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ABSTRACT

The restoration of images and the enhancement and

detection of targets in cluttered background are the subjects

of this research. The statistical approach is used in order

to exploit temporal as well as spatial image redundancies.

The images are modeled as a homogeneous random field.

An autocorrelation function and a method of parameter

identification are proposed. Experiments with several

pictures are presented to validate the model.

An analysis of two-dimensional recursive filters is

presented. A three-dimensional recursive filter is developed

which exploits the spatial as well as the temporal image

redundancies

.

A class of hybrid filters is proposed which improves

the performance of the recursive filters. Several experi-

ments with pictures are presented to show the ability of

the hybrid filters in picture restoration.

A detector is developed for purposes of target extrac-

tion from cluttered background images. The detection is

independent of the target shape.

A simulation of the target detection and tracking

problem is presented. The target is tracked from frame to

frame by means of a conventional Kalman filter, which uses

the image filter as the measurement device.
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I. INTRODUCTION

A. PROBLEMDEFINITION

This research involves two aspects of digital image

processing. One is the restoration of images degraded by

white Gaussian observation noise. The other is the enhance-

ment and detection of targets immersed in cluttered back-

ground images. The statistical approach is used in order

to exploit temporal as well as spatial image redundancies.

The emphasis is directed towards the design of recursive

and hybrid Bayesian filters.

In the recent past considerable attention has been

devoted to the application of Kalman filtering to smoothing

of observation noise in image data. Habibi [4] first sug-

gested a two-dimensional recursive image estimator as an

extension of the one-dimensional Kalman filter. Two other

similar extensions were proposed [3], [5], It has been

shown [10] that these filters do not preserve the optimality

of the one-dimensional Kalman filter. The most complete

study of optimal two-dimensional Kalman filtering has been

performed by Woods and Radewan [11] . They point out that the

generalization of the Kalman filter to two dimensions can

be done optimally with an extremely high dimensional state

vector, which has dimensions on the order of MN (M = order

of the filter, N = width of the image) . Panda and Kak [9]

succeeded in deriving a vector dynamic model that generates





the same random field of Habibi's model. Since this model

is recursive in only one index, the one-dimensional Kalman

filter is applied and, of course, optimality is preserved.

Again, as indicated by Woods and Radewan [11] , an extremely

high dimensional state vector is used, which has the same

dimension as the width of the image.

Several techniques have been investigated for background

clutter suppression and target enhancement. Statistical

non-recursive spatial filters [6] are suggested for background

clutter suppression and enhancement of targets of known shapes.

Two-dimensional Kalman filtering [5] is also proposed for

the case of targets with arbitrary shapes . These filters

assume that the image gray level can be decomposed into three

additive components: target, background and white observa-

tion noise. The statistical differences of these three

components are used in order to extract the target, which

is the desired information.

B. RESEARCHOBJECTIVES

In the context of picture restoration and target detection

as defined above, several specific research objectives have

been identified.

a) Since the model of images plays a fundamental role

in the statistical approach of image processing, several

experiments with real life pictures will be accomplished

in order to validate existing models [1-2] and to suggest

new ones

.

10





b) Generalization of the one-dimensional Kalman filter

to two dimensions results in excessive computation loads.

On the other hand, the filters [3-51 are very simple and,

although it is known that they are not optimal, it was not

determined yet just how far they are from optimality. There-

fore, these filters will be compared against the optimum

non-recursive filter.

c) The existing recursive image filters exploit only the

spatial correlation, therefore a three-dimensional recursive

filter will be developed in order to take advantage of the

correlation in time

.

d) The possibility of improving the performance of the

sub-optimum recursive filters by using the non-causal (with

respect to the direction of recursion) observations closest

to the estimated pixel (picture element) will be investi-

gated. The result is a hybrid filter in the sense of using

some observations recursively and others non-recursively

.

e) An optimum decision rule will be derived for purposes

of background suppression and target enhancement and subse-

quent threshold detection.

f) A conventional Kalman filter will be constructed to

track the target centroid from frame-to-frame.

C . OVERVIEW

The image modeling problem is discussed in Chapter II.

First, a tutorial discussion of the mathematical problem of

finding the dynamic model of random fields is presented.

11





Second, the results of several experiments with real life

pictures are presented. Third, a model for a picture and for

pictures sequenced in time is introduced.

In Chapter III the sub-optimum two-dimensional recursive

filters [3-5] are analyzed. The exact computation of the

error variance is particularly important to those filters,

because they either do not compute the error variance in

the calculation of the gains, or use an approximation. An

exact method is developed to compute the error variance of

those filters. Using such a method, the filters are compared

among themselves and against the optimum non-recursive

interpolator, constrained to the same data set. A recurs-

ive filter is also introduced that is essentially the

same as [5], but the computation of gains is accomplished

without approximation.

In Chapter IV a three-dimensional recursive filter is

developed. This filter estimates the pixel gray level of

pictures sequenced in time by using recursively the obser-

vations of the estimated frame, as well as those in the pre-

vious frames. It is an extension of the two-dimensional

recursive filter [3]. Numerical results are presented to

evaluate the improvement resulting from the exploitation of

the correlation in time.

Chapter V introduces a new class of image filters,

called hybrid filters. These filters are smoothers that

12





combine optimally the estimate of the recursive filters

(two or three dimensions) with an arbitrary set of "future"

observations. Theoretical comparison between the hybrid

filter and the recursive [3] and non-recursive [6] filters

is accomplished. Experiments with real life pictures

are also presented for the purpose of comparison of these

filters.

In Chapter VI an optimum decision rule is developed to

detect targets immersed in cluttered background images

.

The target is considered as another texture statistically

distinct from the background texture. The decision is

made pixel by pixel and, therefore, it is independent of

the target shape, but it can also be applied to targets with

known shapes. The decision is based on the observation of

the pixel gray level and the background prediction for the

pixel. This prediction is given by the recursive or hybrid

filters and may also be given by a non-recursive filter.

Some special cases are worked out and its performance

evaluated. The image is modeled as a weighted addition of

three components: target, background and observation noise.

In Chapter VII a conventional Kalman filter is constructed

to track the target centroid (or other points) from frame

to frame. The target dynamics in the picture is modeled. The

detector developed in Chapter VI feeds the tracking filter

with the observations of the centroid spatial coordinates.

The observation error is analyzed.

13





Chapter VIII presents several results of the simulation

of a complete target detection and tracking problem, using

computer generated images. Both recursive and hybrid

filters are used and compared.

The final chapter summarizes the results of this

investigation and presents the conclusions and suggestions

for further study.

14





II. IMAGE MODELING

A. INTRODUCTION

Our objective in this chapter is to obtain a statisti-

cal model for pictures. Knowing part of a picture, one

can generally draw certain inferences about the remainder;

or, knowing a sequence of frames, one can, on the average,

make a good guess or prediction about the next frame. From

a statistical viewpoint, similarity between adjacent pixels

(picture elements), or , frame- to- frame similarity represent

a high level of intraframe or interframe correlation.

Experimental evicence [l]-[2] indicates that a mono-

chromatic image can be modeled by specifying its value (gray

level x(m,n) at each spatial coordinate (m,n) . An ensemble

of such images can be modeled by interpreting x(m,n) as a

random field.

In this chapter, first, we will address the mathematical

problem of finding the dynamic model of random fields, given

the autocorrelation function. Second, we will introduce a

model for a picture and for pictures sequenced in time.

Third, we will present experimental results in order to

validate the proposed model.

B. DYNAMIC MODEL

Assume the mean and autocorrelation function of a

homogeneous (wide sense stationary) random field are given.

Since we are assuming knowledge of the mean, for convenience,

15





we assume the random field has zero mean, therefore auto-

correlation and autocovariance are the same.

A highly desirable characteristic of any dynamic model

is to have it excited by uncorrelated noise. The impulse

response method always has such characteristics. The diffi-

culty with this method is that the power spectrum density

has to be factored, and there is no mathematical theorem

for factorization in the multi-dimensional case. Since

there exists considerable evidence, in refs. [l]-[2] and

in this research, that images are well modeled by auto-

correlation functions with separable kernels, the difficulty

of factorization will not arise and, therefore, the impulse

response method will be used.

The impulse response method is shown in figure 2.1.

Assume there exists a system transfer function H(z), such

that, when driven by white noise W(n), the resultant output

X(n) is a random process with the desired autocorrelation

function R(k) . Using input-output relationships between

power spectrum densities (PSD)

:

S
Q

(z) = S
i

(z)H(z)H(z" 1
]

Since the input is white noise, its PSD is constant,

S
i

(z) = K, thus:

H(z)H(z
_1

) = |s
Q (z) = iz(R(k))

16





w(n)

S
i

(z)

X(n)

So
(z)

Figure 2.1

Filter Response Method

Therefore, to compute H(z) we have to factor the

right hand side of the previous equation. This is always

possible, in the one dimensional case, provided S (z) is

a ratio of polynomials.

In the remainder of this section we present some exam-

ples to illustrate the method, as well as for later use.

Example 1

Consider the autocorrelation function:

^ ii s 2 -a kR(k) = a e ' k = 0,±1,±2,

let

P = e
-a

R(k) a
2

p'
k (2.1)

Take the two-sided Z-transform of R(k)

,
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Z(R(k)) = I R(k)z

k=-°°

-k

2 22 -12-2
= a ( . . . + p z + pz + l+pz +pz +...)

2 2

Z(R(k)) = ° (1
7 P } (2.2)

(1-pz x
) (1-pz)

S.(z)H(z)H(z
_1

) =
g2(1 " p2)

1 '

(i-pz
_1

) (i-pz:

To have a stable model the poles of H(z) must be inside

the unit circle, therefore we choose:

H(z) = - 1
-

X(Z)
, "I W(z)1-pz

S i (z) = a
2

(l-p
2

:

Thus , the dynamic model is

.

X(n) = pX(n-l) + W(n) (2.3)

Initializing equation (2.3) with X(0), and exciting

2 2with white noise, having variance a (1-p ) , a random process

X(n) is generated having the desired autocorrelation

function.

18





Example 2

Consider the autocorrelation function:

2 , ,

,n _ a
r

,, 2, k +1 ,, 2, k +1.R(k) "
(p 1

~p
2

)(l + p 1 p 2 )

[(1 -P2 ) Pl -d-P 1 )P 2
l

' 1

(2.4)

where

:

-a, -a-
P-L

= e ,p 2
= e",k = 0,±1,±2, ...

Using results of example 1, the Z-transform of R(k) is:

Z(R(k)) = Q

1-P 1
z ) (l-p

2
z ) (l-p

1
z) (l-p

2
z;

(2.5)

where

:

2 /i »a (l-p,p
7 )

Q " 1 +Pl p 2
d-Pi )d-P

2

2
)

Let's choose:

H(z) = X(Z)
W(z) ,, -1, ,, -1,

(1-P 1 2 ) (1 _
P 2

Z
)

s
i

(z:

Thus, the dynamic model is

19





X(n) = (p 1
+p

2
)X(n-l) - p 1 P

2
X(n-2) +W(n) (2.6)

It can be easily shown that a particular case of this

model, when p, approaches p 2
, is:

R(k) = a
2 p' k

' (1 + 6 |k|

)

(2.7)

where

1 + P

and the dynamic model is:

_ 1 - p -a
3 = ^2 i p = e

X(n) = 2pX(n-l) - p
2 X(n-2) + W(N) (2.8)

2 /i 2,3
S ( Z ) = ° (1 - V

l + o

From equation (2.7) we can see that this autocorrela-

tion function has zero derivative at the origin (k = 0)

and an inflection point at k = 1/a , provided that p > 0.7

or 3 ~ ct.

The model given by equation (2.4) is, therefore, a more

general case and includes, as particular cases, the models

given by equations (2.1) and (2.7). In figure 2.2 some

curves of equation (2.4) are shown for the same "correlation

time" ( the point where the correlation is 37% of the

maximum)

.
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correlation time = 10

(1) P. =

Figure 2.2

Autocorrelation Functions
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Example 3

Consider a two-dimensional autocorrelation function,

separable in the two dimensions:

R(i,j) = a
2

p v
|x|

pj 3
I (2.9)

where

Pv
= e , p h

= e , x,j = 0,±1,

To find the Z-transform we take advantage of separa-

bility and use equation (2.2) from example 1.

2 2 2
a (1-p/) U-P h )

Z(R(i,j)) = ^—t- S_

(1-P v
z

1 ) d-P h
z

2 ) ^"^l 5 (1-p h
z

2
)

(2.10.

Let's choose:

1
X(z ,z )

H(z, ,z_)'12' ,, -1. ,, -1, W(z, ,z~)
(1 ~PVZ

1 } (1_p
h

Z
2

) 1 2

S
i

(z
1

,z
2

) = a
2

(l-p v
2

) (l-p h
2

)

Thus, the dynamic model is

X(m,n) = p X(m-l,n)+p h X(m,n-l)-p p hX(m-l,n-l)+W(m,n)

(2.11)
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Example 4

Similar to the previous example, consider a separable

autocorrelation with the kernels of example 2

:

R(i,j) = a
2 Kv (i) K

h (j) (2.12)

where:

tt i • a 1 r , -, 2- 1 +1 ... 2, 1+1,
K l) = -, TTTT rld-Pi Pi ~(l-p, ) P-, ' ' ]v (p, -p„ ) (1+p, p„ K 2v K lv lv M 2vlv 2v lv 2v

K,(j) = same equation with i + j

v -*• h

The Z-transform is given by:

00 00

_1
z.-3Z(R(i,j)) =

I I R(i,j) Z
1

,..,

j_ = —co -i= —co

CO CO

O
2

I i I Kh (j)z
2

~
D ]K v (k)2

1

~ 1

i = —CO "j= —CO

a
2

Z
1

(K v (i)) Z
2

(K h (j))

Using equation (2.5) it can be easily verified that the

transfer function is:
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H(Z.,,Z
2

) - ^ —
3^ -s—

(1-P lv
z

1
i

)(l-P 2v2l
1 )d-P lh

z
2

1 )(l-p
2h

z
2

X
)

(2.13)

S
i

(z
1

,z
2

) = a
2

Qv Qh

where

:

(1 " p lv p 2v }
2 2

Qv = rr-£Hr (1 - p iv } (1_p 2v :

lv 2v

Q. = same equation with v > h

Thus, the dynamic model is:

X(m,n) = (p. +p„ )X(m-l,n) - p.. p X(m-2,nlM lv 2v lv 2v

+ (p lh +P 2h
)X(m,n-l) - p lh p 2h X(m,n-2!

( Plv +p
2v^ (p lh +p 2h )X(m ' 1 ' n_1)

+ p lv p 2v (p lh +p 2h )X(m_2 ' n - 1)

+ p lh P 2h (p lh +p 2v )X(m ~ 1 ' n - 2)

~ p lv p 2v p lh p 2h
X(m_2,n ~ 2) + w(m ' n) (2.14)

Observe that example 3 is a particular case of this,

where p 2v
= p 2h

= 0.
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To simplify notation, from now on, we will adopt the

following convention:

X(m,n) = A X + W(m,n) (2.15)

where:

A = row vector of coefficients

X = column vector of adjacents

In the case of example 3:

A = [p p, -p p
'

v h v h"

X =

X(m-1 ,n)

X(m,n-1)

X(m-l,n-i;

Example 5

Consider a three-dimensional separable autocorrelation

function having kernels like examples 1 and 2

:

R(i,j,k) = a K
x

(k) K
2

(i,j 2.16

where:

K
x

(k) = p
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K
2

(i,j) = Kv (i)K h (j) (see example 4)

Following similar procedures as in example 4, it can

be verified that the transfer function is:

H(z,

,

z-» Z-) —

(1 - p lv
Zr 1} (1 - p2v

Zr 1} (1 - p lh
Z

2
_1)

(1 - p 2h
Z

2
_1)

(i -
p t

z
3

_1)

(2.17)

S
i

(z
l'

Z 2' Z
3

)
= °

2
Qv Qh (1 "

p t
2)

where and Q, are the same as in example 4.

Thus, the dynamic model is:

X(m,n,t) = A X + W(m,n,t) (2.18)

where

:

A is a row vector whose elements are the coefficients

of eq. 2.14, followed by these same coefficients

multiplied by p , and the final element is p .

X is a column vector whose elements are the adjacent

pixels of eq. 2.14, followed by these same pixels

located on the previous frame, and the final element

is X(m,n,t-1)

.

In figure 2.3 the adjacent pixels are shown.
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Adjacent pixels of example 5

C. AN AUTO-REGRESSIVEMODEL

In this section we present a stochastic model for

images. The basic assumption is that images constitute a

homogeneous random field with zero-mean (or known mean)

and known autocorrelation function, separable in the inde-

pendent dimensions. These assumptions will be validated

by experiments in the next section.

1. Autocorrelation Function

The autocorrelation function chosen is intended to be

general enough to include most of the models used in other

research [2] - [9] , as well as to best fit the experimental

functions measured in this research and [l]-[2]. The

hypothesis of separability allows us to examine the auto-

correlation kernel by kernel. Assume that the process is
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modeled by a kernel of first order, as in Example 1

The dynamic model is

X(n) = pjXCn-1) + W
1

(n)

If this model is valid, the modeling error W, (n) must be

uncorrelated noise. This can be easily verified by computing

the autocorrelation of W, (n) as follows. We compute W, (n)

at each point by

W
1

(n) = X(n) - p 1
X(n-l)

and then compute the autocorrelation of this sequence.

Computing the autocorrelation of W, (n) is a very good

test. Assume that W, (n) turns out to be correlated.

In this case we can model W, (n) again by a first order

kernel:

W
x

(n) = p
2
W

1
(n-l) + W

2
(n)

Assume that, after repeating the same measurements for

W~ (n) , we conclude that W„ (n) is uncorrelated noise.

In figure 2.4 it is shown, in the Z-domain, the operations

that we have performed.

Thus, the overall transfer function is:
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w
2

(z) X(z)

Figure 2.4

Second-order model

H(z) -_ X(z)
w^TzT (i-p

1
z~ ) d-p

2
z"

;

The second-order dynamic model is

X(n) (p 1
+p

2
)X(n-l) - p 1 P 2

X(n-2) + W
2

(n) (2.19)

We have now a model driven by white noise, which is a

second-order difference equation.

The process generated by this model has an autocorrela-

tion function given by equation (2.4), as we will demonstrate

E(W
2

(n) ) = Q
2
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Z(R(k)) = Q
2

H(z) H(z X
)

where

:

since

Q
2

(1-Pj^z ) (1-p z) d-P
2

z ) (1-P
2

Z )

AQ
2

BQ
2

d-P
1

z"
1

) (i-p
]
_z) (i-p

2
z

-1
) (i-p

2
z;

(P 1 "P
2

) (1-P
1 P 2

)

B =
" p

2

(p.-pT) (1-p
1 p 2

)

z ( ? ) = j p '

(l-pz x
) (1-pz) 1-p^

t-i/i\ s\ r ** k B k ,R(k) = Q [- J
pi -

2
pi I]

1- P]
_

1-P
2

2Using R(0) = a (variance of X(n)

2 2 2
(
1_ PiP 2

)

Q
2

= a
2

(l- Pl
2 )(l-p

2

2
) (1+p

l

p

2

}

(2.20)

R(k) = (P 1 -P 2 M1+ P 1 p 2
)

[p
l

(1 - P
2

2)p
l

|k|
-P2 (1 -Pl 2)p

2

!k
^

(2.21)
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Assume, now, that W„ (n) is not uncorrelated

enough. In such a case we proceed to a third-order model.

