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Ss
ABSTRACT %%?%

This study is an extension of previous statistically

oriented research at the Naval Postgraduate School. The

method of Model Output Statistics is used to predict open-

ocean visibility employing stepwise-selection, multiple

linear regression. The visibility predictand is specified

categorically with comparisons made to a previous probabil-

istic approach. Predictors include direct and derived

model output parameters provided by the U.S. Navy's Fleet

Numerical Oceanography Center (FNOC), Monterey, California.

About 18,000 North Pacific Ocean (30°-60°N) synoptic ship

reports at 0000 GMT from June 1976 and 1977, July 1979,

and August 1979 were used as both dependent and independent

data sets. Visibility equations for both analysis-time

and 24- and 48-hr prognostic times are developed, and are

verified using percent correct, Heidke skill score, and

bias. Levels of skill are less than desirable for opera-

tional use. Important predictor parameters are found to

be sensible and evaporative heat fluxes, meridional wind

component, sea-level pressure, air/sea temperature differ-

ence, relative humidity, an FNOC fog probability parameter

and a visibility parameter derived from a marine aerosol

model. Other experiments concerning weighted least squares

2
predictand transformations and R deflation are briefly

described.
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I. INTRODUCTION AND BACKGROUND

Visibility is an important meteorological variable that

can have a significant impact on the safety of maritime

operations. Naval activities such as amphibious assault,

underway replenishment and air operations can be greatly

restricted under conditions of low visibility. Civilian

operations can suffer also. In most cases poor visibility

at sea is due to the occurrence of fog. The economic, mili-

tary and human losses associated with United States Naval

Operations attributable to fog are well documented by Wheeler

and Leipper (1974). Thus accurate forecasts of fog, or more

generally, marine visibility, would be of great benefit to

the military and civilian communities.

Earlier research into this problem at the Naval Post-

graduate School (NPS) , Monterey, California, using statistical

methods, was conducted by Van Orman and Renard (197 7) , Quinn

(1978), and Ouzts and Renard (1979), who all applied regression

techniques to forecast the occurrence of fog with some degree

of skill. Research into forecasting visibility directly, but

using a very limited set of parameters and data, was conducted

by Schramm (1966) . Further work by Nelson (1972) used a

larger data set and investigated new parameters. More recently

the work by Aldinger (1979) continued research into determining

those parameters which are statistically correlated with marine

visibility. In addition, using a probabilistic approach,

10





Aldinger derived analysis-time linear regression equations

which show a reasonable degree of probabilistic skill. He

also expanded the evaluation of these equations to categori-

cal estimates using Threat Score, Heidke Skill Score and

percent correct. In addition, he adapted a scoring awards

matrix to the verification which enhances the skill by giving

partial credit to forecasts that are close to the observed

category.

This study continues the statistical regression work on

visibility analysis/forecasting, but uses a categorical

approach rather than a probabilistic one. New predictor

parameters are investigated and prognostic, as well as

analysis-time, equations are derived. In addition, more

attention is given to interpreting the statistical methods

used.

11





II. OBJECTIVES

The primary objective of this study was to expand on

previous NPS visibility research using numerical-model output

parameters from the Fleet Numerical Oceanography Center

(FNOC) , Monterey, California to diagnose and predict marine

visibility over the open ocean by statistical means. The

method of model output statistics (MOS) (see Glahn and Lowry,

1972) was used to predict visibility categories directly as

opposed to using a probabilistic approach.

Within the primary objective, more specific goals to be

achieved were to:

(1) Develop statistical diagnostic (analysis-time, or Tau

J3f hr) and prognostic (forecast-time, or Tau 24 hr, 48 hr)

visibility equations using stepwise multiple linear regression;

(2) test several types of categorical schemes;

(3) test various forms of the visibility predictand

in the regression program;

(4) test predictor parameters not previously used in NPS

visibility research;

(5) compare the categorical approach to the probabilistic

approach as used by Aldinger (1979)

;

(6) test methods of regression other than the least-

squares linear type.

Formerly called the "Fleet Numerical Weather Central"

12





III. DATA

A. AREA

The area of study was limited to a region of the North

Pacific Ocean located approximately between 30° and 60 °N and

from 145°E to 130°W. The actual area was restricted in size

from the limits mentioned in order to reduce the number of

land- influenced grid points used in computing derivatives

applicable at marine grid locations. Also, this was done to

eliminate, as much as possible, any orographic influences on

visibility. The study area is shown in Figure 1 on a polar

stereographic projection, the grid points of which correspond

to those of the standard FNOC 63 x 63 grid (with a mesh size

of 381 km at 60 °N) . The entire FNOC grid is shown in Figure 2

with an outlined area from which FNOC ' s model output parameters

were extracted. This study area is the same as that used

for recent statistical studies of marine fog and visibility

at NPS.

B. SELECTION OF TIME PERIOD

Data from the months of June, July and August only were

used in this study. The frequency of fog - (and thus visibility)

related maritime casualties reaches a peak during the Northern

Hemisphere summer months (Figure 3) . Therefore, this period

is one of primary operational significance.

13
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Figure 2. Fleet Numerical Oceanography Center's 63x63
grid, with outline of North Pacific Ocean
rectangular grid area used in study.
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Only 0000 GMT synoptic ship report data were used as

this ensured that daylight was present throughout the study

area, thus allowing more accurate visibility observations

than if nighttime observations were included.

Model output parameter data from FNOC were taken from

0000 GMT for use in analysis-time equations. However, in

prognostic equations 1200 GMT parameters also were used.

Diagnostic (Tau hr) equations were developed from

combined June 1976 and June 1977 data using analysis-time

data only. In addition, equations for Tau 0, 24 and 4 8

hrs were developed from July 1979 data using both analysis-

time and prognostic-time parameters.

C. SYNOPTIC WEATHER REPORTS

The synoptic weather reports used in this study were

2
provided by the Naval Oceanography Command Detachment co-

located with the National Climatic Center at Asheville, North

Carolina.

The total number of observations available in the area

of Figure 1 is as follows:

June 1976 (Tau 0) 4277

June 1977 (Tau 0) 5044

July 1979 (Tau 0) 4079

(Tau 24) 4095

(Tau 48) 4102

Formerly called the "Naval Weather Service Detachment"

17





August 1979 (Tau 0) 4727

(Tau 24) 4520

(Tau 48) 4421

The actual number of cases varied slightly from the numbers

given above depending on experiments being performed.

All synoptic reports from the June data sets were put

through a quality control check by Aldinger (1979) to

ensure a certain degree of compatability among present weather

and visibility codes, in conformance with the Federal Meteoro-

logical Handbook No. 2 (U.S. Depts . of Commerce, Defense,

and Transportation, 1969) . All data sets including July and

August 1979 data were quality-control checked by the National

Climatic Center, Asheville, N.C.

D. INTERPOLATION SCHEME

All model output parameters, whose positions are within

the FNOC grid, were interpolated to the ship positions from

which the synoptic observations were obtained. The interpo-

lation method used is a natural bicubic spline curvilinear

scheme. This scheme and its documentation are available at

the NPS W.R. Church Computer Center where all the computer

computations for this study were accomplished.

E. PREDICTOR PARAMETERS

1. Model Output Parameters (MOP's)

A total of 22 analysis- and prognostic-model parameters

were provided by FNOC. They were generated from the Mass

18





Structure Analysis model, the Primitive Equation (P.E.)

model, and the Marine Wind model [U.S. Naval Weather Service,

1975]. In addition, 79 other parameters were developed from

the original set. Brief descriptions of all of these

parameters are listed in Appendix A.

2. Climatology Parameter

The only climatology factor used as a parameter in

this study is the fog climatology developed by the National

Climatic Center [Guttman, 1978] . A suitable visibility clima-

tology was not available at the time of this study.

3 . Interactive and Modified Parameters

Interactive parameters were formed in this study by

using the product of two different parameters. They have

been used to account for possible physical interactions between

variables. Other parameters, called "modified", are simply

the square, or the square root, of an MOP. A decision as to

which variables to combine or modify out of an almost un-

limited number of possibilities is a difficult task. There-

fore, four of the parameters chosen here were taken from a

previous study by Ouzts (1979) . The remainder were chosen

by combining or modifying those parameters which contributed

significantly to explaining the variance of the predictand,

in one or more experiments of this study.

