
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1984

Internal and external performance
measurement methodologies for database systems

Tekampe, Robert C.; Watson, Robert J.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/19399

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
INTERNAL AND EXTET^NAL

PERFORMANCE ^MEASUREMENT METHODOLOGIES
FOR DATABASE SYSTEMS

by

Robert C. Tekampe

Robert J. Watson

June 19 84

Thes is Advisor: David K. Hsiao

Approved for public release; distribution unlimited

1222kSk

Unclassified
SECURITY CLASSIFICATION O ^ THIS PAGE ('WTion Dmta Entarod)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Internal and External Performance
Measurement Methodologies for Database
Systems

5. TYPE OF REPORT & PERIOD COVERED

Master ' s Thes is

;

June 19 84
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORCs; 8. CONTRACT OR GRANT NUMBERr*;

Tekampe, Robert C

Watson, Robert J.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943

to. PROGRAM ELEMENT, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

n. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943

12. REPORT DATE

June 19 84
13. NUMBER OF PAGES

99
14. MONITORING AGENCY NAME 4 ADDRESSf// d///oron(from Controlling Oftlcm) 15. SECURITY CLASS, (ol thia report)

Unclassified
15«. DECL ASSI FIC ATI ON/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, II dlllerent Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide It neceaaary and Identity by block number)

Performance Measurement; Database System; Database Machine;
Benchmarking

20. ABSTRACT (Continue on reverse aide II neceaaary and Identity by block number)

The scope of this thesis is twofold. The first is to provide
a methodology for the performance measurement of database
systems. The second is the application of this methodology to
a specific database system in an attempt to verify the
applicability of this methodology and the performance and
capacity claims of the database system.

As a methodology, the thesis describes the strategies and
locations for the placement of checkpoints, the kinds of

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF- 014- 6601 1
SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntarad)

SECURITY CLASSIFICATION Of THIS ^AGE fWh^n Ot •d)

performance data to be collected, the environment for the
conduct of the performance measurement and the interpreta-
tion of the results. One of the most important contributions
of this methodology is its capability to obtain actual
measurement overhead making the presentation of truly
accurate results possible. As an application of this
methodology, we attempt to validate "the performance and
capacity claims of an exnerimental mul ti -backend database
system known as MDBS. Surprisingly, these claims have been
validated.

N 102- L"- 14- 6601

SECURITY CLASSIFICATION OF THIS P ».CErWh»n Data Enimraa

Afprcved for putlic release; distributicn unlimited

iDternal and External
Performance Measurement Methodologies

for Database Systems

ty

Eobert C. Tekampe
Captain, United States Marine Corps

E.S.E.E. Oriversity of Washington, 1975

and

Robert J. Watson
Captain, Onited States Marine Corps
B.S.E.S. Lniversity of Kansas, 19/7

Submitted in partial fulfillment of the
requirements for the degree of

MASTEE OF SCIENCE IN COMPUTEE SCIENCE

from the

NAVAI PCSTGEADUATE SCMOOL
June 1984

c)

AESTBACT

Ihe scope of this thesis is twofold. The first is to

provide a methodology for the performance measurenierit of

database systems. Ihe second is the application of this

methcdclcgy to ' a specific database system in an attempt to

verify the applicatility of this methodology and the

performance and capacity claims of tne database system.

As a aethodology, the thesis describes the £trat€gies

and locations for the placement of checkpoints, the kirds of

performance data to te collected, the environment for the

conduct cf the performance measurement and the interpreta-

tion cf the results. One of the most important contribu-

tions of this methodclogy is its capability to obtain actual

measurement overhead iraking the presentation of truly accu-

rate results possible. As an application of this method-

ology, vie attempt tc validate the performance and capacity

claims cf an experimental multi-backend database syste

known as J1D3S. Surprisingly, these claims have been

validated.

m

lABLE CF CONTENTS

I. ISTECDUCTION 12

A. A THESIS CVEEVIEW 12

E. THE ORGANIZATION Of THE THESIS 13

II. fEBFCEMANCE MIASUfiEMENT METHODOLOGY FOE

EATAEASE SYSTIftS 16

A. THE NEED 17

E. THE APPROACH 20

1. A Methodology fcr Internal Performance

Measurement 20

2, A Methcdology fcr External Performance

Measurement 25

C. THE COMBI^ATICN OE INTERNAL AND EXTERNAL

PERFORMANCE MEASUREMENTS 28

III. TEE MULTI-BACKIND DATABASE SYSTEM (MDBS) 30

A. THE ATTRIEUTE-BASED DATA i^ODEL 32

E. THE DIRECTORY TABLES 35

C. THE PROCESS STRDCTDRE 37

1. The Piccesses of the Controller 39

2. The Processes of Each Backend 39

r. THE MDBS KESSAGE TYPES 40

E. THE EXECUTICN OF A RETRIEVE REQUEST 46

IV. AN APPLICATION OF THE METHODOLOGIES TO MDBS ... 48

A. THE MODIEICATION OF THE MDBS SOFTWARE 48

1. I nplementation Decisions 48

2. The Modifications of the User

Interface 56

3. The Mcdificaticn cf Individual

Processes 60

4. Issues Resolved During the

I npleff entati en 60

E. THE MODIIICATION CI THE ^DBS TEST

ENVIEONMI^T 63

1. Necessary Changes to the Test

Envircrment 64

2. Software Tools for the Test

EEvircnment 64

C. ADDIIIONAI MEASUREMENT SOFTWARE

REQUIREMENTS 65

1. Inter-computer Message Processing

Measurement 66

2. Inter-process Message Processing

Measurement 66

V. TKE BENCHMARK CE MDBS 68

A. THE SELECTED DATABASE 68

1. The Design of the Model Database 68

2. The I nplemen tation of the Model

Dataiaase 72

E. THE REQUEST SET ' .76

VI. IKE TEST RESUITS 80

A. THE EXTERNAL PERfCRMANCE RESULTS 81

E. THE INTERNAL PERFORMANCE RESULTS 88

C, THE MESSAGE PROCESSING RESULTS 88

VII. TEE CONCLUSION 92

A. A SUMMARY CF THE PERFORMANCE MEASUREMENT

METHCDOLCGY 92

1. The Internal Performance Measurement

Methodclogy 92

2. The External Performance Measurement

Methodclogy 92

3. Combiring the Internal and External

Measurement Methodologies 92

E. A SUHMAEli OF THE METHODOLOGY APPLICATION . . 93

C. RECOMMENEATIONS EOS FUTURE EFFORTS 94

IISI CF EEFERENCES 96

EIBLICGRAPHY 98

INIIIAI EISIRIBUIION IIST 99

LIST OF TABLES

I. Th€ Eenchniark Configuration 69

II. Ihe Eecord-and-Block Relationship 70

III. The Cluster Arrangement 71

IV. Ihe Records per Cluster Category 72

V. Ihe Measurement Configurations 73

VI. lie Number of Clusters Examined ana the

Percent of the Database Retrieved 79

VII. The Response lime Without Internal Performance

Evaluation Software 82

VIII. The Response- line Improvement Between 1 and 2

Eackends (External Measurement Only) 84

IX. The Response- lime Reduction In Doubling the

Datatase Size 85

X. The Response Time (in seconds) With Internal

Performance Measurement Software 86

XI. Tie Response Time Improvement Between 1 and 2

Backends (With Internal Measurement Also) 87

XII. Message Handling Routine Processing Times for

a Retrieval Recuest 89

XIII. Inter-process Message Passing Times 90

XIV. lEter-computer Message Passing Times 91

IIST Cf FIGORES

4.1 Ihe MDBS Structure 31

4.2 An Attribute Table (AT) 35

4.3 A Eescriptor-to-Descriptor-Id Table (DDIT) ... 36

4.4 A Clust€r-DGliBiticn Table (CDT) 37

4.5 The MDBS Process Structure 38

4.6 The General fessage Format 40

4.7 MEFS Message Types 41

4.8 MDES Message Abbreviations 42

4.9 Ee^uest Preparation Messages 43

4-10 Pest Processing Messages 43

4.11 Directory Maragement Messages 44

4.12 Eecord Processing Messages 44

4.13 Concurrency Control Messages 45

4.14 Host Messages 46

4.15 Insert Infornation Generation Messages 46

5.1 The MDBS Procedure Hierarchy 51

5.2 The MDBS Procedure Hierarchy witn

Checkpoints 52

5.3 The Procedure Hierarchy with Checkpoints and

Titter 55

5.4 The Test Interface Hierarchy with

Performance Measurement Software 57

5.5 The Relationship of the Request Execution

and the Performance Measurement Interface ... 59

5.6 The Directory Management Hierarchy with

Checkpoints/Software 61

6.1 The Record Template File 74

6.2 The Descriptor File 75

6,3

6.4

7.1

7.2

lie Record lile 75

Th€ Retrieval Requests 77

The Eesponse-Time- Iiiif rovejien t Calculation ... 83

The Response-Time-Eeductioii Calculation 85

10

ACKNCWIEDGEMENT

Ihis work is su^forted by Contract N00014-84-'KR-2U058

from the Office of Naval Research to Dr. David K. Hsiac and

conducted in the Latcratory for Database Systems Research,

located at the Naval Postgraduate School. Dr. Dou-glas S.

Kerr, Adjunct Professor of Computer Science, is the present

Eirector of the Labciatory. The laboratory equipment is

supported by DEC, ONP, and NPS.

We would like to thank all those who have supported the

MDBS project and who have contributed to the development of

this document. In particular, we wish to express our

sincere thanks to Drs. Hsiao, Kerr, and Strawser for having

provided much of tie guidance needed in developing this

project. Iheir time and patience proved invaluable ir. the

development of this performance measurement methodology and

its subsequent i up le mentation in the validation of the yilBS

claims. A special thanks is to be extended to Steve

Eemuxjian, who as a doctoral candidate in Computer Science

at the Ohio State University, is currently doing research at

the Naval Postgraduate School. Without his active partici-

pation and generous contribution of both knowledge and tine,

this project would net have been as successful. lastly, we

would like to thank our wives, Peggy Watson and Ecbbie

lekampe, for their patience, understanding and support.

11

I- i^IBCDOCTION

A. A 1BIS1S OVEHYIEi

Ihe scope of this thesis is twofold. The first is to

provide a methodclogy to use in the performance measurement

of a datatase computer. The second is the application of

this methodology to a specific database system and the

attempt to verify the performance and capacity claims cf the

target system.

The dataiDase system being evaluated is an experimental

multi-t ackerd database system known as MDBS, The basic

design goal of MDB£ is to develop an architecture which

spreads the work of the database management among multiple

iackerds. MDBS makes two basic claims in its design. The

first is that by increasing the number of backends used as a

part cf the database computer and by keeping the size cf the

database constant, the response time of the same trans-

actions is propcrticrally decreased. Tne second claim is

that tj increasing the number of backends and also

increasing the size of the database, the response time

remains relatively ccEstant.

To conduct the performance measurement of MDBS, various

checkpoints and data collections are incorporated into the

system. Although all checkpoints and data collections are

selected to provide the greatest amount of useful informa-

tion and to incur the least amount of overhead, scire over-

head is unavoidable. A quantitative method for measuring

the overhead incurred is therefore provided. The perform-

ance results of MDBS are then accurately adjusted using the

overhead calculation. In this way, a truly accurate ireas-

urement cf the system may be obtained.

12

As a methodology/ the thesis describes the strategies

'and Iccations of the checkpoint placenient, the kinds of data

en performance collected, the ways in which the perforiraLCfe

measurement were conducted and the interpretation of the

results, .^aybe of ^greatest inportance is the ability to

calculate actual measurement overhead allowing for the pres-

entation of truly accurate results.

In this thesis, we will focus our attention en the

response tine of the work being done by the database system.

Ke will net focus on the throughput. Whereas the throughput

is defined as the average number of user requests executed

by the system in a second, the response time of a request is

the time between the initial issuance of the request by a

user and tie final receipt of the entire response set of

this reguest by the user [Bef. 1]. Since the majority of

the requests processed by a database system are requests ror

the retrieval of information, another limitation is made to

the scope of this thesis. Ke will focus on the perforiance

measurement of the response time of retrieval requests in

MDBS. Kopefully, these evaluations will verify the claims

cf WEBS and also provide a general methodology for the

perf orniaEce measurement of any database system.

E. lEE CEGANIZA1I0N CF THE THESIS

This thesis is organized into six additional chapters

beyond this overview. Chapter II describes our perfcrirance

measurement methcdolccy for database systems. It initially

discusses the need fcr such a methodology and continues with

a separate discussion of toth the internal and external

performance measurements. The chapter then culminates with

a discussion of the combination of the two performance meas-

urements, thus providing the methodology to calculate and

adjust fcr internal performance measurement overhead.

13

Chapter III freserts an overview of the target system,

MDBS, used to apfly the performance measuremect methcdclogy.

A general discussion is given on the attrihute-tased data

model, the directory tables, the process structure, the

message types, and the execution of a retrieve request.

The application cf the performance measurement methcd-

clogy tc the target system, MDBS, is presented in Chapter

IV. The required modifications to the MDBS software needed

to perfcriD the measurements is discussed, along with a

discussion of the nodific ations to the test envircrment

required to control the measurement results. A description

cf the additional software used for both inter-computer and

inter-process message processing measurements is also

provided.

Chapter V presents the construction of the test database

and the selection of the requests used in the perfcrEarce

measurements. In this chapter, the design of the desired

test database is first discussed. Due to system

constraints, only a subset of this design is used for

testing purposes. Tie chapter concludes with an analysis of

the requests used in the performance measurement-

All the thesis work is brought together in Chapter VI

with the presentation of the performance measurement

results. Since the goals cf this thesis are to verify the

performance and capacity claims of MDBS and to provide a

methodology for the perfornance measurement of a database

systei, only the tests needed to obtain these goals are

performed. In the chapter, results are provided for the

external and internal performance measurements, and the

results of the message processing measurements.

The thesis ends with conclusions in Chapter VII which

can be made from the results. It provides a summation for

the entire thesis and offers suggestions in future work

which needs to be done both with the methodology and with

14

the measureEent cf MIES. It is hoped that this thesis will

provide a scund lethcdology for the performance measurements

cf datatase systems and also provide a definitive verifica-

tion cf the perfcrmacce and capacity claims of MDBS.

15

II- ilJIOBHANCE HlASOREajNT METHODOLOGY FOR MlkM^g
SYSTEMS

In this chapter, we present a performance measureicent

methodclcgy for datatase systems. The methodology requires

the collection cf hcth internal and external perfcrirance

measurements. Ihe internal performance measurement method-

ology is the collection of methods and tools which will

€iiai:l€ a tetter understanding of the target system ty meas-

uring certain capabilities of that system. In measuring

certain capabilities cf the system, we focus on the measure-

ment cf tine spent in individual processes of the target

systen. The external performance measurement methodclcgy is

the collection cf methods and tools which will enable the

tetter understanding cf the target system by measuring the

sistea as a whole. In measuring the system as a whole, we

focus en the measurenent of the response time of the target

system. The response time in a database system is defined

in [B€f. 1] as the tine between the initial issuance of the

request ty a user and the final receipt of the entire

response set of this request by the user.

