
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1983-06

Signal processor interface simulation of the
AN/SPY-1A radar controller

Kersh, Todd B.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/19983

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



I
m

MS



ay Knox Library. NPS

Monterey, CA 93943







NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
SIGNAL PROCESSOR INTERFACE SIMULATION

OF THE AN/SPY- 1A RADAR CONTROLLER

by

Todd B. Kersh

June 198 3

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution unlimited

T208827





SECURITY CLASSIFICATION OF THIS PACE (Whit Dmtm Entered)

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER 2. GOVT ACCESSION NO.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Submit)

Signal Processor Interface Simulation
of the AN/SPY-1A Radar Controller

5. TYPE OF REPORT & PERIOD COVERED
Master's Thesis
June, 1983

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORft;

Todd B. Kersh

8. CONTRACT OR GRANT NUMBER*"*,)

> PERFORMING ORGANIZATION NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

June, 1983
13. NUMBER OF PAGES

94
14. MONITORING AGENCY NAME ft AOORESSf'/ different /ram Controlling Oltlce) IS. SECURITY CLASS, (ot thla report)

UNCLASSIFIED
1S«. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT <o< thlt Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (at the mbotract entered in Block 20. It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlnuo on roeoree eldo It necoeemry ltd Idmntity by block number)

database, simulation, multimicroprocessor , real-time, AEGIS,
SPY-1A, Phased Array Radar, Ada, Program Development Language

20. ABSTRACT (Contlnuo on rovoreo eldo It necoeemry mnd Identity by block number)

This thesis reports on the design and implementation of a simula-
tion of the Signal Processor Interface to the AN/SPY-1A Phased
Array Radar Controller. Inherent to the simulation is the devel-
opment of a representative time sensitive database of the target-
ing environment. The programming language Ada was utilized as a

program development language in the design for the database. The
developed Target Database utilizes the 20 mega-byte REMEX (Cont)

do ,;
FORM
AN 73 1473 EDITION OF 1 NOV SS IS OBSOLETE

S/N 0102- LF- 014- 6601





SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Enffd)

ABSTRACT (Continued) Block # 20

Data Warehouse 3200 memory storage unit. The simulation of the
Signal Processor Interface will allow real time testing of the
Naval Postgraduate School's AN/SPY-1A Radar Controller System
Model

.

S<N 0102- LF- 014- 6601

^ SECURITY CLASSIFICATION OF THIS PAGEfWhan Da»a Enfr.d)





Approved for public release; distribution unlimited

Signal Processor Interface Simulation
of the AN/SPY- 1A Hadar Controller

by

Todd B. Kersh
Captain. Unitedv States Armv

B.S. r United States Military Academy, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTEB OF SCIENCE IN COMPUTES SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1983



c/



Dudley Knox Library, NPS
Monterey, CA 93943

ABSTBACT

This thesis reports on the design and implementation of

a simulation of the Signal Processor In-erface to the

AN/SPY-1A Phased Array Radar Controller. Inherent to the

simulation is the development of a representative time

sensitive database of the targeting environment. The

programming language Ada was utilized as a program devslcp-

ment language in the design for the database. The developed

Target Database utilizes the 20 mega-byte REMEX Data

Warehouse 3200 memory storage unit. The simulation of the

Signal Processor Interface will allow real time testing of

the Naval Postgraduate School's AN/SPY-1A Radar Controller

System Model.





TABLE OF COHTENTS

I. INTRODUCTION 10

A. EACKGROUND 10

B. DISCLAIMER 11

C. PURPOSE OF THIS THESIS 12

D. THESIS ORGANIZATION 14

II. DESIGN OF THE SIGNAL PROCESSOR SIMULATION .... 15

A. OVERALL CONSIDERATIONS 15

1. Designing for Change 15

2. Designing for Extensibility 16

3. Modular Design 16

B. INTERFACES 17

C. USE OF ADA AS A PROGRAM DESIGN LANGUAGE ... 18

D. THE DATABASE 21

1. Interfacing and Storage 21

2. Design Decisions 2 2

3. Design 24

E. THE SIATIC MODEL 26

III. IMPLEMENTATION OF THE SIGNAL PROCESSOR SIMULATION 28

A. TARGET HARDWARE 28

3. SOFTWARE DEVELOPMENT ENVIRONMENT 30

C. ADA DESIGN VS PL/I-86 IMPLEMENTATION 30

D. MODULES OF THE TARGET DATA3ASE 31

1. General Comments 31

2. CONTROL. PLI 32

3. CREATE. PLI 33

4. DELETE. PLI 34

5. CHANGE. PLI 35





6. BLD_DATABASE.PLI 35

7. PRINTLST.PLI 39

E. MODULES OF THE STATIC MODEL 39

1. General Comments 39

2. STATIC. PLI 39

3. LOAD_EUFF.PLI 40

4. XFER.A86 40

5. ADV1EVC.A86 40

6. DISPLAY. PLI 40

F. ASSEMBLY, COMPILING, AND LINKING 41

G. TESTING 41

IV. CONCLOSIONS 43

A. UTILIZATION AND CHANGA5ILITY OF THE SIGNAL

PROCESSOR SIMULATION 43

B. FUTURE ENHANCEMENTS AND DIRECTION FOR THE

SPY-1A MODEL 44

APPENDIX A: TARGET DATABASE PROGRAM LISTINGS 45

A. CONTROL. PLI 45

E. CREATE.PLI 48

C. DELETE. PLI 51

D. CHANGE.PLI 53

E. ELDDBASE.ELI 56

F. PRINTLST.PLI 60

G. DBASE. DCL 61

H. ELDBUFF.A86 62

APPENDIX E: STATIC MODEL PROGRAM LISTINGS 63

A. STATIC. PLI 63

B. AWAIT. A86 65

C. LOADBUFF.PLI 66

D. XFER.A86 68

E. DISPLAY. PLI 69

F. ADV1EVC.AE6 70





APPENDIX C: COMMON ASSEMBLY LANGUAGE LISTINGS 71

A. ELDMESSG. R86 71

E. SNDMESS1.A86 73

APPENDIX D: SPY-1A MODEL SIMULATION PROGRAM LISTINGS . . 75

A. SPYTEST.PLI 75

E. INIT.A86 76

C. AWAIT1.A86 77

D. ADV2EVC.A86 78

APPENDIX E: OBJECT-ORIENTED DESIGN OF THE DYNAMIC MODEL 79

A. DEFINE THE PROBLEM 79

B. DEVELOP AN INFORMAL STRATEGY 79

C. FORMALIZE THE STRATEGY 80

1. Identify the Objects and their Attributes 80

2. Identify Operations on the Objects .... 80

3. Establish the Interfaces 81

4. Code the Package Specifications in Ada . . 81

APPENDIX F: SIGNAL FROCESSOR MODEL USERS MANUAL

(VER.1.0) 83

A. GENERAL 83

E. CONSTRUCT IARGET DATABASE 8U

1. Main Menu 8 4

2. Create Database 86

3. Delete Targets 88

4. Changs Targets 39

C. RUN STATIC MODEL 90

LIST CF REFERENCES 92

INITIAL DISTRIBUTION LIST 93





LIST OF TABLES

I. Signal Processor Output Interface 18

II. Signal Processor Input Interface 19





LIST OF FIGURES

2.1 Common Memory Map 22

2.2 REMEX Rsad/flrite Message Format 23

2.3 Database Design 25

2.4 Static Model Design 27

3.1 NFS AEGIS Modeling Group Experimental Computer . 29

3.2 Signal Processor Track Parametric Equations . . 37

E.1 Object-Oriented System Graph 81

F. 1 Signal Processor Emulation Main Menu 85

F.2 CREATE Function Menu 87

F.3 Parametric Equations 87

F.4 DELETE Function Menu 88

F.5 CHANGE Function Menu 89

F.6 STATIC MODEL Function Menu 90

F.7 STATIC MODEL Display 91





I. INTRODUCTION

A. BACKGROUND

The AEGIS System is the Navys multi-faceted

shipboard weapon control, decision making, and surveil-

lance system. The engineering model began testing on the

"Norton Sound" in 1977 and the AEGIS System joined ths Fleet

on board the "Ticonderoga" in 1982. To date, the AEGIS

System represents the newest fielded technology in the

Fleet and possibly in the world. Since every design

effort must at some time in the design determine what the

target hardware will be for the system, the result is that

all "new systems" do not in fact utilize the most current

electronic advances. In addition, the further design,

testing, and linking of the many separately developed

and tested modules further increases this unaviodable hard-

ware gap. In the case of the AEGIS System, this is

particularly true since we have seen a technological revo-

lution occur during it's development. The Large Scale

Integrated Circuits (LSI) , and now the Very Large Scale

Ingrated Circuits (VLSI) are common in our off-the-shelf

technology. The Naval Postgraduate School AEGIS Modeling

Group has been investigating the use of new off-the-shelf

VLSI technology that could provide significant savings in

money and space while still fulfilling the system require-

ments of the AEGIS system. The AEGIS Modeling Group

decided early in their study and emulative modeling

to choose the AN/SPY-1A Phased Array Radar Controller as a

modeling subset of the AEGIS system. The SPY-1A Radar

represents a sufficiently difficult and real time

sensitive module of the AEGIS system such that if it

10





can b€ successfully emulated, then it should be

possible to similarly build the other modules comprising the

total AEGIS system.

The AN/SPY-1A is a complicated and extensive system in

its' cwn right. The two primary modules of the SPY-1A Radar

Controller are the Radar Scheduler and the Track Processor.

Previous thesis work has been done to model these two

modules by Grant [Ref. 1] and Cech [Ref. 2] respectively.

In addition, the two systems that dspend on the AN/SPY-1A

for data - the Weapon Control Sys-em (WCS) and the Command

and Decision System (CD) - have been simulated by Boone

[Ref. 3] in his thesis. The Signal Processor module is

another module to be simulated such that the NPS SPY-1A

Model subset can be fully interfaced and tested for real

time capability and logical functioning. The initial

design, development, and target environment simulation of

the SPY-1A Signal Processor Interface is the intent of -chis

thesis.

B. DISCLAIMER

Many terms used in this thesis are registered trademarks

cf commercial products. Rather than attempting to cite each

individual cccurrance of a trademark, all registered trade-

marks appearing in this thesis will be listed below,

following the firm holding the trademark.

Intel Corporation, Santa Clara, California:

Intel, Intel 8086, iSEC 86/12A, MULTIBUS

Digital Research Corporation, Pacific Grove, California:

CP/M, CP/M-86, PL/I-86, PL/I-80, ED, RASM-86, LINK86,

DDT-86

EX_CEIL_C Corporation, Irvine, California:

11





REMEX Data Warehouse

MicroPro International, San Rafael, California:

Wordstar

Department of Defense, Washington D.C.:

Ada

Micropolis Corporation, Chatsworth, California:

Micrcpolis

Lear Siegler, Inc., Anahiem, California:

ADM- 3

A

C. PORPCSE OF THIS THESIS

The broad direction of the Signal Processor simulation

is threefold:

1. Emulate the SPY_1A Signal Processor using the Remex

Data Warehouse (a 20 megabyte fixed Winchester tech-

nology disk system) .

2. Ee able to emulate the signal processor functions to

provide a real time test environment for the SPY-1A

Model.

3. He able to use the simulation to nest the logic of

the NPS SPY-1 A Model.

These bread objectives were further subdivided into tasks to

develop a target database module and two system testing

modules. The first system testing module will emulate the

hostile environment of targets utilizing a pr e-developed

target database while the NPS SPY-1 A Model is being run/

tested for real time operations. This model is designed to

respond as quickly as possible to a dwell command from the

Badar Scheduler Module with an appropriate data output to

the Track Processor Kcdule, to allow an accurate test of the

speed of the overall SPY-1A Model. This design will be

12





herein referred to as the "Static Model". The second system

will be used to test the logic of the internal SFY-1A

modules, and will not be constrained to real time run

requirements. It will display a target environment as it

developes and changes over time, and allows the user to

initiate and change the environment as he desires. This

design will be herein referred to as the "Dynamic Model".

The tasks fcr each of the Modules are as follows:

TARGET DATABASE:

1 . Create targets.

2. Develop target tracks and record those target loca-

tions on the respective track ar descrete time inter-

vals in the database.

3. Modify and Delete targets and target dadta on the

database.

STATIC Model:

1. Interface database access with NFS SPY_1A Model

2. Monitor the I/O interface during tasting without

detracting frcm the real time environment

DYNAMIC Model:

1. Allow interactive changes to be made to the database

during runtime

2. display the tracks in the database as the simulation

runs

The scope of this thesis extends primarily to the Target

Database and Static Model development and implimentation,

although the overall design structure is such that the

Dynamic Model can encompass and utilize the modules devel-

oped herein.

13





D. TBESIS ORGANIZATION

The thesis is organized into four chapters. The computer

code developed tc implement the system is contained in the

following appendices. The first chapter covers the back-

ground cf the Aegis Project at the Naval Postgraduate

School, the basic direction for this thesis, and thesis

organization. The second chapter covers the design of the

Signal Processor Interface Module. It will discuss the

overall considerations for the design, the interfaces

neccessary between the Signal Processor and the ether

modules previously developed, and the specific design for

the Target Database and Static Model. The programming

language Ada was utilized as a Program Design language (PDL)

in the development of a design for the Target Database and a

Dynamic Mcdel. The third chapter will discuss the implemen-

tation cf the design for the Signal Processor Interface

Module. Translation considerations when Ada is used as a

PDL and the implementation language is PL/I are highlighted.

The modules that make up the Target Database and the Static

model are discussed in detail. Finally, Chapter four

presents some conclusions on the work involved in the design

and ittple me station of the Signal Processor Interface Module

as it is now, how it might be utilized and changed by future

Aegis Group members, and what the next logical steps should

be toward the complete simulation of the critical paths of

the SPY-1A Phased Array Radar Controller.

