
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1980

Optimal control system design with prescribed
eigenvalues via Cauer Second Form.

Stanley, Edward J.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/19003

Downloaded from NPS Archive: Calhoun



OPTIMAL CONTROL SYSTEM DESIGN
WITH PRESCRIBED EIGENVALUES

VIA CAUER SECOND FORM

Edward J. Stanley Jr,





NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
OPTIMAL CONTROL SYSTEM DESIGN
WITH PRESCRIBED EIGENVALUES

VIA CAUER SECOND FORM

by

Edward J. Stanley, Jr.

September 1980

Thesis Advisor: M. J. Goldman

Approved for public release; distribution unlimited

T197051





SECURITY CLASSIFICATION Or THIS R»GE ('•».«. D«« Fm.r.d)

REPORT DOCUMENTATION PACE
REPORT MUMiTT a. OOVT ACCESSION NO

4 TITLE (on* Suhmf)

Optimal Control System Design
with Prescribed Eigenvalues
via Cauer Second Form

7. AuTmOAY*;
Edward J. Stanley, Jr.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

i RECIPIENT'S CATALOG NUHICII

s tyre or report • perioo covered
Master's Thesis;
September 1980

•• performing org. dmort numic*

• CONTRACT OR CHANT NUMtdtrij

» PERroRMINO OROANI2ATION NAME ANO AOORBSS
Naval Postgraduate School
Monterey, California 93940

to. program element. PROJECT. TASK
ARIA * WORK UNIT NUMBERS

II CONTROLLING O c »ICE NAME ANO ADDRESS
Naval Postgraduate School
Monterey, California 93940

12. REPORT OATE

September 1980
IS. NUMBER OF RAGES

155
14 MONITORING AGENCY name A AOORCSCfff Htllormrtt horn Controlling Ollleo) IS. SECURITY CLASS, lot in,, ri>«,.)

Unclassified

IS*. OCCLASSiriCATION/OOWNGRAOlNG
SCHEDULE

14 DISTRIBUTION STATEMENT (at tnlt Homort)

Approved for public release; distribution unlimited

It. KEY WOROS (Contlnuo on rovormo • <«<• II nmeooomrr —** Immntltr my mloek numoor)

Cauer Second Form; Continued Fraction Expansion; Continued
Fraction Inversion; Presceibed Eigenvalues; Transformation
from State to Phase Variable Form

20 ABSTRACT (Conllnuo on ro*otmo mloo II nocoooty *M l+omtttr my *<•<* mmmoot)

A method is developed in terms of the Cauer Second Form repre-
sentation of continued fractions as a means of designing linear
single-input-output (SIS0) control systems. Optimal closed loop
solutions corresponding to a set of prescribed eigenvalues are
obtained through minimization of a quadratic performance index.
The partitioning method of the Cauer Second Form for system sim-
plification is presented with a simplified inversion technique
for the reduced order system.

DD
, :°r71 1473

(Page 1)

EDITION or I MOV 44 is OBSOLETE
S/N 101-0 14- AA01

:

security CLAssiriCATioM or this raoe (Whon d*>«« gmoroa)





Approved for public release; distribution unlimited

Optimal Control System Design
With Prescribed Eigenvalues

Via Cauer Second Form

by

Edward J. Stanley, Jr.
Captain, United States Marine Corps
B.S., Villanova University, 1972

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1980





ABSTRACT

A method is developed in terms of the Cauer Second Form

representation of continued fractions as a means of designing

linear single-input single-output (SISO) control systems.

Optimal closed loop solutions corresponding to a set of

prescribed eigenvalues are obtained through minimization of

a quadratic performance index. The partitioning method of

the Cauer Second Form for system simplification is presented

with a simplified inversion technique for the reduced order

system.
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I. INTRODUCTION

The purpose of this research was to develop an algorithm

for obtaining optimal closed loop solutions corresponding

to a set of prescribed eigenvalues for single-input single-

output (SISO) control systems. It was desired that the

algorithm be adaptable to digital computer techniques and

unrestricted by system order.

The Cauer Second Form for system dynamics representation

was chosen over other alternatives because of the regular

pattern of the state and output matrices, and the method

of linear system simplification.

In Chapter II, several basic properties of both Cauer

First and Second Forms are presented from the theory of

continued fractions. A simple and efficient algorithm is

also developed for inversion of the continued fraction in

either form, independent of Routh ' s algorithm.

In Chapter III, the method of linear system order

reduction based on the Cauer Second Form is amplified.

The emphasis on this area was primarily to elucidate the

various methods previously employed for. system simplifi-

cation.

The original theoretical work of this thesis is pre-

sented in Chapter IV. The objective was to obtain closed

8





loop solutions corresponding to a prescribed set of eigen-

values. While minimizing a certain cost function, which

met desired system characteristics. It is shown, by examples,

that the derived algorithm is equally capable of handling

systems with multiple and/or complex, as well as, unique

sets of real eigenvalues.

The final chapter, Chapter V, presents a discussion of

results and suggests areas for future study.





II. PROPERTIES OF CAUER FIRST AND SECOND FORMS

A. CLOSED LOOP SYSTEM IN CAUER FIRST AND CAUER SECOND
FORMS

Consider the closed loop transfer function given by
n-1
I b.s 1

Y(s) L=0 x

U(s) n-1 .

'

n , r 1
s + Z a . s

i=0
"

(2-1)

with block diagram as given in Figure 2.1. Equation (2-1)

can be expanded into the Cauer Forms of continued fractions

as follows.

1. Cauer First Form

a. Arrange the numerator and denominator poly-

nomials in descending order.

b. Perform continued division.

u n-1 , „n- 2 . . -u -Lw x b ,s + b s + ... + b, s + b
Y( s) _ n-1 n-2 1 o

U(s) n . a on-l . a o n-2 . . a . as +a -, s +a n s +...+a, s + a
n-1 n-2 1 o

(2-2)

h
x
s +

h + 1
2 * (2-3)

h
3
s +

\ +

10
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2 . Cauer Second Form

a. Invert the numerator and denominator and arrange

the polynomials in ascending order.

n-2 n-1 n
„, v a + a. s + ....a n s + a ,s + s
Y(s) _ _o 1 n-2 n-1
U(s) . , „ . ., n-2 . n-1

b
o

+ b
l
S + +b

n-2
S + bN-l S

b. Perform continued division.

Y(s) _

(2-4)

UTsT

h
l

+

h
2 + 1 (2-5)
3

h
3

+

\ +

or

h
i

+

(2-6)
h +H
2

h
3

+

\ +

Block diagrams of both systems are shown in Figures 2.2 and

2.3.
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B. PHYSICAL INTERPRETATION OF DOMINANT TERMS
RESULTING FROM CONTINUED FRACTION EXPANSION

It is known that the most dominant terms in equations

(2-3) and (2-5) are the first quotients, h. s and h, , re-

spectively. A meaningful interpretation for these terms

can be accomplished by applying the initial value and final

value theorems. Letting Y(s)/U(s) = F(s), by an asymptotic

expansion approximation:

1. For Cauer First Form

lim f(t) ~ lim sF(s) s ~ (2-7)
h
l

t->o s^-°°

and

lim f(t) ~ lim sF(s) ~ h
2

+ h^. (2-8)

+

2. For Cauer Second Form

lim f(t) ~ lim sF(s) a h
2

+ h^ (2-9)

lim f(t) = lim sF(s) = h,. (2-10)

t-*» s-*o

lim f(t) must exist.

15





Equations (2-7) and (2-10) are of considerable interest since

they involve the dominant term, h, . The implication is that

the Cauer First Form emphasizes the initial or transient

response of the system; whereas, the Cauer Second Form em-

phasizes the final or steady state response of the system.

In general, the quotients lower in position in the continued

fraction expansion have less influence on the performance of

the system as a whole, (h. has less influence than h., where

i<j). Because many systems must meet a set of steady state

conditions, the Cauer Second Form will be used for the

prescribed eigenvalue problem.

C. CONTINUED FRACTION INVERSION

The theory of continued fractions was first associated

with Routh's Algorithm by Wall in 1945, [1] and [2]. The

following year Frank [3] extended and modified Wall's work

to include complex coefficients. Both, however, applied

Routh's algorithm only to continued fraction expansions,

not to the problem of inversion.

In 1969, Chen and Shieh [4] developed an algorithm

method for converting a continued fraction into a rational

fraction of two polynomials. Their method, which makes use

of Routh's algorithm, is presented below.

If the elements, h., are known for any continued

fraction, then the state and output equations can be

written immediately from Figures 2.2 or 2.3.

16





n

h
2
h
i

h
u
h
i

h
6
h
l 2n 1

h h, h.-CliT+ha) h c (h +h ) ...h (h +h.)21 413 613 2nl3

h
2
h
x VW h

6
(h

l
+h

3
+h

5
)

h
2
h
x

h
lf
(h

1
+h

3
) h

6
(h1+h 3+h 5

)...h
2n

(h 1+ .. +h
2n.1)

z. 1
1

Z
2

1

Z
3

+ 1

z 1
n _

(2-11)

z = Hz + Dr (2-12)

C
=

[h
2 \ h

6 •'• h
2x

]

n

(2-13)

C = L z (2-14)

17





The coefficients of the characteristic polynomial,

|sI-H|, become the first row elements of the required Routh

array. The next sequence of steps in determining the (j+2)th

row of the Routh array is to successively let

h. =
3

and

h
j
+ l

=
° (2-15)

for js[l,3,5, . . .2n_l]

and evaluating the remaining (n-k)x£ n-k) "ft." matrix, where

k = (j+l)/2, up to k=n-l, i.e., for n arbitrary and j=l;

the 3rd row of the Routh array becomes (after h, and h„ are

set equal to zero) the coefficients of

sI-Hj,

where the (n-l)x(n-l) H, matrix is

h. ,h_ h_h_
4 3 6 3

h
4
h

3 VW

h
2n

h
3

h„h h c (h +h c ) h (h +h c )M-3635 2n3o

,h ^(h + . . -h ^ -, )
2n 3 2n-l

(2-16)

This process repeats until the system state matrix is

reduced to a single element, H„ .,, yielding the (2n-l)th

row in Routh ' s array. It is observed that each successive

18





odd numbered row contains one less element than it's

predecessor. By inserting leading zeros in the 3rd, 5th,

..., (2n+l)th row, the matrix, P, is formed.

3rd

5 th

7th P33 1 (2-17)

(2n+l)th

Pll P12 P13 1

P22 P23 1

P33 1

The matrix, P, is the linear transformation matrix required

to obtain a linear system in Cauer Second Form from phase

variable (canonical) form. Continuing, the second row of

the Routh array is obtained from the output matrix, L,

and the above transformation:

c = Lz (continued fractions)

z = Px (linear transformation)

y = Cx (output equation, phase variable form)

Therefore

,

C = L P . (2-18)

C is an (lxn) vector whose elements are the seoond row of

the Routh array.