Id the rest cf this chapter, we begin by examining the

need for a database system and the subsequent need to

measure the performance of the system. We then discuss a

general performance aeasurement methodology, addressing both

internal and external performance measurement as separate

issues. Finally, we conclude the chapter with a discussion

of the ccmtination cf internal and external performance

measurement results tc provide a complete methodology.

16

A. lEi NZEE

Ih€ E€€d for a cataLase can best De shown as ccrre-

si-ondicg tc the n€€d for inf crmation. A database is a

repository for the storage of information on a computer, any

item cr combination of items of which can be easily accessed

in a relatively short timeframe. A businessman may desire

all the latest pieces of information to make' a management

decision. The combat field commander may desire complete,

up-to-the-minute reports to arrive at a tactical decision.

But there are performance and capacity problems that

must be overcome in providing this information. As an ever

increasing amount of information is stored in a database,

the response time of the database system increases notice-

ably. In addition tc the increase in the size of the data-

base, there is the effect cf increasing the number cf users

accessing the system and the number of requests to be

processed by the system. Thus the user must select between

the response time desired and tne information desired, a

choice the user does not want to and should not have to

make. Ihe database system needs to be easily upgraded to

accommocate new users and to increase the database size

without noticeable change in response time. This is the

need for the response-time inyariance in a database system.

Another problem -is in the timeliness of a response. The

database system should offer a dependable, constant return

rate for the response to a request. When response time

becomes unreasonably long due to the computer workload, the

user will be frustrated. A user desires to have every

request returned in a timely manner. This is the need for

res£cnse-titte consistency in a database system.

A final problem is to insure that all necessary infcrnr.a-

tion is available to the user. Incomplete information is of

little use. For exaifle, a user may require all requests to

17

have a respcnse withir a specified timeframe. This reguire-

ttent cften dictates the maximuni size of the database and the

maximun xuniter cf requests. Therefore, ai undesireatle

limitaticn is placed ce the amcunt of information availatle

due tc the limitaticn on database size. Again, the user is

forced into making a tradeoff between the response tisce and

the availatle infornation. Nevertheless, despite the

response tiie, such information should be made available to

the user on demand. , This is the need for availability of

inforiation in the database system.

Therefore, not only is there a need for a database

system, there is alsc a need for a database system with the

qualities cf Invariance, Consistency, and Availability

(ICA) . Eut ICA can be present in varying degrees in a data-

base system. The degree of ICA can best be demonstrated by

the performance measurement of the database system.

There are two basic types of database systems. The

first is an online software database management system that

runs on the host computer system. The second is a database

irachinG, which offloads the database functions tc a dedi-

cated backend computer. The current trends in database

systeirs involve the design, inplementation, and use cf data-

base machines [Eef. 1 through 8]. Not only is there an

apparent improvement in ICA with a corresponding price per

perfcimance' advantage, but a datauase machine can free up

resources at the host, provide support for multiple, dissim-

ilar hosts, and increase the security on the database by the

physical separation of the database and the host. Eue

primarily tc the trerd toward increasing future use cf data-

base uachines, this thesis will concentrate on the discus-

sion and application of the methodology for measuring the

database machines.

A database machine is a database system composed cf one

or more processors, dedicated to performing the database

18

iDanagemert functions. It is indisputable that a database

nachine is the better of the two ty^^es of database systems

with regards to providing an increase in security, allowing

for nultifle host support, and freeing up the host

resources. But there still exists the need to demonstrate

an improvement in the ICA on a database machine over the ICA

provided by a host-resident database system. At the same

time, there exists a need to compare the invariance, consis-

tency and availability of several different database

nachines and software systems. Again, this can best be

demonstrated by measureing these systems.

Ee Sf cnse-time consistency is more easily achieved in a

database machine thai in a database system running en the

host. Whereas the host must share its resources with a

varying workload, the backend can dedicate its resources for

database management. Availability frees the Database

Administratcr from the necessity to make tradeoffs between

the si2e of the datahase and the response time. The adminis-

tratcr can then load the database with all the necessary

information regardless of the database size. To achieve and

verify the response time invariance. of a database machine,

a methodology to measure its effectiveness nust be

develcpe d.

Thus, the scope of this thesis is to provide a perform-

ance measurement methodology for database machines and to

verify this methodology by verifying the design claims of a

specific database machine, known as MDBS. Again, these

claims are related tc the quality of response time invari-

ance; that is, tc be able to change the size of the database

and at the same time maintain constant response time cr to

hold constant the size of the database with the ability to

reduce the response time. Consequently, the measuremert of

the response time of a database system becomes the focal

point of our studies. If the response time can be frcperly

19

and accuxately measured, the claims of the target systeir can

he verified. Furthermore, the effectiveness of the methcd-

clogy car. also te verified. A pro^^er measurement ct the

response tine can provide a taseline measurement to wnich

ether database systems can be compared and thus provide a

price-performance ccnpariscn of various systems. This

thesis provides an overhead-free performance-measurement

methodology and applies this methodology to verify the

claims of an experimertal database machine.

B. lEE iPPEOACH

In this section, we discuss a general methodology to be

used in the performance measurement of a database system.

Ihis cethodclogy is general and can be applied to any other

database system. We first discuss the internal performance

measurement. This ircludes the design considerations, the

software engineering criteria and the application of the

methodology to a particular system. Then we present a

discussion of the external performance measurement, again

discussing the design considerations, the software engi-

neering criteria, and the "application of the methodology to

a particular system.

^ * A Methodology for I eternal Performanc e Measurement

The goal of the internal performance measurement

methodology is to provide methods and tools which will

enable us to better understand the target system by meas-

uring certain aspects of that system. A complete under-

standing of how the system performs internally may lead to

design modifications or to fine-tuning of the system for

better performance. The internal performance measurement

tools should be unobtrusive to the user, available when

necessary, yet out of the way when not required. They should

20

he integrated with the target system to produce a sirooth

transition tetween target system operation and the operation

of th€ tool. In the first part of this section, we address

the design considerations cf internal performance iiieasure-

aent lethods. Next, we discuss certain software engineering

criteria which are applicable to the design of good coeasure-

nient tools. Finally, we explore the application cf the

internal performance neasurement methodology to a particular

systei.

a. Design Consider aticns

Internal performance measurement relies on

checkpoints internal to the database system software. A

chec]<fcint is defined as a procedural invocation inserted

into the system's flew of control to call the performance

measurement routines which are used for the data collection.

Systen overhead is introduced as each checkpoint is added to

the target system, Additionally, measurement software is

required to process the checkpoint data in a manner compat-

ible with the existing target system software. That is, a

certain portion of the measurement • software must he inte-

grated with the target system software to handle events such

as data storage, message passing, and information processing

that relate to the checkpoint data. Finally, the existing

target system software may require additional lines of code

to handle new cases introduced by the measurement system.

In most external performance measurement, over-

head is negligible. However, internal measurement routines

add significant overhead to the database system which cannot

be disregarded. For internal measurement, we must discover

ways to reduce the overhead generated by the measurement

software. We must also be able to measure the overhead

which cannot be eliminated, so that the measurements can be

adjusted accordingly, A very important requirement is that

21

the existing target system must maintain the capability of

runniEg unimpeded by tie additional measurement software.

Consideration must be jiven to the level in the

target system where checkpoints may be placed. Some possible

levels are at the very high level, i.e., the system level,

the high level, i.e. , the program level, the medium level,

i.e., the subroutine level, and the low level, i.e., the

subroutine segment level. Whereas external performance

measurement only places checkpoints at tne very high level,

internal performance measurement places checkpoints below

that level. Checkpoints must be placed at a level which

produces data in sufficient detail to provide the user with

a basic understanding of the system's performance character-

istics. Checkpoints should not be placed at a level sc low

as to overwhelm the user with detailed data or to interfere

significantly with system performance.

For internal performance measurement, the user

should have the capability to access selected data cut of a

range cf possible choices. The user should not be required

to receive information about processes which are net of

current interest. The interface should be easy to use and

should net distract tie user frcm his primary goal of under-

standing the database system by requiring the user to

remember the unique syntax or semantics of the test inter-

face, lie collected neasuremen ts should be made accessible

to autcmated processing routines for data reduction.

b. Software Engineering Criteria

Measurement software should be designed using

modern software engineering methods. The resulting software

should be understandable, maintainable, reliable and compat-

ible with the target system. Certain software engineering

methods are of pcirticular interest. These methods are irodu-

larizaticn^ user-friendliness, data abstraction, and

simplicity.

22

For modularity, the measurement programs should

he hierarchically structured with well-defined interfaces.

Ihe measurement modules should te reusable throughout the

target sjstem- Modularity allows the system to be easily

extended to checkpoints not considered in the initial speci-

fications. The test interface should present an easy-to-use

method for obtaining test data. It should automatically

aggregat€ data while still allowing the user to access raw

data. The user should not have to remember the specific

syntax and semantics cf the test interface. Data abstrac-

tion should be used sc that subsequent program modifications

do net result in extensive reprogramming. An appropriate

choice cf primitives (data structure and operations) will

allow for easy change and produce less system overhead. Ihe

measurement system shculd be user-friendly. In addition to

obeying the simplicity principle, the test interface should

te forgiving, i.e., system should not crash on bad input,

provide readable error diagnostics, anticipate errors, and

guard against these errors.

c. Issues in the Application to Database Systens

Application of the internal performance measure-

ttent irethodclogy to a particular database system requires

that the evaluator understand certain aspects of the target

system. The evaluator must understand the programming

language used to construct the database system, and the

structure and operation of the database system. The evalu-

ator irust te prepared to overcome obstacles presented by the

target system in the course of the implementation cf the

performance measurement.

A thorough understanding of the programming

language is necessary to successfully integrate checkpoints

and data collection programs into the existing software

structure. One must be familiar witn the data structures.

23

contrcl structures. Darning con'ventioiis, and parameter-

passing mechanisms of the language, in order to inpiement

the ceasurement programs efficiently and to minimize their

overhead. Knowledge cf the laoguage syntax reduces program-

ming errors and speeds implementation of the measurement

tools

.

For effective internal performance measureirert,

checkpcirts must be correctly placed in the database system.

Incorrectly placed checkpoints increase overhead and degrade

perfcrirarce measurement by providing useless data to the

user. The evaluator aust possess sufficient knowledge of the

target system to allcw for the correct placement of check-

points. Ihis provides the siocth integration of data collec-

tion prcgraiis, data processing programs and data trarsler

prograis into the existing database system.

Chances are that the target system, when

initially designed, was not designed with internal perform-

ance neasurement in mind. Instead, the target systeir was

designed to process all requests efficiently. Integration

of the icternal performance measurement routines may affect

the target systen ir unexpected ways. Let us consider two

examples cf such ways. First, in a message-passing system,

messages generated hy the aeasurement programs may require

codifications to the existing database system so that test

messages will not be confused with the messages of the data-

base system. Second, the volume of information generated by

the measurement programs may overload selected sections of

the target system. Ihe evaluator of the performance meas-

urement routines must be prepared for such contingencies.

Ey using the knowledge of the programming language alcng

with the knowledge cf the database system, the evaluator

must be prepcired to cffer solutions to the database adminis-

trator en hew to gracefully integrate the performance meas-

urement mechanisms into the target system with proper

modification and without overload.

24

2 . A a eth odology for E xternai Pe rf ormance M easuremen

t

Ihe goal of external ferformance measurement is to

provide a ccllection cf methods and tools which will enatle

us to tetter understand the target system by measuring the

system as a whole. In this way we can measure the total

work teirg done ty the datahase system. We focus en meas-

uring the response time of the system, the elapsed time

tetween the issuance of a reguest and the receipt cf the

response tc the reguest.

Internal performance measurement has been shewn to

te beneficial in the fine-tuning of a system, and in the

Eicrcsccpic examination of the work being performed ty the

system. External measurement provides a guantitative meas-

urement cf the system from a macroscopic view. This allows

for the ccttfarison of database systems. In the first part

cf the section, we discuss the design considerations of the

external performance neasurement methods. Next, we present

the software engineering criteria for external performance

measurement. lastly, we show the application of the

external performance neasurement to a system.

a. Design Considerations

External performance measurement should have

negligible overhead, i.e., the response time with external

performance measurement should be the same as the response

time without measurement being performed. This is in fact

the case. The reason that the overhead is negligible is

that only two timing checkpoints need to be made. These

timing checkpoints are placed at the beginning of a reguest

and the end of the response tc the reguest, thus providing

the elapsed time of the response for a reguest. The timing

checkpoints need the system time at the start and conpletion

cf the reguest. The checkpoints are placed at the very high

25

level to insure a conflete measurement of the total elapsed

time.

There are other issues that must be considered

to insure that the system heing evaluated is as 'fure' as

possible. First, the system should retain only these cede

and messages rei^uiied for the running of tne system.

Messaces and code incorporated into the system for the

design er debugging of the system should be removed.

Second, the system should not contain unnecessary software

tools designed to aid the measurement, such as those used to

create a test database. Such tools should remain in soft-

ware exterior to the actual database system.

An obvious consideration is to insure that no

human interaction is involved in the timings. The system

software, not the reaction time of the user, is being timed.

Therefore, the timer should start immediately after a user

releases the reguest. The timer should stop immediately

prior to the display on the selected output device. The

reason for stopping tie timer prior to display is due te the

varying delays caused by the output devices. The speed of

an output device should not be included into the system

timing results.

The final issue involving the placement of

external performance measurement checkpoints is whether to

embed the timer code in the system or to call a timer

routine outside the system, A call to a timer routine

incurs unwanted timing delays, adding to the impurity of a

system. If the timer code is embedded, it can te made to

appear that the systea code being tested is embedded in the

timer cede, i,e., placing the timer initialization code just

prior to the point of the reguest by the user and the timer

finalization code just subsequent to the display en the

output device. Uith these considerations, an optimal place-

ment of checkpoints can be selected to take external

perfcrirarce timings.

26

t. Software Ingineericg Criteria

Unlike irternal performance-measurement software

which uses software design methodologies, the external

perf crniance-measuremert software uses software design tcols.

In £E€f. 9], a full description is provided of the necessary

external performance-iieasurement tools. These tools include

a test-file generaticr. package, a dataiDase load sutsystem,

and a reguest generation package.

The purpose of the test-file generation package

is tc create a test database. This allows for the easy

creation of a database containing the desired parameters to

be evaluated. The database load subsystem must prcperly

load the files created in the generation package. This

includes the creation of directories for the test database.

The reguest generaticn package is used to create and execute

test reguests, and provides fcr easy variance in the types

and ccuplexity of reguests. This package also archives the

reguests fcr later use. Using these tools, the external

perfcrirance timings of the database system under measurement

can be easily obtained.

c. Issues in the Application of the Methodology

The ease with which external performance meas-

urement can be performed on a database system can vary.

There are two inportant considerations: the language in

which the system is written and the degree of software engi-

neering used in the database system design.

The language needs to be readable and to cciipli-

nent proper documentation of the system. This will facili-

tate an understanding cf the system b-j the system evaluatcr.

The language must alsc be powerful enough to easily incorpo-

rate sjsteic commands, such as reguests for the system time.

A language, such as C, has these capabilities, teing

27

primarily designed fci system programming. C is a high-

level language, that is toth powerful and portatle.