Following similar procedures as for the second-order model,

we have

:

Dynamic Model:

X(n) = (p
1

+p
2

+p
3

)X(n-l) - (p 1 p 2
+p

1 P 3
+p

2 P
3

)X(n-2)

+ Pl p 2 p 3
X(n-3) +W

3
(n) (2.22!

Autocorrelation function:

1 3c I , kl _ Ikl
- A, p ' ' + A~p~ '

' + A p ' '

R^ -
A

1
+ l

2
\ A

3

LJ— (2 - 23:

where:

2 2 2A
l

= P l ^ P 2~ P 3^ (-p
2 p

3
) (1-p

2 '
(1-p

3

'

2 2 2A
2

= -p
2

(p 1
-p

3
) (l-p

1 P
3

) (l-p
x

) (1-P
3

)

2 2 2A
3

= p 3
^ p l~ p 2^ ^

1-p
l p 2^ ^ 1-p

i ^
^ 1-p

2
'

Variance of W_ (n)

:

i_ + = + £2-, 2 . 2
1-P X

l-p
2

l-p
3
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The general expressions for a k-order model are:

Dynamic model:

X(n) = (p.+p
2

+ p k )X(n-l) - (p
1

p
2

+ p 1 p
3

+. . .p
]<

_ 1 p k ) X(n-2)

+ ( Pl P 2 P
3
+...p

k _ 2 P k _ lPk )X(n-3)

+ (-l)
k+1

Pl P 2
...p k X(n-k) + Wk (n) (2.25)

Autocorrelation function:

, A p I

1
' + A-P- I

1
' + ... A p I

1
!

«<« - ° H + *2* *\ ^~~ (2 ' 26)

Variance of W, (n) :

2

Qk
= "A A

2 A" (2 ' 27)

1 2 + k
, 2 ' 2 21- P]

_
1~P

2
l"P k

The expressions for the A's are easily inferred

from equation (2.23).

In example 3 an auto-regressive model is presented

for a picture with an autocorrelation whose kernels

in the two spatial dimensions are the first order versions

(k=l) of equation (2.26). In fact, that model is used in

most research [21 - [9] with images. In example 4

an image model is presented whose kernels are the second-

order versions (k=2) of equation (2.26). The order of the
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kernels doesn't have to be the same. Depending on the

particular picture to be modeled, the order is chosen for

each direction.

In example 5 an auto-regressive model is presented

for pictures sequenced in time. In that case we chose

second-order kernels in the spatial directions and first-

order in the time direction.

At this point, some special features of the proposed

autocorrelation functions given by equation (2.26) should

be emphasized:

a) It includes as a particular case the first

order model which is used in most research [2] - [9]

.

b) It fits much better many situations where the

first order model is a poor approximation.

c) The resultant dynamic model is auto-regressive

and driven by white noise.

d) The cascade feature of whitening the modeling

error is quite simple and adequate for on line parameter

identification. This feature will be exploited in the next

item.

2 . Parameter Identification

Given that the autocorrelation function of an

image, or a time-frame of images, is assumed to have

separable kernels as in equation (2.26), the next problem

is to find its parameters. Let's discuss the modeling of

just a picture, since the extension for the time-frame is
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straightforward. Having a specific picture, we want to

identify the parameters of the model. To compute statistics

from just one realization of the process we must assume

the process is ergodic, therefore we consider the picture

as a typical realization and the averaging in space is

equivalent to statistical averaging. Also the size of the

picture has to be sufficiently large.

Those conditions are quite severe, and we realize

that the process has to be restricted to a particular

class of pictures with common properties. Another way

of looking at this is to visualize the picture as an array,

for example, of 100x100, therefore with 10,000 pixels.

Each pixel can have, say, 100 distinguishable brightness

values. The number of different pictures is 100 '

With such enormous numbers of pictures, even if we were

able to compute the mean and autocorrelation, such moments

would not be enough information. It would be necessary

to know statistics of enormously higher orders. The atten-

tion, therefore, has to be focused on local redundancy,

encompassing only a few pictures closely related. To have

a model as accurate as possible, based only in the first

and second moments, we will need some degree of adaptation.

Our method is based on the cascade feature of

equation (2.26). Let's explain the method in detail.

Assume a picture is given with negligible measurement

noise. We proceed in the following steps.
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Step 1 - Compute the mean and remove it from the picture.

Step 2 - Compute the autocorrelation in the horizontal

direction, with a number of displacements equal to 20% of

the number of columns. There is no use to go much further

than this, because the accuracy in the averaging is reduced.

Repeat the same procedure in the vertical direction. This

step can be accomplished using the Fast Fourier Transform

algorithm (FFT)

.

Step 3 - Having the measured autocorrelation in the hori-

zontal and vertical directions, assume that equation (2.26)

is adequate and gives a nice fit. Start with a first-order

kernel and compute p. and p., , such that the mean-squared

error in the fitting is minimized. The result is a model

like example 3:

X(m,n) = A X + W,(m,n)

where;

—1 lv K lh lv^lh

XT = [X(m-l,n) X(m,n-1) X(m-l,n-l)]

Step 4 - At this point we have a model for the picture that

is first-order in both spatial directions. To test the

goodness of this model the obvious figure of merit is the

modeling error W, (m,n) . If the model is adequate, W, (m,n)
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should be uncorrelated noise. To test this, compute the

autocorrelation of W, (m,n) as in step 2. If it is corre-

lated in both directions, it means the first-order model is

not good enough and we have to proceed to a second-order model

.

It could happen that we are satisfied with one direction,

but not with the other, in this case we have to proceed

to a second-order only in such directions. Assume here

that W, (m,n) is correlated in both directions.

Step 5 - Repeat step 3 for W, (m,n) in order to find p

and P ?h - The model for W. (m,n) is:

where

;

W
1

(m,n) = A
2

W. + W
2

(m,n)

A„ = [p_ p„, -p„ p~. ]—2 2v 2h p 2v^2h

-1
T = [W^m-l,!!) W

1
(m,n-1) W

1
(m-l,n-l)

2v

The second-order model for the picture is given by

equation (2.14) in example 4.

Step 6 - Repeat step 4 for W~(m,n). If it is sufficiently

uncorrelated, the procedure stops and we have identified

the order of the model as well as the parameters. Other-

wise we proceed seeking a higher order model.
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NOTE: Step 4 is responsible for the decision to proceed

or not and also in which directions, whether horizontal,

vertical or both. The decision to proceed or not can be

implemented only based on the variance of W(m,n), by observing

its reduction after the second-order modeling. If such reduc-

tion is null or negligible, it means the original model

is good and it is not necessary to increase the order. The

decision about the direction to be improved can be imple-

mented by observing the autocorrelation of W(m,n) at a few

points, say, the first 5 displacements.

The computation of the coefficients is quite simple

because we have reduced the problem to fitting exponentials

at each step. Such computation is accomplished as follows.

Assume the measured autocorrelation in one direction is

given by Y(n), n = 0,1,... K and it is normalized such that

Y(0) = 1. We want to fit an exponential minimizing the

mean-squared error, R(n) = e = p . Taking the natural

logarithm of R(n) and Y(n) , we want to minimize:

K

z
2 = I [In R(n) - In Y(n)

]

2

n=l

K

e
z = I [-an - In Y(n)

]

2

n=l
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Take the derivative with respect to a and equate

to zero, the result being:

K K

I n In Y(n) -6 J n In Y(n)

n=l n=l
a =

K K(K+1) (2K+1)

n=l

and

-a
p = e .

In figure 2.5 a flowchart to implement the proposed

method of modeling is shown.

To model pictures sequenced in time the procedure

is quite similar. In this case we have a sequence of pic-

tures, sequenced in time, and apply the method adding the

extra dimension (time) . Example 5 presents a model that is

first-order in time and second-order in both spatial

dimensions

.

3 . Modeling Of Noisy Images

In the last item, a method for picture modeling was

presented in which the picture was assumed to be noise free.

Such an assumption restricts considerably real life appli-

cations where there is no knowledge of the original picture,

This restriction can be removed if the autocorrelation

function of the measurement noise is known.
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Parameter Identification Flowchart
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In what follows, we present the steps to be modi-

fied in the previous modeling method, in order to take into

account additive zero-mean white measurement noise, with

known variance.

The measurement equation is

:

y(m,n) = X(m,n) + v(m,n)

where v(m,n) is zero-mean white noise, uncorrelated with

X(m,n) and with known variance:

2
E (v ( m,n) ) = r

Step 2 - Compute the autocorrelation of the noisy picture

<y(m,n) in both directions, as before, but remove the

variance R from R. (0,0) to obtain Rv (0,0), since:
yy A^i.

R
yy

(0,0) - r (i,j) = (0,0)

R
xx ( i , j ) = {

R vv (i,j) (i,j) * (0,0)

In figure 2.6 the relation between the autocorrela-

tions of X(m,n) and y(m,n) is illustrated in one direction.

Step 4 - Since X(m,n) is not known, W. (m,n) can't be calcu-

lated, but its autocorrelation can be computed indirectly.
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Autocorrelation of y(m,n)

X(m,n) = A
x

X + W
1

(m,n) (2.28)

y(m,n) = X(m,n) + v(m,n) (2.29)

Substituting (2.28) into (2.29):

(m,n) = A, Y + v(m,n) + W-^n^n) - A_
x

V

where:

Y
T = [y(m-l,n) y(m,n-l) y(m-l,n-l)]

VT = [v(m-l,n) v(m,n-l) v(m-l,n-l)]
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Let's call:

v, (m,n) = v(m,n) - A-, V (2.30)

u, (m,n) = W, (m,n) + v, (m,n)

y(m,n) = A- Y + u,(m,n) (2.31)

Since y(m,n) and A, are known, u, (m,n) can be

computed, and, therefore, its autocorrelation in both

directions.

Let's examine the autocorrelation of u, (m,n) in

the horizontal direction.

E [u
1

(m,n) u (m,n+j ) ] = E [v, (m,n) v, (m,n+j ) ] + E[W, (m,n) W, (m,n+j)

]

E[v, (m,n) v, (m,n+j ) ] = E [v (m,n) v (m,n+ j ) ] - A, E [v (m,n) v (m,n+j ) ]

- A, E [v (m,n+j ) v (m,n)

]

+ A E [v(m,n) v T
(m,n+j ) ] A.

T

where:

E[v(m,n) v(m,n+j ) ] = r5(0,j)
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E[v(m,n) v(m,n+j ) ] = r<5(0,j-l)

E[v(m,n+j ) v(m,n) ] = r6 (0,j+l)

E [v (m,n) v (m,n+j )

]

r6(0,j) r<5(0,j-l)

*6(0,j)

rS(0,j + l) ro(0,j)

Therefore:

R
ViVi

(0,j) = r (l + Piv
2+

Plh
2+

Plv
2p

lh
2)5(0 '^

- rP lh (l+P lv
2 )6(0,j-l) - rp lh (l+p lv

2
)5(0,j + l)

l uu <0,j) - ^v^ '*' + Vl ( °' jl

or:

\^ '^

^u/^^-^^lv'^lh^Plv^lh
2 ^'^ =

°

= ^u^ '" 11 - rp lh (1+p lv » j - 1

R ( , j ) elsewhere
u, u..

J
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In figure 2.7 the relation between the auto-

correlations of u, (m,n) and W, (m,n) is illustrated.

^R (0,j
u

l'
u

l

R (0,j)w
l'

w
l

Figure 2.7

Autocorrelation of u, (m,n)

The procedure above is easily extended to calculate

the autocorrelation of W
2

(m,n), as well as higher order

modeling errors.

w, (m,n) = A
2

W_
x

+ W
2

(m,n) (2.32!
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u, (m,n) = W, (m,n) + v, (m,n) (2.33)

Substitute (2.32) into (2.33)

u,(m,n) = A, U. + u
2

(m,n) (2.34)

where

:

u„ (m,n) = W
2

(m,n) + v
2

(m,n) (2.35]

v
2

(m,n) = v-^da,]!) - A
2

V,

From equation (2.34) we can calculate u
2

(m,n),

since u,(m,n) was computed by equation (2.31), and the

coefficients A„ are given by the fitting of R-. „ (i,j) .

To continue the modeling, the autocorrelation

of W_(m,n) is derived from R (i,j) using equation (2.35).U
2

U
2

D. EXPERIMENTAL RESULTS

In this section we present some relevant results obtained

with real life pictures. Several pictures were analyzed

and divided in two broad classes:

Picture A - represents a class of pictures with few

details (i.e. a low content of high spatial frequency

structure) . In figure 2.8 a sample of such pictures in

a three-dimensional plot is shown, where the height (z-axis)

is the gray level. This kind of plot is very useful to

emphasize small details.
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Picture B - represents a class of pictures with many-

details. Figure 2.14 shows a sample of such pictures.

1. Autocorrelation Function

The proposed model assumes that pictures have

separable autocorrelation functions whose kernels are given

by equation (2.26). To validate this assumption, the

autocorrelation of pictures A and B were measured and

compared with that of the proposed model. Figure 2.9 is

the measured autocorrelation of picture A, and figure 2.15

is the same for picture B. Using minimum mean-squared

error criteria, a first-order model was fitted for both

pictures, as shown in figures 2.10 and 2.16. Such a model

didn't work well for picture A, as can be seen, comparing

figures 2.9 and 2.10. For picture B it worked quite well,

as can be seen comparing figures 2.15 and 2.16. Figure 2.11

is the second-order model for picture A; observe that it is

a very good fit. Based on these results, we conclude:

a) The proposed autocorrelation is adequate for

picture modeling.

b) The first-order model used in other research

does not fit well pictures of class A.

c) Pictures with few details are best fitted by

a second-order model.

d) Pictures with many details are adequately

fitted by first-order model.
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2

.

Parameter Identification

The proposed method of parameter identification

was applied to both pictures. Figures 2.12 and 2.17 are the

autocorrelation of W1 fm,n) for pictures A and B, respectively.

The autocorrelation of the modeling error W (m,n) is the

measurement of the "goodness "-of the first-order model. As

predicted before, picture A has a poor first-order model, since

W, (m,n) is quite correlated, instead of white noise, as

can be seen in figure 2.12. On the other hand, picture B

has a nice first-order model, since W, (m,n) is almost white

noise, as can be seen in figure 2.17.

Applying the cascade method of modeling for picture

A, the second-order modeling error W-(m,n) was calculated

and its autocorrelation plotted in figure 2.13. Now the

modeling error W„(m,n) is quite close to white noise, and

the second-order model is adequate for picture A, as

predicted before.

3

.

Bandwidth Compression

In order to present another piece of evidence to validate

the model, it was applied to bandwidth compression. Picture B

is quantized in 256 gray levels, thus, 8 bits are required

to transmit the gray level of each pixel. Exploiting

redundancies in the picture and/or in a time frame of

pictures (like television) , it seems possible to reduce

the number of bits/pixels to be transmitted, therefore,

reducing the required bandwidth.
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The model for picture B is:

X(m,n) = A X + W.(m,n)

The measured variances of X(m,n) and W, (m,n) are

VAR (X) = 4 9

VAR (W
1

) = 1

Also, it was seen that W, (m,n) is almost uncorre-

lated noise. Therefore, instead of transmitting the picture

X, we can transmit W, :

W,(m,n) = X(m,n) -AX

Since W, is close to white noise, and has much

smaller variance than X, the quantization levels for W may

be much smaller than for X. This method of bandwidth

reduction is called DPCM (Differential Pulse-code Modulation;

Of course, the effectiveness of this method is

strongly dependent on the "goodness" of the model.

Figure 2.18 presents the histogram of the modeling

error W, . It can be seen that most "energy" of W, is

concentrated around zero. In figure 2.19 the reconstruction

of picture B is presented, where W, was transmitted with

only 2 bits/pixel (average) , instead of the 8 bits/pixel
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required for X. Therefore, even with a bandwidth reduction

of 4 times, the reconstructed picture yet carries most of

the information of the original.
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Figure 2.8

Picture A
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Figure 2.9

Measured Autocorrelation of Picture A
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Figure 2.10

First Order Model of Picture A
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Figure 2.11

Second Order Model of Picture A
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Figure 2.12

First Order Modeling Error of Picture A
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Figure 2.13

Second Order Modeling Error of Picture A
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Picture B
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Figure 2.15

Measured Autocorrelation of Picture B
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Figure 2.16

First Order Model of Picture B
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Figure 2.17

First Order Modeling Error of Picture B
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Histogram of First Order Modeling

Error of Picture B
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Reconstruction of Picture B with

Bandwidth Compressed 4:1
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III. TWO-DIMENSIONAL RECURSIVE FILTERS

A. INTRODUCTION

A wide-sense Markov (WSM) sequence, corrupted by addi-

tive white noise, can be optimally (in the linear least

squares sense) estimated by a recursive estimator. The

fact that image intensity can be modeled by a generaliza-

tion of a WSMsequence (Chapter II) motivates one to search

for a two-dimensional Kalman estimator to smooth additive

white observation noise in images. In references [3], [4]

and [5] three filters are proposed. These filters use the

dynamic model in equation (3.2), that is a particular case

(first order WSM) of the more general model proposed in

Chapter II. The structure of these filters is also the

same (see equation 3.4), the difference being the method of

gain computation. The reason of the existence of three

Bayesian filters with the same structure, but different

gains, is that they are all sub-optimum. It has been

determined [10] that the optimality of the Kalman filter

is not preserved when generalized to two dimensions, with

such dynamic models. In reference [9] is proposed

a vector model, described by a first-order linear n-dimensional

vector difference equation, that is recursive in one parameter

and generates the same random field used in [3-5] . With

such a model the Kalman filter is applied preserving, of

course, optimality. Unfortunately, the complexity of
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implementation of such a filter is enormous, due to the

size of the state vector, that is the number of pixels in

one row, say, 256 or even 100. Also, its complexity increases

drastically if we need to extend it to three-dimensional

random fields, as in the case of time-frame, which will be

addressed in chapter IV. Similarly, the extension to higher

order WSMrandom fields increases its complexity.

Because of the above considerations, we will examine

more carefully the sub-optimum filters in [3-5], due to their

simplicity and adequacy to accommodate an extra dimen-

sion (time) or a higher order WSMrandom fields.

In this chapter we will compare the three filters

[3-5] among themselves, as well as against the optimum

non-recursive interpolator, constrained to the same data

set. We will also introduce a recursive filter that is

essentially the same as [5], but the computation of gains

is accomplished without approximation. The figure of

merit will be the error variance, since this is the cost

function used by all three filters. Observe that filters

[4] and [5] compute error variance in order to calculate

the gains, but there is an approximation in the recursive

equation, and this may result in big errors in the gains,

as well as in the computed error variance.

In the remainder of this chapter, we will develop an

algorithm to compute the variance of the estimation error,

in order to compare the filters having the structure of

equation (3.4) and dynamic model of equation (3.2) . Since,
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filters [4] and [5] have similar algorithms for computation

of gains, and, because filter [4] is clearly inferior to

[5], only the former will be used in the comparison.

B. ALGORITHMFOR COMPUTATIONOF ERRORVARIANCE

Given the dynamic model, the filter structure and the

gain, we are going to develop an algorithm to compute the

variance of the estimation error.