Consider the Routh array as an (n+l)x(2n+l) matrix with

typical element r... The quotients, h., of the continued

19





fraction expansion can be expressed as:

h
±

= —ii- (2-19)
1 ri+l,l

From this relationship and knowledge of how the Routh

array is generated, the remaining even numbered rows of the

array can be found. The transfer function as a ratio of two

polynomials is written as:

n . ,

T(s) = ^~ (2-20)
n^ i-1
Z r, . s

L=l 1 »3

Chen and Shieh [4] contend that this method is the

easiest in attaining the inversion. The author disagrees

and presents a simpler iterative method based on the in-

version technique for the Generalized Cauer Form given by

Goldman [5]. The method is equally suited to both Cauer

First and Cauer Second Forms, requiring no prior knowledge

of Routh's algorithm. Assuming all h.'s are known, and

non-zero, in equation (2-3) or (2-5), let:

a. = h
2i _ x

(2-21)

b. = h„. (2-22)
l 2i

for i e.[l , 2 , . . . . ,n] .

20





1 . Inversion of Cauer First Form

Initialize two (n+lxl) vectors C and D

C = [c
Q

c
1

c
2

c
r ] (2-23)

D = [d
Q

d
1

d
2

d
R ] (2-24)

to all zeros , except

c
n

= b
n

(2-25)

d
n-l

= a
x

X C
n

(2 " 26)

d
n

= 1. (2-27)

The following set of equations are first solved for i=l.

c ... = b . x d ... + c ... (2-28)
n-i+j n-i n-i+j n-i+j

d ^,'hm- = a . x c ... + d /•,-,>,•, (2-29)
n-(i+l)+3 n-i n-1+3 n-(i+l)+j'

where j e[0 , 1, 2 , . .
. , i] are substituted in ascending order, and

(2-28) is solved before (2-29) for each value of j. Now,

let i=2 in equations (2-28) and (2-29) and repeat the same

procedure. The index "i" is incremented until i=n-l, and

(2-28) and (2-29) are solved as before over the appropriate

range of the index "j". The final vectors, C and D, contain

elements which are the coefficients of the numerator and

denominator polynomials, respectively, of the transfer

21





function (or driving point impedance function)

n
Z Cs 11"1

• , 1

T(s) = =~ (2-30)

Z d.s
n" j

j=0 3

Example

T(b) = 10s
2
+ 171s + 360

(2 _ 31)
s +71s +702S+720

By continued fraction division:

10s
2
+ 171s+360 |s

3
+ 71s

2
+ 702s+720^ .1:

s
3
+17.1s

2
+36s

53.8s
2
+666s+720

53.9s
2
+ 666s + 720 |l0s

2
+ 171s+360^ ~~ : .1855

10s
2 +123.562s+133.58
U7.438S+226.42

47.U38S + 226.42 fe 3 . 9s
2+66 6s + 72(A 1.1362:

53.9s
2
+257.258s

408.742S+720

408.742s + 720 Jl+7 . U38S + 2 26 . k'Z{ .115
47.438S+82.79

143.63 (2-32)

22





/408.742s + 720^
'408. 742s

143.63 /408.742s+720i. 2.8458s

720 p.4 3.6 3^ .1
'143.63

720

995

Therefore, the transfer function in the form of equation

(2-3) is:

T(s) = 1

.Is + 1

.1855 + 1

1.1362s +

.115 +

2.8458s + 1

.1995

(2-32)

with

h, = .1 h
4

= .115

h
2

= .1855 h
5

= 2.8458

h = 1.1362 h c = .1995. (2-33)
3 6

Now, using equations (2-21) and (2-22);

23





a., = h, = .1 b, = h
2

= .1855

a
2

= h
3

= 1.1362 t>
2

= h^ = .115 (2-34)

a
3

= h
5

= 2.8458 b
3

= hg = .1995.

From equations (2-25) through (2-27),

c
3

= b
3

= .1995

d
2

= a
3
xc

3
= 2.8458( .1995) = .568 (2-35)

d
3

= 1 '

Substituting i=l into equations (2-28) and (2-29) for j=0:

c
2

= b
2
xd

2
+c

2
= .115C.568) + = .0653

d, = a
2
xc

2
+d = 1.1362C .0653) + = .0742

for j = 1:

c
3

= b
2
cd

3
+c

3
= .115(1) + .1995 = .3145

d
2

= a
2
xc

3
+d

2
= 1.1362C .3145) + .568 = .9353

At this point, j=i, therefore increment index "i"

for i=2, j=0:

c
1

= b
1
xd

1
+c = .1855(.0742) + = .013;

d
Q

= a
1
xc

1
+d = .K.0138) + = .0013;

24





for j=l:

c
2

= b
1
xd

2
+C

2
= .1855C.9353) + .0653 = .2388

d, = a
1
xc

2
+d

1
= .K.2388) + .0742 = .0981

for j=2:

c
3

= b
1
xd

3
+c

3
= .1855(1) + .3145 = .5000

d
2

= a,xd +d = .K.5) + .9353 = .9853

Now, at the point where j=i, and i=n-l, the transfer

function is:

TCs) = .0138s
2
+ .2388s + .5

(2 _ 36)
,00138s +. 0981s +.9853S+1

Multiplying numerator and denominator by 1/d = 7 20 yields:

T(s) a
10s

2
+171s+360

(2 _ 37)
s +71s +702s+720

2 . Inversion of Cauer Second Form

Initialize the two (n+lxl) vectors C and D, (2-23)

and (2-24), to all zeros, except:

c = b (2-38)
n n

d , = 1 (2-39)
n-1

d = a xc (2-40)
n n n

25





The following set of equations are first solved for i=l.

c .... = b . x d ... + c ..... (2-i+D
n-l+j n=i n-i+j n-i+j+1

d r-.T\j_' = a . x c /.,-,>,• + d ... (2-42)n-d+D+j n-i n-d+D+j n-i + 1

where jE[0 ,1 , 2 ,...., i) are substituted in ascending order,

and (2-41) is solved before (2-42) for each value of j .

Next, find d according to:
' n &

d = a . x c . (2-43)
n n-i n

Now, let i=2 in equations (2-41) and (2-42) and repeat the

same recursive procedure. The index "i" is incremented by

one until i = n-1, and for each value of i, (2-41) and (2-42)

are iteratively solved over the appropriate range of the

index "j". The resulting elements of C and D are the

coefficients of the numerator and denominator polynomials

of the transfer function:

n
., n-i
E c s

i

T ( S ) = hzl (2-30)
n
Z d.i

3 =
1

n
_ n-1
E d.s

Using the sample example, (2-31);

„, v 10s
2
+171s+360

TC s ; =

s
3
+71s

2
+702s+720

+ . . .

for 3=1, c •.-,-, nJ ' n-i+j+1 = 0.

26





Place the numerator and denominator terms in ascending

order, invert, and perform continued fraction division

360 + 171s + 10s
2

/720+702s+71s
2
+ s

3
l- 2

720+342s+20s
2

360s+51s
2
+s

3

360s+51s+s
3

/360+171s+10s
2
^ 1/s

2
60+51s+s

120s+9s
2

120s + 9s
2

/360s + 51s
2
+ s

3
^ 3

360s+27s
2

2 3
24s +s

J

24s+s
2

/120+9sC 5/s (2-44)
120+5s

45

4 /24 + sC 6

24

s M *+/s

4

The transfer function (2-31), in the form of equation (2-6)

is :

T(s) = 1

2 + s

1+ s

3+ s

27





5+

6 +

(2-45)

where

h
1

= 2 h
4

= 5

h
2

= 1 h
5

= 6

h
3

= 3 h
6

= 4 (2-46)

For the inversion process, using equations (2-21), (2-22)

and (2-46)

;

a
1

= h
1

= 2 t^ = h
2

= 1

a« = h~ = 3 b^ = h^ = 5

a = h, = 6 b = h = 4 (2-47)
3 b 3 b

and from equations (2-38) through (2-40),

G
3

= b
3

= 4

d
2

= 1

d
3

= a
3

x C
3

= 6(4) = 24. (2-48)

Now, substituting i = 1 into equation (2-41) and (2-42), for

j = 0:

c
2

= b
2

+ c
3

= 5 + 4 = 9

d
l

= a
2

x c
l

+ d
2

= 3(0) + 1 = 1 (2-49)
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for j=l;

c:
3

= b
2

x d
3

+ = 5(24) = 120

d
2

= a
2

x C
2

+ d
3

= 3(9) + 24 = 51

and from equation (2-43):

d
3

= a
2

x c
3

= 3(120) = 360

for i=2, j=0:

e, = b, = c
2

= 1 + 9 = 10

d
Q

= a
1

x c
Q

+ d
1

= 2(0) +1=1

for j=l;

c
2

= b, x d
2

+ c
3

= 1(51) + 120 = 171

d
1

= a x c
1

+ d
2

= 2(10 + 51 = 71

for j=2;

d
3

= b
1

x d
3

+ = 1(360) + = 360

d
2

= a, x c
2

+ d
3

= 2(171) + 360 = 702

and from equation (2-43):

d
3

= a, x c
3

= 2(360) = 720.

(2-50)
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Therefore

,

C = [0 10 171 360]

D = [1 71 702 720], (2-51)

and the transfer function realized from equation (2-30) is:

T(s) -. 10s
2
+ 171s + 360

(2 _ 52)
s +71s +702S+720

which is the same as (2-31).

This completes the development of the continued fraction

inversion algorithms from Cauer First and Second Forms. This

iterative procedure is easily seen to be computationally

much simpler than Chen and Shieh's method. First, it does

not require the need to find the H matrix, (2-11); and

second, it does not necessitate finding the coefficients

of n characteristic polynomials of diminishing order. This

method is solely based on equation (2-6), enumerating the

inversion from bottom to top. As by-product, the entire

Routh array appears in the intermediate steps as can be

seen from the Cauer Second Form example:

d
3

d
2

d
l

d
o

720 702 71

C
3

C
2 °1 360 171 10

d
3

d
2

d
l

= 360 51 1

c
3

c
2

120 9

d
3

d
2

24 1

°3
1

4

1 (2-53)
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where rows 2(n-i)l and 2(n-i) are taken from the ith iteration,

i£[0 ,1 , 2 , . .
.
,n-l] . "i=0" implies the rows come from the

initialization of C and D. The last row, the (2n+l)th, is

always the single element one.

If a comparison is made between equations (2-20) and

(2-30), it is observed that:

6
i

= r
2,n-i+l'

i£ tl,2,...,n]

d. = r
ljX_j +1 > je[0,l,2,. .. ,n] , (2-54)

where the c.'s and d.'s are taken from the (n-l)th intera-

tion under the index "i".