4

.

Binary Parameters

This type of parameter is commonly used by the

Techniques Development Laboratory of the National Weather

19





Service, Silver Springs, Maryland. A binary parameter

is formed from an MOP by choosing one or more critical values

of that MOP which, when equaled or exceeded, gives the binary

a value of one; otherwise the binary has a value of zero.

Here again, a seemingly infinite number of parameters is

possible, but the set of binary parameters was limited to

14 in this study.

5 . Beta Visibility Parameter

The information for the computation of this parameter

3was supplied by Dr. A. Goroch of the Naval Environmental

Prediction Research Facility. The computation uses a marine

aerosol model developed for the United States Navy to test

electro-optical system performance.

Apparently no formal documentation is available on

the development of this model. However, Nounkester (198 0)

refers to this model and states that it was developed by

modifying an empirical model proposed by Wells, et al., (1977)

The modifications were made by B. Katz of the Naval Surface

Weapons Center, White Oak, Maryland; L. Ruhnke of the Naval

Research Laboratory, Washington, D.C.; and M. Munn of the

Lockheed Research Laboratory, Palo Alto, California.

The aerosol model computes extinction coefficients and

ranges at various wavelengths, as affected by molecular

scattering and absorption, aerosol extinction and weather.

3Personal communication
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Only the visual range was of interest in this study, so

only that portion of the model was used.

As input, the FNOC model output surface windspeed and

relative humidity, and present weather code were supplied.

Then, a parameterized visibility was computed, herein called

beta visibility (BVIS) . Since two relative humidity parameters

were available, RHR and RHX, two beta visibility parameters

could be computed, BVISR and BVISX.

Because the present weather code was not available

at prognostic times, beta visibility could not be computed

at tau 24 and tau 48. However, since the aerosol extinction

itself was expected to correlate well with observed visi-

bility, a modified beta visibility parameter was formed by

simply omitting the weather code input. This modified beta

visibility (MBVIS) could then be used at prognostic times.

The method produced a less accurate parameter, but one that

still correlated well with observed visibility. The methods

used for computing the BVIS and MBVIS parameters are given

in Appendix B . 3

.

21





IV. PROCEDURE

A. REGRESSION SCHEME

A computer program for stepwise multiple linear regression

using the method of least squares was used to derive the

visibility equations. The program used is one of the UCLA

BMDP series, namely BMDP2R [UCLA, 1979] .

In this program the dependent variable (predictand) is

specified, then independent variables (predictors) are entered

(forward stepping) or removed (backward stepping) based on a

statistical F-test with given F-to-Enter (4.0) and F-to-

remove (3.9). The first predictor selected in forward stepping

is the predictor variable with the highest F-to-enter. Suc-

ceeding steps enter variables in the same manner. At each

step the variables already entered into the equation are

reevaluated and could be removed by backward stepping if they

fail to exceed the minimum F-to-remove value.

If a variable being considered for entry reflects a strong

linear combination with any of the variables already entered,

it may cause computational difficulties, and the BMDP2R

program will reject it if its tolerance value equals or

exceeds 0.01. The program continues stepping until all

variables are used, or until no further variables meet the

F-to-enter value. A further definition of the statistics

used is included in Appendix C.

22





Another regression routine available is BMDP9R, called

All Possible Subsets Regression. Rather than performing

a screening regression as in BMDP2R this program considers

all possible combinations of predictor variables to achieve

2
the highest possible R value (explained variance) . This

program was used for a few experiments. Some of the com-

2
puted subsets did manage to attain a higher R value than

2
that achieved by screening regression, but these R values

were only marginally higher and have doubtful significance.

Thus, the results achieved by this method did not justify

the excessive computer time involved, and so it was abandoned.

B. CATEGORICAL APPROACH

Previously at NPS , Aldinger (1979) developed analysis-

time visibility regression equations based on a probability

approach. Equations were developed to estimate the probability

of occurrence of each of several visibility code groupings.

In this study a categorical approach was used. Several schemes

for grouping visibility codes into different categories were

used. In order to have a visibility value for the predictand

the midpoint value of the visibility range for each observed

category was used. For example, if a category included synop-

tic codes 90-93 the visibility range would be 0-1 km, and the

visibility predictand was assigned the value of 0.5 km. An

exception to this rule was made for the highest visibility

category. Since this category has no upper limit, several

23





arbitrary visibility values were assigned to the predictand

depending on the categorical scheme involved. A list of

the synoptic visibility codes used to determine the

visibility categories can be found in the Federal Meteor-

ological Handbook No. 2 [U.S. Depts . of Commerce, Defense

and Transportation]

.

The regression equations so developed yield continuous

visibility values (in kilometers) which can be used

directly, or perhaps more appropriately, can be used to

specify the selected category. The latter method is used

in this study for verification purposes

.

Since there are only ten reported synoptic visibility

codes, with each code representing a range of visibility,

the maximum number of defined categories is limited to ten.

Using the maximum number of categories allows the greatest

visibility lEsolution. However, there is some inaccuracy

involved in visibility reporting that is related to an ob-

server's ability to discriminate between different visibility

ranges. Therefore, categorical schemes were developed which

combined several observed codes into one category. This

approach provides a wider visibility range for each category

and partly compensates for observer error. It is reasoned

that an observer should be able to distinguish between a few

larger visibility ranges better than a larger number of smaller

visibility ranges. Of course, with fewer categories some

visibility resolution is lost. In the extreme case, a scheme

24





with only one category, which includes all visibility values,

would not be affected by observer error, and all regression

estimates would be perfect. However, such a scheme obviously

would be useless. Therefore, some tradeoff between accuracy

and resolution should be made. In this study schemes involving

five and ten categories were tested.

Tau equations were developed for all categorical schemes

from combined June 1976 and June 1977 data. The predictor

parameters considered in the equations are listed in Appendix

A, part 1.

Analysis-time (Tau = hr) and prognostic (Tau = 24 and

48 hr) equations were developed from July 1979 data. Prog-

nostic equations at 24 hr and 48 hr only were developed so

that the verification times would correspond to 0000 GMT.

However, MOP ' s from 00, 12, 24, 36, and 4 8 hr were used. The

parameter list used to develop these equations is located in

Appendix A, part 2.

C. EQUATION TRUNCATION AND VERIFICATION

The BMDP2R regression routine enters a new variable at

2each step, increasing the R value each time, thus fitting

the equation better to the dependent data. After a certain

2number of steps, however, the incremental increase in R per

step may have little or no significance when the equation is

applied to independent data. For this reason it was decided

to truncate each equation before entering a variable which

25





2does not increase the R value by a rounded value of 1%.

In general this produced an equation with four to six varia-

bles. More will be said on this topic later.

Two scoring methods were used to describe the skill of

each final regression equation. These two methods consist

of computing the percentage of correct forecasts and Heidke

Skill score for each equation. The formula for computing these

scores is given in Appendix D. The continuous visibility

output from a regression equation lies within the visibility

range of a particular category. This particular category is

considered to be the one estimated by the regression equation.

The number of times each category is thus estimated is com-

pared to the number of observations of each category for

scoring purposes.

All equations were verified against the dependent data

from which they were derived. In addition, all five-category

equations were verified against independent data. Equations

developed from combined June 1976 and June 19 77 were indepen-

dently verified using July 1979 data, and equations developed

from July 1979 data were verified using August 1979 data.

Unfortunately, the lack of availability of MOP fields and

observational data prevented the independent verification of

June equations with other June data, and July equations with

other July data.

Another scoring technique applies a scoring matrix

developed by Aldinger (197 9) and applied to the five-category

26





scheme. The matrix applies weights to the number of esti-

mates of each category in order to give some credit for

nearly correct estimates. This matrix, called the NPS awards

matrix, is further described in Section V.C.3.

In addition, a distribution measure, called bias, is

calculated for each category. Bias represents the ratio of

the number of forecasts to the number of observations of each

category

.
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V. EXPERIMENTS, RESULTS, DISCUSSION

A. CATEGORICAL SCHEMES

1. Ten-Category Scheme: 10CATA

This scheme uses ten categories of the predictand

as defined below.