14





II. DESIGN OF THE SIGNAL PROCESSOR SIMULATION

A. OVERALL CONSIDERATIONS

1 . Des ign ing for Change

Tc provide the desired future maintainability and

flexibility as a simulative and emulative instrument, it is

neccesary tc design the Radar Signal Processor Simulation

with the capability for change. The latest concepts of good

software engineering principles explain -ha- forseeable and

ncn-f orseeable changes are sure to be applied to any soft-

ware engineering project, but especially in -chose cases were

the program being developed is being separately designed and

implemented to become part of a larger system. To provide

that capability, the designer and programmer must from the

start try to separate those items that are likely tc be

changed and use the concepts of clear documentation and

structured programming to make it easier for the system

users and maintainers to incorporate changes. The decisions

that are made in modularity and implementation must be docu-

mented tc enhance the under standability of the system. As

much as possible, the assignment of parameters and constants

should be clustered or at least positionally standardized

within mcdules to allow ease in finding them and changing

them. The design concept of information hiding needs to be

utilized such that enhanced versions of specific implementa-

tions can be easily substituted without causing major

changes throughout the other modules that constitute the

overall design.

15





2 . Des ign ing for Exte nsibility

A part of designing for change is the consideration

of and provision for extensions to the basic design one may

provide. It is important to consider the critical items in

the design, and yet still allow for the addition cf ether

modules that may provide desired functions for future users

of the system. One way to provide this capability in a

design is in utilization of a tree like structure that will

allow the addition of other branches at any node of the

hierarchy. In so doing, the designer offers the maximum

flexibility in the basic design, and enhances future main-

tainability and changability, while providing for the

unf orseeatle.

3 . Mod ula r Design

Incorporating the design principle of modularity

will provide the basis for both changability and extensi-

bility. Choosing modules in the program -chat describe a

concise function, and interface with each other without side

effects will enhance the under standability of the design and

the resultant code. Utilizing a design methodology that

incorporates the principles of top-down design and assists

in the partitioning of a complex problem into intellectually

addressable sub-prcblems will naturally produce good modu-

larity. Eoochs' "Object-Oriented Design" methodology

[Ref. 4] discussed in detail in Section II. C and Appendix E

provides these attributes. The design of both the target-

database and static model incorporates many of these princi-

ples limited only by the author's designing and programming

prowess.

16





B. INTERFACES

In th€ thesis work done by Riche and Williams [Ref. 5] r

the overall design and modular interfaces were discribed and

defined fcr all future SPY-1A Controller Module development.

However, since their design incorporates the development of

all the modules, and the project at this stage of implemen-

tation has only developed the most critical modules required

to emulate a basic subset of the real SPY-1A Radar

Controller, the interfaces they developed are not completely

appropriate. To interface with the dwell commands passed by

the Radar Scheduling module [Ref. 1] and to pass feedback

that can be understood by the Track Processor module

[Ref. 2], the Signal Processor Module must logically incor-

porate the Radar Output, Radar Return, and Beam

Stabilization modules. Therefore, the interface utilized

for input is table_5 8 ("Common Memory Interface between the

Radar Scheduling and the Beam Stabilization modules") , and

the interface used to output is table_8 ("Common Memory

Interface between the Beam Stabilization and the Track

Processor modules") [Ref. 5]. Not only will this extension

of the logical interface for the Signal Processor make the

future work cf interfacing the modules easier, but it makes

the present design fcr the Signal Processor Interace Module

easier tc implement. The chosen interfaces will allow the

signal piccessor model to receive and send target data in

terms of cartesian coordinates rather than the lengthy and

complicated codes that specifically tell the signal

processor where to point its beams. Tables I and II show

the respective interfaces.

17





———— - - - —-.——- 11—11
1 , _ 1.

TABLE I

—

1

Signal Processor Output Interface

/*
OWNER: AEGIS MODELLING GROUP
DATE OF LAST UPDATE: 28 OCT 81
MODULE TYPE: TABLE
PURPOSE: COMMON MEMORY INTERFACE
NAME: E TO P TABL
*/

/*
THIS TABLE INTERFACES BETWEEN THE BEAM STABILIZATION
PRCCESS AND THE TRACK PROCESS
*/

1

!

I

!

declare
1 B tc P tabl static external,

2 x su5 s fixed bin

|

2 y~sub"~s fixed bin

i

2 z sub s fixed bin

i

2 face id fixed bin

i

2 dvl ldx fixed bin I

2 trk_num fixed bin*

;

151

15

l initial
i initial

i

i initial

<

i initial
initial

i

initial \

i°;

0'
0'

(

I

1

I

) ,\
rl
, 1

,1
, \

; I

/* END OF TABLE */
1

!

C. USE CF ADA AS A PROGRAM DESIGH LANGUAGE

Grady Beech [Ref. 4] has proposed a software engineering

design technique he terms "Object-Oriented Design".

Although his chosen name for the design methodology may be

unfortunate considering the controversy raised by the ambi-

guous term "Object", and the past use of the term in refer-

ence to the Smalltalk programming language, the design

methodology itself works well. Using the new Department of

Defense programming language Ada, the purpose of

Object-Oriented Design is to produce logical, efficient,

highly readable and understandable code that accurately

reproduces the real world problem in the computer space.

Ada is utilized as a program development language because of

18





TABLE II

Signal Processor Input Interface

/*
OWNER: AEGIS MODELLING GROUP
DATE OF LAST UPDATE: 2 NOV 81
MODULE TYPE: TABLE
PURPOSE: COMMON MEMORY INTERFACE
NAME: E TO B TABL
*/

/*
THIS TABLE IS THE INTERFACE BETWEEN
ANE BEAM STABILIZATION PROCESSES
*/

FADAR SCHEDULING

declare
1 R to_B t

2 search
3 a si
3
3

abl (10)
dwls,

I
elev
time
4 msb
4 lsb

3 dwl idx
3 beam_purpose
3 aloha delta cos
3 beta 3elta_cos o
3 face~assign

trk burn thru,
3 tyt>a_dwl
3 stabe coords,

4 x stbl
4 y~stbl
4 z stbl

3 dxl_Tdx
3 time,

4 msb
4 lsb

3 beam_curpcse
3 alpha "delta__cos
3 beta clelta cos o
3 face~assign

static external,

cff set
ffset

fixed
fixed

fixed
fixed
fixed
fixed
fixed
fixed
fixed

bin (15)
bin (15)

initial (0
initial

bin
bin
bin
bin
bin
bin
bin

15)

?!
15

)

VH

initial
initial
initial
initial
initial
initial
initial

M

fixed bin (7) initial (0)

offset
ffset

fixed
fixed
fixed
rixed

fixed
fixed
fixed
fixed
fixed
fixed

bin (15
bin(15
bin (15
bin(7)

bin
bin
bin
bin
bin
bin

ill

15
7)

initial
initial
initial
initial

initial (0'

initial (0*

initial (0
initial (0'

initial (0'

initial (0

/* END OF TABLE */

its capabilities in the production of highly structured and

modularized algorithms. It also has the nice feature of

separating the specifications for the modules utilized in

the design from the actual methods used for implementation

19





cf these modules, and thus provides the designer with an

ability to postpone the implementation decisions for as long

a time as convenient during the design phase. This feature

was particularly important since the programming language

FL/I-86 was going to he used for actual implementation, and

it was intuitively felt that some design changes and conces-

sions might have to be made even at the highest levels

because cf the differences in the large scale data struc-

tures provided by the two languages.

Object-Oriented Design methodology is broken down into

three basic steps:

1. Define the Problem

2. Develop an Informal Strategy

3. Formalize the Strategy

"Defining the problem" involves the development of a concise

paragraph in English that specifically outlines the real

world problem. "Developing an Informal Strategy" is to

develop an English paragraph that, as clearly and concisely

as possible describes how one will solve the problem. This

second step is really the iosi difficult part of the method-

ology, since the resultant success of the design rests on

how well this can be accomplished by the designer. The last

portion "Formalize the Strategy" is where the algorithm

begins to take shape. First, the designer must pick out the

proper nouns that describe the "objects" of the solution

strategy. Those objects are discribed in terms cf major

objects and attribute objects. Next, the Informal Strategy

is again scrutinized, this time to pick out the verbs that

represent the "operations" utilized in the solution stra-

tegy. These operations are then grouped with the objects

they logically affect in the informal strategy. Bcoch then

would have the designer draw an object-oriented system graph

depicting the objects as Ada "packages" and the operations

as Ada procedures and functions within the packages. The

20





object-oriented system graph describes the hierarchial

interfaces between the structures. Booch typically includes

an Ada "subprogram" as a controlling program that utilizes

the developed packages. Finally, the package specifications

are written in Ada utilizing the previously developed

object-oriented system graph as a guideline for the inter-

facing and specific procedure specification development.

This was done in the design of a "Dynamic" model and Target

Database system and is specifically shown in Appendix E for

future use by the AEGIS Modeling Group.

D. THE DATABASE

Using the Ada design as a basis, the Target Database was

designed for implementation in the PL/I and ASM-86

languages.

1 • Int erf acing and Sto rage

The AEGIS Modeling Group experimental computer

depends en a 32 k byte "common memory" board on the MULTIEUS

to pass messages. The common memory board is further

utilized for the commands to the REMEX Data Warehouse 20

mega-byte storage system and the buffered data items to be

written en and retrieved from the HEMEX. A mapping of how

the cemmen memory is currently partitioned is shown in

Figure 2.1 The segmented memory base for the common memory

is 0E000 hex and offsets are as shown. The REMEX Data

Warehouse is also connected to the MULTIBUS and data is

transfersd to and from it in response to the formated

messages. The processes for the operations of the REMEX are

discussed in detail in the thesis work done by Almguist and

Stevens [Ref. 6] and in the appropriate manuals [Ref. 7],

The basic message fcrma- utilized for this thesis is the

read/write format [Ref. 8] (as specified in Figure 2.2).

21





0EOC0:O0 0O +
I

I CP/M-86
I

+

I

| MCORTEX

:4C00 +•

5 00

5 100

5 3 00

5400

5 5 00

6020

6 55

7 A OB

TABL 58

TABL 8

+ +

| MICROPOLIS CMD.MSG.
I I

+ +

I I

I MICROPOLIS BUFFER |

+ +
| REMEX COMMAND MSG. |

+ +
! I

I REMEX DATA BUFFER j

MCORTEX DATA

Figure 2.1 Common Memory Map.

2 • Design Decis ions

The Ada design for the Target-Database resulted in a

system that protects and hides the actual database and how

it was implemented from the user. In an effort to incorpo-

rate that design feature in the PL/I-86 implementation, the

concept of using a specific module to perform all target

22





—

Wcrd
15

Bits
8 7 4 3

—

MODIFIERS FUNCTION UNIT
I

!

!

1

I

STATUS WORD

— +
I

I

I

2
I

TRACK NUMBER
I

I

!

3 I HEAD NUMBER
J

I

! SECTION NUMBER
I

— +
I

I

I

H 16 bit MEMORY ADDRESS OF DATA I

I

5
!

!

| EXT. MEM. ADDR.
I

I

I

I

6
I

TRANSFER WORD COUNT (no. of words
!

) I

I

_ j

Figure 2.2 BEMEX Read/Write Message Format.

data conversion to an appropriate output message forma-:, and

then to perform the operations to place that formated

message in the PEMEX was conceived. This module is named

Bld_datafcase. Not only does it perform those tasks just

mentioned, but because of it's modularity, it provides for

future changes should the method of storing the database be

modified, or the hardware device utilized for storage be

replaced. In addition, the decision was mads to stcre only

the messages to be utilized for output on the REMEX, rather

than storing both the initial target data that produced the

messages and the messages themselves. The reason for this

23





decision is to provide the fewest number of REMEX data

seeking operations during the run of a simulation. By

utilization of a data structure on the current iSBC 86/12A

in RAM (Random Access Memory) to pre-build the proper

sequence of messages, only a write command will be required

to retrieve data from the REMEX. Although this method

requires more execution time during the creation of the

Target-Database, very little execution time is consumed

during the emulation. The method utilized for creation and

modification requires the partial re-building of the data-

base for each change made to the Target-List of data.

3 . D e s i qn

The resultant design, modularized for implementation

in PI/I procedures, consists of the following (see Figure

2.3) :

a. Control: This module contains the main menu where

the user will be able to choose how he will utilize the

Signal Processor Model.

b. Create: This module allows the user to interac-

tively construct the initial environment of targets and

hew they will change throughout the time of the simula-

tion.

c. Delete: This module allows the user to delete

targets from the environment at any desired simulation

time point.

d. Change: This module allows the user to change the

environment during the initial creation of the environ-

ment .

e. Euild_ Data case : This module is not called by the

ccntrcl module, but interfaces between the database

utilized to represent the environment and those modules

utilized through "control" to initially create and

further modify and run the simulation. It must be able

24





to fcuild a set of output messages based on the

previously developed target data, and to send those

messages to the REMEX for storage.

+ +
I

! CREATE

!

I

+

+

I

| ELD BUFF.
I

+

+ +

I

CONTROL

+
I

+-

+ +

I I

I DELETE I

+ +

I I

BUILD DATABASE

+ +

I

i

+

i

+ + +

I i !

I | BLD MSG |

I I "I
+ + +

+ +

I I

| CHANGE |

I I

+ +
!

I

+

+ +

I I

| SEND MSG

Figure 2.3 Database Design.

25





E. THE STATIC MODEL

The design of the Static model depends on the ability to

read sequentially arranged previously stored output messages

from the hard disk. When keyed by a dwell command from the

SPY-1A Track Scheduling module, an output message will be

placed in common memory providing the SPY-1A Radar

Controller system with feedback. It does not matter whether

the output message offers a "logical" response to the

requested dwell, just that it offers a response that will

causa the SPY-1A System to send another dwell command. 3y

timing the SPY-1A System as it runs in interface with the

Static Model, the user will be able to acertain the real-

time performance of the SPY-1A model and whether cr not the

concurrent multiprocessor system can indeed operate within

the specifications of the AEGIS SPI-1A Radar Controller

system.

