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ABSTR?^CT

A general combustion and heat transfer model for porous

media subject to Darcy flow is formulated. The transient

one dimensional model treats the combustion process in two

phases. During the initial phase, combustion occurs within

the porous medium. The second phase occurs when the exo-

thermic reaction moves to the air inlet surface of the medium

resulting in surface recession. The temperature dependency

of the system parameters and thermophysical properties is

taken into account. An analysis of combustion in a carbon

porous medium is presented, as well as an assessment of the

accuracy of the model.
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I. INTRODUCTION

Studies were conducted at the Naval Weapons Center, China

Lake, California to assess the survivability of the F-18

aircraft when exposed to open pool fires. A portion of the

F-18 aircraft is constructed of graphite-epoxy materials.

When this composite material is exposed to a severe thermal

environment, the epoxy burns off at a low temperature (about

400-500 degrees Fahrenheit) leaving behind a porous graphite

mat. Experiments were conducted by J. Fontenot [1] to evaluate

the combustion behavior of the porous graphite or carbon mat.

Due to the complex behavior of the combustion observed for the

carbon fibers, a mathematical model to simulate this behavior

was developed by Vatikiotis [2] . The model was formulated to

consider a porous medium composed of cylindrically shaped

fibers, typical of fiber reinforced composite materials. The

details of the initial effort were presented by Vatikiotis.

Significant improvements have been made to the initial combus-

tion model, and the model has been extended to consider

spherically shaped particles, typical of thermal flow reactors.

The initial work of Vatikiotis [2], where it applies to the

present investigation is included in the discussion for the

sake of completeness. Other analytical investigations taking

a similar approach, but concerned with other aspects of com-

bustion or thermally active porous media, have been performed

by Kordylewski [3] , Sahota and Pagni [4] , and Mehta, Sams and
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Luss [5] . Kordylewski performed a numerical analysis of homo-

geneous combustion in a two dimensional reactor. The objec-

tive of Kordylewski ' s investigation was to show that the flow

within the reactor influenced the conditions necessary for

ignition. Sahota and Pagni considered the transient behavior

of heat transfer in a porous medium when exposed to a fire.

Their analysis was part of an overall investigation for deter-

mining the internal stresses in a structure caused by a fire.

Combustion of the porous medium was not a consideration.

Mehta, Sams, and Luss investigated the transient temperature

response of a packed-bed reactor when the entering fluid

temperature was decreased. Their model assumed that the

temperatures of the porous solid and the fluid were the same.

Slattery [6], Yaron [7], and Kassoy [8] present three

approaches for mathematically modelling a porous media.

Slattery' s and Yaron ' s approaches were similar in using inte-

gral methods in their development. Slattery considered only

mass transfer whereas Yaron treated transport processes in

general. Kassoy 's approach was based on performing Taylor

series expansions of energy transport processes with respect

to a differential volume of a porous medium. An energy balance

yielded two differential heat transfer equations, one for the

porous solid and one for the fluid. A fundamental requirement

of this approach is that the particle diameters remain small

with respect to the thickness of the porous medium.

Although the above investigations were concerned with

specific aspects of thermally active porous media, the present

13





combustion model was developed to treat a larger class of

problems (i.e., combined mass transfer, heat transfer, and

combustion) . In contrast to other investigations, the present

model takes into account the temperature dependency of all

the thermophysical properties of the air and the geometric

parameters of the porous medium. The physical parameters such

as porosity, permeability, and thickness affect the magnitude

and behavior of pressure-driven air flow within the porous

medium. As discussed by Kordylewski [3] , the air flow influ-

ences the conditions for ignition. Therefore, sensitivity

analyses were performed using the combustion model showing

the effects of these parameters on combustion. In addition,

a functional relation between the internal pore velocity and

an initial uniform temperature distribution needed to sustain

combustion is presented. The initial work of Vatikiotis [2]

showed that the initial conditions are important in deter-

mining whether or not sustained combustion will occur. An

analysis is presented showing the dependence of combustion

on the shape of the initial temperature. In addition, the

effects of the boundary conditions are examined using the

combustion model. Specifically, there is a change in the

behavior of combustion when insulated boundaries on the porous

solid are changed to permit heat transfer by radiation. The

Semenov model is used to explain the behavior observed during

the analyses discussed above. Although the Semenov model

was originally proposed for homogeneous combustion, the

14





results show that the Semenov model can be applied to hetero-

geneous combustion in porous media.
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II. DESCRIPTION OF THE PROBLEM

The problem under investigation is that of a porous slab,

with a pressure differential across its thickness, in a severe

thermal environment. The effect of the pressure differential

is to induce air flow through the porous medium. This internal

air flow produces two opposing effects, (1) internal convection

heat transfer, and (2) a supply of oxygen for heat generation

by combustion. Whether the porous medium moves towards sus-

tained combustion or extinguishment depends on the interaction

of these effects. A mathematical model was formulated to

provide an understanding of this interaction and its effect

on thermal behavior.

The mathematical model was formulated as follows. Energy

balances on the porous solid and the convected air provide

heat transfer equations for each. The heat transfer mechan-

isms included in the model are (1) conduction, (2) convection,

and (3) radiation. In addition, nonvolatile combustion is

included in the porous solid heat transfer equation as a heat

generation term of Arrhenius type.

The conservation of species law was applied to the oxygen

molecule concentration. The resulting mass transfer equation

includes the transfer mechanisms of (1) molecular diffusion,

and (2) species transport by convection. A teim accounting

for the consiomption of oxygen due to combustion is included

as well. Darcy's law was taken as the constitutive equation

16





for flow through the porous medium. The pressure gradient,

needed to calculate pore velocity, is obtained by solving a

combined Darcy's law and continuity equation.

As the behavior of the system occurs over a large tempera-

ture range, all thermophysical properties which depend upon

temperature, such as conductivity, viscosity, and air density,

are treated as temperature dependent properties. Moreover,

as combustion consumes the porous solid, changes in porosity

and permeability are accounted for in the transient analysis.

In order to provide a general model, a number of boundary

conditions are included in the formulation of the model . A

detailed discussion of boundary conditions is presented in

Section III.H. The final system of equations to be solved are

four transient, nonlinear, coupled partial differential equa-

tions. The three heat and mass transfer equations were solved

by a Galerkin formulation of the finite element method. The

remaining combined Darcy's law-continuity equation was solved

by a shooting method. The details of the solution procedure

are presented in Appendix C.

17





III. THEORY AND BACKGROUND

A. DESCRIPTION OF THE POROUS MEDIUM

For this investigation, a porous medium is defined as a

solid containing interconnected pores (i.e., path for airflow).

There are two classes of porous media, consolidated and uncon-

solidated. Consolidated porous media are those where the

solid constituent or matrix remains rigid. Consolidated por-

ous media may be comprised of either individual particles

attached to one another (e.g., sintered metal), or a solid

where a portion has been removed (e.g., charcoal). Unconsoli-

dated porous media are comprised of discrete particles (e.g.,

granular beds) . The properties of an unconsolidated porous

medium can change if the porous medium is agitated or settling

takes place. Both consolidated and unconsolidated porous

media can have spatially varying properties

.