Category
Number

Observed
Visibility Code

Visibility
Range (km)

Value of
Predictand (km)

I 90 < 0.05 0.025

II 91 0.05 to < 0.2 0.125

III 92 0.2 to < 0.5 0.35

IV 93 0.5 to < 1.0 0.75

V 94 1.0 to < 2.0 1.5

VI 95 2.0 to < 4.0 3.0

VII 96 4.0 to <10.0 7.0

VIII 97 10.0 to <20.0 15.0

IX 98 20.0 to <50.0 35.0

X 99 > 50.0 75.0

A Tau equation was developed from combined June

19 76 and June 19 77 data and verified on the dependent data.

All values, except for regression coefficients are given to

two decimal places.
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Coefficient

-354.558

+ 1.346

+ 0.388

+ 0.358

+ 5.174

+ 1.380

- 2.938

R
2

= .25

Predictor

EHF

BVISR

PS

SEHF1

ASTDR

VCMP1

Dependent Verification: Percent Correct = 40

Skill Score = .13

Category I II III IV V VI VII VIII IX X

Bias .03 .01 .01 .01 .07 .19 .56 1.60 1.46 .01

The scores for this scheme are relatively low. The

bias values indicate that the highest category and the lowest

six categories are observed far more often than selected by

the regression equation. On the other hand, categories VIII

and IX were selected much more often than they were observed.

2. Ten-Category Scheme: 10CATB

It was felt that the arbitrarily selected midpoint

value of 75.0 km for category X in 10CATA was too high,

thus causing a poor fit of data in the regression equation.

Therefore, this category was changed in 10CATB, as follows.
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Category
Number

Observed
Visibility Code

Visibility
Range (km)

Value of
Predictand (km)

X 99 > 50 50

All other categories, I through IX, were defined the

same as in 10CATA. The Tau equations was developed from

combined June 1976 and June 1977 data and verified with the

dependent data.

Coeifficient Predictor

-303.043

+ 1.165 EHF

+ 0.335 BVISR

+ 0.308 PS

+ 4.627 SEHF1

+ 1.098 ASTDR

- 2.609 VCMP1

2
.28

Dependent Verification: Percent Correct = 39

Skill Score = .13

Category I II III IV V VI VII VIII IX X

Bias .03 .00 .01 .01 .05 .09 .54 1.83 1.36 .00

This equation shows some improvement over the 10CATA

2equation in R value, however the percent correct is slightly

lower and the Heidke skill score is the same.
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3 . Five-Category Scheme: 5CAT

Deriving a regression equation with fewer categories

should yield better results due to partial compensation of

observer error. In this case, five categories are used

which correspond to the probabilistic five-category scheme

of Aldinger (1979)

.

Category Observed Visibility Value of
Number Visibility Codes Range (km) Predictand (km)

I 90,91,92 < 0.5 0.25

II 93,94 0.5 to < 2.0 1.25

III 95,96 2.0 to <10.0 6.0

IV 97 10.0 to <20.0 15.0

V 98,99 >_20.0 35.0

The Tau equation was developed from combined June

1976 and June 1977 data, and verified using both the dependent

June data and independent data from July 1979.

Coefficient Predictor

+272.710

+ 1.035 EHF

+ 0.292 BVISR

+ 0.277 PS

+ 4.280 SEHF1

+ 0.944 ASTDR

- 0.223 VCOMP

2
R = .27
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Dependent Verification : Percent Correct = 44

Skill Score = .17

Category I II III IV V

Bias .02 .02 .47 2.12 1.05

Independent Verification ; Percent Correct = 42

Skill Score = .17

Category I II III IV V

Bias .03 .02 .25 .87 .49

It is to be noted that the variables selected are the

same as those selected in the two ten-category schemes with

the exception that in this scheme VCOMP was selected instead

of VCMPl. The 5CAT scheme shows an increase in skill score

as expected, and the percent correct also increased. Bias

values here are not much better than those for 10CATA and

10CATB except for category V of the dependent verification

and category IV of the independent verification, both of which

show values approaching unity.

B. REGRESSION EQUATIONS

The ultimate goal is to forecast, not just analyze, visi-

bility. Therefore, using the July 1979 data set and a new

set of parameters which included prognostic predictors, new

equations were developed using the 5CAT scheme. First a new

equation for Tau was derived, then forecast-interval equa-

tions for Tau 24 and Tau 4 8 were developed. The parameter set
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used for these equations is given in Appendix A, part 2.

All three of the following equations were verified using the

dependent data and also verified independently with data from

August 1979.

1. 00-hr Diagnostic Equation: 5P00

Coefficient Predictor

+10.137

+ 0.687 EHF 00

+ 0.488 BVISR

- 9.018 FTER 00

+ 3.048 SEHF1 12

R2
= .30

The two-digit number after some of the predictor

parameters indicates the time interval from which the

parameter is derived. Those predictors without such a number

are available at the analysis time only.

Dependent Verification : Percent Correct = 42

Skill Score = .18

Category I II III IV V

Bias .02 .02 .90 2.27 1.07

Independent Verification : Percent Correct = 51

Skill Score = .21

Category I II III IV V

Bias .02 .02 .99 2.00 1.10
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2 . .

The R value and verification of equation 5P00 is

better than the verification of the 5CAT equation due to the

consideration of more parameters in the July 1979 data set

than in the combined June 1976 and June 19 79 data sets. The

bias values are not much different, except for category III

which shows improvement. It may be noted that all selected

parameters but one are from the analysis time which seems

consistent with the nature of the Tau equation.

An interesting fact is that the independent verifica-

tion of 5P00 yields better values than the dependent verifica-

tion. This is, in part, due to the fact that the independent

data contains a higher percentage of observations in those

high visibility categories which the equation estimates best.

In addition the dependent data comes from a large enough

sample of synoptic conditions that the regression equation

could score higher when applied to independent data, which

by chance includes a larger number of those synoptic situations

best handled by the equation.

2 . 24-hr Prognostic Equation: 5P24

Coefficient Predictor

+ 0.085

+1.077 EHF 24

+ 0.440 BVISR

+ 0.00 2 RHRX

- 7.418 FTER 24

R
2 = .30
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Bias .10 .08 .56

Independent Verification

Category I II III

Bias .04 .07 .61

Dependent Verification ; Percent Correct = 42

Skill Score = .16

Category I II III IV V

2.26 1.16

Percent Correct = .52

Skill Score = .20

IV V

1.92 1.17

2There is a deterioration in R value when 5P24 is

compared to 5P00, as one might expect. The percent correct

is similar for both equations, but the Heidke skill score for

5P24 is slightly less than for 5P00. Here again, as in 5P00,

the independent verification is better than the dependent

verification.

It is to be noted that variables from Tau 2 4 have

entered the 5P24 equation, which is consistent with the

nature of a Tau 24 equation.

3. 48-hr Prognostic Equation: 4P48

Coefficient Predictor

- 4.160

+ 0.390 EHF 36

+ 0.555 BVISR

-12.631 FTER 48

+ 0.633 EHF 00

+ 0.003 RHRSQ

- 0.160 MBVIS 48

9
r = .27
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Dependent Verification : Percent Correct = 42

Skill Score = .13

Category I II III IV V

Bias .01 .01 .29 2.08 1.40

Independent Verification : Percent Correct = 52

Skill Score = .16

Category I II III IV V

Bias .00 .01 .20 1.72 1.32

2Here the R value has deteriorated somewhat from the

5P00 and 5P24 cases. The percent correct is the same for

equations at all three time periods, but the Heidke skill

score in 5P48 is worse than that for 5P24 and 5P00. Overall

the bias values for 5P48 are worse than for both 5P00 and 5P24

Once again the independent verification is better than the

dependent verification.

It is to be noted that two Tau 48 hr predictors have

entered the equation. However, there is also one TAu 36 hr

predictor and three Tau 00 hr predictors. The predictor

BVISR shows up in 5P48 as well as in 5P00 and 5P24. BVISR,

which itself is a parameterized visibility, can be considered

an indicator of the persistence of marine visbility regimes

through 4 8 hours.

C. PROBABILISTIC VS. CATEGORICAL APPROACH

Aldinger (1979) used the 5CAT scheme outline previously

and developed regression equations for the probability of
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occurrence of each category. Then, using the notion of

threshold probability, the most-likely category was determined.