1. Dynamic Model

The picture is modeled by a zero-mean random field,

homogeneous, with autocorrelation function:

R(i,j) = a
2

pj
1

' pjj
j

I (3.1:

The dynamic model is

:

X(m,n) = p v X (m-l,n)+p,X (m,n-l) -p p,X (m-1 ,n-l) +W(m,n)

(3.2)

where the gray level X(m,n) has the autocorrelation of

equation (3.1) and W(m,n) is the random forcing input (or

modeling error). W(m,n) is zero-mean white noise, uncorre-

cted with X(p,q), for all pixels (p,q) in region X

defined in figure 3.1.

E(W2
(m,n)) = a

2
(l-p v

2
) d-P h

2
) = Q (3.3)
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Definition of the region Xm,n
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m
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m,n
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Figure 3.2

Definition of the region Y
m, n
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2. Filter Structure

The filters [3,5] use equation:

X(m,n) = [1-K(m,n) ] [p v X(m-l,n) + p h X(m,n-i;

- p v p hX(m-l,n-l) ] + K(m,n)y(m,n) (3.4)

where y(m,n) is the measurement of X(m,n)

:

y(m,n) = X(m,n) + v(m,n) (3.5)

where v(m,n) is zero-mean additive white measurement noise,

uncorrelated with X(m,n), and having variance:

2
E (v (m,n) ) = r

The estimate X(m,n) can be seen as the optimal

linear combination of the prediction X (m,n) , and the
P

measurement y (m,n)

:

X(m,n) = [l-K(m,n)]X (m,n) + K(m,n)y(m,n) (3.6)
hr

where

:

X (m,n) = p v X(m-l,n) + p hX(m,n-l) - P v Ph^ (m-l,n-l)

(3.7)
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The prediction X (m,n) carries all the information

about X(m,n), contained in the "past" measurements. The

gain K(m,n) is computed such that all the information about

X(m,n), contained in X (or the "past" measurements) and
P

y(m,n), is effectively used. If that happens, the estima-

tion error

e(m,n) = X(m,n) - X(m,n)

is uncorrelated with the measurements used to estimate

X(m,n) .

It is shown [10] that the estimation error can not

be orthogonal to all the "past" measurements, but may be

only to the region Y , ,, defined in figure 3.2, whichJ 3 m-l,n-l 3

excludes row m and column n.

As a matter of fact, filters [3-5] do not have

estimation error orthogonal to all measurements in Y , .3 m-l,n-l

although incorrectly stated in [3] and [4]. A simple way to

prove this above is using a counterexample. Let's examine

the estimation of X(2,3). According to [3] and [4], the

estimation error of this pixel should be orthogonal to

yd, 2). Also the error in the estimation of X(2,2) can't

be orthogonal to yd, 2), according to [10]. We are going

to verify that these statements are incompatible.
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The error in the estimation of x(2,3) is

e(2,3) = X(2,3) - X(2,3)

Using equations (3.2), (3.4) and the fact that

W(2,3) and v(2,3) are uncorrelated with yd, 2), it can be

verified that

e(2,3)y(l,2) - [1-K (2, 3) [p v e (1, 3) y (1,2)

+ p h
e(2,2)y(l,2) - Py P h

e ( 1 , 2) y (1 , 2)

]

Since the filters reduce to the one-dimensional

Kalman filter for the first row:

e(l,3)y(l,2) = e(l,2)y(l,2) =

Thus

e(2,3)y(l,2) = [1-K (2 , 3) ]

p

h e (2 , 2) y (1 , 2)

Therefore, since in general K(2,3) ^ 1 and e(2,2) can not

be orthogonal to y(l,2), we conclude that e(2,3) is not

orthogonal to y(l,2).

3. Variance of the Estimation Error

In the following derivation we will simplify

notation by dropping the argument (m,n) , where this does

not cause confusion.

The variance of the estimation error is given by:

P(m,n) = E[(X-X) 2
] = E(X 2

) + E(X 2
)

- 2E (XX)

6 8





Let's call:

~2 2E(X Z
) = O

q
Z

E(XX) = b

P(m,n) = a
2

+ a
2 - 2b (3.8:

a. Variance of the Estimate

2To compute o , observe that X can be written

as a linear combination of all measurements in region

Y (see figure 3.2).m,n

X(m,n) = b 11 Y(l,l) + ... b
±

Y(l,q) + ••• b
ln

y(l,n) +

b
pl Y(p,l) + ... b

pq
Y(p,q) + ... b pn y(p,n) +

b ml y(m,l) + ... bY(m,q) + ... b Y(m,n)ml mq mn

(3.9)

Define the column vectors

:

T
B = [b, t b. _ . . . b t . . . b— 11 12 pi mn'

Y
T = [y(l,D yd, 2) ... y(p,l) ... y(m,n)]
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Substituting in (3.9)

X(m,n) = BY (3.10!

The estimate variance is

or

2 ~2 T T
a = E(X^) = B E(YY )B

2 T
a = B R,v B

e — i — (3.11)

where

:

R
Y

= E(YY X
)

Using equations (3.1) and (3.5), it can be

easily seen that the elements of the autocorrelation matrix

Ry are given by:

R(k-p,£-q) (k,£) ? (p,q)

RY (i,j) = < (3.12:

a + r (k,£) = (p,q)

where i is the sequential number for the pairs (k,2,) and

j for (p,q) as follows
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(k,£) and (p,q) = (1 , 1) , (1 , 2) , . . . (m,n)

i and j = 1,2, ... mn

b. Covariance of X and X

Using equation (3.10), the covariance b is

given by:

b = E(XX) = B
TE(XY!

or

b = B
TR

xy
(3.13:

where

R
XY

= E(X - )

The elements of the vector R-,y. are given by:

RxY (i) = R(m-k,n-£) (3.14;

where i is the sequential number for the pairs (k,£) with

(k,£) = (1,1) , (1,2) ,... (m,n)

i = 1,2,3,.. .mn
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4 . Calculation of the Coefficients

To find the vector of coefficients B, observe in

equation (3.9) that when:

Y(i,j) = <

(i,j) = (p,q)

(i/j) 7* (P/q)

(3.15)

The result is:

X(m,n) = b
pq

It can be easily verified that, using (3.15)

and (3.4) , all coefficients can be computed. By means of

a simple computer program, therefore, we can compute the

exact weight that any measurement has in the estimation of

X.

Let's summarize the steps to compute the error

variance at (m,n)

:

(1) To find each coefficient b use equation (3.4)

with the values of y given by (3.15). The value of X(m,n)

will be b . The initial conditions are:
P/q

X(i,j) = for i = (p-1) or j = (q-1)

2
(2) Use equations (3.11) and (3.12) to compute a
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(3) Use equations (3.13) and (3.14) to compute b.

(4) Compute error variance by (3.8) .

C. ANOTHERRECURSIVE FILTER

In this section we will introduce another sub-optimum

recursive filter having the same structure as those in [3-5]

It is similar to [5] , but it computes the gains without

approximations

.

The objective is to find a way to calculate the gains,

such that the variance of the estimation error is minimized.

Let's call the covariance, between X and its prediction

2
X , b ; and the variance of the prediction a

p p * p

Using equation (3.6):

b = E(XX) - (l-K)E(XX ) + KE(Xy)

but:

b
p

= E(xx
p

;

E(Xy) = E(X 2
) = a

2

Thus:

b = (l-K)b + Ka 2
(3.16)

P

Squaring equation (3.6) and taking the expected

value:
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E(X
2

) = (1-K)
2 E(X 2

) + K
2 E(y 2

) + 2K(l-K)E(yX )

P P

but:

2 ~ 2
«p

2 -' E 'V :

2 2
ECy ) = u + r

E(yX ) = E(XX ) = b
p p p

Therefore:

a
2 = (1-K)

2
a

2 +K2
(a

2 +r)+2K(l-K)b (3.17)
e P p

Substituting equations (3.16) and (3.17) in (3

P(m,n) = (l-K)
2

(a
2 +a

2 -2b ) + K
2

r (3.18

2Observe in (3.18) that a " and b are independent of
P P

the gain K(m,n), but they are functions of "past" gains.

2Therefore we can find K(m,n), as a function of a , b ,

P P
2

a and r, such that the error variance is minimized.

Differentiating (3.18) with respect to K and equating

to zero:

2 2
a + o - 2b

K(m,n) = — ^2 ~ (3 - 19:
a + a - 2b + r

P P
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The variance of the prediction error is

:

P (m,n) = E[(X-X )

2
] a

2
+ a

2 - 2b (3.20)
p P P P

Substituting in (3.19;

K(m,n) = p

—

f— (3.21)
P

Equation (3.20) is intuitively appealing, because it is

the same as that of the one dimension scalar Kalman filter.

Substituting (3.19) into (3.18):

PMIN
= Kr (3.22)

Therefore, with the gain calculated by (3.21), the

minimum error variance is given by (3.22).

Observe that P (m,n) is independent of K(m,n) , and,
y

therefore, can be computed using "past" gains. Its

calculation is quite similar to that of P(m,n).

TX (m,n) = AY (3.23)
P P

where

:

T . -

— 11 12 pi m,n-l

X„
T = [y(l,U yd, 2) ... y(p,l) ... y(m,n-l)]
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The variance of X is
P

a
2 = ATR

7 A (3.24)

where Ry is the autocorrelation matrix of the measurements
P

V
The covariance b (m,n) , similarly to b(m,n), is given

by:

P

b = h*XY (3.25!

where the vector R. y is the correlation between X and Y
P

l

The coefficients A are calculated identically to B,

but using the predictor equation (3.7) instead of (3.4).

A summary of gain calculation follows

:

(a) Use equations (3.15) and (3.7) to find the

coefficients A. The initial conditions for (3.7) are:

X(i,j) = for i = (p-1) and j = (q-1)

2
(b) Use equation (3.24) to find a

(c) Use equation (3.25) to find b .

(d) Use equation (3.20) to find P , and compute

K(m,n) by (3.21)

.

D. NON-RECURSIVE FILTER

The optimum recursive filter must have the same

performance of the non-recursive Wiener filter, provided
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the data set is the same. Since two-dimensional recursive

filters, like those in [3-5], are not optimum, we want to

find how good they are.

The minimum-mean-square-error (MMSE) in the estimation

of X(m,n), using the measurements in region Y (see

figure 3.2), is computed as follows.

Define the vector

Y =

y(i,D

y(i,n)

y(2,i)

y (m,n)

H =

h

h

h

1,1

l,n

2,1

m,n

The estimate of X(m,n) is

X(m,n) = H Y

and the MSE

Let;

P(m,n) = E[(X-X) 2
] = E[(X - H

T
Y)

2
]

2 2E(X Z
) = a

11





E(YY T
) = R^

E(XY) = Rxy

P(m,n) = o
2 - 2HTRXY

+ HTRyY H (3.26)

Differentiate (3.26) and equate to zero:

H = Ryy" 1 Rxy (3.27)

Substitute (3.27) into (3.26!

PMIN (m,n) = a
2

- H
T

Rxy (3.28)

It can be shown that when the observation follows (3.5)

the MMSE is given by

PMT. T (m,n) h r (3.29)MIN m,n

E. PERFORMANCEOF THE FILTERS

In this section we present the results of the comparison

between filters [3], [5] and the one introduced in Section C,

as well as the optimum interpolator of Section D.

First of all, we have compared filters [5] and that of

Section C, since they are essentially the same, but the

former uses an approximation. This comparison was accom-

plished by computing the gain and error variance of both

filters for several situations. The result was that

they presented practically the same values; therefore
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we concluded that the approximation made in [5] is very

good. This conclusion is important, because it allows the

use of simple recursive equations, developed in [5], for

gain computation.

The comparison of filters [3] and [5] against the

optimum estimator is presented in table 3.1 and figure 3.3.

In these results the coefficient of correlation is 0.9,

in both directions, and the variance of X is 1.0. The

variance of noise is in the range 0.01-1.0, therefore the

signal-to-noise ratio goes from 0-20 dB.

From figure 3.3 and table 3.1, we see that filter [3]

is better than [5] , but both are quite close to the optimum

filter. In the worst case, the error variance of [3] is

6.5% greater than the optimum, and [5] is 15%. Also, the

error variance of [5] is 8% greater than that of filter

[3]. It was observed, from other results, that [3] and

[5] approach the optimum for lower coefficients of corre-

lation and/or low noise.

Another experiment was performed to change the gain to see

what MMSE can be achieved with such a filter structure.

Figure 3.4 and table 3.2 show that filter [3] is quite close

to the minimum error variance, although it is not exactly

the minimum as can be verified in figure 3.5 and table 3.3.

The conclusion is that filter [3] is better than [5] , but

it is not the best that can be done. As a matter of fact

the present method of comparison can always be used to

compute the best gain, although it is computationally complex.
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The reason why filter [3] is better than [5] is that,

although it assumes ( incorrectly) that the estimation error

is uncorrelated with the measurements in region Y , ,m-l,n-l

the gain is chosen such that the error is uncorrelated with

y(m,n). On the other hand, the error of filter [5] is not

uncorrelated with y(m,n), although it minimizes the

up-dated error variance at each point. What happens is that

the value of such minimum is not only dependent on the

previous error variances, but also on the covariances of

the "past" errors, since they are correlated.

The important conclusion is that the

recursive filters [3], [5] and the one of section C, although

not optimum, are quite close to optimality. Filter [3] is

the best and simple enough to be extended to three dimensions,

in order to exploit recursively the correlation in time.

This will be done in the next chapter.
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Table 3.1

Noise Optimum Filter [3] Filter [5]
Variance

0.01 0.0083729 0.0084204 0.0083936

0.04 0.0262313 0.0269059 0.0266656

0.09 0.0477314 0.0497128 0.0494879

0.16 0.0706634 0.0743120 0.0747814

0.25 0.0940204 0.0994702 0.1014409

0.36 0.1172805 0.1245305 0.1287582

0.49 0.1401542 0.1491169 0.1562232

0.64 0.1624769 0.1730206 0.1834437

0.81 0.1841581 0.1961401 0.2101098

1.00 0.2051533 0.2184254 0.2359806

Picture Variance = 1.0

Picture Correlation = 0.9
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PICTURE VARIANCE =1.0
PICTURE CORRELATION=
(o) - optimum filter
(*) - filter [3]
(+) - filter [5]
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Figure 3.3

Comparison of the Filters
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Table 3.2

Gain Error Variance

0.07982749 0.26742077

0.09579301 0.24629241

0.11175853 0.23272502

0.12772405 0.22441578

0.14368957 0.21995461

0.15965503 0.21842539 Filter [3]

0.17562050 0.21918494

0.19158608 0.22175616

0.20755148 0.22577757

0.22351706 0.23097461

0.23948258 0.23713821 Filter [5]

Picture Variance = 1.0

Noise Variance = 1.0

Picture Correlation = 0.9
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PICTURE VARIANCE =1.0
NOISE VARIANCE =1.0
PICTURE CORRELATION=0.9
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Figure 3.4

Error Variance vs Steady-State Gain
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Table 3.3

Gain Error Variance

0.29999995

0.30999994

0.31999993

0.32999992

0.33999991

0.34999990

0.35999990

0.36999995

0.37999994 .

0.38999993

0.39999992

0.09970987

0.09923345

0.09892100

0.09875959

0.09873748

0.09884429

0.09907085

0.09940886

0.09985095

0.10039049

0.10102153

Filter [3:

Best Gain

Filter [5]

Picture Variance = 1.00

Noise Variance = 0.25

Picture Correlation = 0.90
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PICTURE VARIANCE =1.00
NOISE VARIANCE = 0.25
PICTURE CORRELATION=0.90
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Figure 3.5

Error Variance vs Steady-State Gain
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IV. THREE-DIMENSIONAL RECURSIVE FILTER

A. INTRODUCTION

The two-dimensional recursive filters, presented in

Chapter III, use only the spatial correlation between

pixels in order to estimate the gray levels of noisy pic-

tures. In this chapter we introduce a recursive filter

that takes advantage of both correlations in space and

in time, when one has a group of pictures sequenced

in time. Experimental evidence, presented in [1], shows

that television pictures are correlated in time. This is

also an intuitive result, since knowing one frame we often

can guess the next.

The filter developed here is an extension of the two-

dimensional recursive filter [3], since it is the best,

according to the results of Chapter III. In any case, its

performance will be analyzed, in order to evalute the

improvement resultant in using the time correlation.

B. FILTER DESIGN

The filter will be developed under the following

conditions

:

(a) The time-frame is modeled as an homogeneous random

field with zero-mean (or known mean) and autocorrelation

function R(i,j,k), where i,j and k are the distances between

pixels in the vertical, horizontal and time coordinates,
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respectively. The autocorrelation is like the one intro-

duced in Chapter II, with kernels given by equation

(2.26) .

(b) The dynamic model is given by the partial difference

equation:

JX(m,n,t) = A X + W(m,n,t) (4.1)

where A is a row vector of coefficients and X is a column

vector of adjacents. The modeling error W(m,n,t) is white

noise and uncorrelated with the X's in region X (see3 mnt

figure 4.1).

In order to make clear the present derivation, let's

assume a specific form for the autocorrelation, say, first

order in all dimensions. The development remains valid for

the k-order kernels given by equation (2.26).

The autocorrelation is:

R(i,j,k) = a
2

p v
'

1
l

p h
l

j
l

p t
'

k l... i,j,k = 0,±1,±2,

(4.2!

The coefficients are:

A = [p p, p, -p p, -p p. ~Pt,P. P Pt.Pj.1 (4.3— v h t v Kh v K t h t v h t

The adjacents (see figure 4.2) are:
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Figure 4.1

Definition of the region X . : the regionm,n , t
includes the past frames and the pixels shown
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Configuration of the adjacents
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XT = [X(m-l,n,t) X(m,n-l,t) X(m,n,t-1) X(m-l,n-l,t)

X(m-l,n,t-l) X(m,n-l,t-l) X(m-1 ,n-l , t-1)

]

(4.4)

The variance of W is

E[W2 (m,n,t)] = Q = a
2

(l-p v
2

) (l-p h
2

) (l-p
t

2
)

(4.5)

(c) The pictures are contaminated with zero-mean white

noise, uncorrelated with the X's.

y(m,n,t) = X(m,n,t) + v(m,n,t) (4.6)

The noise variance is:

E(v 2 (m,n,t)) = r

1. Filter Structure

Since we want to generate a random field X as close

as possible to X, let's choose a structure similar to the

dynamic model (4.1):

X(m,n,t) = B X + K(m,n, t) y (m,n, t) (4.7)

In what follows we will drop the argument (m,n,t)

,

where it could not cause confusion.
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Observe that X can be written as a linear combina-

tion of all measurements within region Y , , defined ins mnt

figure 4.3. The optimum recursive filter must have the

gains such that the weights of the measurements are exactly

the same as for the non-recursive estimator, constrained

to the same data set Y . The criteria of optimality is

minimization of the Mean Square Error (MSE) . It will be

seen that it is impossible to have an optimum recursive

filter, constrained to the dynamic model (4.1).

2 . Orthogonality Principle

A necessary condition of optimality is that the

estimation error be uncorrelated with the data set. Let's

apply this condition to find the coefficients B and K.