It is also observed that if the quotients, h.'s,

resulting from expansion into Cauer Second (First) Form

are used in the inversion algorithm presented for Cauer

First (Second) Form, then the c.'s and d.'s in the (n-l)th

iteration represent the transfer function coefficients in

reverse order. This is shown using the preceding example.

From equation (2-46);

\ = 2 h
4

= 5

h
2

= 1 h
5

= 6

h
3

= 3 h
6

= 4

and equation (2-47);

a, = h, = 2 b, = h« = 1

a
2

= h
3

= 3 b
2

= h^ = 5

a
3

= h
5

= 6 b
3

= h
6

= 4 .
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Now, using the inversion scheme for Cauer First Form, from

(2-25) through (2-27);

S
3

= b
3

= 4

d
2

= a
3
xc

3
= 6(4) = 24 (2-55)

d
3

= 1.

Making the substitution, i=l, in equations (2-28) and (2-29),

for j = ;

c
2

= t>
2

x d
2

+ C
2

= 5(24) + = 120

d = a
2

x C
2

+ d, = 3(120) + = 360

for j=l, (j=i)

c'
3

= b
2

c d
3

+ c:
3

= 5(1) +4 = 9

d
2

= a
2

x c
3

+ d
2

= 3(9) + 24 = 51

for i=2, j=0;

c
1

= b, x d, + c
1

= 1(360) + = 360

d = a
l

x C
l

+ d = 2(360) +
°

= 720

for j=l;

c
2

= b
1

x d
2

+ d
2

= 1(51) + 120 = 171

d
x

= a
x

x c
2

+ d, = 2(171 + 360 = 702
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for j = 2, (j=i);

c
3

= b, x d
3

+ c
3

= 1(1) + 9 = 10

d
2

= a, x c
3

+ d
2

= 2(10) + 51 = 71

and d~ remains unchanged, equal to 1.

Therefore;

•C = [0 360 171 10]

D = [720 702 71 1]

,

(2-56)

and the transfer function should be;

„,, v 360s
2+171s+10

TC s) = —
720s

3
+702s

2
+71s+l . (2-57)

Since the h.'s from the Cauer Second Form were used in the
l

inversion algorithm from the Cauer Frist Form, the vectors

C and D require reversing non-zero elements, resulting in:

C = [0 10 171 360]

D = [1 71 702 720] , (2-51)

and the correct transfer function is

T (s) = 10s
2
^171s+360

(2 . 31)

s +71s +7Q2S+720
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A digital computer program (FORTRAN IV) has been

written for both Cauer First and Cauer Second Forms and is

included as Appendix 3 with documentation.
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III. LINEAR SYSTEM ORDER REDUCTION VIA PARTITION
OF THE CAUER SECOND FORM

A control system, in general, can consist of many tens

or hundreds of elements. In such cases, the problems facing

the engineer include: (1) too many variables to efficiently

handle; (2) the dimension of the system is too high to com-

prehend; and (3) the modifications needed to meet required

design characteristics are difficult to ascertain. A logi-

cal approach is to seek procedural methods which reduce the

order of the system to a manageable size yet maintain the

basic characteristics of the full dimension model.

A number of different methods for system simplification

have been proposed for the reduction of high order dynamic

systems to low order models of a more computationally or

analytically tractable nature. The approaches used are

quite different, but appear to fall into three main groups.

The first is to ignore those modes of the original system

which contribute little to the overall response. Davison

[6] chose to neglect eigenvalues of the original system

which are farthest from the origin, retaining only the do-

minant eigenvalues and hence dominant time constants in the

reduced model. The shortcoming of this technique is that

many systems do not have any "dominant" roots [7].

Chidambara [8] essentially finds a reduced forcing function
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so that the steady state values of the lower order model

agree with those of the original system. The consequence of

this method is that the approximate model give correct

steady state values but incorrect time responses because

the reduced forcing function does not excite the modes of

the two systems in the same proportions [6]. Marshall [9]

proposed the reduction of the state matrix by partitioning

it and setting certain rate variables equal to zero in order

to maintain the original steady state values. This techni-

que, like Davison's, is based on dominant roots and, there-

fore, exhibits the same shortcomings.

The second approach is to search in some manner for the

coefficients of a set of differential equations of specified

order, the response of which is sufficiently close to that

of the original system when both are driven by the same

inputs. Sinha and Pille [10] proposed a reduction technique

based on the iterative application of the matrix pseudo

inverse algorithm [11] to determine a model of specified

order which minimizes the sum of the squares of the errors

between the responses of the original system and the reduced

order model to a given input. The main drawback of this

method is that the objective function to be minimized is

restricted to be the sum of the squares of the errors . Sinha

and Bereznai [12] presented a method which minimizes a

specified error criterion for a given reduced order model

of the original system, based on the pattern- search algorithm
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of Hooke and Jeeves [13]. Although this method provides

more flexibility than that of Sinha and Pille, it generally

requires considerably more computational time due to the

poor convergence properties of the pattern-search algorithm.

The third category involves application of the theory

of continued fractions. Methods involving this approach

have been developed by Chen and Shieh [14].

Sinha and DeBruin [15] and Fellows et al [16] have

established the fact that among the methods previously

mentioned, the approach by continued fraction expansion is

generally the best for linear model simplification.

A. SIMPLIFYING A TRANSFER FUNCTION

The general nature of a control system is that of a low

pass filter. Therefore, model simplification should con-

centrate on the steady state aspects of the response with

the transient portion given secondary consideration. As

previously shown in Chapter II, the Cauer Second Form

exactly characterizes these miens.

Given the nth order original system transfer function:

n-1 .

E b.s

T(s) =
i =

n^ —
, (3-1)

s
n

+ E a.s 11

j = ^

where an mth order simplified model of the system (where

m is strictly less than n) is desired, the polynomials in
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equation (3-1) are rewritten in ascending order;

u j.-u -L n-2 ., n-1
b n +b 1 s+.... ....b s +b n s

T(s) = 1 x-2 n-1

a n +a n s+ a s
x " 2

+a n s
n_1

+s
n (3 " 2)

0— 1 x-z n-l

and expanded into a continued fraction:

T(s) = 1

h
l

+

h
2

h
3

+

h2n-i
+

h
2n (3-3)

An mth order simplified model is obtained by keeping the

first 2m quotients of the expansion, omitting the remainder;

T(s) = 1

h
l

+

h
2

+

h
2m-l

+

h 2m
(3 - U)

and performing the inversion of the truncated fraction. The

inversion technique presented in Chapter II can be used for

this purpose.
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Consider the seventh-order system, representing the

control system of the pitch rate of a supersonic transport

aircraft [10], described by its transfer function:

„, s 375000Cs+. 08333)
T( s; -

s
7
+8 3.6 3 5s

6
+40 9 7s

5
+70 34 2s

4
+8 5 3 70 3s

3

+ 2814271s
2

+ 3310875s+281250 (3-5)

By continued fraction expansion:

T(s) = 1

9.00036 +

-.486286 +

-.036856 +

781496.2032 +

.00071478
(3-6)

Suppose a second-order simplified model is desired. Equa-

tion (3-6) has fourteen quotients. For the desired system,

the first four quotients are kept with all others discarded.

The truncated continued fraction becomes

:

T^Cs) = 1

9.00036 + s

-.486286 + s (3-7)

-.036856 + s

.616185
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and converted into transfer function form;

T
1
(s) = — .1299s+. 01105

s+1.14644s+. 09941 (3-8)

The block diagrams of equations (3-5) and (3-8) in the

Cauer Second Form are shown in Figures 3.1 and 3.2, respec-

tively. The unit step and impulse responses of the original

and simplified systems are compared and shown in Figures

3 . 3 and 3.4.

B. STATE EQUATION SIMPLIFICATION

The method of system simplification just presented is

especially advantageous when converted into state space

form. In Figure 2 . 3, a name for each state variable is

given after each integrator, shown in Figure 3.5, from

which the state equations and output equation can be

directly written.

.

z
l

.

2
2

.

Z
3 =

•

•

.

.

X
n

h
2
h
i

h
i+
h
i

h
6
h
l

'•• h
2n

h
l

h h, h„(h,+h~) h c (h-,+h Q ) . . .h (h +h Q )21413 b 1 3 ZT\ ± 6

h
2
h
lVW WVh

5
) --- h

2n
(Wh

5
)

h
2
h
x vh1+h 3

) h
6
(h 1+h 3+h 5

)...h 2n
(h1+h 3+ ..h

2n. 1
)

n
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1

1

1

r , and (3-9)

C = Ch h., h_....h ]
I 4 b 2n

'1

n

(3-10)

z = Hz + Dr , and C = Lz . (3-11)

Simplification of the equations in (3-11) can be achieved

by partitioning of H, D and L, as indicated in Figure 3.6.

The resulting mth order system becomes:

Z" = Hp z + D r ,

~p ~ F ~p ~p
(3-12)

where

:

Hp =

h
2
h
l

h
4
h
l

h
2m

h
l

h h, h.,(h,+h Q ) h 0m (h
1
+h Q )21 413 2m 13

h
2
h
l VW h

2m (V"--^2m-l )

(3-13)
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D" (3-14)

and C«= h z~

,

p ~p ~ p
»

c i = [h h kp I 4
h
2m ]

pl

P2

pm

(3-15)

(3-16)

As an example, consider the seventh order system described

by the transfer function:

C(s) .
14i4l. 53s

3
+ 783 19 s

2
+ 525286.125s + 607693. 25

R(s)
s
7
+112.04s

6
+ 3755.92s

5
+39736.73s'

4 (3-17)

+ 36 36 50.56s
3 +7 59894.19s

2
+68 36 5 6.2 5s+61749 7.3 75

Arranging the polynomials in ascending order and expanding

into the continued fraction yields

:
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C(s)
RTsT

"

1.016133 +

4.054112 +

-.067134 +

(3-18)

595660.646 +

.0000757
5

and equations (3-9) and (3-10) are formulated from the

quotients. A simplified model of second order is desired,

therefore, the state and output equations are partitioned

as indicated in Figure 3.7. The simplified transfer

function is:

Cp(s) .250367s+l. 035264 , _ no .

ppf-S - —9 (.3-19;
*rvb; s+.509768s+l. 051966

Unit step and impulse responses of the original seventh and

simplified second order systems are shown in Figures 3.8 and

3.9 respectively. It is observed that the results of ex-

pressing the seventh-order system by a second order model

are satisfactory.