Utilizing the previously discussed target database

design, a Target Database to be utilized by the Static Model

can be created. The Static Model consists of functional

modules that must be able to retrieve sequential data from

the REMEX Data Warehouse, and respond to each new dwell

command (tabl_58) sent by the Radar Scheduler with a set of

one cr mere feedback messages (tabl_8) that would have

resulted from a simulated radar dwell. To enable the capa-

bility tc time the turnaround speed of the SPY-1A Model, a

CRT display will be required that allows measurements to be

made. It is important that the display include only the

minimum data so that it will not impede the performance of

the Static Model, and thereby detract from the objective of

measuring the SPY-1A System Model real-time performance.

Figure 2.4 shows the Static Model functional modules in a

hierarchial design. It is envisioned that the concurrent

activity of the SP7-1A Radar Controller and the Signal

26





+

AWAIT

+

+ ---- +
i t

1 CCNTBOL
f i---- +

+ +

! I

| STATIC |

I I

+ +

I+ + + +

+ +

I I

I LOAD
I

BUFF j

I I

+

+ +
I !

| DISPLAY
I

+ +

+— + +• + +

+ + + + + + + +

I ELD KSG | | SEND MSG |

I " I I " I

+ + + -,+

| XFER MSG| I ADVANCE
I "II EVC.
+ + + +

Figure 2.4 Static Hodel Design.

Processor Simulation will be sequenced using the MCORTEX

Operating System functions [Ref. 9] implementing Eventcounts

and Sequencers. Thus, although that interface is not avai-

lable now, the AWAIT and ADVANCE primitives will be used at

some future date by the AEGIS Modeling Group. In the mean-

time, in keeping with the design goal of changeability

(separating and modularizing those items likely to be

changed), the AWAIT and ADVANCE primitives must still be

incorporated in the design and implemented for proper system

testing.

27





III. IBPLEMENTATICN OP THE SIGNAL PROCESSOR SIMOLATION

A. TARGET HARDWARE

The present experimental computer system consists of a

MULTIEUS backplane that contains enough space for twelve

(12) Intel SBC 86/1 2»s (Single Board Computers) , four (4)

ADM-3 terminals connected to the four (4) currently

installed iSBC 86/1 2A boards and two different hard disk

memory storage devices. (see Figure 3.1). The main storage

device is the Remex Data Warehouse disk unit [Ref. 8] which

contains two standard 8 inch IBM format floppy disk drives

(one cf which is used to boot the system) , and a four head

fourteen inch Winchester technology hard disk containing

twenty mega-bytes of store. The other storage device is the

Micropolis Hard Disk system [Ref. 10] which has five heads

and contains an additional thirtyfive mega-bytes of storage

space. In both storage systems, the user, under the CF/M

operating system, is allowed to write only to the disk that

the terminal device was initially logged into, although full

read capability across all fixed storage devices is allowed.

Shared memory consists of 3 2K bytes of Random Access Memory

(RAM) that has been assigned the base address of OEOOO:0000

hexadecimal. Occupying one of the twelve board slots, there

is also a r.on- vclative bubble memory which was in the past

utilized for the toot precedure during initialization

[Ref. 6] but is currently utilized as temporary storage tc

boot the operating sjstem into each of the iSBC 86/12 boards

in use.

The Intel SBC-86/12's use an 8 Mhz clock and contain 64k

of internal memory that can be used for on board processing.

Each cf the iSBC 86/12 f s is connected to an ADM-3 terminal

28





that is used for communication. The operating system is

Digital Research's CE/M-86 [Ref. 11] as modified by previous

thesis students [Ref. 6] to enable the sharing of peripheral

I Hicrcpclis j I Eubble
j J

Common I REMEX
I I I Memory ( Memory
I II II I

+ + + + + + +

_L. 1 i L +
1 MULTIEUS

J

1 I ... |

1 1 t

| +
| |

1 1

— "+ 1

I SEC | I
+

1 | | ... |

+ |
|

1+ «
|

| |
+

+ +| |

1 1 + 1

1 CRT ( I
+

1 | | ... 1

+
J j

+ + |

+

j

Figure 3.1 NPS AEGIS Modeling Group Experimental Computer.

devices. There is an executive called the "Multicomputer

Real Time Executive" (MCORTEX) [Ref. 9] that has been

written tc allow fcr concurrent computation by the SEC's.

It occupies close to 6k bytes of storage on each of the

SBC's. It is projected that it will take aproximately 8 or

9 SBC's to carry out the same processes that the four AN/UYK

7's presently do in the Spy-1A Radar Controller.

29





B. SCFTSARE DEVELOPMENT ENVIRONMENT

Recent aguisitions by the NPS AEGIS Modeling Group have

made the Software Development Environment available on the

experimental computer much tetter. The multicomputer system

operates under the CF/M-86 operating system. In the past,

programing has teen done with Intel's PLM-86 Compiler and

the ASM-86 assembler for use on the iSBC 86/12. The SPY-1A

major modules have been written utilizing the PL/I-80

Compiler based on the Intel 8080 microcomputer. Now, the

FL/I-86 Compiler [Ref. 12] has been released and is avai-

lable for programming use. Because of the reguirement for

128 k-bytes of RAM for the use of the PL/I-86 Compiler, it

can only be utilized by one of the four users at a time. In

addition, where in the past programmers have gone to great

lengths to avoid the use of the only available CP/M-86 text

editor ED, the full screen text editor WORDSTAR is now

available

.

C. ADA CESIGN VS PL/I-86 IMPLEMENTATION

The previously discussed design process utilizing Ada

was insightful and useful as a tool for program development,

but the iiiplementaticn language for the AEGIS Modeling group

is PL/I. The primary structure resulting from the object-

oriented design methodology is the Ada "package". The

package in Ada serves to promote data abstraction and infor-

mation hiding. PL/I does not offer a construct similar to

Ada's "package" structure, but abstraction of the data mani-

pulation and hiding the form of the implemented database can

readily te achieved. The modules that are contained within

zhe Ada packages are written as a logical grouping of proce-

dures - the primary module structure in PL/I. The subpro-

gram utilized as a control program in the Ada design is

logically implemented with a controlling procedure, the

30





"procedure options (main) " in PL/I. The Ada package

containing the target information is implemented with the

global declaration " CEAS E. DCL" and the resulting linked list

used to develop the Target- List. The Ada database package

is implemented with the PL/I array data-structure "BUFFER",

which is hidden within the "BLD_DATABASE" procedure. The

"BLD_EATAEASE" procedure is not accessible directly to the

user, and thus further hides the form of the database.

D. MODULES OF THE TAEGET DATABASE

1 * Gen era l Comme nts

A useful feature in PL/I is the "%INCLU"DE" statement

which allcws one to make the compiler include programs or

declarations that have been previously written. This

feature is most commcnly utilized to include declarations

that are used by more than procedure throughout a system.

The "global declarations " (DBASE. DCL) utilized in the

Target-Database modules are treated in this manner. Future

maintenance on the Signal Processor Interface Simulation

that iray modify the Target-List, can be made to DBASE. DCL,

and after the program is re-compiled and re-linked, it will

appropriately affect all the pertinate modules. In addi-

tion, :wc global variables within the functional grouping of

the Target-Database modules are defined. These variables

are declared as "external" initially in the main procedure

"Control", and are also part of the global declarations

utilized by the Target-Database. The two variables are

"delta_t" and "endtime", and should be noted and protected

appropriately by any future changes made to the modules of

the Signal Processor Interface Simulation. It should be

noted that "delta_t" is not utilized by either the

Target-Database or the Static Model, but has been included

because it will impact on the future use of the Signal

31





Processor Interface Simulation. It is meant to define the

ratio of how many dwell commands are received versus the

number cf times the database buffer in common memory is

updated. "Delta_t" is meaningful for the Dynamic Mcdel and

will impact en the length of time a test run will be able to

run (based on available memory space for a database and

chosen delta_t) .

2 . C C N TRO L . PLI

The Control procedure is the head node of the

hierarchial structure of procedures used to modularize and

structure the i nple irentati on of the Radar Signal Processor

Interface Simulation. It contains the Main Menu that the

user will be continually coming back to to route himself to

other functional branches of the tree-like system. The Pl/I

exception handler ON <condition> <body> is utilized first

here and throughout the other modules to prevent abrupt

program termination and promote graceful recovery in the

event of user entry errors. Within the ON-body a series of

IF-THEN statements are used. These will allow one tc deter-

mine in which interactive block the error was committed.

The variable named "block" is set to different integer

values -hrcughout the program to signal where the user is,

and where is the appropriate place in the program to return

the control, so that interaction can continue. The reader

may be aghast at the flagrant and apparently unstructured

use cf "gc to"s in this and further modules within the

On-bcdy exception handlers. One should be assured that

exception handlers are probably the only generally accep-

table and appropriate time to use the "go to" in a struc-

tured program. EL/I a ddditionally offers a further

exception handling feature, the SIGNAL <condition> command.

When used in conjuction with an IF <condition> THEN

<statement> control command, the signal command has the

32





effect of "signalling" the system that the defined error

(the conditicn of the signal call) has occured. The control

is transfered automatically to the appropriate ON-unit

defined for that signalled error. This enables the

programmer not only to gracefully react to defined system

errors, tut to define his own error conditions and gracefuly

continue operations. The Control module and the ether

modules in the Signal Processor Emulation utilize this

feature tc prevent the user from entering a response outside

the definsd allowable range. Finally, the REVERT <error

type> statement is required at the end of each module where

the ON exception handler is utilized. A stack is utilized

in PL/I to save the state of the current ON-conditicns when

calling another procedure. PL/I-86 allows sixteen nested

ON-units on the stack. Proper utilization of the REVERT

command will pop the stack appropriately to ensure that the

proper CN-unit is used. Functionally, the Control procedure

sets up the global variable "endtime" that is utilized by

the other Target-Database modules (create, delete, change,

printlst, and bld_database) to define the limits of time for

which the database is to be constructed en the REMEX Data

Warehouse.

3. CREATE. P LI

The Create procedure has the function of interac-

tively contructing a linked~list (the Target-List) of target

nodes that contains the data for the database of discretely

timed output messages (tabl-8). The linked list utilizes a

pointer tc the header node (appropriately called "head")

that will be used by the other modules in their subsequent

manipulations of the Target-List. The other two pointers

utilized (tgt_ptr, and tgt_mkr) are used to traverse the

linked list and manipulate fields on nodes, or nodes them-

selves. The PL/I "^INCLUDE" statement allows the

33





declaration of the linked list structure "Target" without

having to declare it in every module it is referenced. The

Target-List is implemented as a linked list to allow the

roost efficient use of storage during the run-time environ-

ment of the system. FL/I will only initiate storage for the

nodes of the linked list during run-time, as required by the

"ALLOCATE" command. Thus, instead of being restricted to a

particular array size (had that data structure been used) as

allocated at compile time, the user is restricted to the

available memory at that time. In this version, the

Target-List is constrained to 56 nodes (or targets) , since

the buffer size and corresponding sector size of the FEMEX

Data Warehouse is fixed at 512 bytes. After the user steps

building the Target-List, the initial Target-Datatase is

constructed with a call to the "Bld^database" procedure.

Note that the first parameter to Bld_database is a constant

"1". This will ensure that the first database built on the

REMEX begins at the first discrete delta_t time value.

4. DELETE. PLI

The purpose of this module is to delete target nodes

from the Target-List as requested by the user. The user has

previously interactively indicated the specific discrete

"time_in" value of the call, and this information will be

further utilized by the procedure "Bld_database" in its call

hy Delete. Delete will request a target node number of the

node to re deleted from the Target-List. Then, the pointers

tgt_ptr an(^ tgt_mkr are utilized to traverse the linked list

until the appropriate target node has been located. When

found, the target node is separated from the Target-List,

and placed back in available free memory store by the use of

the PL/I "FREE" command. If the target node can net be

found (indicated by the pointer tgt_ptr reaching the "null"

node) , the user will receive an error statement and the

34





While lccp controlling this process will return the user to

ask if there is another node to be deleted. When the user

has deleted all the targets he desires, the call will be

made to the M Bld_database" procedure to re-build the data-

base from the previously defined delxa_t discrete time

increment ("time_in") to the previously defined "endtime".

Control will then return to the Main Menu (the Control

procedure)

.

5. CHANGE. P LI

The Change procedure is similar to the Create proce-

dure since it allows the user to re-define the fields of any

given node on the linked list Target-List in an interactive

mode. Once again, in a manner similar to the Delete proce-

dure, the user will define the discrete delta_t time value

where the Target-List is to be changed, prior to the call to

Change. This value "time_in" will be passed to the

"Bld_datacase" procedure in the same manner as with Delete

for further Target-Database re-construction. The Change

procedure allows the user to not only change the parameters

used by the defined parametric equation but to change the

equation (and therefor the shape of the resultant track)

i-self. The user is placed in a While loop to change all

the targets he desires on the Target-List, until he indi-

cates he is finished. At that time the procedure

"Bld_datatase" is called to re-build the Target-Database en

the FEMEX Data Warehouse from the time given in the first

parameter "time_in" to the "endtime", both previously deter-

mined by the user.

6. BIDDATABASE.PLI

This module is the real workhorse of the

Target-Datatase building system. The purpose of the

Bid database module is to convert the data contained on the

35





Target-List to an Array of output massages to be placed in a

based structure called "Buffer", and then to transfer that

Buffer tc another buffer of egual size in the NPS axperi-

mental computer's common memory. At that time r the appro-

priate message will be sent to the REMEX Data Warehouse

commanding it to read the data (using Direct Memory Access -

DMA) onto the required track and sector of the REMEX hard

disk. To accomplish these tasks, Bld_database utilizes

three assembly language routines: Bld_buff, Euild_cmd_mess,

and Send_mess. Bld_fcuff utilizes the pointer to the struc-

ture "Buffer" and causes the structure to be copied into

common memory starting at location 0E000:5500.