For comparison, an equation was developed by the categorical

method of this study considering only those predictor parameters

used by Aldinger . All equations were derived from the com-

bined June 1976 and June 1977 data and were verified dependently

1. Probabilistic Equations [Aldinger, 1979]

Category Equation

I VISPROB = 366.262 - 1.647 SEHF + .289 RHR

- .369 PS + .401 VCOMP

R
2

= .13

II VISPROB = 738.837 - .264 EHF - .746 PS

+ .555 RHR - 1.689 SEHF

R 2 = .21

III VISPROB = 266.075 + .303 WWW - .256 PS

+ .247 RHR + .313 RHX

R
2

= .05

IV VISPROB = -278.669 + .365 SEHF - .643 VCOMP

+ .431 WWW + .333 PS

R
2

= .09

V VISPROB = -693.510 + 3.633 EHF + .767 PS

- .709 VCOMP - .352 RHR

R
2 = .21
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VISPROB is the probability of occurrence of the category

for which the equation is derived.

Dependent Verification : Percent Correct = 32

Skill Score = .13

Category I II III IV V

Bias .04 1.53 1.10 2.08 0.40

2

.

Categorical Equation

Only one categorical equation was derived whose

visibility value (VIS) determines the visibility category

by selecting that category to which VIS belongs.

VIS = -302.35 + .175 EHF + .339 PS - .254 RHR

+ .730 SEHF

R
2 = .24

Dependent Verification : Percent Correct = 43

Skill Score = .14

Category I II III IV V

Bias .02 .01 .28 2.08 1.13

Comparing the two approaches shows that the cate-

gorical approach yields a higher percent correct and a

slightly higher skill score. However, except for category

V, the biases are worse for the categorical scheme. As might

be expected both methods use similar predictor parameters.

SEHF, RHR, PS and EHF are common to both.

3. NPS Awards Matrix

Aldinger (1979) developed an awards matrix which

when applied to the verification matrix (Appendix E) of a
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5-category scheme gives some credit to near successes. The

Techniques Development Laboratory (TDL) of the National

Weather Service has also used an awards matrix , but of a

different nature, which does not give full credit to all

correct visibility estimates [National Weather Service, 1973]

The NPS awards matrix does give full credit to all correct

estimates. All quantities of a verification matrix are

multiplied by the corresponding percentages in the awards

matrix shown below.

OBSERVED Estimated Category

CATEGORY I II III IV V

I 100 80

II 80 100 25

III 25 100 25

IV 25 100 75

V 75 100

The verification results, after applying the awards matrix,

are as follows:

Probabilistic Approach : Percent Correct = 60

Skill Score = .27

Categorical Approach : Percent Correct = 63

Skill Score = .12

In both cases percent correct increases markedly.

However, for the probabilistic approach the skill score doubles,
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while for the categorical approach the skill score decreases.

This shows that the probabilistic approach forecasts near

successes much better than the categorical approach, thus

enhancing its usefulness.

D. PREDICTAND TRANSFORMATIONS

Generally the relationship between an atmospheric pre-

dictand and the predictors is not linear. This can lead to

less than desirable results when multiple linear regression

is used. Non-linear regression may be used to overcome this

problem, but the increased computational time involved usually

precludes its use. Another method used to solve the non-

linear problem is to transform the predictand to a form which

then relates in a more linear manner to the predictors.

Using a limited number of parameters several transforms

were tested on the 10CATA scheme, using July 1976 and July

2
1977 data. The relative values of R produced using each

transform are shown below.

Predictand Ri

VISIBILITY (VIS) .230

Log
1Q

(VIS) .243

1/VIS .037

(1/VIS)
2

.011

vis1/2 .272

vis 1/ 3
.273

vis
1/ 4

.267
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2
It can be seen that the R value for several of the

2transformed predictands was higher than the R value for

the non-transformed visibility predictand, though the

increase was not large.

However, the real test is how well an equation with a

transformed predictand verifies. So the equation derived

with the cube root of visibility as the predictand, which

2yielded the highest R value, was scored against the equation

with the non-transformed predictand.

Predictand = visibility .

Dependent Verification

:

Percent Correct = 39

Skill Score = .14

1/3Predictand = visibility

Dependent Verification : Percent Correct = 27

Skill Score = -.01

The results show that the transformed predictand yielded

worse scores than the unmodified visibility predictand.

2
This is a surprising result in view of the relative R value.

It may, in part, be explained by the fact that there was an

uneven distribution of visibility observations between cate-

gories, with a heavy weighting toward higher visibility cate-

gories. Time limitations, however, did not permit examining

this further, and all other research was conducted using the

non-transformed predictand.
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E. WEIGHTED LEAST SQUARES

In this study the data distribution is such that most

observations occurred in the higher categories, in particu-

lar category 98. The result of this is a regression equation

that fits the higher visibility categories better than the

lower visibility categories. As a result, low visibilities

are poorly estimated.

The technique of weighted least squares was applied in

an attempt to alleviate this problem. The goal was to weight

more heavily the lower category cases in relation to those

in the higher categories so that the resultant equation would

increase skill in estimating poor visibilities.

The BMDP programs [UCLA, 1979] allow case weights to be

applied. The weighted least squares technique minimizes

W
j ^ (Y

J
~ Y

j
}

where,

w . is the case weight for case j

y . is the observed visibility for case j

y . is the regression estimate for case j

.

Normally the weight for each case should be inversely

proportional to the variance [Daniel, 1971] r but any number

of weighting techniques may be tried. In this study two

sets of case weights were tried and applied to the schem of

IOCATA.
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The first scheme (WLS1) weighted each case with a weight

equal to the inverse of the predictand value, as follows.

For cases of The predictand And the case
observed code value (km) is weight (w

. ) is

90 .025 1/.025

91 .125 1/.125

92 .35 1/.35

93 .75 1/.75

94 1.5 1/1.5

95 3.0 1/3.0

96 7.0 1/7.0

97 15.0 1/15.0

98 35.0 1/35.0

99 75.0 1/75.0

The resultant equation derived from combined June 1976

and June 1977 data (not given here) was verified dependently

with the following results.

R
2 = .09

Percent Correct = 7

Skill Score = -.01

2
Obviously, this is a poor weighting system. The R value

is very low and the scores are predictably poor.

For the second scheme (WLS2) a more reasonable set of

weights was used. The variance was computed for each cate-

gory from the unweighted equation of 10CATA. Then the weight
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for each case in a particular observed category was set to

the inverse of the square root of the variance of the observed

category

.

For Cases of The Predictand And the case
Observed Code value (km) is weight (w . ) is

90 .025 .0052

91 .125 .0603

92 .35 .0661

93 .75 .0615

94 1.5 .0702

95 3.0 .0700

96 7.0 .0754

97 15.0 .0941

98 35.0 .0925

99 75.0 .0242

(Each code group corresponds to a category in the 10CATA

scheme.

)

The case weights shown here are somewhat contrary to what

might be expected. It would seem that the variances of the

higher categories would be larger than those of the smaller

categories, if for no other reason than the fact that the

visibility ranges of the higher categories are greater. If

this were true the case weights for the higher categories

would be smaller than for the lower categories. However,

the weights shown here generally increase with an increase in
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category , with the exception of category X (code 99). This

result is due to the fact that the regression equation esti-

mates those categories best which contain the highest number

of observations, namely the categories containing codes 97

and 98.

A comparison of dependent verification between the equa-

tions of 10CATA and WLS2 shows very little difference.

2
Scheme R Percent Correct Skill Score

10CATA .25 40 .13

WLS2 .23 40 .12

F. DEFLATION OF R
2

According to theory, if a regression equation perfectly

fits the data from which it was developed the explained

2variance, R , should equal 1.0. However, it appears that

due to the nature of the categorical schemes in this study

2
a limit was placed on the maximum R that it was possible to

achieve. This particular limit is related to the fact that

each predictand value was assumed to be the midpoint value

of the observed category, thus providing discrete visibility

values. However, the regression equation gives continuous

visibility values which are then used with the assigned pre-

2dictand values to determine R .

2
In one experiment, to demonstrate the deflation of R ,

a regression equation of the form of 10CATA scheme was

developed. Then using the dependent data, the equation was
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used to compute visibility values, V..

Symbolically: V. = A-, + B,x, . + C,x„. + ...J * l 1 1 li 1 2i

where,

V = visibility

x's = independent predictors.