Although the support software tools such as database lead

can te inplemented in a language other than the language in

which th€ database system was written, the evaiuatcr Leeds

to te fdiiliar with several different languages if several

different database systems are to be evaluated.

The degree of software engineering used in the

database system design will most definitely facilitate any

external performance measurement to be done. If the data-

base system was hierarchically designed using modularity,

knowledge of the internal workings of the system by the

evaluator will be minimal. Only the upper level in the

hierarchy need to be studied for the proper placement of the

checkpoints. External measurement only requires a macro

knowledge of the system. Ihis is to insure that the check-

points are indeed properly placed at the very high level.

C. 1EE CCHBINATION CF INIEENai AND EXTERNAL PEEFCEMANCE

MIASDBEHENTS

Separately, internal and external performance measure-

ments provide a wealth of information to the evaluator.

Internal performance measurement provides the timings and

data collections of individual processes in the database

system. External performance measurement provides the

elapsed time for the complete request. Yet, when the two

methcdclcgies are combined, there is a synergistic efxect to

the amount cf information available to the evaluator.

The combination cf internal and external performance

measurements is natural. There are benefits to te gained

for one frcir the other. For example, we can determine the

overhead incurred wten using internal performance measure-

ment; first, using the external checkpoint, we collect the

28

elapsed time for processing a particular request. This time

is then compared to the elapsed time of the request wten

toth irternal and external checkpoints are enabled. The

difference in the elapsed times of these two measurements

provides an exact measurement of the overhead incurred by

the irternal performance measurement software for this

request.

Ce the ether hand, we can use the internal perfcrmance

measurement timings to interpret the external performance

measurement timings. In particular, if a request takes many

hundredths cf a seccnd as a result of external performance

measurement, the evaluator would want to determine the

precise distribution of the work. Internal performance

measurement can answer these questions. By combining the

two measurements, the whole of the measurement results is

more meaningful and useful than the individual results.

In the following chapter, the target system, i.e., MDBS

is described. Ihis is the system selected to be evaluated

using the internal and external performance measurement

methcdolcgies presented in this chapter.

29

III. THE HUili-BACKEND EATABASI SYSTEM (MDBS)

Ic this chapter ve discuss the configuration and theory

of o]:€raticn ox the multi-tackend database system (MEBSJ.

This chapter has been extracted frOiS papers and reports

which have teen written on MDBS [Ref . 6, 10, 11, 12]-

MIES uses twc or more identical minicomputers and their

disk systems to provide a centralized database system with

support for multiple, dissimilar hosts. One minicomputer

functions as the controller. User access is acconplished

through a host computer which in turn communicates with the

ccntrcller. Multiple minicomputers and their disks are

coniigur€d in parallel to serve as backends. The original

design and analysis cf MDBS is due to J. Menon [Ref. 1, 2].

Ihe inplementation and new design efforts are documented in

[Ref. 3 through 6]. Ihe database is distributed across all

cf the backends. The database management functions are

replicated in each backend.

As shown in Figure 4.1, the controller and the backends

are connected by a broadcast bus. When a transaction is

received frcm the host computer, the controller broadcasts

tne transaction to all the backends. Each backend has a

number of dedicated disk drives. Since the data is distrib-

uted across the backends, a transaction can be executed by

all backends concurrently. Each backend maintains a gueue of

transactions and schedules reguests for execution inde-

pendent cf the other backends, in order to maximize its

access operations and to minimize its idle time. Ihe

controller does very little work. It is responsible for

broadcasting, routing, and assisting in the inserticr cf rew

data. Ihe backends do most of the database operations.

Fresentlj, MDBS is fully operational with a VAX 11/780 as

30

Zrsadcasring

F^ • C^
one or 3ore
cLsK drives

C^
one or —ore

:ne or r.ore

iisk. drives

Figure 4.1 The MDBS Structure.

31

the ccEtrclIer and tvo PDF 11/44s and their disks as the

iackcEds.

MIBS is a message-oriented system. In a message— cri ented

syst€ii), each process corresponds to one system function.

Ihese processes, then, communicate among themselves by

passirg messages. User requests are passed between processes

as messages. The message paths between processes are fixed

for the system. The MDBS processes are created at S7ste!n

start tine and exist until the system is stopped.

MIES is designed to perform the primary database opera-

tions, INSZ5T, DfLETI, UPDATE, and RETRIEVE. Of these four

database operations, cnly the retrieval operation will be of

concern to us in this thesis. The syntax and semantics of

the retrieve operation is discussed in Chapter V. Users

access MEES through the host by issuing either a request or

a transaction. A tra nsaction is a set of requests. A

request is a primary operation along with a qualification. A

qualification is used to specify the information of the

database ttat is to be accessed by the request. Mere

complete definitions of the MDBS terminology can be found in

the following section.

In the remainder of this chapter we first discuss the

directory structure. Next, we provide an overview of the

process structure. Then, a presentation of the message types

is provided. Lastly, we trace the execution sequence of a

retrieve request.

A. TEE ATTEIBDTE-BASID DATA MCDEL

In this section we discuss the attriuute—based data

model. Next we provide some definitions in order to discuss

MDBS directory data. We conclude this section by describing

the tables necessary to maintain the MDBS directory

infor nation

.

32

lE the attritute-hased data model, data is modeled with

the ccDstructs: database, file, record, attribute-value

pair, directory keywcrd, directory, record body, keyword

predicate, and query. Informally, a dai.^i^§£ consists of a

collecticn cf files. Each file contains groups of records

which are characterized by a uni-jue set of directory

keywords. A record is composed of two parts. The first

part is a collection of attri but e^ value p air s or keywords.

An attribute—value pair is a member of the Cartesian product

cf the attribute rame atd tne value domain of the

attribute. As an example, <POPULATION, 25000> is an

attribute—value pair having 25000 as the value for the popu-

laticL attribute. A record contains at most one attribute-

value pair for each attribute defined in the database.

Certain attribute—value pairs of a record (or a file) are

called tie dir ector y keywords of the record (file) , because

either the attribute-value pairs or their attribute- value

ranges are kept in the directory for addressing the record

(file). ^ Those at tribute—value pairs which are not kept in

the directory for addressing the record (file) are called

non— directory keywords. The rest of the record is textual

inf or Ea ticn, which is referred to as the record body. An

example cf a record is showc below.

(<II1E, Censu£>, <CITY, McDterey>, <POPULATION, 25000,

{ Temperate climate })

The angle brackets, </>, enclose an attribute-value pair,

i.e., ke;yword. The curly brackets, {/}, include the record

body. The first attribute—value pair of all records of a

file is the same. In particular, the attribute is IIIZ and

the value is the file name. A record is enclosed in the

parenthesis. For example, the above sample record is from

the Census file.

33

The database is accessed ty indexing on directory

keywords using keyword predi cates. A keyword predicate is a

three-tufle consisting of an attribute, a relational oper-

ator (=, #, >, <t >/ <) , and an attribute value, i.e.,

FOPUIilTICN > 20000 is a keyword predicate. More specifi-

cally, it is a grea ter-than-or-equal-to predicate.

Combining keyword predicates in disjunctive normal fcrm

characterizes a guer y of the database. The query

(FIIE = Census and CITY = Monterey) or

(FILE = Cersus and CITY = San Jose)

will be satisfied by all records of the Census file with the

CITY cf either Monterey or San Jose. For clarity, we also

employ parentheses for bracketing predicates in a guery.

Becall that in [!IBS there are four types of requests

which correspond to the four primary database operations. An

example cf a retrieve reguest would be:

RETEIFVE (FILE = Census and POPaLAIION > 10000) (CIIY)

which retrieves the tames of all those cities in the Census

file whose population is greater than 10000. Notice that

the qualification ccuponent cf a retrieve request consists

of two parts, the guery of two predicates (FILE = Census

and PCPUIATION > 100CC) and the target list (CITY). The

query specifies which records of the database are tc be

retrieved. The target list specifies the attribute—value (s)

to be returned to the user. A user may wish to treat two or

more requests as a transactio n. In this situation, MCBS

executes the requests of a transaction without permuting

them, i.e., if T is a transaction containing the requests

<R1><E2>, then MDBS executes the request R1 before reguest

E2. Firally, we define the term traffic-unit to represent

either a single reguest or a transaction in execution.

3a

B- 1EZ DIEZCTOEY TAEIIS

Ic macage the database (often refered to as user data)

,

MDBS uses directory data. Directory data in MDBS corresponds

to attritutes, descriptors, and clusters. An attribute is

used to represent a category of the user data; e.g.,

FOPUIAIICN is an attribute that corresponds to actual popu-

lations stored in the database. A descriptor is used to

describe a range of values that an attribute can have; e.g,

(100C1 < POPULATION < 15000) is a possible descriptor for

the attribute POPOLAIION. Ihe descriptors that are defined

for an attribute, €,g., population ranges, are mutually

exclusive. Now the notion of a cluster can be defined. A

cluster is a group of records such that every record in the

cluster satisfies the same set of descriptors. For example,

all records with POPDIATION between 10001 and 15000 cay form

one cluster whose descriptor is the one given above. In this

case, tie cluster satisfies the set of a single descriptor.

In reality, a cluster tends to satisfy a set of multiple

descriptors.

Eirectcry information is stored in three tables: the

Attribute lable (AT) , the Descriptor-to—Descriptor-Id Table

(DDII) and the Cluster-Definition Table (CDl) . The Attribute

Table maps directory attributes to the descriptors defined

Attribute Ptr

POPUIATION
1

1

P

CITY 1
1

C

FIIE
i

i
F

Figure 4.2 An Attribute Table (AT)

35

en them. A sample AT is depicted in Figure 4.2. Ihe

£SScri£tcr—t03Dejcri_£ tor-Id "l^tle maps each descriptor to a

unigu€ descriptor id. A sample DDIT is given in Figure 4.3.

Note that the pointer shown in Figure 4. 3 is not actually in

the ECU tatle but is shown here for clarity to relate back

Descriptor

E->

C->

F->

Id

C < POPULATION < 50000 D1 1
1

5000 1 < POPULATION < 100000 D12

100001 < POPULATION < 250000 D13

250001 < POPULATION < 500000 D14

CIT"X = Cumberland D21

CITY = Columbus D22

FILE = Employee D31

FILF = Census D32
1

Dij: Descriptor j for attribute i.

Figure 4,3 A Descxiptor-to-Descriptor-Id Table (EDIT).

to the AT table of Figure 4.2. The Cluster—

D

efinition la ble

maps descriptor— id sets to cluster ids. Each entry consists

cf the unigue cluster id, the set of descriptor ids whose

descriptors define the cluster, and the addresses cl the

records in the clusters. A sample CDT is shown in Figure

4.4, Thus, to access the directory data, we must access the

AT, EEIT, and CDT.

Gee of the key concepts used when designing the test

datatase (see Chapter V.) is defining the descriptors which

are specified in the directory attributes. Thus, we provide

a brief introducticn to the three classifications of

descriptors. A ty^e-A descriptor is a conjunction of a

36

Id Desc-Id Set Addr

C1 DinE21,D31 1 A1,A2
1

C2 E14, L22,D32 A3
_j

Figure 4.4 A Cluster-Eefinition Table (QDT)

.

less-thac—01—equal— tc predicate and a jrea ter-than—or-egual—

to predicate, such that the same attrii^ute appears in both

predicates. An example o2 a type—A descriptor is as

follcws:

{(fCEULATICN > 10000) and (POPULATION < 15000)).

A txie^zl descriptor consists of only an equality predicate.

An exaji'fle of a type-E descriptor is:

(FILE = Census)

.

Finally, a type-^C descriptor consists of the name cr an

attritute. The type-C attribute defines a set of type—

C

sub— descriptors. Tyje—C su t-descriptors are equality predi-

cates defined over all unique attribute values which exist

in the database. Fcr example, the type-C attritute CITY

forms the type-C sub-descri f tors

(CIIY=Cuniberland) , (CITY=Columbus)

where "Cumberland" and "Columbus" are the only unique data-

base values for the CITY,

C, lEE lECCESS STEDCIDEE

Currently, MDB5 does not communicate with a host

machine. The absence cf this communication requires that the

37

^

POST

PRCCZS3ING

/\

THE co::troller ^
/ REQUEST

PREP.^RATION

INSERT \^
intopj-l\tion

ge>:ekation

J

COhiMUN'I CATION* INTERFACE

r

/ RECOPJ)

PROCESSING

COMMU:;iCATION INTERFACE

concurre::cy

corriROL

7\

\f v/ 1 \!/

directory

ma::acemen'T

A bac?:en'd

Figure 4.5 The MEBS Process Structure.

38

test interface process, the process used to interact with

MDBS/ te placed in the MDBS Controller. The current inple-

nientation cf MDBS does not utilize a broadcast bus. Instead,

MDBS utilizes parallel ccmmunica tions links (PCLs) to

emulate a broadcast bus. Both the controller and the tack-

ends ccntair processes to interface with the PCLs for inter-

computer message passing. These processes, while necessary

to interface with the PCLs, are not part of MDBS and will

not be discussed further. Figure 4.5 provides an overview

cf the MEBS Process Structure.

T • IhS ££2C€ss€s cf th e Cent roller

The controller is composed of three processes:

Request Preparation, Insert Information Generation, and Pest

Processirg. Request Preparation receives, parses and

formats a request (transaction) before sending the fermatted

request (transaction) to the Directory Management process in

each backend. Insert Information Generation is used to

provide additional information to the backends when an

insert request is received. Since the data is distributed,

the insert cnly occurs at one of the backends. Thus it must

determine the backend at which the insert will occur, alcng

viith the cluster and descriptor ids for the insert. Post

Processing is used to collect all the results of a request

(transaction) and fcrward the information back to the host

computer

.

2 . The Pr oc esse s cf Ea ch Backend

iach backend is also composed of three processes.

They are of course different from the controller processes.

Ihey are: Directory Management, Concurrency Contrel, and

Record Processing. Directory Management performs Descriptor

Search, Cluster Search, and Address Generation, Descriptor

Search determines the descriptor ids that are needed for a

3S

request. Cluster Search iinds the cluster ids. Address

Generation determines the secondary storage addresses r.eces—

sary to access the clustered records. Concurrency Control

deterirines when the request can be executed. Reccrd

Processing ferforms the operation specified by the request.

E. lEE HDE£ MESSAGE lYPES

In this section we describe the MDBS message-passing

facilities first described in [Eef. 13]. In the MIBS

message—passing facilities there are 31 message types and

one general message format (shown in Figure 4.6) . This same

Message Type (a numeric code)

.

Message Sender (a numeric code).

Message Receiver (a numeric code)

.

Message Text (an alphanumeric field
terminated by an end
of message marker)

,

Figure 4.6 The General Message Format.

format is used for each of the three message passing facili-

ties, namely, messages within the controller, messages

withir a tackend, and messages between computers. Messages

between computers are divided into two classes, iressaces

between tackends, acd messages between the controller and

the backends. Figure 4.7 describes each of the MDBS message

types. Figure 4.8 describes the abbreviations used.

