
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1980

Subversion : the neglected aspect of
computer security.

Myers, Philip A.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/19080

Downloaded from NPS Archive: Calhoun

He

;-.:'

m

I11

W«VJ

/ ;

•EBB
ffl

nwSPM

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
•ONTEREV. CAUF 93940

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
SUBVERSION:

THE NEGLECTED ASPECT OF COMPUTER

by

Philip A. Myers

June, 19 80

SECURITY

Thes:Ls Advisor: Roger R. Schell

Approved for public release; distribution
Unlimited

U95710

Unclassified
SECURITY CLASSIFICATION OF THIS » » C. £ fWnkmn Dmtm Fnt»r»4)

REPORT DOCUMENTATION PAGE
dtPO^T NUMlfD 2. OOVT ACCESSION MO.

4 T|fL£ jjn^Iukllil.)

Subversion: The Neglected Aspect
of Computer Security

READ INSTRUCTIONS
BEFORE COMPLETING FORM

» «Cl»llMT'J CATALOG NUMBER

»• TYFt OF REPORT ft PERIOD COVEREO

Master Thesis; June
1980

I. PERFORMING ORG. MCFORT NUMIIR

7. AuTHOXri) • . CONTRACT OK SHANT nuhKOii,

Lt. Philip Alan Myers, USN

• PERFORMING ORGANIZATION NAME AND AOORIII

Naval Postgraduate School
Monterey California, 93940

«0. PMOCNAM ELlMlNT, PROJECT. TASK
AREA ft WORK UNIT NUMBERS

II CONTROLLING OFFICE NAME AMO ADDRESS

"Naval Postgraduate School
Monterey, California, 9 39 40

12. REPORT DATE

June 19 HO
IS. NUMBER OF PAGES

113
14 MONITORING AGENCY mamE ft aOORESsTh tttttmrmtt tmm Controlling QIHam)

Naval Postgraduate School
Monterey, California, 93940

IS. SECURITY CLASS, (oi ihlm r.port)

Unclassified
IS*. OECLASSIFl CATION/ DOWNGRADING

SCHEDULE

IE. DISTRIBUTION STATEMENT (of tnl» MaparO

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT fat thm »m»trmet —»•«* In /flask 20, It Mltmrmtt trmm Jtapart.)

'• SUPPLEMENTARY NOTES

It KEY WORDS (Conn* •«ry 4*«4f Ummtlff mv Hoc* nvmt+r

)

subversion, protection policy, trap doors, Trojan horses,
penetration, computer security, access control, evaluation criteria

protection systems, leakage of data, security kernel

20. ABSTRACT (Continue am r*«-*r«* •<«• II n«c«#*«rr an<J I4mmtltr fty ftl*«ft mmtmut)

This thesis distinguishes three methods of attacking internal
protection mechanisms of computers: inadvertent disclosure,
penetration, and subversion. Subversion is shown to be the most
attractive to the serious attacker. Subversion is characterized
by three phases of operations: the inserting of trap doors and
Trojan horses, the exercising of them, and the retrieval of the
resultant unauthorized information. Insertiion occurs over the

DO , :°r7 , 1473
(Page 1)

EDITION OF 1 MOV •• IS OBSOLETE
S/N 0103-014' ««0 1

Unclassified
•«CURlTY CLASSIFICATION OF THIS PAOE (Wh— *>••• *i»«ara«J)

Approved for public release? distribution unlimited

Subversion :

The Neglected Aspect of Computer Security

*y
Philip A. Myers

Lieutenant, United States Navy
E.S., North Carolina State University, 1973

Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER 0? SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1990

ABSTRACT

This thesis distinguishes three methods of attacking

internal protection mechanisms of computers: inadvertent

disclosure, penetration, and subversion. Subversion is shown

to be the most attractive to the serious attacker.

Subversion is characterized by three phases of operations:

the inserting of trap doors and Trojan horses, the

exercising of them, and the retrieval of the resultant

unauthorized information. Insertion occurs over the entire

life cycle of the system from the system design phase to the

production phase. This thesis clarifies the hi^h risk of

using computer systems, particularly so-called 'trusted'

subsystems for the protection of sensitive information. This

leads to a basis for coun termeasures based on the lifetime

protection of security related system components combined

with the application of adequate technology as exemplified

in the security kernel concept.

TABLE OF CONTENTS

I. INTRODUCTION 1?

II. UNDERSTANDING THE COMPUTER SECURITY PROBLEM 13

A. LACK OF COHERENT POLICY 15

5. INADEQUATE INTERNAL MECHANISMS IS

C. FALSE ASSURANCES 21

1. Reliance on 'Trusted' Subsystems 22

2. No Lifetime Protection 24

D. CHAPTER SUMMAFY 25

III. METHODS OF ATTACKING INTERNAL
SYSTEM CONTROLS 27

A. INADVERTENT DISCLOSURE 27

B. PENETRATION 29

1. Penetration Enviornment 30

2. The Penetrator 31

C. SUBVERSION 32

1. Subversion Over a System Life cycle 33

2. Skills Required 34=

3. The Artifice 35

a. Trap Doors Z5

b. Trojan Horses 37

D. CHAPTER SUMMARY 3£

IV. METHODOLOGIES OF SUBVERSION 4£

A. GENERAL CONSIDERATIONS 4?

1. Safe Computing Sites 41

2. Scope of Operations 42

3. Desirable Traits in Artifices 43

a. Software trap doors 43

(1) Compactness 43

(2) F.evision Independence 44

(3) Installation Independence 44

(4) Untracable 4^

(5) Uniquely Triggerable 45

(6) Adaptibility 45

b. Trojan horses 45

(1) Directed lure 46

(2) Compatibility of Functions 46

c. Hardware Mechanisms 47

4. Obscuring Artifices 47

a. Modifying Object Code 48

b. Abusing Software Engineering Practices 49

c. Using Assembler Languages 51

d. Strategic Placement 52

e. Using Confinement Channels 53

f. Hardware Obscuring 54

B. INSERTING ARTIFICES OVER THE
LIFE CYCLE OF A COMPUTER SYSTEM 55

1. Design Phase 56

a. Operating System Software 57

(1) Password Procedures 57

(2) Audit Procedures 58

(3) Confinement Channels 59

(4) Backward Compatible Features 62

b. Other Software Design Choices 61

c. Hardware Alternatives 62

(1) Central Processors 62

(2) Peripherals 65

2. Implementation Phase 66

a. Coding and Testing 68

b. Hardware Assembly and Checkout 63

3. Pistribution Phase 7e

4. Installation Phase 72

5. Production Phase ' 73

6. Summary 76

EXERCIZING ARTIFICES 77

1. Activating Artifices 77

a. Software Activation 77

(1) Trojan Horses 77

(2) Trap doors 78

b. Hardware Activation 79

2. Techniques of Exploitation 80

a. Breaking Out of a Subsystem B2

b. NFS Penetration Case £2

c. Using Emitters S3

d. Memory Residue 24

e. Using Confinement Channels 36

f. Affecting System Performance 88

7

T. RETRIEVING INFORMATION 9e

1. Retrieving Files 9C

2. Retrieving with Hardware Devices 91

E. CHARTER SUMMARY 93

V. MINIMIZING THE RISK CF SUBVERSION 94

A. RESTRICTING INSERTION OPPORTUNITIES 94

1. Lifetime Protection 95

2. Appropriate Protection Policies 96

B. RESTRICTING EXERCISING OPPORTUNITIES 96

C. EESTICTING THE RETRIEVAL OF INFORMATION 99

1. Delineating the Internal Security Perimeter 100

2. Security Kernel Concept 1£2

D. CHAPTER SUMMARY 104

VI. CONCLUSIONS AND RECOMMENDATIONS U5

LIST OF REFERENCES 109

INITIAL DISTRIBUTION LIST 112

ACKNOWLEDGEMENT

I would like to thank my thesis advisor It. Col. Roger

3. Schellt USA7, for the many hours he has spent in helping

Tie to understand the relevent issues involved in computer

securi ty

.

I. INTRODUCTION

To use internal mechanisms within a computer system to

protect sensitive information without demonstrable

assurances as to the origins and effectiveness of the system

components is contrary to a sound security practice. Use of

allegedly 'secure' or 'trusted' subsystems based on

operating systems that are fundamentally unsecurable is

likewise unsound. Yet these two conditions can, and do,

exist within the constraints of current ADP security policy

and practice. As a result, supposely 'secure' computer

systems present a major risk of compromise for sensitive

information .

These conditions can exist because there is a basic lack

of understanding as to the possible vulnerabilities of

computer systems. In particular, subversion is one area that

is widely neglected. The subversion of a computer system is

the covert and methodical undermining of internal and

external controls over a systems lifetime to allow

unauthorized and undetected access to system resources

and/or information.

This thesis details the methodologies involved in

subversion, and how they can be used to attack a computer

system. It is essential that all personnel involved in ADP

10

security understand subversion and how it works. Without

this understanding, effective policies and countermeasures

cannot he devised and implemented.

The increased use of 'off the shelf ADP systems and

programs can help realize significant economies in

procurement costs, hut there are significant dangers as

well. These dangers come about because there is a pressing

need for computer systems to 'securely support multiple

users of differing degrees of trustworthiness simultaneously

handling data of differing degrees of sensitivity'. This is

known as the classical computer security problem [1] . It is

a problem because no known commercially available system can

be proven to offer the secure support required.

Present technology such as that found in the Security

Kernel [2] concept point the way to a solution to the

computer security problem. But no technology will assure

secure computer systems unless proper safeguards are

implemented to protect this technology from subversion.

To understand what is involved in the subversion of

computer systems one must first be aquainted with the

background of the computer security problem (Chapter II).

The problem is not merely a historical one. There is

currently no clear policy as to what role computer systems

are to play in the protection of information. As a result,

systems are plagued with inadequate internal protection

mechanisms whose effectiveness cannot be assured. Chapters

11

Ill and IV deal with how these inadequacies can be exploited

through subversion. Finally Chapter V discusses how the risk

of subversion can be minimized.

12

II . UNDERSTANDING THE COMPUTES SECURITY PROBLEM

The computer security problem has grown with the

computer industry. When the entire system was dedicated to a

single user, protection consisted of the user simply picking

up his tapes and cards and clearing CPU core when the job

was finished. Basically the user had complete control over

his processing environment, including his data and programs.

After a few years users began demanding better utilization

of the resources. The response to this demand for more

efficiency gave birth to multiplexing techniques, resource

sharing operating systems, multiprogramming and various

other techniques of the age. The user suddenly found not

only a lack of control over the processing environment but a

lack of control over the protection of his data and programs

as well. Gat [3] indicates:

With the appearance of multiplexing techniques there arose
the problem of defending independent software structures
from each other, as these were often implemented on the
same physical resource. Thus, multiprogramming operating
systems enforce some sort of isolation between
simultaneously executing processes.

Since efficiency was the main consideration in computer

systems design, criteria limited the 'defending' and

'isolation' to the containment of accidents and errors [2] .

13

Organizations desiring to utilize the increased

capacities of resource sharing systems demanded assurances

that sensitive and nonsensitive information could he

processed concurrently. Bisbey [25] comments:

Responding to customer pressure, the systems manufacturers
at first claimed that hardware and software mechanisms
supporting resource sharing would also (with perhaps minor
alterations) provide sufficient protection and isolation
to permit multiprogramming of sensitive and nonsensitive
programs and data.

This claim was soon discounted in the early 1970's with

the introduction of several penetration tiger teams that

were specifically tasked to test the protection offered by

several major operating systems. Even those systems that

underwent 'retrofitting' to correct known implementation

errors and design oversights were penetrated with only

moderate amounts of energy [l] . Evidence as recent as 1978

indicates that current operating systems for which the major

vendors have 'conscientiously and competently attempted to

improve security' have been successfully penetrated [l]

.

Finally, as a crowning blow to the state of current

computer systems, a Consensus Report published in the

proceedings of the 1979 National Computer Conference [1]

states:

It is a fact, demonstrable by any of several studies, that
no existing commerically-produced computer system can be
counted upon to protect any of its moderately knowledgable
users from having complete and undetectable access to any
information in the system, no matter what kinds of

14

so-called security features or mechanisms have been built
into the system.

Harrison, Ruzzo, and Ullman in their paper 'Protection

in Operating" Systems' [4] provide conclusive proof that

there is no algorithm that can prove an arbitrary protection

system (such as an operating system) safe. This means it

cannot be proven that an arbitrary operating system can

withhold unauthorized information from malicious users. This

is because a system may not be (and usually is not) designed

in a manner that its safety can be precisely determined.

However, for a properly designed system the safety question

could be decided. But, the constraints placed on these

'model' systems are too severe to prove practical for the

evaluation of current operating systems. In particular,

systems designed using the security kernel technology [3]

can be definitively evaluated for security. This technology

will be briefly discussed in Chapter V.

It has been said that understanding the computer

security problem requires close attention to three subjects:

policy, mechanisms, and assurance [1] . It is essential to

understand all aspects of the problem. Therefore, a brief

discussion of each area is offered.

A. LACK OF COHERENT POLICY

In general, a security policy defines what is meant by

'secure'[5]. The sources of this policy are laws and

15

regulations that outline how information is to be handled.

The computer industry in general, "both users and vendors,

have not reached a consensus as to what would constitute a

coherent approach to computer security policy. The Consensus

Report [l] indicates:

This passive attitude on "both sides tends to mask the
general nature of the security problem because the more
knowledgeable security users demand solutions to their
unique problems, solutions that might not become standard
parts of a product line.

DOD fairs better in having a more specific policy as to

the handling of sensitive information in general. This

policy involves a non-discretionary (or mandatory) access

control and within these contraints a discretionary control.