The physical properties which characterize porous media

(i.e., allow comparison of porous media without regard to class

or form) are (1) porosity, (2) specific internal area, (3) pore

size or diameter, and (4) tortuosity. These properties are

common to both consolidated and unconsolidated porous media.

Porosity, p, is defined as the ratio of void volume to total

volume. The specific internal area, z, is the ratio of in-

ternal surface area to bulk volume. The dimension is the

reciprocal of length. Pore diameter is used to describe the

pore system of a porous medium. The actual shape and size of

18





a pore may be irregular and complex, and would be difficult

to describe geometrically. In practice, there are many con-

ventions used to define the pore diameter. For this inves-

tigation, a hydraulic diameter theory is used and is discussed

later in this section. The tortuosity of a porous medium is

defined as the ratio of the length of the flow path of a fluid

particle to the straight line distance. Originally, tortu-

osity was considered a kinematic property, but was subsequently

adopted for characterizing porous media. Tortuosity is also

discussed later in this section. Scheidegger [9] discusses

various methods used to measure properties of porous media.

Though most methods discussed are based on experimental tech-

niques, the above properties for this investigation are calcu-

lated based on an idealization of the geometry of a porous

medium.

The porous medium was modelled as shown in Figure III.l.

In Figure III.l, D is the distance between the fiber or parti-

cle centers, and d is the particle diameter. The geometry is

idealized since the actual porous medium may be irregular in

particle diameter and distribution. For cylindrical fibers,

the porosity, which was defined as the ratio of void per unit

volume is.

= 1 - j(d/D)^ (III.l)

and for spherical particles.
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p = 1 - J(d/D)^ (III. 2)

The pore diameter is obtained by an expression proposed by

Carman [10]

,

6 = 4p/z (III. 3)

where z is the specific internal area or the particle surface

area per unit volume of porous medium. Expression III. 3 is

analogous to the more familiar form of mean hydraulic diam-

eter, 4V/A, where V is the void volume and A is the wetted

surface area. The specific internal area, z, based on the

idealized geometry of Figure III.l is calculated by.

z = i-TTd/D^ (III. 4)

for cylindrical fibers, and by.

z = ^ird^/D^ (III. 5:

for spherical particles. Expressions III. 4 and III. 5 assume

one half the total internal surface area is effective for

convection heat transfer. This fractional amount of total

area was an estimate based on Fontenot's experimental results

and does not apply to porous media in general. A more general

approach, as presented by Scheidegger [9] , is the Kozeny

21





equation given by.

z = isp^/m)-^^'^ (III. 6)

In equation III. 6, m is the specific permeability or hydraulic

conductivity (discussed in Section III.B), and s is the Kozeny

constant. The Kozeny constant is usually taken as .2 for

specific surface calculations. Advantages to using the Kozeny

equation are (1) the calculated values of specific internal

area are in fair agreement with the experimental values, and

(2) the calculation is independent of particle shape. A

disadvantage is that the Kozeny equation fails for highly

porous fibrous media. The tortuosity, t, is the ratio of the

length of the flow path for a fluid particle to the straight

line distance. For the geometric configuration of Figure III.l,

the tortuosity depends on the ratio d/D. Carman [10] pre-

sents a table of measured tortuosity factors of various materials

and geometries , and points out the differences between the

analytical determinations of tortuosity. Here, we adopt his

recommended value of 1.4. Since particle size decreases as

the carbon is consumed, all geometric properties which depend

on fiber or particle diameter are functions of time and posi-

tion. The model assumes that the carbon matrix remains rigid

as the particle diameter decreases, and thus, porosity in-

creases with combustion. In his discussion on the packing

theory of spheres, Scheidegger [9] states the highest reported

porosity for spherical particles in a stable configuration is

22





.875. Carman [10] reports of investigations of fibrous porous

media with porosities as high as .99. The change in particle

diameter is accounted for, and will be discussed in the sec-

tion on the Arrhenius expression (Section III.D) for carbon

combustion.

B. DARCY'S LAW AND PORE VELOCITY

Reynolds number for porous media is defined by

Re = (p ud)/y (III. 7)
a

where u is the local pore velocity, p is the mass density of

air, and ]i is the dynamic viscosity. Depending on the magni-

tude of the Reynolds number, the motion of the fluid may be

dominated by molecular, viscous, or inertial effects. Most

investigations of fluid flow in porous media have been in the

range of Reynolds number where the flow is dominated by vis-

cous and inertial effects. The Navier-Stokes equations are

applicable in describing the fluid motion in this range of

Reynolds number. However, because of the convoluted geometry

and the necessary boundary conditions (i.e., u = at a solid-

fluid interface) , solution of the Navier-Stokes equations are

difficult for a porous medium. Extensive experimental work,

as discussed by Scheidegger [9] has shown that fluid flow in

porous media is governed by Darcy ' s law for the range of

Reynolds number where viscous effects dominate. The upper

limit (high velocity end) Reynolds number reported in the

23





experimental investigations varied from .1 to 75. As Reynolds

number increases, inertial effects increase. However, Boffa

[11] has shown that for a fixed Reynolds number, inertial

effects diminish with increasing air temperature . For the

problems covered in this investigation, the Reynolds number

did not exceed a value of 5.

Neglecting body forces, Darcy's law for one dimensional

flow is.

Q = - -(^) (III. 8)^ y dx

where Q is the filter velocity or the volumetric flow rate per

unit of cross-sectional area, and dP/dx is the pressure gradi-

ent. The specific permeability or the hydraulic conductivity

of the porous medium is defined by.

m = 96 p (6/t)^ cm. 9)

Expression III. 9 is based on a capillaric-serial model given

by Scheidegger [9] . It should be noted that, in a physical

sense, permeability and porosity are not related. Porosity

is a quantifiable property of the porous medium. Whereas,

permeability is a constitutive property (i.e., a property

specified by a constitutive equation, Darcy's law). As in

the case of Fourier's law of heat transfer, Darcy's law is

not derived from first principles, but has been obtained

24





through exhaustive experimental analyses. The Dupuit-

Forcheimer assumption, presented by Carman [10] , relates

the local pore velocity to the filter velocity by,

Q = pu (III. 10)

The hypothesis of the Dupuit-Forcheimer assumption is that the

local pore velocity is greater than the filter velocity.

Noting that the actual velocity in a single pore is not a

constant, but rather a function of the location within the

pore, the Dupuit-Forcheimer assumption defines an "average"

velocity within the pore.

The continuity equation for one dimensional fluid flow in

porous media with nonconstant porosity distribution is.

^t^ + PP^ 1$ = (III. 11)

Substituting in the Dupuit-Forcheimer assumption and Darcy '

s

Law, the continuity equation becomes.