Build_cmd_mess uses 8 parameters to build an appropriate

REMEX command message formated for a "read" operation into

common memory starting at location QE000:5400. Send_mess

tells the REMEX it has a command message at location

0E000:5400 and verifies that the REMEX has received and

responded tc the message. Bld_database utilizes these three

primitive routines within two sub-procedures

"bld_msg_buf fer" and "call_rdw". The subprocedures them-

selves are called sequentially from within the execution of

a PL/I DC loop that runs from the Bld_database parameter

"time_in" to the global variable "endtime". The astute

reader iray now see why the user needs to build his

Target-Database in a sequential manner, making deletions and

changes in a progressively increasing discrete time incre-

ment up to "endtime". If modifications are not done in

discrete sequential time, Bld_database will write over the

changes that had been already written to the database with a

higher value time increment than the current "time_in"

defined. The sub_procedur e bld_msg_buf f er will utilize the

Target-List to build a corresponding output (tabl_8) message

to be incrementally placed in the Buffer structure sequen-

tially as the linked list is traversed. Reaching the "null"

36





node will cause the while loop to end, and a call tc the

bld_buff primitive routine to be made. The x, y r and z

named fields for each component of the Buffer array will be

constructed by the parametric equation number indicated in

the Target-List. These parametric equations were derived

from a previous thesis work done by Boone [Ref. 3] and are

utilized here tc maintain overall SPY-1A system compati-

bility and integrity. See Figure 3.2 for a listing of the

(1) x (t) = a + t*t + c*t*t
y (t) = u v*t + w*t*t
z (tj = d

(2) x (t) = a + b*t + c*t*t
y (t) u v*sin (w*t)
z (t) = d

(3) x (t) = a + b*cos(c*t)
y (t) = u + v*t + w*t*t
Mt] = d

(4) x (t) = a + fc*cos (c*t)
u + v*sin ( w*t)

z t = d

Figure 3.2 Signal Processor Track Parametric Equations.

parametric equations. These parametric equations can easily

be changed if desired by future users of this system, if

specific requirements so dictate it. The sub- procedure

load_rdw uses the primitives build_cmd_mess and snd_mess to

cause the EEMEX to read the data from the common memory

buffer. Twc of the parameters to the routine Build_cmd_mess

require the track and sector to be designated where the

REMEX will subsequently store the common memory buffer. To

ensure that the track and sector are located in a sequential

and therefore easily retrievable manner, a set of simple

37





algorithns were devised. The algorithms will require buffers

to be stored starting at a location indicated by "time_in"

and sequentially building each of 39 sectors per hard disk

track until "endtime" is reached or the memory is depleted

(at track 210). The algorithms are:

sect ~ 1 + mod ( time_in,40)

track = 1 + trunc (time_in/39)

The "sect" algorithm will convert time_in to a modulo 40

number (0-39) and add 1 (since the sectors are number 1 to

39 per track). The "track" algorithm will divide time_in by

39 and truncate the resultant number to get an integer. It

then adds 1 (since the REMEX does not allow the use of track

to the user)

.

The subsequent calls are then made to

build_cmd_mess a r.d snd_mess in that order. Upon completion,

Bld_database returns to the procedure from where it was

called (Create, Delete, and Change) and then to Control to

the Main Menu once again.

7. I BINTLST.PL

I

The Print_lst procedure is meant to be a tool for

the user to maintain a listing of the Target_List as the

list is initially created and as changes are made during a

database building session. The procedure will prompt the

user to turn on the printer or hit <control> "P" to activate

the printer, before typing "0" to begin a print of the

Target_List . The Target-List print out will be initialized

with a record of the time in ("time_in") for proper record

keeping, and the linked list will be traversed, reading and

printing the fields contained on each node. When the "null"

node is reached, the procedure returns control to the

Control procedure Main Menu.

38





E. HODOLES OF THE STATIC MODEL

1 General Comments

The purpose of Static Model is to run through the developed

Target-Database in as rapid a manner as possible, reponding

to eventccunts from the SPY-1A Model (indicating a dwell

command has been sent) by transfering a output message to

common memory. The SPY-1A is then further notified that a

message is ready fcr it 1 s input by the advancing of a

corresponding eventccunt. The display of the Static Model

is merely a counter indicating each data transfer made (set

of output messages) from the REMEX Target-Database tc common

memory, and the anticipated endtime (or endpoint) for the

Static Model simulation run.

2. STATIC.PLI

The Static procedure is the main procedure for the

running of the Static Model. The procedure can operate in

one cf two possible modes. The first mode is an actual run

of the NFS SPY-1A Model as it will be eventually interfaced

for testing. It is assumed that the MCORTEX operating

system will be utilized to enable proper interaction between

concurrent processes, therefor eventcounts and sequencer

primitives are used in the calls herein (which will be

replaced by appropriate calls to that operating system at

some future time). In the meantime, to allow testing of the

Static Model, an AWAIT primitive was written, and an ADVANCE

primitive is utilized in the test program SPYTEST. The

Static Model will loop through the Target database in a PL/I

DO loop from discrete time 1 to endtime. Within the loop,

sequential calls are made to AWAIT, Load_buff er,

Send_cutput, and Display. when the user begines a test-run

with the SPY-1A Simulator, he will be prompted to load that

program en another iSBC 86/12 console, and then begin

39





operating. At that point, the same loop will be run as

previously described. The user may also leave the Static

Model and return to Control •s Main Menu.

3. I CAEJ3UFF.PL I

The purpose of this module is to extract the proper

sector/track combination of data from the REMEX

Target-Datafcase, and place it in the common memory buffer.

It is the same as the Bld_Buffer sub-procedure previously

described as a part of Bld_database, except the parameters

to the primitive routine Build_cmd_mess are to "write"

instead of read.

4 . XJER . A8

6

The purpose of this module is to transfer a output

message (tabl_8) from the common memory buffer to common

memory location starting at 0E00O:6O55.

5. ADV1EVC. A86

The purpose of this module is to advance an event-

count in common memory to notify SPYTEST.PLI that the output

message is ready to re read.

6. CISFLAY.PL I

The purpose of this procedure is to send to the

terminal screen the "time" corresponding to the seguential

transfer of sectors of data from the REMEX Data Warehouse,

and show the user the expected endtime for that particular

run. This should enable the user to determine the "real-

time" capability of the SPY-1A Model.

40





F. ASSEMBLY, COMPILING, AND LINKING

The assembly language code was written in ASM-86 and

assembled using RASK-86. This assembler produces reloca-

table files that can then be linked with compiled PL/I -86

files. The PL/I-86 Compile r was utilized for compilation of

the PL/I programs, and the resulting assembler and compiler

".OBJ" files were tten linked using LINK86 . The LINK86

linker enables the user to develop a ".INP" file containing

the list cf program commands the user would normally have to

type in, and the linker can then be optionally utilized with

the command "LINK86 <file name>.INP [ INPUT ]". This greatly

speeds the link process and assists during run-time testing

and debugging. See [Ref. 12] for further information.

G. TESTING

Most cf the implementation of the PL/I code was done

using PL/I-80 instead of PL/I-86. This was convenient

because of the extensive availability of microcomputers

using PL/I-80 versus PL/I-86. Most of the early testing was

done via extensive cede reading and revision. As a result,

during top-down testing of modules, (utilizing program stubs

for the assembly language subroutines) , the system worked

with few runtime errors. Initially, the linked system did

not contain the PRIN1LST.PLI code it now incorporates. This

code was developed as a test routine to insure that the

Target-List and the Euffer data structures were being built

in the proper manner and receiving the proper data. However

the program was perceived as a desirable tool for recording

target data while developing a Target-Database in the Signal

Processor Interface Simulation, and was therefore incorpo-

rated into the system. The top-down testing philosophy

enabled testing to be implemented in PL/I-80. This provided

programming and testing flexibility when the experimental

41





computer became a contended resource by AEGIS group members.

The use cf DDT-86 (Dynamic Debugging Tool) to check memory

locations and incrementally run the system proved tc be the

most important tool for testing and verifying the Signal

Processor Interface Simulation when the assembly language

routines were linked and the experimental computer was

utilized.

42





IV. CONC LOSIONS

A. UTILIZATION AND CHANGABILITY OF THE SIGNAL PROCESSOR

SIMULATION

The Signal Processor Interface Simulation is a tcol that

can be cf significant value to future testing of the NPS

AEGIS Group's AN/SPY-1A Radar Controller Model. The

Target-Database system was developed to allow it's use not

only with the Static Model as specifically implemented in

this version, but also as the basis for a version to inter-

face with a Dynamic Model. The individual functions that

make up the total Signal Processor Simulation Sytsm have

been modularized to enhance the use and adaptability of this

versicn to what ever future directions the Simulation

efforts cf the AEGIS Modeling Group may be. A comprehensive

Users Manual has been provided in Appendix F for use with

this version of the Signal Processor Simulation as a stand

alone document. The only interfacing required for the

members cf the AEGIS Modeling Group with regards to this

Signal Processor Simulation should be the substitution of

MCORTEX "await" and "advance" primitives for those utilized

in this version of the Static Model, and the possible

restructuring of the address locations in common memory. It

is recommended that any tester of the NPS SPY-1A Radar

Controller Model first gain experience of the Signal

Processor Simulation by running the Simulated SPY-1A Program

"SPYTZST.CMD".

U3





B. FUTURE ENHANCEMENTS AND DIRECTION FOR THE SPY-1A MODEL

The next logical step in the full implementation of the

Signal Processor Interface Simulation is the further design

and implementation of the Dynamic Model. The purpose of the

Dynamic Model is to test the logic of the NPS SPY-1A Padar

Controller Model. The Dynamic Model does not require the

real-time performance of the Static Model, but must provide

a comprehensive display of the active targets representing

the Target-Database at each discrete time increment. The

Target-Database system developed in this thesis should

provide the basis for changing the structure of the

Target-Database as the limits of the logical functions of

the system are explored. However, the Target-Database has

been purposefully designed for change should that be neces-

sary in the implementation of the Dynamic Model. Previous

thesis work by Boone [Ref. 3] should assist in the develop-

ment of the Display module required for the Dynamic Model.

Finally, the messages utilized (tables 58 and 8) for input

and output from the Signal Processor Interface Simulation

will require some attention. Specifically, the output

message (table 8) needs to have some data from the input

message tc allow the SPY-1A Radar Controller Model to prop-

erly recognize and match input dwell commands with output

data

.

44





APPENDIX A

TARGET DATABASE PROGRAH LISTINGS

A- CONTROL. PLI

Frog Name : CONTROL. ELI
Date : May 83
Written by : Toad B. Kersh
For : Thesis (AEGIS Modeling Group)
Adviser : Professor Kodres
Purpose : This is the main program -co control the
operation of the Signal Processor Simulation Target
Database functions and the Static Model functions.
*/

contrcl:procedure options (main);

declare
create entry (pcint er) c

delete entry (fixed ,Domter) ,

change entry (fixed, po inter) ,

printlst entry (pointe r, fixed) ,

static entry;

declare
block fixed binary (7) ,

init fixed decimal (2 , 1) ,

initl fixed,
choice fixed binary(7),
delta t fixed decimal (2,1) EXTERNAL,
andtime fixed decimal (H, 1) EXTERNAL,
tine in fixed,
head pointer;

entry errors */

on error (1)
beain

;

if block = 1 then do;
put list (ascii (26) ,ascii (30) ) ;

put skio list (' invalid entry, try again...');
oo to start;
end;

if block = 2 then do;
out list (ascii

(

26) , ascii (30) )

;

put skip list (' invalid entry,
must be integer 1-6... ') ;

go to menu;
end ;

if block = 3 then do;
put list (ascii ( 26) ,ascii (30) ) ;

pur skip list (• invalid entry,
must be 1- ', en dtime, '...') ;

go t c branch;
end

;

end;

out list (ascii(26) .ascii (30)) ; /*clear screen */
put skip list T '******* SIGNAL PROCESSOR SIMULATION

put skip list (• version 1.0 Jane 1983') ;

45





pat skip (2) ;

start:

/* First determine what the time interval for display
updates and corresponding updates from the database will
be, as well as the length of the simulation */

b lock - 1
•

put skip list ('SYSTEM INITIATION: (see users manual)');
put skip list ('How often do you want the database and

the display updated?*) ;

put skip list (• (delta t range . 1 to 1 seconds)');
put skip list (' (default is every .5 sec)'):
put skip list ('enter value or for default: ');
get list (init) *

if ( (init>1 ) |
(init<. 1) ) then signal error ( 1) ;

else delta t = init;
put skip list ('How many seconds do you want the

simulation to run?');
put skip list (• (endtime range 1

to (delta t * 8190) )
• )

;

put skio list (' (default is 300 sec)')T
put skip list ('enter value or for default: ') ;

get list (init t) ;

if (<init1>8190( | JinitKI)) then signal error(1);
else endtime = init1;

/* Next the user will be placed in a interactive
environment where he can build track databases,
run simulation tests, and change the track database
as hs desires */

do while («1 ' b)

;

put list (ascii (26) ,ascii (30) ) ;/* clear screen */
menu

:

blcck = 2

•

put Skip iist(« *** MAIN MENU ***•);
put s k ip ( 2 ) ;

put skip list ('what course of action do you wish?') ;

put skip list?' (1) CREATE a database of tracks');
put skip list ( * (you must do this first)');
put skip list

f} (2) DELETE a track from the database');
cut skip list

* (' (3) CHANGE a track on the database');
put skip list

(' (4) PRINT the current target list');
put sUp n\;
put skip list

('After a database is satisfactory you may: ') ;

put skip list(' (5) RON a simulation');
put skip list

(insure the rest of the SPY-1 Model is setup)');
put skip list
*(' (5) QOIT and return to the operating system');
put skip list ('(enter 1-6 and <cr>):');
get list (choice) ;

if ( (choice<1) |
(choice>6) ) then signal error(1);

branch:
blcck = 3

•

if choice* = 1 then call create (head) ;

if choice = 2 then do;
put skip list
(•At what time do you want to delete a target? •);
get list(tijoe in) ;

if ((time_in<7) | (t ime_in>endtime) )

46





then signal errcr(1) ;

call delete (time in, head)