40

MESSAGE-TYPE NUMBER AND NAME

10

15

20

25

29
29
29
30

TEAFF
EECUE
NUMEE

I 1
AGGEE
EECUE
EABSE
NE^ D
EACKE
CICSI
EECUE

EES
EACKE

FCF
EACKl

CEE
EECOB

CID
EESUL

CE
AN

EESCE
EEQDE
CHANG
FETCH
CLl A

ATT
TYEE-

TEA
LESC-

lEA
CIDST

TEA
EEIEA
EEIEA

AN
EEIEA

GEO
ATTEI
DESCE
CLCST
NC MC

IC UN
ST RE
E OF
EANSA
GATE
STS W
E TEA
ESCEI
ND NU
EE ID
ST FO
CEIPT
ND RE
A EE

ND AG
FATOR
E THA
STEE
TS OF
FETCH
UPDAT
IPTOE
ST AN
ED CL

KD NE
BIBUT
C ATT
FEIC
ID GE
FEIC
EE ID
FEIC
SE AT
SE AL
INSEE
SE DE
UPS
EUTE
IPTOE
EE ID

NC
NC
EE

31 AN

31

MC
MC

CUE
EEQ
UP

FIN
AN UP

FIN

EE
FE
EE
ST

GE
GE
GE
ID

UEST
EATE
ISHED
EATE
ISHED

IT
SUIT
BEQU
CTIO
CPEE
ITH
FEIC
ETOE
HBEB

E NE
CS I
SUIT
CUES
GBEG
EES

T HA

A E
CAU

E
IDS

E DI
OSTE

W VA
E BE
EIBU
UNIT
CUPS
UNIT
S FO
UNIT
IE IB
L AT
I
SCfil

lOCK
-ID
S LO
NEEA
NEEA
NEEA
OF

BEQU

BEQU

FSTS IN

A10ES
EFBOES
CNIT
ID

7,

L
c

T
ATE
EITS
S CHANGED

FTEIEVE
SiD BY

SK ADDEESSES
E EE3P0NSE

lUES OF
ING MODIFIED
lis FOR A

FOE A

E A

tlE
TRIBUTES FCE

P TOE-ID

FE
GEOUPS lOCKED
CFED
IFE INSERTS
III INSEETS
IID INSEETS
A FINIS HEE

EST HAS

FST HAS

SBC DEST PATH

i4

15

2^

36

HOST
PP
REQP

REQP
BEQP
REQP
IIG
IIG
DM
DM

DM
DM
DM
DM
BECP

DM

BECP

DM

BEQP
HOST
PP

PP
PP
DM
DM
DM
IIG

10 IIG 1(3

il DMs
BECP
BECP
BECP
DM

1^

20 CC

DM CC

DM CC

DM CC
DM CC

DM 2 3 CC

CC DM
CC DM
CC DM
BECP BEQP
EEQP DM
DM BECP
BECP 3() CC 30

DM

CC

HC
CK
C

C
C
CE
CE
CE
BC
EC

BECP PP EC

BECP PP EC

RECP REQP EC

RECP EEQP EC

Br
E
E
E
E

25 B

B
E
B
EC
CE
EC
B

E

E

Figure ^.7 MDBS Message Types

41

SCURCE OR DESTINATION DESIGNATION PATH DESIGNATION

HCST
RECE .

IIG :

PE
Dn
RECE
CC

: HCST MACHINE (TEST-INT)
: REQaESI PREEARATICN
: INSERT INFORMATION GENERATION
: ECST PROCESSING
: EIRECTCRY MANAGEMENT
: RECORD PROCESSING
: CCNCURRENCY CONTROL

H ,

C .

c
c .

B
B .

B

: HOST
: CONTROLLER
: CONTRCLIER

CONTROLLER
: A BACKENE

A BACKENE
: A BACKENE

Figure 4.8 MDBS Message Abbreviations.

Ccnmiuriicatiori between comfuters in MDBS is achieved by

using a tiEe-divisicE—mult iplexed bus called the parallel

communication link (ECL) [Eef. 14]. MDBS contains a soft-

ware interface to this bus for each computer consisting of

two ccflf limentary processes. The first process, get-pcl,

gets messages from other coaputers off the PCL. The second

^Tocess, put-pel, puts messages on the bus to te sent to

other ccnputers. The controller and each backend have their

own get-pcl and put-pel processes.

In the remainder cf this section, we give short descrip-

tions cf the definitions of MEBS messages. These defini-

tions are of the forn:

(message-type number) message— type name: explanation of

message.

The descriptions will be given by the process that receives

the message. These descriptions are in following figures:

Request Preparation (Figure 4.9), Post Processing (Figure

4.10), Directory Management (Figure 4.11), Record Processing

(Figure 4.12), Concurrency Control (Figure 4.13), Host

processed for Test Interface (Figure 4.14), and Insert

Infornaticn Generation (Figure 4.15).

42

(1) Kcst Traffic Urit : The traffic unit represents a
single re-iuest or transaction from a user at the
host machine.

(13) Eecord that has Ciianged Cluster : Thrs message is
a lecord which has changed cluster, Request
Irecaration viill prepare ±t as an insertion and
send it to the backends.

(2S) No More Generated Inserts : This message indicates
that all the records that have changed cluster as
a result of ar update request have Been sent to
Request Preparation.

(14) Results of a Petch or Retrieve Caused by an Update:
Ihis message carries the information from a fetch
cr retrieve hack to Request Preparation to complete
an update with a type-Ill or a type—IV modifier.

Figure 4.9 Bequest Preparation Messages,

(3) Numher of Requests in a Transaction : Request
Preparation sends to Ecst Processing the numter
of requests in a traffic unit. This enables Post
Processing tc determine whether the processirg of
a traffic unit is complete.

(4) Aggregate Operators : Request Preparation sends
the aggregate operators to Post Processing.

(5) Requests with Errors : Re-^uests with errors will
he found in Bequest Preparation by the Parser ard
sent to Post Processing directly. Post Processirg
Kill send requests with errors back to the host,

(11) Results cf a Request from a Backend : This itessage
contains the results that a specific backend found
for a request.

(12) Aggregate Operator Results from a Backend : When
an aggregate operation needs to be done on the
retrieved records, each backend will do as much
aggregation as possible in the aggregate operation
function of Record Processing. This message
carries those results to Post Processing.

Figure 4.10 Post Processing Messages

43

(6) farsGd Traffic Unit : This is the prepared traffic
unit sent by Bequest Preparation.

(2S) No More Generated Inserts : This message indicates
that insert request for ail the records that have
changed cluster as a result of an update request
have beer generated and sent to Directory
Management.

(7) New Descriptor Id : This message is a response to
the Directory Management request for a new
descriptor id.

(£) Eackend Number : This message is used to specify
which bacJcend is to insert a record.

(15) Descriptor Ids ; This nessage contains the results
of descriptor search by Directory i^anagement.

(IS) Cld and New Values of Attribute being Modified :

Eeccrd Processing uses this message to check
whether a record that has been updated has changed
cluster.

(31) An Update Request has finished : Record Processing
signals Directory Management that an update request
has finished execution.

figure 4.11 Directory Management Messages.

(16) Request and Disk Addresses: Thxs message contains a
request and disk addresses for Record Processing to
come up with the results for the request.

(17) Changed Cluster Response: Directory Management uses
this message to tell Record Processing whether an
updated record has changed cluster.

(2S) Nc More Generated Inserts : This message indicates
that all insert requests generated as a result cf
an update request nave been sent to Record
Processing.

(18) Fetch : Fetch is a special retrieval of informaticn
for Request Preparation due to an update request
uith type—IV moaifier.

Figure U-12 Record Processing Messages.

44

'~^

22

2^

27;

26]

23"

lyf e-C
Ccntrol
determi
can be
Eescrip
Concurr
IE this
f cr a r
Cluster
Ccntrol
determi
Generat
Eelease
nessage
request
attrib a
the reg
Eelease
^anagem
Control
Cescrip
locks o
release
Eelease
uses th
that an
for a r
groups
Jn Upda
Kanagem
Ccntrol
executi
can be
flttribu
Directo
for a r
perforin
te scrip
signals
croups
Search
Cluster
Cirecto
a reque
the res
Bequest
Irocess
ncn-upd
locks o
release

Attri
take

nes w
perf o
tor—

i

ency
mess

eques
Ids
take

nes w
ion a
Attr
to s
has

te, a
uest
All

ent u
that

tor S
n the
d.
Cesc

is me
inse

eques
held
te Re
ent u
that

on, a
relea
te Lo
r y Ma
eques
ed.
tor-

1

Dire
neede
can b
Ids

Ma
ca

t of
Id o

ing s
ate r
n clu
d.

butes
s the
hen De
ried.
d Grou
Ccntro
age an
t can
f cr a
£ the
ien a
nd the
ibute
ignal
perf or
nd the
can be
the At
ses th
an in

earch
attri

for
attr
scri

s f
1 ta
d de
bee
Traf
clus
requ
res

D
C cnc
med
loc
xel

trib
is m
sert
on a
b ute

a Traffic Unit : Concurrency
ibutes in this mess age and
ptor Search for an attribute

cr a Tr
kes the
termine
erf orme
fie Uni
ter ids
est can
t of re
irector
urrency
Descrip
k on th
eased,
utes fo
essage
reuues

11 Che
s held

affic Unit :

descriptor— id groups
s when Cluster search
d.
t : Concurrency
in this message and
continue with Address

quest execution,
y Management uses this
Control that a
tor Search on an
e attribute held by

r an Insert: Directory
to signal Concurrency
t has performed
attributes, and the
by the request can be

U

riptor-
ssage t
rt requ
t, ana
by the
quest H
ses thi
an upd

rd all
sed.
eked :

nagemen
t, and

d Grou
ctory
d by a
e perfo
locked
cagemen
r conti
request
f a Fin
ignals
ecuest
ster id

Id Groups : Directory Management
o signal Concurrency Contrcl
est has performed Cluster Search
the locks on the descriptor-id
request can be released.
as Finished : Directory
s message to signal Concurrency
ate request has finished
the locks held by the request

Co
t t
Des

s I
ana
req
rme

t t
nue
ex

ish
Con
has
s h

ncurrency Co
hat an attri
criptor Sear

ocked :

gement
uest ar
d.
Concurr
hat the
with a

ecution
ed Requ
currenc
finish

eld by

Con
that
e loc

ency
clus
ddres

est :

y Con
ed ex
the r

ntrol signals
bute is locked
ch can be

currency Ccntrol
the Descriptor-id
ked, and cluster

Control signals
ter ids needed by
s Generation and

Record
trol that a
ecution, and the
equest can be

Figure 4.13 Concurrency Control Messages.

45

(2) Bequest Results : Contains the results for a request
after ceing ccllected from ail the tackends and
acgregated, if Decessary.

Figure 4.1i* Host Messages,

(S) Cluster Id : lirectcry Management sends a cluster
id to Insert Informaticr Generation for an insert
leguest. IIG will decide where to do the insert.

(10) Bequest for New Descriftor Id : When Directory
Maragement has found a new descriptor, it is sent
to Insert Information Generation to generate an id.

Figure 4.15 Insert Information Generation Messages

E. 1EI FXECDTION OF A RETRIEVE REQUEST

In this section, we descrite the sequence bf acticrs for

a retrieve request as it moves through MD3S. The sequence of

actions will be described in terms of the messages passed

between the MDBS processes: Request Preparation (EEQf)

,

Insert Information Generation (IIG), Post Processing (PP) ,

Eirectory Management (DM) , Record Processing (RECF) and

Concurrency Control (CC) . For completeness, we descrite the

actions which require data aggregation.

First the retrieve request comes to REQP from the host.

In the present i npleaentaticn, it comes from the controller.

REQP sends two messages to PP: the number of requests in the

transaction and the aggregate operator of the request. The

third message sent by REQP is the parsed traffic unit which

46

goes to EM in the backends. DM sends the type—C attritates

needed ty the request to CC. Since type-C attributes may

create nev type—C sut-descriptors, the type—C attributes

must ie locked ty CC. Once an attribute is locked and

descriptor search can be performed, CC signals DM. EM will

then perfori Descriptor Search on m/n predicates, where m

is the nuaber of predicates specified in the query, and n is

the number of backends, DM then signals CC to release the

lock en that attribute. DM will broadcast the descriptor ids

for the request to the other tacKends. DM now sends the

descriptcr-id groups for the retrieve request to CC. A

J^scriptcr^id group is a collection of descriptor ids which

define a set of clusters needed by the request.

Descriptcr-id groups are locked by CC, since a descriptcr-id

group may define a rew cluster. Once the descriptor-id

groups are locked and Cluster Search can be perfcraed, CC

signals EM. DM will then perform Cluster Search and signal

CC to release the locks on the descriptor—id groups. Next,

DM will send the cluster ids for the retrieval to CC. CC

locks cluster—ids, " since a new address may be specified for

an existing cluster. Once the cluster ids are locked, and

the request can proceed with Address Generation and tne rest

cf the request execution, CC signals DM. DM will then

perfoim Address Generation and send the retrieve request and

the addresses to RECf. Once the retrieval has executed prop-

erly, EECP will tell CC that the request is done and the

locks en the cluster ids can be released. The retrieval

results are aggregated by each backend and forwarded to EP.

FP ccflipletes the aggregation after it has received the

partial results from every fcackend. When PP is done, the

final results will be sent to the user.

47

IV. AN APPIICAIIOH OF THE METHODOIOGIES TO MDBS

Id th€ previous chapters we discussed the separate

topics of nethodolocies for doing internal and external

perxcriraEce measurements of database systems and the

Kulti-hackend Database System (MDBS). This chapter presents

the application cf tiese methodologies to MDBS. The initial

discussion concerns modification to the ilDBS software. We

discuss the decisions made during implementation, modifica-

tion cf the user interface process, the bacKend processes

and tie ccntroller processes, and the issues resolved during

implementation. The next discussion centers on the modifi-

cations cf the lADBS test environment, which includes test

environment changes and software tools. The final discussion

identifies measurement programs that were inplemented

outside cf the MDBS environment-

A. 1EE HOD-IFICATION CF THE MDBS SOFTWARE

In this section, we begin by presenting the decisions

made ccncerning the iirplementation of internal and external

performance measurements on MDBS. Next, we discuss the modi-

ficaticns cf the user interface and the individual MDBS

processes, Ke conclude this section by relating issues which

are resclved during the i nplementation of the performance

measurement methodolcgy,

l • Icplementaticn Deci sions

When designing and specifying internal and external

perfcrmance measurement methodologies, decisions irust be

made as to the most advantageous positions to place the

checkpoints, data collections and data aggregations. These

48

decisicLS are based cu the need to minimize system overhead,

and tc provide the a|:propriat€ level of detail of the test

data cttained. Primitives and data structures must he devel-

oped which will allow the measurement programs to re&ain

extensible and which are compatible with existing system

software. A user interface must be developed which is easy

to use, should not require the user to possess any special

knowledge of the interface in order to use it and shouli

maintain data in machine readatle form which will ailcw for

future exparsion of the performance measurement system.

Ihe following implementation decisions are within

the bounds of two constraints placed upon us by the current

implementation of MDES along with two constraints we placed

en ourselves. The first constraint concerns the virtual

memory available to tie processes resident on the backends.