^ ^ ^p^ 3x ^ m 33^ U d^^dSl ^ dt - ^ (III. 12)

Equation III. 12 along with the boundary conditions can be

integrated to provide the pressure and the pressure gradient

distributions through the porous medium. The boundary condi-

tions are P(0) = P , the ambient pressure, and P (L) = P^ . The
00 ^

Xj
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pressure differential across the porous medium is AP = P - P^

Knowing the pressure gradient distribution, the pore velocity

distribution is obtained from Darcy's law and the Dupuit-

Forcheimer assumption. Derivations of equation III. 12 and

the continuity equation are presented in Appendix A and B,

respectively

.

C. SEMENOV MODEL OF COMBUSTION

In this work we adopt the combustion model of N. N. Semenov

as described in the texts of Frank-Kamenetskii [12] and Vulis

[13] . A brief discussion of those features of the model which

relate to the present investigation will be given. Fundamental

to the model is the relation of reaction rate to temperature,

and the interaction of heat generation and heat transfer.

The reaction rate, R , is represented by the Arrhenius law for

a simple n-th order reaction.

R = A^^expC-^) (III. 13)
^

R T
u

where A is the characteristic time of the chemical reaction,

E is the activation energy, R is the universal gas constant,

T is the absolute temperature, and is the oxygen concentra-

tion. A simple reaction is one in which the rate depends on

the concentrations of the reactants and not on the products.

The heat generated by the exothermal reaction is obtained by

multiplying R by the heat of combustion.
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In Figure III. 2, heat generation R is plotted versus

temperature. The resulting curve is referred to as the S-

curve due to its sinuous shape. The S-curves are distinguished

by two regions. In region I, the reaction rate and tempera-

ture are low and as a result, there is an excess supply of

oxygen. In this region the reaction is controlled by the

temperature, and is called the kinetic regime of combustion.

In the kinetic regime, the reaction rate increases exponen-

tially with increasing temperature. In region II, the higher

reaction rates are only slightly affected by the higher tem-

peratures, and the reaction is limited by the availability of

oxygen. Region II is called the diffusion regime of combus-

tion. It should be noted that S-curves are not obtained by

plotting R versus temperature for a constant oxygen concen-

tration. The flattening of the S-curve at the higher tempera-

tures is due to decreasing oxygen concentration at those

temperatures. The S-curve, which represents the behavior of

an actual system, demonstrates the strong coupling between

temperature and oxygen concentration.

In addition to the S-curves, Figure III. 2 shows two con-

vection heat transfer curves, q^, and qn2' ^'^ ^^^ flow tem-

peratures, T, and T^, respectively. The equation for the

heat transfer lines is of the form.

q^ = h(Tg - T^) (III. 14)
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where h is a convection heat transfer coefficient, and T and

T are the solid surface and air temperatures, respectively,
a

The intersection of the heat generation and heat transfer

curves, R = qn , defines the stable quasi-stationary point A.
g X,

For a system in thermal equilibrium, the solid and air tempera-

tures will remain at T and T, , respectively. Perturbing the

system from one equilibrium position to another causes the

quasi-stationary point to adjust accordingly (e.g., raising

the air flow temperature from T-, to T^ will cause the quasi-

stationary point to move from T, to T^) . At point I, the R

and q^, curves are tangent, and an infinitesimal increase in

temperature will result in a jump in reaction temperature from

Tj to T„. At point I, which is defined as the "critical igni-

tion condition", the reaction moves from the kinetic regime

to the diffusion regime of combustion. Temperature T^ is

referred to as the ignition temperature. Although the des-

cription of the process just presented is for a surface in

which only heat transfer by convection occurs, the underlying

ideas carry over for the total heat transfer at a point in the

porous medium. The heat transfer can include contributions

from conduction and radiation, as well as from convection.

In his original work, Semenov [14] developed his theory

to explain reaction behavior within homoegenous gas mixtures.

Frank-Kamenetskii [12] later adapted this theory to describe

the behavior associated with heterogeneous mixtures (i.e., a

solid surface and air) . In their study of coal combustion.
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Thomas, Stevenson, and Evans [15] state that a "temperature

jump", as described by Frank-Kamenetskii, may or may not

occur depending on the partial pressure of oxygen. This pres-

ent investigation does not consider this aspect of the com-

bustion theory. However, analyses were made using the

present model to determine whether the reaction takes place

in the kinetic regime or in the diffusion regime. Moreover,

the Semenov model will be used to explain these results in

Chapter V.

D. ARI^ENIUS LAW OF REACTION RATE

For carbon reacting in air, Parker and Hottel [16] pro-

posed the following Arrhenius expression for the reaction

2
rate in units of kg-carbon/m -s,

^0

R^ = 9.55 X 10^ —^ exp( "'^'^^^^
) (III. 15)

c u c

where P is the partial pressure of oxygen in atmosphere

units, and R is the universal gas constant (1.986 cal/gmole-

K) . Equation III. 15 assumes a simple first order reaction

for the combustion of carbon in air. Frank-Kamenetskii [12]

has shown that the experimental data of Parker and Hottel is

better correlated by a fractional order reaction, where the

reaction order, n, is between 1/3 and 2/3. Replotting Parker's

and Hottel 's data for n = 1/2, yields the reaction rate ex-

pression used in the present analysis.
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R = 2.Q65xlQ^(R (t))-*-^"^ exp C^'^^^^ ) (III. 16)
^ "2 R T

u c

2
In expression III. 16, R is in units of Ibm-carbon/ ft -

hr, R_ is the gas constant for oxygen (48.29 ft-lbf/lbm-R)

,

2
3

(J)
is in Ibm/ft , R is 1.986 Btu/lbmole-R, and T is in Rankines

The ideal gas law was used to replace the partial pressure,

P . Figure III. 3 and Table III.l show the results of plotting
"2

Parker's and Hottel ' s data for values of n equal to 1, 2/3,

1/2, and 1/3. The values presented in Table III.l are in S.I.

units.

In order to determine the rate of heat generation and the

rate of oxygen consumption, the chemical reaction for the

combustion process must be considered. For nonvolatile com-

bustion of carbon and oxygen, two reactions that describe the

process are.

C + J O -^ CO (III. 17)

C + O2 -» CO2 (III. 18)

The ratio of the mass rates of carbon monoxide to carbon

dioxide produced increases with increasing temperature.

Arthur [17] presents an expression for the rate ratio as a

function of temperature (in Kelvins)

.

CO/CO^ = 2500 exp C^^^^ ) (III. 19)
^

T
c
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FIGURE III. 3 Results of plotting reaction rate
data of Parker and Hottel [16] for
several values of n.
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R^ = A
^ ,

= JV
exp'

^t
gr-c

cnrvs

n A r g-c-K" 1 ^ fgr-caf

Cm-atm-sec L mole

1

3 1.19 X 10^ 27500

1

2
1.29 X 10^^ 31800

2

3 2.1 X 10^ 37100

1 9.55X 10^ 44000

TABLE III.l Results of plotting reaction rate
data of Parker and Hottel [16] for
several values of n.
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As a result of this dependence on temperature, the stoichio-

metric ratio and the heat of reaction will also be functions

of temperature. Defining the fraction of carbon monoxide

being produced by.