When information is given a formal security
classification, it is forbidden without explicit
administrative declassification or downgrading to allow
someone to have access to information of higher
classification than he is cleared for, i.e., the holder of
classified information has no discretionary authority in
this respect concerning who he can share it with. This
rule is an example of a mandatory access control policy
[11.

Within the mandatory constraints there exists a

discretionary policy that allows the creator of the

information discretion over access to the information by

other cleared personnel. This is the concept of 'need to

know'. A person must have the clearance (mandatory) and a

need to know (discretionary) before access to information is

granted.

16

However in the area of sensitive information as it

relates to the computer, guidelines, such as those outlined

above, are less clear. Policy does not clearly discriminate

between a computer providing only computation and one

providing both computation and protection [6].

In a simple computation environment, protection or

security is enforced by physical means external to the

computer (fences, guards, etc.) as in a 'dedicated' mode of

operation. In this mode, all users allowed access to the

system are cleared for the highest level of information

contained in the system (i.e. it is dedicated to processing

at a given security level). All users, equipment, and

information reside within this protective boundary or

'security perimeter'. Everything within the security

perimeter is considered benign. The computer system is not

expected to seriously 'defend' information from any of its

users because they are considered non-malicious by virtue of

their security clearances.

In the other environment (called the multilevel security

mode) the computer not only provides computation but must

internally provide mechanisms that distinguish levels of

information and user authorization [6]. This is because not

all users of the system are cleared for the highest level of

information contained in the system. Here, the computer

system must protect the information from the uncleared (and

possibly malicious) user. In effect, the computer system

17

must become part of the security perimeter. The internal

protection mechanisms (whatever they may he) must 'assume

the role' of the guards, fences, etc. that are indicitive of

the external security perimeter. Policy (which defines what

is meant by 'secure') must he clearly translated into terms

that can he implemented on a computer. Unless a specific

policy is required to he implemented on a computer system in

a VERIFIABLE manner, there would he no way one could

determine if the computer system was EFFECTIVE in enforcing

the given policy.

P. INADEQUATE INTERNAL MECHANISMS

The baseline documents within DOD for ADP security are

DOD Directive 5202.28 'Security Requirements for ADP

Systems' [7] and its associated Manual DOD 5200. 28M 'The ADP

Security Manual' [£] . The Directive states that 'techniques

and procedures which can be used to secure and evaluate

resource-sharing ADP systems' are contained in the ADP

Security Manual. Therefore, it is instructive to

specifically address the Manual.

Since the central issue of a multilevel security system

concerns the use of internal protection mechanisms to

enforce protection of information, it is important to

understand what these mechanisms are.

18

The following are selected excerpts from the Manual that

illustrate the offically annunciated role of internal

software mechanisms:

4-300 General

The user and master modes of ADP Systems operation shall
he separated so that a program operating in a user mode is
prevented from performing control functions.

4-301 0/S Controls

The 0/S shall contain controls which provide the user with
all material to which he is authorized access, hut no
more

.

4-305 Other Fundamental Features

.... Unauthorized attempts to change, circumvent, or
otherwise violate these features should he detectable and
reported.... In addition the incident shall he recorded in
the audit log. . .

.

a. Memory /S torage protection - The operating system shall
protect the security of the ADP system by controlling:

1. Resource allocation (including primary and
auxiliary memory);

2. Memory access outside of assigned areas? and

3. The execution of master (supervisory) mode
instructions which could adversely affect the security
of the 0/S.

b • ...

c. Access Controls - Access to material stored within the
ADP System shall be controlled by the ADP system security
officer, ..., or by automatic processes operating under
separate and specific controls within the O/S established
through hardware, software, and procedural safeguards
approved by the ADP System security officer.

d • ...
c

19

f. User identification - Where needed to assure control of
access and individual accountability, each user or
specific group of users shall he identified to the ADP
system by appropriate administrative or hardware/ software
measures. Such identification measures must be in
sufficient detail to enable the ADP system to provide the
user only that material which he is authorized.

These seem to be reasonable requirements to ask of a

multilevel security system. The problem is that there is no

way that these requirements can be proven effective. They

can only be proven ineffective. This is evident in the ADP

Security Manual's ad-hoc method of Security Testing and

Evaluation (ST&E). An evaluation is defined in paragraph

1-213 of the manual:

The evaluator's report to the Designated Approving
Authority describing the investigative and test procedures
used in the analysis of the ADP System security features
with a description and results of tests used to support or
refute specific system weaknesses that would permit the
acquisition of identifiable classified material from
secure or protected data files.

Verification is defined in paragraph 1-225:

The successful testing and documentation of actual on-line
system penetration or attempts to penetrate the system in
support or in contradiction of assumptions developed
during system review and analysis which are to be included
in the Evaluation report.

The above methodology is fundamentally flawed. Kecall

from mathematics that it is sufficient to disprove a

proposition (e.g., that a system is secure) by showing only

one example where the proposition is false (e.g., a

successful penetration). It is not sufficient to prove the

proposition by offering an example where the proposition

2e

appears to hold (e.g., unsuccessful penetration attempt).

The "best position to take concerning these methods is stated

by Schell [6]

:

Do not trust security to technology unless that technology
is demonstrably trustworthy, and the absence of
demonstrated compromise is NOT a demonstration of
securi ty

.

It is imperative that any mechanism that will he

required to aid in the securing of a computer system he

constructed in such a way that it can, in fact, he verified

effective.

C. FALS5 ASSURANCES

False assurances concerning the reliability of computer

systems to effectively protect information come about

because people in positions of responsibility do not

understand that a 'technical computer security' problem

exists .

government agencies, as well as private industry,
continue to issue purchase requests containing sections
labeled 'security requirements', which are mostly lists of
features and mechanisms, in the apparent belief they will
obtain something useful [1]

.

The previous section's discussion on policy illustrated

how the reliance on 'features and mechanisms' without

demanding demonstrable effectiveness can lead to false

assurances

.

21

No self respecting computer system salesman is goin? to

admit that his products cannot provide the effective

protection that an application demands. No malicuous intent

is implied by this statement, but the salesman is no more

aware of the true nature of the computer security problem

than the customer who unknowingly demands the ineffective

'features and mechanisms' in a procurement specification.

The Consensus Report [l] demonstrates this lack of

understanding:

tighte
possib
fifty
implic
are c

none o

of th
the mo
are co
proble
part

.

even if government procurement specifications were
ned to ask for the kind of security we believe
le with the current state of the art, fewer than
people in the country would understand the true

ations of what is being asked for, and those fifty
oncentrated in less than a half-dozen organizations,
f them in the main stream development organizations
e major mainframe vendors. This is partly because at
ment most efforts of vendors relating to security
ncentrating on the 'mechanisms' part of the security
m, with very little attention to the 'assurance'

1. Reliance on 'Trusted' Subsystems

A subsystem can be viewed as any computing

environment that restricts the users functions to a subset

of the host computer's functional capabilities. An example

of this is a transaction data management system. The user is

bound to a restricted 'menu' of functions that allow him to

carry out only his required tasks. For instance, a data

entry clerk in such a subsystem has no need to write

programs, so this capability is not part of the clerk's

22

menu. The general feeling about subsystems is that by-

restricting the users capabilities, he will be denyed the

'tools' he needs to perform malicious activities.

Alleged 'secure' or 'trusted' subsystems are

presently being developed within DOD as a means of coping

with the computer security problem:

Given a
the use
other
facilit
populat
trusted
system
combine
itself)
complet
availab
limited
Cll.

n unt
of a

trust
y an
ion
user
outs

s tru
and

ely
le.
tran

ruste
trus

ed s

d pr
of u

s are
ide
sted
trus
trust
Secur
sacti

d opera
ted* tra
pecial-
ocedura
sers t

allowe
of the
sof twar
ted pro
ed ope
e subs
on app

ting sys
nsaction
purpose
1 const
o the
d acces
trusted

e (bu t n

cedures

,

rating
ystems
li cat ion

tern

,

data
subs

raint
trust
s to
subs

ot t

and
syste
devel
s is

this
mana

ystem
s th
ed s

any
ystem
he o

is an
ms a

opmen
cur

approa
gement
in co

at 1

ubsyst
part

.) Thi
perati
exped

re mo
t for
rently

ch employs
system or

ncert with
imit the
em. (Only
s of the
s solution
ng system
lent until
re widely
the DOD in
underway

Unfortunately one cannot exclude the operating

system from the 'solution' as proposed in the above. All

subsystems are 'built' upon an underlying operating system.

The operating system must therefore be considered as an

integral part of the trusted subsystem.

Ample discussion has already been offered as to the

unreliability of current operating systems. A subsystem,

when viewed from the aspect of the underlying operating

system, is nothing more than another application program. If

there are exploitable flaws in the underlying operating

system that can be used to exploit the system without the

subsystem, then these same flaws can be used to exploit it

23

with the subsystem. Chapter IV demonstrates how this can be

done. Reliance must not he put on a 'trusted' subsystem

unless the foundation on which it is built is solid and

trustworthy.

2. No Lifetime Protection

There is no explicit Security Testing and Evaluation

(ST&E) criteria in DOD guidlines that takes into account the

history of system components. Usinfr computer systems with

uncertif iable backgrounds, particularly in multilevel

security mode applications, can prove particularly

disasterous. The main thrust of this thesis is concerned

with Just such issues. The lifetime of a computer system is

not just the operational lifetime, i.e., when it comes under

the control of an AD? security officer, but is from

'conception until death'. This includes the design,

implementation, distribution, installation, and production

phases of a computer system.

It is not sufficient to know that a given computer

system and its associated software are standard 'off the

shelf versions of company XYZ's product line. Without

specific assurances concerning the protective measures that

have been afforded system components or the trustworthiness

of development personnel, there is no way that an effective

evaluation can occur. If at some time prior to the user

taking control of a system, malicious elements have access

24

to system components, it would "be virtually impossible to

determine what modifications to invalidate security controls

were made. This lack of protection is one of the fundamental

reasons why the subversion of computer systems can he so

effective. Later chapters will amplify this concept.

It has been proposed [1,9] that current operating

systems be evaluated as to their security attributes. The

result of this evaluation would yield an 'approved products

list'. The resulting 'grade' that a system would receive

would supposedly determine its relative ability to protect

information. There is a problem in that this criteria does

not substantially address whether or not the security

related components (hardware and software) have received the

proper lifetime protection from malicious elements. Unless

this vital factor has been taken into account, any 'approved

products list' would prove meaningless.

D. CHAPTER SUMMARY

It has been the purpose of this chapter to aquaint the

reader with the background of the computer security problem.

This problem has been aggravated by a general lack of

understanding as to the true nature of the computer security

problem by those responsible for its solution. This has led

to a reliance on inadequate internal mechanisms, and false

assurances as to their ef fectivenss . It is important to

25

understand this background because it serves as a "backdrop

with which to view the subject of computer subversion, the

principal topic of this thesis.

26

III. METHODS OF ATTACKING INTERNAL SYSTEM CONTROLS

There are three methods of attacking internal system

controls in computers. They are are by inadvertent

disclosure, penetration, and subversion. Each method is

briefly discussed. Later chapters will develop the details

involved in penetration and subversion. Distinctions are

made between the current concept of penetration and the

concept of subversion.

A. INADVERTENT DISCLOSURE

Inadvertent or accidental disclosures are basically

probabilistic in nature. They may involve a combination of

human, hardware, and timing factors that when combined could

allow a disclosure of information to an unauthorized user.

Simple examples of this method are a computer operator

inadvertently mounting the wrone: tape, or the hardware

failure of memory bounds checking mechanisms. Users

receiving information from this kind of disclosure are often

victims of circumstances and may not be malicious in their

intent. However, even though the success of this method

relies on probabilistic events that one cannot control, it

can be utilized by the determined attacker.

27

The "basic approach used by an attacker in this method is

to sit and wait for the proper set of circumstances to

occur. Upon detection of a "breach in the protection

mechanism* the attacker would take appropriate actions to

exploit the breach.

This method was addressed in the Multics Security-

Evaluation [10] . A program called the 'subverter' was

written to run in the background of an unprivileged

interactive process. Once each minute the subverter program

received a timer interrupt and performed one test from a

group of functions that would sample the integrity of the

security sensitive hardware. These tests included:

1. Testing master mode instructions.

2. Attempting to violate read and write permission on

segment access control lists.

3. testing of all instructions marked illegal.

4. Taking out-of-bounds faults on zero length segments.

Methods similar to those above could prove profitable to

a malicious user, particularly if the system under attack

had a history of questionable hardware reliability. Although

this method is a viable attack method, other methods will be

discussed that do not rely on these probabilistic

ci rcumstances

.

28

B. PENETRATION

There are three major characteristics to penetration:

1. The penetrator is deliberate in his attempts.

2. The penetrator uses system foibles to circumvent

system controls.

3.^ The methods are repeatable under the control of the

penetrator.

It is important to realize that the penetrator is

deliberate in his attempts. This is because it introduces a

class of 'user' that contemporary computer system designers

had not seriously considered. Designs reflect that the

systems are expected to operate in a '"benign environment'

where violations cf the system controls are presumed to he

accidential [2]. because systems are presumed to be in a

benign environment, the attacker does not have to exert much

effort in his penetration attempts.

The second characteristic involves the utilization of

system 'foibles'. Lackey [11] defines the term:

A foible is an accidental or unintentional opening that
permits unauthorized control of the system or unauthorized
access to information. It can occur in either hardware or
software, but software penetrations are more common. A

system programmer may inadvertently allow an obscure
condition to occur for which no check is made, or accept
parameters without adequate checking. Often the programs
pass acceotance tests that don't expose these anomalies,
and the program will work properly when used as intended.

29

Foibles that can be used by a penetrator to circumvent

system controls come about because most computer designs for

both software and hardware consider efficienry and

convenience as primary factors rather than security.

