of images . The

program has the flexibility of an adjustable source distance

and inclusion of the vertical directivity of the source.
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1. Pressure

Before beginning the comparisons, the computed

pressure distributions were observed with several combina-

tions of distance (x = 100 m) or near source (x = 1 m) and

with directional or omni-directional source. In all cases

the major pressure peaks and tails were similar; the

distance-source case showed slightly smoother pressure

distributions and was little effected by source directivity.

On the other hand, directivity becomes important if the

source wa.s near. As a result, computations were done with

the actual source distance (x = 70.0 cm for CASE 1,

X = 75.5 cm for CASE 2) and source directivity described

in Section III-A3, and these results were compared with

the experiment.

Figures IV-5a,b show the comparison between experi-

ment and calculation. Both pressure amplitudes were normalized

at the maximum pressure peak. In both cases, there are some

quantitative differences, but good qualitative agreement;

most of the local maxima and minima occur at the proper

positions and with the approximately correct amplitudes.

Figures IV-6a,b are enlarged graphs of Fig. IV-5a,b

for the region <_ x <_ 2x . From these graphs, it is

obvious that the tails of major peaks of the experiment

and theory agreed very well.
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2. Phase

Theoretical calculations were also done with the

computer program "WEDGEO" for a distant source. The

results were compared with experimental data (Fig. IV-7,

CASE 2 only) with both phases normalized at x = X . In

the region X < x < 2X , these phases were almost identical,
^ o — — o

but some differences were observed for x < X ; the experi-

mentally observed phase changed somewhat more rapidly

than that of the theoretical prediction, the difference

increasing as the apex was approached. There are some

possible explanations for this. The depth of the wedge

at X = X was 4.7 mm, and most differences were observed

where the depth was 3.0 mm or less (0 <_ x <_ 6 cm) . In

this region, the pressure amplitude was very small

(Fig. IV-2a) , so that measurement of the phase was quite

difficult. Also, very close to the apex the surface of

the silicon oil might be affected by surface tension and

not remain ideally flat.

The incident angles 9 in the upper layer were approxi-

mated as follows; from Fig. II-l, the angle of incidence

is.

X= arc cos (—jt—

)

where

V - JiL - ^rrf
- c^ - c^

70





Two adjacent points x-, , x^ for which k ,X' have the

same values in the interval -tt to +t\ yield a change in

phase of 2-n

,

and

-k ,X' + k ,X' = 2tt

^2 2 ^1

k = 2Tr ^ 2ti_

x' x| - x' Ax

''l= arc cos {-e-,—

)

(IV-2)fAx

Figures IV-3a,b show the results for the experiment

compared to the results obtained from the method of

images and from the simple model. There is no turnaround

point (for which we would have 9 = 90°) . In both cases

the incident angle equals the critical angle a little

further away from the apex than x/X = 1, which is consis-

tent with the measured behavior of the amplitude. For

X > X , most of these incident angles were less than the

critical angle 9 , (This does not imply that there is no

energy transmitted into the bottom: these incident angles

result from the phase-coherent interferences of a large

number of images, the fields of which have angles of

incidence on the bottom encompassing a range of values,

some of which exceed 9 . This shows a significant differ-
c ^

ence between the method of images and the simple model for
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which energy can not be transmitted into the bottom when

the incident angle is less than the critical angle.)

The phase as predicted by the method of images and

the experimental phase is nearly linear in x. The ampli-

tude varies more slowly, but perhaps not slowly enough

for the method of stationary phase to be applicable.

C. ATTEMPTED RECONCILIATION

The predictions of the simple model do not agree well

with the experimental measurements. However, investigations

of the pressure field in the bottom would be facilitated

if a simple analytical expression for the pressure distri-

bution along the wedge-bottom interface could be formulated.

Consequently, the purpose of this section is to com-

pare the simple model with the method of images for those

cases where the source is very distant. The amplitude of

the pressure distribution predicted by the simple model

has the form

0, k^ tan9 k- , k.