( CO/CO ^)

^co = 1 ^ (CO/CO,)
^^^^-20)

and the fraction of carbon dioxide as.

^C02 " 1 + (CO/CO2)
(III. 21)

the heat of combustion is then expressed as.

^Hr = FcO ^«C0 ^ ^C02 ^«C02
'"^•'2'

Values for the heats of combustion, AH_- and AH^- , as func-

tions of temperature were obtained from the JANAF (Joint Army,

Navy, and Air Force) Tables [18] . The stoichiometric ratio

(fuel to oxygen) of the overall reaction is.

^R = ^co ^co/<fco2 ^co ^ ^co ^co^' '"^•"'

where f^- is the stoichiometric ratio for reaction III. 17 and

fpQ is the stoichiometric ratio for reaction III. 18. The

rate of heat generation, R , and the rate of oxygen consumption

can now be expressed by.
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R = AH„ R (III. 24)
g Re

\ =
^'r % <"I-25)

It should be pointed out that Parker's and Hottel's work [16]

and Arthur's work [17] were accomplished using specific types

of carbon. Smoot and Pratt [19] and Frank-Kamenetskii [12]

list tables and references for many other rate expressions,

depending on the particular type of carbon used. The present

model was developed for any rate expression of Arrhenius type

for carbon consumption. For this investigation, we will re-

main with Parker's and Hottel's expression III. 16 as modified

by Frank-Kamenetskii

.

As previously stated, the particle diameter decreases as

combustion progresses. The rate of decrease depends on fhe

amount of carbon consumed at a point over time. Past observa-

tions have shown that the effect is significant when the reac-

tion is concentrated in a small region of the porous medium.

To take this into account, expressions for the time rate of

change of the diameter as a function of reaction rate were

derived. The equation for cylindrical fibers is.

d = -2 R zdV(ttp d) (III. 26)

and for spherical particles.

d = -2 R zD^/(7Tp d^) (III. 27)
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where p is the bulk mass density of carbon. The diameter

and the reaction rate are functions of both time and position.

E. HEAT TRANSFER EQUATIONS FOR POROUS MEDIA

In a previous investigation of porous media. Green and

Perry [20] developed heat transfer equations for the solid

and fluid phases. The model included the three basic mechan-

isms, (1) physical movement of the fluid with its own heat

content, (2) conduction of heat through the solid and fluid

phases, and (3) convective heat transfer between the solid

and the fluid phases. Radiation heat transfer was assumed

to be negligible, and combustion was not a consideration.

The differential equations for the solid and the fluid phases,

obtained from energy considerations,

Ps=s<l-P'Tr = '^s<l-P>—T * '^^'^w - ^s>
(III. 28)

3T dT 3^T
p c p-^ = -pp c u-x-^ + k p ^ - hz(T - T ) (III. 29)^w w^ 3t ^^w w9x w^2 w s

dX

and were solved numerically by Green and Perry using the

finite difference method. In equations III. 28 and III. 29,

c is specific heat, h is the internal convection heat trans-

fer coefficient, k is thermal conductivity, and z is the wetted

surface area per unit volume. The s and w subscripts refer

to solid and fluid properties, respectively. Their model does

not account for the temperature dependency of the properties.

Other investigators such as Sundaresan [21] , Riaz [22]

,
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Mendelsohn [23] , and Schneider [24] have presented a single

equation approach to describe heat transfer in porous media.

[(l-p)c^p^+pc„p^l|f = -up„c„p||^ [(l-p)Vpk„jiq (III. 30)
oX

Equation III. 30 can be derived from equations III. 28 and

III. 29 by assuming the solid and fluid phase temperatures are

equal . Green and Perry proposed that the equal temperature

assumption was valid for systems satisfying the following

condition.

hz 1/2 "^w
^ = (iT^) -TT > -^42 (III. 31)

K p U
W*^

where a is the thermal diffusivity of the fluid.
w

In the present investigation, the heat transfer equations

are generalized to also include (1) radiation, (2) internal

combustion, (3) temperature dependency of properties, and

(4) compressibility effects of the air.

An energy balance on the carbon gives the heat transfer

equation.

|3j((l-p)(k^+k^)i3£l-hz(T^-T^)+R z = (l-p)p^c^^ (III. 32)

where k is a pseudo thermal conductivity to account for

radiation between particles. The derivation of equation

III. 32 is presented in Appendix A. The effective conductivity,

k , of the porous solid was proposed by Russel [25]

,
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p.2/3,^„.p.2/3)

k = k r^ (III. 33)
® ^ ,2/3 , ^ a,, ,2/3^ ,,

where k and k are the bulk thermal conductivities of carbon
c a

and air, respectively, and p' = (1-p) . Russel's expression,

based on an electrical resistance analogy, can be used for

the full range of porosity, from to 1.

The pseudo thermal conductivity due to radiation, k , is

obtained as follows. Treating the idealized geometry of the

porous medium as a series of closely spaced walls, the net

radiation heat flux between two of the walls is.

q^. = aeCrJ - T2)/(2-£) (III. 34)

where £ is the emissivity, and a is the Stefan-Boltzman con-

stant. By expanding q in a Taylor series about T- / an

analogy to Fourier's law of heat transfer by conduction yields

the effective radiation conductivity as.

k = 4 a £ 5 tV(2-£) (III. 35)
r c

Expression III. 35 is then used for k in equation III. 32. The

details of the above derivation are presented in Appendix B.

The application of expression III. 35 to porous media is also

proposed by Rohsenow and Hartnett [26] . In a more rigorous

development, Whitaker [27] presents an alternative approach

for treating radiation heat transfer in porous media.
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Following the experimental work of Yoshida, Ramaswami, and

Hougen [28] , the internal convection heat transfer coefficient

is given by the empirical correlation.

h = 0.91 Re'~°*^^[i|^ c G(c u/k )
~'^^^] (III. 36)

a a a rm

where ip is equal to .91 for cylindrical fibers, and equal to

1 for spherical particles, G is a pseudo mass velocity given

by pp u, and c is the specific heat of air at constant pres-
a a

sure. The fm subscript refers to the properties evaluated

at film temperature. Re' is a pseudo Reynolds number defined

by.

Re' = G/(zyi|;) (III. 37)

The air properties vary with temperature, and h varies with

temperature. Finally, the reaction rate for the heat genera-

tion term in equation III. 32 is given by expression III. 24.

An energy balance on the air within the porous medium

provides the second heat transfer equation as,

(III. 38)

The density of air, p , is approximated in the model by the
a

ideal gas law. The term, 3(pP)/3x, is due to the compressi-

bility of the air. The derivation of equation III. 38 is
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presented in Appendix A. All properties in equation III. 38

vary with temperature. The properties of standard air were

used in the analysis. During combustion, oxygen in the air

is replaced by carbon monoxide and carbon dioxide. Calcula-

tions showed that the gas mixture would have thermophysical

properties slightly different from those of standard air.

In a "worst case" situation, the average difference between

the thermophysical properties of air and a mixture of .79 N2

and .21 CO2 is 7 percent. This mixture assumes that the oxy-

gen is totally consumed. Viscosity had the largest difference

of 13 percent, and specific heat the smallest at 1.5 percent.