The operating systen on the f DP— 1 1/44 allocates a virtual

memory of 64 Kbytes. Each of the MDBS bacJcend processes must

fit into a virtual memory of this size. The additional soft-

ware added as a result of performance measurement has to be

constructed so that it will fit in a the very limited memory

space remaining in eacn backend process. The second

constraint concerns the initial MDBS design reguir eaents

which called for a broadcast bus between minicomputers.

Currently a Parallel Communications Link (PCL) is teing

employed as the inter—com puter message—passing mechar.ism.

Messages passed over the PCL are sequentially transmitted

from the sender to tie receiver. This difference in opera-

tion tetween the PCI and the broadcast bus must be taken

into acccunt in cur attempt to validate the claims cf KDES.

Additional performance measurement programs must also be

writter to measure message-passing times on the PCL.

The third constraint, i.e., minimizing overhead,

significantly influences our performance measurement design.

This subject will be discussed in the following paragraphs.

49

Ihe final ccnstraint deals with cur desire to ran MDBS unim-

peded ty the new performance measurement software. Ivhen we

are net evaluating the system, we want to te aile tc run

MDBS with no overhead incurred by the additional frcgrams

and checkpoints of tie performance measurement system. This

is accoof lished by hracketing all performance measurement

software within special preprocessor instructions which

allow us to include cr omit the performance measurement

software during program compilation. A definition file is

created containing flags which are used to determine the

sections of performance measurement code to be compiled. By

compiling separate versions, we then have the capability of

running MLES without performance measurement overhead or

with the overhead introduced when we select certain pcrticns

of the performance measurement software for compilation.

Ccmmunication in MDBS is accomplished by passing

messaces. Processes which are resident in the same lEiciccni—

puter ccmmucicate by using inter-process messages, while

processes resident in different minicomputers communicate by

using inter-computer messages. Actions taken by the various

processes in MDBS are initiated by the receipt of a messace.

Actions end when that message has been processed and any

resultant messages have been sent. As a message is received

by a process, the action taken by the process is dependent

en the message origination and type. The general MIBS

process procedure hierarchy is shown in Figure 5.1.

The highest level of this process is the main proce-

dure. Ihis procedure receives the next message and based

upon the originator cf the lessage, calls a sub procedure in

the procedure hierarchy. The message works its way down this

tree of sut procedures based upon the originator of the

message and the message type. Ultimately, the message

arrives at a message-handling procedure (message handler).

The icessage handler has the responsibility of processing the

50

Main
Procedure

Sub
Erocedure

1

I

Sub]Procedure

I

Zero or cere levels of sub procedures

J

I 1

J
Message

|

I HacdlerJ
Message
Eandler

L I

Message
Handler

i
Message
IHandler

Figure 5.1 The MDBS Procedure Hierarchy.

message. In doing sc, it may call other procedures lower in

the hierarchy. MDBS's message oriented approach naturally

lends itself to checkpoint placement at this level.

Selection of measureaent at this level provides the user

with sufficient processing details while not overburdening

the user with excessive information. A range of si:!c to

twelve checkpoints maj be installed in each MDBS process at

this level. The general approach to the installation of

checkpoints is shown in figure 5.2. In this installaticn, we

insert checkpoints both before and after every message

handler. As a result, we obtain the time of entry into the

procedire and exit from the procedure. The differences

between these times is the time it takes to process the

message.

51

Main
Pxoc€dure

Sub
Procedure

Sub
Procedure

> I

Zero or ircre levels of sub procedures
m m

m m

1 I

fcheck]
lEcirtj

I

[Message
I

1 Handler 1

Check
Point

I

[check]
i Point I

t , J

f

Message

j

Handler]

L

[checkl
JPointl

[Message]
IHandlerl
1 I

[check]
jPointl

iCheckl
i Point!
I I

ICheckl
JPcintI

[Messace]
i Handler I

I I

IChecin
I Pcinti
L I

Figure 5.2 The MDBS Procedure Hierarchy with Checkpoints.

Measuring at this level presents one problem. Ihe

system clocks are not sufficiently refined for the

processing speed of the message—handling routines. The clock

on the PEP- 11/44 measures time in discrete time intervals of

only cne sixtieth of a second. The clock on the Vax-1 1/780

measures time in discrete time intervals of only cne

hundredth of a second. In any given time interval, the

system time may be accessed by the performance measurement

software. This means that access may occur exactly when a

time interval is recorded by the system clock or anywhere in

52

tetween the recording of a time interval by the system

clock. Because of this condition, the variance of the tiie

measurement would he approxinately twice the smallest

interval. This variance is significant when it is ccmpaied

to the time it takes a message-handling routine to process a

message. A method must be developed to reduce this variance.

Ihe scluticn is to send multiple requests to the message-

handling routine being timed, to record the time for each

request and then tc compute the average of the reccrded

timeS/ thereby obtaining a mere accurate measurement of the

true processing time.

In order to keep overhead to a minimum and tc keep

the performance measurement system extensible and siirple,

we decide tc place ninimal performance measurement software

in ar MEES process. Kc processing of test data is dene in an

MDBS piocess. All test data is sent to the test-interface

routines for aggregation and storage. Since i^DES is a

message— tased system, measurement control messages and test

data are transferred as messages utilizing existing MEBS

communica ticns routines. A differently-oriented system, such

as procedure—oriented, would require a different approach to

measurement software communication.

Ihe installation of the checkpoints requires that a

method be devised to collect the information obtained by the

checkpoints. The information could be stored locally, trans-

ferred tc a central storage location in the minicomputer or

sent to the test interface for storage. In order tc reduce

the system overhead introduced by message passing we deter-

mine that the temporary local storage of data would be most

efficient. As pointed out previously, one of the constraints

placed upon the implementation of performance measuremect is

the virtual memory space available at the backends. Storage

of the test data generated from the checkpoints would have

to be large enough tc contain sufficient timing information

53

and small enough tc reside in the constrained virtual

aemorj sface available to a hackend process. For our timing

measurements, the upjer bound en the number of requests sent

to a lessage handler at one time is fixed at one hundred. In

ether words, we assume tnat measuring a given function mere

than 100 times will let provide a statistically significant

difference over measuring that same function exactly 100

times. Giver this upper bound, we decide that a static array

ef 2CG records would be small enough to fit in the virtual

memory of a backend process, yet large enough to held a

sufficient amount of test data. Figure 5.3 shows the general

approach to the placement of the performance measurement

routine (Timer) which is called by the checkpoint, accesses

the system clock and nanages the static array.

flncther question that must be answered is the manner

in which tie checkpoints are activated. Should we activate

only one checkpcint at a time or multiple checkpoints at

cncer We determine that activating more than one checkpoint

at a time cculd intreduce error into tne measurement. If one

routice (A) which is being measured called another routine

(B) which is also being measured, the time necessary to do

timing measurements er. (B) would increase the total running

time of (A). Because of this we only allow the measurement

of one routine at a time.

Ihe desire tc provide a user interface which is easy

to use and requires no particular knowledge of test inter-

face iif lenentation leads us to develop a menu— driven

system. Ihe modularity of the performance measurement design

lends itself to easy access via menus. The menu-driven

system is also compatible with the existing test interface

systeir.

Ihe final problem is how to process and stcre the

raw test data received from the various processes, We

require that the user have access to both raw data and

54

Main 1

P rocedure TIMER
I

I
Sut "1

j frocedure \

Sub 1
Procedure I

Zero or mere levels of sub procedures

r
fcheck]
i Ecirtl

Check
Point

I j

1

IMessagef . . . [aessagei
Handler! Handler!

L I L I

I

Check]
EoirtJ

jcheckj
iPointl

fcheckl
j Point J

I I

i

i
Message!
IHandleri
I I

ICheckl
i Pointl
1 «

ICheck
i Pcint
I

j Message I

JHandler] j

ICheckl
i Pcintl
\ I

Figure 5.3 The Procedure Hierarchy
with Checkpoints and Timer.

summarized informaticr. Also, we reguire that the data be

available for further nachine processing. Ihese problems are

eliminated by maintaining all collected data in files. Wten

raw data is received from a process it is immediately stored

in a file. Once all requests which are to be timed have

finished, the file ccntaining the raw data is accessed and

processed to produce another file containing sunmarized

information on the various message—handling routines which

have been measured. A history of this information is

55

compiled as the undeilyiiig operating system (on the niiEi—

compu-ter vihere the ccEtroller software resides) creates new

versicns of these files each time the measurement programs

are iEvo]<€d.

2 . Ihe Modifications of the User Interface

Ericr to the iaplement ation of the performance creas—

urement nethodolcgies, the test interface process consisted

of those programs necessary to generate a test datatase,

load a test database and execute requests against the test

datatase. The implenenta ticn of performance measurement

software within the existing software structure of the test

interface is accomplished ty expanding the existing hier-

archy cf control and by integrating performance measurement

software with existirg test interface software. Figure 5.4

shows the test interface procedural hierarchy with the

performance measurement modifications.

The user selects actions to be performed hy trav-

ersing a tree. At each node, a decision is made as to the

path to follow. By following certain paths, the user has the

capability to generate a database, load a datatase or

execute the test interface. When the user decides to execute

the test interface, a decision is then made as to what path

to follow en the test interface sub—tree. The user may

choose a new database to work with, create a new list of

traffic units, modify an existing list of traffic units,

select traffic units from an existing list for execution,

select an existing list so that all traffic units en the

list may be executed, display the results of external meas-

urement cr perform a combination of internal and external

performance measurement. The user may traverse the tree at

will moving up and dcwn the tranches to accomplish a wide

variety cf tasks.

56

Main
Procedure

Load
Eatabase

Generate
DataBase

I

J
Execute

1 Test
Interface

j

r -

New
1
Databa

1 1

r~ New 1

I list I

f 1
1 Modify

i

[I

j Select

[

'V
j Old
j

list

Perform
Testing

iDisflay j

j External
lEesults

I

Figure 5. U Ihe Test Interface Hierarchy
with Perfcimance Measurement Software.

57

The MDBS software in the test interface contains a

procedure, called by the other MDBS procedures, to execute a

request (transaction). That is, to forward a ret^uest (trans-

action) to Bequest Preparation for processing. This proce-

dure is selected fcr the placement of the external and

internal performance measuring software necessary to time

and aanijulate requests. External measurements are taken

from this procedure immediately before the request is sent

to Request IreparcCticn for processing and after the results

are returned from Post Processing. Software is added to this

procedure to generate requests to the MDBS processes which

initialize the message—handling routines for internal

perfcrnance measurenent , generate multiple, identical

requests in order to reduce the timing variance (as previ-

ously discussed) and to generate the test data collection

message. The number of multiple requests to generate is

provided tc this routine by a variable defined at compile

time. This procedure receives the information necessary to

accomplish these other tasks by sharing a first-in—las t— cut

stack and a pointer to the top of the stack with the

performance measurement software. The evaluator interacts

with the performance measurement software to build a stack

of internal performance measurement requests. This procedure

then draws from that stack, initializes the message-

handling routine selected by the evaluator, generates

multiple ccpies of tte MDBS request selected by the evalu-

ator, and generates the request necessary to collect the

test data from the process which contains the message-

handler being evaluated. Figure 5.5 shows the relationship

between this procedure and the performance measurement soft-

ware and its data structures.

In addition to external system timing, ether

performance measurement functions provided by the new soft-

ware include routines which allow the user to 1) select

58

Frcm MDBS Softvare

jPerfcrEaEce
I
Software

E€gu€st (for execution)

J
iPerf crmance

I
Execute j Measurement
JEeguestj Software

<i I

i Number of
J—

1 Times to Send |

1 Same Request j

I I

Lj Stack
Pointer

I

FIIO
StacK

n
L

Ic Beguest Preparation

I <

Figure 5.5 Ihe Belationship of the Reguest Executicn
and the Performance Measurement Interface.

specific MEBS message—handling routines to be timed, 2)

select all nessage— handling routines within a process to be

timed, 3) restrict the timing of backend message— har cling

routines tc a specific backend or backends and 4) perform

any ccmtination of the aforementioned selections. The new

performance measuremert software also includes routines to

contrcl the tilling software within the MDBS processes,

collect raw data transferred to the test interface from

processes within MDBS, process the raw data into summarized

form and stcre the data for future use. Other routines are

59

intrcduced into existirg test interface software to aid in

the iiessage-passing require aents of the performance measure—

lent system.

3 . Ihe Modification of Indi vidual Processes

Ihe PCI processes within MDBS are modified to pass

perfcrmance measurement messages. All of the remaining MEBS

processes received identical nicdif ica tion. The send/receive

porticn of every process is modified to include the capa-

bility cf processicg performance measurement messages.

Send/receive is used for inter-process message passing,

ChecXpciEts are flaced in the MDBS processes at the message-

handling (lew) routine level, A timer routine is placed in

each process which receives control messages from the test

interface. An initialization message causes the timer

routine to initialize the data collection array to zero and

turn en a selected checkpoint. As MDBS—generated messages

pass through a check^cint, the timer routine is called. The

timer routine accesses the system clock and stores the

messace type and time in an array. A completion message from

the test interface causes the routine to transmit the data

collected in the array to the test interface and to turn cff

the checJtpcint which is timed. Figure 5.6 shows the modifi-

cations made to the directory management process as an

example cf the i nplenentation of the general modifications,

shown in figure 5.3.

^' Iss ues Resolved Dur ing the Implementation

KEBS is an experimental database machine. As such,

it is under constant modification and subject to use by many

systeir developers. Tie MDBS software engineering envircrment

requires that versions be used to control program modifica-

tion, but it is impractical to create new versions cf MEBS

every tiEe a single progra u is modified. One solution we

60

-1 n" o More
jCEl— IGecerated — |CP < >1CPJ— Iraffi
I— J

I
Inserts j

'— -1 « «
J

Unit
I 1 I

\Ci\
J
Backend! |CP I

<--)-> |CP|— | Descriptor j— jCP|...
j^ . , ,-» jNumter]

>

rri
1 A

N

J

'

I
i
m
e
r

L i

Msg from
Cont idler
or ether
Backend

Parsed — IC
[£!J

'—
' i

New
Descriptor

"^
I

\-m
r ;:—> J PerformanceJ Pe

essages

i
Message |

i— > from this—
j
Backend 1

i From j—>j Record |

j
Processing!

[From !

I
Concurrency

1

! Control j

n

[cp]

~1

kpI
I I

^T\ [Ci] [CP]

lAttrihutel fo-Id Groups] fc-Ids]

I
locked 1 j locked]] Lo ' '

r Old 1 r Update 1

! New ! !
Finished!

lvalues! " '

!CPJ ICP

-ockedl

r^Fi jCP
I I

[cFj

Figure 5.6 Tbe Directory Management Hierarchy
with CheckpoiDts/Sof tware.

inpleniented is the uaintainance of an in—use file. When

somecne desired to modify a program, the program is copied

to the developer's private work space. The developer ccakes

61

aPi entry in the in—use file which indicates who is currently

modifying that particular program. This method allcwec the

developer tc modify a program, compile and test the modifi—

cation ir. an environment away from the main HDBS envircr.ment

(in order to avoid ccupromising a functional system) and

return the program to MDBS upon completion of testing. This

Eethod avoids the possibility of two developers concurrently

modifying the same picgram and the ensuing problems. Machine

time is also at a premium. There is no easy soluticn for

this. Much of the measurement oust be conducted during ncn—

peak hours such as late evening and weekends. This is neces-

sitated by the requirement that tne measurement of MDES be

accomflished in a stand-alone environment. Since the MDBS

controller is i nplemented on a time—sharing system, the

entire machine has to be reserved for performance testing so

that MDBS could be run in isolation.