A = A e ° (IV-3)
o

2/2
where the predicted values are k, = k„ = 1, k^ = —rr— and

3
k. = -r-. Changing p, , p„, c, , c„ and b it was found that

^1
the pressure amplitude depended only on the ratios —— ,

tan e ^2
c

6

Next comparing the predictions of the method of images

3
with the simple model also showed that the value ^4 ~ y
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gave the proper spatial behavior, to reasonable accuracy.

This was accomplished by taking In of both sides of
A
o X

Eq. (IV-3) and plotting then In -r- vs rr-p on log-log paper
o

Obviously the slope of the equation

A P- k^ tan 9 k
,

ln{ln(-^)} = ln{(^) ^'{ ^—^) ^•k3} + k^ ln(^,)

(IV-4)

gives k,.

Pi
By the same technique the exponents k-, and k^ of —

^

tan 9
I Z P2

and and the factor k^ were examined but in these

cases the results for k, , k^, k^ were not constants; but
Pi c, ^,

functions apparently dependent on — , — , 3, ^n--
^2 ^2 ^o

We can therefore conclude that the simple model is

not generally valid for arbitrary values of p,, p-^ c,

,

x'
C2/ S and TT-r. However, it is useful to note that by assuming

1 °
k = -T- the simple model predictions are brought into good

agreement with the experimental measurements for the values

p, = 1.015 gr/cm

3
p- = 0.995 gr/cm

c-j = 1173.5 m/sec

c^ = 1503.8 m/sec
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I = 38.706°
c

6 = 0.0476 rad

After the discovery of this agreement an effort was made

to specify the ranges of variables in which the amplitude

prediction of the simple model is valid with k^ = j.

The simple model requires

1^ <<
I cos^9^ (IV-5)

o

Assuming that the amplitude distribution is unimportant

X

'

A 1
for those values ttt- such that -z— << — , this ineauality must

X' A e ' ^
o o

be achieved within the restriction (IV-5)

.

p- tan i

^c 1 2^— cos 9

A P2 3 8/2 ^ -1
^ e << e (IV-6

or

1 2 ^1
e << -^^ sin 8 (1 - sin 9 )

-^ (IV-7)
8/2 ^ ^ ^2

This inequality was tested on the interval 0.002 ^ S ^ 0.005

^1
for 9 =60° and — 0.5 or 1.0 there was uniformly good

c P2

agreement between the simple model and the method of

^1 ^1
images for — = 0.5, but for — = 1.0 there was strong

P2 ^2

disagreement between the two models.
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Therefore the range of validity of the simple model

with ^r> - T appears badly limited. Further, since the

phase of the simple model does not agree with the experi-

mental measurements and the predictions of the method of

images (as already has been mentioned in part IV-A2)

,

we can conclude finally that this model is very weak and

its application very restricted.
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V. CONCLUSIONS

Two main conclusions should be emphasized.

(1) After a careful examination of the simple model

it is found to fail to describe adequately the pressure

along the bottom and it is therefore not useful for future

efforts in describing the pressure radiated into the

bottom.

(2) On the other hand the method of images gives a

good prediction of pressure amplitude and phase distribu-

tions along the interface and therefore offers us hope in

attempting to predict the properties of the beam of sound

in the bottom.

89





APPENDIX A

A computer program for the calculation of the pressure

amplitude and phase distribution along the bottom by the

method of images

.
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FLOW CHART OF THE SUBROUTINE "PRES'

f START
j

CHARACTS
-RIZATIOti

INPUT

CALCULATE

P iP

CXJT?U"3

( STOP
J

NO

DEFINE
CC3NSTAi(TS

INITIAL
CONDITION

CALCULATE

-^ m=Tn+l

QALCULATS

fynm

NO

DEFINE

YES

1.