The properties of a .79 N2 and a .21 CO mijcture are approxi-

mately those of air (different by less than 2 percent) . At

typically observed temperatures (greater than 1200 deg-F) , the

combustion gas will be mostly carbon monoxide, and the error

introduced by assioming the properties of standard air is mini-

mum. A small difference in the properties is acceptable since

an additional molecule mass transfer equation for either carbon

monoxide or carbon dioxide would be necessary to calculate

the effective properties of the gas mixture. The methods used

to obtain the thermophysical properties of the gas mixtures

above were those of Mason and Saxena [29] , and Reynolds and

Perkins [30] . The polynomial expressions used to calculate

the thermophysical properties of air are derived in Appendix B.

F. OXYGEN DIFFUSION EQUATION FOR POROUS MEDIA

As a result of combustion, the heat transfer equations

include four response variables, the carbon and air temperatures,
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T and T , the concentration of oxygen, 4), and the total
c a

internal pressure, P. The fourth field equation necessary

to complete the system is obtained from species conservation

considerations. The oxygen molecule transport mechanisms

included in the model are (1) molecular diffusion resulting

from concentration gradients (Pick's Law), (2) convective

mass flow, and (3) oxygen consumption due to combustion.

Diffusion resulting from pressure and temperature gradients

was considered negligible. An example cited by Bird, Stewart,

and Lightfoot [21] where pressure diffusion is important is

the centrifuge separator; and for thermal diffusion, the

Clusius-Dickel column, where very steep temperature gradients

are used to separate complex mixtures of organic molecules.

Thus, the oxygen molecule transfer equation for a porous

medium is.

fe<P^el^) -k<P"*' -\^ = Pff ("1-35)

The derivation of equation III. 39 is presented in Appendix A.

The second order term in equation III. 39 results from Pick's

law of diffusion. The effective diffusivity of the porous

medium, V , is a function of pressure, temperature, and pore

geometry of the medium. Scheidegger [9] presents several

models for V which have been proposed by a number of inves-

tigators. Briefly, there are two limiting cases of diffusion,

(1) diffusion associated with the collision between gas mole-

cules, and (2) diffusion associated with the collision of
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gas molecules with the pore walls of the medium. This second

phenomenon is discussed by Bennett and Myers [32], and is

referred to as Knudsen diffusion. The former case occurs

when the mean free path of the molecules is smaller than the

pore diameter. The expression for mean free path, m , given

by Treybal [33] is.

03 = ^^(R^T/2tt g^M)^/^ (III. 40)

where g is the gravitational constant and M is the molecular

weight. From equation III. 40, a value of uj = 5/100 is obtained

for oxygen for the geometry of typical porous media encoun-

tered in the analysis. Thus, collision between molecules is

the governing diffusion mechanism. A semi-empirical expres-

sion, proposed by Gilliland [34], is used to obtain the diffu-

sion coefficient of oxygen into air. Gilliland 's expression

is given by.

V = 435.7 T^/-^ (m"-^ + m"-'-)/[P(V-^/^ + V^^) ] (III. 41)
a a ^ o ^ o

2where V is in units of cm /sec, P is the total pressure in

Pa, V and V- are the molecular volumes of air and oxygen,
a U2

respectively. M and M are the molecular weights of air and
a U2

oxygen. The values of V and V- were obtained from Holman
a O2

[35] as 29.9 and 7.4, respectively. The effective diffusivity

proposed by Denbigh and Turner [36] for a porous medium is.
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V = V/T (III. 42)
e

Expression III. 42 accounts for the tortuous path the oxygen

molecules follow through the porous medium. Lastly, the oxy-

gen consumption term in equation III. 39 is given by expression

III. 25.

G. THE SURFACE RECESSION PROBLEM

The previous system of equations describes the combustion

process occurring within the porous medium. As combustion

progresses, the oxygen concentration goes to zero, and as a

result, the reaction moves to the air inlet surface of the

porous medium. Thereafter, the carbon consumption takes place

at the surface. During the surface recession phase, the thick-

ness of the porous medium decreases with time, i.e., surface

recession. This suggests partitioning the problem into two

parts, (1) initial combustion within the porous medium, and

(2) combustion at the air inlet surface. The second phase

of the problem is formulated as a moving boundary problem.

The governing equations for the moving boundary problem are

those developed previously with the exception of the oxygen

molecule mass transfer equation. With combustion occurring

at the surface, oxygen is totally consumed in a shallow region

near the surface. Experimentation by Koizumi [37] has shown

this penetration of the oxygen to be 1 to 2 particle diameters.

As a result, the oxygen molecule mass transfer equation is

not needed for this phase of the problem, and the heat genera-

tion can be treated as a planar source.
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The carbon heat transfer equation with the modified heat

generation term is.

3T
l"^|-[(1-P) (k +k )^]-hz(T -T )+R'z6^(n = 0)

dT] ^ e r 3ri c a g

3T 3T

(l-P^Pc^cfE8Tr^^Tt^l (III. 43)

where ri is equal to x/L. The first term on the right side of

equation III. 43 arises from the x coordinate becoming a func-

tion of time during surface recession. A similar term appears

in the air temperature and combined Darcy's law-continuity

equations as well. Transformation of the field equations from

a fixed coordinate to a moving coordinate system is presented

in Appendix A. As was observed (see Figure V.2) , the tempera-

ture gradient through the porous medium during surface reces-

sion was small. As a result, the additional term may be

omitted without affecting the results. The moving boundary

problem formulation is based on Crank's [38] extension of a

method proposed by Murray and Landis [39] . The thickness, L,

is updated continuously by evaluating its time rate of change

given by.

L = -(puf ) (|) /[(1-p) p ] (III. 44
x=0 x=0 ^

Expression III. 44 is obtained from a mass balance on the

carbon (i.e., the time rate of change in carbon is equal to
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the carbon consumption) . Noting that all the oxygen entering

the plate is consiimed in a small region near x = 0, the carbon

consumption can be represented in terms of the oxygen flow

and the stoichiometric ratio (i.e., R' = -puf_(J) A where A
•

is area ) . The time rate of change for carbon is (1-p) p AL.

The planar heat source, R' , in equation III. 43, is determined

by the amount of oxygen entering the porous medium at x = .

This is converted to heat generation by using the stoichio-

metric ratio, f„, and the heat of combustion, AH_. Thus in

equation III. 42, the planar heat source becomes puf_AH„(})^.

Ozisik [40] presents a general discussion and references for

the moving heat source problem.

Transition from the internal combustion problem to the

surface recession problem occurs when the porosity at x =

nears a value of 1. The computer program, implementing the

analysis, was written so that the change from an internal

combustion problem to a surface recession problem occurs

automatically.