The estimation error is

:

e(m,n,t) = X - X (4.8)

The orthogonality condition is

:

E[e(m,n,t)y(p,q,r) ] = (4.9)

for all (p,q,r) in Y (see figure 4.3)mnt

First, let's apply (4.9) to the measurement y(m,n,t)

E(ey) = E[(X-X)y] = E [y (X-BX-Ky)

]

= E[Xy-Ky 2 -ByX]
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Figure 4.3

Definition of the region Ym t
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Using equations (4.2) and (4.6)

2
E(ey) = (l-K)o - Kr - BE (XX) -

K(a 2
+r) + BE(XX) = a

2
(4.10)

Let's apply (4.9) to the rest of the measurements

Substituting (4.7) into (4.8):

e = X-X = X-Ky-BX

(l-K)X -Kv-BX + Be

e = (1-K) [X - ^V B x l
" Kv + B e (4.11)

Substituting (4.11) into (4.9):

BE [y(p,q,r)e] + (1-K) E [ (X - j±- B X) y (p,q,r ) ] =

(4.12)

for y(p,q,r) ^ y(m,n,t), and in Ymnt -

The problem now is to choose the coefficients B

and K, such that equations (4.10) and (4.12) are satisfied.

At this point we follow [3] by choosing

B = (l-K)A (4.13)
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With such a choice, the second term of (4.12)

becomes

:

(l-K)E[W(m,n,t)y(p,q,r) ]

Where we have used (4.1), and this term vanishes

because W(m,n,t) is uncorrelated with all measurements in

region X ,. Substituting (4.13) into (4.10):3 mnt ^

a
2 + b

K(m,n,t) = —= 2 (4.14)
a + b + r

P

where we have defined:

X (m,n,t) = A X
p — —

b (m,n,t) - E(XX )

(4.15)

Equation (4.15) seems to be an adequate choice for

the first-step predictor, also (4.14) is an intuitive result

for the gain, since it is unity for zero noise (r=0) and

decreases when noise increases.

Unfortunately, the first term of (4.12) remains and

we could not force it to vanish. Choosing K by (4.14) we

have forced the estimation error to be uncorrelated with

y(m,n,t), but it is not correct to conclude, by induction,

that the estimation errors of the adjacents (vector e) are

uncorrelated with the other measurements

.
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Take, for example, the error:

e(m,n,t-l) = X(m,n,t-1) - X(m,n,t-1)

The estimate didn't use any measurements of frame

t, therefore the error can not be uncorrelated with them.

As a matter of fact, the errors might only be

uncorrelated with the measurements within region Y , n L ,

,

3 m-l,n-l,t-l

In reference [3], for the two-dimensional case, it is

stated that the error is uncorrelated with all measurements

in a similar region. Unfortunately, that is not correct.

The estimation error, in the two or three dimensional cases,

is uncorrelated only with y(m,n,t), because K was computed

under such conditions, and with the measurement y( 1,1,1).

This can be seen from (4.12) and (4.13):

E[ey(p,q,r)] = (1-K) E [A e y (p,q,r) ] (4.16)

for (p,q,r) ^ (m,n,t)

Initializing the filter with the mean value of X

(=0), it can be verified, using (4.16), that e(m,n,t) is

uncorrelated with y( 1,1,1).

Although equation (4.14) is not the optimum choice

for the gain, we have shown in Chapter III that it was the

best in the two-dimensional case, therefore we hope it is

also good in three dimensions. This will be verified at

the end of this chapter.
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Using (4.7) and (4.13), the filter equation becomes:

X(m,n,t) - (l-K)A X + Ky (4.17)

Alternatively, using (4.15)

X(m,n,t) = (l-K)X + Ky (4.18)

3. Gain Computation

Let's develop a recursive equation to compute b

and, therefore, the gain. Define a function:

F (m,n,t) = E[X(m,n,t)X(p,q,r)]

Using (4.17) :

F = [1-K(p,q,r) ]A F + K(p,q,r)R(m-p,n-q,t-r) (4.19)

where:

T
F = [F F F F F- p-l,q,r p,q-l,r p,q,r-l p-l,q-l,r p-l,q,r-l

F . . F 1
. .] (4.20p,q-l,r-l p-l,q-l,r-l J

Initializing with X equal to the mean of X, outside

the picture, the initial conditions for F are:
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F (m,n,t) = for p,q or r =
p,q,r v ^' H

Now, using (4.15) and (4.19)

b (m,n,t) = A F (4.21)
P p

where F is the value of F for (p,q,r) = (m,n,t)

.

R
Summary of gain calculation:

(a) Use (4.19) to compute each component of the vector

F .

-P

(b) Use (4.21) to compute b (m,n,t)

(c) Compute K(m,n,t) by (4.14)

Observe that the calculation of each gain K(m,n,t)

requires scanning the time-frame from (1,1,1) through the

pixel (m,n,t). Fortunately, as will be seen, after a few

frames the gain reaches steady state, therefore the compu-

tation can be reduced to the top left corner of a few

frames.

C. PERFORMANCEOF THE FILTER

The method used in Chapter III, for the two dimensional

case, can be easily extended to three dimensions. The

variance of the estimation error is

:

P(m,n,t) = E[(X - X)
2

]

= E(X 2
) + E(X 2

) - 2E(XX)
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or:

P(m,n,t) = a
2

+ o
2 - 2b (4.22

where

:

2 2
E(X Z

) = a

~2 2E(X Z
) = a^

E(XX) = b

The covariance b can be calculated using b and K:
P

b(m,n,t) = E(XX) = (l-K)E(XX ) + KE(Xy)

b(m,n,t) = (l-K)b + Ka 2
(4.23)

To compute the variance of the estimator, write X as

a linear combination of the measurements in region Y ,

:

mnt

X(m,n,t) = c
TY (4.24!

where _c is a column vector of coefficients , function of

the gains, and Y is a column vector containing all measure-

ments in Ymnt

The variance of X is:
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2 Ta/ = c\c (4.25)

where R is the correlation matrix of the vector Y:

Ry
= E(YY'

The key, in this computation, is the method of finding

the coefficients c. This can be easily accomplished

using the filter equation (4.17) with:

y(i,j,k) = <

(i,j,k) = (p,q,r)

(i,j,k) 7* (p,q,r)

X(i,j,k) = for k = (r-1) or

i = (p-1) or

j = (q-D

Initializing (4.17) as above, and starting at (p,q,r),

the resultant value at (m,n,t) will be the coefficient of

y(p,q,r) in the estimate X(m,n,t). In this way all coeffi-

cients can be found and, therefore, the error variance.

We are also interested in the first-step predictor

given by (4.15). Its error variance is:

P (m,n,t) = E[(X - X )*]
P P

(4.26)

99





It can be related with P(m,n,t) using (4.18) and (4.26)

X - X = X - (l-K)X - Ky
P

(1-K) (X - X )
- Kv

Squaring and taking expectations

P - (1-K)
2

P + K
2

r
P

P (m,n,t) = ^—~ (P - K
2

r) (4.27)
P (1-K)

Z

D. RESULTS

In figures (4.4) through (4.9) some results of gain

calculations are shown. For the first frame the gain is

the same as in [3] for two dimensions. From these results

we can observe that the gain reaches a steady-state value

very fast, at about frame number 4. Also, for the same

frame, the steady-state is reached at about pixel (4,4) .

That is an interesting result, since it simplifies substan-

tially gain calculations. Also we can think of using a

constant gain for the whole time-frame, or a few gains

for the first 4 frames.

In tables 4.1 through 4.3 a comparison is shown

between the three-dimensional filter, estimate and prediction,

and the two-dimensional recursive filter. It can be seen

in table 4.1 that exploitation of time correlation can be
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quite advantageous in cases where time correlation is

very high, compared with spatial correlations. In this

example, the estimation error variance is reduced by about

33%, due to the use of time correlation. In table 4.2

a comparison with equal amounts of correlation in time and

space is shown. In this example the improvement was about

10%. It can be seen in table 4.3 that exploitation of time

correlation is not so advantageous when the images are

more correlated in space than in time. In this example

the improvement was only around 6%.
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Table 4.1

Error Variance

Noise
Variance

Three- Dimensions Two- Dimensions
Estimation Prediction Estimation Prediction

1.0 .236 .293 .357 .554

0.8 .210 .267 .318 .527

0.6 .178 .236 .271 .493

0.4 .140 .197 .212 .450

0.2 .089 .144 .132 .387

Picture Variance = 1.00

Spatial Correlation =0.70

Time Correlation = 0.95 •
-

Table 4.2

Error Variance

Noise
Variance

Three-Dimensions Two-Dimensions
Estimation Prediction Estimation Prediction

1.0 .269 .351 .301 .427

0.8 .240 .324 .268 .400

0.6 .206 .293 .229 .367

0.4 .162 .251 .180 .324

0.2 .103 .191 .114 .263

Picture Variance = 1.0

Spatial Correlation = 0.8

Time Correlation = 0.8
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Table 4.3

Error Variance

Noise

Variance

Three-Dimensions Two-Dimensions

Estimation Prediction Estimation Prediction

1.0 .280 .376 .301 .427

0.8 .250 .349 .268 .400

0.6 .214 .317 .229 .367

0.4 .168 .274 .180 .324

0.2 .107 .213 .114 .263

Picture Variance - 1.0

Spatial Correlation = 0.8

Time Correlation = 0.7
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V. HYBRID FILTERS

A. INTRODUCTION

In this chapter a new class of image filters is intro-

duced, called hybrid filters. The recursive filters,

presented in Chapters III and IV, utilize only part of the

data set, arbitrarily defined as "past" measurements. Since

the whole picture is often available, an optimal smoother

might be sought in order to utilize all the information

available. For the two-dimensional recursive filters of

Chapter III, the smoother would be the optimum combination

of the four estimates obtained by scanning the picture

starting at each corner. The first difficulty is that

those filters are not optimum resulting in a sub-optimum

smoother. Second, the smoother would require scanning the

picture four times, therefore increasing substantially its

complexity of implementation.

The hybrid filter introduced here is a smoother that

combines optimally the estimate of the recursive filter

(two or three dimensions) with an arbitrary set of "future"

measurements. It will be applied in picture enhancement

and compared against the recursive filter as well as the

non-recursive filter presented in [6]. Some examples of

hybrid filters designed to predict the pixel gray level will

also be presented. These filters will be applied in

Chapter VI for purposes of target detection.
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The hybrid filter is particularly useful in some

applications where the pictures are not from a fixed

scenario. For example, the camera has a movement in order

to follow some target. In such cases, the background may

change so much that past frames don't carry enough informa-

tion about the present frame. In this case, the three-

dimensional recursive filter can't be applied, but a hybrid

filter can be designed using recursively the measurements

in the present frame, and, non-recursively , the "crude"

measurements in the previous frame.

B. TWO-DIMENSIONALHYBRID FILTERS

In this section we present two examples of hybrid

filters in two-dimensions. One is a smoother designed to

enhance pictures contaminated with additive white noise.

The other is a filter designed to predict the pixel gray

level, based on noisy measurements of previously scanned

pixels. Here we assume the picture is scanned row by row

from top to bottom.

1. Two-Dimensional Hybrid Smoother

The recursive filters presented in Chapter III

utilize the measurements in region Y (see figure 3.2)J mn

to have an estimate X(m,n) . To improve this estimate we

are going to use also a selected set of measurements in

the neighborhood of (m,n) , say Y, and combine optimally

with X(m,n) , in order to have a better estimate X, (m,n)

.

Let's choose for Y the set of five neighbors shown in

figure 5.1.

Ill





m-1

m

m+1

n-1 n n+1

m,n

/ o

*J

V

Figure 5.1

Two-dimensional hybrid smoother

m

6-

n

!> i) 9

—

>

Figure 5.2
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Thus

X, (m,n) = h 2, !5.1)

where

2.
=

X(m,n)

y (m+l,n-i;

y (m+l,n)

y (m+1 ,n+l!

y (m,n+l)

y (m-l,n+i;

h

h r

Let's calculate the weights h in order to minimize the

mean-square-error in the estimate. The error is

e(m,n) = X - X. = X - h
T

g_

The error variance is

P(m,n) = E[(X - h T
g_)

2
] (5.2)

Differentiating (5.2) with respect to h and equating

to zero

h = R
_1

R^
gg ^c (5.3)
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where

R
gg = E (22

T
)

R
Xg

= E(X2)

The measurement equation is

y(m,n) = X(m,n) + v(m,n) (5.4)

where v is zero-mean white noise, uncorrelated with X,

having variance

2
E [v (m,n) ] = r

The gray level X is a zero-mean (or known mean)

homogeneous random field with autocorrelation

R(i,j) = E[X(k,£)X(k+i,£+j)

]

(5.5!

The elements of the autocorrelation matrix R , that
gg

don't include X(m,n), are easily found using equations

(5.4) and (5.5). To find the elements which include x,

observe that in Chapter III a method was developed to cal-

culate error variance of recursive filters [3,5], where

E(X ) is also computed as well as E(XX) . It can be

verified that the same method can be used for higher order
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recursive filters, though in this derivation we restrict

ourselves to recursive filter [3].

Therefore, using (3.11) and (3.13):

~2 2E(X Z
) = a

e
z

(5.6;

E(XX) = b

It can be verified that the covariances between

X and the measurements Y can be expressed as a function

of b given by

E[Xy(m+l,n-l) ] = p v p h
b

E[Xy(m+l,n)] = p v b

E[Xy(m+l,n+l) ] - P y Ph
b (5.7;

E[Xy(m,n+l)] = p hb

E[Xy(m-l,n-l) ] p v Ph
b

Therefore we have

115





gg

a p p,b p b p p,b p, b
e 'v'n v Kv Hh Hh

2 2 2

p v p h b

2 2 2 2 2
a +r p. a p. a p p, a p p, aKh h ^v Mh v K h

2 2 2 2 2
a +r p, a p, p a p p, a*n K h Mv v h

2^ 2 2 2
a +r p v a p v a

2 2
a +r pav

2^a +r

Xg

v Mh

P a
v

P P-u a

p h a

P Pt~ aKv h

where we have made use of

o i \
2 I i jR(i,]) = a Pv

' ' Ph
'

(5.8
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a. Performance and Comparison

The error variance of the hybrid smoother is

calculated substituting (5.3) into (5.2):

P(m,n) = a
2 - h

TR (5.9)
Ay

At this point it is interesting to compare the

hybrid smoother and the recursive filter [3], since we

know how to calculate the error variance for both. It is

also interesting to include in such comparison the non-

recursive filter presented in [6] . This filter uses a

small window of 3x3, shown in figure 5.2, to estimate the

pixel gray level at the center, minimizing the mean-square-

error. The hybrid smoother must have superior performance,

since it utilizes the same measurements of [3] and [6]

together. However, we can't say which is better whether

[3] or [6], since they use distinct data sets. Although

filter [3] uses a larger data set than [6], the former

uses all the closest adjacents to the estimated pixel

(m,n) .

In table 5 . 1 some numerical results are shown

to help the comparison. As expected, the hybrid filter

presented the best performance with error variance about

25% smaller (for p = 0.94) than filter [6]. The non-recursive

filter [6] presented better performance than the recursive

filter [3]. The error variance of the optimum interpolator

constrained to the observations in Y is also included inm,n
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Table 5.1

Error Variance

Correlation Hybrid Filter [6] Filter [3] Optimum
Interpolator

0.60

0.70

0.80

0.90

0.92

0.94

0.96

0.334

0.279

0.217

0.145

0.128

0.112

0.111

0.346

0.298

0.245

0.182

0.167

0.152

0.136

0.400

0.357

0.300

0.218

0.197

0.173

0.146

0.399

0.355

0.294

0.205

0.181

0.155

0.124

Picture Variance = 1.0

Noise Variance = 1.0

this table. It is interesting to see that the use of just

5 non-causal observations by the hybrid filter were enough

to fully compensate the suboptimality of the recursive

filter [3] . Observe that the 9-point non-recursive filter

[6] also presented better performance than the optimum

interpolator, even for spatial correlation as high as 0.94.

This indicates that most of the information about X(m,n)

resides in its nearest neighbors. This motivates the deriva-

tion of simple filters like the hybrid filter introduced

here. It is much simpler than the optimum recursive filter

[9] with insignificant loss in performance. It also has
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the same order of complexity as the non-recursive filter

[6], but superior performance. Complexity here means the

number of multiplications, which is 9 for the non-recursive

filter and 10 for the hybrid filter.

The hybrid filter may be seen as a way of

artificially increasing the window of filter [6]

.

b. Experimental Results

In this section we present the results of some

experiments where the filters were used in picture enhance-

ment. In this experiment, the picture of figure 5.3 was

contaminated with white noise. Assuming knowledge of the

noise variance, the picture was modeled by the method

presented in Chapter II. With this model and noise vari-

ance, we designed the three filters: hybrid, recursive

and non-recursive. The theoretical performance was computed

for each filter, as in the last item. A signal-to-noise

ratio (S/N) was defined as the ratio between the variance

of the original picture (figure 5.3) and the variance of

the noise. A processing gain was defined as the ratio of

(S/N)'s at the filters output and input:

* (S/N)
i

Table 5.2 summarizes the results. It can be

seen that the computed performance is pretty close to the
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results of the experiments. The hybrid is clearly superior

to the others and the non-recursive filter is better than

the recursive, except for the very low S/N of -3 dB, when

the former was a little better. However the subjective

evaluation of the pictures (figures 5. 4 through 5.15) is

more difficult. In our evaluation the hybrid filter had

superior performance, therefore validating the theoretical

results, as well as the measurements of table 5.2. However,

the results of the non-recursive filter, in our subjective

evaluation, were inferior to the recursive filter in all

three experiments, contradicting the measurements of table

5.2. Probably the mean-square-error is not a good figure

of merit for visual perception, however there is no doubt

that considerable improvement was achieved by processing

the noi.sy pictures using such criteria.

2 . Two-dimensional Hybrid Predictor

Assuming that the picture is scanned row by row,

we may define "past" measurements as those pixels already

scanned. Then the gray level of pixel (m,n) may be pre-

dicted using "past" measurements. In figure 5.16 the

configuration of a hybrid filter designed to predict X(m,n)

is shown. This filter combines optimally the prediction

X (m,n) of the recursive filter and the measurements Y,

shown in figure 5.16. The result is an improved prediction

X(m,n) that utilizes all the information contained in the

measurements Z and Y.mn —
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Image of figure 5.3 with additive noise (SNR = 3 dB)
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Image of figure 5.4 filtered by the recursive filter
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Image of figure 5.4 filtered by the 9-point non-recursive filter
(SNR= 10.4 dB)
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Figure 5.9

Image of figure 5.3 filtered by the hybrid filter

(SNR = 9.8 dB)
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Image of figure 5.8 filtered by the recursive filter

(SNR = 7.8 dB)

129





:;: :
:;:

:
:v:v:

:
:

:
:v.;

¥>>S ill
:|g:|

|| Wmii
£&£&•:*

#n
•;.-

1
.

»

a

>:%«

IPPB
'.'."....*..".•.*-...."-....••...-...... --.*.. .'.'.• .v.\v.v
•.•.•.-.%*.•.•••••.•.•••.*..-.*-• ..•-•- .'.v.*. *.-.•. . .

.-.-.-.•.
'

: - .•- •
.".

^ • Pi mm

:%/

•:

>:*: :

m&

Image of figure 5

Figure 5.11

filtered by the 9-point non-recursive filter
(SNR = 8.2 dB)

130





•.•;*:;•.-.'