SOT
n=n+l

DEFINE

CALCULATE

Rnm

T
GALaJl->.TS

f P
_ai'J^tl^
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c
c

c

c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

c

c
c

c

c

c
c

c

c
c
c
c

c

c

c

c

c
c

c
c

c

c

c
c
r

c
c
c
c
c

c
c

c

c

c

c

WEDGE
*** MAIN PROGRAM ***

* THIS PROGRAM EMPLOYS THE METHUD OF IMAuES TO ODTAIN 1 HE PRESSURE *

«AND PHASE DISTRIBUTION AL0N(3 I HE HOFTOM OF A UEDGE-SHAPED FLUID *

*LAYERf OVERLYING A FAST BOTTOM. *

* *

* ASSLIMPriON *
* PLANE WAVE REFLECTION COEFICIENTG. *

* NOTATION
I/O GUr=OUTPUT

IN =INPUT
CHARACTER

V =VARIABLE
P ^PARAMETER
C =CONSTANT

R =REAL NUMBER
I ^INTEGER
Z =COMPLEX NUMBER

SYMBOL MEANING 1/0 CHARACIi-.R

PA PRESSURE AMPLITUDE ON THE BOTTOM OUT V r;

PH PRESSURE l-HAGE ON THE DOTTOM OUT V -R

CI SOUND SPEED IN MEDIUM 1 (UEDGE) IN C >R

C2 SOUND SPEED IN MEDIUM 2 (BOTTOM) IN C , l-s

ROl DENSITY OF MEDIUM 1 IN C R

R02 DENSITY OF MEDIUM 2 IN* c \l

BETA SLOPE ANGLE OF BOTTOM IN c H

X SOURCE DISTANCE FROM ^ HE APEX IN METERS IN c R

XX DISTANCE FROM THE APEX IN METERS
AT UHICH PA AND PH ARE CALCULATED

OUT V R

F DRIVING FREQUENCY IN c rR

H SOURCE DEPTH IN METERS IN c -R

ANGLC CRITICAL ANGLE c R
HO LOUJEST POSSIBLE MODE CUT OFF DEPTH IN METERS c R

XO LOWEST POSSIBLE MODE CUT OFF DISTANCE FROM THE
APEX IN METERS

c -R

XNl DISTANCE FROM APEX Al" UHICH CALCULATION STARTS
NORMALIZED BY DIVIDING BY XO

IN r R

XN2 DISTANCE FROM APEX AT UHICH CALCULATION STOPS
NORMALIZED BY DIVIDING BY XO

IN c rR

DISTXl DISTANCE XNl IN MEIERS c pR:

DISTX2 DISTANCE XN2 IN METERS c rR

DX RANGE OF CALCULATION IN METERS c -R

N NUMBER OF POINTS FOR UHICH PA AND PH
CALCULAIED

IN c I

PA I 3. 1415 c pR-

UN WAVE NUMBER c R
C21 SOUND SPEED RATIO =C2/Cl c R
RC21 ACOUSnC IMPEDANCE RATIO c R
ANGLO ANGLE FORMED BY SOURCE f APEX AND BOTTOM c R

DIGTX TEMPORARY FUR XX( I )/X p R
PAMP TEMPOhAf;Y FOR PA p pR

PHAS TEMPORAR-Y FOR PH p R
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C *************** ^'if^K'^tl****** *-*«********* **i( ***;<(*.*********.***«:******* ;)<1<^

C
C ((PROGRAM))
C
C DEFINE CHARACTERS OF' UARI AEiLES > PARAME TERS AND CONSTANTS
C IMPLICIT REA(.*fi(A-H,0-Z) » INTECER( I-N)

DIMENSION Pa( 101 ) » PH ( 101

)

»XX( 101

)