It should be pointed out that a stable transfer func-

tion may produce an unstable simplified function because the

method of continued fraction expansion approximation does

not necessarily guarantee a stable system.
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IV. DESIGN OF OPTIMAL LINEAR CONTROL SYSTEMS
WITH PRESCRIBED EIGENVALUES

A. INTRODUCTION

Consider the control of a plant with dynamics described

by a set of first order, time-invariant linear differential

equations of the form

x = Ax + Bu, (4-1)

where x is the nth-order state vector, A is the (nxn)

plant matrix, u is the scaler control and B is the (nxl)

input matrix. The output is defined as

y = Cx ,
(4-2)

where C is the (lxn) output matrix.

A linear feedback control law is assumed, and of the form

u = G*x.
+

(4-3)

There are mainly two separate approaches in the deter-

mination of the feedback control matrix, G*, corresponding

to the system under consideration; 1 - optimal control and

2 - modal.

In the optimal control approach a performance index is

considered which is to be minimized in the design of a

All states are available or an observer or Kalman filter
is used to obtain the unknown states.
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system. Assuming a performance index can be defined that

represents most of the design requirements, "the solution

to the optimal control problem can usually be obtained only

by numerical methods that yield solutions to only a parti-

cular problem" [17]. If solutions are sought to more than

one numerical problem, simple performance indices must be

defined, which often do not satisfy many of the design

requirements. Therefore, the choice of a performance index

must fall somewhere between a realistic criterion and one

that is mathematically tractable.

A quadratic performance index will be considered as a

criterion for designing linear systems, of the form

oo

J - h f [x
T

Q x + Ru ]dt ,
(4-4)

o

where Q is a diagonal non-negative definite (nxn) matrix,

and R is a positive scalar.

In the modal approach, G* is chosen so that the closed

loop system achieves the prescribed eigenvalues. Equations

(1) and (3) together yield

x = (A + BG*)x .

If Q and R are given in the optimal control approach,

then the eigenvalues of the closed loop system are uniquely

determined, which may not realize the required performance

characteristics or desired degree of stability for the
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system. Using the modal control approach, a feedback control

matrix can be found that will give the system the desired

eigenvalues. This matrix is usually not unique, and it is

not possible in a practical sense to find one that is

"better" than it's predecessors, since a performance measure

is generally not known that corresponds to a given feedback

control matrix. Therefore, it is necessary to find a method

for determining the matrix, 6*, that simultaneously satisfies

the desired eigenvalues and minimizes a given performance

index.

In addressing this problem, Chang [18] and Tyler and

Tuteric [19] have applied the root locus method to single-

input, single-output and multivariable systems, respectively.

The method lacks a rational computational procedure for

determining the elements of the weighting matrix, Q, to meet

a set of prescribed closed loop eigenvalues. Anderson and

Moore [20] presented a restrictive method whereby a set of

eigenvalues may be located to the left of a line parallel

to the imaginary axis in the complex plane. Chen and Shieh

[14] presented a method using sensitivity analysis.

Solheim's [17] method of a diagonalized (decoupled) system

becomes complicated when the system contains either complex

or multiple eigenvalues. Systems that cannot be diagonalized

add further to the complication of the method.

The method developed here takes advantage of the

properties of the Cauer Second Form, is approached in a

simplistic manner, and is easy to implement computationally.
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B. TRANSFORMATION TO PHASE VARIABLE FORM

Consider an nth order linear system of the form

e = Se + Tf , (4-5)

with output

d = We (4-6)

Silverman [21], et al . , have shown that if the system is

controllable, then there exists a non-singular transformation

matrix which takes an arbitrary state variable system to

phase variable (canonical) form. (see Appendix A)

x = Ax + Bu (4-1)

y = C x , (4-2)

where

A =

1

1

1

• • • •

• • • •

1

a , a a oc

nl n2 n3 nn
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B = C -- m
±

B
2

6
3

6 n ]

If the system is not controllable, the phase variable

(canonical) form may still be obtained from the system

transfer function

Y(s) _

U(s)

n

i = l
S
i
S
i-1

n
n _

s + l a . s

i=l nl

(4-7)
i-1

Once the system is in phase variable form, Chen and Shieh

[22] have shown that the equivalent system in Cauer Second

Form is easily written as

z = Hz + Vu (4-8)

y = C*z ,
(4-9)

where the two forms are related by a linear nonsingular trans^

formation matrix, P,

z = Px .

The matrix P is an (nxn) upper triangular matrix.

(4-10)
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The performance measure under consideration becomes

oo

J = % f [z
T
Qz + u

T
Ru]dt (4-11)

where

-IT -1
Q = (P ) () P

From optimal control theory, the Hamiltonian

H = ^[z
T
Qz + u

T
Ru] + P

T
[Hz + Vu] , (4-12)

where P is the set of Lagrange Multipliers (also called the

costate or adjoint vector) . For the Hamiltonian to be

globally minimized, assuming no bounds on admissible states

and control values, it is necessary that dH/d u = and

3
2
H/au

2
>0.

3H/3u = Ru + V
T
p = (4-13)

implies

u* = -R
_1

V
T
p , and (4-14)

9
2
H/3u

2
= R>0 ,

(4-15)

since R was defined as a positive scalar. Included in the

necessary conditions for optimality are

z = Hz + Vu* (4-16)

8H/9z = -p = Qz + H
T
p . (4-17)
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Combining equations (4-14), (4-16) and (4-17) yields a set of

2n linear differential equations forming the canonical sys-

tem in Cauer Second Form.

-1 T
H VR ^V

1

-Q -H
(4-18)

It remains to be shown that this form is useful in obtaining

optimal closed loop solutions that correspond to a set of

prescribed eigenvalues.

C. SIMILAR EIGENVALUES

Consider the 2nth order cononical system in phase

variable form:

x

-Q

-1 T-BR X
B

-A"

x

(4-19)

It is known that this system possesses n eigenvalues with

negative real parts and n eignevalues with positive real

parte, and that they are located symmetrically about the

imaginary axis in the complex plane [ 17 .']
. The eigenvalues

of the optimal feedback system

x = (A + BG*)x (4-20)
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are identical to those with negative real parts in the

canonical system. It is possible, therefore, to focus

on the canonical system where the dependence eigenvalues

on the weighting matrices Q and R can be studied without

solving the matrix Riccati equation. The problem is in

determining a weighting matrix, Q, such that the system

attains the prescribed set of eigenvalues.

The canonical system in Cauer Second Form can be ob-

tained from the phase variable form using the linear trans-

formation

z = P x (4-10)

where P is a nonsingular matrix. We have

-Q

-IT-. r- -i
-BR ^B x

-A'

(4-19)

LP J
-1 T

(P V
A

-Q

- 1 T
•BR "B

-A

x (4-20)

,-1

(4-21)
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A
P

PAP
-1 -ITT

-PBR B P

-CP" 1
)

1,

Q P
T

-(P" 1
)
T
A
T
P
T

(4-22)

H

-Q

-1 T
-VR ^V

•H"

(4-23)

Let

M =

-Q

-1 T
-BR X

B

-A
J

-1 T
H -VR X

V

N =

-Q -H"

and

P =

(P-
X

)
T

(4-24)

61





where each sub-matrix of M, N, and P are known to be (nxn)

square matrices. It is easily seen that P is non-singular,

and that

P P
-1

(p- 1
)
1

«-l

P P"
1

C
p-l)TpT

(4-25)

Therefore

,

P M P"
1

= N (4-26)

shows the similarity of the M and N matrices. Two similar

matrices have the following properties:

1. Their determinants are the same.

det M = det N (4-27)
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2. Their traces are the same

Tr [M] = TrCN] (4-28)

k
E

i = l

m. . = E n . .

j =1 JJ
(4-29)

3 . Their characteristic equations are the same

det[AI-M] = detCXI-N] = , (4-30)

where X is an arbitrary variable. Since their characteristic

equations are the same, the eigenvalues of M and N must be

identical. It is now known that the Cauer Second Form and

phase variable system matrices are similar in that they

possess identical eigenvalues.

D. DEVELOPMENT OF THE PRESCRIBED EIGENVALUE PROBLEM

Initially given is a known linear system with dynamics

described by either a set of first order differential equa-

tions or its transfer function. It is desired to find the

optimal feedback control, u* , such that the performance

measure

J = hi f C x

*11

^22 °

qnn

x +
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u[l]u] } dt (4-31)

is minimized, where the eigenvalues of the optimal system

are specified as

A-|3 A«, A»j • • , A

1. Evaluation of the State (H) and Linear
Transformation (P) Matrices-'' " ---- ' '- MJ-

Assume the transfer function of the known system is

given

T(s) =

n
S & .s

i = l
x

i-1

s + E • s

i=l
x

(4-32)

The system matrices in phase variable form are

A =

1

" a
l " a 2 " a 3

-a
n

B =

(4-33)

C= L3 -I 8 o • • • • S _ J (4-33)

From equation (4-32), the Routh array is formed

64





a
l

a
2

a 1
n

S
l

6
2

.S n
o

c c

d
l

d
2

e
l

e
2

(4-34)

In matrix notation, the Routh array becomes [r..], where

i'eCl, 2, , 2(n+l)]

j:e[i, 2, , n+i] ,

and elements

r 2(n-k)+3, k
= 1

r
2(n-k)-4, k

=
°

ke[l, 2, . . . . , n+1] .

In general, the (2L+l)th row of the Routh array is the Lth

row of P

.
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p =

T r Tr
31 32

r
33

r
51

r
52

71

3 ,n

5,n-l

7,n-2

2n+l,2

'2n+l,l

(4-35)

P being an (nxn) upper triangular matrix, will always have

an inverse, P , which can be quickly and efficiently deter-

mined by digital computer. The H matrix formulation becomes

H = P A P
-1

(4-36)

h
ll

h
12

h
13

h
ll

h
22

h
23

h
22

h
33

h
ll

h
22

h
33

In

2n

'3n

n-l,n

n,n

(4-37)

The elements of the H matrix can also be obtained more

easily and directly from the first column of the Routh array.
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Let

1+1,1
(4-38)

The h.'s correspond to the quotients of the continued frac-

tion expansion of the transfer function in (32).

T(s) =

h
l

+

h
2

+

h
3

+

\ +

(4-39)

The H matrix then becomes as shown in Figure 4.1. The

regular pattern of the elements enable the H matrix to be

obtained by inspection once the h.'s have been determined

from either (4-34) and (4-38), or (4-39).

The matrices V, and C* , are easily obtained:

V = P B = (4-40)
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CM

en
x!

c
CM

+
CO

G
CM

X!

X!

en
xs
+

X!
+
en

X!

X!

i

G
CM

X!
+

+

X!

CM
X!

X!
+
en

X!

vO
X!

o
Cn

X)
C
o
o

CO

5-1

0)

3
cd

o

X?

XJ

X!

XI
CM

x:

en
X!
+

X!

X!
CM

X!

en
X!
+

X!

X!
CM

X!

en
X!
+

X!