H. BOUNDARY CONDITIONS

Three sets of boundary conditions may be used for equations

III. 32, III. 38, and 11.39. Each set of boundary conditions

approximates a physical situation (e.g., thermal flow reactor

or Fontenot's experiments [1]). The boundary conditions

were the nearest approximations that could be made and remain

within the limitations of a one dimensional model. The first

and second set of boundary conditions are typical of thermal
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flow reactors with and without radiation from the boundary-

surfaces. These are

8T
c = X = (III. 45)

lie
3x

= X = L (III. 46)

k -^ = p c u(T - T )

a 8x a a a °°
X = (III. 47)

3T
a

3x
= X = L (III. 48)

"e 11= ^(* - *«' X = (III. 49)

I* =
3x

X = L (III. 50)

and with radiation.

^"^c "4 ^^4
(k +k ) -^ = ae (T - T )

e r 9x c <»
x = (III. 51)

ST
(k +k ) ^ = -aeii^ - T^)

e r dx c «>
X = L (III. 52)

ST
k -^ = p c u(T - T )a 3x a a a <»

X = (III. 53)

3T
a

3x
= X = L (III. 54)

p |1 = u((l) - d) )e 3x ^^ ^oo'
X = (III. 55)

46





1^ = X = L (III. 56)
dX

Expressions III. 4 5 and III. 46 represent insulated boundaries

on the porous solid (i.e., no heat loss from the porous solid

to the environment). Expressions III. 51 and III. 52 provide

for radiation heat transfer from the porous solid boundaries

to the environment. The boundary conditions for the air

temperature and oxygen concentration, expressions III. 4

7

through III. 49 and I I I. 5 2 through I I I. 55, are the Danckwerts

'

boundary conditions for flow reactors. A convincing discussion

of the Danckwerts' boundary conditions applied to mass diffu-

sion equations for porous media is given by Bischoff [41]

.

A brief summary of the discussion was presented by Vatikiotis

[2]. An analogy to Bischoff ' s approach for the air heat trans-

fer equation is presented in Appendix B.

The third set of boundary conditions approximates the situa-

tion for Fontenot's experiments [1]. In the experiments, plate

specimens were mounted into the wall of a wind tunnel. The

interior surface of the plate (i.e., at x = L) was exposed to

the wind tunnel air flow, and the external plate surface (i.e.,

at X = 0) was exposed to the outside environment. The expres-

sion for calculating the pressure differential across the

porous medium as a result of the external flow over the surface

at X = L is formulated in Appendix B. It must be emphasized

that the purpose for modelling Fontenot's experiments was to

analyze the combustion behavior within the plate specimens

using the one dimensional model. However, the external flow
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and plate surfaces involved convection heat transfer requiring

two dimensional analysis. Noting this, the following approach

was adopted to provide for convection heat transfer at the

boundaries of the one dimensional model in a qualitative

sense. The boundary conditions are.

8T
(k +k )^r-£ = h^ (T -T )+ae{T^-T^)
e r 8x 1 c 0° ' c « X = (III. 57)

9T
(k +k )^r-^ = -h^(T -T )"ae(T^-T^)

e r 9x 2 c « ' c «>
X = L (III. 58)

T = T
a <»

X = (III. 59)

aT
a

3x
= X = L (III. 60)

(J)
= . cj,^ X = (III. 61)

|1 =
3x

X = L (III. 62)

As stated above, the values of h, and h^ in the convection

terms of expressions III. 57 and III. 58 are difficult to inter-

pret for a one dimensional model. The difficulty arises from

considering the boundary layers on the external surfaces of

the porous medium (e.g., considering the porous medium as a

flat porous plate, the boundary layer resulting from natural

convection on the x = surface increases in thickness in the

vertical direction, and for forced convection at the x = L

surface, the boundary layer thickness increases in the flow
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direction) . For this investigation, h, was approximated

by.

k u p

h, = (-^-T7—^) (III. 63)
^ x=0

This expression is based on the analytical results presented

by Merkin [42]. Expression III. 63 is obtained by considering

natural convection heat transfer from a vertical flat plate

with "suction". From Merkin ' s results, the boundary layer

thickness becomes constant at some distance in the vertical

direction, and thus, the convection heat transfer may also be

considered constant. The magnitude of the convection heat

transfer coefficient, h^, varies in a direction parallel to

the external flow, U at the x = L surface. In addition, h-

depends on the efflux of the gas at the surface. To simplify

the analysis, h^ was approximated by the relations for a smooth

flat plate given by Holman [35] as.

h^ = .664 -p Pr-^^-^ Re-^/^ (III. 64)

for laminar flow, where L is the distance from the boundary

layer initiation, and.

h^ = -p Pr-^/^(.037 Re*^ - 850) (III. 65)

for turbulent flow, where Pr is the Prandtl number. The

Reynolds number here is based on the external flow velocity
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over the surface at x = L. Kays [43] provides an alternate

scheme for treating boundary layers with "blowing and suction",

The air temperature and oxygen concentration boundary condi-

tions, III. 59 through III. 62 were also selected because of

the difficulties in treating external surface boundary layers

in a one dimensional model . Alternatives to the essential

boundary conditions of the air and oxygen are the Danckwerts

'

conditions. However, using the Danckwerts' conditions with

convection boundary conditions poses the problem of approxi-

mating a reasonable value for u at x = and x = L (i.e.,

boundary layers affect the component of velocity, u, normal

to an external surface). To overcome these difficulties, it

seemed prudent not to have pore velocity and the convection

heat transfer coefficients, h, and h^ , appear in the same set

of boundary conditions. However, the difficulty still re-

mains of specifying a distance from the origin of the boundary

layer for expressions III. 64 and III. 65. In the initial work

by Vatikiotis [2] , an arbitrary distance of 1 foot was used

to compare results.

I. INITIAL CONDITIONS

To initiate combustion, the porous medium must be brought

to a temperature at which the heat generation rate is suffi-

ciently high. Experimentally, there are many techniques for

doing this. However, it is difficult to measure the actual

temperature and oxygen concentration during the experiments.

This difficulty is carried over to identifying a reasonable
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set of initial conditions. Noting this, the model was de-

veloped so a problem can be started at ambient conditions

with a heat flux applied to the carbon at a boundary. The

heat flux is mathematically treated as.

'l-P"^ +
"^r* ^ = -%t (III. 66)

This approach of starting the problem simplifies the task of

determining a reasonable set of initial conditions. In addi-

tion, any arbitrary set of initial conditions can be specified,
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IV. IMPLEMENTATION OF NUMERICAL METHODS

A. SOLUTION ALGORITHM

The field equations and auxiliary equations which define

the problem were presented in the previous sections. The

following is the scheme used to solve for the dependent

variables T , T , <^ , u, P, L, and p :

c a ^
' ' ' a

1. Starting with the Dupuit-Forcheimer expression III. 10,

the filter velocity, Q, is represented as a function

of the pore velocity, u.

2. Substitute for Q from the previous step into Darcy's

law, equation A.l.

3. The expression formed in step 2 is solved for the pore

velocity, u, as a function of dP/dx. This procedure

yields equation A. 2.