COMMON C21 fRC21 r BETA f UN r PA I » ANGLO r X » H r

F

C
C READ IN DATA
C

READ(5» 100) CI f C2f ROl fR02»i:(ETA
RCAD(5»500) XNl jXN2fX>H>F
READ (5f 600) N

C
C CALCULATE AND URIIE CONSTANTS
c

WRITE (6»700) CI rC2»R01>R02fXNlf XN2/X»Hf BETAfF
ANGLC=DARC0S(C1/C2)
H0=C1/(4.0D0KF*DSIN(ANGLC)

)

X0=H0/DSIN( BETA)
URITE(6>400) HOrXO

C
C TRANSFER NORMALI/.ED DISTANCE 10 ACTUAL DISTANCE
C

DISTX1=XN1 XXO
D:STX2-XN2XX0

c
C CALCULATE RANGE DX
C

DX = DISTX2--DiSrXl
C
C CALCULATE CONS I ANTS FOR SUDROUTINE
C

PAI=4.0D0*DArAN( 1 .ODO)
WN-2.0D0*PA1 kF/Cl
C21--=C2/C1
RC21==C2*RG2/ ( C 1 >r;R01

)

ANULO=BETA-DARS IN ( H/X

)

URIIE (6r200)
C

C CALCULATE PRESSURES WITH RESPECT TO DISTANCE XX.
C UHERE XX IS CHANGED !.<Y INCRiMENT
C

L =Nfl
DO 10 1 = 1 tL
XX( I) = DISTX1 IDFLOAT( I-l ) *:DX/DFLOA T ( N )

DISTX-XX( I )/X
CALL PRE3 ( DISTX»PAMPfPHAS)
l"'A( I)=PAMP
PH( I )=PHAS
URITE (6,300) XX( I ) »PA( t ) fPH( I

)

10 CONTINUE
WRITE (67800)

C
C PLOT THE PRESSURE AMPLITUDE VS. DISTANCE XX
C AND PRESSURE PHASE OS. DISTANCE XX
C

WRITE (6f700) CI fC2FR01 7R02rXNl f XN27X,H,BETAf F

CALL DPLTP (XX»PAtN»0)
WRITE (6fa00)
URITE (6f700) CI ,C2,R01 »R02?XN1 f XN2rXrHf BETAfF
CALL DPLTP (XXfPHrNjO)

C
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I/G FURMATS

100
200
300
400

L

500
if>00

700

FQRMrtT (

FGFjMAT (

FDKNAT (

FOK-MAT <

FORMAT (

FORMAT (

FORMAT (

a 00 FORMAT
STOP
END

5F1S.
//:;2X

20X
//20X
/20X

SF15.
C.i)

//25X
25X
25X
25 X

25X
2SX

xHi )

0)
, 'DISTANCE' f 17X» 'FRESSURE AMP. ' , i2X» 'PHASt ANUlE'//)
, D 1 i . 7 f i OX » D 1 S . 7 F 1 OX » D I 5 . 7

)

f'LUWESr POnSIBLt" MODE CUT OFF DEPTH '
r 9X » D 15 . 7

» 'DISTANCE FROM APEX ' » 20X » D15 . 7//

)

0)

,' INPUT DATA'

f

15Xr 'UFDGEO'//
f 'CI -

, 'ROl =

»'XN1 =

, 'X

7 'I<£TA =

D15.7r5Xi
Di5.7r5X.
D15.7r5X,
Di5. 7f5X.
DI5.7f5X]

'C2
'Ra2
'XN2
'H
'F

^' » 015.7/
^' fDIS.7/
:' .Di5.7/
'

f Di5.7/
' fD15.7/)

94





c
c
C *** SUB f'RaCRAM ***
c
C ******)<** ****** ^*-t(*****:*1(.1(* ***.i<1(i< *****:* **1;***-|(*^:|t*~* ****^^!*1(;^c^*

C * SUt<KL)ljriNE 'F'KEG' CALCULA I ES THE PRL;;bUh£ AMPLIIUDE f'^ND F-'HrtSE AT rt*