The method is repeatable because the foible is a part of

the system design or implementation. The penetrator can use

it as though it were a 'special feature' of the system.

1 . Penetration Environment

The penetrator carries out his malicious activities

by usln# the computing (or rather the penetration)

environment 'as is'. That is, he is content to exploit the

system usin^ those foibles that the designers and

implementors inadvertently provided. But since deliberate

penetration utilizes system weaknesses or foibles, the

penetrator may have his 'access' routes cut off if the

fallibility is discovered by a legitimate user or system

maintenance personnel. However as indicated by lackey, since

the error was not detected during testing and the system

works properly when used properly, this appears to be an

effective method for gaining unauthorized information.

This is supported by reviewing the literature

concerning computer crimes. Many of the criminals were not

caught by the discovery of their penetration method or even

in the actual act, but by some foolish action on the part of

the criminal after the fact (e..?., high living on embezzled

30

funds). Or.ly through subsequent investigations did the

foibles become known to the victims.

But this environment, although lucrative, is not

under the 'control' of the penetrator. Foibles could be

discovered and corrected or procedural deficiencies revised.

The determined penetrator would undoubtedly desire an

environment that is more under his control and not as

susceptable to change and possible detection by external

forces .

2. The Penetrator

Current conceptions of computer system penetrators as

glamorized by the newspapers and other popular literature

would have one believe the the penetrator is a highly

technical individual such as a programmer or computer

scientist. This is a misconception. Several studies have

shown that the a more accurate conception of the average

penetrator is that:

1. He possesses only a limited technical knowledge of

the computer system [12]

.

2. He is a 'white collar amateur' [13].

3. He is a user of the system, not the professional that

supports the system [12].

4. He lacks the ability to think bis- [14].

But all these conceptions of the known penetrator

reflect the same thing: that these conclusions are based on

31

on the amateur that got caught. They say nothing about the

malicious elements that were sophisticated enough to avoid

detection. It is this ^roup that poses the greatest danger

to the security of computer systems. What is the nature of

the penetrator that was not caught, and how might he proceed

in his malicious endeavors? It is imperative that these

questions he addressed.

C. SUBVERSION

Recall from chapter I that subversion of a computer

system involves the covert and methodical undermining of

internal and external computer system controls to allow

unauthorized and undetected access to computer system

resources and/or information. 3ut to understand the real

implications of this definition, further amplification is

requi red

.

Subversion is characterized by the following:

1. It can occur at any time in the life cycle of a

computer system.

2. It is under the control of highly skilled

individuals.

3. It utilizes clandestine mechanisms called artifices

deliberately constructed and inserted into a computer

system to circumvent normal control or protection

features .

32

Each of these characteristics will he introduced in the

following sections. The detailed methodologies of suhversion

are discussed in the next chapter.

1 . Suhversion Over a System life Cycle

Suhversion is not limited to on-site operations, as

in the case of deliberate penetration. It includes

activities that spread over the entire life cycle of a

computer system. This life cycle includes several phases:

1. Design- The beginnings of a system. All key decisions

concerning the software and hardware specifications are

made during this phase.

2. Implementation- The conversion of the design into a

usable product. This includes manufacturing and testing

of hardware components, and the coding and testing of

software components.

3. Distribution- After all system components have been

produced and tested, they are distributed to the various

operational sites.

4. Installation- Upon receipt of new system components,

these components must be installed and made operational.

These components might be new software on old equipment,

or old software on new equipment, or any combination of

the above.

5. Production- This is the operational phase of the

computer system and is the phase that has traditionally

33

received the most security considerations. This

consideration is because of the presence of the

sensitive information that is the object of the

subverters efforts.

The legitimate activities that are carried on during

the various life cycle phases offer ample opportunities for

the subverter to undermine system components. The activities

in the first four phases are basically not sensitive in

nature and are carried out at relatively open farilities.

Therefore, the subverter would have little difficulty in

subverting the system components under development. Later in

the production phase, these same components would he

involved in the protection of information. Ey this phase the

subverter would have an 'environment' purposefully

constructed for the unauthorized and undetected exploitation

of a system and the information it contains. The next

chapter will outline possible activities that can be carried

on by a subverter during each of these life cycle phases.

2. Skills Required

The subverter, unlike the penetrator, is not an

amateur. To be able to carry out subversive operations, the

subverter must understand the activities that are performed

during the various phases of a computer system's life cycle.

But none of these activities are beyond the skill range of

the average undergraduate computer science major. In fact,

34

much of the activity involved with subversion can he carried

out by individuals of much less technical knowledge.

Subversion can he particularly effective as an organized

effort that need only he CONTROLLED hy the technically

qualified.

The subverter, unlike the penetrator, does not lack

the ability to think big. He can utilize a diverse group of

individuals that may or may not be aware of the subversive

activities they are performing. One need only imagine the

vast number of people that will have access to the various

computer system components prior to their being delivered to

the control of an unsuspecting AD? security officer.

3. The Artifice

The subverter could, and undoubtedly would, use

various methods to circumvent the control features of a

computer system, including the foible that is indicitive of

the penetrators environment. But the subverter is concerned

with the Ion? term return on his subversive efforts. To rely

on a design oversight or an implementation flaw that might

be eventually corrected would not be a sound 'business'

practice. Father the subverter constructs his own mechanisms

that are inserted into the hardware or software during one

of the various phases of a computer systems life cycle. Any

clandestine mechanism that is used in subversion is called

an 'artifice' [11]. These mechanisms can be implemented in

35

either hardware or software. The most common forms of

artifices are known as trap doors and Trojan horses. A

hardware artifice is a particular instance of a trap door,

a . Trap Doors

The key characteristics of a trap door are:

1. It is exercised under the direct control of an

activation stimulus.

2. It circumvents the normal control features of a

system.

As the name implies, trap doors have a means of

activation (like the latch on a door). This activation key

is under the direct control of the attacker. A simple

example of an activation key is a special sequence of

characters that is typed into a terminal. A software trap

door program, imbedded in the operating system code, can

recognize this key and allow the user of the terminal

special privledges. This is done by the software

circumventing the normal control features of the system. It

is important to realize that the only purpose of a trap door

is to 'bypass' internal controls. It is up to the attacker

to determine how this circumvention of control can be

utilized .

The attacker can construct the trap door in such

a manner as to make it virtually undetectable to even

suspecting investigators. A penetration tiger team,

organized by the Air Force to test the security features of

36

a computer manufacturers operating system, installed a small

trap door that was so undetectable that the manufacturers

personnel could not find the clandestine code, even when

they were told it existed and how it worked [6].

b. Trojan Horses

A Trojan horse is different from a trap door in

several ways. Whereas the trap door is generally constructed

to circumvent normal system controls, the Trojan horse can

accomplish its malicious tasks without circumventing these

controls. Trojan horses are artifices, generally programs,

that have two functions:

1. An overt function- This function serves as a lure to

attract the program into use by an unsuspecting user.

2. A covert function- This function performs clandestine

activities unknown to the user of the Trojan horse.

The overt or 'lure' function of a Trojan horse

can, for example, be mathematical library routines, word

processing programs, compilers or any program that might be

widely used at an installation. Because these programs are

executing on behalf of the user they assume all access

privileges that the user has. This allows the covert

function access to any information that is available to the

user.

The covert function is exercised concurrently

with the lure function. An example of this kind of artifice

might be a text editor program that legitimately performs

37

editing functions for the unsuspecting user while browsing

through his directories looking for interesting files to

copy. This is a particularly effective option for the

attacker due to the fact that as far as any internal

protection mechanism of the computer system is concerned

there is no 'illegal' actions in progress. The Trojan horse

(e.g., text editor) is simply a user program, executing in

user address space, accessing user files, performing

perfectly legitimate system service requests such as giving

another user (e.g., the subverter) a copy of his files.

D. CHAPTER SUMMARY

This chapter has offered a brief discussion of the three

methods that can be used to attack a computer system. They

are: indadvertant disclosure, penetration, subversion. There

have been important distinctions made between the present

conception of the known penetrator and his methods, and that

of the subverter and his methods. The known penetrator is

basically an amateur that is content to operate within the

computing environment as it exists. The penetrators

environment is one made of unintentional imperfections that

can be used to exploit a system. The subverter, on the other

hand, is a professional that actively constructs his

subversion environment by the methodical undermining of a

computer system throughout its life cycle by the use of

36

artifices. The next chapter will discuss in greater detail

the methodologies of this subversion.

39

IV. METHODOLOGIES OF SUBVERSION

To reiterate the definition of subversion, it is the

covert and methodical undermining of internal and external

security controls over a computer systems lifetime to allow

unauthorized and undetected access to system resources

and/or information. This chapter describes the methodologies

involved in subversion.

_It has been the purpose of the previous chapters to 'set

the stage' for the discussion that follows. It is obvi^ous

that there is not a clear understanding in the computer

security arena as to exactly what should be done to insure

that computer systems can reliably protect information. As

long as this confusion persists subversion will be a threat

to the security of computerized information. It should be

feept in mind that those who might be involved in subversive

activities would not be confused as to what their goals are

or how they would accomplish them.

A. GENERAL CONSIDERATIONS
/

The majority of this chapter is concerned with the

activities that an subverter might consider as 'field

operations'. These operations involve activities that are

required to insert artifices, exercise them, and retrieve

40

the resultant information. But there are several general

considerations that should he kept in mind when reading

ahout the various phases of subversion. Principal among

these is that any reference to the suhverter is meant as a

reference to the subversive organization. Individuals who

might perform subversive acts would do so with the guidance

of all the expertise that might be available in this

organization.

1. Safe Computing Sites

Like any effective field operation, the subverter

needs to insure that any techniques and mechanisms used in

the field have been perfected at a safe computing site. This

might seem difficult if a new system is the subversive

target. However, there are machines available today that are

micro-programmable emulators such as the Burroughs D Machine

or the Nondata OM-1 . A Feasibility Study [15] has

demonstrated that a very sophiphistica ted, large scale

computer system (Multics) could be emulated on such a

device. Because these machines are micro-programmable, one

machine can be used to support several field operations.

Once a basic architecture is emulated, existing

operating systems and subsystems could be installed. These

systems could then be analyzed for exploitable foibles, and

artifices could be designed and tested. The basic algorithms

for software artifices can be refined in a safe atmosphere

41

to insure that there are no unwanted side effects. Sound

software engineering practices would be employed to analyze

the best approach to the subversion process.

2. Scope of Operations

The scope of subversion is completely under the

control of the subverter. It can be as focused as one

computing site or as widespread as several hundred

installations, all with roughly the same expenditure of

effort. This is accomplished by selecting the phase of a

computer systems life cycle in which to start subversion

operations [10] . The earlier in the life cycle a system has

been subverted, the more global the opportunities for

exploitation.

By installing artifices at the beginning phases of the

life cycle (design or implementation) they will then become

an integral part of the computer system. Anyone who

subsequently procures one of these systems will become a

potential target for exploitation. Identification of the

victims need not occur until later. Should the subverter not

have the opportunity to begin his operations in these first

life cycle phases, he would have ample opportunities in the

later phases.

The subverter can narrow the scope of his operations by

performing his malicious activities during the distribution

of system components to the selected sites. He can select

42

which sites are the most profitable and then intercept

system components as necessary to accomplish his goals.

Finally, by initiating subversion operations during the

installation or production phase of a computer system, he

restricts his activities to that particular site.

3. Desirable Traits in Artifices

The following discussion will center on the three

major types of artifices; software trap doors, Trojan

horses, and hardware mechanisms. Not only are the below

listed traits desirable, but they are qualities that can be

easily incorporated into artifice construction.

a. Software Trap Doors

Recall that the principal function of a trap door

is to circumvent internal system controls under the control

of an activation fcey. With this in mind, the following are

several desirable traits that the subverter would

incorporate in the implementation of this type of artifice.

(1) Compactness . To give the user of the trap

door unauthorized privileges may involve only enough code to

recognize the activation trigger and the one or two

instructions required to change the machine state to master

mode. The fewer the instructions the better. Once this is

accomplished, other programs can be invoiced to perform the

desired clandestine activities.

43

(2) Revision independence . To insure that a trap

door remains in the system for years, perhaps its entire

life, it is necessary to install it in an area of code that

will not he liahle to revision. Operating system software,

as pointed out earlier, is often riddled with design errors

or subject to planned changes. Placement of the trap door

should he in an area that is not likely to undergo review.

For example, I/O routines that are used to control hardware

devices are not generally changed in software revisions.

These are generally written in lower level languages for

efficiency and offer an excellent 'refuge' for artifices.

(3) Installation independence . Many 'off the

shelf' general purpose computer systems come with a wide

range of options. Eut for a given family of systems, there

is usually a 'core' operating system that will he common to

any installation within the system family. 2y installing the

trap door in this 'core' of code the suhverter is assured

that his artifice will he present in the system regardless

of the particular configuration that would he generated at

the installation.

(4) Untracable. The operation of the trap door

should not in itself leave any trace of its operation. This

implies that either its operation does not encounter system

traps or audit trails, or it has the ability to erase any

evidence of its activities. Frequently, the very 'primitive'

or basic functions of an operating system, such as a

44

teletype stream handler, are at too low a level to be

audited ir system logs. These routines are also relatively

'stable' in that they are generally not subject to frequent

revision .

(5) Uniquely Triggerable . The means by which the

trap door is activated should be unique enousrh to insure

that accidental activation is unlikely. One example is a

trap door that is triggered by a unique sequence of

characters in a teletype stream. Too short a sequence or too

common a sequence might accidentally activate the artifice

by someone other than the subverter or his a^ent. On the

other hand, to long a sequence might require to much code to

check against and make the trap door code too Ion?.

(6) Adaptibili tv

.