These V. values were used as substitutes for the original

visibility observations. Next, using these V. values, a new

predictand, V. ', was derived by re-setting the V. value to

the midpoint of the category to which V. belonged, giving

V .

' . Finally, a second regression equation was developed

using the V .

' as predictand values to yield an equation of

the form

V." = A
2

+ B
2
xu + C

2
x
2i

+ ... .

It can be seen that if the continuous values, V., had been
i

used as the predictand the second regression equation would

2be identical to the first one and have an R value of 1.0.

However, because the predictand, V.', used to develop the

second equation has discrete values as defined by the cate-

gorical scheme, the second equation is not identical to the

2first; and the R value is approximately 0.7, using V. ' as

the observed values.

2
It is believed that the R value of 0.7 rather than 1.0

is the maximum value achievable in the 10CATA scheme with a
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perfect equation, due to the method of defining the pre-

dictand used in this study. The other categorical schemes,

2of course, have a similar R limit.

2The drop of R from 1.0 to 0.7 can be demonstrated

by schematic graphs. Assuming that the observed visibility

can be expressed perfectly by a regression equation, for

2which R =1.0, then the graph below is the result. As

the continuous regression-estimated visibility increases

the observed visibility increases continuously also.

Visibility from
Regression Equation
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However, the observed visibility is not given as a

continuous variable. Rather the visibility observations

are given as ranges or categories, and the visibility

predictand is defined as the midpoint of the observed

range, which is demonstrated schematically below.

A
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discrete observed visibility
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Visibility from Regression Equation

The schematic above shows a step function relationship

which indicates that as the continuous regression-

estimated visibility increases within each categorical

visibility range (given by roman numerals) the observed

visibility remains constant.

The regression-estimated visibility values have not

changed from the first schematic to the second but the
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verifying "observed" values have changed from continuous

to discrete values. All observed values below a categorical

midpoint value have been increased, and values lying above

a midpoint value have been decreased.

2The deterioration of R which results from the second

case can be seen by noting the deviation of values along

the discrete observed visibility step function from the

continuous observed visibility line as shown below.

deviation
(discrete -continuous)

Visibility from Regression Equation

In another experiment, an attempt was made to compute

2
the R value for the 10CATA equation without the hindrance

of the problem just described. The BMDP programs compute

2
R using the continuous regression-produced visibility
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values and the discrete observed values. A separate program

2was developed to compute R by first re-setting the continuous

regression values of 10 CATA to the midpoint values of the

categories to which they belong. Then, using the discrete

2predictand values, a new R was computed. In this case dis-

crete values are used for both the observations and the

2regression estimates. The R value computed in this way is

.31 as compared to .25 computed by the BMDP programs. All

2
R values previously shown in this study were computed by

the method used in the BMDP programs

.

2The maximum R value of approximately 0.7 as found by

2experiment for the 10CATA scheme may be compared to the R

value of .31 which the 10CATA equation yielded. The differ-

2ence between the two R values of approximately 40% can now

be attributed to errors in the observations and numerical

MOP's and the non-linear relationship between visibility and

associated meteorological parameters.

G. DISTRIBUTION PROBLEM

The distribution of observations among synoptic codes for

the combined June 1976 and June 1977 data set is shown below.

It can be noted that the highest three categories contain

66% of the observations, and the highest four categories

contain 79% of the observations. The observation distribu-

tions are similar for the July 1979 and August 1979 data

sets

.
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Code Number of Percent of
Group Observations Total observations

90 75 0.8

91 233 2.6

92 400 4.4

93 740 8.1

94 166 1.8

95 327 3.6

96 1125 12.3

97 1911 21.0

98 3642 39.9

99 495 5.4

This fact tended to tune all the regression equations to

the high categories, such that high categories were estimated

relatively well by the regression equations and low visi-

bility categories were estimated poorly. This is somewhat

contrary to what is desired, since forecasts of low visibility

are very important operationally.

The probabilistic approach does not have a similar dis-

tribution problem, since one regression equation is developed

for each visibility category and depends only on the observa-

tions of a single category.

H. BETA VISIBILITY

The beta visibility was previously described. Its compu-

tation is given in Appendix B.3. Beta visibility is not only
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a parameter for use in visibility regression equations but

itself yields a value of visibility which may be of use.

This section attempts to quantify its usefulness.

The BMDP programs were used to compute a correlation

coefficient between the predictand and the various forms of

the beta visibility parameter. It is to be noted that the

visibility predictand is not a directly observed visibility

value, but rather it is the midpoint value of an observed

visibility range. The correlation coefficients, R, between

the various forms of the beta visibility parameter and the

visibility predictand of the 5CAT scheme are given in the

following table. A comparison of maximum, minimum and mean

values is also given. These statistics were derived using

the July 1979 data set.

Comparative Statistics and Correlation to the Visibility
Predictand (VIS) at Tau hr

Maximum (km) Minimum (km) Mean (km) R

VIS (Tau 0) 35.0 0.25 19.2 1.00

BVISR 46.9 0.56 14.3 0.43

BVISX 51.9 0.79 19.9 0.09

Comparative Statistics and Correlation to the Visibility
Predictand (VIS) at Tau 0+24 hr

Maximum (km) Minimum (km) Mean (km) R

VIS (Tau 24) 35.0 0.25 19.0 1.00

BVISR 48.7 0.51 14.3 0.31

BVISX 51.9 0.79 20.0 0.10

MBVIS 24 44.4 1.68 17.2 0.05
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Comparative Statistics and Correlation to the Visibility
Predictand (VIS) at Tau 0+48 hr

Maximum (km) Minimum (km) Mean (km) R

VIS (Tau 48) 35.0 0.25 18.8 1.00

BVISR 52.1 0.42 14.3 0.24

BVISX 51.9 0.62 20.0 0.06

MBVIS 48 50.1 2.14 15.4 0.02

It should be noted that in the table the analysis-

time parameters BVISR and BVISX are compared to the

predictand at all three time periods. The table shows

that the maximum, minimum and mean values of all the beta

visibility parameters are similar to the corresponding

values of the visibility predictand at each time period.

BVISR shows a higher correlation to the predictand than

BVISX at all time periods, though the correlation of both

parameters to the predictand worsens with time. Both the

analysis-time parameters BVISR and BVISX show higher

correlation to the predictand at Tau 24 hr than the

prognostic-time parameter MBVIS 24. The same is true at

Tau 4 8 hr when comparing BVISR and BVISX to MBVIS 48.

The following clarifies the reason for the slight

differences in maximum, minimum and mean values for the

same parameter at different time periods. The Tau 24 hr

data includes values from the first day of August (i.e.

up to 24 hrs after the last day of the July data set) , and
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omits values from the first day in July. In like manner,

the Tau 4 8 hr data includes the first two days of August

and omits the first two days of July. Thus the data set for

each time period is slightly different.

In addition, a skill score was computed for BVISR and

BVISX by determining the code group to which the computed

beta visibility belonged, and comparing that to the observed

code groups in the combined June 1976 and June 1977 data.

Heidke Skill Score Percent Correct

BVISR 0.10 33

BVISX 0.07 31

It can be concluded by these results that although beta

visibility is a useful predictor parameter for regression

analysis, it has quite limited skill when used to estimate

visibility by itself.

I. COMMENTS ON EXPLAINED VARIANCE

2
The total explained variance, R , of a multiple linear

regression equation is a measure of how well the dependent

variable (predictand) can be approximated by a linear com-

bination of independent variables (predictors) . The higher

2the value of R , the better the approximation is. A perfect

2linear relationship results in an R value of 1.0. However,

2
it should be noted that R indicates only how well a given

equation will estimate a given predictand if one uses the
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method of least squares. This method results in a regression

equation which minimizes the value of the sum of squares

of the estimate errors (estimate error = estimated value minus

2observed value) . An equation with a given R will not

necessarily provide a better estimate of the predictand than

2
an equation with a smaller R when evaluated by some method

other than least squares. An entirely different situation

may occur if one applies the derived regression equation to

independent data. Though the original equation may be a

good fitting equation for the dependent data (by the least

squares criterion) it may be a poor fit for the independent

data, especially if the number of cases is small. In this

study the sample size of over 4000 cases is large enough that

a drastic drop in estimation ability is not to be expected

when independent data are applied, however some deterioration

was encountered.