C *(-'OiNr ON THE LifjrTUM BY USING IMi^UE THbUK-Y . M

C
C WHERE C21 »RC21 rBhTrtfUNfF'rtl >XfH AND F ARE INPUT CONSTANTS
C FROM MAIN ROUIINE.
C DISTX IG INPUT VARIABLE FROM MAIN fiOUTINE. ANEW
C PAMP AND PfiAS ARE OUTPUTS TO MAIN ROUTINE.
C
C * NOTATION
C
C
C SYMBOL MEANING , I/O CHARACTER
C
C PRES PRESSURE CAUSED BY N TH PAIR OF IMAGES PrZ
C P SUM OF PRES, (IF ALL POSSIBLE PAIR OF IMAGES ARE P»Z
C ADDED P IS PAhP)
C ANGLN ANGLE FORMED BY IMAGE > APEX AND BOTTOM P>R
C DD PARAMETER FDR CONUENIENCE P>R
C R TOTAL REFLECTION LOSS OF (N')TH IMAGE P»Z
C N N TH IMAGE OR N TH PAIR OF IMAGES PtlCM M TH BOTTOM BOUNCE P»I
C MM MAXIMUM NUMBERS OF BOTTOM BOUNCES P>I
C THETAO ANGLE FOR'MED BY THE N TH IM,'iG£»THE RECEIVING POINT PrR
C AND fHE BOTTOM
C DR DISTANCE FROM N TH IMAGE TO THE RECEIUING POINT P/R
C NORMALIZED BY DIVIDING BY XO
C THETAM GRAZING ANGLE TO THE BOTTOM FrR
C (INTERMEDIATE REFLECTION)
C CHECK IDENTIFIES [F GRAZI\'G ANGLE EXCEEDS CRITICAL ANGLE P>R
C PSA I PARAMETER IN REFLECTION COEFFICIENT P,Z
C REFL RE' LECTION COEFFICIENT OF INTERMEDIATE DOUNCE PtZ
C REFLNO REFLECTION COEFFICIENr OF THE LAST BOUNCE P»Z
C DIRET SOURCE DIRECTIVITY P,R
C Z PARAMETER FOR CONVENIENCE PrZ
C
C

95





i (FKUURAM)

)

aUt^FsOUTINE PRt:S (LiISTX»F'AMp7pHAS)

DEFINE CHARACTERS UF VAK I AHLE r F'ARAMtn ERS AND CONSTANTS

[MPLICrr R£AL*tJ(A--M,0-Z) . INTEGERC T-N)
CUMPLEX*16 PBAI /REf-L>RtFLNOrRf 2f PRESfP
CUMMQN C21 fRC21 f DETA , WN » PA I

f

ANGLOrX»H»F

INTMALIZE COrtPLEX PRESSURE P^O.O + JO.O

P^DCMPLX ( . ODO F . ODO

)

RESET COUNTER N=0

N =

10 CONTINUE

CALCULATE ANCLN AND DETERMINE IF ANGLE IS IN IHE RANGE OR NOT
IF ANGLE. or. PA I GO TO THE NEXT STEP

ANGLN = 2.0D0*INT( (Nf 1 . )/2. )*BETA+(-l ).i<*N*ANGLO
IF ( ANGLN.GE .PAD GO TO 50

CALCULATE PARAhETER THETAO AND DR

DD=DCOS(ANGLN)-DISrX
THETA0--=DArAN2(DSIN(ANGLN) tDD)
DR=DSaRr( I . ODO fDlS I XK 1(2-2.0 DO:* DIGTXKDCOSCANGLN) )

INITIALIZE THE TOTAL REFLECTION COEFFCIENT R^l.O+JO.O

R=DCMPLX( I .ODO»O.ODO)

DEFINE ilM BY EACH PATH UHICH IS DETERMINED DY THE N TH IMAGE

MM-IDl. NT( ANGLN/(2.0u0t:DErA) )