The trap door should have a

degree of generality or even programabil ity . Since the trap

door might have been installed during the early phases of

the systems life cycle, the subverter cannot always predict

the particularities of the installation or application. For

instance, since trap doors circumvent normal controls, it

could be designed to modify operating system code online. By

circumventing the write protection of the operating system

code area the trap door can allow the subverter to adapt the

operating system to his needs.

b. Trojan Horses

As previously stated, a Trojan horse is a program

that is invoked by an unsuspecting user. It will perform a

45

legitimate function (the lure) and a covert function. The

following are a few desirable traits for this artifice.

(1

)

Directed Lure . The lure (or overt) function

of the Trojan horse will determine what kind of information

will come under the scrutinization of the covert function.

If the desired information is scientific in nature then it

might seem plausible to construct a Trojan horse that offers

a lure of some sort of mathematical computation. If

personnel records are the target then the lure might he a

sort routine. It should he noted that the information

available to the Trojan horse is any information that would

be normally be available to the unsuspecting user. Not just

the information needed to perform the lure function. This is

because most operating systems consider any program executed

by a user to be 'owned' by that user for the duration of the

program execution. Any access rights that the user might

have are imparted to programs run on his behalf.

(2) Compatib ility of Functions . The covert and

overt functions of a Trojan horse should perform 'expected'

actions. It is not expected that a mathematical library

routine would access the users file space (e.g., the covert

function browsing through files) when it is computing the

roots of a polynomial. System audit logs may record this

activity and suspicions be aroused. This could be

disasterous if the covert function was to inadvertently

cause the user process to be interrupted by a disk error.

46

However it is expected that a sort file routine will access

the users file space. Subsequent disk errors might be

overlooked as merely a fluke. This can be viewed as way to

'functionally disguise' the Trojan horse,

c. Hardware Mechanisms

A Hardware mechanism is a special instance of a

trap door. It performs the same function of circumventing

normal system controls as its software counterpart. Its

capabilities and traits are essentially the same. The method

of activation may vary due to the unique hardware

capabilities such as the ability to transceive radio

signals. There are two cases of hardware mechanisms,

programmable and non-programmable. Examples of each of these

types are presented later in the chapter.

4. Obscuring Artifices

Proper obscuring can make artifices virtually

undetectable. One must realize that once code or hardware is

operational in a computer system there would be no reason to

review it unless something failed. Think of how hard it is

to find a difficult bug that is being purposefully searched

for in a program. One can imagine how difficult a small trap

door would be to find if the author of the trap door takes

special pains to obscure it. Furthermore, even if found, the

well-designed artifice will appear to be just another bug.

Obscuring artifices is considered essential to the

47

subversion process. Obscuring techniques are limited only by

the ability and understanding of the subverter installing

the artifice.

listed below are a few techniques that the subverter

might use in this process.

a. Modifying Object code

Binary machine code is the most obscure medium in

which a software artifice can reside. The Multics Security

Evaluation [10] amplifies this point:

Clearly when a trap door is inserted, it must be well
hidden to avoid detection by system maintenance personnel.
Trap doors can best be hidden in changes to the binary
code of a compiled routine. Such a change is completely
invisible on system listings and can be detected only by
comparing bit by bit the object code and the compiler
listing.

Disadvantages of this obscuring method come about

because object modules may be periodically recompiled for

various reasons [10]. This, of course, may not be under the

control of the subverter and methods must be devised to

insure periodic reinsertion. It has been informally reported

[10] that a compiler could be 'enhanced' to always reinsert

an artifice in the object code when a particular svstem

module was recompiled. Compilers themselves are rarely

recompiled by the user. So the clandestine code that was

located in the compiler would be quite safe.

Obscuring in object code is particularly suited for

Trojan horses. Software that is procured from vendors as

48

'off the shelf computing aids often do not provide source

code listings. This is to protect proprietary rights. The

subverter (perhaps a legitimate vendor) can use this fact to

his advantage. He could offer software products to

unsuspecting computer installations much as any other

software vendor might. In fact, the suhverter could

anticipate the installations needs if he had agents on the

premises that knew the particular situation. Since the

suhverter is not primarily in the business of making money

by selling software, he can undercut competitive Mds.

Detection risks for this obscuring method are

considered relatively low. Even if the Trojan horse were to

malfunction and lead system maintenance personnel to suspect

it of 'performing strangley', without source code

documentation the first order of business would be to

contact the vendor for another copy of the prop-rar.

b. Abusing of Software Engineering Practices

When usiner source code as a means of inserting

artifices, means must be devised to obscure the true purpose

of the clandestine code. Program documentation could prove

invaluable in this effort. Good program documentation is

essential to the understanding of complex programs such as

operating system software. Most higher level languages allow

variable names of ample length. Yet many programmers are

content to follow archaic FORTRAN or assembler-like

practices that tend toward short, abreviated variable names

49

that have meaning only to the programmer at the time he

wrote the code. Inadequate commenting of source code is

another common abuse.

Writing programs that are unstructured or

non-modular in organization can prove quite effective for

obscuring. This is cormonly refered to as 'spaghetti bcvl'

logic. By using non-local 'goto' statements that seem to

jump around the program arbitrarily, it is virtually

impossible to follow the program logic.

Allegedly 'good' documentation practices can

also be utilized in the obscuring process. This technique

can simply be labeled as lying. Plenty of apparently good

comments can lure the reader away from scrutinizing the code

too closely. Mislabeled variables can also steer the reader

away from the actual purpose of the clandestine code.

The use of source code as a mean of inserting

artifices has the dual distinction of offering the subverter

the greatest returns as well as the greatest risk of

detection. Source code artifices will not be destroyed by

recompilation of the code as some other methods of

insertion. However because it is in human readable form,

artifices are more visible and therefore more vulnerable to

possible detection [10].

se

c. Using Assembler languages

Most assembler language traits both good and bad

are benifical from the subversion standpoint. Some of these

traits are:

1. Most 'powerful' language available.

2. Most efficient in execution time and core

requirements.

3. Least comprehensible of all the human interpretable

computer languages.

Assembler languages are the most 'powerful'

because they allow greater control over the programming

environment than any other language. Assembler languages are

not constrained to the addressing restrictions that are

imposed by the structured environments of the higher level

languages. There is no distinction between data and code

areas. This allows the subverter to either write self

modifying code or obscure clandestine code as data.

Assembler programs are noted for their 'spagetti bowl' logic

because it is difficult to write assembler programs that do

not use goto statements. Since goto statements are expected

in assembler code, it is easy for a subverter to write a

program that has a goto statement whose operand is a

variable label rather than a statement label. The variable

label could define the begining of a series of hexadecimal

or binary constants that are nothing more than the

equivilent binary opcodes of the clandestine routine. Close

51

scrutiny is rarely given to these 'tables' of constants,

particularly if the program is functioning properly.

Assembler language source code is assembled to

machine code instructions on an almost one-to-one basis.

Therefore the subverter can exactly predict the amount of

'overhead' the artifice will impart to the subverted system.

d. Strategic Placement

Obscuring software artifices, particularly trap

doors can be greatly enhanced by strategically placing the

clandestine code away from areas that might be subject to

investigation. For example, consider a trap door that is

triggered by an activation key from a teletype. Perhaps

security investigators suspect that a trap door exists and

that it is activated by a teletype stream. Naturally the

investigation would inspect all code that hardies the

teletype stream. The subverter can foil these efforts by

placing the trap door in an area totally unrelated to the

teletype routines, such as the disk I/O driver. Since the

trap door resides in a routine that executes in the master

mode, addressing restrictions do not apply, and the teletype

buffer is addressable from the trap door's vantage point.

The subverter can either wait for normal disk

useage or execute a 'do nothing' program that uses the disk.

This will insure that the trap door that resides in the disk

driver routine will be exercised at the same time the

activiation key is present in the teletype buffer area. Upon

52

recognizing the activation key the trap door will perform

the necessary task required to circumvent the normal

controls .

e. Using Confinement Channels

Confinement channel is the general term applied

to information paths that can exist between a program

(called a service) and its owner. The information is gained

when another program (called a customer) invokes the service

and the service subsequently extracts unauthorized

information from the customer and passes it to the owr.er of

the service [16] .

Much of the computer security evaluation

criteria [9] mentioned in Chapter II is concerned with what

is called the simple security condition. This condition

states that a subject (user or his program) cannot have read

access to objects for which he is not cleared. Confinement

channels generally meet this condition. However they do not

meet what is called the confinement property (also known as

the *-property). The confinement property states that if one

program has read access to data at one security level it

cannot have write access to another file at a lower security

level [21]. Thus the program is 'confined' to not, in effect

'declassify' information, but it is confined to write into a

file of the same security level or higher.

Most systems do not even consider the issues of

confinement. If an artifice was to introduce such a channel

53

it would probably not be recognized for what it was. One

type of this channel is sometimes called a covert channel.

This channel is called covert because the method by which

the information is passed is particularly difficult to

detect. An example is offered by Denning [14]:

One type of flow cannot be controlled easily, if at all. A
program can convey information to an observer by encoding
it into some physical phenomenon without storing it into
the memory of the computer. These are called flows on
covert channels... A simple covert channel is the running
time of a program.

Because these channels for information flow are

not the 'normal' paths that information are thought to flow

on (i.e., variable parameters, files and other 'storage

channels') they are easily overlooked by investigators. In

the simple example above Denning [14] explains how the

running time of the program can be used to convey

information :

A program might read a confidental value, then enter a

loop that repeatedly subtracts 1 from the value until it
reaches zero. The owner can determine the confidental
value by simply observing the running time.

Confinement channels will be discussed again in later

sections of the chapter.

f. Hardware Obscuring

Today integrated circuit technology offers a near

perfect medium in which to obscure hardware mechanisms.

Equipments that have medium scale integration (MSI) chips

can be replaced with enhanced lare-e scale integration (LSI)

54

chips. The enhanced chips would perform the required

functions of the original chips, but also perform functions

under the control of the subverter. Detection of these

devices, once installed in target equipment is virtually

impossible, since the subverter would undoubtedly insure

that all external appearances such as physical appearance,

logical operation, power consumption, etc., would be the

same. There is no non-destructive way to thoroughly examine

these devices.

B. INSERTING ARTIFICES OVER THE LIFE CYCLE
OF A COMPUTER STSTEM

The subverter by inserting artifices into a computer

system is, in effect, 'creating' a subversion environment on

the targeted computer system. Ke is inserting the 'tools'

which he will use to undermine the security of a computer

system. Once this security is subverted, he can then extract

the information he desires. But the timeframe between when

the artifice is inserted and when information is retrieved

may be years.

He can be very successful in his insertion efforts

because the places in which the subversion occurs, are

relatively open environments that are not hardened against

his efforts. This is because there maybe no classified

operations being conducted at many of the places the

subversion occurs.

55

There is an interesting property in the insertion

activity that differs from most other forms of criminal

activity. The subverter is not removing or stealing anything

from the premises, on the contrary, he is introducing 'a

little something extra'.

1. Design Phase

The subversion of a computer system design is a

subtle process. As in any design process there are hundreds

of alternatives to consider. Among the many choices on any

given issue, several may prove acceptable. It is the job of

the subverter to be the 'standard bearer' of those

alternatives that will aid him in his subversion efforts.

Inadequate design choices have been used in the past

to exploit a system. In 1974 the Naval Research laboratory

conducted a penetration exercise on a Univac 1126 system

running under Exec VIII. The author of the resulting report

[l**] comments:

However, even if an MLS (multilevel security system) is
completely bug-free, in the sense that its response to
user requests is completely specified by its design, this
does not imply that the MLS will not permit dissemination
of data to unauthorized users. Our penetration of Exec
VIII is not based on bugs in the implementation, though
they certainly exist. Instead, we exploit several aspects
of the Exec VIII design philosophy which, when taken
together, make penetration possible.

Details of this particular penetration exercise are outlined

later in the chapter.

56

The following is a brief discussion of how the

subverter might make seemingly sound design choices and

still subvert a systems design.

a. Operating System Software

(1) Password procedures . There are several ways

to design password login procedures. Three viable choices

that the subverter might propose are:

1. encrypt the passwords with a seemingly non-invertable

algorithm

2. allow the user to choose his own passwords

3. allow multiple lo^in attempts for the 'forgetful'

user.

The first case was used on the Multics

system at the time of the USAF security evaluation [16] . The

designers of the system hoped that the algorithm they were

usin^ was non-invertable, the evaluation demonstrated that

it was not.

In the second case, user chosen passwords

are often easy to guess [10] . One such system allowed the

user to choose his own password. The system administrators

would enter a new user into the password file and as a

convenience, would enter the users name as his password

until the users first session, at which time the user was

supposed to change the password to one of his own choosing.

Due to a design choice, the password file was readable by

5?

all users. This in itself was not a cause for alarm, as the

password field is encrypted. But the first entry in the file

is the user's name in plain text. A malicious user, knowing

the administrators procedure, attempted the login sequence

using the names in the password file until there was a

sucessful login (presumably from a new user). Subsequent

investigations revealed that many of the users had not ever

bothered to change their passwords. This also points out the

problem of allowing too many login attempts.

(2) Au dit Procedures . Two design suggestions

that a subverter might recommend are:

1. audit all actions that might be security related (the

more the better) , or

2. audit only user mode actions.

The subverter by recommending excessive auditing will,

in effect, render the auditing process ineffective. Those

that are tasked with the manual reviewing of audit logs will

be quickly buried by the sheer volume of it all. The

listings will quickly fall into disuse in the corner of some

storeroom.

By auditing only user actions the subverter

is given free 'license' to implant his artifices in master

mode routines that are 'trusted'. The subverter need not

worry about any actions carried out by artifices that exist

in master mode routines because their actions will not be

traced by any audit mechanism. If a trap door circumvents

58

control of the system by placing the subverter in iraster

mode then any subsequent actions of the subverter will not

be audited.