The performance measurement system places additiotal

demands on MDBS systei message—passing software. Except for

one case, the system responds without protest to this unex-

pected load. The message— processing routines of the MEBS

tackends are not designed to handle the transfer of 200

internal performance-measurement messages from a tackend

process to the controller. There is not sufficient space

available to store the pointers required to access this many

messages. The MDBS programs are easily extended to account

for this change in message traffic.

The MDBS coEtroller resides on a VAX-1 1/780 which

operates under a time—sharing mode. When inter-computer

messages are passed cr the PCL, the operating system expects

a confirmation withir a certain time interval. While no

problems occur during the normal operation of MDBS, the

large message traffic from the backends to the controller

during internal measurement require more time than that

alloted to the ccrtrollei during its quantum on the

62

"VAX-1V7£0. The result is that the controller processes on

the VAX are suspended while the tackend is stili transnaitin^

over the FCL. When the PCL receives no response it signals

an error and aborts. Obviously, this is not a prctlem when

the MEBS system runs stand alcne. However, such abortion

does provide more than an inconvenience during the inplemen—

taticn of the performance measurement system.

Currently, MC£S utilizes two different type of lini-

cooputers. This translates into two different oi:erating

systens, two different text editors, two different compilers

and two different system clocks wnich record tiines in

differing units. Because of this, performance prograis in

the ccntioller processes and the backend processes are not

identical. Different access mechanisms for system timers

must te developed and a routine mast be developed to convert

the times received from the tacKends into the equivalent

time units of the controller. Additional time and effort

are required to become sufficiently knowledgeable on the two

systems in order to begin implementation" of the perfcrirance

measurement methodolcgy,

E- 111 CODIFICATION CF THE M£ES TEST ENVIRONMENT

In conducting performance ireasurements , one demands that

all the measurements he consistent as well as reproducible.

There should be no inconsistent, unexplainable results.

Further, the results should he reproducible with re-runs.

This section discusses the necessary changes in the test

environment to insure consistency and r eproduciblity . Then

we present the software tools used to make the testing

easier ard smoother.

63

1 • Necessar 7 Ch ar^es to the Test 2n vi ronmen

t

Ihe methodolcgies for internal and external perform-

ance ireasurements on a datatase system have one prerequi-

site. Ihe results j\jst not be accidental. These results

need to he consistent and reproducible. To achieve consis-

tency and reproducitlity, ve must be able to control the

test environment. Ivery scientific experiment requires the

test environment to be controlled, to insure that all

factors effecting the experiment are known.

The experimental MDBS/ the system to be tested, has

its ccntrcller processes running under a VAX/VMS environ-

ment. This requires these processes of the controller to be

run simultaneously with the other no n—system processes in a

timesharing environment. Under tnis environment, the

results obtained would be erratic and inconsistent. To

alleviate this, several preliminary steps are taken prior to

final testing. The tests are run stand—alone with all ether

logins tc the computer disabled.__ All processes are given

the highest possible real— time priority. Swapping cut of

processes in the wait state is disabled to retain the

processes in the physical memory. Page faults are disabled

by increasing the working set size to the size of the image

of each process- In this way, the VAX/VMS system appears to

the evaluatcr as a single user system.

2 • Software Tools- f or the Test Enviro nment

An evaluator should understand the system tc be

tested, determine the various parameters to be altered,

specify the various data to be collected, and interpret the

results. Tedious and busy work, such as modifying the input

set or the system configuration, can be done manually and

are time—consuming without proper tools. Nevertheless,

these modifications are necessary, and can be automated by

using software tools.

64

In [Eef. 9], software has been provided tc generate

a datatase and a request set, lead the datai-dse, and run the

request set against the datatase whicn can all be used in

the testing of MDBS. This allows for easy creation and

modification of the selected database and requests. Ihe

system software needs to be mcdified during the testing to

accomuodate such things as changes in the number of tackeids

being used by the system and whether or not internal testing

is tc be performed. lach change requires a recompilaticn of

the system software. To facilitate this change and to

insure cnly recompilation of necessary files, the Unix

*mak€' command is used. Briefly, execution of this ccmmand

would check a file created by the author. This file would

indicate all interde^endenc ies of all files of MDBS. If a

file has been changed, all ether files effected by this

change will automatically be recompiled and relinked upon

executicn of the 'make* command. In this manner, the system

could be reconfigured wita ease and with the assurance that

all effected files are changed. Using these software tccls

for the test environment and with proper control of the test

envircnment, the tests are made easier to conduct and

control and are known to be consistent and reproducible.

C. AEDITICNAL HEASOBEMENT SOFTHARS REQUIREMENTS

In crder tc ccnpletely evaluate MDBS, the message

passing mechanisms must be monitored to determine the time

required tc pass bcth i rter—computer and inter-process

messaces. Although the measurement of these messages could

cccui during the execution of MDBS, the environment under

which the messages are passed could be more easily

controlled if the messages are evaluated outside cf the MIBS

envircnment. The results of these measurements are contained

in the next Chapter VI.

65

"J • iDt er-com^uter Mess age Processing Measurement

New software does not have to be developed to

measure the time required to pass messages on the PCI.

Programs are provided by the manufacturer of the PCI which

measure the message— passing time. The evaluator is given the

capatility of specifying which node on the PCL is to receive

the message, the message length and the number of messaces

to send. Ihe software generates and sends the messages, then

provides the total time to transmit the messages tc the

evaluator. The PCL is implemented as a ring bus. Because of

this style of i nplementation, we decide to send messages

from cne selected node to itself. The times obtained are an

upper bound to the irter—computer message passing time.

2 • Int er- prgcess Message Processing Meas ure ment

Programs are written for the inter—process message

processing measurement. To deterjiine the time required to

pass a message, we developed two programs. The first program

gets the time, generates a selected number of messages with

a selected message length, and sends them to a second

program which receives the messages and then gets the time.

We run the first program at a higner system priority than

the second to prevent the system from process switching

before all the messaces have been generated. After genera-

tion of all messages by the first program, we then set the

system priority of the sending program below that of the

receiving program, thereby forcing a process switch. We can

then compute the average time it takes to pass a single

message on the machine. To obtain a higher degree of accu-

racy we must account for the time it takes the system to

switch processes and the time it takes the system to alter

the priority of the sending process. Programs are written to

account for these times. The program written to account for

66

the tine necessary tc alter the priority merely gets the

time, alters the priority a selected numijer of tiires, then

gets the time again. Ihere are two programs necessary to

determine the time tc process switch. Tney are identical to

the twc frcgrams mentioned atove except that the number of

messages between process switching is set to one. Utilizing

the ahcve programs ve are able to obtain tne inter-prccess

nessage-fassing times on bcth the PDP-11/44 and the

7AX-11/760. The next chapter will discuss the selected

datalase, request sets, and procedures taken to run the

actual benchmark of KIBS.

67

V. IHE BSNCHJAEK OF MDBS

Ihe ccnstruction cf the test dataiiase and the selection

of reguests are ver;y important in the performance measure—

lent cf a test database system. The test database should be

representative of a real database, but, as presented in

[Ref. 7]^ the test database should be modeled independent of

any specific database. Both the Test database and the

reguests selected shculd be properly modeled to allcw for a

complete exercise of the target system. At the same time,

parameters must not be selected randomly, but rather should

be created to provide the evaluator flexability and ease of

evaluation. In this chapter, we first describe the manner

in which the test database is modeled. We then describe the

request set which is used in the performance measurement

experiments.

A. TEE £E1ECTED DATABASE

Since MEBS is an experimental database system, it is

constantly being improved and enhanced. For this reascn,

the test database is designed to facilitate measurements by

being easily expandable. A. distinct ion will be made in the

following discussions between the design of the test data-

base, which allows for future measurements, and the actual

implenentation of the test database used in the measurement

experiments.

'^ • liJ De sign of the Model Database

Several factcis must be considered in the design of

a model database. Since the system being measured can be

configured with either one or two bacXends, the 'work'

68

required to process a request has to ije evenly divisitle to

accomflcdate the use ct either one or two tackends. Ihe

types cl work involved are attribute search, descriptor

search/ cluster search, address generation and the retrieval

and selection of reccids.

laile I displays the three configurations to he used

in the performance measurement of MDBS. The coniiguraticns

have teen selected tc simplify the verification of the ML3S

performance and capacity claims. These claims are to 1)

halve the response time by doubling the numter of tackerds

and keeping the size cf the database constant and 2) main-

tain a ccnstant response time ty doubling both the numher of

backends and the size cf the database. As shown in Table I,

going ficm Test A tc Test E maintains a constant database

size tut allows the database to be evenly split tetween two

tackerds. Conversely, going from Test B to Test C doubles

the size of the datatase at each backend.

TABLE I

The Eenchmark Configuration

Test Nc. of Backends Mbyte/backend

A 1 n

B 2 0.5 n

C 2 n
1

To properly evaluate a database system, various

record sizes need to te used. The sizes are chosen tased on

the size of the unit cf disk management. In MDBS, this is

69

the logical track, or block. MDBS processes infcrmation

from the secondary memory using a 4KJjyte logical track.

Given a tlocksize of UKbytes, we recommend ccnstructicg the

database with record sizes of 200 bytes, 400 bytes, 1C00

bytes, and 2000 bytes £Bef. 7]. This gives a range of 2 to

20 records per block. This also creates an envircrment

where four separate databases, corresponding to the four

record sizes, must be generated and tested for each configu—

raticr given in Table I. Table II gives the corr espcr.dang

relationship between records and blocks.

TABU II

The Reccxd'-aiid—Block Relationship

1

1

lecord
Size

in Bytes

200

Eecords
per

Block

20

UOO 10

1000
i

4

2000 1 2

As described in Chapter III, the target system

stores records in clusters. Five cluster categories have

teen selected for use in the creation of the model database.

The distinguishing characteristic of a cluster category is

the number of blocks used to store the records Ie the

particular category. Table III outlines the sizes of each

of the five cluster categories. One final note, the number

of blocks per cluster must be even. Thus, when the number

70

cf tackecds is ircreased from cne to two with the number of

records in the database remaininij constant, we are guaran-

teed that each tackend will have the same number of blocks

per cluster. For example, when the cluster categciy is

small, each backend would have one blocK for the particular

cluster, insuring an even distribution of the database.

TABLE III

The Cluster Arrangement

Clusters Categoryl Blocks/Cluster

small

small—medium
|

medium
|

medium—large
j

larce I 10

Combining the data in Tables II and III, we can

construct a matrix cf data which represents the number of

rec-ords per cluster category. Table IV, indexed using the

cluster category and the record size, details this infcrma-

tion . The number cl records per cluster is obtained by

multiplying the Records/Block results from Table II by the

corresponding Blocks/Cluster results from Table III.

The remaining considerations when developing a test

database involve the specification of the directory struc-

ture for the particular record type. In MDBS, a reccrd

template, which describes the record structure is defined.

The record template defines the number of attributes in the

71

TABLE IV

The Heccrds per Cluster Category

Numter ox Records per Cluster

(Record
Size

in Eytes)
(200) (400) (1000) (2000)

C C
I A
U I
S E
I G
E
H E

Y
L _ _

small
j

~~40 "~T~~~20
T 8

1

4

saall— mediuii
1

80 40 16 a

lediua 120 60 24 12

me dium— large 160 80 32 16

large j 200] 100 40 20

I

record, and for each attribute, the attritute naire arc the

attritute t^'pe (either integer or string). Given a record

template, the directory and non—directory attributes are

specified. For each directory attribute, a descriptor tjpe

and descriptor ranges are defined (see Chapter III).,

2 « Ihe Implementat ion of th e Model Databas e

Ihis section examines the implementation decisions

made when specifying the test database and the testing

strategy. Ihe current version of HDBS, the primary-memory—

tased directory management, stores the directory tables,

i.e., the AI, DDIT, and CLT , in primary memory. Given the

primary aemcry limitations of the backend, we are forced to

limit the variables nentioned in the previous section. Cur

first decision is to limit the size of the test database to

a maxiiruff cf 1000 records per tacJcend. Table V displays the

configurations which are used in the performance measure-

ments of MDES.

72

TABU V

The Measurement Configurations

lEST No.
1

cf Backends Records/ Backend

A.E
E.E
C.E
A.I
E.I

1

2
2
1

2

1000
500

1000
1000
500

. „ -_ _ . , J

Eiv€ different system configurations are needed for

the MEBS performance neasurements. Tests A.E, B.Z, and C.E

are conducted withcut internal performance software in

place. lest A.E configures KDBS with one tackend and one

thousand records in the test database. Test B. E configures

MDBS vith two backends and one thousand records split everly

between the tackends. Test C.E also configures !1DES with

two tackends, but, the size of the database is dcutled to

two thousand records. Test A.I and B.I are conducted with

internal performance software ir. place. Test A.I configures

MDBS liith one backend and one thousand records in the test

database. Test B.I configures MDBS with two backends and

one thousand records split evenly between the backends.

Dsing these five corfigura tiocs, the verification of the

MDBS performance and capacity claims is simplified and the

perfcrmance measurenent methodology of computing the

internal measurement overhead is facilitated.

Cur second decision fixes the recora size at 200

bytes. The 200 byte record ninimizes the primary memory

required to store tie record template. In actuality, a

record of 198 bytes is used. The record consists cf 33

attritutes, each reguiring 6 tytes of storage. The record

73

template file used in our exiieriments is shown in Figure

6.1. Cf the 33 attributes listed, INIE1 and INIE2 are

directory- attributes. MULTI and STROO to STR29 are ncn-

directcrj attributes.

In cur next decision, the descriptor types and the

descriptor ranges fcr the two directory attributes, INIEI

and INTE2, are defined in the descriptor files (see Figure

6.2) . lie values fcr INTE1 are classified by using five

type-A descriptors, each of which represents a range cf 200,

Ihe values for 1^112 are also classified using type—

A

descriptors. The first twenty—three ranges for INTE2 cover

40 values, with the last range covering 80 values. Ihe

non-unif crmity of the IUTE2 descriptor ranges is caused by a

size constraint in tie Concurrency Control process.

Attribute Name

IN1E1
INIF2
MDIII
ST500
STE01

STIi29

Attribute Type

integer
integer
string
string
string

string

Figure 6. 1 The Becord Template File.

Ey utilizing the attribute and descriptor files, the

record file is generated- INTE1 and INTE2 are identical,

being the next sequential number after the previous record,

starting at 1, Therefore, the one thousandth record would

have the (INTEl, IKTE2) pair set to 1000. The MUITI

attribute, which is cf type character string, is set tc One

for a datatase of oily 1000 records. The intent of this

attribute

74

Attxitute Name Descriptor Type
i

Descriptor Range

INIEl A 1 -> 200
20 1 -> 40C
401 -> 60C
601 -> 80C
801

,

-> 1000

IN'IE2 A 1 -> 40
41 -> 80
81 -> 120
121 -> 16C
161 -> 200
201 -> 24C
24 1 -> 280
281 -> 320
321 -> 360
361 to 400
401 -> 440
44 1 -> 48C
481 -> 520
521 -> 56C
56 1 -> 600
601 -> 64C
64 1 -> 680
681 -> 720
721 -> 760
761 -> 800
801 -> 840
341 -> 880
881 -> 920
921 -> 10CC

Figure 6.2 The Descriptor File.