4. Equation A. 2 is substituted into the continuity equation

A. 3 resulting in the 2nd order partial differential

equation A. 4 with the pressure, P, and the air density,

p , as the dependent variables.
a

5. Expanding equation A. 4 yields equation A. 5. Equation

A. 5 is one of 4 equations which were integrated to

produce the problem solution. By taking the air den-

sity, p , as a constant over a time step of integration,
a

equation A. 5 becomes an ordinary differential equation

with respect to x. For equation A. 5, the shooting method

(with Euler's formula for the integration algorithm)
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was used to solve for the pressure, P (x) , and the

pressure gradient, dP(x)/dx at each time step. The

air density, p , was updated at each time step using
a

the ideal gas law, equation B.41. The rate of change

of the air density was neglected during the first two

time steps of integration. Reasons for neglecting the

time rate of change of the air density are given in

Appendix C.2.

6. Having solved equation A. 5 for the pressure gradient,

dP/dx, the pore velocity can be obtained from equation

A. 2.

7. In solving the air heat transfer equation III. 38 and

the oxygen molecule transfer equation III. 39, the pore

velocity, u, and the air density, p , are obtained from
a

equations A. 2 and B.41, respectively. Equation III. 38

and III. 39, along with the carbon particle equation

III. 32, were transformed to ordinary differential equa-

tions in time by a Galerkin FEM formulation.

8. The ordinary differential equations from step 7 are

given by equations C.17 through C.19. The time inte-

gration was performed by a version of Gear's method

developed by Franke [44]

.

9. All thermophysical properties (i .e . , k , k , k , c ,

c , y) being functions of temperature are continuously

updated during the transient analysis.

10. As carbon is consumed during combustion, the porous

medium properties (i.e., p, m, 5, d) change with time

and are updated continuously as well.

53





12. No attempt was made to match the orders of convergence

of the integration algorithms.

Implementing the above solution algorithm resulted in a

computer program for the solution of the problem. Several

options were incorporated in the computer program allowing

the user flexibility in the analysis. Boundary conditions

simulating fixed air inlet temperature, and convection and

radiation heat transfer from the exterior surfaces can be se-

lected. The problem can be initiated in two ways; an arbitrary

set of initial conditions can be specified, or a heat flux,

shown by expression III. 66, can be specified with the porous

medium at ambient conditions. In addition, the porosity at

X = causing transition to the surface recession phase can

be specified. Other options permit investigating materials

other than carbon (e.g., boron), studying the effects of non-

constant distributions of porous media properties.

The computer program includes a main program and 24 sub-

routines (7 of the subroutines comprise Franke ' s [44] inte-

gration routine) . The function and description of each of

the subroutines are found in the computer program listing.

Figure IV. 1 shows the flow of the program, and briefly des-

cribes the process at each step. Each block represents a

subroutine. The configuration of the blocks (i.e., blocks

within blocks) in Figure IV. 1 show the six levels of the

computer program. In addition, other processes associated

with the integration routine occur inside the block shown by
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Main program.

Read in parameters, ini t i al i se fl ags and
counters; Calculate ini tial propert ies
and pore vel oci ty.

Construct FEM nodal point/element
correspondence array.

Print current response variables
and properties.

Check for transition
to sur-face recession.

TRUE Reset -flags, counters delete
<t> (cal led once) .

1

FALSE
1

Call integration routine -For T , T , d) , ( C±) deleted
during sur-face recession).

^Construct O.D.E.'s.

Cal culate properties.

Test -for oxygen instabiltiy.

I-f sur-face recession, update thickness, L.

Calculate pore velocity and pressure gradient.

I-f sur-face recession, trans-form reaction rate
expression to sur-face -flux.

Set -flag -for sur-face recession i-f p(n=l) = pma;
...

Zero-out system matrices.

Generate FEM operators.

Form mass and system matrices.

Adjust matrices -for boundary conditions.

Adjust matrices -for oxygen instability.

jPerform integration.

FALSE— Test -flags for program termination.

TRUE

Print last values of response variables
and properties.

STOP FIGURE IV. 1 - Flow
of computer program,
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the dashed line. These processes are discussed in detail in

Franke's report.

B. STIFFNESS CONSIDERATIONS

Initially, the ordinary differential equations resulting

from the finite element formulation were integrated explicitly

using a sixth order Runge-Kutta method (IMSL subroutine DVERK)

.

-4
The largest obtainable time step was approximately 10

seconds. A larger time step caused the integration to become

unstable. Gear [45] described this behavior as typical of

"stiff" differential equations, and suggested that implicit

integration methods be used to improve the efficiency of the

integration. Gear's method, presented by Brown and Gear [4 6]

and modified by Franke [44], was adopted as the integration

method. As a result, time steps of several seconds were ob-

tained for some problems (i.e., for surface recession and when

extinction occurred) . In addition, moving the exponential

reaction rate from the excitation vector to the stiffness

matrix (discussed in Appendix C.l) improved the integration

efficiency. The improved efficiency was attributed to a better

approximation of the Jacobian matrix in Gear's method.

Bui [47] and Burka [48] discuss the difficulties of solving

differential equations exhibiting "stiffness" and propose

alternatives to Gear's method. For a system exhibiting "stiff-

ness", small time steps are needed for the rapidly responding

terms while the integration must be continued for a long period

to account for the slowly responding terms. A measure of
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"stiffness" for a system of differential equations is the

ratio of the real part of the maximiam eigenvalue of the Jacob-

ian matrix to the real part of the minimum eigenvalue. This

is called the "local stiffness ratio", and is represented

by.

Max
I

A .
Ii

5 = ^"?;;;"^"—n—r (iv.i)Mm 1^.1
i=l , ... ,n

where n is the number of equations. A system of equations can

be considered "stiff" if S has a value greater than 10, and

the real parts of the eigenvalues are negative.

Lastly, most numerical integration methods are bound by

a maximum time step for which the solution remains stable.

This is defined by.

At-Aj_| < K (IV. 2)

where At is the time step. A- is the real part of the maximum

eigenvalue of the Jacogian matrix, and K is a constant depend-

ing on the integration method (usually 1 < K < 10) . For

example, Bui [47] states that Euler's method requires

|AtA.
j

< 1. Therefore, for a maximum Jacobian matrix eigen-

value (representing fastest response) of 50 (seconds)" , the

largest timestep for the integration is .02 seconds. Exceed-

ing this value results in the integration becoming unstable.

This explains the maximum timestep of lO" seconds for the

sixth order Runge-Kutta method as previously discussed.
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C. TREATMENT OF NUMERICAL DIFFICULTIES ASSOCIATED WITH
OXYGEN CONCENTRATION

In problems of combustion or kinetics, where dependent

variables go to zero, numerical difficulties arise. In his

discussion, Frank-Kamenetskii [12] points out that for frac-

tional order reactions (expression III. 16), both the oxygen

concentration and concentration gradient can become equal to

zero within the porous medium. This requirement is difficult

to satisfy with approximate solution methods. In the initial

effort (Vatikiotis [2]), run time errors resulted when the

oxygen concentration became slightly negative. This was

caused by attempting to take the logarithm of a negative con-

centration in the fractional order term in expression III. 16.