(3) Confinement Channels. Some areas of the

computer system could be designed to pass information via a

confinement channel. Should the subverter find himself

working" in one of these areas he would undoubtedly take

advantage of the opportunity. The concept can be best

illustrated using an example.

Many operating system designs are process

oriented. Each time a new process is required by the system,

a unique identifier is assigned to this process so the

system cav keep track of all the different processes. Thpre

appears to be nothing significant about the process-id.

Therefore it would seem irrelevant as to how this unique

identifier is selected. Logically the easiest choice would

seem to be to assign process-id numbers sequentially as they

are needed. By making this design choice the subverter has

constructed a confinement channel.

Assume there are two processes, 'A' and

'B' t active in a system at the same time. Process 'A' is a

clandestine service routine (with a Trojan horse^ that has

access to sensitive information. Process 'A' desires to

communicate some of this sensitive information to process

'B', that is not authorized access to the information. They

will communicate by using- the process-id number as a binary

59

communication channel. Eecause process-id mumbers are

assigned sequentially, process 'B' can deduce information

from the id number based on the previous values. If 'A'

desires to send a "binary 'l', 'A' will create two new dummy

processes (and immediately destroy them). This will increase

the Process-id number by two. If 'A' desires to send a

binary '(?', it will create and destroy one process.

On the receiving end, 'B' will create one

process and save the id-number and then destroy the process.

'B' will compare the new process-id with the one saved from

its last active period and compare the two. If it is three

greater than the previous process-id the information sent

was a 'l', if it was two greater it was a '0'. Because both

'A' and 'B ' are executing on the same machine, these

activities are not occuring at the same exact time and they

are synchronized (in a crude sense). Because there will be

other processes in the system creating new process-id

numbers, the channel will be 'noisy'. But modern information

theory can be applied to detect transmission errors and

reliable results can be obtained [16].

(4) Backward compatible features . Manufacturers

nust insure that new product lines are backward compatible

if they wish to upgrade old customers. The subverter can

capitalize on these design requirements by insuring that

older system foibles are carried along to the new systems

design. The IBM Systems Journal [19] offers an example:

60

Two VM/370 features were discovered that permitted a total
penetration, and others were discovered that could cause
the system to fail. The first case concerned the OS/360
use of self modifying channel programs in its ISAM access
method. To support this feature in a virtual machine,
VM/370 had been modified to examine channel programs for
the pattern associated with the use of self modifying code
by OS/360, the VM/370 method of handling such channel
programs was to execute some commands out of the users
virtual storage, that is, not in VM/370 virtual storage
space. As a consequence, a penetrator, mimickirg the
OS/360 channel program, could modify the commands in his
storage before they were executed by the channel, and,
thereby, overwrite arbitrary portions of VM/370.

b. Other Software Design Choices

Most computer systems are offered with a suit of

supporting software such as compilers, text editors, service

routines, etc. These can provide the subverter opportunities

to incorporate Trojan horses into the overall system design.

Software that is supplied as part of a package deal is

financially attractive to customers that would have to

otherwise procure these items from other sources. Many times

for efficiency or convienence, a service like a compiler

will have special privileges (like executing in master mode

for some fuctions). Thus a trap door in this program is as

effective as one in the operating system itself.

Service routines that are designed for benign

purposes can be used by the subverter to insert artifices.

IBM/360 offered one such service [20]

:

The means for inserting a penetration
mechanism into an existing program (either system or user)
stored on a direct access device is provided by one of the

Operating System/360's own Service Aid programs, IMASZAP.

61

This program is designed to modify data and instructions
at any given location on a direct access file, which is to
say, one can modify information anywhere on a disk pack.

c. Hardware Alternatives

The selection of hardware for computer systems

will also offer the subverter many opportunities to aid his

cause. The subverter can concentrate on central processors,

peripheral equipments, or both.

(1) Central Processors. The selection cf central

processors from the subverter's point of view is

straightforward. The simpler the architecture the less

effort that will be required to subvert it. Optimally the

best choice is an architecture with no hardware protection

mechanisms. But this this choice is an impractical one for

both the subverter as well as the customer. There would be

little chance that such an architecture would be considered

for use in a system handling sensitive information, and the

subversion effort would be for naught. The subverter must

work within at least minimum guidelines.

For example, one set of minimal guidelines can

be found in The ADP Security Manual [6]. This list of

mechanisms is extensive. One would think that such a

complete list is sufficient to assure a secure system.

However, many of the penetrated systems in chapter two had

these features and penetrators were very successful in there

efforts. It is important to realize that having these

features is not sufficient for a secure condition, it is how

62

effectively they are employed. It is the job of the

subverter to ensure that they are not effective even if they

are present. The following is from the ADP Security Manual

[8] I

4-2P0 Hardware Features.

a. The execution state^of a processor sould include one or
more variables, i.e., "protection state variables, " which
determine the interpretation of instructions executed by
the processor

b. The ability of a processor to access locations in
memory (hereafter to include primary and auxiliary memory)
should be controlled (e.g., in user mode, a memory access
control register might allow access only to memory
locations allocated to the user by the 0/S)

.

c. The operation of certain instructions should depend on
the protection state of the processor. For example,
instructions which perform input or output operations
would execute only when in master mode. Any attempt to
execute an instruction which is not authorized should
result in a hardware interrupt

d. All possible operation codes, with all possible tags or
modifiers, whether legal or not, should produce known
responses by the computer.

e. All registers should be capable of protecting their
contents by error detection or redundancy checks

f. Any register which can be loaded by the operating
system should also be storable, so as to permit the 0/S to

check its current contents against its presumed
contents

g. Error detection should be performed on each fetch cycle
of an instruction and its operant (e.g., parity check and
address bounds check).

h. Error detection (e.g., parity checks) and memory bounds
checking should be performed on transfers of data between
memory and storage devices or terminals.

i. Automatic programmed interrupt should function to

control system and operator malfunction.

63

J. The identity of remote terminals for input or output
should be a feature of hardware in combination with the
operating system.

k. "Read, write, and execute access rights of the user
should be verified on each fetch cycle of an instruction
and its operant.

These requirements as outlined in the

Security Manual are general enough so that viable arguments

can be constructed to demonstrate most major vendor's

processors 'acceptable'. A way in which the subverter could

meet the letter of these requirements and still defeat the

protection mechanisms was demonstrated in the Multics

Security Evaluation [10].

The vulnerability involved violation of

requirement 'k' listed above (access on each fetch). The

Security Manual states that each instruction must produce

known results (requirement 'd'), but this vulnerability

involved a SEQUENCE of instructions. The Multics Security

Evaluation [10] outines the method:

This vulnerability occured when the
execute instruction was in certain restricted locations of
a segment with at least read-execute (re) permission, (see
figure 1) The execute instruction then referenced an
object instruction in word zero of a second segment with
at least R (read) permission. The object instruction
indirected through an ITS pointer in the first segment to
access a word for reading or writing in a third segment.
If all these conditions were met precisely, the access
control fields in the SDW (segment descriptor word) of the
third segment would be ignored and the object instruction
permitted to complete without access checks.

This particular hardware 'bug' resulted from a field

installed design change to the equipment that was installed

64

at all the computing sites. A sutverter might well include

such 'features' in the initial hardware design.

RE Access

ENTER

1f >

r Access

L
2 null Access

Lo STAQ 6,* "> XEC bp 3

5

6^

/•

L ITS

Figure 1. Execute Instruction Bypass

(2) Peripheral s . Generally, peripherals do not

have the stringent requirements placed on their internal

behavior like central processors. They are generally thought

of as heirg under the control of the central processor and

if the CPU is 'contained' (in a security sense) then the

peripherals will follow. This concept is rapidly changing in

todays technology. Many devices such as direct memory access

(DMA) I/O equipments are specialized processors in their own

risht

.

65

Configuring a system so that 'specially

modified' I/O devices can intercept (or directly access)

sensitive information is totally within the realm of the

subversive designer. Likewise, procurement policies that are

based on the lowest bidder can (and have been known to)

result in a composite system that comes from a variety of

manufacturers. A subversive designer can specify equipments

to such a degree that only one vendor (the subverter) will

be able to meet the specification. By specifying in this

manner or by competitive pricing these 'enhanced' equipments

can find their way into a 'secure' computer system.

2. Implementation Phase

In this phase of a computer systems life cycle, there

are two computer systems to consider. There is the computer

system under development, and there is the computer system

used for the development (i.e. the 'host' computer). The

subverter would first penetrate the host computer. Once this

is accomplished, he would have access to the new software

under development. This technique was demonstrated during

the Multics evaluation [1?] . A trap door was inserted into a

new version of the Multics software that was to be

distributed to all Multics sites.

The target, of course, would be the new software (or

hardware) under development. It would be these new products

66

that would be employed in the protection of information in

the future.

Inserting artifices during the implementation phase

can offer as many advantages as inserting during design. In

fact, there are additional advantages because inserting

artifices during implementation of a system does not require

the subverter to be on the vendors payroll.

Often programmers can work from their homes on remote

dialup terminals. Because these vendor development systems

are not hardened against wiretapping or other possible

penetration techniques, the subverter can infiltrate as

desired. Private corporations would tend to shy away from

particularly restrictive security practices when there is no

classified activities present. The Multics Security

Evaluation [10] which was written in 1974 pointed out such

an environment

:

... it should be noted that the software for WWMCCS
(World Wide Military Command and Control System) is

currently developed using uncleared personnel on a

relatively open time sharing system at Honeywell's plant
in Phoenix, Arizona. The software is monitored and
distributed from an open time sharing system at the Joint
Technical Support Agency (JTSA) at Reston, Virginia. Both
of these sites are potentially vulnerable to penetration
and trap door insertion.

Two areas of activity that might be subject to

subversion in the implementation phase are, coding and

testing, and hardware assembly and checkout.

67

a. Coding and Testing

Coding and testing of system software is

concerned with one major goal: that the programs oerfcrm at

least the required functions. This is a minimal requirement,

not a maximal one. Testing criteria involves only insuring

that a given module performs the required tasks correctly.

It does not involve the concept of determining all the

functions that it might be able to perform. In general, this

characteristic cannot be determined for a program since this

reduces to the unsolvable safety problem [4] discussed

earlier.

If subversive activities are to be carried out

by the actual programmers assigned to the project, there are

a few general practices that the subverter might follow. Cne

such practice is using global or external attributes for

variables that might not otherwise require them. This can

make data available to other covert routines that will be

able to utilize them. This is common practice in operating

system programming, particularly if the language used is

assembler language.

Some languages, particularly higher level

languages that are constructed for operating system use, do

not perform run time bounds checking on data structures that

use subscripting or pointers. This is not done because the

extra code required cannot be afforded in an operating

system environment. Effective use of such structures can

6B

allow clandestine routines access to areas that would be

otherwise inaccessable. For instance, a routine that has a

trap door installed performs some processing on an array

that is passed to it. The maximum expected size might be 100

elements. If there is no runtime subscript bounds checking,

the routine could check the area just beyor.c? the 102th

element for a unique bit pattern that would activate the

trap door. Specific features such as hardware bounds

checking mechanisms will not help much because there would

be no violation of the jobs total address space,

b. Hardware Assembly and Checkout

The safest time to carry out subversion

activities on hardware is during the assembly of the

equipment. Insertion costs and detection risks would be low

during this period. Equipment could be assembled with

specially enhanced integrated circuits that appear and

function exactly like the normal circuits. This could be

done by intercepting the suppliers shipment of parts to the

assembly plant and replacing them with the subverted

hardware. This way the subverter would be totally removed

from the insertion process. Entire product lines can be

equiped with these hardware trap doors. If shipments could

not be intercepted, or if the assembly plant was the

manufacturing facility as well, other arrangements could be

made. Assembly line nersonnel could replace the normal chips

in the assembly line parts bins with the enhanced chips.

69

Plant security is typically oriented toward individuals

taking products out of a plant, not cringing them into it.

3. Distribution Phase

The most significant advantage to inserting artifices

in system components (hardware and software) during the

distribution phase is that the subversion occurs after the

review process is completed. These components already carry

the 'seal of approval' and will, in all probability, not be

subjected to close scrutiny again.

Subversion activities carried out during the

distribution phase require significantly less investment in

technical talent than than other phases of the life cycle.

Activities involve the replacement or modification of valid

equipments and software with subverted copies. Personnel who

might be involved are delivery truck drivers, mailmen,

receiving or shipping clerks. Most of these personnel can

perform their aspect of the subversion and not be aware of

the 'big picture'. Even if apprehended and interrogated

their knowledge of the extent of the operation would be

minimal .

Suppose that the subversive organization

legitimately purchased several terminals from a company.

Upon receiving these terminals they are carefully unpacked

so as to not damage the orginal shipping containers.

Technicans could then modify the terminals with special

70

'enhancements' and insure that they perform as desired. The

terminals are then carefully repacked so that nothing would

appear disturbed. When the subverters received word that

company XYZ had ordered some of these same terminals for a

new multilevel security application, they could be replaced

for the normal terminals. This way the subverters have a

steady supply of terminals, with only the initial

investment .

There are various methods that could be employed to

substitute the enhanced terminals for the normal ones. It

•night require the services of a slightly dishonest truck

driver or warehouse clerk.

The important point is that the terminals would not

be suspected because they were not 'stolen' in the classical

sense of the term, just replaced with 'enhanced' versions.

The shipping papers could be changed to reflect the

different numbers if serial numbers could not be changed.

In other areas, the process might even be easier.

Companys often put out advance notice of upcoming software

revisions, or hardware field changes. Subverters could be

alert to these things and be ready with enhanced revisions

or field changes. On a software revision the subverter could

conceivably intercept a software revision tape and modify

(or replace it) within hours. The delay would be negligible.