IKTI1
-

2

1000

INTE2

1

2

1000

CULT I

Cne
Cne

Cne

SIEOO

Xxxxx
Xxxxx

Xxxxx

STR01

Xxxxx
Xxxxx

Xxxxx

SIR29

Xxxxx
Xxxxx

Xxxxx

Figure 6-3 The Record File.

75

is to increase the lumber cf records per cluster in the

database. This is dene by setting ilULTI to Two, Three,

etc., for each (IKTE1, INIE2) pair in the datahase.

Therefore, to double the size cf the database, every (INTE1,

INTE2) fair will have an associated MULTI attribute with

values of Cne and Two. The remaining attributes, 2TR0O to

STR29, are set to Xxxjjx as fillers. Figure 6.3 depicts the

general laycut of tie record file for 1000 records where

CULII is set to Cne.

Given the structure described, our last decision is

made for us. The Sfecif ication of 24 descriptors for the

INTE2 attribute, coupled with the record file structure,

generates a database that contains 24 clusters. Tte first

23 clusters correspond to the small cluster category, and

each contains 40 records. The last cluster corresponds to

the snall-iredium cluster category and contains 80 records.

To maintain consistency in the retrieval re-^uests (discussed

in the next section) , we avoid any requests that access the

last 80 records in the test database using the INTE2

attribute.

B. Ill EEQDESI SET

The recuest set used for our performance measureinert is

given in figure 6.4. The retrievals are a mix of single or

double predicate requests. Since the majority of the wcrk

done en a database is to retrieve data, we limit the meas-

urements to only retrieve requests. In every request, 1/2

of the target attribute values for each record is returned.

The first retrieve is a request for only two records from

two separate clusters. The second request retrieves 1/4 of

the database. Seven of the 24 clusters must be examined.

All records in each cf the first six clusters are retrieved.

Cnly 1/4 of the seventh cluster, defined by the range from

76

Bequest Number Eetrieval Bequest

1 (INTE1=10) or (INTE1=230)

2

3 ^

(INTE2 < 250)
i

(INTE2 < 500)

4 (INTE1 < 1000)
1

5 (INIE15200) or (INTE1>801)

6 (INTE1<400) or (INTE1>601) i

7 ^ (INTE1 < 201)

8 (INTE1 < 401)
i

5 (INTE1<201) or (INTE1>800)

Ihe Target Ittribu te-Values for Each:
i

(INTI1,INTE2,MUL1I,STE0 0,SIE01,STE0 2,STE0 3,STt04,
SIEC5,£!IE06,S'IEC7,STE0 8, SIE09, STE 10 , SIE 1 1, SIR 12) i

Figure 6-4 The Eetrieval Bequests.

241 tc 280^ is retrieved. In the third request, 1/2 cf the

datatase is retrieved. Thirteen of the 24 clusters must be

examined. All records in each ox the first twelve clusters

are returned. Cnly 1/2 of the thirteenth cluster, defined

ty the rarge from 481 to 520, is retrieved. The system

searches only for records having values in the range from

481 tc 500 in this cluster.

The entire database is examined in the fourth request.

The fifth request retrieves 2/5 of the database. The query

is divided into two |:redicates, to obtain all records from

the first five clusters, and the last four clusters. Ihe

sixth request is a retrieval of 4/5 of the database. Again

the querj is divided into two predicates, to obtain all

records frcm the first 10 clusters, and the last nine

clusters

.

77

Ih€ seventh and eighth recuests are similar in intent.

Ihe seventh request examines 10 clusters, requiring cnly 1

record tc he retrieved from the 6th cluster and needing all

records frcm the first five clusters. The eighth request

examines 15 clusters, requiring only 1 record tc be

retrieved from the 11th cluster and needing all records from

the first ten clusters. The ninth and final recuest is

similar tc the fifth request. But unlike the fifth request,

ten additictal clusters must he examined. Only two of the

records *ith INTE1 values of 201 and 801, are retrieved from

the ten additional clusters. All records in the remaining

nine clusters, like the fifth request, are also obtained by

this retrieval. Table VI, a presentation of the number of

clusters examined versus the percent of the database

retrieved, is a synopsis of the previous discussicr in

tabular form.

The request set in Figure 6.4 is not intended tc be

representative of a ccmprehensive and complete request set.

The gcal is net to exhaustively measure and evaluate MDES.

Eather, we focus on applying the performance measurement

methcdclcgy to MDBS to validate the basic performance and

capacity claims cf the system. We feel that these requests

are sufficient for such a validation. We will refer to

these rine requests, i.e., retrievals, by their reccrd

number in subsequent discussion.

78

TABIZ VI

Th€ NuEter of Clusters Examined
and the Percent of the Database Retrieved

Ee-^uest
Numher

Number of
Clusters
Exami ned

f

13

24 (all)
-'

19

10

15

19

Volume of
Database
Retrieved

2 records

2b':

50%

100%

40%

30%

20% + 1 record

40% + 1 record

40% + 2 records

7S

VI . THE TEST RESOLTS

iL this chapter, we present the results obtaiLed from

the perf or nance measiixement ex MDBS. MDBS is currently

configured with the primary-memory—based directory marace—

ment. In this versicr of MDBS, the directory tables, i.e.,

the AT, DEIT, and CDT, are stored in the primary memor;y. We

expect tc achieve different results when version F, the

secondary— iiiemory-bas€c directory management is implemented.

The test interface is utilized to send the retrieval

requests discussed in the previous chapter to MEES for

processing. Each reguest is sent a total of ten tines jer

database configuraticr. The response time of each recuest is

recorded. After some trial runs, we compute the stardard

deviation, ^"e determine that ten repetitions of each reguest

is sufficient to provide the desired accuracy.

The internal processing times of the message—hardling

routines which are used to process a retrieval reguest are

also timed- Retrieval (1) and Retrieval (2) are selected to

conduct internal timing. These requests are selected since

they retrieve the smallest portion of the test database and

the processing time fcr each request is minimal. Recall that

each message—handling routine is timed independently cf all

others ard that each routine must process multiple requests

so that an accurate average may be computed for the time

required tc process that request type. Sixteen message-

handling routines are required to process a retrieve

request. If we send twenty requests to each routine, a total

cf 32C requests must be processed by MDBS. Based en these

figures, the time required tc conduct the internal perform-

ance leasurement of a retrieval that nas a response time cf

twenty seconds will be approximately 107 minutes. This

80

figure dees not include the administrative time required to

process the internal Eeasurement data. For this reason, we

limited the internal ferformance measurement requests to

Eetrievals (1) and (2).

Additionally, we also limited the number of repetitions

per message handler to twenty. This is done to reduce the

processirg time per nessage handler. However, this decision

reduces the accuracy of the internal performance measure-

ment, from ten— thousands to hundredths of a second. Thus,

the internal performance measurement times provide only a

rough estimate of the time required to handle the respective

nessa ces

.

lie first section of this chapter contains the external

timing results obtained from our measurements. Re also

discuss the performance and capacity improvements obtained

by adding tackends. In the second section we present the

results frcm internal performance measurement. The final

section examines the inter-process and inter-computer

nessace processing times. One final note, the units of

measurement presented in the tables of this chapter are

expressed in seconds.

A. TEE IXTEENAL PEBICBMANCE EESDLTS

Table VII provides the results of the external perform-

ance ireasurement of ILDBS without the internal performance

measurement software. There are three parts to Table VII.

Each part contains the mean and the standard deviation of

the response times for Retrievals (1) through (9), which are

outlined in Chapter V. The three parts of Table VII repre-

sent three different configurations of the MDBS hardware and

the catatase record capacity. The first part has MIES

configured hith one kackend and the database loaded with

1000 records. The second part has MDBS configured with two

81

TABLE 711

Ihe Response Time
Without Internal Performance Evaluation Software

Eeguest
Numier

1

One Backend
IK Records

Two Backends |

IK Records 1

1

Two Backends 1

2K Records j

1

mean
,

stdev mean
,

stdev mean stdev

0.02821 3.208 C.C189] 2.051 0.0324 3.352,

2 1 13.69 1 0.02551 7.511 0.0339, 14.243 0. 0185

3 1 26.492 0.0244, 14. 164 0.0269 26.737 C.0405

^ 52. 005 0.C539,

j

26.586, 0.0294 52. 173 0. 0238

"c70 23 75 1 21 .449 C.0336 11 .309 0.0375 21.550

6 1 4 2.23 5 C.G326 1 21.622, 0.0424 42.287 C.0400

7 12. 285 C.0408,
1

6.642, 0.0289, 12.347 0.C371

0.0110

0.0181

8 22, 532 0.0296J
"

1 1.764 0.0300 22.583

24. 1699 j 23. 913 C. 11151 12.624] 0,0350

tacXends, with the database containing 1000 records, split

evenlj t€tween the backends. The third part has KDBS config-

ured fcith two backends, with the database doubled to 2000

records, also split evenly between the backends. In latle

VII w€ notice one data anomaly, the standard deviation for

request (9) in the one—backend—with— 1000—records configura-

tion. Since we did not conduct an internal performance

measurenient on this request, we are not sure what causes

this skewed standard deviation, and hence will not attempt

to offer an explanation of this anomaly.

Given the data presented in Table 7TI , we can now

attempt to verify or disprove the two MDBS perfcrinance

claims. We begin by calculating the response—time improve-

ment cf MDBS. The response- time im£rovement is defined to be

82

The
J Be £pc use—Time
I

Iircrovement
i

L J

]- 100% -

The Response]

Time of j

Configuration A
j

J

r 1

j The Response
j

I Time of j

I
Configuration B

I

L J

* 100"^

Figure 7. 1 The Eesponse-Tiue—Improvement Calculation.

the percentage impicvement in the response time of a

request, when the request is executed in n backends as

opposed to one tack€nd and the number of records in the

database remains the same. Figure 7,1 provides the formula

used to calculate the response—time improvement for a

particular request, where Configuration 3 represents n tack-

ends and Configuraticn A represents one backend. Thus, in

Table VIII we present the response—time improvement for the

data given in Table VII. Notice that the response-time

improvement is lowest for request (1), which represents a

retrieval of two records of the database. On the other hand,

the respcnse-time improvement of request (^) / which

retrieves all of the database information is highest,

approaching the upper bound of fifty percent. In general, we

find that the respcnse-time improvement increases as the

number of records retrieved increases. This seems to support

a hypothesis that even if the database grows, the respcnse-

time improvement will remain at a relatively high (between

40 and 50 percent) level.

Next we calculate the response— time reduction of MDBS.

The res {:cns e—

t

ime reduction is defined to be the the reduc-

tion in response tine of a request, when the request is

83

TAEIE VIII

The Response—Time Improvement Between
and 2 Backends (External Measurement Onl^)

Eequest Res ^onse Time
Numter Im provement

1 36.07
^ 45.14
3 46.53
a 48.94
c 47.27
6 48.81
7 45,93
8 47.79
9 47.21

IK Records
No Internal—

teasurement Software]
I

executed in n tackends containing nx numter of records as

opposed to cne backecd with x cumi)er of records. figure 7,2

provides the formula used to calculate the the respcnse-time

reducticn for a particular retrieval re^^uest, where ccnfigu—

ration A represents ere hackend with x records and configu-

raticr B represents n Lack ends, each with x records. In

Table IX we present the response— time reductions for the

data given in Table VII. Notice that the response-time

reduction is worst for reguest (1)/ which represents a

retrieval of two records of the database. On the other hand^

the response—time reductions for the retrievals which access

larger portions of the database, requests (4) and (6), have

only a snail response-time reduction. In general, we found

that the response—time reduction decreases as the number of

records retrieved increases, i.e., the response time remains

virtually constant. Again we seem to have evidence to

support the hypothesis that, as the size of the database

84

increases, the resf cnse-t ime reduction will decrease tc a

relatively low (0.1^ or less) level.

Tie
Fesf cnse-T
Eeduction

ime
I

= 100% * 1 -

r , T
The Response |

Time of j

Configuration E
i

1 The Response j

1 Time of
I Configuration A

!

figure 7.2 The Besponse-Time—Reduction Calculation.

TABLE IX

The Besponse—Time Reduction
In Doutling the Database Size

Request R€jsponse Time
Numtier Reduction

1 a. 49
2 4.03
3 0.92
4 0.32
c 0.47
6 0.12
7 0.50
8 0.23
9 1.07

IK Records on each
B ackend

No Internal-
Measurement Software!

latle X provides the results of external perf or icance

Eeasurement of MDBS with internai performance measurement

software ir place. There are two parts to Table X. Each

part contains the mean and the standard deviation of the

response-tiEes for the requests (1) through (6), which are

outlined in Chapter V. The two parts of Table X represent

two different configurations of the MDBS hardware and the

database record capacity. Eart one has MDBS configured with

one lac.kerd and the database leaded with 1000 records. Part

two has HLBS configured with two tackends, with the database

containing 1000 records, split evenly between the backends.

Re did Ect measure the response tiines with two thousand

records distributed ever two tackends. We felt that no addi-

tional information would be gained by conducting the meas-

urements.

TABLE X

The Response Time in seconds)
With Internal ferforaance Measurement Software

Request
Number

Cne Backend
IK Records

Two Backends |

IK Records 1

1

mean stdev mean
,
stdev

1
6

3.205,
13.418
25.903
5C.750
2C.972
41.262

0.0436
0.0172
0.0119
0.0374
0.0271
0.0331

2.219
7.401

13.854
26.402
1 1.244
21.517

0.04 7 4
0.0277
0.0361
G, 0596
0. 0528
0.0575

1

An interesting arcmaly is discovered when we compare the

response times of the external and internal performance

measurement tests, i.e., parts one and two of Tables VII and

86

X for requests (1) through (6) . We actually found a general

improvement, from O.n to 5%, in the response times ci the

requests when the internal performance measurement software

is part cf the MDBS code. One hypothesis is that this is

due to the manner in which MDBS is implemented on the tack-

ends. Currently, there is not sufficient physical memory

availahle en each backend. The result is that disk overlays

are used to swap in the code necessary to run MDBS. Ihe

additional internal performance measurement code may cause

the operating systen to overlay differently, thereby

benefiting the overall performance of MDBS. We still

believe that there is an overhead induced by the internal

measurement code and Table XI provides evidence by demon-

strating that the response-time improvement achieved by

adding a backend is net as good as that of Table VIII.

TABU XI

Ihe Response Time Iniproveaent Between
1 and 2 Backends (With Internal Measurement Also)

Request
Nunber

1

2
3
4
c

6

Response Time
Improvement

30.76
44.84
46.52
47.98
46.39
47.85

IK Records
i

Evaluation
J

S of tware

87

E, III INIZENAl PEEICEHANCl EESOLTS

Table XII provides the results of the iLternal ferfoim-

ance ceasurement of KIBS f o r a retrieval request. The tiaes

measured for each uessage-haiidling routine are given for

toth request (1) and (2). The message-handling routines are

listed viith the MDBS process which contains the routine.