X!
CM

x:

x

4->

ed

0)

4-)

eS

4-)

CO

J -

n

5-1

•i-l

fa
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C* = c P"
1

= [h h. h R h ]
~ ~ 2 4b 2n

(4-41)

B. Evaluation of Q

-IT -1
Q = (P ) Q P

v ll

Ql3

: 12

22

23

Qnl Qn2

13

23

33

n3

In

2n

3n

•nn

(4-42)

The canonical system in Cauer Second Form (4-23) has now

been obtained, with the numerical values of the elements

of Q still to be found. This system will be compared to

a non-optimized system with the prescribed eigenvalues also

in Cauer Second Form. The desired system in phase variable

form is

:

x = A*x + B*u

y = E x

(4-43)

(4-44)

Formulation into Cauer Second Form yields

x = H*z + V*u

y = E*z

(4-45)

(4-46)
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In a "nonoptimized" system (Q and R set equal to 0) , the

canonical system appears as:

H*

-(H*)
T

(M--47)

where

H'

-(H*) T
N : (4-48)

possesses the n prescribed eigenvalues with negative real

parts and n eigenvalues with positive real parts, symmetric

about the imaginary axis in the complex plane.

By equating the characteristic polynomials of N and N*

,

(4-23) and (4-47) respectively, it is now possible to

determine the elements of the Q weighting matrix.

detCsI-N] = detCsI-N*]

det

-1 T
sI-H VR -V

sI+H"

(4-49)

det

sI-H*

sI+(H*)
T (4-50)
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E. DETERMINATION OF THE OPTIMAL CONTROL LAW

Finding the elements of the weighting matrix, Q, is

obviously a non-trivial matter for all but the lowest order

systems. The method developed for obtaining these values

is based upon a succession of matrix building blocks, which

are individually computationally simple.

Starting with the matrix, H,

H = [h
i
.] (4-51)

define a new matrix, T,

T = Ct
i
,] (4-52)

where

t. . = h. . - h. . i i j (4-53)
13 i] 11

J

and
n

t. • = I t. . . i i n (4-54)
li

j=i+l ^

The matrix, T, therefore, is an (nxn) upper right triangular

matrix, where the diagonal elements are equal to the sum

of all other elements in the same row. The next "building

block" matrix, G, is defined by:

G = [ gi .J (4-55)

g. -. = 1.0 (4-56)
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for ie[l, 2 , . .
. , n] ,

Si, 2 " '1-2,1-1 ( "- 57)

for j til, 2 , . . . , n-1] ,

n-j + 2

Sin
= Z (t

-| v x §k i 1
} (4-58)

for je[3, 4,..., x] and iE[l, 2,..., n-j+1], where the

index j is held fixed for each summation over the index i.

The matrix, G, is an (nxn) upper left triangular matrix

characterized by the first column being all ones. One more

matrix needs to be defined at this point. Let the matrix,

W, be defined as:

W = [w... ] (4-59)
- XJK

where

"i.i.k
( - 1)3 x

«i,j u - 60)

for i, j and ke[l, 2, ..., n] .

The matrix, T$, is therefore a tridimensional array with each

"level" an upper left triangular matrix. Examples of the

matrices, T, G and W are shown below. Although not evident

at this point, the G and W matrices will be used heavily in

obtaining the values of the elements of the Q matrix.
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From the linear transformation

-IT T
Q = (P V Q P

1
(4-61)

it is observed that once the element Q.. is known, the

remaining elements in the same row (column) can then be

obtained through a process of

T =

t
11 12

22

t
13

23

33

In

2n

3n

nn

(4-62)

G =

1

1

1

1

1

11

22

33

g 13

s 23

S 33

n-1 y n-1

sn-2,3

'l,n-l gl,n

g 2,n-l

(4-63)
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bO
X

l

•H
+J

CMNW II O O

CO CO CO

H r-H iH
+ + +n •n •n

bO bO to
X X X
•n •n •n
•H CM CO

+-> +-> H
?sl CM CM CO CM d-

1 W II 1 II 1 w n
C T-> C •n C •r-

CO

bO
X

CM
I

c
+J

CM
CM |

I w c
C I"

CM

CM CM CM

H H rH
+ + +
•n •n •n
bO bO bO
X X X
•n •n •n
•H CM CO

+J -P -H

H -H rH CO rH d"
I W II 1 II 1 UO II

1

c •n
1

c •1—

1

bO
XH

I

c

I

c

•H I

I w c
C II

•H CM CO
+J +J -p

CM CO itCn ii C [XI II C CXI II

•t—

>

•I—

1

•n

H
1

H
1

iH
1

I

e
-p

c

r-\

I _l
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linear combinations of previously determined values. The

Q matrix is thus found in the following manner:

- - Q1X - - Q12 - - Q13 - -Qm Q in
-

Q 22 ~ ~ Q 23 " " Q 24 Q 2n"

Q33 " " Q34 Q 3n

'44.
--------- -Q^^

where for an nth order system (n>l)

2n 9
2n

9
n (h.) - n (h.r

Q
1=1

for n = l, Q x
= (H

2
H
1

)

2
- (h^) 2

^nn

(4-65)

11 2n ?
n (h.)

i=3

2n H

.

n (TT
)2 ^H

2
H
1

)

2
-(h

2
h
1

)
2

]

+
(4-66)

1=3 i
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3" 1 P
k n-1 " +

Q = - I
*> n l

Q (4-67)
13 k=l ^n-l.n-l lk

for i^j or j/n ,

Q in = - y Q
±j

(4-67)
3=1 J

and

n n ^ n
? nV " - * * ly + ( * H

ii > - < * h
3j

>

1 = 1 ]=1 J 1 = 1 3=1 JJ

n n n n
+ 2C E Z H.-CH..-H..) - Z Z h . . (ft .

. -h. . ) ] (4-69)
i=i 3=1 '

1X D: i:
l=i 3=1 1: ~

31 1:

The values of the diagonal elements of Q (other than Q, , )

generally involve varying linear combinations of already

determined values, more easily expressed in terms of the G

and W matrices, rather than the P and H matrices. To aid

in determining the values along the diagonal the following

labels are provided for G and W.

V . = p
1,3
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N-l N-2 N-3 1
s s s s s

g ll s12 s 13 gl,n-l s

g 21 S 22 g 23 g 2,n-l °

g31 g 32 g 33
° °

In

:n-l,l gn-l,2

gnl

s
N-l

lln

: il

: i2

: i3

w
lli

in-1

Qi,n

w
21j

31i

Wn,l,i

N-2

12n

N-3

13n

W
12i

W

w
22i

W
32i

13i

W iw
23

1

W00 .

33i

w , . . W , .

n-l, 1,3 n-l, 2,1

(4-70)

Inn
"71

W, _ . W.
l,n-l,i l,n,i

W 9 n 1 i2 ,n-l,i

7

(4-71)
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These two arrays will provide the coefficients of each Q..xx
i-j

s " necessary. Assume, for example, that a 5th order

system is being considered in equation (4-50). The results

of the expansion of both sides of the equation results in:

n
2i

n
2i

a + E a.s
zl

= b + Z b.s (4-72)
° i=l

x ° L=l 1

where a„ = 1, b = 1. By equating a. , and b. n for
n n J n & l-l l-l

i.e[l,2, ..., n] , it is possible to obtain Q...

i.e. a = b (4-73)
o o

a and b are the coefficients of s . From (4-70), it is
o o

observed that the only element in the s column that is

non-zero is g,,, which appears in row 1. The 1 "indicates"

that it is necessary to only look in "level" 1 of W, in the

column corresponding to s . This yields only the single

element W, r,. Therefore, the coefficient of Q, , s will be

sis x w
isi •

( "- 7k)

2i
What remains to be determined are the coefficients of s

not involving the Q..'s. Because of the symmetry of the

eigenvalues^ of both the system being "optimized" and the

system with the prescribed eigenvalues, the remaining

coefficients (those not involving a Q..) are easily

determined from:
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detCsI-H] x detCsI H
T

] (4-75)

and

detCsI-H*] x det[sI+(H*) T ], ("4-76)

which give:

and

n n ,

( Z a- s
X
)( Z (-1) a. s

1
) (4-77)

i=0 i=0 1

n n ,

( E a.*s
1
)( S (-l)

K
a.*s

1
) (4-78)

i=0
x

i=0
x

where k=i+l for n even and k=i for n odd. The indicated

multiplication in (4-77) and (4-78) result in:

n k 2i
Z (-1) a.s

x
(4-79)

i =
1

and

n
k 2i

Z (-l)
K
a.*s

Z1
(4-80)

i =
x

respectively, where the same conditions are imposed on "k"

.

Returning to the 5th order example, the coefficients of

s are -a
n
and -cr

n
*. To obtain Q, , is now a matter of

solving the equation:
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Qll
=

(g • g )

(4 - 82)

With Q, , known, it is a simple matter to obtain the

remaining elements in the first row (and column) using

(4-67) and (4-68)

.

2 2
To find Q?o> find all the coefficients of s . s results

in three separate ways:

M , 2
(1) S X s

(2) s
1

x s
1 (4-83)

M , 2
(3) s x s

The multiplicand indicates which columns of G, (4-70), is

of interest. Any non-zero element in G tells which level

of W is of interest. The multiplier is the indicator for

the column of interest in the array, W. Therefore, for

2
s x s :

«15 X (W131 5X1
+ W

231 Q 12 + W
331 Q 13

) (4-84)

e 1 1for s x s :

«1,U
X (W

1U1 Q ll
+ W

241 Q 12>
+

g x (W
142 Q 21

+ W
2 , 2

Q 22
) (U-85)
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2
for s x s

«1,S
X (H

151 «U»
+

§2,3 x (W
152 ^21 ) +

83,3
x (W

153 hi* • (U - 86)

Obtaining Q 22
is now a matter of solving the equation given

by the combination of (4-79), (4-80), (-84), (4-85) and

(4-86) :

(
.

Z

=1
Sj,3 W

15j Qji
5 - °1 =

" a
l* • (4 " 87)

for Q 22
.

Once Q 22 has been found, the remainder of the 2nd row

(and column) can be obtained using (4-67) and (4-68).

In a like manner, the respective equations to be solved

for Q 33 , QU4
and Q 55

are:

15- 2

(

j=i 1=1
E g. - EW.,.Q..) + (Zg. ., ZW... Q..)
= 1 J' 5

i = l
ll: 31 i=l 3 ' i = l

l2D 31

+ ( Z «1 3 * W
i3i Q ii

} + ( Z
§i 2 -

1 W
i4i Q ii

}

5

+

S=i gj
' x i=i"i5j Qji>

" a2 = -a* ,
(4-88)
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3

(

i

l g. . I W., . Q. •) + ( I g. - Etf... Q..)

+ (
.