Another method that can be used is for the subverter

to generate bogus software revisions or field changes to be

71

carried out by system maintenance personnel. These changes

can be forwarded with forged stationary and customers would

have no reason to suspect that the changes are bo^us [10]

.

4. Installation Phase

The installation of any computer system is a rather

chaotic period. The subverter can capitalize on this chaos

and use it to his advantage.

There are several opportunities to install software

artifices during the initial installation of a new system,

particularly a new operating system. Several bugs are bound

to surface and the system may require numerous regenerations

of code to test out all the changes required by the

tailoring of the system to the particular installation.

Systems programmers will be uncertain about the new

systems behavior patterns. In such an uncertain environment

security personnel will naturally not allow sensitve

information to be processed, and in fact might allow the

system to be run under less control than would otherwise be

present. It is doubtful that a malicious systems programmer

would be scrutinized very closely and he could insert many

trap doors into the new system.

Many decisions are made during these initial break-

in periods concerning operational procedures that the

subverter can offer his 'advice' on. Each installation is

different and requires judgement calls on the particular

72

situation at hand. A highly technical subverter (such as the

vendors representative) can prove suprisinsly effective in

this kind of situation.

An interesting method for inserting trap doors that

can he implemented during the installation phase is

suggested in the Multics Security Evaluation [10].

Here, the system initialization code is modified by the
penetrator to insert other trap doors as the system is

brought up. Such trap doors can be relatively invulnerable
to detection and recompilation, because system
initialization is usually a very complex and poorly
understood procedure.

5. Production Phase

Inserting artifices during the production phase of a

systems life cycle may entail more risk than inserting

during the other phases. All security measures will be in

place due to the presence of sensitive information. Put

these risks are only high in comparision to inserting during

the other life cycle phases, and in an absolute sense can be

quite acceptable. Recall that the commom 'computer criminal'

or penetrator works exclusively in this penetration

environment and has had excellent results. Techniques used

by the subverter to install artifices in the production

phase of a system are the same techniques used by the

penetrator to generally exploit a system, i.e., system

foibles.

73

One could argue that it seems senseless to use an

unintentional trap door (a foible) to install an intentional

trap door (an artifice). But one must remember that the

subverter is not cut for the 'quick dollar'. Re is a

professional that is in the business of gathering

information over a long period of time. The subverter will

certainly use any device at his disposal, but the

deliberate, well thought out, and tested artifice can insure

results over the Ion* haul, with a minimum of risk. The

artifice will continue to work even if the orginal foible is

found and corrected.

It is instructive to examine how one mi^ht insert

clandestine code in a system when it is in an operational or

production mode. The example choosen is the Univac 1108

penetration exercise. The success of the exercise was due to

two design foibles [17]

:

1. Inadequate error recovery. For any given job the user

had the ability to request the control of error

recovery. In general an error routine in the Exec VIII

operating system had access to the same addressing

environment as the routine causing the error. Exec VIII

did not stack error handling routine requests, but

deleted the previous request.

2. Unprotected reentrant routines. Shareable

non-executive reentrant routines in Exec VIII are called

reentrant processors (REP). Examples of these are

74

compilers, text editors, data management subsystems,

etc. Each RFP must have an associated data area that is

writable. Due to a hardware design oversight, write

protection is provided for BOTH instruction and data

banks or for neither. For the REP to be able to modify

its associated data bank the code area must run

unprotected from modification.

Due to Exec VIII core allocation policies, there was

usually a number of unused words at the end of the last core

block allocated to the REP code area. The sequence of events

was as follows [17] :

1. A legitimate program called BREAKER requests to

handle its own error recovery.

2. The BREAKER program prepared an out-of-bounds data

bank for the victim REF and linked to it.

3. BREAKER invoked the victim REP and the REP

immediately caused a guard mode error while trying to

access its data bank.

4. Control was immediately returned to the BREAKER

routine via the error handling request. BREAKER then had

write access to the victim REP.

75

5. BREAKER checked the end of the victim REP to see if

there were enough free words in the code Mock to insert

a calling sequence to a clandestine routine. If there

was, the entry point of the REP was changed to a jump to

the beginning of the free area and a calling sequence

was inserted in the free area.

Usin* this method a subverter could essentially build a

general purpose Trojan horse that could be used in various

ways. Depending on the purpose of the clandestine program

invoked bv the calling sequence, the subverter could:

1. access information owned by any user who subsequently

invokes the victim REP.

2. install trap doors in programs owned by users of the

victim REP, such as the operating system.

6. Summary

The insertion phase is the most significant aspect of

the subversion process. The efforts that go into this phase

yield 'tools' that will give the subverter access to

information almost as easily as the owner of the

information. Whereas, the subverter has constructed a sound

foundation from which to work, he has left the legitimate

user one of sand. \

76

C. EXERCISING ARTIFICES

The discussion up to this point has centered on the

subverter creating the subversion environment. Attention

will now turn to how the subverter can use this environment

to exploit a computer system. There are several activities

that can he carried out hy the subverter after he has

activated the artifice [11];

1. extraction— the withdrawal or copying of data

2. alteration— changing or modification of data,

programs or hardware,

3. addition adding extraneous data

4. utilization- using the system resouces malicously.

All these activities are possible objectives of the

subverter. Before these activities are discussed it is

instructive to first understand how the artifices that will

enable these activities are triggered.

1. Activating Artifices

a. Software Activation

(1) Trojan Horses . Trojan horses are usually

activated by the victim program . Although the mechanism is

considered activated that does not imply that the covert

function of the Trojan horse will necessarily do anything

malicious. Due the the possible wide usage that a Trojan

horse can get, the subverter may desire to limit the

information that it gathers.

77

A text editor can be enhanced to check: the

file name of those files it is employed to edit and based on

a predetermined target the Trojan horse will respond

accordingly. The target might be the system password file.

When the editor senses this file it will copy the file to a

safe place, otherwise it will lay dormant. A safe place is

any area that is accessable to the subverter. This may be a

file in the subverters own directory or a system buffer area

that is accessable via a clandestine routine.

(2) Trap doors . Should the subverter require

close control over when an artifice is activated, it might

require an a^ent to input the trigger via a terminal or by

submission of a batch job. The activator need not be aware

of what clandestine activities are in progress. For

instance, suppose a trap door was inserted in a system

during the implementation phase of the systems life cycle.

The subverter knew exactly what tasks needed to be performed

but not when. Remember that the insertion may have taken

place years prior to the time of its activation. Imagine the

following scenario.

A janitor is in the process of cleaning a

room that contains a terminal. Like many installations the

system runs 24 hours a day. The janitor has received

instructions to turn on the terminal and type in a given

string of characters. Fe then proceeds with his cleaning

chores. At the end of a predetermined time the janitor

78

switches off the terminal, and proceeds as though nothing

had happened. The trap door was programmed to periodically

check the teletype huffer for the predetermined pattern,

perform its clandestine function and then erase all traces

of its actions.

Another method of activation for trap doors

is by timer. If a subverter is aware that some valuable

information will he input into the system after a certain

date, he can install a trap door that will periodically

check the system clock for a certain date. Upon recognizing

that the date has occurred the trap door will copy the

information to a safe area for later retrieval. Variations

on this theme have heen informally reported within the

Department of Defense. These artifices were implanted "by

disgruntled employees. The results of these implantations

can he disasterous. It could mean the voiding of thousands

of dollars worth of software because there is no way to find

the malicious code and the risk could too great. If such a

mechanism was installed in something like automated process

control software, thousands of dollars worth of damage could

result .

b. Hardware Activation

Methods for activating hardware artifices will

vary with the sophistication of the mechanism. The following

are a few examples:

79

1. An enhanced chip that is part of a teletype terminal

is activated by the systems login sequence. Upon

recognizing the sequence, the chip will store the users

name and password in the chips own memory area.

2. An 'intelligent' chip such as a special purpose

microprocessor that can he microprogrammed ty the data

stream that follows the trigger. This mechanism could

reside in peripheral equipment and be used to

selectively copy data to other storage devices on

command

.

3. A central processor that has "been 'modified' to

disable memory checking mechanisms or place the

processor in master mode when a special sequence of

unused opcodes is executed. The opcodes when executed in

any other order will have no effect on the processor.

There would he another special sequence of code that

would restore the processor to normal operation.

2. Techniques of Exploitation

After the artifices have been activated there are

several activities in which the subverter can engage. Below

is a "brief discussion of some of the possibili tes

.

a. Breaking Out of a Subsystem

As pointed out earlier, subsystems are "built

around an underlying operating system. This subsystem will

use the primitive operations of the operating system to

80

construct the restricted environment that the user will see.

To the operating system (and the subverter) the subsystem is

nothing more than another program running concurrently on

the system.

Assume a subsystem is designed to restrict the

user to performing simple calcualator functions. That is,

the user can type simple mathematical expressions at the

terminal and the answer will he typed in reply. Any input

other than a valid expression will result in the subsystem

replying with the message 'invalid expression, try again'.

This is clearly a restricted environment. The user does not

have the ability to execute programs, or use any of the

other sevices offered unrestricted users.

But if the underlying operating system had been

subjected to subversion, the subsystem could be easily

bypassed by the user. The method that can be used is similar

to the trap door used by the janitor.

The user activates the trap door by typing in

the trigger sequence. The trap door is periodically scanning

the teletype buffer area for the trigger sequence. When the

sequence is recognized by the trap door the terminal is

removed from the subsystem environment and given whatever

control the subverter that inserted the clandestine code

desi res

.

81

b. NPS Penetration Case

During the time that this research was being

carried out, one of the schools computer systems was

subjected to 'attack' by a malicious individual. The system

in question was a PDP-11/50 running under the UNIX operating

system. This case is a simple example of breaking out of a

subsystem.

The subsystem under consideration was the

'games' monitor. This system has several games programs that

came with the system or were written by students as class

projects. The subsystem is 'constructed' by having users (no

password required) that log in under the games user-id

restricted to executing only those programs and commands

that reside in the games directory. The games option is only

enabled during 'off' processing periods when the system use

is low. The malicious user was familar enough with the

system to know the dialup terminal phone number. It was

apparent that he was familar with the UNIX system, because

he wrote a program (the trap door) ar.d inserted it into the

games directory.

The program was called 'ZX' and it was a 'C'

language program that executed one command language (called

'shell') statement. Since this program was in the games

directory, the monitor environment did not prevent the

execution of the command lan^ua^e statement. This trap door

gave the individual all the privileges of an unrestricted

92

(non-super) user. He could (and did) read the password file

for names of legitimate users. He found some users that had

the same password as their name (this example was mentioned

earlier). He was later discovered logged in under some of

the legitimate users names, or would respond with one of

these names when queried online.

Dialup capabilities were eventually restricted

by a monitor to specially authorized personnel, and the

mysterious 'attacker' did not make his presence known again.

Several procedural errors where identified in the course of

the 'investigation' and have since been corrected. Among

these were the password assignment procedures (mentioned

earlier) were no longer initialized as the users name, and

the restriction of the dialup capabilities. This 'attacker'

did not appear to be malevolent in his actions. He seemed as

though he was looking for a little 'free' computer time. lut

there is no way to determine this for sure, nor is there a

way to determine what other artifices mi*ht still be present

in the system.

c. Using Emitters

Computer systems are electromagnetic emitters

like any other piece of electrical equipment. Information

can be gathered by monitoring these emanations.

Communication lines and cathode ray tubes are particularly

vulnerable to these techniques [11]. Security personnel are

generally aware of this problem [8]. Computer sites can be

S3

measured for the amount of emanations present. If they are

suff icienct ly low, a site could he certified as satisfactory

in this area. Fowever, if there were covert transceivers

imbedded in the equipments at the factory this

'certification' could prove useless. & transceiver that is

monitoring a data bus could sense a data stream trigger.

Upon activation the transceiver would begin to broadcast the

activity on the data bus at a higher power level than would

be normally present. Since the transceiver was not active

during the 'certification' its presence would not be

detected. A similar sequence could act as the deactivation

key to stop the transceiver from broadcasting. As one can

see this is nothing more than a specialized hardware trap

door.

d. Memory residue

In a resource shared system the allocation of

memory could result in the exposure of sensitive information

to unauthorized users. Unless specific actions are taken by

the operating system or the previous user, memory assigned

to a new user program will contain whatever was last placed

in it.

The ADP Security Manual [8] addresses the

problem:

The O/S shall ensure that classified material or critical
elements of the system do not remain as accessable residue
in memory or on on-line storage devices.

84

This means that the operating system must clear core before

it is assigned to a program. This mechanism, if subverted,

could be designed to 'turn off' by command.

This could prove valuable to the subverter who

has asrents that are legitimate users of a system. As a

matter of standard procedure the agents could perform the

following actions whenever they are processing jobs:

1. program begins execution and immediately turns off

the clear core mechanism by activating an artifice.

2. program waits for sufficient residue to build up in

the free core area, and requests additional core for the

next processing step.

3. upon receiving the additional core the program dumps

the contents of the core to a file in his directory for

later review.

4. program turns residue mechanism back on and completes

legitimate tasks.

Another problem with memory reside arises when a

computer is involved in what is commonly called 'periods

processing'. A periods processing environment is one that

uses the same computer to process information of different

security levels, but at different times.

After each processing period in one mode,

special procedures are carried out to insure that all traces

of information are removed from the system. This is known as

'color changing'. This includes removing all tapes, cards,

65

printouts, ribbons, etc., from the system. The next shift

would brinp* all the necessary equipment with them to do the

same. One of these procedures is, of course, clearing core.