;; ssei

w'fe

mm
|fs£

m< wm:*:.
:

II >'•:

*:*

::*:*::•

&: * :

111
&:

:

';'-- H ill s :£ ;
:

:
:

; x

-,.;.;,

;..vv •.• \ v v :

as®

:**

3W>

P*Sx%#**

'm

;Sx*'

: :i: : x':

...MS
&-;%:

;..<:•>:•:•••:

: :'':>x

:y>*':'

.:x'.:::

:#::KS::
:

:

:

;

:

Figure 5.12

Image of figure 5.3 with additive noise (SNR = -3 dB]
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Image of figure 5.12 filtered by the hybrid filter
(SNR = 8.1 dB)
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Image of figure 5.12 filtered by the recursive filter
( SNR = 6.6 dB

)

133





Si&tftfix^*?:
0r-

'--

t'X'x-'-xvX

.>vX;

«>*:**;:

IIP
lliilipmm®

m&w

WmW
&j£

*S*:*:Wx
•:•:•:•:•:•:•:•:•:•:«:•:
•.v.'.-.*.v.\-Xv.\

'.V.N-. •••••.•.•.

S&S
..wXv.v

XI
•:.:•:.:•:•::??:.:.:?.:. x-:».:¥:.:.:::-:.:

x
:

:
:
XxX:

x
:
x

:
x

H§!\'
•:"' x : "llpli

x-x-x-xwx-XvX-xwXvX-x-x-x-x : -x-x-x-x-:.
ixSxWxWxW^^^^

llllllfl
Sx&Sil::*

W8&W*e

.

.«::**:*:+:•: •: X V

Figure 5 . 15

Image of figure 5.12 filtered by the 9-point non-recursive filter
(SNR = 5.8 dB)
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Figure 5.17

Three-Dimensional Hybrid Smoother
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The design of this filter is similar to the hybrid

smoother of the previous item, therefore, we present below

the results.

The autocorrelation function used is

R(i,j) = a
2

pj
1

' pj 3 (5.10:

where

The predictor is

X(m,n) = h g

g =

X (m,n)
P

y (m-l,n+l)

y (m-1 ,n+2)

y (m-2,n+l)

y (m-2 ,n+2)

h =

1
— —

h
l

h
2

h
3

h
4

\
The weights h are given by

h = R
_1

Rvgg Xg

Using the results of Chapter III we can compute

all the elements of R and R^ . Let's call:
gg Xg
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E[X 2 (m,n)] = a
2

E[XX
p

] = b
p

(5.11)

It can be verified that the cross-correlation

between X and Y can be expressed as a function of b ,P P

as follows:

E[X y(m-l,n+l) ]

P
P Pi_bv K h p

E[X y(m-l,n+2) ]

P
p p, bv*n p

(5.12;

E[X y(m-2,n+l) ]

P
P p, bv H h p

E[X y (m-2,n+2) ]

2 2,
P p, bv h p

Using equations (5.10), (5.11) and (5.12), we can

calculate the autocorrelation matrix R and the correlation
gg

vector R :

Xg

R
gg

2 2 2 2 2
a p p,b p p, b p p,b p p, b

p v Kh p v Hh p v ^h p Mv Hh p

a
2 + r

2
Ph a

2
P o P Pu av Kh

a
2 + r

2
P Pi^v h

2
P o

V

2^a +r 2
p, ah

2,
a +r (5.13:
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p p, av h

2 2

Xg v Kh

2 2
P Q^ov h

2 2 2
P P-, a

C. THREE-DIMENSIONAL HYBRID FILTERS

In this section we present two hybrid filters

applied to pictures sequenced in time. The first filter

is a smoother to be used in image enhancement and the

other is a predictor. The design of these filters is

quite similar to those of the previous section >.

1. Three-dimensional Hybrid Smoother

The filter structure is shown in figure 5.17.

The recursive filter is that developed in Chapter IV. The

estimate X(m,n,t) of the recursive filter is optimally

combined with the set of measurements Y, in order to have

a better estimate X, (m,n,t). The design is quite the same

as in the two-dimensional case, thus we present only the

results.

The autocorrelation used for the time-frame is

R(i,j,k) 2 i- -a p '

v
J k

p h p t
(5.14)
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where

:

The estimate is

X(m,n,t) = h 2

r

g -

X(m,n,t)

y (m+l,n-l,t)

y (m+l,n,t)

y (m+l,n+l,t)

y (m,n+l,t)

y (m-l,n+l, t)

y (m+l,n-l,t-l)

y (m+l,n, t-1)

y (m+l,n+l,t-l)

y (m,n+l, t-1)

y (m-l,n+l,t-l)

h =

"^

h,

10

11

The weights h are given by

h = R
_1

R- gg Xg

Using the same notation as in Chapter IV , we have

E[X 2
(m,n,t) ] - o

2

E[XX] = b

(5.15)
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As before, the correlation between X and the measure-

ments Y can be expressed as a function of b as follows

E[X(m,n,t)y(m+i,n+j,t+k) ] = pj
1

' P h p t
b ( 5 - 16

where

(i,j,k) = (1,-1,0) , (1,0,0) , (1,1,0) , (0,lk0)

,

(-1,1,0) (1,-1,-1) (1,0,-1) , (1,1,-1)

,

(0,1,-1) , (-1,1,-1)

Using equations (5.14), (5.15) and (5.16), we can

calculate the autocorrelation matrix R and the correlation
gg

vector R , then the weights h.
Xg 3 —

2. Three-dimensional Hybrid Predictor

This filter combines optimally the first-step

prediction X of the two-dimensional recursive filter [3]
P

and the set of measurements Y shown in figure 5.18. Since

its design is quite similar to the two-dimensional case,

we present only the results

.

The autocorrelation function is given in (5.14)

and the hybrid prediction is

A m
X(m,n,t) = h g

where

:
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Figure 5.18

Three-dimensional hybrid predictor
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g =

X (m,n)
y

y (m-l,n-l, t-1)

y (m-l,n, t-1)

y (m-l,n+l,t-l)

y (m,n-l,t-l)

y (m,n,t-l)

y (m+l,n+l,t-l)

y (m+l,n-l,t-l)

y (m+l,n, t-1)

y (m+l,n+l,t-l)

r

h =

h.

h.

h.

h r

h,

h r

h
10

The weights h are given by

h = R
-1

Rv- gg Xg

Similarly to the two-dimensional case:

~ 2 2
E[X 4

] = a '
P P

E[XX
p

] = b
p

(5.i7:

And the correlation between X^ and Y is given by
P -

E[X (m,n,t)y(m+i,n+j,t-l) ] = P v
|x|

Ph
'

:
' P t

b
p

(5.18)

where
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(i,j) = (-1,-1) , (-1,0) , (-1,1) , (0,-1) , (0,0) , (0,1) ,

(1,-1) , (1,0) , (1,1)

The autocorrelation matrix R and the correlation
y y

vector Rv can be calculated using equations (5.14), (5.17)
Xg

and (5.18), then the weights h are computed.

D. COMPARISONOF THE PREDICTORS

The predictors developed here will be used in the target

detection problem addressed in Chapter VI. In this section

we present some numerical results in order to evaluate its

performance.

In Tables 5.3 through 5.5 the error variance of the

recursive and hybrid predictors for several situations is

shown. From these results we can see that the exploitation

of the time correlation can be quite advantageous, mainly

for the case of high correlation in time (table 5.3), where

the error variance of the three-dimensional filters is around

50%. of that given by the two-dimensional filters. We also can

observe in the three tables that the 3D-hybrid filter is

better than the 3D-recursive filter for observation noise

variances above 0.2, although the former exploit only the

time correlation with the previous frame. This result rein-

forces the basic idea of the hybrid filters, that is the use

of all the neighbors of the pixel (m,n) , including those

that are not causal.
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Table 5.3

Noise

Variance

Error Variance

three-dimensional two-dimensional

recursive hybrid recursive hybrid

1.0

0.8

0.6

0.4

0.2

.293 .282

.267 .258

.236 .229

.197 .195

.144 .150

.554 .502

.527 .476

.493 .445

.450 .405

.387 .350

Picture variance = 1.0

P v = P h = 0.7

P t
- 0.95

Table 5.4

Noise

Variance

Error Variance

three-dimensional two-dimensional

recursive hybrid recursive hybrid

1.0

0.8

0.6

0.4

0.2

.351 .303

.324 .283

.293 .260

.251 .231

.191 .192

.427 .364

.400 .340

.367 .312

.324 .277

.263 .227

Picture variance = 1.0

p v
= p h

= 0.8

P t
= 0.8
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Table 5.5

Noise

Variance

Error Variance

three-dimensional two-dimensional

recursive hybrid recursive hybrid

1.0

0.8

0.6

0.4

0.2

.376 .338

.349 .317

.317 .292

.274 .260

.213 .216

.427 .364

.400 .340

.367 .312

.324 .277

.263 .227

Picture variance = 1.0

p v
= p h

= 0.8

P t
= 0.7
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VI TARGET DETECTION

A. INTRODUCTION

In Chapter II we have developed models for images and

for a sequence of images in time. Using such models we

have constructed two and three dimensional recursive and

hybrid filters to smooth out noise in images. In this

chapter we are interested in the detection of targets using

low contrast images. This problem is usually referred to

as background suppression, where background means a kind

of texture that predominates in the picture. In this con-

text, the word target means the information that we are

interested in extracting from the pictures. It may be a

ship, an airplane or some kind of texture statistically

different from that of the background.

Both textures, target and background, are modeled as

in Chapter II, but it is assumed that less "a priori"

knowledge is known about the target. The basic idea in

detection is to use the prediction of the image filters

previously developed. Knowing this prediction and the actual

observation of the pixel we develop here, a decision rule

to decide to which texture the pixel belongs.
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B. TARGET AND BACKGROUNDREGIONS

Figure 6.1 shows two distinct regions in the picture:

background and target regions. In the visible spectrum

what happens is a replacement process, we have background

or target. On the other hand, in the infrared spectrum

what seems to happen is some combination of the radiations

from the target (e.g., a plane) and the background (e
. g.

,

clouds). To include these situations, let's assume that the

gray level in the target region is given by

y(m,n) = ax(m,n) + T(m,n) + v(m,n) (6.1)

This model assumes a linear combination of target and

background, normalized with respect to the target, and also

consider an additive white observation noise v(m,n),

uncorrelated with both target and background textures . The

background texture x(m,n) is modeled, as in Chapter II, as

a homogeneous random field with known mean and autocorre-

lation function and it is considered independent of the

target texture. The target region is similarly modeled,

but the amount of "a priori" knowledge, for most applica-

tions, may be restricted to the mean and/or variance.

The background region is modeled by

y(m,n) = x(m,n) + v(m,n) (6.2)
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Figure 6.1

Background and Target Regions

False Alarm

Figure 6.4

Conditional probability density function (case I)
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The term ax(m,n) in (6.1) takes into account a possible

correlation between the two regions. The weight a is a

factor to be adjusted according to the specific nature of

the picture. In the visible spectrum it seems reasonable

to assume a replacement process, therefore a = 0. In the

infrared spectrum it may assume a constant value at the

edges of the target and zero inside this region, provided

we assume that the sensor has rejected the background.

C. LIKELIHOOD RATIO TEST

In this section we will construct a likelihood ratio to

test the two hypotheses against a threshold. We will first

consider the general case of deciding between two random

fields, target and background, where the required "a priori"

knowledge are the mean and autocorrelation function of the

background and the mean and variance of the target and the

measurement noise. After, we will work some special cases

and derive its R.O.C. (Receiver Operating Characteristic).

The detector developed here will be a Newman-Pearson detector

[15], where the threshold is obtained from the R.O.C. sub-

jected to the constraint that the probability of false

alarm is less than some desired value.

The two hypotheses are

:

Hypothesis H - The measurement y(m,n) is in the back-

ground region:

y H = y = x + v1
i o J o
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Hypothesis H, - The measurement y(m,n) is in the target

region:

y
I

H, = y, = ax + T + v

The decision rule will be applied to each pixel using

the observation y(m,n) and the prediction of the pixel gray

level x (m,n). Assume that the picture is being scanned

row by row, from top to the bottom. For the sake of clarity,

assume that the past pixels were correctly identified as

belonging to the background region. The image filters

developed before (recursive or hybrid) are used to give the

prediction x (m,n) . We are looking for a decision rule

based only on y(m,n) and x (m,n)

.

ir

Let's define the likelihood ratio:

p(x _y|H,

)

L(y,x ) = In —J2 — (6.3!
P(x

p
y|H o )

where p(x y|'*) is the joint probability density function,

conditioned to the hypothesis H or H,

.

Applying Bayes rule

:

p(x yl'H.) = p(x |'H.)p(y|x h. ) i = 0,1

Since the prediction x is independent of the hypothesis

p(x \R) = p(x |H
o )
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Substituting these results into (6.3):

L(y,x ) = In a P (6.4:
p (y w
p (y x H )

P °

At this point we will make the assumption that the

conditional probabilities density functions in (6.4) are

Gaussian.

We can write

y H = x + v - eJ
i o p p

yj^ ax
p

+ v - ae
p

Since x is known, the conditional densities are func-
P

tions of (v-e ) and (v-ae +T) , where e is the prediction
tr tr hr

error. In figure (6.2) the histogram of (v-e ) is shown for

the noisy image in figure (5.8) , using the first-step

predictor of the two-dimensional recursive filter [3].

This result shows a curve quite close to a normal distri-

bution, and, therefore, validates the above assumption for

p(y|x H ) and also for p(y|x H, ) , provided the target is

deterministic

.

Since the conditional probabilities density functions

are assumed Gaussian, we need only to find its mean and

variance. Before proceeding, let's first define some

statistics for y and x .
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Histogram of (v-e ) for the image in figure (5.8)
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(a) Means

To make the formulas more general, we consider here

that the random fields x(m,n) and T(m,n) are not zero-mean.

Since the fields are homogeneous, the mean is a constant

and the same for all pixels. All the previous equations of

the image filters remain valid, provided we change x to

(x - x) and y to (y - x) , where x is the mean value of the

field x (m,n)

.

We will use the following means:

E(x) = x

E(T) = T

E(v) =

E(y|H ) = y Q
= x

E(y|H,) = y, = ax + T

E(x ) = E(x) - x

(b) Variances

The variances are given by

V(x) = c
2

V(x
p

) = a
p

2

(6.5)
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V(T) = a
T

2

V(v) = r

V(y|H ) = a
2 = a

2
+ r

V(y|H,) = a
2 = a

2
a

2
+ a

2 + r
J. y

,

T

(6.6)

(c) Covariances

We have the following covariances

Cov(v,x) = Cov(v,x ) =

Cov(v,y
i

) = r , i = 0,1

Cov(x ,x) = b (6.7)

Cov(x ,y ) = Cov(x , x) = b

Cov(x ,y,) = aCov(x ,x) = ab

(d) Coefficients of Correlation

The coefficients of correlation are

Cov(x ,x)
p -= r

p

Cov(x p- y o ) b
p o

= "TV = 7^— (6 " 8

Vy p y
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Cov(x , y, ,

p J 1 b
p = e = a

1 o a a a
P Y± P Y1

Now, returning to equation (6.4) and using the Gaussian

pdf ' s , we have

[y-E(y|x H )]
2

[y-E(y|x H )]

L(y,x ) = ^--E-2 *-£-± (6.9)
V[y|x H ] V[y|x H ]

where we have dropped some constants, since they are not

important in the test against a threshold.

The regression of the mean of y on x is

V * X
Etylx H. ] = y. + —- p.(x-x) i - 0,1 (6.10)-''pi J i a i p p

Substituting equations (6.5) and (6.8) into (6.10) gives

E[y|x
p

H
Q ] = (l-Y)x + yx

p

E[y|x H. ] = a (1-y) x+T+ayxJ
i p 1 ' r

(6.11)

where we have defined:

Y = -£* = —p (6.12)
' a 2 a K

p
P

Having the means of the conditional pdf ' s , we find

its variances

:
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V[y|x H ] = E{[y -E(y|x H )] }Ljr
' p o J o u p o

— ~ 2= E{ [x+v- (l-y)x-yx ] }

IT

— — 2= E{

[

(x-x)-y(x -x)+v] }

giving

i

*
2 2 2V[y x H] = a + y a +r- 2yCov(x ,x)2

' p o p p

Using equations (6.7) and (6.12) we have

2Cov(x ,x) = yo
P P

V[y|x H ] = a
2

- y<j
2 + r (6.13J

' p o p

V[y|x H ] = E{ [y,-E(y|x H )

]

z
}

— — ~ 2= E{ [ax+T+v-a (1-y) x-T-ayx ] }

— — — 2= E{ [a (x-x) + (T-T) -ay (x -x)+v] }
P

and

2 2 2 2 2 2V[y|x H ] = a o -ay a + a +r (6.14)
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Substituting equations (6.11), (6.13) and (6.14) into

(6.9) gives

[y-(l-y)x-yx ] [y-a (l-y)x-T-ayx ]

L(y,x
) = 2 2 2^ 2, 2 2 I7~ 2 La -y a +r a (a -y a ) +a T +r

Let's define:

M = (l-y)x

2 2
N = a -yo

P

(6.15)

/\ ^ /N /}

(y-yx -M) (y-ayx -T-aM)
L(y,x ) = rrr^ ~ 2 - (6.16!J p N+r 2^ T ,

2r a N + r + a T

2 2 ~ 2 — 2
(a N+r+a m ) (y-yx -M) -(N+r) (y-ayx -T-aM)

T P p

(N+r) (a
2 N+r+a 2

)

The denominator is a positive constant, because

2 22 2,, 2.^ nN = a - y a = a d~P ) >
hr P

Dropping the denominator and simplifying the numerator

of (6.16), the likelihood ratio becomes

L(y,x ) = [ (y-x)-y (x -x) ] - 6 [ (y-ax-T) -ay (x -x)

]

hr P hr

(6.17)
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where

N+r
(1- Pp

2
)a

2
+ r

6 " 2TT 7 2 " "l" 2, 2^ T 2
(6 - 18)

a N+r+a T a (1-p )a +r+a T

Given the prediction x and the measurement y, the

decision rule consists in computing the likelihood ratio
/\

L(x ,y) and compares it against a threhold ru if greater,

we choose hypothesis H, , if not we choose hypothesis H :

r

/\

> n . . . Hypothesis H,

L(x ,y) <

< n . . . Hypothesis H

In figure 6.3 a block diagram of the estimator-detector

filter is shown. It is assumed that the background pre-

dominates in the picture and the objective is the detection

of a smaller texture that we call target. The background

texture is modeled as in chapter II. To accomplish such

modeling, however, a picture without target is needed. In

an actual application it is realistic to assume that

we have a typical realization of this process (background)

before the target enters in the scene. For

example, assume that we are dealing with a surveillance

problem, where some area has been scanned many times looking

for a very low contrast target. Therefore a recursive or

hybrid filter can be designed to predict and estimate the
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background. About the target we need only to have a good

guess about the mean and variance of its gray level. In

cases of very low contrast the mean may be assumed equal

to that of the background. The variance, in many cases,

may be assumed much smaller than that of the background.

Also, in many cases, the observation noise is much smaller

than the background.