E
n
gj,l * W

i3j Qji ) + a
3

= a 3* - (4 - 89)
j=l J ' i=l J J

( .^gj,i .^"iij Oji' - % = *V (4 - 90)

The underscore in (4-88), (4-89) and (4-90) indicates the

term that contains Q 33 ) Quii* anc* Q55' respectively.

The entire Q matrix is now known. By the inverse

transformation of (4-42),

Q = P
T

Q P . (4-91)

Q along with A, B and C of (4-1) and (4-2) are used to

obtain the matrix Riccati equation steady state solution.

= KA + A
T
K - KBR~ 1

B
T
K + Q . (4-9 2)

Once K has been determined, the optimal control law is

given by

u* = -R
_1

BKx .

+
(4-9 3)

Once u* has been determined, an inverse non-singular trans-

formation can be performed to take the phase variable form

+
It is now known that G=-R~

1
B
T
K in (4-20).
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back into state variable form. (See Appendix A)

F. ILLUSTRATE EXAMPLES

1. Odd Order System (Third)

Given the system

— _

x
l

.

X
2

—

.

_
X
3_

1

-13 -19 -7

— — — —
x
l

x
2

+

_
X
3_

1

u (4-94)

y = [1 0] (4-95)

find the optimal control law, u* , such that the quadratic

performance index (4-31) is minimized, where the eigenvalues

of the system are specified as

s, = -3, s
2

= -4, s
3

= -6.
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Forming the Routrh array yields

13 19 7 1

1

19 7 1

-7/19 -1/19

30/7 1

1/30

1

from which the third, fifth and seventh row are extracted to

form P

.

P =

19 7 1

30/7 1

1

(4-97)

and

,-1

1/19 -49/570

7/30

1/30

-7/30

1

(4-98)

From (4-97) and (4-98), H and V are calculated

-13/19 637/570 -13/30

-13/19 -63/19 9/7

-13/19 -63/19 -3

H =PAP
-1

(4-99)
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V = PB = (4-100)

The set of prescribed eigenvalues yields the system:

x. -72 -54 -13

[~ xr ~0 "

x
2

+

L
x
3_

1

u (4-101)

and

y = [1 0] x. (4-102)

From the Routh array

72 54 13 1

1

54 13 1

-13/54 -1/54

115/13 1

1/115

1 (4-103)
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extracting rows 3, 5 and 7 yields the P* matrix

54 13 1

115/13 1

1

, (P*)" 1

from which H* and V* are calculated,

1/54 -169/6210 1/115"

13/115 -13/115

1

(4-104)

H*=P*A*(P*)
-1

-4/3 676/345 -72/115

-4/3 -2574/621 1980/1495

-4/3 -2574/621 -11254/1495 (4-105)

V* = P*B& DA - 1

1

1

(4-106)

Formulation of equation (4-50) yields

det
si - H

-1 T
VR "V

sI+H"
= det

sI-H-

sI+H"
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det

s+13/19 -637/570 13/30

13/19 s+63/19 -9/7

63/19

Q 22

Q.

13/19

^12

13 23

s+3

Q
2 3

Q

l

l

l

l

l

l

33

s-13/19 -13/19 -13/19

637/570 s-63/19 -63/19

-13/30 9/7 s-3

=det

s + 4/3 -676/345 72/115

4/3 s+2574/621 -1980/1495

4/3 2574/621 s+11245/1495

s-4/3 -4/3 -4/3

676/345 g-2574/ -2574/
621 621

-72/115 1980/ s-11245/
1493 1495

(4-107)

It is desired to determine the values of Q. Brute force

enumeration of the determinants and equating coefficients

of like powers of s would eventually lead to the solution.

Using instead the method developed, from H(not H*) evolve

the T, G, and W matrices.

T =

7:0000 4.4333 2.5667

4.2857 4.2857

(4-108)
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1 7.0000

1 4.2857

1

19.0000

Q

(4-109)

and W =

-1 7.0000

-1 4.2857

-1

-19.0000

(4-110)

Now add the appropriate labels as in (4-70) and (4-71)

for G

s s s

1
""1 7.0 19.0

2 1 4.2857 '

3 1
(4-111)

for W:

2
s

1
s s

9u ~-l 7.0 -19.0
~

Qi2
-1 4.2857

Si3 _-l
(4-112)

Still necessary are the coefficients in (4-79) and (4-80)

n n n
< I a.s

x
)( z C-DV.s 1

) = I (-l)
k
a.s

2j

i=0 1
i=0 x

i=o 1
(4-113)





for n odd (n=3), k=i+l,

( Z a.s
1
)( E (-l)

1+1
a.s

1
) = Z (-l)

1+1
a.s

2i
(4-114)

i=0 i=0
1

i=0 1

(s
3
+7s

2
+19s+13)(s 3

-7s
2
+19s-13)

= s
6

- lis
4

+ 179s
2

- 169, (4-115)

and

( Z a.^s
i
)( Z (-l)

i+1
a.^s

i
) = Z (-1)

i + 1
a . *s

2i
(4-116)

i=0 i=0
1

i=0
x

(s
3
+13s

2
+54s+72)(s

3
-13s

2
+54s-72)

= s
6

- 61s
4

+ 1044s
2

- 5184 . (4-117)

Now, by equating coefficients of s , it is possible to

obtain Q -. -. - From G, the only non-zero element in the "s

column" is 19, which corresponds to row 1, and therefore

level 1 of W. From level 1 of W, the only non-zero element

in the "s column" is -19, with row label Q
1

, . The

coefficient of Q, , as obtained from (4-81) is 19(-19) =

-361. The solution for Q,, is obtained from equations (4-81)

and (4-82)

:
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-361 Q - 169 = -5184

Q ll
= (_5184 + 169) / ~ 361

= 13.892 . (4-118)

From (4-65), (4-67) and (4-68), Q and Q are successively

obtained:

5l2
=

r^f *U = -WT (13.892) = -22.69 (4-119)

Q13
= " Q ll

" Q 12
= -13 ' 892 " (-22.69) = 8.798. (4-120)

The next power of s which results from expansion of (4-107)

2 . . . 2
is s . Equating coefficients of s , it is now possible to"2 2 11obtain Q 97 « s results from the products s xs , s xs ,

2
and s xs . Therefore, from the development starting at

(4-83), the equation to be solved for Q 22
is:

j=l J ' 1=1 J J j=l J 1=1 J J

+ ( I g^ ,. I W.,. Q..) + a
1

= a,* (4-121)-pji
i = 1

l3 3 Ji
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Substituting known values, equation (4-121) becomes:

Sl3 (Wll + W
211 512

+ W
311 313 >

+

§12 (W121 Qll
+ W

221 Ql2
} + S

2 2
(W

122 Q 21 * W
222 Q 22

)

+
Sll (W

131 5U )
+ S 21

CW132 521 >
+ S

3 1
(W

133 3 31
>

+ o
1

= a
x
* (4-122)

19.0C-H13.892) ^ K-22.69) - 1(8.798)]

+ 7.0 [7.0(13.892) + 4 . 2857 (-22 . 69 ) ]

+ 4.2857 [7. (K-22.69) + 4.2857 Q 22
>] + lC-19 (13 . 892 )

]

+ 1 C-19C-22.69)] + 1[-19(8.798)] + 179 = 1044

Q 22
= 84.155 (4-123)

From (4-6 8)

Q
2 3

= "5
21 " Q 22 = -Ql2 " ^22

=

- (-22.69) - (84.155) = -61.465 (4-124)
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s is the next power of s obtained in the expansion of (4-107)

. . 4
Equating coefficients of s , it is now possible to obtain the

4
equation from which Q~- can be found. s results from multi-

2 2
plying s xs . Therefore, from G and W:

gll
C " 1(Q ll

) ' 1(Q
12

} ' 1(Q
13

)]

+ g 2
it-lCQ

2 i
) - 1( Q22 } ' 1(Q 23

)]

+
831 C -1( Q

3 1
) " 1(Q 32

} " lC(W
" °2 = ~ Q 2* '

(4-125)

where g, , , g 21
and g-, all equal one. Therefore, (4-125)

becomes

- E E Q. . - a = -a * (4-126)
i=l j = l ^ 2 2

Solving (4-126) for Q 33
:

3 3

Q„ = -a * + a - I Z Q.. (4-127)
66 l l

i = l j=l 13

i+j t 6

Since

k=l
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n ^
1 Q ik

=
° '

k=l lK (4-128)

and (4-127) simplifies to

Q
3k

= + a 2* " a
2

- J Q 3 k (4-129)

= 61-11-8.798+61.465 = 102.667 (4-130)

Q is now entirely known.

Q =

13.892

-22.69

8.798

From (4-91):

-22.69

84.155

-61.465

8.798

-61.465

102.667

(4-131)

Q = P QP =

5015

865

50

(4-132)

To find the optimal feedback control law, u* , it is necessary

to solve the matrix Riccati equation (4-92), where Q, A, B
r* *« *»»

and C are as given in (4-131), (4-94) and (4-95). The

solution yields:
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u* = -[59 35 6] (4-133)

x,

or u* = -59 x, - 35 x - 6 x~

With G* as given in (4-133), x = (A + BG*)x

becomes

x
l

.

x
2

*™

.

_
X
3_

10
1

72 -54 -13

~
xl~

x
2

_
X
3_

(4-134)

Comparing (4-134) with (4-101), it is observed that (A+BG*)=

A :
'
:

; therefore, the desired system has been realized with the

set of prescribed eigenvalues.

2 . Even Order Example (Fourth)

Consider the linear system represented by the transfer

function:

Vs) =
s +9s+34

s
4
+12s

3
+48s

2 +80s+4
(4.135)

the system eigenvalues are -2,-2,-2, and -6.
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This system could be expressed in phase variable form (4-31),

thereby obtaining the transformation matrix, P; the system

can be realized in Cauer Second Form (4-36). Instead, in

this example, it is desired to obtain the quotients which

result from partial fraction expansion of the transfer func-

tion. In Cauer Second Form, T(s) becomes:

T(s) = 34±_9s + s
2

49 + 80s + t8s +12s
3
+ s'

t

h
l

+

V
V

\ +
2.

h
5

+

h
6

+

h
?

h
8

95
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where the quotients, h., are
1

h- 1.41176

.505245

-4.6287

-.627911
•8

23.07

.146914

-281.808

-.024241

Substituting these values into the matrix in Figure 4.1

yields

H = -

71328

71328

71328

71328

-.88647

2.01997

2.01997

2.01997

.20741

-.47261

2.91670

2.91670

-.03422

.07798

-.48125

6.35004

(4-137)

Again, V is (and in all cases considered will be) a vector

of all ones

,

"1

1

1

1

V = (4-138)

It is desired, as before, to find the optimal control law,

u« , such that the quadratic performance index (4-31) is

minimized, and that the optimal system realizes a set of

prescribed eigenvalues. The eigenvalues are given as:
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2, s
2

= -5

s 3» s
4

= ~ 6 1 J 3 (4-139)

With the zeroes of the transfer function (4-136) the same,

the transfer function of the desired system with the pre-

scribed eigenvalues becomes:

V (8) = — s +9s+34

s '+19s
3 +13 8s

2
+435s+45

(4-140)

By continued fraction expansion of T*(s) the quotients

obtained are:

H.