The program used to 'clear' cere could he one that writes

random patterns into core. This could he he repeated several

times to ensure a good 'brainwashing'. Assuming the color

change was from classified to unclassified, it would be

possible to obtain information from the previous processing

period. If the program that cleared core did not write

random patterns into core, but just encrypted the

information, it would be undectable by the operator. A

clandestine process, that runs in the unclassified period

could core dump the information to files for later

decryption.

e. Using Confinement Channels

Confinement channels have traditionally been

thought of as a slow means of extracting information. Eut in

an environment where particular care has been taken to

defend against subversion, this method may be the only way

of ^ainin^ information. Channels on the order of a bit per

second have been demonstrated and channels that can pass on

the order of tens of bits per second have been hypothesized

[22] . The following are a few examples of what form these

channels misrht take:

1. If the system has interlocks which prevent files from
being opened for writing and reading at the same time, the

86

the service can leak data if it is merely allowed to read
files that have been written by its owner. The interlocks
allow a file to simulate a shared boolean varible which
one program can set and the other can test[16].

2. By varying its ratio of computing to input/output or
its paging rate, the service can transmit information
which a concurrently running process can receive by
observing the performance of the system. The communication
channel thus established is a noisy one, but the
techniques of information theory can be used to devise an
encoding which will allow the information to get through
reliably no matter how small the effects of the service on
system performance are, provided they are not zero. The
data rate of this channel may be vary low, of course [16] .

3. An exploitable path for information flow can be created
between an uncleared individual accessing the system
during one processing period and the classified
information processed by the system during another
processing period if, over time, the same software is
employed in both processing periods. Such a 'covert
leakage path' can effectively negate the necessary
complete isolation between processing period s ... [23] .

Case 1 is very similar to the process-id binary

channel discussed earlier. But in this case the binary

channel is the interlock. The owner (subverter) knows the

service program (which has access to the sensitive data) is

sending a binary 'l' if the service opens the given file for

reading. This is because he would be prevented from writing

into the file by the interlock. He would be receiving a '0'

if he was permitted tc write the file.

Case 2 is similar to the example that measured

the runtime of a program. In this case low system

performance means a '2* and higher system performance a 'l'.

Case 3 is an example of passing information

between processing periods. Assume that the machine in

8?

question is one that supports memory paging. Also assume

that the programs in question are reentrant routines. This

means that they would not get swapped out during a page

fault, just overwritten. Should the program "be able to

execute in the master mode, it could write sensitive

information into unused portions of the code block (like the

UNIVAC 112? example). Since the code "block was modified the

page swapping routine would swap it out vice overwriting it.

When the next unclassified processing period starts, the

subverter merely reads the data from the code block of the

program.

f. Affecting System Performance

Not all subversion activities would be concerned

with gathering information. For some computer systems the

subverter may only be interested in rendering these systems

ineffective at key times. Tactical or strategic systems are

examples of where this might be desirable.

A systems design or implementation could be

subverted so that its performance may suffer during critical

situations. It is often difficult to test such systems under

critical real world conditions. These systems could meet

performance specifications under simulated situations but

prove ineffective in a real world situation.

Triggering of artifices in these systems can be

by external events. Suppose there is a command and control

68

system that keeps track of potentially hostile ships. A trap

door entered during the implementation phase of this

particular system is designed to activate whenever it

detects that a certain ship was reported at a certain

position. When the opposing side decides to start hostile

operations, it could sent the designated ship out to the

predetermined position "before the start of hostilities. The

ship could remain at that position long enough to insure

that the intelligence system had time to enter the ship into

the system. When the trap door recognized the activation key

(ship identification and position) it could cause the system

to gradually degrade in performance until it was

ineffective. The ship would have, in effect, 'sunk' the

command and control system from thousands of miles away.

Examples of what an artifice could cause to happen to this

kind of system are:

1. cause the system to crash at random intervals,

2. slow down the system performance by randomly clearing

core page usage data, thus causing the system to swap

pages in and out of core excessively (thrashing),

3. randomly ignore or lock out the command console.

Activity such as this would render the system unreliable and

creatp an unwillingness to use it. Furthermore, systems

maintenance personnel would make the system unavailatle for

many long hours while looking for a bug that may never be

69

found. Since it was installed during the implementation

phase it would exist in all copies of the system code.

D. Retrieving Information

Once information has been accessed by the methods

outlined previously, the problem of removing the information

from the confines of the security perimeter still remain. As

one might expect, the difficulty of the retrieving process

is directly related to the 'strength' of the security

perimeter. In a relatively open system retrieval might be as

easy as walking out the front door with listings under one's

arm. In a more restrictive environment other methods can be

devised. In a multilevel security mode, the unclassified

user is frequently not scrutinized? in fact, he might by

using a dialup terminal several miles from the computer

installation.

This discussion will assume that the exercising phase of

subversion has placed the desired information in a 'safe'

place (i.e., any area that is accessable to the subverted.

1. Retrieving Files

If the internal protection mechanisms were used to

enforce the security perimeter (as in a multilevel security

system) then the subverter may have a simple job of

retrieving the information. Since the security controls were

90

circumvented in obtaining the information, the security-

perimeter has been breached and retrieval may only involve

dumping the information out in some transportable form.

However, if this is not the case the information may be

reviewed by someone before it is allowed to cross the

security perimeter. In this case the information must be

desguised or perhaps even encrypted.

Information can be hidden in the header pages or

system job statistics areas of batch job printouts. These

are often ignored areas of a listing. These areas could

offer low bandwidth channels for the information.

Encrypting information into statistical tables or

core dumps can significantly increase the volume of

information that can be channeled through the security

perimeter.

2. Retrieving with Hardware devices

Hardware transmitters can be used to pass informtion

beyond the security perimeter. These devices can offer

channels of very high bandwidth. A high speed printer that

had a transmitter imbedded into it during the installation

phase is an example. Again the activation key could be a

sequence of characters in the data stream that turns on the

transmitter and a similar sequence to turn it off.

An interesting method that could be used for a low

bandwidth channel is the front panel of the computer

91

console. Some installations have tig glass windows that

define an external security perimeter. A subverter could

submit an unclassified job to a system that could serve to

activate a trap door. The subverter only need watch the

register lights for the information to be flashed to him.

Naturally the normal register lights would be flashing to

rapidly for the subverter to understand them. However the

parity light for the registers could be control in such a

manner that they could send Morse code to the subverter. By

having a program that repeatedly enters even parity or odd

parity values in to a register an information channel could

established. Furthermore, the flashing could be recorded

photographically or using vidio tape.

E. CHAPTER SUMMARY

This chapter has outlined the methodologies of computer

subversion. This subversion may involve the organized

efforts of many individuals whose talents could range from a

computer scientist to an unskilled laborer. Subversion is a

three step process involving the insertion of artifices into

computer system components, exercising them, and retrieving

the resultant information. The insertion process could be

carried out over the entire life cycle of a computer system,

from the beginnings of its design through to, and including,

the the production phase. Once installed these artifices can

92

be used to circumvent normal internal controls cf the

computer system for the purpose of accessing unauthorized

information. Once unauthorized access is obtained, the

subverter need only disguise this information into a form

that will circumvent any external controls that may exist,

thus effecting its retrieval.

Subversion is clearly a threat to the security of any

information that relies on a computer system to protect it.

In the next chapter ways of minimizing the risk of

subversion are investigated.

93

V. MINIMIZING THE RISK OF SUBVERSION

Theoretically, there are three ways in which subversion

can he minimized, and they relate directly to the three

phases of subversion:

1. Prevent the the insertion of all mechanisms that can

be utilized to defeat internal scurity controls, or

2. Prevent the malicious user from exercising these

mechanisms , or

3. Prevent the retrieval of any information rained via

exercising techniques.

Any one of the three methods mentioned above could

prevent subversion. Each method will be briefly discussed as

to its merits in helping to minimize the threat of

subversion.

A. RESTRICTING INSERTION OPPORTUNITIES

Preventing the subverter from inserting artifices may not

be a simple task, but it is essential to the ultimate

solution to the problem of subversion. It has been

demonstrated how subversion can occur over the entire life

cycle of a computer system. To prevent the insertion of

artifices implies that the subverter must be prevented the

opportunity to access system components at any point during

94

this life cycle. Clearly, system components that affect the

security of the system must be afforded lifetime protection.

1 . lifetime Protection

For lifetime protection to be effective it must

involve such measures as:

1. Appropriate security clearances for any personnel

involved in the various stages of the computer systems

life cycle [2]

.

2. Sufficient 'hardening' of manuf actu ring* and

development programming sites to prevent subversion by

external forces [2].

3. Proper protection of all system components from

access by malicious elements for the entire systems life

cycle

.

Without the above measures, proper assurances would not

exist concerning the safe history of system components. That

is, whether or not malicious elements have had the

opportunity to subvert the components. The only appropriate

course of action would be to not allow these components to

participate in the protection of information. This is

because the very nature of subversion is covert, and it

would be virtually impossible to detect if it had occured in

a system after the fact. If any period during the lifetime

95

of a computer system has a lapse in protection it must be

similarly assumed that these components are unreliable from

that point forward.

2. Appropriate Protection Policies

The above measures should be viewed in the proper

perspective, tfhat is meant by 'sufficient hardening' of

development sites, or 'proper protection' of system

components?

Just because a computer system will be involved in

the protection of classified information does not mean that

the system components are themselves inherently classified.

It would therefore not be appropriate (even

counterproductive) to demand that these system components be

protected in the same way as classified materials. For

instance there would not be any reason to prevent copies of

programs from being seen. The central issue is not the

content of the programs, but restricting access (for

modification) to the particular copies of those programs

that will be used to enforce protection in the system.

A more appropriate protection policy is needed. In

essence this policy should outline a strategy of 'look, but

do not touch'. For instance, in the area of development or

manufacturing sites, hardening does not have to be concerned

with emanations where the is no sensitive information

96

contained in th^ operating system code or hardware equipment

at this point in the life cycle.

Similarly, the proper protection of system

components would dictate that they "be protected from

malicious elements having access. Previous chapters have

outlined in detail that there are many ways that a subverter

can access system components. Therefore, coun termeasures to

these access routes must be devised. Eut restricted access

need only apply to those particular programs and equipments

actually involved in the protection of information. Copies

of the programs could conceivably he made available to

anyone. However, those particular components (programs or

hardware) that will actually be used in the protection of

information need to be clearly distinguished and protected.

Specifically, those particular components involved in the

protection of information should be labeled and protected

from access at the same level as the information they are

expected to protect.

One of the basic principals of subversion irvolves

the introduction of clandestine mechanisms into security

related system components. However current DOD security

program regulations and directives [7,8,24] are primarily

concerned with the REMOVAL of sensitive materials from a

secure environment. These directives must be changed to

ensure that security not be compromised by the INTRODUCTION

of materials as well.

97

B. RESTRICTING EXERCISING OPPORTUNITIES

To prevent the exercising of mechanisms that could defeat

internal system controls, one could:

1. Find and eliminate all such mechanisms, or

2. Somehow guarantee that they could not he employed.

Both these 'solutions' when applied to current operating

systems are, in any practical sense, infeasible.

Both these 'solutions' assume that such mecharisms can

he identified in the first place. To do do this would

require a means of determining that every program executed

on a machine is 'safe'. But chapter II brought out the fact

that there is no general solution to the safety problem [4] .

A simple example of this is a Trojan horse. As previously

indicated, the user willingly invokes a malicious program

and, in doing so, gives it 'permission' to perform its

covert functions. Not only will most computer systems not

prevent the employment of such a program, it will

unknowingly aid in its endeavors.

Finally, one must consider the system foible (design and

implementation errors). Recall that these are mechanisms

that can also be of use to the subverter. To presume that

all such foibles are identified and eliminated is to imply

that the perfect design was flawlessly implemented. This is

a highly unlikely prospect. Chapter II offered ample

testimony to the fact that current technology is a long way

98

from the perfect implementation of something the size of a

modern operating system. If 'accidents' such as system

foibles are difficult to find, then the deliberately

obscured artifice would be virtually impossible to detect.

Attempting to prevent the exercising of artifices is a

futile approach.

C. RESTRICTING THE RETRIEVAL OF INFORMATION

Restricting the retrieval of information must presently

be considered the last defense against subversion. This is

obvious because, as pointed out earlier:

1. No assurances exist as to the absence of past

subversive activities on system components, therefore

subversion of the components must be assumed.

2. There exists no general method that can prevent the

exercising of clandestine mechanisms in a computer

system.

Ultimately, preventing the retrieval of unauthorized

information from a system will lie with the effectiveness of

the security perimeter. If the subverter can cross this

defensive barrier then he has, in effect, retrieved the

information. One must clearly delineate where this perimeter

lies. Unless it is clearly delineated, one cannot determine

the effectiveness of those mechanisms designated to enforce

it.

99

1 . Delineating the Internal Security Perimeter

When the security perimeter of a computer system is

enforced by strictly external means, the system is said to

be operating in the dedicated security mode [21,22] . The

security perimeter is clearly defined as those physical

measures (such as guards, etc.) required to insure that no

unauthorized information will leave the boundries of the

perimeter. All users, equipment, and information reside

within this perimeter. The effectiveness of this kind of

security perimeter is easily determined as it is based on

established practices that are not unique to computer

security. The dedicated mode of operation is the result of

the need to restrict retrieval of information. This is

certainly a sound technique but it does not solve the

classical computer security problem. That is, the need to

reliably share information of varying degrees of sensitivity

among users of varying degrees of trustworthiness.

In the case of the computer that is used in the

multilevel security (MLS) mode, the security perimeter is

less clear. In this mode of operation the security perimeter

is enforced by the internal protection mechanisms of the

computer system. This is because personnel that are not

cleared for the highest level of information contained

within the system are allowed some form of access to the

system. The only barrier between the uncleared user and the
i

100

information that he is not authorized to access is the

internal protection mechanisms of the computer system.