Also, as additional predictors are entered into an equa-

2
tion by the stepwise process the R value will increase, but

2an equation with fewer predictors and a lower R may, in fact,

provide a better estimate when applied to independent data.

This is so, since as more variables enter into an equation,

it becomes more likely that the equation will reflect relation-

ships unique to the dependent data. Thus extra variables

may degrade an equation when scored on independent data [Air

Weather Service, 1977] . Of course, the application of inde-

pendent data may also show an improvement in scores due to
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the peculiarities of a particular data set. However, some

form of truncation method should be used to limit the number

of variables in an equation such as was done in this study.

An experiment to demonstrate the relationship of score

to number of predictors in the equation was performed, using

the regression results of the SCAT scheme. Truncating the

SCAT scheme at different steps yielded the following.

Dependent Data Independent Data

Step
2

R Skill Score % Correct Skill Score % Correct

1 .166 .123 40.4 .128 39.5

2 .219 .149 42.7 .173 41.8

3 .245 .153 44.0 .179 42.7

4 .256 .151 43.2 .178 43.2

5 .262 .167 43.8 .179 42.7

6 .269 .174 44.0 .165 41.9

7 .272 .166 44.4 .156 41.2

8 .275 .174 44.0 .163 40.9
-

It can be seen that after a certain point the direct

2relationship between R and skill becomes obscure. In

this study the equation for the 5CAT scheme as described

in the text was truncated after the sixth step, for at

2the seventh step the R failed to increase by a rounded

value of 1%.
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It is encouraging to note that the results above show

that percent correct and skill score do not substantially

decrease when independent data is applied compared to when

dependent data is applied. In fact, the skill score is

relatively better in the former instance for the first

five steps.

J. DISCUSSION OF ERRORS

It is believed by the author that the techniques used

in this study would yield equations of high operational

usefulness if it were not for various unavoidable errors.

Linear regression assumes, for example, that all predictand

values used are errorless. This is far from true here.

Observer error in estimating visibility at sea is relatively

high, due mostly to a dearth of visibility markers at sea

and also due to the fact that many ships transmitting

synoptic reports may have observers with little or no

observational training and/or experience.

Errors also enter into the Model Output Parameters,

which are only as good as the numerical models from which

they are generated, analyses being better than prognosis.

The method used to interpolate the MOP ' s to the synoptic

ship positions also adds error to the scheme.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The categorical approach used in this study yielded

visibility equations which have comparable skill both at

analysis and prognostic times which is a promising result.

However, the actual skill of the equations is relatively

poor and not operationally useful at this time. The

reason for this is believed to lie inherent in the errors

of visibility observations, the non-linear relationship

between the predictand and the predictors, and the

numerically generated MOP ' s . The future promises much

improvement due to new statistical techniques, improved

numerical models and the identification of more air/

ocean parameters with a known relation to visibility.

The comparison of the probabilistic to the categorical

approach indicates that the probabilistic approach holds

more promise, at least partly due to the fact that the

categorical approach is hindered by the uneven distribution

of observations. The probabilistic approach seems to

estimate near successes better than the categorical

approach.

Parameters found to be most highly related to visibility

in the regression equations are: evaporative heat flux,

beta visibility, sea level pressure, sensible plus

evaporative heat flux, air/sea temperature difference,
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meridional component of the wind, relative humidity

parameters and FNOC ' s fog probability parameter.

The following recommendations are offered for future

research:

1. Test new parameters in relation to visibility,

such as some type of visibility persistence parameter,

more interactive, modified and binary parameters, and a

climatological parameter now being developed for the

North Pacific by the National Climatic Center.

2. Investigate further the techniques of weighted

least squares and transformation of the predictand to

relate more closely to the non-linear nature of the

problem.

3. Stratify the data with respect to critical values

of geography and to various MOP ' s

.

4. Investigate the use of discriminant analysis to

estimate visibility.

5. Stress the probabilistic approach over the

categorical approach, and in particular, expand the

work of Aldinger [1979] to include additional parameters

and prognostic equations.
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APPENDIX A

PREDICTOR PARAMETER DESCRIPTIONS

Part 1 . This part consists of all predictor parameters

considered for use in the analysis-time equations

developed from the combined June 1976 and June 1977 data

set.

NOTES

:

[*]

[-]

Denotes those predictor parameters that
repeatedly were selected early by the stepwise
regression thereby implying their relatively
strong relationship with visibility.

Denotes those predictor parameters that only
occasionally or never were selected early by
the stepwise regression, but may be useful in
future studies.

Denotes those predictor paramters that seemed
to have little or no relation to visibility in
this study.

SYMBOL DESCRIPTIVE NAME UNITS

A. Analysis Parameters (FNOC Mass Structure Model)

PS Sea-level Pressure [**] (mb)

TAIR Surface Air Temperature [*] (°C)

EAIR Surface Vapor Pressure [*] (mb)

T925 925 mb Air Temperature [*] (°C)

TSEA Sea-Surface Temperature [ *] (°C)
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B. Prognostic Parameters (FNOC Primitive Equation Model)

TX Surface Air Temperature [*] (°C)
Derived from surface air and potential
temperatures, boundary layer depth,
upper-level winds extrapolated to
surface, air density, drag coefficient,
gustiness factor and empirical constants.

EX Surface Vapor Pressure [*] (mb)
Derived from model's mixing ratio

SOLARAD Solar Radiation [*] (gcal/
Calculated absorption of incoming cm2/hr)
short-wave (solar) radiation,
(postive downward)

EHF Evaporative Heat Flux [**] (gcal/
Derived using air density, drag cm2/hr)
coefficient extrapolated winds,
and mixing ratios.

SHF Sensible Heat Flux [*] (gcal/
Recovered from SHF = SEHF-EHF. cm2/hr)
Originally derived by FNOC using
drag coefficient, extrapolated winds,
surface air temperature, TX,
density and constants.

SEHF Sensible Plus Evaporative Heat Flux [**] (gcal/
SEHF = SHF+EHF cm2/hr)

THF Total Heat Flux [*] (gcal/
THF = SEHF-SOLARAD+LW, cm2/hr)
where LW is the heating due to long-
wave (terrestrial) radiation.

C. Marine Wind Model (FNOC)

WWW Marine Wind Speed [*] (kt)

(DDWW) Marine Wind Direction (deg/10)
This variable was not used as a
predictor parameter, but rather
to derive other parameters.

D. Derived Parameters

UCOMP Zonal Wind Component [*] (m/sec)
UCOMP = -WWW sin (DDWW- 10)
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VCOMP Meridional Wind Component [**]

VCOMP = -VVWW COS(DDWW-IO)

CAPU I Directional Wind Component [*]

CAPU = -UCOMP • sin (LNGA)
-VCOMP • cos(LNGA)

[Haltiner, 1971] , where
LNGA = -10 - (I, J point longitude).

CAPV J Directional Wind Component [*]

CAPV = VCOMP • cos (LNGA)
-VCOMP • sin (LNGA)

[Haltiner, 1971] , where
LNGA = -10 - (I, J point longitude).

THETAX Potential Temperature X [-]

Derived using PS, TX.

THETAR Potential Temperature R [-]

Derived using PS, TAIR.

STABX Stability X [-]

Derived using [THETAX -

(THETA from T925) ] / (PS-925]

.

STABR Stability R [-]

Derived using [THETAR -

(THETA from T925 )]/ (PS-925)

.

ASTDX Air-Sea Temperature Difference X [**]

ASTDX = TX-TSEA

ASTDR Air-Sea Temperature Difference R [**]

ASTDR = TAIR-TSEA.

ADTSEA Advection of TSEA [*]

See Appendix B.l.

ADTX Advection of TX [*]

See Appendix B.l.

ADTAIR Advection of TAIR [-]

See Appendix B.l.

AASTDX Advection of ASTDX [-]

See Appendix B.l.

AASTDR Advection of ASTDR [*]

See Appendix B.l.

(m/sec)

(m/sec)

(m/sec)

(°K)

(°K)

(°K/mb)

(°K/mb)

(°C)

(°C)

(°C/hr)

(°C/hr)

(°C/hr)

(°C/hr)

(°C/hr)
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RHR

RHX

Relative Humidity R [**]

See Appendix B.2.

Relative Humidity X [**]

See Appendix B.2.