;

end;
if chcice = 3 then do;

put skiD list
(•At what time do you want to change a taraet? ');
get list (time in) :

if ((time inCT)
|
(time in>endtime) )

then signal errcr(1);
call change (time_in, head) ;

end

;

if choice = 4 then call printlst (head, t ime_in)

;

if chcice = 5 then call static;
if chcice = 6 then do;

put skip(2) list

revert err
step;

en d *

end; /* while */

(• *** END OF SIMULATION ***•);
or(1) ;

47





E. CREATE. PLI

end ccntrcl;
Prog Name
Dane
Written by
For
Adviser
Purpose

CREATE. Ell
May 83
Todd B. Kersh
Thesis (AEGIS Modeling Grouo)
Professor Kodres
This module is part of the Target

Database package of functions.
*/

create: procedure (head) ;

/* Global declarations */

^include •dbase.dcl 1
;

/* Local declarations */

declare
bid database entry (fixed, pointer) f

i fixed binary (7) ,

cent character(l) static init('Y') ,

block fixed binary (7) ,

tgt nun fixed binary(7) static init (0) external,
xrange float,
yrange float,
xvel float,
yvel float.
xacel float,
yacel float,
alt float,
tgteg fixed binary (7) ;

entry errrcrs */

on error (1)
begin ;

put skip list ('ENTRY ERROR, TRY AGAIN...');
if block = 1 then

go to retry;
if block = 2 then

go to again;
end;

put skip list('= = = CREATE TARGETS MODULE ===');

/* Initiate the target list */

allocate target set (t gt_mkr) ;

tgt ptr = tgt irkr;
heacl = tgt_mkr;
tgt ptr->num = 0; /* this is the header node */
allocate target set (t gt_mkr) ;

tgt ptr->next_ptr = tgt_mkr;
tgt'ptr = tgt_nkr;

/* Create the list of targets to be simulated */

do while ( cont = ! ) ;

tgtnum = tgtnum + 1;
tgt ptr->num = tgtnum;
retry:
block = 1

:

put skip list ( 'Initiate target* ', tgtnum) ;

/* Assign the target parameters */

48





put skip list
(' Parametric Equations? (1,2,3,crU): ');

get list (tgteq) ;

if ( (tgteg<1) | (tgteq>4) ) then signal error (1);

put skip list(» X range (a)? (-256 , + 256) nra: «);
get list (xrange) ; ~
if ( (xrange<-256) | (xrange>256) ) then signal error(1);

put skip list(« Y range (u) ? (-256 , + 256) nm: •) ;

get list (yrange) ;

if ( (yrange<-256) | (yr ange>256) ) then signal error (1);

put skip list ( X_velocity (b)? (-32, +32) m/sec: ');
get list (xvel)

;

if ( (xvel<-32) j (xvel>32) ) then signal error ( 1) ;

put skip list(» Y velocity (v) ? (-32, +32) m/sec: •);
get list (yvel) ;

if ( (yvel<-32) |(yvel>32) ) Then signal error (1);

ut skip list
_acceleration (c) ? (-. 15625,+. 156 25) m/sec/sec: ');

get list (xacel) ;

if ((xaceK-. 15625)
|
(xacel>. 1 5625) )

then signal error (1);

put skip list
(

f Y_acceleration (w) ? (-. 15625, +. 015625) m/sec/sec: «);
get list (yacel) :

if ((yacelO. 015625) | (yacel>. 1 5625) )

then signal error (1);

DUt skip list(' Z altitude (d) ? (0,20,000) ft: •);
get list (alt) ;

if ( (alt<0) j (alt>20000) ) then signal error(1);

tgt ptr->eq = tgteq;
tgt~pi:r->a = xrange;
tgt pxr->b = xvel:
tgt~ptr->c = xacel;
tgt"ptr->d = alt;
tgt~p-r->u = yrange;
tgt ptr->v = yvel;
tgt~ptr->

w

= yacel;

/* Determine if more targets are to be created */

again

:

block = 2:
put skip (2) list('create more targets?(Y or N) : ');
get list (cont) :

if cent = 'y' then cont = * Y';
if ((cent = • Y')&(tgtnum°=56) ) then do;

allocate taraet set (tgt; mkr) ;

tgt_ptr->next ptr = tgt^mkr;
tgt_ptr = tgfmkr;
end;

""

if tgtnum = 56 then do;
put skit list('TARGET LIST IS FULL...')*,
cont = *N» ;

end;
end; /*while cont */
cent = »Y*;

/* Complete the linked list */

tgt_ptr->next_ptr = null;

49





-gt-Pt- = head;
tgt_ihkr = head;

/* Build the Remex Data Warehouse database. */

put skip list ('BUILDING DATABASE •);
call 1 13 database (1, head) ;

revert error ( 1) ;

end create;

50





C. DELETE. ELI

Frog Name
Date
Written by
For
Advisor
Purpose

DELETE. ELI
May 83
Todd B. Kersh
Thesis (AEGIS Modeling Group)
Professor Kodres
This module is part of the Target

Database package of functions. It deletes targets
from the target List.V
delete: procedure (time in, head);

^replace
true by '

1

fb,
false ty « O'd;

/* Glcbal declarations */

^Include •dbase.dcl*;

/* Local declarations */

declare
bid database entry (fixed, pointer) ,

found bit p) static init (false) ,

tiie in fixed.
tgtnum fixed binary(7) external,
tgt fixed binary (7).
cent character (1) static init('Y');

/* This exception handler will take care of
all user input errcrs */

on error (1)
begin;

put skip list(«ENTBY ERROR, TRY AGAIN ...') ;

gc to retry;
end :

tgt = 0;

put skip list('=== DELETE TARGETS MODULE ===');

/* This will initialize the Target linked list to the
correct memory space */

tgt ptr = head->next_ptr

;

tgt^mkr = head;

/* This will delete the desired node from the
target linked list */

do while ( cont = 'Y«) ;

retry:
put skip list

,(» what target do you wish to delete? ')»
put skip list

(• (tgt. num. range 1 -', tgtnum, •) : •);

um) ) then signal error (1);
get list (tgt) :

if ((tgt<1) |
(tgt>tgtn

do while (found = false):
if tgt ptr->num = tgt then do;

tgt mkr->next_ptr = tgt ptr->next_ptr

;

tgt~ptr->next ptr = null;
free tgt ptr-^target

;

tgt ptr = head->next_ptr

;

tgt mkr = head;

51





found = true;
end;
else do;

tgt mxr = tgt ptr;
tgt~ptr = tgt~mkr->next ptr;
if Tfgt ptr = null then lo;

put~skip list
('ERROR : target number not found');

tgt ptr = head->next_ptr

;

tgt_mkr = head;
found = true;
end;

end;
end; /* while */
found = false;

put skip list ('con*
get list (cent) ;

if cont = 'y' then

put skip list ( 'continue (Y/N) ? ');
nt) ;

y ' then cont = • Y' ;

and; /*while*/
cont = 'Y';

put sVip(2) list ('EUILDING NEW DATABASE...');
call fcla_database (time in, head) ;

revert error (1) ;

end delete;

52





D. CHANGE. ELI

Frog Name
Date
Written by
For
Adviser
Purpose

CHANGE. EII
Hay 83
Todd B. Kersh
Thesis (AEGIS Modeling Group)
Professor Kodres
This module is part of the Target-

Database package of functions. It changes data
on the Target List.
*/

change: procedure (time_in, head) ;

^replace
true by 1 «b,
false by 'O'b;

/* Global Declarations */

%include 'dbase.dcl';

/* Local Declarations */

declare
bid database entry (fixed, point er) ,

time_in fixed,
more bit,(1) static init(true),
tgtnua fixed binary(7) external,
tgt fixed binary (7) f
(chg1,chg2) fixed binary (7).
(cfcg3 f chg4 ,chg5,chg6 f chq7,chg8 ,chg9)
do1 bit(1) static mit (false),
block fixed bir.ary(7) .

cont character (1) static initCY');

float.

/* This exception handler will take care of all
user input errors */

on error (1)
begin;

cut skip lisT('ENTRY ERROR, TRY AGAIN ');
if block = 1 then

go to tryl:
if block = <i then

end

;

go to try2;

put skip list (•= = = CHANGE TARGETS MODULE ===•)
;

/* First, query the user about the changes to be made */

do while (cont = • ¥')
;

tryl

:

blcck = 1:
Dut skip list
(' What is the target number you wish to change?*);
put skip list

(• (tgt. num. range 1 -• , tgtnum, •) : ');
get list (tgt) :

if ( (tgt<1) |
(tgt>tgtnum) ) then signal error (1);

put skip list.(' What data item is to be changed?');
put skip list?' (1) parametric equation');
put skip listf' (2) equation parameters');
get skip list(chgl):
if ( (chg1<1) |

(chg1>2) ) then signal error(1);

53





if chgl = 1 then do;
do 1 = true;
put skip list

l\ What is the new equation number (1-4) ?•) ;

get list(chg2) ;

'

if ((chg2<lf| (chg2>4) ) then signal error ( 1) ;

end

;

else do;
try2:
block 2;
do1 = false

;

put skip list (• What are the new parameters: 1
) ;

put skip list
t- ,, S\. X_range (a)? (-256 , + 256) nm: ') ;

get list(chg3) ;

if ((chg3<-256)
|
(chg3>256) ) then signal errcr(1);

put skip list
, .

', .( Y_range (u) ? (-256 , + 256) nm: •) ;

get list (chgU) ;

if ((chg4<-256)
|
(chg4>256) ) then signal error (1);

put skip list
(* X_velocity (b) ? (-32, + 32) m/sec: ') ;

get list (chg5) ;~
if ((chg5<- 22) |

(chg5>32) ) then signal error (1 ) ;

put skic list
(' Y velocity (v) ? (-32, + 32) m/sec: ') ;

get list(chg6) :"
if ((chg6<-32)

|
(chg6>32) ) then signal err cr (1) ;

put skip list
X accel. ic) ? (-.015625, + .015625) m/sec/sec: •);

get list (ch g/) ;

if ((chg7<-:015625)
|
(chg7>. 156 24)

)

then signal error (1);

put skip list
Y_accel. jw) ? (-.015625, +.015625) m/sec/sec: ');

get list (chgS) •

if ((chg8<-.01§625) |
(chg8>. 15625) )

then signal error (1);

put skip list(« Z alt. (d) ? (0; 20,000) ft : ');
get list (chg9) ;

if ((chg9<0)l (chg9>20000)) then signal error (1);
end;

tgt ptr = head->next ptr;
tgt~mkr = head;

/* Now this will find the desired node, and make the
reguested changes on the target data list */

do while (more = true) :

if tgt ptr->num = tgt then do;
if cTo1 = true then tgt ptr->eq = chg2;
else do ;

tgt ptr->a = chg3

;

tgt ptr->b = chg5;
tgt~ptr->c = chg7

;

tgt ptr->u = chg4;
tgt~ptr->v = chg6 ;

tgt~ptr->w = chg8;
tgt ptr->d = chg9;

end; ~
more = false;

54





€nd;
else do;

tgt mkr = tgt ptr;
tgfptr = tgt_mkr->next ptr;
if Tgt ptr = nail then clo

;

put" skip list
('ERROR : target number not found 1

);
tgt ptr = head->next ptr;
tgt"mkr = head;
mere false ;

end;
end:

end; /* while */
mere = true;

put skip (2) list
(*Dc you wish to change another target? 1

);
put skip list(» (Y/N): ');
get list (cont) ;

if cont = 'y' then cont = ' Y'

;

end; /* while */
cont = »Y»;

put skip (2) list ( 'UPDATING CHANGED DATABASE ');
call bid database (time in, head);
revert error ( 1) ;

end change;

55





E. BLDEEASE.PLI

Prog Nam€
Date
Written by
For
Adviser
Purpose

BLDDBASE.PLI
May 83
Todd B. Kersh
Thesis (AEGIS Modeling Group)
Professor Kodres
This is the module the builds the

database in the Remex Data Warehouse after the
Target List has been created or modified.V
bid database: procedure (time in, head);

^replace
true by '

1 •b,
false by •0«b;

/* Global Declarations */

%include 'dbase.dcl';

/* Local Declarations *'/

declare
timeend fixed,
time_in fixed binary(15),
t fixed binary (15) ,

trkfull char(l) static init( , H , )#
i fixed;

/* This train procedure uses subprocedures to build
the database cf table-8 structures in the Remex Data
Warehouse */

t = time in;
timeend = trunc (endti me/ delta t) ;

do i = time in to timeend;
call bld""msg buff er (head, t) ;

call IcacT rdw (t) ;

t = t + 1J
if trkfull = •! then return;

end

;

/* This procedure will create the Signal Processor
Interface Simulation output message -co the Track
Processor Module for each node of the target list,
and store them in a buffer. */

bld_msg_buf f er : procedure ( head, time_in)

;

declare

/* The Euffer contains all the track tables at tiioe_in */

1 Euffer static,

/* Table 8; interfaces between the beam
stabilization process and the track process */

2 B to P tabl(57) .

3 x^sub s fixed binary (15)
3 y_sub~s fixed binary(15)
3 z_sub~s fixed binary (15)
3 face Tdx fixed binary(7)
3 dwl idx fixed binary(7)
3 trk'num fixed binary (7)

declare
bld_buff entry (1,2 pointer,

init (0) ,

init (0) ,

init (0) ,

initjO ,
init JO j,
init (0)

;

56





2 bit (16)

,

2 bit(16) ) ;

declare
tiie_in fixed binary (15) ;

head pointer;

declare
more bit

(

e
(x,y,z) float;

2T6
ore bit(1) static init(true),
tr fixed binary (7) ,

qu fixed binary (7),

declare
1 carablk static,

2 scurcsbuff pointer,
2 destbuff bit(16) in it (• 5500' b4) ,
2 segaddr bit(16) init

(

'eOOO 'b4) ;

ctr = 1;