The estimator-detector filter of figure 6.3 scans the

image row by row from top to bottom. Assume that the

previous pixels were correctly decided as belonging to

the background. The decision box receives the measurement

y and the prediction x and computes the likelihood ratio

L(y,x ) from equation (6.17) . If this ratio is less than a

chosen threshold r\ , the pixel (m,n) is considered background

and the observation y is used to find the background estimate

x(m,n). If the ratio is greater than r\ , the pixel is con-

sidered as belonging to the target region. While in the

target region the background filter cannot use the observa-

tion y, unless we have "a priori" knowledge about the target

gray level. Since we are considering that the target region

is small, the background filter may run in its prediction

mode without much degradation, provided the dynamic model

is accurate enough. Observe that both recursive and hybrid

predictors can be used, the only difference being the box

named "improved prediction" that applies only to the hybrid

predictors. Since the three-dimensional predictors

presented in chapter V, makes use of the measurements in
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the previous frame, we can expect a good performance of

those filters in the target region.

The gray level T(m,n) of the target texture can be

estimated using the background prediction x and the

observation y|H, .

T(m,n) = k-
1 y 1

+ k
2

x

where

y, = y | H, = ax + T + v

The estimation error is

e = T-T = T- k, (ax+T+v) - k
2

x p (6.19!

In order to choose an unbiased estimator:

E(e) = T - k,(ax+T) - k_x =

k
2

= i[T-k
1

(ax+T)

]

(6.20)
x

Using equations (6.19) and (6.20) the weights k, and

k„ can be found using the minimum-mean- squared error criteria;

— 2 —2 2—2 2axT(a -b) + x a_ +T*a )

V = ]2
T E i a o-i)

1 2—2 2 2 — 2 —2 2—2 2—2 lD " i;
a x a +o -2b)+2axT(a -b)+x a m +T z

a ^+x r
p p T p
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Observe that if we neglect the observation noise

(r = 0) and the prediction error (x =x,b=o = a ) ,

equations (6.21) and (6.20) become

k. = 1 , k_ = -a

thus;

T = y, - ax (6.22
* 1 p

Equation (6.22) is intuitively appealing, since it is

exactly what we expect in the absence of observation noise

and with an ideal predictor. The block diagram of figure

(6.3) considers this simplified case.

D. SPECIAL CASES

In this section we will study some particular cases of

detection. The detector developed in the previous section

will be applied to simple cases of practical interest and

its performance (R.O.C.) will be derived.

2
1. Case I: a = 1, a =0

In this case the target gray level is deterministic

and immersed in the background. The target gray level

T is an unknown constant and we also don't know the target

shape or location in the picture. The objective is to

suppress the background in order to enhance the target.

As before, the recursive or hubrid filters are used to
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predict the background x and the detector, using this

prediction and the observation y, decide whether the pixel

(m,n) is target or background. The output is a binary

image where 1 is target and 0_ is background.

The likelihood ratio, equation (6.17), becomes

L(y,x ) = [(y-x)-y(x -x)]
2

- 6[(y-x-T)-y(x -x)]
2

P P P

where

6 = 1

Thus

L(y,x ) - 2T[ (y-x)-y(x -x) ] -T
P P

Dropping the constants , this ratio becomes

L(y,x ) = (y-x) - y(x -x) (6.23!
P P

where

a
Y = —p

p
P

Equation (6.23) is intuitively appealing, because it is

exactly the residue of the recursive filters when y = 1 •
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This would happen if the filters were optimum. Such a

decision rule with y » 1 was used in [5] as a generalization

of the one-dimensional Kalman filtering technique. However,

we have shown here that such an extension is not correct,

because the filters are not optimum, and, consequently,

the residue (or innovation process [16]) does not correspond

to the likelihood ratio. However, it is a good approxima-

tion to make y = 1 for the recursive filters, in cases of

low observation noise and highly correlated background. It

can be verified that y = 1 for the hybrid filters.

Now, we will make the assumption that y and x have

a joint Gaussian distribution in order to find the performance

of the detector. Previously we had assumed that the con-

ditional pdf ' s were normally distributed and we validated

such assumption with experimental results, but this does

not mean that the joint distribution is also Gaussian.

However, it is analytically convenient here, in order to

have simple results.

If y and x are jointly Gaussian, the likelihood

ratio L is also Gaussian and its pdf is

P
T U) = - exp[ (

? ] (6.24)
u /2? a T 2 a T

ij Li

where

:

I = y. - x i = 0,1
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°
L - O

y ,
+ Y ^

p
2

" 2yb (6.25)

2 2 2
a - y a

YL P

2
,

2 2
a + r - v a

P

2 2= (1-p ^)a z + r
P

The variable L has the same variance for both hypothesis

H and H, , only the means are different as given by

E(L|H ) - £Q
- (x+v) - x =

E(L|H
1

) = £
x

(x+T+v) - x = T

In figure 6.4 the conditional pdf ' s of the likeli-

hood ratio L(y,x ) is shown.

The probability of false alarm is

P
p

= prob(L|H
Q

> n)

i / exp(-£ 2
/2a T

2
)d£

/2tF a n

— / exp(-u 2 /2)du
/2?

n/a L
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PF
= erfc(n/a L ) (6.26)

The probability of detection is

Pp
m prob(L|H

1
> n)

— / exp[-(£-T) 2 /2a T

2
]d2-

l n

P
D

= erfc(^) (6.27)
Jj

where

1 9
erfc(a) = / exp(-u /2)du

/2tT
a

The choice of the threshold can be done, for

example, by specifying the maximum admissible probability

of false alarm; in this case we have aNeyman-Pearson detector

[15] . Another criteria is to minimize the overall probability

of error:

p £
= p(h o )p(e|h

q ) + p(h
1

)p(e|h
1 ;

- P(H Q
)P F + P(H

X ) d-P D )
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If we know P(H ) and P(H,), an optimum threshold

can be found that minimizes P-. If this is not the case,

the best we can do is to assume that the hypotheses are

equally likely, P(H ) = P (H.) = 1/2. With this choice,

it can be shown that the optimum threshold is n = T/2 and

P
E = PF " 1 ~ V

The implementation of the estimator-detector for

this case is similar to the one shown in figure 6.3. In

this case, since we assume a target with constant gray

level, and, also assuming neglectable observation noise,

we might use the measurement in the recursive estimation,

while the filter is in the target region, provided that T

is subtracted from y | H, . The best estimate of T must occur

at the edges of the target region, because there, the

background prediction x is the best.

2. Case II: a = 1, a f

In this case the target gray level is a random
_ 2variable with known mean T and variance a and, as before,

we don't know its shape or location in the picture.

The likelihood ratio, equation (6.17), becomes

L(y,x ) - [(y-x)-y(x -x)] 2 - S[(y-x)-Y(x -x)-T] 2

¥ hr P

= (1-6) [ (y-xhy(x -x) ]

2
+ 26T[(y-x)-y(x -x) ]-6T

2

P ir

(6.28)
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where

(1-p 2)a
2

+ r
6 = E

2 2 2
(l-p

p
^)a / +r+o

T
z

and

X" 6 = 2, 2, I 2 > °
(1-Pp )cr +r+a

T

Rearranging equation (6.28) in order to have a

quadratic form, and observing that (1-6) is positive:

L(y,x ) _ - _ o

(1 _ 6 [
- [(y-x)-y(x -x) ] + 26t(y-x)-y(x -x)

+ B
2

- 3(3 + T)

= [ (y-x)-Y(x -x)+6] 2
- 3(3 + T)

Dropping the constants, this ratio becomes

L(y,x ) = [(y-x)-Y(x -x)+S]
2

(6.29)

where

3 « T[(l- Pp
2

) ^ ^Ey]

T T

o
^ "" a p

p
P v
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To calculate the performance of the detector, we

make again the assumption that y and x have a joint

Gaussian distribution.

Define the random variable Z:

Z = (y-x) - y (x -x) + 3
ir

Since y and x have a bivariate normal distribution,
p

Z is also normally distributed and its pdf is

_ 2

P z
(z) = i exp[

~ (z "^
] (6.30!

/2? o
z

2a
z

z = y - x + 6

2 2 2 2
a „ = a + y a " - 2p y a a 1=0,1

Z y P i y P

2 2 2 2 2 2= a - y a = a -pa
y p y p

2Since L = Z , its pdf is

P
T (2-) = —[P 7 (/I) + P„(-/I)]L 2/1 Z Z

Thus

PL U) = 1 {exp[
- (/ ^-

2

2)2
] + exp[=^-^-]}

2a
z

/2FI 20
Z

2a
Z

1;
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The mean and variance of L(y,x ) can be computed
P

using the Moment Generating Function of Z.

M
z

(t) = E(e zt
) = exp[tz + |<?

z

2
t

2
]

E(L) = E(Z 2
) - M, I3

tO) - z
2

+ c
2

V(L) = E(L 2
) - E

2
(L) = E(Z 4

)
- E

2
(Z

2
)

= M
Z

IV
(0) - [M

Z

II
(0)]

2

Therefore

E(L) = z
2 + a

z

2

V(L) - 2a„ 2
(a

2 + 2z
2

)
u L

(6.32)

The distance between the means of L(y,x ), under
P

the hypothesis H and H, , is calculated using (6.30) and

(6.32) :

d = E(L|H
1 ) - E(L|H )

E(L|H,) = (T+6)
2 +a 2 +a

2 +r+y
2

a
2 -2p a a

x i p x y -| p

— 2 2 2 2 2
= (T+8) +o +a m^+r-y a

j- P

= (T+B)
2 +a 2 +(l-p 2

)a
2 +r
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E L H ) = g + a + r + y - 2p yo a
1 o ' p o' y D

,2
,

2 2 2
! + a + r - y a

P

2 2 2= 6 + (1-P D )a
z

+ r

thus

:

d - T2 + 26T + a
T

2
(6.33)

From equation (6.33) we can see that the distance

between the means is non-zero even for a target with zero

mean.

The probability of detection is

CO

P
D

= prob(i|H
1

> n) = / p^JH^da
n

Using equation (6.31):

CO , — 2

Pn - i / exp [ x~i ]d£u z
a /2ttT 2a

n z
x

z
x

co .

—

—
,

!
"(/I + Z ,)

+ 7 /
i ex P [ 5 i

J d£ (6.34)
a /TnT 2a

n z
x

z
2
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Using the complementary error function (erfc)

,

equation (6.34) becomes

PD
= erfc[^-(n 1/2 - z

1 )]+ erfc[^-(n 1/2
+ z,) ]

z
~

z

(6.35:

Similarly, the probability of false alarm is given

by

P_ = Prob(5-iH > n) I PT (l\E )di
c o Jj o

n
(6.36)

P-. = erfc[-^-(n 1/2 -I )] + erfc[-i-(n 1/2
+ 1 )]

r o o o o
z z

o o

— 2
The values of z and a are given by

2

z
x

= T+3 - T[l + /j + d-P
p

2
) /j] (6.37)

T T

2 2, 2 2
a

z
= (1_p

p
)a a

T

z . = 6 = -£* + d-P„ 2
)O a 2 p „ 2

T

2 2 2
a

' = (1-p z )a + r
z Po ^

To analyze the detector in terms of some meaningful

parameters, let's define the ratios:
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2

BNR = —(background-to-noise ratio)

—2 2

TBR = =—(target-to-background ratio)

T 2
RTT = —

2

Normalizing the equations with respect to the

2background (a = 1), equations (6.35) and (6.36) become

P
D

= erf c

[

TBR
a 1+RTT

/b+RTT

]

(6.39)

+ erfctW
-fag-

+ /b+RTT]

l(

a+ l+RTT

P
F

- erf [*\g - /b] + erfctlg + /b] (6.40)

where

a " BNR
+ (1 - P

p
2;

b = a ||£(1 + RTT)

(6.41)

Using (6.39) and (6.40) we have calculated the

R.O.C. (Receiver Operating Characteristic) of the detector.

In figure 6 . 5 the effect of the target-to-background ratio
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Curve of Performance changing the
target-to-background ratio (TBR)
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(TBR) is shown. As expected, the detector performance is

highly dependent of this ratio. For a probability of

false alarm of 10% the probability of detection varies

from 67% to 97% when TBR varies from -3 to 3 dB. In

figure (6.6) the effect of the background-to-noise ratio

is shown. Since this ratio is responsible for the accuracy

of the background prediction (x ) , it is also an important

factor in the detection. From this figure we can see that,

for a probability of false alarm of 10%, the probability of

detection increased from 6 3% to 9 3% when the BNR varied

from 10 to 30 dB.

In figure (6.7) the effect of the randomness of the

target gray level, represented by the ratio RTT is shown.

We can also observe a considerable improvement in the

detection when this ratio is increased.

2
3. Case III: a = 0, a =0

In this case the target gray level is deterministic

with known value, though its shape and location is unknown.

The target and background regions are completely uncorrelated

(a = 0), thus it is the case, for example, of images in

the visible spectrum where there is target or background,

but not the addition of these textures

.

The likelihood ratio, equation (6.17), for this

case, becomes

L(y,x ) = [(y-x)-y(x -x)]
2 - 6[y-T] 2

(6.42)
hr ir
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* 1/ 2 2. ,6 = -(a -ya
p

+r)
l n 2, 2.,
? (1-P

p
)a +1

Let's find the distance between the means, under

the two hypotheses H and H,:

/S /") r\ /\ >-) /\ f\

L(y,x ) = (y-x) +Y (x_-x) -2y (x -x) (y-x)-6 (y-T)
hr hr hr

y H = x + vJ
' o

E(L|H ) = a
2

+r+Y
2

a
2 -2yb-6E [ (y-x) - (T-x)

]

2

= a +r-y a -5 (a +r)-6(T-x)
ir

E(L|H ) = (1-6) (a
2

+r) - y
2

J
2 - 6 (T-x)

2
(6.43)

y j

H, = T + v

E(L|H,) = (T-x)
2

+ (l-6)r + Y
2

a
2

(6.44)

Subtracting (6.43) from (6.44) we find the distance

d = E(L|H
1

)
- E(L|H )

d = (1+6) (T-x)
2

+ (2p
2 +6-l)a 2

hr

(6.45)

Observe that the distance is non-zero, even for tar-

gets with the same gray level as the mean of the background

(T»X).
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The performance of the detector can be found,

provided we assume, as before, a joint Normal distribution

for y and x , however it is not possible to have an elegant

analytical solution as in the other cases.

4. Case IV: a = 0, a
T

fi

This case might cover the model of some images with

two quite distinct textures. A difficult problem, for

example, is the restoration of pictures with two different

regions, one is the sky and the other the sea. This is a

typical case where we cannot model the image as a homogeneous

random field. One approach to this problem is to model each

texture, separately, as two homogeneous random fields, by

the method of Chapter II, and design one image filter for

each texture. To apply these filters, first we have to

decide to which texture the pixel, to be processed, belongs.

Such a decision can be made by the detector of the present

case. In figure (6.8) the block diagram for this situation

is shown. Following the same notation as before, we have

a filter for the background x (one texture) and another

filter for the target T (the other texture) . The threshold

decision selects the proper filter, while the other filter

runs in its prediction mode.

The likelihood ratio for this case, equation (6.17),

is

L(y,x ) = [(y-x)-y(x -x)

]

2
- 6 (y-T)

2
(6.46)
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6 =

2 2
(1-p _ )a +r

ir

Let's compute the distance between the means:

E(LJH ) = (1-6) (a
2 +r)-y 2

a
2 -6 (T-x)

2

E(L|H
1

) = (1-6) (a
T

2
+r) + y

2
a

2
+ (T-x)

2

d = E(L|H
1

) - E(L|H )

d = (1+6) (T - x)
2

+ (1-6) (a
T

2
-a) + 2p

p

2
a

2
(6.47.

Equation (6.47) shows clearly the differences

between the two textures (mean and variance)

.

As in Case III, the performance of this detector

can be found using the Gaussian hypothesis, however it is

not possible to have an elegant analytical solution.
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8

Estimator-detector filter for two textures
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VII. TARGET TRACKING

A. INTRODUCTION

In the previous chapters we have developed statistical

image filters that exploit spatial and/or temporal redun-

dancies existing in the pictures. One application of those

filters is the restoration of images contaminated with

observation noise. In this application, the objective is

to remove the observation noise, in order to recover the

original image. Another application is to extract some

desired information contained in the pictures, which we have

called target. In this case, we want to suppress the rest

of the information, which we have called background, in

order to enhance the target.

The target detection and tracking problem, by means

of pictures sequenced in time, may be divided into three

phases

:

(a) Extraction of the targets from the background,

creating a binary picture (1-target, O-background)

.

(b) Recognition of the target (s) that we are interested

in tracking.

(c) Track the target (s) from frame to frame.

This research addressed the first and third phases.

The recognition problem, for our present purpose, will be

considered as solved by a human operator, or, in the case

of an automatic system, by some existing algorithms 118]

,
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[19] of pattern recognition. The extraction problem was

covered by the previous chapters

.

In this chapter we address the tracking of targets

from frame to frame. The basic idea is to model the target

movement within the pictures, and to construct a Kalman

filter to track the target centroid, using the image filters

as the measurement device. Of course, others relevant

points of the target might be tracked, in a similar way,

in order to find, for example, the target attitude. The

image filters referred to here are the three-dimensional

recursive and hybrid predictors, presented in Chapters IV

and V, respectively, and the detector developed in Chapter

VI.

B. TARGET TRACKING FILTER

In this section we will construct a Kalman' filter to

track the target centroid. Assume that we receive pictures

at some specified rate, say 30 pictures/sec. Since the

pictures have only two dimensions, the target-image dynamics

is related only to the components of the actual movement

that are parallel to the picture-plane (see figure 7.1)

.

The effect of the movement perpendicular to the picture is

to increase or decrease the size of the target-image. If

the target has the same aspect at all angles (for example

:

a sphere) , then it is possible to compute such component ,

using successive frames.
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The target-image becomes a point-target at large dis-

tances, but, in general, it is a mass-target with some shape

which changes when it maneuvers. Such change can have very

interesting applications in the target tracking problem,

since it gives useful information of target maneuvering.

In what follows, we model the movement of the target

centroid in the plane of the picture and construct a Kalman

filter to estimate its x and y coordinates, and also to

predict its position in the next frame.

X

TARGET-IMAGE

TARGET

PICTURE- PLANE

Figure 7.1

Target dynamics
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1. Dynamic Model

Since we don't know the intention of the target

driver, we will consider two random accelerations in the x

and y directions, therefore the position of the target-

image is given by

x(k+l) = x(k) + x(k)T + iw
1

(k)T
2

y(k+l) y(k) + y(k)T + -|w
2

(k)T
2

(7.1)

Equation (7.1) assumes that the time separation T

between frames is small enough such that we can consider

that the acceleration and velocities are constants between

frames

.

The velocities are given by

x(k+l) = x(k) + w
x

(k)T

yC.k+1) - y(k) + w
2

(k)T

(7.2)

where we have used in this derivation the simplified

notation x(k) for x(kT).

To use state variable notation, define the state

vector x and the random forcing input w:
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X =

X

X

y

y

w =

w.

w.
2

In state space notation, equations (7.1) and (7.2',

become

x(k+i;

1 T

1

1
x(k)

T
2

/2

T

T
2

/2
w(k) (7.3)

The random forcing input w is considered zero-mean

white noise uncorrelated with x, and has the covariance

matrix below

E[w(k)w x
(k)J = Q = (7.4)
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2 . The Observation Vector

The centroid of the target-image is measured by

the image filters previously developed. The pixels are

examined one by one and classified as target or background.