Therefore it is imperative that this internal barrier (i.e.,

security perimeter) be well defined within the system.

The difficultly with contemporary computer systems

is that control of these internal protection mechanisms is

distributed throughout the entire operating system. There is

no clear distinction as to which parts of the system enforce

the security perimeter and which do not. A.s a result of this

vagueness, any attempt to evaluate the effectiveness of a

computer system to enforce a security perimeter is doomed to

the ad-hoc approaches such as those outlined in Chapter II.

And these are notoriously ineffective.

So called 'trusted' subsystems compound the problem

by attempting to 'establish' a security perimeter with a

special program. But ultimately a subsystem will use the

very same protection mechanism that the underlying operating

system uses. It should be clear by now, that in the face of

subversion the subsystem is not the least bit more secure

than the underlying operating system and other security

related components that it embraces.

It is clearly essential that any internal protection

mechanism be defined in such a way that it's effectiveness

can be demonstrated. One such mechanism is the Security

Kernel. Scbell [6] states:

101

The chief distinguishing characteristic (from whence its
name) of the security kernel concept is that a kernel
represents a distinct internal security perimeter. In
particular, that portion of the system responsible for
maintaining internal security is reduced from essentially
the entire computer to principally the kernel.

It is instructive to see how this mechanism could be used to

prevent the subverter from retrieving unauthorized

information.

2. Security Kernel Concept

In a system that is based on a security kernel,

protection is realized within the computer system by the

verifiable implementation of a mathematical model of

information security. This model is based on an abstract

representation of security called the reference monitor [5].

The reference monitor describes a mechanism for controlling

the access privileges within the system (see references

[2,5] for further details on the monitor). The

implementation of this mechanism is the security kernel.

The security kernel is designed to be a verifiable

subset of security related operating system functions. These

functions form an interface (i.e., a security perimeter)

between the user and the information. If the security kernel

is implemented correctly, its use will guarantee that the

information in the system will be protected in accordance

102

with the security policy that is outlined in the security

model. Essential design requirements of the security kernel

are:

1. It must be tamper proof.

2. It must always he invoked.

3. It must he small enough to he subject to analysis and

tests, the completeness of which can be assured.

The Multics Security Evaluation [10] points out how

comtemporary systems have been unable to meet these

criteria:

The stated design goals of contemporary systems
GCOS or OS/360 are to meet the first requireme
unsuccessfully). The second requirement is gene
met by contemporary systems since they usual
'bypasses' to permit special software to operate
suspend the reference monitor to provide addr
for the operating system in exercising its
functions. The best known of these is the bypass
for the IBM supplied service aid, IMASPZA? (

Finally and most important, current operating sy
so lar?e, so complex, and so monolithic that
begin to attempt a formal proof of certification
correct implementation.

such as
nt (albeit
rally not
ly include

or mu s t

essability
service

in OS/360
SUPERZAP) .

stems are
one cannot
of their

Two basic precepts that are enforced in the security

kernel are:

1. The simple security condition- This means that a user

or his program is not allowed access to information for

which he has no authorization.

2. Confinement property- if a user or his program has

read access to information at one security level, say

secret, then he cannot have simultaneous write access to

103

a file that exists at a lower security level (i.e.,

unclassified). This prevents what is called a 'write

down '

.

These simple precepts and other supporting strict rules of

the security kernel are the basis by which the subverter is

prevented from retrieving unauthorized information.

In the case of the Trojan horse, the simple security

condition and the confinement property can render such a

clandestine mechanism useless. The "basic concept "behind a

Trojan horse presumes that it will be allowed into an

environment that contains sensitive information. Once in

this environment the covert function attempts to obtain

sensitive information and place (write) it in area that will

be accessible to a subverter. The security kernel, through

the confinement property, will not permit a 'write down'.

That is, it will prevent the covert function from

'declassifying' the information by not allowing it to be

copied to anywhere but another classified file. Assuming the

subverter is an unclassified user, the simple security

condition will prevent him from accessing any files gained

through this method because he will not have the proper

clearance to to read the file provided by the Trojan horse.

D. CHAPTER SUMMARY

Security kernel technology directly addresses the

problem of minimizing subversion. It offers a basic design

ie4

that can be proven effective. Through this verifiable

protection mechanism a distinct internal securitv perimeter

can be relied on to prevent the retrieval of unauthorized

information by malicious elements.

But security kernel technology is not immune to to the

subversive techniques outlined in this thesis. In fact, it

•night be more susceptible to subversion due to the high

probability that such a system will be used in sensitive

areas. lifetime protection is essential to any mechanism

that will be employed in the protection of information.

The security kernel clearly defines the security related

mechanism of a computer system. Because of this it is the

only part of a computer operating system that need be

offered lifetime protection. Providing protection for the

security kernel is a far more practical an idea than

requiring the lifetime protection of an entire operating

system and numerous privileged utilities. Its small size and

clear boundaries offer a secure foundation from which to

build any operating system. But without lifetime protection

from malicious access, there would be no assurances as to

the integrity of components involved in the protection of

information and subversion must be assumed.

105

VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis offers a detailed examination of an aspect

of the computer security problem known as subversion. It is

not the purpose of this document to provide a handbook of

subversion for subvertersJ they do not need one! This thesis

does offer awareness to those who must deal with the

computer security problem. People like ADP administrators,

ADF security officers, system designers, and others involved

in the decision making process must understand subversion if

they are to effectively combat it. It is difficult to make

intelligent decisions concerning the security of information

in computer systems unless one understands the possible

extent of the vulnerabilities that could exist in them.

The first part of this thesis identified several problem

areas in computer security. One of these areas involve a

lack of a coherent policy concerning the exact role that

computers should play in the protection of information. This

in turn has led to a reliance on inadequate internal

mechanisms, and false assurances as to their effectiveness.

All these problem areas play a role in the success of

subversion.

Important distinctions have been made between the

current conception of computer penetration and that of

subversion. The penetrator is basically an amateur that

106

exploits system design and implementation errors to gain

control of a system. Subversion on the other hand involves

the organized efforts of several individuals, some of whom

are highly competent at the subversion process. The

subversion process involves the use of clandestine

mechanisms called artifices. Principal among these artifices

are trap doors and trojan horses. By constructing and

inserting these mechanisms into computer systems the

subverter creates a safe environment which can be used to

exploit a computer system at will.

The three phases of subversion are the inserting of

artifices, the exercising of them, and the retrieval of the

resultant unauthorized information. Central to the there of

subversion is the insertion of artifices over the entire

lifecycle of a computer system. This can be done because

computer system components that would be involved in the

protection of information do not receive adequate protection

against subversive activities during their lifetime.

Subversion is a clear threat to the security of any

computer system involved in the protection of information.

This threat must be minimized before computer systems can be

relied on to adequately protect information. Until such a

time, no computer system should be used as a means to

protect information. So-called 'trusted' subsystems are no

exception. They suffer from the same risk of subversion as

any other system. The problem of 'trusted' subsystems is

107

compounded by the fact that thev are "built on an underlying

operating system that is essentially unsecureable . These

systems must be considered particularly dangerous to use

because they lull the user into a false sense of security.

Minimizing the threat of subversion is a twofold

process. First, adequate lifetime protection must be

afforded to all security related components that will be

involved in the protection of information. The integrity of

security related components cannot be assured without this

protecti on.

Second, the application of adequate technology as

exemplified by the security kernel concept must be

incorporated in the design of secure systems. Without this

verifiable design, the effectiveness of the protection

mechanism cannot be reliably determined. Unless these

essential requirements are met, there will be no such thing

as a secure computing system.

108

LIST OF REFERENCES

ensus Reportt Processors, Operating Systems and
arby Peripherals, Theodore M. P. lee (Chairman),
IPS Conference Proceedings, 1979 National Computer
nference, June 4-7, 1979.

1. Consensus
Nea
AF
Conference,

2. TTSA.F Electronics Systems Division Report ESD-TR-73-51

,

Vol. T, Computer Security Technology Planning Study,
October 1972.

3. Gat, Isreal, Security Aspects of Operating Systems,
Second Jerusalem Conference on Information Technology,
1974.

4. Harrison, M.A. Ruzzo, W.L. , Ullman, J.D., "Protection
in Operating Systems", Communications of the ACM,
Vol. 19, no. 8, August 1976.

5. Schell, Roffer R.,ItCol., USAF, "Security Kernels: A

Methodical Design of System Security" ,USE Inc., Spring
Conference, March 1979.

6. Schell, Roger R.,ItCol., USAF, Computer Security, The
Achilles Heel of the Electronic Air Force", Air
University Review, Vol. XXX no. 2, January-Febuary 1979

7. Department of Defense Directive 5200.29 "Security
Requirements for Automatic Data Processing (ADP)
Systems", 18 December 1972.

8. Department of Defense Manual 5200. 2SM "Techniques and
Procedures for Implementing, Deactivating, Testing, and
Evaluating Secure Resource-sharing ADP Svstems",
January 1973.

9. Nibaldi, G.H., "Proposed Technical Evaluation Criteria
For Trusted Computer Systems", Mitre Corp., no.M79-225
Bedford, Mass., 25 October 1979.

10. USAF Electonics Systems Division Report ESD-TR -74-193

.

Vol. II, Multics Security Evaluation: Vulnerability
Analysis, by Paul A. Kruger, 2It., USAF and Roger R.
Schell, Major, USAF, June 1974.

109

11. Lackey, R.p.i "Penetration of Computer Systems, an
Overview", Honeywell Computer Journal, Vol. 8, no. 2

1974.

12. Comptroller General of the United States, Peport to the
Congress. Computer Related Crimes in Federal Programs,
General Accounting Office (GAO), April 27, 1976.

13. Stanford Research Institute Report PP-231 320, Computer
Abuse, by Donn B. Parker, Susan B. Nycum, and Stephen
S. Oura, November 1973.

14. Dennirg, Peter J. and Dorothy E. "Data Security"
Computing; Surveys, Vol. II no. 3 September 1979.

15. Rome Air Development Center Report RADC -TR-74-137,
Emulating a Honeywell 618? Computer System,
Mitre Corporation June 1974.

16. lampson, D.W., "A Note on the Confinement Problem" ,

Communications of the ACM, Vol. 16 no. le October 1973

17. Naval Research labqratory^Memorandum Report 2821
Subversion of a "Secure" Operating System, by David
Stryker June 1974.

18. USAF Electronics Systems Division Report ESD-TR-74-193

,

Vol. Ill, Multics Security Evaluation: Password and
File Encryption Techniaues by It. Peter J. Downey,
USAF, June 1977.

19. Attanasio, C.R., Markstien, P.W., and Phillips, P.J.,
Penetrating an Operating System: A Study of VM/370
Integrity", IBM Systems Journal, Vol. 15 no. 1, 1976.

20. Goheen, S.M., and Fiske, R.S., OS/360 Computer Security
Penetration Exercise, Mitre Corp., Bedford Mass.
October 1972.

21. USAF Electronic Systems Division Report ESD-TR-75-69,
The Design and Specification of a Security Kernel
for the PDP-11/45 By W.L. Schiller (Mitre Corp).
May 1975.

22. Lipner, Steven , "A Comment on the Confinement Problem"
Mitre Corporation, Bedford Mass.

110

23. Department of Defense Industrial Security Newsletter
no. 801-1, 28 March I960.

24. Department of Defense Information Security Program
Regulation 5200. 1R, December 1978.

25. Information Sciences Institute Report ISI/SR-78-13,
Protection Analysis: Final Report, by Richard Bisbey
and Dennis Hollingworth , May 1978.

Ill

INITIAL DISTRIBUTION LIST

No. Codes

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

2. library. Code ei42
Naval Postgraduate School
Monterey, California 93940

3. ItCol. Roger R. Schell Code 52Sj
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Asst. Prof. Douglas Smith Code 52S

c

Department of Computer Science
Naval Postgraduate School
Moneterey, California 93940

5. It. Philip A. Myers, USN
Naval Data Automation Command
Washington Navy Yard
Washington, D.C. 20374

6. ICDR. S.L. Reitz
NAVAL SEA SYSTEMS COMMAND
Technical Represent ive
St. Paul, Minnesota 30845

7. Capt . L.A. Talmage
Manpower Utilization Unit
Building 2009
MCDEC, Ouantico, Va . 22134

8. Cant. John Ross, USAF
552 AWACW/ADM
Tinker AFB , Oklahoma 73145

9. Ms. Cheron Vail, Code 302
NAVPEPSRANDCEN
San Diego, California 92152

10. Lt. M.L. Maurer, USN
CAP.GRTT Five
F.P.O. San Francisco, California 96601

112

11. It. W.J. Wasson, USN
Naval Electronics Systems Command
Headquarters, PME 124
Washington, D.C. 20360

12. Tepartment Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

13. It. Alan Gary, USN
Operations Deuartment
U.S.S. Nimitz~ (CVN 68)
P. P.O. New York, New York 09542

14. LCDR. Edmund Moore, USN
Naval Electronics Systems Command
Headquarters, PME 10?
Washington, D.C. 20360

15. It. William C. Hess, USN
Naval Electronics Systems Command
Headquarters
Washington, D.C. 20360

16. LCDR. P. Johnson, Code 0371
Computer Technology Curricular Office
Naval Postgraduate School
Monterey, California 93940

17. Mr. Carl Landwehr
Code 7522
Naval Research laboratory
Washington, D.C. 20375

113

Thesis 1886 k6
M99^5 Myers
c.l Subversion: the

neglected aspect of

computer security.

thesM9945

Subversion :

3 2768 001 92599 3

DUDLEY KNOX LIBRARY

^m

iMR

mSXm
mm

H
.'.'•.,:• 'V.

•»'•.'''•.<•.".•.'-.•'••'•