(%)

(%)

E. Interactive and Modified Parameters

RHRX = RHR • RHX [**]

RVCOMP = RHR • VCOMP [-]

RHRPS = RHR • PS [-]

RASTDX = RHR • ASTDX [**]

RSEHF = RHR SEHF [-]

PDSQ = (PS-1014.8)
2

[-]

PSRHX = PS • RHX [-]

PSSEHF = PS • SEHF [-]

PASTDX = PS • ASTDX [*]

PSVCMP = PS ' VCOMP [-]

VSEHF = VCOMP • SEHF [-]

EHFADT = EHF • ADTAIR [-]

ESEHF = EHF SEHF

EXEAIR = EX • EAIR [-]

SEVCMP = SEHF • VCOMP [-]

SEADTX = SEHF • ASTDX [-]

SERHX = SEHF • RHX [-]

ASTDRX = ASTDR • ASTDX [*]

UVCOMP = UCOMP • VCOMP [*]

CAPUV = CAPU • CAPV [*]

TARSEA = TAIR * TSEA [-]

TXAIR = TX • TAIR [-]
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SEHFSQ = SEHF • SEHF [-]

EHFSQ = EHF EHF [-]

RHRSQ = RHR • RHR [**]

RHXSQ = RHX • RHX [*]

VCMPSQ = VCOMP • VCOMP [-]

CAPUSQ = CAPU • CAPU [*]

TSEASQ = TSEA • TSEA [-]

ASDXSQ = ASTDX * ASTDX [**]

ASDRSQ = ASTDR • ASTDR [*]

ADSESQ = ADTSEA • ADTSEA [-]

PSSQ = PS • PS [-]

SREHF Square root of EHF [*]

SRPS Square root of PS [*]

SRASTR Square root of ASTDR [-]

SRASTX Square root of ASTDRX [-]

SRSEHF Square root of SEHF [*]

SRRHR Square root of RHR [-]

SRRHX Square root of RHX [-]

SRCAPU Square root of CAPU [-]

SRTSEA Square root of TSEA [-]

SRVCMP Square root of VCOMP [-]

SRASEA Square root of ADTSEA [*]

F. Binary Parameters

EHF1 fif EHF < 1.75 or EHF > 8.75; EHFl
\if 1.75 £ EHF <_ 8.75; EHFl =1.0

= 0.0 [-]
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EHF2 &
EHF3

US
PS1

{!<

PS2
{;<

RHR1
tif

RHR2
es

SEHF1
ftl

ASDX1
ti

ASDR1 &
VCMP1

ft
UCMP1 {"

STABX1

ft!

STABR1
ft!

EHF < 3.34; EHF2 =0.0 [*]

EHF > 3.34; EHF2 =1.0

EHF < 0.0; EHF3 =0.0 [-]

EHF > 0.0; EHF3 =1.0

PS < 1000 or PS > 1030; PS1
1000 < PS < 1030; PS1 = 1.0

= 0.0

PS < 1014.8; PS2 = 0.0
PS > 1014.8; PS2 =1.0

RHR < 60; RHRl =0.0
RHR ^60; RHRl =1.0

RHR < 83; RHR2 =0.0
RHR ^83; RHR2 =1.0

SEHF < 0.0; SEHFl =0.0
SEHF > 0.0; SEHFl =1.0

ASTDX < 0.0; ASDXl =0.0
ASTDX > 0.0; ASDXl =1.0

ASTDR < 0.0; ASDR1 =0.0
ASTDR > 0.0; ASDRl =1.0

[-]

[-]

[-]

[**]

[-]

[-]

[**]

[-]

VCOMP < 0.0; VCMP1 =0.0
VCOMP > 0.0; VCMP1 =1.0

UCOMP < 0.0; UCMP1 =0.0
UCOMP > 0.0; UCMP1 =1.0

STABX < 0.0; STABXl = 0.0 [-]

STABX > 0.0; STABXl =1.0

STABR < 0.0; STABRl = 0.0 [-]

STABR > 0.0; STABRl =1.0

[-]

G. Othe r Parameters

FTER FNOC Fog Probability Parameter [**]

BVISR Beta Visibility Parameter R [**]

See Appendix B,3.

BVISX Beta Visibility Parameter X [*]

See Appendix B,3.

(%)

(km)

(km)
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Part 2 . This part consists of all predictor parameters

considered for use in the analysis-time and forecast-

interval equations developed from the July 1979 data.

In this list some parameters not found useful in the

June regression runs were eliminated, but additional

parameters which were available for the July data set

were added.

A. Predictors used to develop equations both from June
and from July data (described in Part 1)

(1) Parameters available for Tau 00, 12, 24, 36
and 43 hr

PS T925 TX

EX EHF SHF

SEHF THF WWW

UCOMP VCOMP RHX

EHF

2

SEHF1 VCMPl

FTER UVCOMP

(2) Parameters available for Tau 00 hr only

TAIR EAIR TSEA

ASTDX ASTDR RHR

ASTDRX ASDXSQ RASTDX

RHRX RHRSQ BVISR

BVISX
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B. Additional variables available in the July 1979
data set

SYMBOL DESCRIPTIVE NAME UNITS

CLIMO National Climatic Center (%/100)
Fog Frequency Climatology [*]

SSANOM Sea Surface Temperature Anomaly [*] (°C)
Available at Tau 00 hr

U925 U Wind component at 925 mb [*] (kt)
Available at Tau 00, 12, 24, 36, 48 hr

V925 V Wind component at 925 mb [*] (kt)
Available at Tau 00, 12, 24, 36, 48 hr

E925 Vapor pressure at 925 mb [*] (mb)

Available at Tau 12,24,36,48 hr

GGTHTA Front Location Parameter [*] (°K/
Available at Tau 00, 12, 24, 36, 48 hr

NCLOUD Total Cloud Cover [*]

Available at Tau 00, 12, 24, 36, 48 hr

MBVIS Modified beta visibility [**]

See Appendix B.3
Available at Tau 12, 24, 36, 48 hr

RASTDR = RHR • ASTDR [*] (°C %)

Available at Tau 00 hr

H510 1000 mb - 500 mb [*] (cm)

D-value thickness
Available at Tau 00, 12, 24, 36, 48 hr

(10 km) )

(tenths)

(km)
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APPENDIX B

MISCELLANEOUS PARAMETER FORMULATIONS

1 . Advection Parameters

All advection parameters use the following general

formulation.

For the advection of a quantity (Q) the formula

ADQ = -V • 7Q, was used in the finite difference form:

RMAP"O - " TBT lCAPU -<2i+ i
- Qi-i'j

+ capv - (qj+ i " qj-i>i ] '

where RMAP = (1 + sin 60)/(l + sin (latitude))

and DM = [2 • (6 . 37 • 10
6

) • (1 + sin 60)1/31.205

(31.205 = number of grid mesh lengths, pole to equator,

on the FNOC I, J grid)

.

2. Relative Humidity Parameters

The thermodynamic equation for calculation of

saturation vapor pressure, known as the Clausius-Clapeyron

equation is given as

de
7

= L(T)/RT . (1)e_ dT

where

R = specific gas constant for water vapor

(0.461 joule g" 1
°K~

1
)
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T = temperature (°K)

L(T) = latent heat of vaporization of water

(joule g )

e = saturation vapor pressure.

This describes the behavior of e as a function of T,
s '

assuming water vapor to be an ideal gas. It cannot be

integrated exactly to give e as a function of T, since

L(T) is not known to sufficient accuracy at more than a

few temperatures [Weinreb, 1971]

.

The Goff/Gratch formula (Eq. 2) is an approximate

solution of Eq. (1) considering the deviations from a

perfect gas based on modern experimental data [List, 1963]

log
l0

e
s

= -7.90298 (T
s
/T-1) + 5.02808 log

lQ
(T /T) (2)

-1.2816 x i
-7

(10
11.334(l-T/T s ) . J,

+8.1328 x lO^dO- 3 - 49149^- 1
' - 1)

+ log, n e^10 ws

where

T = steam point temperature (373.16°K)

T = absolute (thermodynamic) temperature (°K)

e = saturation vapor pressure over a plane surface

of pure ordinary liquid water (mb)

e = saturation pressure of pure ordinary liquid

water at steam point pressure (mb)

.
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Two saturation vapor pressures were calculated for

each grid point using (a) the analysis-model field,

giving ESAIR, and (b) the prognostic-model field, giving

ESX. Then relative humidity parameters were calculated

as follows:

RHR = §§!r • 10 °

and RHX = =£r? • 100.