H,

H,

H,

13.2353

.107635

-71.3206

-.088175

H,

H,

H.

H,

-1077.43

.004834

396.926

-.024294

from which H* is:

H* = -

1.42458 -1.16702 .06399 -.32154

1.42458 5.12168 -.28082 1.41114

1.42458 5.12168 -5.48975 27.58655

1.4258 5.12168 -5.48975 17,94349 (4-141)
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Formulation of equation (4-5 0) yields in matrix notation:

det =

sI-H

Q

-. +

sI+H"
det

sI-H*

sI+(H*)
T

(4-142)

which is to be solved for Q.

As before, we formulate the T, G and W matrices

according to equations (4-53) and (4-54); (4-56), (4-57)

and (4-58); and (4-60), respectively.

This yields:

T =

12.00 2.9064

9.6614

2.7093

3.3893

6.8313

6.3500

6.2721

6.8313
(4-143)

G =

1 12.0000 46.5882 67.2941

1 9.6614 23.1534

1 6.8313

1

(4-144)

the notation 1 indicates an (nxn) matrix with all elements
unity

.
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w =

-1 12.0000

-1 9.6614

-1 6.8313

-1

-46.5882

-23.1534

67.2941

(4-145)

With the proper labels, (4-70) and (4-71),

for G:

1

2

3

4

s

1

1

1

1

12.0000

9.6613

6.8313

46.5882

23.1534

s

67.2941

(4-146)

for W:

Q i2

Qi3

14 l_

,t
s

"-1 12.0000

-1 9.6613

-1 6.8313

-1

46.5882

23.1534

67.2941

(4-147)

2k
G and W contain all of the coefficients of Q..s resulting

lj

from the expansion of (4-142). Still to be found are the
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2k
coefficients of s not involving any Q.., the a-'s and a •

*
' s ,

Therefore, from (4-79) and (4-80):

(s
4
+12s

3
+4 8s

2
+8 0s+48)(s

4
-12s

3
+48s

2
-80s+4 8)

= s
8

- 48s
6

- 480s
4

- 1792s
2

+ 2304, (4-148)

a n = 2304
a
3

= -48

a = -1792
1

a^ = 1 (4-149)

a
2

= 480

and

(s
4
+19s

3
+138s

2
+435s+450) x

(s
4
-19s 3 +13 8s

2 -43 5s+450)

= s
8
-85s

6
+ 3414s

4
- 65025s

2
+ 202500 , (4-150)

o
Q
* = 202500

a
x
" = -55025

a
2
* = 3414

a
3
* = -85

a
4
* = 1 . (4-151)
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Determination of the Q..'s results from equating

coefficients of like powers of s from the expansion of the

determinants in equation (4-142). The Q..'s are obtained

in a successive method (4-65) by starting with the s

coefficients, then continuing by equating coefficients of

2k
s , kieLl, 2, ... n-1], in scandent fashion.

For s°:

from G, the only non-zero element is g.., corresponding to

row 1, therefore, level 1 in W. The only non-zero element in

level 1 of W in the s column is W,
u
,. Equating coefficients

yields

:

(glu
x Wm ) Qu a

Q
= a * . (H-152)

Solving:

n - 202500-2304 : (4-153)Q ll
" (67.2941)(67.2941) " ^-20803 Q4-153J

and from (4-6 7) and (4-68),

Q 12
= Q 21

= -88.95327

^13
= Q 31

= 48 ' 14819

Q = Q 41
= -3.40294

(4-154)
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2
for coefficients of s

1 3 ,. 2 2

Z g. Z W , Q + Z g,
3

Z W. . Q..
1=1

:H
i = l 10 31 i=l ^ i=l ^ ^

+ Z g. Z W.,. Q.. + a = +a* . (4-155)
j=l •>* L=l

x : J 1 -
1

-
1

Solving

:

Q 22
= 296.94152 (4-156)

and from (4-67) and (4-68),

Q 23
= Q 32

= -263.70162

Q 24
= Q 42

= 55 ' 71337 (4-157)

4
for coefficients of s :

^g j3 J/iij Qji
+ *«j2 J/wj V

4 2-.
+ Eg.. 2 W. . Q.. + a = a * (4-158)

. .
6ii T , i3] x ]i 2 2

j=l J L=l J J
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Solving:

Q 33
= 351.24159 (4-159)

and from (4-68)

,

Q 34
= Q 43

= ~ 135 - 68816 (4-160)

for coefficients of s :

Eg.. E W.,. Q . . + a = a Q *

j=l 31 i=1
il3 31 3 3

Q is now entirely known

(4-161)

4 4

Q 44
= " E E Q ii

+ Q 3* ' a
3

(4-162)
44 j=l 1=1 1=l 6 *

i+j?*8

-Q
44 = - .2 QH j

+ *
3
* " a

3
(4 " 163)

3=1 J

Q = 120.37773 (4-164)
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Q =

44.20803 -88.95327 48.14819

-88.95327 296,94152 -263.70162

48.14819 -263.70162 351.24159

-3.40294 55.71337 -135.68816

-3.40294

55.71337

-135.68816

120.37773

From equation (4-91):

(4-165)

200196

9= P
i
QP =

63233

2934

37

(4-166)

Substituting matrices Q, R, A, B and C into the Riccati

equation, and solving, yields the optimal feedback control

law , u* ;

u* == -[402 355 90 7]
~
xl~

x
2

X
3

_v

(4-167)

where G* = -[402 355 90 7].

The optimal closed loop system, x = (A+BG*)x,

in phase variable form is:

(4-168)
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~'

x
l

x
2

-
=

X
3

•

_v -450 -435 -138 -19

rv
X

2

X
3

_V

(4-169)

which realizes the desired set of eigenvalues.

3. Higher Order Example (Seventh)

The previous examples represent an odd and an even

ordered system, illustrating the minor differences in com-

putational procedures . It is observed that for low order

systems, the calculations can be done, relatively easily by

hand. Higher order systems require, laborious and tedious

computations. Appendix C provides a digital computer program

which yields the weighting matrix, Q, with the only required

input being the transfer functions of the known and desired

eigenvalue systems.

The following seventh order example utilizes the

results from the program given in Appendix C.

Consider the linear system given by its transfer

function

:

T
?
(s) = — 249.435788

'+9.0s
6
+ 40.4s

5
+ 116.8s

l+

+2 3 3.6s
3
+ 3 2 3.2s

2
(4-170)

+ 288.0s + 128.0
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It is known that the characteristics of the desired system

are such that its resulting transfer function is given by:

T * (s) _ 2i+9 .1435788

s
7
+ 15.4s

6
+ 101,64s

5
+ 3 7 2.6 8 S

1+

+ 819.8 9 6s
3

+1082.2 6272s
2
+793.659328s+249.43 57888

(4-171)

The diagonal Q matrix was determined from the computer pro-

gram yielding:

Q1
- = 45834.21273428

Q 22
= 89780.21841734

Q 33
= 55970.39786199

Q^ = 19170.7157376

Q 55
= 3959.33664

Q 66
= 494.9776

(1+ _ 1?2)

Q 7?
= 33.68

Q, R and the state and output matrices representing the

transfer function in equation (4-170) in phase variable form

were substituted into the matrix Riccati equation. The opti-

mal feedback control law, u*, resulting from solution of the

Riccati equation is:
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u* = -121.435789 x
±

- 505.659319 x
?

-759.06269 x
3

- 586.29596 x^ - 255.879974 x
5

-61.2399914 Xg - 6.39999944 x
? , (4-173)

where the matrix G* is:

6* = -[121.435789 505.649319 759.06269 586.29596

255.879974 61.2399914 6.39999944]. (4-174)

The optimal closed loop system,

x = (A + BG-) x

y = Cx ,

expressed as a transfer function is:

Y(s) 249.435788
U * ( S

}

s
7
+15.39999974s

6
+101. 6399914s

5
+

372. 67997 4s
4
+ 819. 89596s

3
+

1082. 26269s
2
+ 793. 659319S+ 249. 435789,

which realizes the desired transfer function with the pre-

scribed eigenvalues.

Figures 4.2 through 4.13 show the impulse and step res-

ponses of the three previous examples, both before and

after compensation.
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V. CONCLUSIONS AND DISCUSSION

A method has been shown for determination of the state

weighting matrix in order to satisfy a prescribed set of

eigenvalues through phase variable state feedback. From a

strictly mathematical viewpoint, this technique requires only

a knowledge of matrix algebra. Every attempt has been made

to avoid the necessity of inverting a matrix. The intro-

duction of Chapter IV made known the fact that previous devel-

opments in this area have suffered the main drawback of res-

triction. The author believes the method presented here,

using Cauer Second Form, overcomes many of these restrictions

It presents a rational computational procedure for determina-

tion of the weighting matrix, Q; the system eigenvalues are

only required to be in the left half of the complex plane as

opposed to the left of a line parallel to the imaginary axis

;

and the method is no more complicated for multiple or complex

eigenvalues than a system with linearly independent eigen-

values (or eigenvectors).

It should be noted that some authors "define" the

eigenvalue(s) of a matrix to be only the real root(s) of the

characteristic equation. In the development that has pre-

ceded in this thesis, all roots are considered eigenvalues

of the associated matrix.
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The algorithm derived in Chapter IV, is designed as a

basis for future research. In particular, if the designer

is working with nth order systems where n is relatively

large, it may be advantageous to look at using mth order

simplified models (m<n) of each system by a partitioning

scheme similar to that in Chapter III. Again, it is em-

phasized that reduced order models do not necessarily yield

stable systems. If the simplified system retains the basic

characteristics of the original system, especially in steady

state, then this would appear to be a reasonable approach.

A parallel approach could also be inventigated regarding

multi-input multi-output (MIMO) systems, treating each

element of the system transfer matrix as an individual

transfer function.

To the author's knowledge, no work has been done in the

digital or sampled data areas involving continued fraction

theory. This area should be considered due to the increasing

use and need for digital control systems

.

These topics represent just a few of the areas available

for future work.
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APPENDIX A

Consider the system

X = Ax + Bu, (A-l)

where x is an n-dimensional state vector, u is the input

function, and A and B are time-invariant (nxn) and (nxl)

matrices, respectively. The phase variable (canonical)

system representation is defined as

v = Av + Bu, (A-2)

where v is an n-dimensional state vector and

A =

10
1

"*1 ~ a
2

~a
3 n

, B = (A-3)

The systems represented in (A-l) and (A-2) are said to be

equivalent if and only if there exists a non-singular matrix,

K, such that

x = Kv (A-4)
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Kalman [23] has shown that a necessary and sufficient condi-

tion for such an equivalence to exist is that the system

in (A-l) be completely controllable.