/* First get the ncde of the target data list and
extract the data needed to generate the items
on tbl 8 */

tgt ptr = head->next ptr;
tgt~mkr = tgt_ptr;

dc while (more = true) ;

buffer. b to_p tabl (ctr ). trk_num = tgt_ptr->num

;

equ = tgt_ptr->eq;

/* Derive values for
at time_in for the sp

if equ = 1 then do;
x=tgt_ptr->a + tgt

y=tgt_ptr->u tgt

z=tgt ptr->d;
end

;

if equ = 2 then do

:

x=tgt_ptr->a + tgt_

y=tgt ptr->u + tgt
z=tot~ptr->d;

end

;

if equ = 3 then do

;

x=tgt_ptr->a tgt
y=tgt_ptr->u + tgt;

z=tgt_ptr->d;
end;

if equ = 4 then do

;

x=tgt ptr->a tgt
y=tgt~ptr->u tgt
z=tgt_ptr->d;

end ;

target positions x,y,and z
ecified parametric equaticn

_ptr->b*time in
tgt ptr->c*time_in*time

ptr-> v*£i me_in
tgt_ptr->w*time_in*time

V

in;

ptr->b*time_in
tgt Dtr->c*time in*time

ptr->v*sm (tgt_ptr-5w*t ime_ in)

;

ptr->b*cos (tgt_ptr->c*t ime_
ptr->v*time in

tgt ptrr>w*time_in*rime

in) ;

g~_
ptr->b*cos(tgt_ptr->c*t ime
ptr->v*sin (tgr_ptr->w*tinie

_in
) J

_m) ;

buffer. b_to p tabl
buffer. b to p~tabl
buffer. b~to~p""tabl

ctr) . x_sub_s = x;
ctr) . y_sub_s = y;
ct r) . z sub s = z

;

57





/* Set up tc look at the next target */

ct r = ctr * 1

:

"tgt_ptr = tgt nkr->next ptr

;

tgt mkr = tgt~ptr;
if fgt ptr = null then more = false;

end; /*dc while*/
more = true;
'

t<3't_P'tr ~ head;
tgt_ikr = tgt_ptr;

/* This will transfer the buffer structure to the
common memory board buffer location for transfer
to the REMEX. */

parablk. scurcebuf f = addr(buffer) ;

call tld_buff (b_ptr) ;

end fcld_isg_buf f er

;

/* This procedure will cause the REMEX Data Ware-
house to load the contents of the buffer into the
next sector en the RBW hard disk. */

load_rdw: procedure (time_in )

;

7

declare
time in fixed,
ssnd~mess entrSsiia mess entry,

build cidjess entry (bit(16), fixed binary(15),
fixed binary (15) ,

fixed binary (7) , fixed binar
bit (16) , biz (16) ,

fixed binary ( 15) ) ;

declare
status fixed binary (15) static init (0) ,

sect fixed binary (7),

y(7) ,

(256) ,

head fixed binary (7),
rdw read bit ( 1 6) static init (' 1 020 ' b4) ;

/* "1020" means the REMEX will write
from the com. mem. buffer to the hard disk.*/

head = 0; /* this sets head to "D" drive */

/* This determines the sector based on 39 sectcrs/track */

sect = 1 + mod(time_in,4 0) ;

/* This determines the track */

track = 1 trunc (time_in/39) ;

/* nesd except, hndler for TRACK >210 */

if track > 210 then do:
put skip list( , The database store is full.');
put skip list

(* This run is recorded as ' ,time_m, delta_ts.»);
put skip list

(• To create a longer run, change the value of delta t.*);
trkfull = »Y»

;

return

;

end;

58





/* This procedure builds the command message required
for the EEMEX Data Warehouse to read the data tables
located in the buffer corresponding -co the value
of "time_in". */

call tuild cmd mess
(rdw_read, status, track, head, sect, mem,msb, word_count)

;

/* The procedure sends the command message to the ftemex
Data Warehouse to perform the required read operation */

call send_mess;

end lcad_rdw;

end bld_database;

59





F. PBINTLST.PLI

NameFrog
Data
Written ty
For
Advi
Purp
the
List
Data
*/

PRINTLSI.PLI
May 83
Toad B. Kersh
Thesis (AEGIS Modeling Group)

sor : Professor Kodr es
cse : This module is a diagnostic tool for
user to keep a record of the flow of the Target
as changes are made at each delta t, as a Target

base is constructed for a Static Model run.

printlst: procedure (head, time)
^include 'dbase.dcl';

declare
prt fixed bin (7),
time fixed,
(head,ap,bp) pcinter;

put skip list('= = = PRINT TARGET LIST ===•)
retrv:
put skip list ('To

put skip list ('type
put skio list (*

get list (prt) :

if prt °= then

get a print out. turn
<ctrl> P, and then typ
Else, just type (Kretu

go to retry;

on printer,
e 0<return>. ')

rn>. ') ;

put skip (2) list ('TARGET LINKED LIST at time = ' ,time)
ac = head;
bp = ap;
ap = bp->next_ptr

;

do while (ap° = null)
bp =
out
put
put
put
put
put
put
put
pu +

ap;
skip (2).;
skiD list
skip list

'TGT

skip
skip
skip
skip
skip
skib

put skip lis
ap = bp->nex

while */

list
list
list
list
list
list
lis*

a p
end; /*

bp
= head;
= head;

at3->num
• ,ap->e

' ,ap->b
1 ,ap->c
» ,ap->u
• ,ap->v
• ap->w
' ,ap->d

h

end printlst;

60





G. DEASE.DCL

Prog Name : DBASE. DCL
Date : May 83
Written by : Toad B. Kersh
For : Thesis (AEGIS Modeling Group)
Advisor : Professor Kodres
Purpose : These are the global declarations
for the Target Database.V

declare

declare

endtime
delta t

fixed
fix ed

decimal
decimal 8:1)

external,
external:

head pointer,
(tgt mkr,tgt_
1 target base

2 n urn

2
2

ptr) pointer,

fixed binary (7)
eq fixed binary (7)

,

para,
3 a
3 b
3 c
3 u
3 v
3 w
3 d
3 e
3 f

2 next_ptr

float,
float,
float,
float,
float,
float,
float,
float,
float,

pointer;

61





BLDB0FF.A86

Frog Name
Date
Written by
For
;Advi
Purp

bu
me
pa
a
an

sor
icse
ffer
nicry

BLDBUFF.A86
4 June 83
Todd E. Kersh
Thesis (AEGIS Modeling Group)
Professor Kodres
This routine will transfer a 256

from SBC private memory xo the com.
buffer starting at E000:5100. The

I;

word

rameter passed is a 'parameter block containing
ointer to the buffer on SBC,
offset to the common mem. buffer

and -he base

Code Segment

This routine assumes parameters as follows
paral Darameter block consisting of

3 words.

cseg

bld_b
F
D

F
F
D
m
m
m
1
m

move_
i
m

i
i

i
1
P
p
F
P
P
r

end

words:
cv ax,
ov es

:

*].ta ax

get location of buffi
from para, passed

assign location of buff2

; assign no. of words to move

lead word from source
; sx.ore word into com. mem. buffe:

; adjust pointers.
nc si
nc si
nc di
nc di
oop move_words ; loop if not done
cp es
cp
cp
op
c
€

cx

si
ax

62





APPENDIX B

STATIC MODEL PROGRAH LISTINGS

A. STATIC. PLI

Prog Name : STATIC. PLI
Date : 8 June 83
Written by : Todd B. Kersh
For : Thesis (AEGIS Modeling Group)
Advisor : Professor Kodres
Purpose : This module controls the operation for
the RCP Static Model.V
static: procedure;

declare
load tuffer entry (fixed) ,

xfer~msg entry,
advance avd entrv,
display~entry (fixed)

r

await entry (fixed bi nary(15)) ;

declare
start fixed binary(7),

thrshcld fixed binary (15) static init(1),
endtime fixed external,
item fixed binary(7),
evcvalue fixed binary (15) static init (0) external,
tiire fixed;

/* This exceDtion handler will take care of all
user input errors. */

on error (1)
begin

;

put skip list (»ENT BY ERROR, TRY AGAIN.
gc to retry;

end

;

•) ;

'/put skip (ascii(26) ,ascii (30)) ; /* clr. screen
put skip list (• === RSP STATIC MODEL ="');
put skip list (» version 1.0 June 83');
put s k i p ( 21 ;

put skip list (• At this pcint you should have created
a database and are now ready to run')

;

put skip list ('your test of the NPS SPY-1A Model.');
put skip (2) ;

retry

:

put skip list(' = = = STATIC MODEL MENU ===');
Dut skip list (• (1) TEST run the simulation*) ;

put skip list (' (2) QUIT and return to main menu');
put skip list ('enter 1-2 and <cr> : ');
get list (item) ;

if ( (item<1) |
(item>2) ) then signal error (1);

if item = 1 then do;
put skip list ('Load SPYTEST.CMD from another

system CRI/SBC.
• )

;

put skip list ('When complete, enter 0<cr>
to begin => ') ;

63





get list (start)

;

if stan a = then signal error (1) ;

e
end;
else

do tine = 1 to endtime:
call await (thresho Id)

;

threshold = threshold +
call load buffer (time) ;

call xfer~msg;
call advance evd;
call displayltime) ;

nd

return;

revert error (1) ;

end static;

64





B. AW1IT.A86

Prog Name
Date
Written by
For
Advisor
Purpose
written to
Scheduler.

AWAIT. A86
8 June 83
Todd B. Kersh
Thesis (AEGIS Modeling Group)
Professor Kodres
This module checks to see if

0E000:56 14 of common memory by
a msg has
the Radar

been

EftTA

CODE

cseg
public

await

:

push
push
push
push
HlOV

await

ax
di
si
es

ax,Ce000h
mov es,ax
mcv di,06020h
mov si,[fcx]
lcds ax

poll

:

ax,es:[ di ]

poll
es
si
di
ax

end

cmp
jnz
pop
pop
pop
POP
ret

; get common mem. base
; assign to eseg base
; point to eve addrs.
get threshold
; put it in ax reg.

compare eve to thr
; if no new msg, wait
: else return

65





C. LCADEOFF.PLI

Prog Name
Cate
Written by
For
Adviser
Purpose

LOADBUFF.PLI
3 1 May 83
Todd B. Kersh
Thesis (AEGIS Modeling Group)
Professor Kodres
This module is part of the Static Model

and will extract the proper sector of output msgs (e.g.
tbl_8s) from the database on the Remex DW, based on the
current value of delta t, and place the data in the
commen memory buffer. *"

*/

load_fcuffer: procedure (time^in) ;

declare
time in fixed,
send"~mess entry,

builc_cma"_mess entry (bit f 16) , fixed binary (15) ,

fixed binary ( 15)

,

fixed binary(7), fixed binary (7) ,

bit (16) f bit (15 |

-

fixed binary ( 15) )

;

declare
status fixed binary (15) static init(O),
sect fixed binary(7),
word count fixed binary (15) static init (256) ,
mem b"it(16) static init ( '5500' b4) ,

msb bit(16) static init ( '000a* b4) ,

track fixed binary (15)

,

head fixed binary(7) .

rdw wrt bit(16) static init (• 10 10 • bU) ;"/* "10 10" means the REMEX will read the
hard disk and write to com. mem. buffer. */

head = ; /* this sets head to »D" drive */

/* This determines the sector based on 39 sectors/track */

sect - 1 + mod (t ims_in,4 0) ;

/* This determines the track */

track = 1 + trunc (time_in/39) ;

/* Max tracks available on the REMEX is 210
therefcr, to prevent running out of memory...*/

if track > 210 then do:
put skip list ( 'The database store is full. 1

) ;

put skip list
(• This run is recorded as , ,time_in,' delta ts.') ;

put skip list
To create a longer run, change the value of dslta_t. t

);
return;
end

;

/* This procedure builds the command message
required for the Remex Data Warehouse to write the
data tables located in the buffer corresponding
to the value of • time_in ' */

call tuild_cmd mess
(r dw_wrt , status, track, head, sect, mem, msb, word_count) ;

/*
Re

The procedure sends the command message to the
mex Eata Warehouse to perform the required

66





writs operation */
call send mess;

end load fcufrer;

67





D. XFEB.A86

Prog Nam*
Date
Written by
For
Advisor
Purpose
rhe common
0E000:5646

Data

XFER. A€6
8 June 83
Todd B. Kersh
Thesis (AEGIS Modeling Group)
Professor Kodres
This module will transfer a output msg.from

memory buffer to the common memory location
to be read by the Track Processing Module.

Code

cseg
public xfer_msg

xfer_msg:
push di
push si
push ss
push ds
push ax
push f
mov ax f OeOOOh
mcv es, ax
mcv si,C5500h
mcv di,06055h
mov ex, 5

move msq :

mov ax,es: [si]
es: [ di j , axmcv

inc si
inc G *

inc di
ire di
loop mo ve_msg
pep!
pop ax
pep ds
pep as
pep c

j

pop di
ret

; get common mem. base
; assign to eseg

; set loop ctr to
; pass 5 words
; (one tbl_8) .

;load word from buffer
;stora word into msg.

; get next word loc.

; get next word loc.

;loop until done

end

68





E. DISPLAY. PLI

Frog
Date
writ
For
Advi
Purp
simu
user
NPSV

Name

en by

DISPLAY. PLI
8 June 83
Todd B. Kersh
Thesis (AEGIS Modeling
Professor Kcdres
This will display the status

Group)
scr
ose
laticn for the RSP Stat ic* Model, and allow the
to make measurements tc determine the speed cf

SPY-1A Model execution.

of the test

the

display: procedure (time);

declare
time fixed,
endtime fixed external;

/*put listjfascii (26) ,ascii (30) ) :*/
put skip list(' === RSP STATIC MODEL SIMULATION =
put skip (2) ;

put skip list ('TIME: •, time, < ENDTIME :', en itime) ;

end display;

==');

69





F. ADV1EVC.A86

Prog Name :

Dare :

Written ty:
For :

Advisor :

Purpose
Signal
SPY-1A

ADV1EVC.A86
8 June 83
Todd B. Kersh
Thesis (AEGIS Modelling Group)

: Professor Kodres
: This module will simulate the Radar

Processor sending a new data msg to the
Cctrcller Model.