3 . Beta Visibility Parameter

The computation of this parameter starts with the

production of an extinction coefficient, 3/ which is a

function of windspeed and relative humidity.

3 = F (WWW) -F (RHR or RHX)

where WWW = surface windspeed (m/sec) and

RHR or RHX = relative humidity,

and

F(x) = A, + x(A
2

+ x(A + x(A
4

+ x (A + A
g
x) ) ) )

.

If the relative humidity input has a value greater than

99.5 then it is set equal to 99.5.
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The coefficients are as follows:

For WWW < 7 m/sec

WWW RHR or RHX

A, 0.8065629 -0.4072407 x 10
1

A
2

0.4852030 x 10* 1 0.3865717

A
3

0.5359734 x 10~ 2 -0.1405736 x lo"
1

A. 0.0 0.2496362 x 10
_3

A r 0.0 -0.216801 x 10~ 5

5

A. 0.0 0.7388672 x 10~ 8

6

For WWW >_ 7 m/sec

WWW RHR or RHX

-0.6135706 x 10
1

0.583962

-0.214833 x 10
_1

0.3777016 x 10" 3

-0.328404 x 10~ 5

0.1120986 x 10" 7

Next, a new extinction coefficient is computed as,

$ n
= 3 + S where S is given as follows

S Present Weather Code

0.0 <50
0.35 50-59
0.2 60,61,80
0.6 62,63,81
1.19 64,65,82

A
l

-0.8504248 X 10
1

A
2

0.3782149 X 10
1

A
3

-0.6052896

A
4

0.4835776 X 10" 1

A
5

-0.1915719 X lo'
2

A
6

0.3078907 X 10" 4
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The scheme does not apply if weather codes other than

those listed above are observed. The weather codes are

defined in the Federal Meteorological Handbook No. 2

[U.S. Departments of Commerce, Defense, and Transportation,

1969]

.

Next, beta visibility is computed by

BVISR = ' 91
, using RHR, and

6
TC

BVISX = |^- , using RHX.
PTQT

The modified beta visibility for use with prognostic times

is computed without the weather code input by using the

formula

3 91
MBVIS = =-^=-

and here RHX only is used for the relative humidity input
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APPENDIX C

STATISTICS

2
1. The coefficient of part determination, R , may be

interpreted as the proportion of the variance of the

predictand that is explained by the regression equation

2
The computation of R follows iHill, 1979]

.

Y. = observed value of the dependent variable for

case i.

Y. = regression-specified value for case i

Y = mean of the dependent variable

(Y.-Y.) = residual for case i, also called forecast

error
A

2
I (Y.-Y) = sum of squares about the regression line
i

r — 2
I (Y.-Y) = sum of squares of deviations about the mean
i

R = correlation coefficient between Y. and Y.
l l

.2 = proportion of the variance of Y. that is

"explained" by using Y., or

I (Y.-Y)
2

- KY.-Y.)
2

R
Z

=
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2. The F-to-Enter criterion used to enter variables in

the stepwise regression procedure is given as follows

[Hill, 1979].

For each independent variable, X, , that is not in

the equation at step (j + 1) , ( j variables have already

entered the equation)

;

F-to-Enter =

2
J (residuals at step j) - £ (residuals at step (j+1)
i i

2
with xv in the equation)

2
I (residuals at step (j+1) with X, in the equation) /
1 (n-j-2)

n = number of cases

The F-to-Enter statistic is generally a measure of

the importance of one variable relative to another.

3. The goal in regression is to find the line, Y, such
* 2

that the sum of the squared residuals [J (Y.-Y) ] is

minimized [Hill, 1979]. For the line to be useful, it

is required that the deviations between the observations

and the line be smaller than the deviations between the

line and the overall mean. Therefore, the quantity

74





[I (Y
i
-Y)

2
] -

I (Y
i
-Y

i
)

2
] should be large or one could

77, 2say a good line has £ (Y-Y) small compared to J(Y.-Y)

The regression line is Y = fc>

n
+ b,X, or generally,

Y. = b A + I b.X.

.

1 L
. J 31

4. When an independent variable has a low tolerance it

should not be included in a regression equation because

its value can be expressed fairly well using a linear

combination of variables already entered in the equation
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A variable with a low tolerance does not add significantly

to the accuracy of a regression equation and may cause

numerical and statistical accuracy problems [Hill, 1979]

.

The tolerance is computed by

TOLERANCE = 1 - R^
%

k*

where R is the multiple correlation coefficient of the

entering variable, X with the set of independent

variables already in the equation, I . If the computed

value of tolerance is less than a preselected limit

value, a prospective predictor cannot be selected for

the regression equation as it is too highly correlated

with the predictors already selected.
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APPENDIX D

VERIFICATION SCORE FORMULAE

1. The two scores, percent correct and Heidke skill

score, use a verification matrix as follows: (A 2x2

matrix is used as an example, but the technique may be

applied to any size matrix.)

estimated

>
u
0)

CO

o

A B i

C D k

J I

1

k

J

A+B
C+D
A+C
B+D

(a) Percent Correct = A+D
A+B+C+D x 100

number of correct estimates
total number of estimates

(b) Heidke skill score = (A+D) - EXP
(A+B+C+D) - EXP

number of correct estimates -

correct number expected due to chance
total number of estimates -

correct number expected due to chance

EXP
(i • j) + (k • I)

A+B+C+D
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2. Bias Calculation

Bias in estimating a given category =

number of estimates of a given category
number of observations of same category

J I
such as + or j-
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APPENDIX E

SELECTED VERIFICATION MATRICES

The following verification matrices show the number

of observations in relation to the number of regression

estimates for each visibility category. The top number

in each block is derived from dependent data and the

bottom number from independent data. Row and column

totals are given in the margins.

1. Verification Matrix for 5P00:

I

Regression estimated category

i

I II III IV V

2 2 174 273 70 521

>1
u

II

8 2 225 293 80 608

4 5 133 231 74 447

0)
2 1 99 165 60 327

(T!

U

III
3 2 110 323 150 588

>
u

1 2 105 239 197 544
Q)
111

.0 1 58 299 340 698
o IV

1 48 234 408 691

54 455 1316 1825
V

1 39 448 2009 2557

10 9 529 1581 1950
rn/~\rn7\ T

12 6 516 1379 2819
iU lrtl
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2. Verification Matrix for 5P24:

Regression estimated category

I II III IV V

21 21 111 331 57 541
I

>1
u

0)

II

13 4 129 337 97 580

13

6

10

5

91

58

269

174

81

68

464

311

u 14 4 64 305 201 588

ntl
III

d)

>
u

w

3 6 54 231 226 520

2 4 34 260 398 698
J3 IV
o

4 33 198 436 671

3 31 410 1360 1804
V

3 3 44 350 2088 2488

53 39 331 1575 2097
TOTALS

25 22 318 1290 2915
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3. Verification Matrix for 5P48:

Regression estimated category

I II III IV V

2 2 70 365 127 566
I

>1
u II

40 336 171 547

1 2 34 • 286 143 466

24 147 131 302

-P

U III
1 33 269 295 598

>

d)

2 14 193 295 504

18 206 461 685
CO

O
IV

9 175 468 652

17 298 1472 1787
V

14 276 2126 2416

3 5 172 1424 2498
TOTALS

2 101 1127 3191





4. Verification Matrix; Probabilistic vs. Categorical

This verification matrix shows results from dependent

data for the probabilistic scheme of Aldinger [1979] vs.

the 5CAT categorical scheme of this study. The upper

values in each block are for the probabilistic scheme,

the lower values are for the categorical scheme.

>1
u

Cn
<D

-M
(0

u

>
u

en

X!
O

I

II

III

IV

V

Regression estimated category

I II III IV V

106

7

275

3

139

106

113

504

81

94

714

714

76

5

275

2

264

100

198

644

93

155

906

906

83

2

284

2

483

90

461

902

141

456

1452

1452

77

1

232

1

380

60

976

820

246

1029

1911

1911

117 327

1

333

53

2240

1110

1120

2973

4137

4137

459

15

1393

9

1599

409

2988

3980

1681

4707
TOTAI
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