L=MM+1
DO 40 M==LrL

CALCULATE PARAMETERS THETAM AND CHECK

THETAM^rHETA0-2.0D0*DFL0AT(M-l )*DETA
CHEC\-=-^l .OD0-C21*.*21!DCaS( rHETAM)*:K2

IDENTIFY THE [NCtHENT ANGLE WHICH IS LESS THAN THE CRITICAL
ANGLE OR NOT

IF ( CHECK. GT.O, ODO) GO TO 20

CALCULATE PARAMETER PSAI FOR THE REFLECTION COEFFCIENT OF EACH
DOUNCE. THERE ARE TUO WAYS WHICH DEPEND ON THE IDENTIFICATION
OF A CHECK

PSAI==DCMPLX ( . ODO » -DSOR T ( -CHECK ) /DS I N < THETAM ) )

GO TO 30
20 CONTINUE

PSAI^DCMPLX ( DSQRT ( CHECK ) /DSIN < THETAM ) 7 . ODO

)

JO CONTINUE

CALCULATE REFL

REFL=<RC21-PSAI )/<RC21+PSAI)

96





IF rHE BOUNCE IS THE L^S r FRU1I THE SOURCE. THEN REFLNO=REFL

IK(M.ta.l) REFLNO=-REFL

CALCULATE THE TOTAL REFLECTION COEFFCIENT R FOR EACH PATH

R-r;*REFL
•10 CONTINUE

CALCULATE PARAMETERS Z AND PRES
WHERE niRET IS THE DIRECTIVITY (JF THE SOURCE
DIRET IS USED ONLY UHEN THE SOURCE IS DIRECTIONAL
OTHER UISE DIRET=1.0

Z^DCMPLX(0.()DOf-UNt(X*DR)
DIRET==DSIN(0,OtODO*UJN-KDSIN(THETAM-ANGLO) )/

C (0.()IODO<UJN*DSIN( fHETAM-ANOLO ) )

PR£S--=DIRET*CDEXP(Z).*(-1 ) i!:*INT( <N+1 .)/?.)*
C ( 1 .ODOf I .ODO/RFFLNO)*R/DR

CALCULATE THE PRESSURE P WHICH IS A SUM OF PRES

P-=^P+PRES

SET TO THE iNEXT PAIR OF IMAGE

N = N+1
GO TO 10

50 CONTINUE

CALCUL.iTE PA AND PHrANu RETURN BACK TO THE MAIN ROUTINE

PAMP=CDABS(P)
PREAL^^P
P--=P-PREAL
PP-=P>KDCMPLX(0,()D0> 1 .000)
PIMAG=DSIGN<CDABS(P) »-PP>
PHAS = DA TAN2 ( P I MAG r PREAL

)

RETURN
END
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APPENDIX B

INCIDENT ANGLE FOR A DISTANCE SOURCE

General expression of an incident angle is given

by Eq. (II 39-a)

I = 9 ^ - 2m6 (II 39-a)nm no

where the maximum number of bounces M is limited by

M = INT [^] (11-40)
^ p

For a distance source

mo n
(11-48)

A few incident angles 6 for a distance source are shown
^ nm

in Table B-1. From this table it is seen that the reflec-

tion coefficient for the 4 image is

r(4) = R(9^Q)R(9^^)R(e^2) = [(2)R(9^q)

and by mathematical induction Eqs. 11-50 can be deduced.
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m
n 1 2 3 . . .

^o

1 2S-$^

2 2S +0^ ^o

3 4e-<t^ 23-0^

4 43 + ^^ 23+0^ ^o

5 63-'^^ 43-0^ 23-0^

6 6B+D^ 43+.p^ 23+'J)^ *o

7 83-D^ 6 3-.^^ 43-0^ 23-0^

•

Table B-1 6 nm

99





BIBLIOGRAPHY

1. Edwards, J.N., Jr., A Preliminary Investigation of
Acoustic Energy Transmission from a Tapered Fluid Layer
into a Fast Bottom , M.S. Thesis, Naval Postgraduate
School, Monterey, Dec. 1976.