Data

Cede

cseg
public advance eve 1

advance evd:
PUS'S €S
push di
push ax
mcv ax,
mcv
mov
mcv
inc
mcv
pop
pep
po
re

end

OeOOOh
es,ax
di,06055h
ax,es: [ di]
ax
es: [ di ] , ax
ax
di
ee

; get com. mem.
; point to evd

; get value
; increment value

; store evd

base to -sag

70





APPENDIX C

COMMON ASSEMBLY LANGUAGE LISTINGS

A. ELDMESSG.A86

Prog
Date
writ
For
Advi
Purp
co mm
Ware
o per
fell

b

Name

tten by

sor
cse

BLDMESSG.A86
May 83
Todd B. Kersh
Thesis (AEGIS Modeling Group)
Professor Kodres

. This primitive module is a general
and msq. passing routine to the Remex Data
house, "to be used for both Write and Read
ations. It expects to get parameters as
cws frcm the calling Pit program:
uild cmd mess (wcrd 0, word 1. word 2,

wcrd 3 high byte, word 3
lew byte, word 4, word 5,
wcrd 6)

DSEG

ESEG

EUBL

Data Segment

CCMMEM EQO

CRG 5400H
IC STATUS

MODIFIERS RW
STATUS RW
TRACK NO RW
BEAE SECT RW
MEM IDDR RW
MSB" RW
WORD CNT RW

0E000H

Cede Segment

CSEG
PUBLIC EUILE_CME_MESS

EUILD CMD MESS:
~ ETJSH ES

FCSH CX
EUSH SI
FCSH BX
EUSH AX
ECSHF

MOV AX,COMMEM
MOV ES,AX

CLD
MCV SI ,[ BX]

LCDS AX

MCV MODIFIERS, AX
aED EX,0 2H
MCV SI ,[ BX]

LODS AX

set source index to point
; to 1st parameter.
; AX = para 1, SI incremented
; to pornt to next parameter.

; point to next parameter address
set source index to

; point to next para.

71





MCV STATUS, AX
ADD BX r 2H
MCV SI, [EX]

LCDS AX
MCV TRACK NO , AX
ADD EX,0 2E
MCV SI,[ BX]
LCDS AL
MCV AH,AL
ADD EX,0 2H
MCV SI ,[ EX]
LCDS AL
MOV HEAD SECT, AX
ADD BX,0"2H
MOV SI ,[ BX]

LODS AX
MCV MEM ADDR,AX
ADD BX,U2H
MCV SI, [EX]

LCDS AX
MCV MSB.AX
ADD EX,0 2H
MOV SI ,[ BX]

; point to next parameter addrsss
;set source index to point

; to next para.

; point to next parameter address
; set index to point to next para,

get byte para in al rea.
move al to ah

LCDS AX
MCV WORD
POPF
PCP AX
PCP BX
PCP SI
POP cx
PCP ES

;word is now complete for movement

; point to next parameter address
;set source index to

;point to next para.

;
point to next parameter address

;set source index" to
;point to next para.

;
point to next parameter address

;set source index to
;point to next para.

CNT,AX

END
RET

72





E. SHDMESS1-A86

Prog Na&e : SNDMESS1.A86
Date : May 83
Written ty : Todd B. Kersh
For : Thesis (AEGIS Modeling Group)
Advisor : Professor Kodres
Purpose : This primitive module sends the command
message located in common memory at 0E000:5000 to the
Eemex Data Warehouse for execution. It checks the
Status Word in the msg. for successful msg completion.

DSEG

Eat a Seament
— — — -- = = — == = — —= — —

—

:-————

EDW EEEOE
EDW'BESULT
BDW~EIR
SUCCESS
FAILURE
EDW BEADY
TRIES

DB
DB
DB
EQU
EQU
EQU
EQU

; EDW interface cent

EDW
EDW"
REW"
BEW"

CME REG
"STATUS REG
'ADDE LU
'ADER""HI

EQU
EQU
EQU
EQU

1

1

1

1

08H
05

; code
;code

for
for

opn
opn

success
failure

; constant

ports ==>

70H
71H
72H
73H

ESEG
EXTRN STATUS :WORE

Code Segment

CSEG
PUBLIC SEND MESS

SEND

SEND

MESS
POSH
PESH
POSH
POSH
MCV
MCV
MCV
EDW
'IN A*

AND

AX
ES
C X
AX,OE000H
EX ,AX
CX,TRIES
MESS:
L.RDW STATUS REG
AL,RDW~ READY"

;init. loop counter

CMP
JNE
MOV
CUT
MOV
OUT
MOV
CUT

CHECK BDW
HCV
CMP
JE
CMP

AL,08H
SEND REW MESS
AL,1CH

""

EDW CME REG,AL
AX,U54 0T)H
EDW ADEE LO, AL
AL ,A"H
PDW ADEB HI,AL
RESULT:"

IX,STATUS
AX rSUCCESS
BDW SUCCESS READ
AX,FAIL0RE "

;check if interface ready
;to process cmd packet...
;ready?

; if not repeat

;load extended address
;offset of packet

;transfer low byte

;transfer high byte

;read status word
;check for success

check for failure

73





JNE RDW RETRY
JKPS CHECK BDW RESULT

BDW RETRY;
~ MCV RDW ERECR,AL ;save error code

MCV STATUS, ;clear status word
LOOP SEND RDW MESS ;loop if counter <>
MOV RDW RESULT, OFFH jreturn failure code
JMPS RDW EXECUTE RET

RDW SUCCESS RSID:
MCV RUW RESULT, 00

H

;return success code
RDW EXECUTE SET :

" POP CX~*
POP ES
POP AX
PCPF
RET

END

74





APPENDIX D

SPY-1A MODEL SIMULATION PROGRAM LISTINGS

A. SPYTEST.PLI

/*
Prog Name
Date
Written by
For
Advisor
Purpose

SPYTEST.ELI
8 June 83
Todd B. Kersh
Thesis (AEGIS
Professor Kodr
This is a test

operation of the NPS SPY-1A
tabl 58 data in common memo
from~the Static Model, afte
the operation of the TrackV
spy_test: procedure;

declare
init entry,
advance evc2 entry,
threshold fixed bm(1
awaitl entry (fixed b
i fixed binary (15) ;

Modeling Group)
es
module that simulates the
Model. It will update the

ry upon the event count update
r a delay loop that simulates
Frocessor and Radar Scheduler.

5) static init ( 1) ,

inary (15) ) ,

/* This will initiate the eventcounts to */

call init;

do while (• 1 • b) ;

call advance_evc2; /*

call await 1 (threshold

This simulates sending a new
dwell cmd. msg. */

) ; /* wait for results
e.g. tbl_3 */

/* This is a delay lo
processing time. */

threshold = threshold

op simulating SPY-1A Model

1;

do i = 1 to 50;
put skip list('SPY-1 IS PROCESSING DATA »);

end ;

end; /* while */

end spy__test;

75





E. IHIT.A86

Prog Name
Date
Written by
For
Advisor
Purpose

INIT. A86
19 June 83
Todd B. Kersh
Thesis (AEGIS Modelina Group)
Professor Kodres
This module initiates the

memory locations for the eventcounts to 0.

Data

aseg

eseg
public eve 1 fe vc2

org 06 2 Oh
evc2 rw
evc1 rw 1

Code

cse
liepub

ini
"push
push
mcv
mcv
mcv
mov
mcv
pep
pep
ret

init

ax
es
ax,0e000h
es , ax
ax ,0
evd, ax
evc2 r ax

es
ax

;set exeg base to com
;set ax to
;set eventcounts to

mem

end

76





C. AHAIT1.A86

Prog Name
Date
Written by
For
Advisor
Purpose
been updated
Radar Signal

AWAIT1 .A86
8 June 1983
Todd B. Kersh
Thesis
Professor Kodres
This module checks to see if an eve. has
at 0E0C0:5616 of common memory by the
Processor Simulator.

Data

iseg

eseg
exxern eve 1 tword

Cede

eseg
public awaitl

await 1

:

push si
push ax
push es
mov ax r 0e000h
mcv es,ax
mov si,<" bx ]
leds ax"

poll

end

emp
jnz
pep
pep

III

ax. eve 1

pell
es
ax
si

; get com. mem base in eseg
get parameter - threshold
; load it in ax reg.

; compare eve to threshold
; if no new message sent, wait
; else, re-urn

77





D. ADV2EVC.A86

Prog Name : ADV2EVC.A86
Date : 19 June 83
Written by : Todd E. Kersh
For : Thesis (AEGIS Modeling Group)
Advisor : Professor Kodres
Purpose : This module will simulate the Rada:
Scheduler sending a new dwell command to the RSP

Eata

dse<

eseg
extrn evc2:word

Cede

cseg
public Advance_evc2

advance evc2:
pusli €S
push ax
mcv ax, OeOOOh
mov es,ax • get ad dr. o f

i in eseg
inc evc2; advance event count
pep ax
pop es
r€*

coram. mem. base

end

78





APPENDIX E

OBJECT-ORIENTED DESIGN OF THE DYNAMIC MODEL

A. DEFINE THE PROBLEM

A system is required that will interface with existing

SPY-1A Padar Controller modules and simulate the Signal

Processor of the Radar. The required interface will actu-

ally include the Radar Output Module and the Radar Return

Module, and the Beam Stabilization Modules. The Signal

Processor Simulator must contain a database representing the

environment the Radar will probe for target tracks. The

database must be user changeable at any given time during

the operation (i.e. add target tracks, delete target tracks,

and change target tracks) so that the logical operation of

the SPY-1A Radar Modules (Radar Scheduling and Track

Processing) can be tested and explored.

B. DEVELOP AN INFORHAL STRATEGY

The database for the signal processor will capture the

information for each target at discrete time intervals

needed tc define it's position. The information maintained

about each target track will include it. f s actual position

(x,y,z,r) and it's acceleration components (ax, ay ,az ,ar) at

a discrete time interval (t) . Interaction operations that a

user may request include - initiation of a target track over

a range of time (Ti —> Tn) , deletion of a previously

entered target track throughout all or part of it's initi-

ated range of time, and changing a previously defined target

track at any time during it's pre-defined time range. The

user will also be able to start and stop the simulation at

any time. The user will have a two dimensional display of

79





the radar environment with current tracks and relative posi-

tions symbolized during the simulation. A status report of

current targets will be available while in a non-running

mode tc assist the user in the environment definition.

C. FORMALIZE THE STRATEGY

1 • Identify the Objects and thsir Attribut es

a. SIMULATION_OPERATTONS

t. TRACK_DAT2:

Target Information:

target_lD

actuai_ position

acceler ation

time

2 • Identi fy Oper ation s on the Objects

a. SIMULATION_OPERATIONS

b. DISPLAY:

Start

Stop

c. TRACK_DATA:

Sta tus_Repcr

t

Quit

Target_Infor mat ion:

create

delete

change

Database

80





3 • Establish the In ter faces

SIMULATION OPNS-
( subprogram)

SIMULATION OPNS
(packagef

create tgt
delete~tgt
change~tgt
status~rpt
quit

TRACK DATA
(package)

TGT_INFO
(packag e)
tgt_rscord

DISPLAY
(package)
start
stop

DATABASE
(package)
acti ve_records
data

Figure E. 1 Object-Oriented System Graph.

Cede the Package Specifications in Ada

cackaae TRACK DATA is
package TG~T_INFO is

end TGT_INFO;

package DATAEASE is

end ESTAEASE;
end TRACK_DATA;

package TGT INFO is
type ENt> TIME is constant := 1000;
type COORDINATES is (X,Y,Z,R):
type ACCEL VECTORS is ( AX, AY , AZ , AR) ;

type EISCRETE_TIME is range .. END TIME;
type TARGET is record

LCCATION
ACCELERATION
TIME
end record;

end TGT_INFO;

COORDINATES;
ACCEL VECTORS;
DISCRETE TIME;

81





package EATABASE is
use TGT INFO;
MAX RECDRDS : constant := 20;
type FECCRD INDEX is range .. MAX RECORDS;
typa TRACK "RECORDS is array (RECORD"INDEX) Of TARGET;
ACTIVE TGT5 : RECORD INDEX;
DATA " ; TRACK "RECORDS;

end DATABASE;

with TRACK EATA;
use TRACK~DATA;
package SIMULATION OPNS is

type OPERATICN~is (CREATE TGT, DELETE TGT r CHANGE TGT,
STATUS~*RPT,QUIT) ;~

function GET return OPERATION;
procedure CREATE TGT;
procedure DELETE~TGT;
procedure CHANGE^TGT;
procedure STATUS RPT

;

procedure QUIT;
end SIMULATICN_OPNS;

with TRACK EATA;
use TRACK"*EATA;
package DISPLAY is

type CONTROL is (START, STOP) ;

function RUN return CONTROL;
procedure START;
procedure STOP;

end DISPLAY;

Further programming would design and build the subprograms,

functions, and procedures defined by these package

specifications.

82





APPENDIX F

SIGNAL PROCESSCR MODEL USEES HANOAL (VER.1.0)

A. GENERAL

This manual is for use with the NPS AEGIS Modeling Group

AN/SPY-1A Radar Controller Model: Signal Processor

Emulation version 1.0. It does not explain the structure of

the modules that make up the program, only it * s functional

components and how they might be utilized to -est the SPY-1A

Model. For further information about the program design and

implementation, see Kersh,T.B., Signal P roces sor Interfac e

Simulation of the AN/SPY -1 A Radar Controll er, Masters

Thesis, Naval Postgraduate School, Monterey California 1983.

The manual is divided into the two major functional

areas: developirg the target database to be stored in the

REMEX Data Warehouse, and running the Static Model of the

Signal Processor against a simple SPY-1A simulator. It will

be assumed that any potential user of this system is

familiar with the boot procedure for the Remex Data

Warehouse disk system. Assuming the user has booted from

the REMEX B: drive and logged into the REMEX D: drive, place

the Signal Processor system disk in the C: drive, and type:

D>C:RSP <return>

At this point the Signal Processor Emulation System will

load and the remaining database development and model opera-

tion will be menu driven.