After this classification the target centroid is computed

by

xm

N N
=

k I n
k T(m

k'
n

k }
'

S =
I T(l W

k=l k=l

N

^m
=

I I m
k

T(m
k'

n
k ) (7 ' 5)

k=l

where (m, ,n, ) are the coordinates of the pixels classified

as target. If we create a binary picture with T (m, ,n, ) = 1,

equations (7,5) become

N
1 V

m N L k
k=l

(7.6!

N
1 r

^m NT L

k=l
m N L k

Since the image filters are not perfect, some

target-pixels are missed and some background-pixels are

taken as targets. Therefore the measurement of the centroid

has an error

:
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x m = X + V,m 1

y = y + v„

(7.7)

where v, and v~ are the errors in the x and y coordinates,

respectively.

Let's analyze the errors v, and v_ . First deter--

mine if they are uncorrelated. In figure 7.2 assume that

the image filter missed the target-pixels in region A.

The result is an error in the observation of the centroid.

Both x and y coordinates will be in error. In other situa-

tions only one coordinate is wrong. In general, we can not

draw any inference about one error by the knowledge of the

other, therefore we will assume that v, and v
2

are uncorrelated

m

m

A

i N
Vc

c
TARGET

r

Figure 7.2

Measurement error
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We must determine if the errors are correlated with

the coordinates (x,y) . Since the background and the target

gray levels are considered homogeneous random fields,

there is no reason to think that the image filter will be

more likely to make errors for some positions of the

target within the frame, or at some special frames. On

the other hand, the nature of the filter itself could be

a source of correlation. Both image filters (recursive

and hybrid) use recursion in space, therefore the background

prediction is poor near the top left corner and also near

the first row and column of all frames, because of the

boundary transients of the filters. In the first frame the

hybrid predictor does not make use of the time correlation

in this frame. In the recursive predictor the first few

frames have transients in recursion in time. The conclusion

is that there are some positions (x,y) in the time-frame

that have poor probability of detection. However, we have

seen that the recursive filters converge very fast, there-

fore, we will neglect such correlation, since it occurs only

in a very small region.

One must test to see if the errors are zero-mean.

The detection error could happen at any pixel, but the bias

is most likely in the direction that the picture is scanned

(top left corner to right bottom corner) , because when the

filter is in the target region the background predictors,

in general, can not use the observation y(m,n), which
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results in a degradation in the detection. However, we

expect that such degradation can be neglected for practical

applications where the target has small size and the back-

ground correlation is high. There are other schemes for pro-

cessing that can be done to overcome this problem. One is

for example, to process the pictures top-to-bottom and

bottom-to-top, alternatively, from frame to frame.

After these considerations we conclude that it is

reasonable to consider the errors v.. and v~ zero-mean white

noise and uncorrelated with x and y. Such conclusions

simplify considerably the following derivation and the

result will be a very simple Kalman filter.

Define the measurement and error vectors as below

Y =

x m

m

v =

v.

V,

(7.8;

In state space notation, equation (7.7) becomes

y(k)

10
10

x(k) + v(k) (7.9)

where v(k) is a zero-mean stationary random process, uncor-

related with x(k) and with the covariance matrix below
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E[v(k)v x
(k)] = R -

R,

(7.10)

3. Kalman Filter

The dynamic model is

where

x(k+l) = $ x(k) + r w(k) (7.11)

1 T

1

1 T

1

(7.12)

r -

V o

T_
2

(7.13:

X =

y

y
L

W =

W,

L
W

2

(7.14;
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The measurement model is given by

y(k) = H x(k) + v(k) (7.15)

where

H = :7.i6)

Y =
m

m
v =

L v
2

.7.17)

The random forcing input w(k) and the measurement

noise v(k) are considered white noise uncorrelated between

themselves and also with the states. Its covariance matrices

are given by

Q =
Qx

R =

R
1

R,

(7.i8:

The Kalman filter equations are [17]

:

x(k) = x' (k) +G(k)[y(k) -Hx'(k)] (7.19)
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where x(k) is the estimated state vector and x' (k) is the

predicted state vector given by

x' (k) - $ x(k-l) (7.20)

G(k) is the filter gain, computed as below [17]

:

G(k) = P'(k) H
T

[HP' (k)H
T

+R]
_1

(7. 2i:

P(k) = [I-G(k)H]P' (k) (7.22)

P'(k+1) = *P(k)$ T
+ rQT T

(7.23)

where P (k) is the covariance matrix of the state error

and P' (k) is the predicted covariance matrix of the state

error.

The estimated state error vector is

e(k) - x(k) - x(k) (7.24)

The covariance matrix of the state error is

P(k) - E[e(k)e T
(k)] (7.25'.

The predicted state error vector is

e' (k) = x' (k) - x(k) (7.26)
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The predicted covariance matrix of the state error is

P" (k) = E[e' (k)e
,T

(k)

]

(7.27;

The gain G(k) is computed by initialization of

equation (7.21) with P'(l) to have G(l), then find P(l)

by equation (7.22) and P'(2) by equation (7.23). Following

this procedure the matrices G(k), P(k) and P'(k) are

calculated.

Since the x and y coordinates of the target centroid,

as well as its measurement errors v, and v~ , are uncorre-

cted, we can initialize equation (7.21) with the predicted

covariance of the state error below

P'(l) =

P^d) P£
2

(l) o

Pi 2
(i: p

22
(i;

p 1 (i) p *

33 l±j 34^'

p
34 (1) P

44
(i;

(7.28)

With such initialization the matrices G(k) and

P(k) have the forms:
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G(k) =

g x
(k)

g 2
(k)

g 3
(k)

9 4
0<>

(7.29)

P(k) -

P
ll

(k) P
12

(k)
°

P
12

(k) p
2 2

(k) °

P
33

(k)

P
34

(k)

P
34

(k)

p 44
(k

:

:7.30)

Working out the equations (7.21) through (7.23.

the results are

g x
(k)

p
ii

(k)

R
i

+ p
ii

(k)

P
12 (k)

g 2
(k) =

R
x

+ P[
1

(k:

g 3
(k)

P
33

(k)

R
2

+ P
33

(k)

(7.3i:

g 4
Ck)

p
34

(k)

R
2

+ P
33

(k)
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Pu (k) = [l-g
1

(k)]Pj_
1

(k)

P
12

(k) = [l-g
1

(k)]P
; |_ 2

(k)

P22
(k) = P^

2
(k) - g 2

(k)Pj
2

(k)

P
33

(k) = [l-g
3

(k)]P^
3

(k)

P
34

(k) = [l-g
3

(k)]P
34

(k)

p
44 < k

> - p
4 4

( k )-g
4

( k ) p 34( k
:

Pj_
1

(k+1) = P 11 (k)+2TP
12

(k)+T
2

P
22

(k)+jT 4
Q1

(7.32)

p{ 2
(k+i; P12 (k)4-TP*

2
(k)4T 3

Ql

P
22 (k + 1) P

22
(k) +T Q

P' (k+1) = P
33

(k) +2TP
34

(k) +T2
P

44
(k) + i T

4
Q2

(7.33:

P'
4

(k+1) = P
34

(k)+TP
44

(k)4T 3
Q

2

P'
4

(k+1) = P
44

(k)+T Q
2
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Initializing the filter equation with the initial

prediction x' (1) , we have the estimated state vector

x (k) = x' (k) + g] _(k) [x m(k)-x' (k)]

x(k) = x'(k) + g (k) [x (k)-x' (k)]J 2 m

y(k) =y'(k) + g 3
(k) [y m(k) -y' (k)

]

y(k) = y'(k) + g 4
(k) [y m(k)-y' (k) ]

The predicted state vector is

x' (k+1) = x(k) + T x(k)

x' (k+1) = x(k)

(7.34)

(7.35

y' (k+1) = y(k) + T y (k)

y' (k+1) = y(k)

In figure 7.3 we show a flowchart for implementation

of the filter.
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P' (1)

I m I m _l
G(k) = P H [HP H +R]

P(k) = [I-GH] P (k)

x(k) = x (k) +G(k) [y(k) - HX (k)]

Figure 7.3

Kalman filter flowchart
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C. FILTER APPLICATION

The tracking filter developed in this chapter is used,

primarily, to provide the sensor servo with the predicted

centroid coordinates for the next frame. Besides this

application, the information of the predicted position of

the target can be used:

(a) To reduce the image processing,

(b) To improve the performance of the target detector.

The reduction in the image processing can be achieved

by delimiting to a small area to be processed, centered

at the predicted position of the target centroid. Instead

of processing, for example, a 100x100 picture we might

work only in a 20x20 region, depending on the target size.

With such reduction we could afford to make more processing

in this smaller area, in order to improve the performance

of the target detector.

Some examples of this extra processing are:

(a) Scan the picture in two directions, one starting

at the top left corner and the other at the bottom

rxght corner. The results are two binary pictures

(1-target, 0-background) with greater probability

of error for the pixels located in the transient

region of the recursion in space (see figure 7.4).

One simple way to combine the two estimates is to

pick the half of each picture opposite to the starting

point, because, in this way we remove most of the

unfavorable region of detection.
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If more processing is allowable one might scan the

picture four times starting at each corner and pick

the quarter of each estimated picture opposite to the

starting point. In this case the detection is

completely free of the transient region.

(b) In the detection of the target edges the direction

of scanning the picture is very important. Since a

good prediction of the background is needed and, in

general, such prediction is degraded while in the

target region, the result is that the detection of the

edge at the left is better than the one at right

(see figure 7.5). One way to overcome this problem

is to use the estimator-detector only in favorable

conditions. Assume that the prediction of the target

centroid is good. Process first the left hand part

of the picture until the line AB (see figure 7.5)

.

Next, process the right hand part, starting at the

top right corner. In this way, the filter will work

in more favorable conditions, since it will face both

left and right edges with good background predictions.

The implementation of such a scheme may be simplified

if we invert the columns of the right hand part before

and after the processing. In this way, the filter

estimates the left hand part and it is reinitialized

at the boundary (line AB) to proceed to the estimation

of the inverted right hand part. Therefore, the only

additional process would be the required inversion.

200





r START

i

—

y 7 7 7—7

/ TRANSITION REGION

7~
f A

A'

y//y t
>

/

/ / //
*

*

/

y
/

r

*

/
•

•
/

/

/

1

* '

/i
/A /

/\ '

)''
' A

Figure 7.4

Transition Region

TO
:s

DIRECTION
DETECT TH]
EDGE

LEFT

DIRECTION TO
«. DETECT THIS
1—\ EDGE-^

/\ / \ ^~>
N

)
V , JV y>^*.

RIGHT

Figure 7.5

Edge Detection

201





VIII. COMPUTERSIMULATION

A. DESCRIPTION OF THE SYSTEM

A computer simulation of the target tracking and detection

problem was implemented. The block diagram of the system is

presented in figure 8.1. It is composed of three parts:

time-frame generation, image processing and target tracking.

The generator of the time-frame creates images at some speci-

fied rate and characteristics. The images contain the target

and are contaminated with additive white Gaussian noise. The

target has a random movement from frame to frame. The images

are processed in two modes: search and window. The search

mode is used to acquire the target. In this mode the whole

picture is processed in order to extract the target from the

background. It is assumed that a recognition phase exists

to select the desired target. In this simulation we have

used only one target to avoid such a phase. After the

acquisition phase, the images are processed only in a window

centered at the predicted position of the target centroid.

The output of the image filter is the measurement of the

coordinates (a ,6 ) of the target centroid. The targetmm
tracking filter receives these measurements and updates

the estimation of the target centroid (a, 3) and also
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computes the prediction for the next frame (n <g D ) which

is feedback to the image filter.

More details about each block of figure 8.1 are given

in the rest of this section.

1. Time-frame Generation

The background has the autocorrelation function:

R(i,j,k) = a p v
l

1
! p^ 3

' p t
'

I i,j/k = 0,±1,±2,

The dynamic model that generates a random field

with such an autocorrelation function is

x(m,n,t) = A x + w(m,n,t)

where:

A = [p P, P^ ~P p, ~P P,_ -P, P,. P P^Pj.]— v h t v h v t h t v h t

T
x = [x(m-l,n,t) x(m,n-l,t) x(m,n,t-l) x(m-l,n-l,t)

x(m-l,n,t-l) x(m,n-l,t-l) x (m-1 ,n-l, t-1)

]

E[w 2
(m,n,t)] = Q = a

2
(1 - p y

2
) (1 - p h

2
) (1 - p t

2
)

The block "Background generator" implements this

dynamic model by driving the equation with zero-mean white

Gaussian noise and variance Q.
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The block "Target Generator" creates a binary image

(T - target, - background) . The target has an arbitrary

shape and it is centered at the location (x,y) given by the

block "centroid movement". Such movement is generated using

the dynamic model of equation (7.1)

.

The block "noise generator" creates an image with

zero-mean white Gaussian noise at some specified variance.

Then, those three images are added in order to

simulate the situation addressed in case I of chapter VI.

y H = x + v1
' o

y [H, = x + T + v

where:

x - background gray level

v - observation noise

T - target gray level

2 . Image Processing

The three-dimensional recursive and hybrid filters

were implemented in order to predict the background gray

level x . The decision rule using x and the observation
P y P

y is

L(y,x ) = y - y x
p
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L(y,x )
i

> n

< n

Hypothesis H,

Hypothesis H

The block diagram of the combined estimator-detector

filter is presented in figure 6.3, particularized to case

I (a = 1, a
T

2 = 0)

.

The constant y was defined (see equations 6.7

and 6.12) by

cov (x,x
Y =

J
a p

p
P

where

:

a
p

2 = E[x
p

2
] = E[x

p
(x +e

p
)]

= cov(x,x ) + E[x e ]

P P P

For the recursive filter the prediction error e
P

is not orthogonal to x , because the filter is not optimum.

However, the hybrid filter is such that the prediction error

e is orthogonal to x , therefore:
P P

Y = <

for the hybrid filter

for the recursive filter
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The threshold n is chosen such that the probability

of a false alarm is below some desired value. From equation

(6.26)

Pp = erfc (-£-)F GL

For n = 5a T P_, = 1.5x10L F

In the simulation the threshold can be specified by

the operator or automatically set at the previous value

n - 5a L
= 5

2 2(1-p )a + r (see equation 6.25)
P

Observe that this criteria is completely independent

of "a priori" knowledge of the target gray level.

We have defined the following ratios:

TBR. = Target-to-background ratio at input

TBR = Target-to-background ratio at output

BNR = Background-to-noise ratio

TBR
P.G. = p = Processing gain

T
2

TBR
i

= -*= (8.1)
a + r

[l|hJ T2

TBR = -

L

2 " —2 (8 - 2)
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P.G. = Hi±r = BNR + 1
(8 _ 3;

a T
^ (1 - p )BNR + 1

h p

2

BNR = —

From (8.3) we can see that one upper bound for

P.G. is

P.G. <_ BNR + 1

Therefore, the observation noise has to be well

below the background in order to have a substantial target

enhancement. However, in many applications, the observation

noise is really neglectable when compared with the back-

ground and, therefore, substantial target enhancement (or

background suppression) can be achieved with such a method.

After the detection of each target-pixel, the

centroid is computed by

N

m
1 v

i=l

N

3 = h I m.
fit N L 1

i=l

where (m.,n.) are the coordinates of the i target-pixel,
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3. Target Tracking Filter

The target tracking filter is the implementation of

the Kalman filter constructed in Chapter VII. It receives

the target centroid measurement (a ,3 ) from the image filter3 m m J

and computes the estimated position (a ,6), as well as the

predicted position in the next frame (a ,3 ). The filter

gains are computed on-line according to the flowchart of

figure 7.3.

B. SELECTED RESULTS

In this section we present some relevant results of

the simulation. The pictures have the size 34x70, compati-

ble with the Tektronics 4012 Display. The images are

pictorially displayed with 8 levels of quantization obtained

by superimposing some characters. The target has a

"diamond" shape, but it can be easily changed to other

shapes enclosed by a 7x7 matrix. In the tracking mode

the image processing is only applied to a 20 x 20 window

centered at the predicted centroid of the target.

1. Background Prediction

Since the decision rule is highly dependent on the

background prediction, we have measured the prediction

error for several situations and compared with the theoreti-

cal results. The results are presented in tables 8.1

through 8.3. Observe that the theoretical and experimental

results have the same order of magnitude. We can also

observe that the experimental results are always greater
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TABLE 8 .

1

NOISE

VARIANCE

3D- RECURSIVE

PREDICTOR

3D-HYBRID

PREDICTOR

THEORY EXPERIMENT THEORY EXPERIMENT

1.0

0.8

0.6

0.4

0.2

.293 .306

.267 .280

.236 .255

.197 .216

.144 .166

.282 .360

.258 .332

.229 .308

.195 .266

.150 .206

PICTURE VARIANCE = 1.0

P v
= Ph = 0.7

p t
= 0.95

TABLE 8 .

2

NOISE

VARIANCE

3D- RECURSIVE

PREDICTOR

3D- HYBRID

PREDICTOR

THEORY EXPERIMENT THEORY EXPERIMENT

1.0

0.8

0.6

0.4

0.2

.351 .364

.324 .343

.293 .316

.251 .266

.191 .207

.303 .353

.283 .329

.260 .295

.231 .269

.192 .217

PICTURE VARIANCE = 1.0

p v
= p h

= 0.8

P t
= 0.8
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TABLE 8 .

3

NOISE

VARIANCE

3D-RECURSIVE

PREDICTOR

3D-HYBRID

PREDICTOR

THEORY EXPERIMENT THEORY EXPERIMENT

1-0

0.8

0.6

0.4

0. 2

.376 .388

.349 .353

.317 .337

.274 .294

.213 .231

.338 .378

.317 .352

.292 .330

.260 .295

.216 .244

PICTURE VARIANCE 1.0

p = p, = 0.8v h

P t
- 0.7

than the theoretical ones. Such discrepancy is due to the

fact that the theoretical values are computed for the

steady-state condition, but the experimental values are

the result of averaging over a small ensemble (20 frames)

and small images (34x70), which means a reasonable influence

of the transient of the image filters.

Therefore, we consider that these results are a

reasonable validation for the theoretical methods of filter

design and performance evaluation presented before.

2 . Transition Region

To observe the transient of the image filters, we

have applied the decision rule to a time sequence of images
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(time-frame) without target. The threshold was set at

n = 0.35. The characteristics of the images are:

2
a =1, p v

= p h
= 0.93, p = 0.95, BNR = 30 dB

The results for the recursive filter are shown in figures

8.2 through 8.5. As mentioned before, the 3D-recursive

filter gives degraded predictions at the first few frames

and near the first row and column for all frames, due to

the time and space recursion, respectively. Observe that

in frame 2 (figure 8.2) the false alarms occurred mostly

near the first column and row, but they can also be seen

in the rest of the picture. In frame 10 (figure 8.4) the

situation is better, because it the steady-state was reached

in time, but the false alarms persist due to the transient

in space. In chapter VII we have suggested some methods

to reduce such undesirable effects of the transition region.

In this simulation we have used a simple method that is

to increase the threshold for the pixels at the first 5

rows and columns. The results of such a method are shown

in figures 8.3 and 8.5. Observe the substantial improvement

in both frames 2 and 10. The false alarms of frame 2

(figure 8.3) are basically due to the transient in time.