The controllability matrix of system (A-l) is defined by

E = [B : AB I A B A^B] (A-5)

or in an equivalent manner

hi — L e -, e ~ . . . . 6 j j12 n
(A-6)

where the (nxl) vector e. is recursively defined as

~i+l ~ ~i
e, = B . (A-7)

The controllability matrix of system (A-2), E, is defined

in a similar manner with A and B. Since there is only one

control input, a necessary and sufficient condition for

controllability is that the (nxn) matrix E (or E) have an

inverse.

Silverman [20] has shown that if the system in (A-l)

is controllable , then the transformation matrix, K, is

determined by

~-l
K = E E

x
, (A-8)

where
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;-i

n

3
a
H

....
n

1

4
a
5

.... 1

5
a
6

. . . .

• • •

• • •

• • •

1

....

(A-9)

and a =

n-1

a
n

= -E"
1
A
n

B (A-10)

The elements of a are the coefficients of the characteristic

polynomial

:

n . ,

det[SI-A] = det[SI-A] = S + Z a.S
1 " 1

l=1
i

(A-ll)

The matrix inversion in equation (A-10) can be avoided by

using the Leverrier-Fadeev method for calculating the

coefficients of the characteristic polynomial. Once the

coefficients are known, E is written by inspection.
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Rane [24] presented a simplified procedure for finding

the transformation matrix, K, requiring no matrix inversions.

Substituting equation (A-4) into (A-l) and premultiplying

equation (A-2) results in:

x = AKv + Bu

= KAv + KBu

(A-12)

(A-13)

Comparison of equations (A-12) and (A-13) yields

AK = KA (A- 14)

and

B = KB . (A-15)

Partition K into n column vectors, each (nxl), so that

K — L k -, x •••• k J •

~1 ~ I ~n
(A-16)

Substitution of (A-3) and (A-16) into (A-14) and (A-15) gives

^ ^1 ^2 -o -n

CSi *
2 !5 3

k ]~n

1 . . . .

" a
l

-a2"-- a
n-l

' a
n

(A-17)

125





and

B = [k- k„ k k ]~1 ~2 ~3 ~n
= k .

~n
(A-18)

From (A-17) and (A-18)

k = B
~n

k , = A k + k a~n-l ~ ~n ~n n

k =Ak n + k a n~n-2 ~ ~n-l ~n n-1

K. n — r\ K. ~ K. a«
~ Z ~ ~ 3 ~n o

k n
= A k + k a

,~1 ~ ~ I ~n 2
(A-19)

or, in general,

k , = A k • ,-, + k a . ,,
~n-i ~ ~n-i+l ~n n-i + 1

(A-20)

for ix[l, 2, ..., n-1]. The column vectors k, , ..., k are
~1 ' ~n

found in a simple recursive manner and completely 'determine

the transformation matrix.
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APPENDIX B

INVERSION OF CAUER I AND CAUER II FORMS

This program was written in FORTRAN IV, and requires

minimal input. The only information required is:

1. the order of the system

2. which inversion is required

3. the quotients from the continued fraction expansion

Multiple data sets are possible, and input in the following

format

:

Card Columns Description Format

1-3 M = the desired order transfer
function

13

1-20

21-40

41-60

61-80

h, , the first quotient of either
Cauer I on Cauer II continued
fraction expansion

h«, the second quotient

h~ , the third quotient

h, , the fourth quotient

D20.13

D20.13

D20.13

D20.13

N 1-20

21-40

41-60

61-80

hUM 7 , the (4N-7)th quotient
such that 4N-7j<2M

\N _ 6
> W-6<2M

h4N-5'
4N " 5I2M

\N-4'
4N - 4i2M

D20.13

D20.13

D20.13

D20.13

Four quotients per card until
2*M quotients have been input,
where M is the system order.
Assume this is the Lth card.
The (L+l)th data card begins
the second data set.

127





L+l 1-3 M=system order 13

4-6 K=l for Cauer I and K=2 for 13
Cauer II inversion

The computer program has been written to handle up to

20th order systems (M_<20). If it is required to work with

higher order systems, only one card change must be made.

The specification statement is modified to read:

REAL* 8 A(N), B(N), C(N)/N*0./., D(N)/N*0./, DZERO

where N is an integer no larger than 999. This restriction

can be lifted by changing statement 2 to read:

2 FORMAT (2IR)

where R is the mantissa of log,
n
(N). The REAL*8 in the

specification statement indicates that all following varia-

bles and arrays are real valued and in double precision.

Modification to either single or extended precision would

require changes in all format statements. If this is

desireable, the user should consult references [2 5] and [26].

Execution time has shown to be less than .18 seconds

for systems of order 10 or less.
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// EXEC FORTCLG
//FORT.SYSIN OD *

REAL*8 A( 20) ,B(20) , C ( 2 01/20*0 ./ » D (20 ) /20*0 . / , DZERO
C
C ..• REAO IN SYSTEM ORDER, £ WHICH CAUER INVERSION ,

C
16 READ(5,1) M,K
1 F0RMAT(2I3>

C
C ... REAO IN QUOTIENTS FROM C3NT. FRAC. EXPANSION .,

C
READ<5,2) <A( I),B( I),I=l,M)

2 FORMAT(4D20.13)
C
C ... DETERMINE IF INVERSION IS CAUER I OR CAUER II ,

C
IFU.EQ.l ) GO T3 10

C
C ... CAUER II INVERSION ...
C ... INITIALIZATION ...
C

C(M) = B(M)
Ml = M-l
D(M1) = 1.0
D(M) ~ A(M)*C(M)

C
C ... ITERATION ...
C

DO 3 1=1, Ml
L = 1 + 1
K = N-L
DO 4 J = 1,L
KJ = K+J
KL = KJ-1
KP = KJ+l
C(KJ) = 3(K)*D(<J)
IF(J.NE.L) C(KJ) = C(KJ)+C(KP)
IF(KL.EQ.O) GO TO 5
O(KL) = A(K)*C<<L)+D(KJI
GO TO 4

5 DZERO = 1.0
4 CONTINUE

D(M) = A(K+1)*C<M)
3 CONTINUE

GO TO 11
C
C ... CAUER II INVERSION ...
C ... INITI ALIZATI3M ...
C

10 C(M) = BIM)
MM = M-l
D(MM) = MM)*CM)
D(M) = 1.0

C
C ... ITERATION ...
C

DO 6 1 = 1, MM
IP = 1+1
MI = M-IP
DO 7 J = l, IP
MJ = MI+J
ML = MJ-1
MP = MJ + 1

CtMJJ = 3(MI)*D(MJ)+C(MJ)
IFCML.EQ. 0) GO TO 8
D(ML) = A(MI)*CMJ)+DML)
GO TO 7
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8 OZERO = 1.0
7 CONTINUE
6 CONTINUE

C
C ... WRITE OUT TRANSFER FUNCTION IN TERMS OF
C NUMERATOR AN3 DENOMINATOR COEFFICIENTS
C WITH APPROPRIATE P3WER OF S ...
C

11 WRITE(6,12)
12 FORMAT (///l IX, «NJMERATOR« , 15X , • DENOMINATOR • ,

110X, 'POWER OF S»

)

WRITE(6,13) DZER3,M
13 FORMAT(///31X,D20.13,IOX, 12)

DO 14 1=1,

M

MM I = M-I
WRITE(6,15) C(I),D( I),MMI

14 CONTINUE
15 FORM AT <// /6X,D2D.l 3, 4X, 020.13,1 OX, 12)

C
GO TO 16

END
C
C FOR ACTUAL RUN THIS CARD IS /* IN COLUMNS 1 AND 2
C
//GO.SYSIN DD *

C
C DATA INPUT
C
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APPENDIX C

DETERMINATION OF WEIGHTING MATRIX

(Q) FOR PRESCRIBED EIGENVALUES

This FORTRAN IV program was used exclusively on the

Naval Postgraduate School's IBM 360/67 digital computer

and includes the associated job control language statements

The program consists of a main program and nine subroutine

subprograms. The purpose of each subroutine is delineated

below.

SUBROUTINE DESCRIPTION

READ

RAMAT

MULTPH

HMATRX

POLYNM

HELP

QTILDA

QPIJ

WRITE

read in coefficients of numerator and denomi-
nator polynomials of both transfer functions,
and places each system in phase variable form.

determines the Routh array matrix and the
transformation matrix, P.

multiples two matrices, Y and Z, and gives
the resulting matrix YZ.~

determines the quotients of continued fraction
expansion, H1(H2), and the state matrix in
Cauer II form,~HHl(HH2 )

.

T
determines the product det (SI-A)xdet (SI+A :

. )

computes the matrices G, T, and W as given
in Chapter IV.

computes the matrices, Q, and Q from results
of subroutine HELP.

determines the^off diagonal elements, q. .

,

of the matrix Q. -1

writes all two-dimensional matrices.
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The input required has been reduced to a minimum. Multiple

data sets are possible; and input as indicated below:

Card Columns Description Format

1 1-3 N; the system order 13

2 1-16, a _ for ie[l , 2 , . .
. ,n]

;

F16.8
17-32, tne denominator coefficients of
33-48 the known transfer function,

for an Nth order system, L
cards are required, where L
=K+1 and K is the integral part
of N/5.

L+2 1-16, b
n_ 1

for i.e[l , 2 , . . . ,n] ; the F16 . 8

17-32, numerator coefficients of the
3 3-48 known transfer function, L

cards required.

2L+2 1-16, a for is [1 , 2 , . .
. ,n]

;

F16.8
17-3 2, tne denominator coefficients
33-48, of the transfer function with
... prescribed eigenvalues.

3L+2 1-16, 3 for is [1 , 2 , . .
. ,n] ; the F16 .

8

17-32, numerator coefficients of the
33-48, transfer function with pre-
... scribed eigenvalues.

for multiple data sets, repeat
the same prodecure. Each data
set requires 4L+1 cards.

This program has been written to accept systems up through

20th order. To increase the capability of the program, only

the dimension statements and the second continuation card of

the equivalence statement require modification. The system

order capability can be increased to 50. Beyond 50th order,

the program requires an excessive amount of storage space

(>510K bytes). Even this limitation is easily overcome by

removing the four cards between statements 1000 and 1001.
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Any other modifications (i.e., single or extended pre-

cision) require extensive changes to all subprograms. In

this case, the user should consult [25] and/or [26]. It is

recommended that an object deck or disk storage be used when

available as compilation time is approximately 70-80% of

total CPU time.
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