Although the results are given to four decimal places, we

only trust the accuracy to the second decimal place. The

reascD for this has teen discussed in the introduction to

this chapter. We are not experts on the MDBS system. We can,

however, make a few comments on Table XII and we are sure

that these who are experts can use the results contained in

Table XII tc draw mere in— depth conclusions on the system.

We see that the controller processes, i.e., Request

Preparation and Post Processing, spend very little tiie in

processing the retrieval request. This is a major design

goal cf MDBS and is necessary to prevent a bottleneck at the

controller when the number of backends increases substan-

tially. It appears that this goal is met successfully. We

also observe that the results obtained from Concurrency

Control are consistert and of short duration. This is

expected since there is only ore request in the system at a

time and no access coEtenticn can occur. These tables should

then be considered as containing the nest-case times. The

majority of work done in the backend is at Record

Processing. Observing the process timings in Record

Processing, we see that, for both requests, the addition cf

an extra tackend reduces the record processing time by

nearly half.

C. TEE MESSAGE PBOCESSING BESDLTS

Table XIII provides some average times relating to

inter-process message passing times on the controller and

88

TABLE XII

Message Hacdling Routine
Processing limes for a Retrieval Reguest

MIBS
iLCcess

Message
Handling
Routine

Reguest
Numter

1

One
Backend

IK Recordsi

Two
Backends

IK Records

Reguest
Preparation

Record Count
lo Pest Proc I

,

0.0005
0.0000

0.C015
0.0000

Parse
Traffic Unit I

0-0200
0.0180

0. 0190
0. C185

Broadcast
Recuest I

'
0.0025
0.0065

0.0025
0.003C

Ecst
Processing

Collect
Results i ,

0.0465
0.0890

0.025C
0.0813

Eirectcry
Kanageient

Parsed
Traffic Unit, I

0.0699
0.0925

0.0450
0.0491

Did Sets
Locked I

0.0516
0.0566

0.0566
0.0566

Cid Sets
Locked I

'
0.0533
0.0450

0.0349
0.0433

Descriptor.
Ids

1

2
na
na

0.0391
0.0558

CcLCurrency
Ccntrcl

Cids for
Traffic Unit

1

2
,

0.0424
0.0425

0.0433
0.0433

o7o4oi
0.0516

Did Sets
Traffic Unit I

0.0566
1

0,0508

Did Sets
Released \

0.0025
,

0.0008
0.0016
0.0006

Record
Processing

Entire
Prccess 2

2.6462
12.7100

1.3775 •

6.5716

fieguest with
Bisk Address

1

2
0-046b
0.0433

0.0433
0. 0383

Cld
Reguest

1 0.0130
2 0.0131

0. 0148
C. G16S

PIC
Read

1

2
0.0844
0.8593

0.0865
0.8863

Eisk
Input/Outpu t

1

2
0.0799
0.0783

,

0.0741
0.0725

8S

TABLE XIII

Inter—process Message Passing Times

location
Time to
Constr uct
Message

Cent roller

Eackend

0.00249

0.00830

Time to
Receive
Message

Time to
Pass

Message

0.00267

0.00410

0.00520

0.01250
t

—

the hackend. Messages are traDsmitted iietween two processes

en tcth the controller and tackend. Both the cuniter of

messages and the aessage length are varied. On the

contrcller^ the numter of messages is varied from 1 tc 100

while th€ nessage lergth is varied from 2 to 2000 tytes

(si2€ of the message buffers in MDBS controller) . Or the

tackend, the numter of messages is varied from 1 to 50 while

the message length is varied from 1 to 1000 bytes (size of

the message buffer in MDBS tackends) . It takes the tackend

twice as long to process a message as it does the

contrcller. We telieve the reason to be hardware processor

speed. Ae independent test showed that this relationship,

of twc to cne, holds in how long it takes to process an

assignment statement en the respective nardware.

90

lE Table XIV we provide iLformatioc concerning the time

to process inter-comj uter messages on the PCL. Messages of

length less than forty are overshadowed b_y the overhead of

the rci. There exists a linear relationship between the

message length and the time tc pass a message as the message

length exceeds 100 bytes. We can therefore expect a linear

performance from the PCL for the majority of the MDBS inter-

computer messages. The next • chapter will contain seme

concluding lemarks and discuss areas for further research.

TAELE XIV

Inter-coaf uter Hessage Passing Tines

1

...

Message
Length

Time to
J

Pass Change
(Bytes) Message

1C 0.0949
^

0.0000
20 0.0951 0.0002
30 0.0954 0.0003
i*C 0.0957

i
0.0003

5C 0.1005 0.0008
6C 0. 1011 0.0006
70 . 1018 0.0007
8C 0. 1023 0.0005

,

9C 0. 1029 0.0006
ICO 0.1036 0.0007
200 0. 1136 0.0100
300 0.1238] 0.0102
400 0. 1339 0.0101
5C0 . 1439 0.0100

1000 0. 1943 0. 0504

91

VII. THE CONCLOSION

A. A SUKMAEY OF THE fEBPORMAMCE MEASUREMENT METHODOIOGI

'^ • Ih^ lilternal lerxormance Measurement Methodology

Ihe internal perfcrmance measurement methcdclcgy

provides the strategies and locations for the placement of

checkfcints. It further provides the kinds of perfornance

data to be collected. This information enables a tetter

understanding of the target system by measuring certain

capabilities^ such as the time spent in individual

processes. Using this information of how the system

performs internally nay lead to design modifications cr to

fine— tuning of the system for increased performance.

2

.

Ihe External Performance Measurement Methodclog^

Ihe external performance measurement methcdclcgy

provides the strategies for a macro view of the database

systett performance by measuring the system as a whole. TJe

focus on the measurenent of the response time of the target

systeii after the issuance of a request. A test database and

a test reguest set is generated usin^ software tools.

3

.

Combining the Internal and External Measurement

W€t hodolcqies

The natural combination of the internal and external

performance measurement methodologies is synergistic ii the

amount of information that is provided. The overhead

incurred when using internal performance measurement cede is

accurately determined using this metnodology combination.

The external performance measurement timings can be froferly

interpreted using the internal performance measurement

92

results. Ey combiniDg the two measurements, the whole of

the measurement results is more meaningful and useful than

the ircividual results.

B. A SUHHABY OF THE PZTHODOLCGY APPLICATION

Ihrillirg and unexpected results are collected when this

methcdclcgy is applied to a target system, i.e., MDBS.

lirst, the methodology proves itself to be successful in

attempting to verify the performance and capacity claiirs of

MDBS. This results from being able tc collect sufficient

data en a target system tc make definitive stateaents

concerning its performance. The application of this method—

clogy tc MDES is alsc surprisicgly easy.

A second result, is that the performance and capacity

claims of MEBS have been validated. These claims are: 1)

that by increasing the number of backends used as a part of

the database system ard by keeping the size of the database

constant, the response time of the same transactions is

propcrticnally decreased, and 2) that by increasing the

number of backends and also increasing the size of the data-

base, the response time remains relatively constant. These

claims are validated by the results given in Chapter VI.

These spectacular results provide a wealth of infcria-

tion frci which several conclusions can be made. Ke find

that under MDBS, the response-time improvement increases as

the numter of records retrieved increases. Alsc, the

respcnse-tiae reduction decreases as the number of records

retrieved increases- Though the performance measurement

results indicate an inprove nient in the response time of the

requests when the internal performance measurement software

is part of MDBS code, it is felt that this phenomenon is the

result of differing system overlays and that the induced

overhead of internal measurement code still needs tc be

calculated.

93

Th€ results of the internal perforaance measurenients

indicate that the controller processes, i.e.. Bequest

Preparation and Eost Processing, spend very little tiae to

process the retrieval request. The results obtained iiom

Concurrency Control are both consistent and of short dura-

tion, as expected. Ihe results also show that the majority

cf work is being dene in Record Processing and that the

addition of a backend reduces the record processing time by

nearly half. We discovered that it takes the backend twice

as long to process a message as it does the controller,

possibly due to hardware processor speed. Finally, there

exists a linear relationship between the message length and

the time to pass a message as the message length exceeds 100

bytes

.

€• EICCHMENDATIONS ICE FOT USE EFFORTS

Future improvements can be made in the performance meas-

urement methodology by the automation of the existing

external software tools. Specifically, the ability to start

a test which will execute a pre—determined set of requests a

pre—deterKined number of times for each request, and collect

the results in a file is a desireable feature.

Additionally, since the methodology is intended to be

general in use, tie methodology needs to be applied to

different database systems to discover its applicability,

ease of use, and usefulness in overall performance measure-

ment of the target system.

In terms of the application of this methodology to MDES,

a ccaplete and thorough test of the system needs to be

conducted. An exhaustive test of MDBS would include

conducting test with databases that have varying record

sizes. Further, testing the system by varying the number of

directory attributes, descriptors, and clusters would indi-

94

cat€ th€ rcle of the directory data in tne system. Insert,

delete/ ard update requests must also be measured to

discover their impact on system performance. Lastly, the

measurement should be extended to test MDBS when it uses the

secondary-memory-based directory management process.

95

IIST OJ BEFEEENCES

1. Naval Postgraduate School Report NPS52-8 3-006, Ihe
O^JlSi^ ^£^ Analysis of a Mult i- fcackend Database Systea
^0^ PerTor iDanc€"^mpro vemenf, Zji^clloii^^ll'lxiarsion
3n3 tagacifx 5icwfK~XPar5 T} . by "HsiaO/ "David "K.7 ail's

HeEon, JaIsnan"Rar^ June, ^'983.

2. Naval Postgraduate School Eeport NPS52-83-007, Ihe
Design and Analxsis of a Multi^backend Database S ysTea
I cr~perf or mance impro vemen"E, FunctionaliTy Expansion
3Ii3 "CapaciTy gicwfn TIl^l "^^l» ^Y "Hsiao, TJavi'3~K., an"3
T?encn , J aishanl^ai, June, TSBj.

3. Naval Postgraduate School Report NPS52-8 3-00£, Ihe
I nrlementa tion of a i^ulti-backend Database S ysTem
I'SiB'SJ: "gar"^ I — Software Znqineerin_^ ^Tra^egies anH
Ellofts Towards a ProloTyge ^^H^.-Ey Kerr, Uouglas E.

,

Crccli, III, Sli, 7ong—'ZHi, aiTS Strawser, Paula, June,
1983.

4. Naval Postgraduate School Report NPS52-82-008, Ihe
Inclementa ti en of a Multi-backend Database SysTera
TlIB^n mi il~ -~1he"'Firsr~PfofQtype l^BS anc~TEe
Software Enqineerin^ ^x^erlence , Fy HigasniSa, Iingui
Be, Bsiao^Hjavi'a "K., "Kerr, Uougias S., Orooli, Ali,
Shi, Zong— Zhi, and Stravser, Paula, June, 1982.

5. Naval Postgraduate School Report NPS52-8 3-00 3, The
I ntle mentation of a ?lulti-backend Database. SysTem

6. Naval Postgraduate School Report NPS52-84-005, Ihe
I E pie mentation of a Multi-backend Database System
IJIS^f: FarT 11 - TEe Bevise^Uon currency ^cntrcl a^
Direc tor y ^ara^gemenl Irocesses ana["the Ttevi se?
BeliniTions cl Tnrer—Process anH ISter-Ccmf ater
Besgages, "Ey Demur jian, STeven A., "Hsiao, BaviO "K.,
Kerr, Douglas £. and Crooji, Ali, February, 1984.

7. Naval Postgraduate School Eeport NPS52-8 4-C04 , A
Methcdoloqy fcr Benchmarking. Relationa l Database
HacHines, by BTrawser ,'Taula^. , January, T984.

8. University of Wisconsin Report MCS82-01870, Can
Database Machines Do Better? A Comparative
Perlcimance EvaluaTio n, by BTTIon, Dina, De^ilt, Bavi'd
D7, Tur5yfill, Tarolyn, December, 1983.

96

9- Kovalchik, Josejh G. . Perf crmance Evaluation Tools for
a Multi-backend Da taij ase ^ysTem^ Fr"5. "TEesis, TIavaT
Poslgia^uare School, "Hcnterey/ California, D€ceirb€r,
1S63.

10. Datatase Machires, A Messa^e^Or ien ted Implementation
of a Multi-backena Datalase ^islem Ttl^B^T/ '^y "Bcyne,
'EicTiarar'D. , "Hsiao. Ha vaTS "K. , "Kerr, Douglas 2., OrcOji,
Ali, September, 1983.

11.

12. An A ttr ibute— Eased S ystem as a Database Kernel of
Eatalase Sysjeis, By Demurlian, Steven A., Hsiao,
'DaviZ'XT , Hacy , "Griff en N. , Strawser, Paula E., unpub-
lished, March 1S8U.

13. Hsiao, David K. and Harary, F., "A Formal System for
Information Retrieval From Files", Communications of
The ACM , Vol. 13, No. 2, February 191'(r.

1^- iCIll-B Parallel Communication Link D iff erential TDM
Bus, "Digital IcuipraeoT Corporation, MaynarB, "Mass.,

97

BIBLIOGBAPHY

Hancock/ Les and Kri€cer, Morris, The C Primer, McGraw-Hill
Eook Ccffliany^ N.Y., 1583.

Kernnigan, Erian and fitchie, Dennis M., The C PrO'jrairminq
l^H^i^iH^/ Prentice— Hall, 1978.

E5X-1 lCj'/K-IIU5 Executive Bef erence Manual,
Tigital Iguj.pmenI~Coiporati en, Haynard, lass.

AA-H26 5A-IC,
1979.

VAX^VMS Sy ste m Services Reference Manual, AA-D018E-TE,
Tigi'Eal Eguipment CoiforationT ^ynardj Hass. , 1980.

98

IHIIIAL DISTRIBOTION LIST

Nc. Ccpies

DefeEse Technical Infor niaticn Center 2
Caneiori Station
Alexandria, Virgiiia 2231U

Dudley Knox Liiorary. Code 0142 2
Naval Postgraduate School
Hcnterey, Califorria 93943

Cepartment Chairnac. Code 52 6
Eefartment of CoiEfuter Science
Naval Postgraduate School
ficnterey, Califorria 93943

Ccmniandant of the Marine Corps 1

Cede CC
Headquarters- Marine Corps
Washington, E. C, 20380

Office of Research Administration 1

Cede 012A
Naval Postgraduate School
Mcnterey, Califorria 93943

Ccmputer Technolccies Curricular Office 1

Cede 37
Naval Postgraduate School
Mcnterey, Califorria 93943

Betert Tekampe 2
13913 Gum Lane
Weoctridge, Virginia 22 193

Robert 5iatson 2
3481 Lycn Park Court
Kccctridge, Virgiria 22 192

99

135 37

21C313

Thesis

T23T Tekampe
c.l Internal and external

performance measurement
methodologies for data-
base systems.

r
t

210813

Thesis
T237 Tekampe
c.l Internal and external

performance measurement
methodologies for data-
base systems.