The following functions are available within the Signal

Processor Interface Simulation -

TARGET DAIAEASE:

1. CREATE the inital target-list and initial database.

83





2. DELETE any targets at any specified descrete time.

3. CHANGE the parameters of the parametric equations

representing the target tracks at any specified

descrete time.

4. FBINT the current target-list re the terminal screen

cr the printer at the specific descrete time repre-

sented by the target-list.

SIMULATION:

1. RUN will execute the Static Model in a test environ-

ment to be used for testing the Signal Processor

Interface Simulation System.

After development, the user can document the targets

contained in the tarcet-list at a particular descrete time ,

so that he has a hard-copy record of the trend of his data-

base. This feature will be important in determination of

the effect cf different target combinations and densities on

the SEY-1A Controller Model. The Signal Processor Interface

Simulation Target-Database development system should be

usable in cenjuction with ether testing systems devised by

future AEGIS Grcup members for the logical testing of the

SPY-1A system.

E. CONSTRUCT TARGET DATABASE

1 . £ain Menu

Just prior to the display of the main menu, the

program will ask for user input defining the descrete time

intervals to be used for the update of the buffer used by

the Target-Database system. The ratio of dwell commands

received from the Radar Schedular Module to the target-

buffer update, multiplied by the actual turnaround time of

the SF-1A Controller Model will be the real-time achieved by

the system. The user may assign values from .1 to 1 to this

ratio value. The next question asked of the user is how

84





long ths sinulation will run. The maximum possible length

is dependent on the storage space available on the REMEX

Data Warehouse, and the time is based on the average assumed

dwell command interval time received from the SPY-1A Radar

Controller Model. To determine the simulation run limit in

terms of descrete time increments, one must realize that

each descrete time increment is in one-to-one correspcndance

with the sectors used to record the database on the REMEX.

Therefore, since there are 39 sectors per track, and 210

tracks available for use, there are 8190 available descrete

time intervals available for a simulation run. The real-time

length for the simulation run is then dependent on the

*** MAIN MENU ***

What course of action do you wish?
(1) CREATE a database of tracks

(you must do this first)

!2)
DELETE a track from the database

3'\ CHANGE a track on the database
4) PRINT the current target list

After a database is satisfactory you may:
(5) RON a simulation

(insure the rest of the SPY-1 Model is setup)
(6) QUIT and return to the operating system

(enter 1-6 and <cr>) :

Figure F. 1 Signal Processor Emulation Main Menu.

descrete time ratio. Assuming a negligible time for

updating the target buffer from the REMEX, and a turnaround

response time from the SPY-1A Controller Model of .001

seconds, if a ratio of "1" were chosen, the maximum time

available for a simulation run would be:

85





1. "1" second = .001 sec. * 1000 (or 1000 dwell commands

issued per buffer update)

2. since the target-buffer is updated once every second,

there are 8190 seconds of maximum simulation time

available.

The next item appearing on the screen is the Main

Menu. The first thing required is to build a database in

the REMEX Data Warehouse. To dc this, the user will

initially pick choice (1) CREATE. After initializing his

Database, the user be able to move forward in descrete time

and delete target tracks completely, or just change the

parameters cf the track. It is suggested that the user use

option (4) PRINT after each iteration of the previous two

options and after CREATE, to maintain a record of the modi-

fications made on the database. When the user has finished

with his Target Database, he may request to (5) RUN a Static

Modal simulation. In this mode the SPY-1A Controller Model

Simulator "SPYTEST" is designed to test the Static Model.

Further instructions en the use of this option are discussed

in Section C. Of course, at any time after the user has

returned to the Main Menu, he may choose option (6) QUIT to

return tc the operating system.

2- Create Database

To use the Signal Processor Interface Simulator, a

Target-Database must first be constructed. A Target-List is

used which contains target data to construct a

Target-Database. The parameters used to set up the

Target-List for each target are the constant values used in

the parametric equations shown in Figure F.3 These parame-

tric equations derive from Boone, N.A., A M ul ti

m

i cr processor

Approach to simulate I/O for the AEGIS AN/SPY-1 A Radar

Controller, Masters Thesis, Naval Postgraduate School,

Monterey California, 198 1. Boone's work concerns the

86





=== CBEATE TARGET MODULE ===

Initiate target #

(b) ? (-32, +32)
Y~velocity (v) ? (-32, +32) m'/sec:
X_acceleration
Y acci
Z"alt:

:eleration (c) ? (-. 15625, + ."0T5625) m/sec/sec:
:eleration (w) ? ] -.0 15625, + . 015625) m/sec/sec:
itude (d) ? (0,20000)ft:

create more targets? (Y or N) :

Figure F.2 CBEATE Function Menu.

(1) x (t)

z (t)
s

a
u
a

+
+

b*t + c*t*t
v*t + w*t*t

(2) X ft)

z (t) i

a
u
a

+
b*t + c*t*t
v*sin (w*t)

(3)

z (t)
=

a
u

+
+

b*cos (c*t)
v*t + w*t*t

W xm
z (t) a

a
u
a

+
+
b*cos (c*t)
v*sin (w*t)

Figure F.3 Parametric Equations.

simulation of the AEGIS Command and Decision functions, and

these equations were utilized to maintain compatiblity

throughout the Mcdel. After defining the parametric equa-

tion for the first target, the user may choose to define

87





further targets and will be prompted similarly as previously

shown. When he is satisfied -hat the target-list is

complete, he may indicate that no more targets are to be

created, and he will te returned to the Main Menu. At that

time it is recommended that the user request a PRINT of the

initial target-list for future reference.

3 • Delete Targets

—

i

= = = DELETE TARGETS MODULE ===

WHAT TARGET DC YOU WISH TO DELETE?
(TGT. NUM. RANGE 1- ):

,

Figure F.4 DELETE Function Menu.

Frier to the Delete Menu, the user will be asked "At

what time do you want to delete a target?". The user is

being asked to define the descrete time within his previ-

ously defined range of descrete time that he wishes to

delete a previously defined target. It is important tha -1

: the

user have developed a plan for target modifications based on

his defined descrete time range, since the Target-Database

development routine will not allow one to recover deleted

targets. After answering the time question, the Delete menu

will be displayed, and the target list appropriately

updated. After Deleting a target, the user will be prompted

to "continue (Y/N)?". He may answer Y (es) to delete more

targets or N(o) to return to the Main Menu.

88





4 • Cha nge Tar gets

Tte Change choice from the Main Menu will first

Frompt the user requesting what time he wants to change a

target, within his predefined descrete time range. After

answering, the user will see the Change menu (see Figure

» CHANGE TARGETS MODULE ===

WHAT IS THE TARGET NUMBER YOU WISH TO CHANGE?
(TGT.NUM. RANGE 1- ):

WHAT CATA ITEM IS TO BE CHANGED?
(1) PARAMETRIC EQUATION
(2) EQUATION PARAMETERS

(if the choice is one, then:)
WHAT IS THE NEW EQUATION NUMBER (1-4)?

(if the choice is two then:)
WHAT ARE THE NEW PARAMETERS:

X_range (a)? (-256 ,+256) nm:

Z_alt. (d) ? (0,200 00) ft:

(and fcr either choice..)
DC YO0 WISH TO CHANGE ANOTHER TARGET?

(Y/N) :

Figure F.5 CHANGE Function Menu.

F.5). Again, let it be emphasised that it is important tc

have a plan for the cverall target database since it is not

possible to gracefuly go backward in sequential time as a

target database is developed. Also, it is again recommended

to the user to obtain a print of the Target- List as seen as

you return tc the Main Menu.

89





C. BON STATIC MODEL

The SEY-1A Controller Model Simulator "SPYTEST.CMD" is

provided as a tool to test the Radar Signal Processor

Interface Simulation Static Model. "SPYTEST.CMD" is just a

simple eventcount and sequencer module. It contains a delay

loop to simulate the time between the receipt of a "raw

data" message from the Signal Processor Interface, the

subsequent processing of the target data, and the resultant

dwell command message generated to the Signal Processor

=== RSP STATIC MODEL ===
version 1.0 June 83

At this point you should have created
a database and are now ready to run
the Static Model.

=== STATIC MODEL MENU ===
TEST run the simulation
QUIT and return to main menu

enter 1-2 and <cr>:
\l\

Figure F.6 STATIC MODEL Function Menu.

Interface. The delay loop is arbitrarily configured at this

time, and the user should consider contriving a delay that

more closely represents the turnaround time the SPY-1A

system should provide. When entering the test mode, the

user will be prompted to "Load SPYTEST.CMD from another

system CBT/SEC. When complete, enter "0"<cr> to begin ".

When the SPY-1A Controller Simulator has been initiated,

the Static Model will begin operation after the user has

typed "0<cr>". The display for the Static Model is shown in

90





=== RSP STATIC MODEL SIMULATION =«

TIME: ENDTIME:

Figure F.7 STATIC MODEL Display-

Fig. F.7, and provides the user with only a minimum ammount

cf information to determine the progress and speed of execu-

tion for the SPY-1A Model. Since the Static Model and its

inherent display functions will be part of the timed data

garhered by the user, it is recommended that the SPY-1A

Contrcller Simulator te utilized to measure the Static Model

time. The measured Static Model run time can be used in

future rur-time testing of the NPS SPY-1A Controller Model

to determine net SPY-1A Controller Model achievable sueed.

91





LIST OF REFERENCES

1. Grant, J.V. Ill, A Multi-Microprocessor Based Mod si of
th.§ Ae^i§ AN/SPY- 11" Pa"5ar Ton][roT7 Raa"ar Sclelu ler"
Process, Master's Thesis, Haval Postgraduate "Scnooi,
HcnTerey California, 1981.

2. Cech, J. V., A Multi- Microprocessor Base d Model of the
Aegis AN/SPYrJI Radar Con-roT: " Trade Processing,
laser's Thesis, Mval Postgfacluate School, MonTerey
California, 1982.

3. Bccne, N.A. , A Multi

m

icr o processor Approach to
Simulate I/O for Fhe Ii:5T"^I5ZI'P7ZT^~^a^ar~CcnTroTler7
Hasler^s" Thesis, TTavaT PosfgraaHaTe School," lonrerey
California, 1981.

4. Bocch, G. , Soft ware En gin ee rin g with Ada,
Ben jamin/Cummings IncT, 7983."

10.

Riche, R.S. and C.E. Williams, A Software Foundation
for AN/SPY-1 A Radar Control, Master's Thesis, TJaval
PostgraSuale Sc"HooT,~'Hon :£erey California, 1981.

5.

6. Almquist, T.V. and D.S. Stevens, Alteration and
Implementati on of the CP^/M-86 O perating lx§l§JS ~^°L a
Hulfi-user Env iro nment 7 ~TTasrerTs Thesis. TJaval
Postgraduate Scnooi, lonterey California, 1982.

7. EX-CELL-0 Corporation, REMEX Technical Manual for Data
Wa.r_§ bouse Models RDW 3YUQ, $D5 T22I7 T9T97

8. EX-CELL-0 Corporation, REMEX Product R efe rence M anua l

JLSil Performance Specifications, 7"9T9.

9. Klinefelter, S.G., Implimentation of a Real-Time,
Distr ibu ted Ope rat ing "^ysTem Tor a Multiple C~oratmTIr
Hysfem, ftas^er's Thesis. " Taval PosFgrac[ua*'3~S'chocl,
HcnTerey California, 1982.

Micropclis Corporation, Micropolis Specification
1220 Series Rigid Disk Drive Subsystems," C"Eatswcrth7
T!alifcfnia7 T9"8UT

11. Digital Research Corporation, C P/M-8 6 Operating
Sistsms Guide, 198 1.

12. Digital Research Corporation, PL/I-86 Manual, 1983.

92





INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 2 2314

2. Defense Logistic Studies Information Exchange 1

U.S. Army Logistics Management Center
Fcrt Lee, Virginia 2380 1

3. library, Code 0142 2
Naval Postgraduate School
Mcntery, California 93940

4. Department Chairnan, Code 52 2
DeDartment of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. Professor (Jno R. Kodres , Code 52Kr 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

6. Captain Brad Mercer, USAF, Code 52Zi 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

7. CPT Icdd B. Kersh 2
HC, U.S. Army CECCM
ATTN: DRSEL-TCS-CR
Fort Monmouth, New Jersey 07703

8. RCA AEGIS Data Repository 1

RCA Ccrporation
Government Svstems Division
Mail Stop 127-327
Mcorestcwn, New Jersey 08057

9. Library (Code E33-05) 1

Naval Surface Warfare Center
Dahlgren, Virginia 22449

10. Daniel Green (Code N20E) 1

Naval Surface Warfare Center
Dahlgren, Virginia 22449

11. Curricular Officer, Code 37 1

Computer Technology Curricular Office
Naval Postgraduate School
Monterey, California 93940

12. Dr. K.J. Gralia 1

Applisd Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20707

13. Dana Small 1

Cede 8242, NOSC
San Diego, California 92152

93





14. CFT Mark R. Kindl r U.S.A.
413 E. Washington St.
Villa Park, Illinois 60 181

15. Dr. Eert Y. Kersh
260 Sacre Lane
Mcnmcuth, Oregon 87361

94









~- * ool.

Thesis
K3894
cl

201684

Kersh
Signal processor

interface simulation
°f the AN/SPY-1A radar
controller.

5 OEC S$ 30955

Thesis

K3894
cl

201G8**

Kersh
Signal processor

interface simulation

of the AN/SPY-1A radar

controller.



thesK3894 ,

Signal processor interface Simula ion ot

3 2768 002 12135 2

DUDLEY KNOX LIBRARY

HIHI Mi
V i.Tf••'iVm> >'.fi'J .:s" V,!lk>AJ.)i'

.''•'

1
''

'<•'

^P8"

SffifflS!

'','.