2. Netzorg, G.B., Sound Transmission from a Tapered Fluid
Layer into a Fast Bottom , M.S. Thesis , Naval Postgradu-
ate School, Monterey, Dec. 1977.

3. Coppens , A.B., and Sanders, J.V., Notes in Acoustics
material used in Underwater Acoustics Class, Naval
Postgraduate School, Monterey, 1977.

4. Coppens, A.B., Sanders, J.V., loannou, G.I., Kawamura, M.

Two Computer Programs for the Evaluation of the Acoustic
Pressure Amplitude and Phase at the Bottom of a VJedge-
Shaped, Fluid Layer Overlying a Fast, Fluid Half Space .

Technical Report, Naval Postgraduate School 61-79-002,
Dec. 1978.

5. Clay, C.S. and Medwin, H. , Acoustical Oceanography
Principles and Applications , John Wiley and Sons.

6. Sverdrup, Johnson, Fleming, The Oceans , Prentice-Hall,
Inc

.

7. Nariyuki, Nasu, "Occurrence of Continental Shelves,"
Takahiro Sato, "The Geological Structure of Continental
Slope," Marine Science, V. 2, P. 17-22, 29-34.

100





INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 014 2 2

Naval Postgraduate School
Monterey, California 93940

3. Department Library Code 61 2

Department of Physics and Chemistry
Naval Postgraduate School
Monterey, California 93940

4. Department Chairman Code 61 1
Department of Physics and Chemistry
Naval Postgraduate School
Monterey, California 93940

5. Hellenic Navy Command 3

Stratopedon Papagou
Atehns , GREECE

6. General Education and Training Division 2

Maritime Staff Office
Japan Maritime Self Defence Force
9-7-45 Akasaka, Minato-ku
Tokyo , JAPAN

7. Dr. E.P. Cooper, Code 013 2

Commander, Naval Ocean Systems Center
San Diego, California 92152

8. CDR. J.E. Minard, Code 462M 2

Office of Naval Research
Arlington, VA 2 2217

9. Dr. A.B. Coppens, Code 6IC2 1

Department of Physics and Chemistry
Naval Postgraduate School
Monterey, California 93940

10. Dr. J.V. Sanders, Code 61Sd 1
Department of Physics and Chemistry
Naval Postgraduate School
Monterey, California 93940

101





No. Copies

11. LCDR loannis loannou H.N. 2

Plateia Barnaba 7

Pagration
Athens , GREECE

12. LT Masami Kawamura JMSDF 2
3400 Kamitsuruma, Sagamihara-shi
Kanagawa-ken, JAPAN

13. LT Dimitrios Mayiatis 1
SMC # 1523
Naval Postgraduate School
Monterey, California 93940

14. LCDR J.H. Bremhorst 1
Detachment Cubi Pt.
Patrol Wing 1

FPO San Francisco 96654

15. LT Zen-Wen Hwang 1
2 8 Lane 40 Park 2nd Rd

.

Yan-Cheng District
Koohsiung, Taiwan, ROC

16. Dr. H. Otsubo 1
5th Research Center Technical Research
Development Institute, Defense Agency

Nagase, Yokosuka, 2 39 JAPAN

17. Dr. T. Kikuchi, Dr. T. Kishi 2

Department of Applied Physics
National Defense Academy
1-10-20 Hashirimizu, Yokosuka

239 JAPAN

102













:80l^̂

the «n-Kawamura ^^^^ ..

Pressure "
^-on-

and a

torn.

29 OCT 85

30 DtC 66

28656
i

Thesis :801
K149^ Kawamura
c.l Pressure on the In-

terface between a con-

verging fluid wedge
and a fast fluid bot-
tom.



thesK1494

Pressure on the interface between a conv

3 2768 002 11161 9
DUDLEY KNOX LIBRARY