The percentage of false alarm after frame 5 , as in frame

10 (figure 8.5), is quite close to the theoretical value.

Of course, the probability of detection is reduced in the

transient region, due to the higher threhold, however this

region is very small for the usual size of pictures (100x100!

212





.-.!! '
: aanaaa :

• '

' aaaaa
• aaaaa

'
. aaaaa

BBM !
' •

IOI
!

aaaaa

'

UIIIIIU aaaaa
' ua

uon aaa ••!!!!!a '
' • ' !

»• a • ' • .
.;:

m >
. , I , ,,,,;,,

> '
'

m
S81
BSJ

91

1II1111U1IIIIII19III1

asaaaiaaaaaaaaaaa
aaaaaaaaa aasaaaaa

:

aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaesaa

aaaaai

Figure 8.2 False alarms of the recursive
filter at frame 2, using
one threshold.

Figure 8 .

3

False alarms of the recursive
filter at frame 2, using
two thresholds.
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filter at frame 10, using
two thresholds.
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The results for the hybrid filter are shown in

figures 8.6 through 8.9. Since this filter does not use

recursion in time, its transient is only in space. Simi-

lar improvement was achieved by using two threholds, as

can be seen in figures 8.7 and 8.9, compared against figures

8.6 and 8.8. Observe that frames 2 and 10 (figures 8.7

and 8.9) have almost the same number of false alarms, as

should be expected, since there is no transient in time.

Comparing these results we see that the recursive

filter presented better performance than the hybrid filter.

This result is according to the theoretical and experimental

values of tables 8.1 through 8.3, where the recursive filter

has better performance for high background-to-noise ratios,

as is the case (BNR = 30 dB)

.

3 . Background Suppression

In what follows we present some examples of target

enhancement (or background suppression) . Several parameters

can be varied to evaluate the estimator-detectors performance,

In these examples we have used the same kind of background,

but different values of target-to-background ratios

.

The characteristics of the background are

a =1, p v
= p h

= 0.93, p = 0.95, BNR = 30 dB

The correlations in space (p , p.) have the same order of

magnitude as those observed in chapter II for several real-

life pictures. The background-to-noise ratio (BNR) was
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chosen so high, because we are interested here in those

situations where the observation noise is neglectable when

compared with the background, which is the undesirable

texture to be suppressed, in order o enhance the target.

The performance of the filters will be given by

the ratios defined in equations (8.1) through (8.3).

Example 1

Filter: Recursive

TBR
i

= dB

Threshold = 0.5

Figures: 8.10 through 8.15

In table 8.4 the performance of the filter at

several frames is shown. Observe that at frame 1 the 3D-

recursive filter reduces to a 2D-recursive filter which does

not use the correlation in time. Comparing figure 8.11

with 8.13 and 3.15 we can see the great improvement resulting

from the exploitation of the correlation in time.

Example 2

Filter: Hybrid

TBR
i

= dB

Threshold =0.5

Figures: 8.16 and 8.17
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Figure 8.10 Original image at frame 1 (TBR. = dB]
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Figure 8.11 Frame 1 after the recursive filter
(TBR = 12 dB)
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Figure 8.12 Original image at frame 6 (TBR. = dB)
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Figure 8.14 Original image at frame 10 (TBR. =
l

dB)
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Figure 8.17 Frame 10 after the hybrid filter
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TABLE 8.1

3D-RECURSIVE FILTER

FRAME
TBR. = dB

l
(example 1)

TBR. = -3 dB
l

(example 3)

TBR
Q

(dB) P.G. (dB) TBR
Q

(dB) P.G. (dB)

2 17.3 17.3 13.0 16.0

3 17.3 17.3 13.6 16.6

4 17.4 17.4 14.8 17.8

5 17.0 17.0 15.3 18.3

7 17.2 1.7.2 15.8 18.8

9 17.7 17.7 16.3 19.3

13 17.9 17.9 16.6 19.6

17 17.9 17.9 16.4 19.4

19 17.2 17.2 16.0 19.0

20 18.8 18.8 17.3 20.3

AVERAGEOVER
FRAMES 6

THROUGH20
17.7 17.7 16.3 19.3

This example is similar to the previous one, but the

hybrid instead of the recursive filter is used. The frame

1 is not shown, since both filters reduce to a 2D-recursive

filter for this frame. Comparing the results we can see

that the recursive filter (example 1) presented better

performance than the hybrid one. As expected, the hybrid

filter had almost constant performance (15 dB of processing

gain) for all frames, since it has no transient in time.
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Example 3

Filter: Recursive

TBI^ = -3 dB

Threshold = 0.35

Figures: 8.18 through 8.23

The filter performance for other frames is shown

in table 8.4, where the effect of the transition in time

at the first 5 frames is clearly shown.

Example 4

Filter: Hybrid

TBR. = -3 dB
l

Threshold = 0.4

Figures: 8.24 and 8.25

This example is similar to the previous one, but

using the hybrid instead of the recursive filter. The

processing gain was around 12.5 dB for all frames. From

figures 8.24 and 8.25 we can see that TBR, = -3 dB is about

the limit of detection for the hybrid filter.

4 . Target Tracking

In what follows we present some examples of target

detection and tracking from frame to frame. The background

has the same characteristics as before. The first five

frames are entirely processed in order to acquire the target
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Figure 8.19 Frame 1 after the recursive filter
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Figure 8.21 Frame 6 after the recursive filter
(TBR

Q
=15.8 dB)
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Figure 8.22 Original image at frame 10
(TBR

±
= -3 dB)

33LLLvvl.vvt_NLNLLLs LnnLLL LnnLL3v LL :
on n3nLn33LL ^ L\\' ss LssvLv vLLLL

HLvLLvvLLLv LLaLnvvLvLL' swsvL- ^\L^ n[_nsnwLLvL- LL LvvLLvvsssLLLsLLsLL
' vLvLLLsnvLnLLnLLnn -ss^M.LnsLs-.-.|_L,nnlLLn-,L^nLnsLLnnnLL LLLLwLnLnLL
LnLLL-LL- LL- LL LLLLL- >L\>^ ^LNLLCN^t-LNSLvL^LN^ v.U.\vU.Ll.vLvv.U.v.Lv.vvL
vLLvsLnvvlLL-LLnvLLvL" -L^LL -LLL-L--L' L\'-^LLv^L^LL x 'vL-A\\\^sNLa- vL'-L
LnLsL^LL^ -L^-nLLLLLLnLnLLLL L3L- LLLsnssssLLLnnvsLLLsn --LLvLLnns v^LLxLL^ L
" nnvLLnLLLLnLLn\vnI_LLnns(_l- LL' Ln \ww>.LLLLv L ^LLsvL- vsLLs \\\3L - • v *•- L
LLnLn!_LI_[_ss[_[_sssssi_sLLnLLnn LLLL'- ~-s\\LL\L\\L\Lv,L\\L\\^\ vsLvLLLsvL - L •-

LLvLLwln;_sI_sLLLLLsLssnsssLnL L sLLnLnsnUnwUnLL LLLvvvvLL-LvvLnLL - L
s LLLLLvss~ nssI_LLvvLLvvvvLvM.wLn LLLnnLn nLnvLLL ^LLLnLLLLLnLLLLLL n^ • L
-n »[_>. [_l_\[_xI_LLn nsLnwLLvL vvLnssu_n Lsvvs- LLssLLvsLs sI_n LnLLnLL- LnLM. LL
v" LL' >L L^L *'-L s -LvvLLLvvnsi.nsi_LL- -LvvvLLvv-Lv nvvLnLnnssLLnnnLLv- L - y I
X> L'N^>L> --ns-lM-LLnnLLLn -L^- LnLLnLLLLLLLnnLLnsLLLLLLLsn 3LnLL- nLLnL
M^nLLvL 1

. LnLvnLLnL^nnsL.LLnMLLLLnnLnLLLnLnLnssLsvLnv1.v(.vLssI_sI.LLLvLLn
-.(.-• sL LL LL- nLLLLnLL^- LL- L - L nn > LLnnn Ln1.ssnsLLs3nLLvsssLLnLnns w\ s Ll L
LL -LLw-.svs 3L n{_LLnLLLnLLLLnLnnLnLLnnsI_nsLsx LLnssssI_sLLLLns;1ssU.nL "^
'l.' L---L --L - ,M.vLv-1_LnnLLLsLLLsI_Lvs\Lvs L' vl_ss WnLLLsvssLLLnLn w Ln .

--
• -L • • L-- nLLLvn .LLwLvLvvLv LLnnssLLLLLsn[.nvssvLLvvLLvssvvsLL "LL
>:. _•• ^L >L -LL' L-Nl_LLNNs[_vvi_avNNLLNNLNLLNNLNLNt.NvLLLvLNLN\LN >. 1

.. - L LLL- -' LvLLLs vnLLLn -LL-'aaavLvLvLvvvLvvLvvvvLLLL LLn\LnL\L 3L
L Li. LL L x "•L\'^LLL^\^L•aaiaalL\\->L-•\L^s\^^l^^^\^^\\L^\L^^L'.u^

LLLL'-LNLLNLLNNsaaiaBaaLNNsssLLLLNNLNNsLN(_ssLNLNL--LLL [.'_

>L- v ^LLLNLLLNssssLaMHaLsNssLLLs LvLnsLLnLLLLLn \L\\M i,

\\ .\\s\\\L[.LvL^ x LaaB v nsvLLLLLLnLLLnLnLnvLvLnLnnLLLL^ ' J
L- s-.nsI_--LnssLLLLLL aNNsLNssLsLLvssl_vvLvvvvLvvsLLL-L S L L

LL _ LL 1 LLLLLLnLnsL -s-
• sLsssLnLnLLLnsLnvLnnLnsnvLvLvsLL.nL' LL

LL '.. LL LL L L-ns[.nL-L '-LL3n--LLLnLLLnnLnsssssLLsL-.sI.LnLnv\sLL L -

L LL LLLL'LLLv LvvLLws ^LL^L x ^LLL^^L\^^.\\^\^^LL\\^LL^^\l.\LL^L
L- L_L LL-L3LL ,^ s(_LvsLnLLnnsLLLn nLLnLnLLnL LLLLnLLnL^ LLn sLns- v -3

v L LL' - L • .- \ vLssLLLnsI_LnnssLLLsLLLssL\ssnlnnI_LnnsLnnnLLnn~ nLn- L' L l
-' nLL -

> L •LLL^LLN^LLLLLL^^^ nLLLLLnn[_n LnsLLnvsLLn nCLLLLnLnsLnss(_n xv
L^v.L'-''LL' v" LvLLLLLvsLvLvLvLLL- nLnLnvLnM.sLLLLLLLLnnLnnLLI.vL o LL" L"
L3vnssv,LL L~ -- nvLLvLnLnLn vn(.ssi.nssLnLsssvLLLLvs xUsLns(.nsvsvlvsvLL LL

-

L -.sssLLss- LsLLLLLsLLvsLssULnvLv vL3vLvnssLnLvnUnsLLLnLnvLLLLnn1.nn1.n[_ ^

Figure 8.23 Frame 10 after the recursive filter
(TBR

Q
=15.9 dB)
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Figure 8.24 Frame 6 after the hybrid filter
(TBRq =12.5 dB)
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Figure 8.25 Frame 10 after the hybrid filter
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(search mode) . The window mode is implemented at frame 6

and, thereafter, the pictures are processed only in a

small 20 x 20 window centered at the target predicted

position. In the examples we have created binary pictures

to emphasize the performance of the filters.

Example 5

Filter: Recursive

TBR. = dB

Threshold =0.5

Figures: 8.26 through 8.32

Example 6

Filter: Hybrid

TBR. = O'dB
l

Threshold =0.5

Figures 8.33 through 8.36

Observe that the performance of the hybrid filter

is inferior to that of the recursive filter in example 5

.

It can also be seen, in figure 8.36, that the tracking is

better after the first 5 frames. The reason is that in the

window mode the measurement error of the centroid position

is limited by the size of the window.
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Figure 8.27 Frame 6 after the recursive filter
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Figure 8.29 Frame 12 after the recursive filter
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Figure 8.30 Original image at frame 18
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Figure 8.31 Frame 18 after the recursive filter
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Figure 8.32 Target tracking with the
recursive filter (example 5)
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Figure 8.33 Frame 6 after the hybrid filter
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Figure 8.34 Frame 12 after the hybrid filter
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Figure 8.3 5 Frame 18 after the hybrid filter
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Figure 8.3 6 Target tracking with the
hybrid filter (example 6)
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Example 7

Filter: Recursive

TBR. = -3 dB
i

Threshold = 0.4

Figures: 8.37 through 8.4 3

Example 8

Filter: Hybrid

TBR. = -3 dB

Threshold = 0.4

Figures: 8.4 4 through 8.47

Comparing examples 7 and 8 we see that both filters

were able to track the target, but the recursive filter is

clearly superior to the hybrid one.
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Figure 8.37 Original image at frame 6 (TBR. - -3 dB)
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Figure 8.38 Frame 6 after the recursive filter
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Figure 8.39 Original image at frame 12 (TBR. =
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Figure 8.40 Frame 12 after the recursive filter
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Figure 8.41 Original image at frame 1! (TBR. = -3 dB)
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Figure 8.42 Frame 18 after the recursive filter
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Figure 8.43 Target tracking with the
recursive filter (example 7)
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Figure 8.44 Frame 6 after the hybrid filter
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Figure 8.45 Frame 12 after the hybrid filter
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Figure 8.46 Frame 18 after the hybrid filter
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Figure 8.47 Target tracking with the
hybrid filter (example 8)
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IX. CONCLUSIONS

A. SUMMARYOF RESULTS

The experiments with several real life pictures allow

us to draw two important conclusions concerning image

modeling. First, the hypothesis of an autocorrelation

function with separable kernels in the vertical and hori-

zontal directions worked quite well. This conclusion is

very important, because the derivation of the dynamic model

is substantially simplified by avoiding the difficult

problem of two-dimensional spectral factorization. Second,

the first-order model, used by most researchers, is a poor

approximation for pictures with few details, although it is

a very good model for pictures with many details. The auto-

correlation function, suggested in this research, seems to

be a good choice, because it includes the first and second

order models, as particular cases, and also permits a simple

method of parameter identification which can be easily

implemented

.

The performance evaluation of the sub-optimum two-

dimensional recursive filters of Habibi ' s type [3-5] allow

us to draw some interesting conclusions. Although sub-

optimum, these filters are not so far from optimality. In

the worst case, the error variance was around 15% greater

than the one obtained by the optimum interpolator.

Rosenf eld's filter [3] is the best and presented degradation
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around 8%. Shachar ' s filter [5] has the simplest algorithm

for gain calculation which uses a very good approximation,

since its performance was quite close to that of a similar

filter suggested here which calculates the gains without

approximation

•

The reason why Rosenfeld's filter [3] is the best is

because the estimation error is orthogonal to the obser-

vation of the pixel under estimation, although this does

not happen for the rest of the data set. This conclusion

leads directly to the hybrid filters introduced in this

research. From the results shown in Table 5.1, it can be

seen that the non-recursive filter [6], suggested by Bar-

Yehoshua [6], although using only 9 observations, presents

better performance than the optimum (in the sense of

recursive filtering) interpolator, for correlations as high

as 0.94. The conclusion is that most of the information

about the pixel gray level under estimation resides on its

closest neighbors. For this reason, the hybrid filter

presents the best performance, because it makes use of all

the observations in the neighborhood and also those farther

observations used by the recursive filter. Experiments

with real life pictures (figures 5.12 and 5.13) show the

ability of the hybrid filter in smoothing out observation

noise in pictures with signal-to-noise ratio as low as

-3 dB. The processing gain for this case was 11.1 dB, which

compares favorably with previous results.
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For images sequenced in time, the three-dimensional

recursive and hybrid filters were developed in order to

exploit the correlation in time. The recursive filter is

adequate for the cases where the scene is the same during

several frames, otherwise the exploitation of the time

correlation is not advantageous, due to the filter transient

at the first few frames. Its structure is intuitively

appealing, since it reduces to the one-dimensional Kalman

filter for the case of no spatial correlation, and to a two-

dimensional recursive filter for the case of no correlation

in time. Numerical results show that the use of time corre-

lation can be quite advantageous for the case of time

correlation greater than spatial correlation (error variance

is reduced by 33%) , but it is not so advantageous for the

opposite case (error variance is reduced by. 6%) . The hybrid

filter is adequate for the case where the scene changes at

every two frames, since it makes use of only the previous

and the present frames. Of course, it can also be designed

for the case of a fixed scenario (see Chapter V) in which

case it improves the performance of the recursive filter.

To detect targets from cluttered background images a

likelihood ratio was constructed which uses the observation

of the pixel and the background prediction for the pixel

gray level. A quite general situation was considered.

The target and background are considered as two kinds of

textures. The image is modeled as a weighted combination of
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three additive components: target, background and obser-

vation noise. Therefore, it can accommodate the case of

infrared pictures and also visible pictures, where there is

a replacement process, target or background. The prediction

of the background is given by the recursive and hybrid filter

or, also, by a non-recursive filter. The likelihood ratio

was particularized for four special cases of interest, which

had their performance analyzed. The likelihood ratio enhanced

the target-to-background ratio. The target is extracted by

threshold detection. The threshold is chosen in order to

maintain the probability of false alarm below some desired

value. The performance of the detection process is highly

related to the background-to-observation noise ratio, since

this ratio is responsible for the background prediction.

The target detection and tracking problem was simulated

using comptuer generated images with characteristics similar

to those of real life images used in the other experiments.

Both three-dimensional recursive and hybrid predictors were

used and compared. The likelihood ratio, using both filters,

was able to detect a target at target-to-background ratios

as low as -3 dB. The processing gain was around 19 dB , for

the recursive filter, and around 12.5 dB for the hybrid

filter. The recursive filter presented better performance,

as should be expected from the results of Tables 5.3 through

5.5, where its prediction is better than that of the hybrid

filter, for the case of high background-to-noise ratio.
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B. SUGGESTIONSFOR FUTURE RESEARCH

Many pictures are clearly non-homogeneous, therefore

the development of space-varying models is the natural

way to proceed in order to improve the model suggested in

this research. The recursive techniques are directly

amenable to the analysis of space-varying models. The

reliance on "a priori" information is a very important

area. The method of parameter identification suggested

here is applicable for the case of constant parameters for

the whole frame. In the non-homogeneous case such identi-

fication has to be accomplished pixel by pixel, in order

to improve the robustness of this statistical approach

in face of modeling errors.

Due to the enormous computational load of the optimum

multi-dimensional recursive filters, and also because the •

observations far away carry negligible information about

the pixel to be estimated, the natural way is to look for

sub-optimal recursive filters that require less computation.

The hybrid filters suggested here can be equally applied

with other recursive filters, as, for example, the reduced

dimension filters proposed by Panda and Kak [9] and Woods

and Radiwan [11]

.

The decision rule suggested here is directed to the

detection of targets pixel by pixel, in order to be indepen-

dent of the target shape. The choice of the threshold was

based on the probability of a false alarm of each isolated
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decision. Since a wrong decision necessarily affects the

next, a question arises concerning how to vary the threshold

in order to keep the false alarm probability below the

desired value.
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