One approach for correcting this problem was to use the abso-

lute value of the oxygen concentration in the reaction rate

term. This resulted in the concentration becoming increasingly

negative. Another approach was to check the values of oxygen

concentration at each integration interval and setting the

concentration to zero for the negative values. At the next

integration, the reaction rate was zero at the locations of

zero concentration. Without consumption the oxygen concentra-

tion at the nodal point previously set to zero becomes positive

and the oscillation repeats itself. It was observed that de-

creasing the integration time step and the length of the ele-

ments (i.e., increasing the number of nodal points) minimized

the oscillations. Since CPU time increased for a given problem,

the approach was not totally satisfactory. However, this
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method was adopted for obtaining the results presented by

Vatikiotis [2]

.

An attempt to resolve the above numerical difficulty for

the present model was by implementing the Moving Finite Element

method of Gelinas, Doss, and Miller [49] . In the method,

the nodal points defining the elements converge to regions

where they are needed to minimize the error in the numerical

solution. As a result, the size of the elements in a region

of large reaction rate become small, and move with this region

in time. The motivation for implementing the Moving Finite

Element method was Frank-Kamenetskii ' s [12] discussion of

fractional order reactions as stated above. Also, it was ob-

served that the oxygen concentration approached zero in a

small interval within the porous medium. This behavior resulted

in steep concentration gradients. It was thought that a num-

ber of small elements in this region would improve the accuracy

of the solution. The results obtained from the Moving Finite

Elements showed the method was not effective in resolving the

numerical difficulties discussed above. The method was subse-

quently abandoned because of the additional expense associated

with solving the differential equation governing the nodal

point locations.

The method adopted in the present model for minimizing

the difficulties with the oxygen concentration is as follows.

The time derivative of the oxygen concentration at a nodal

point is set to zero when the concentration reaches a speci-

fied positive minimum value (less than 10 Ibm/ft ) . At
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the next integration interval, the time derivative remains

zero if the concentration at the adjacent nodal point in the

negative direction (i.e., upstream) has decreased. If the

concentration at the adjacent nodal point has increased, then

the time derivative is released. This method, in conjunction

with Franke ' s [44] integration routine, appears to act in

an iterative manner continually improving the solution. The

values of concentration in the regions where the oxygen has

been totally consumed are typically on the order of 10

3Ibm/ft . Although they do not give the details, Scheisser

and Stein [50] have used the above method in their worlc of

simulating coal conversion.

D. AN ALTERNATE SOLUTION STRATEGY

The experience and difficulties of implementing the numeri-

cal methods, as discussed above, have provided insight for an

alternate strategy for solving the combustion and heat trans-

fer problem. The alternate strategy consists of formulating

the problem with two moving boundaries. One moving boundary,

as in the present formulation, would account for surface

recession (i.e., the porous medium thickness changing with

time) . The second moving boundary would account for the

oxygen concentration going to zero within the porous medium.

This second boundary would be located where the concentration

becomes zero, between x = and the first moving boundary.

The advantages of the alternate solution strategy are (1)

eliminating the numerical difficulties associated with the
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oxygen concentration (discussed in the previous section) ,

(2) relaxing the planar heat source assumption for the surface

recession phase (discussed in Section III.G), and (3) possibly

improving the numerical "stiffness" characteristics of the

integration (discussed in Section IV. B)

.
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V. RESULTS AND OBSERVATIONS

A. BASIS FOR THE RESULTS

The results presented in the following sections are based

on the idealized porous medium described in Section III. A and

Figure III.l. For the idealized porous medium, porosity and

permeability were explicit functions of pore diameter and unit

cell thickness. Other porous media will have different geo-

metric relationships for describing the properties. In addi-

tion, for naturally occurring porous media, experimental methods

would be employed to determine the geometric properties.

Noting this, the results of this investigation are intended

to describe, in a qualitative sense, the behavior of a carbon

porous medium during combustion. As will be shown, the tempera-

tures observed during combustion are highly dependent on the

geometric properties and the pore velocity. Although, the

temperatiires are typical of those reported for carbon combustion

experiments, it would not be reasonable to perform a quanti-

tative comparison between the results obtained by the model

and those obtained experimentally unless the porous medium

properties were the same for both. This point will be demon-

strated in the next section.

B. COMPARISON OF COMBUSTION MODEL RESULTS TO EXPERIMENTAL
RESULTS

The behavior of the temperature and oxygen concentration

of the combustion and heat transfer model is in fair agreement
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with the behavior reported in the experimental investigations

of Vulis [13] , Koizumi [37] , Fontenot [51] , Spalding [52] , and

Kolodstev [53] . A quantitative comparison of the results can

not be made for two reasons. First, there have been few

experimental investigations which present data for transient

behavior of combustion in porous media. Most of the analyses

present quasi-steady data (quasi in the sense that for some

period of time, there is little change in the response varia-

bles) . When transient behavior is reported, it is usually

presented in a narrative form. Secondly, the reported des-

criptions of the porous media used in the experiments are not

sufficient. The properties of the carbon used (e.g., thermal

conductivity, density, Arrhenius rate law, etc.) and the

porosity and permeability relationships are needed to accurately

simulate the experiment. The profiles of the quasi-steady

temperatures obtained by the combustion model and those ob-

tained by Kolodstev* s experiments will be shown together. The

purpose of this is to demonstrate that although Kolodstev'

s

porous medium could only be roughly approximated, the tempera-

ture profile obtained by the combustion model was similar in

shape and magnitude to that obtained experimentally.

In the experimental investigations of Vulis [13] , Fontenot

[51], and Spalding [52] , it was observed that for a given

temperature, sustained combustion occurred for a specific range

of velocities. Velocities outside the range, either greater

or lower, would cause the combustion to extinguish and the
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porous medium to cool to ambient temperature. This phenomenon

was also observed for the combustion model. The explanation

of this behavior, discussed in Section V.G, is summarized as

follows. As pore velocity increases, convection heat transfer

and oxygen supply for combustion both increase. Similarly,

a decrease in pore velocity will cause a decrease in convec-

tion heat transfer and oxygen supply. For a given set of

conditions, pore velocities above the range will result in

the heat transfer or heat loss overcoming the heat generation.

Also, for pore velocities below the range, the oxygen supply

for combustion is decreased to the extent that the heat genera-

tion is overcome by the heat loss. In other words, the higher

pore velocities tend to "blowout" the reaction (e.g., blowing

out a candle) , and the lower pore velocities tend to "starve"

the reaction (e.g., placing a container over a candle).

Important at lower pore velocities are the effects of heat

transfer from the external surface of the porous solid (i.e.,

at the boundaries) . The experiments performed by Vulis [13]

,

Fontenot [51] , and Spalding [52] allowed heat transfer from

the surfaces by either convection or radiation. The effects

of heat transfer at the boundaries on combustion are discussed

in Section V.G.

Kolodstev [53] investigated combustion gas dynamics in a

porous medium comprised of spherically shaped carbon particles.

This is the same type of carbon used by Parker and Hottel [16]

.

In his results, Kolodstev presents the quasi-steady air tempera-

ture as a function of the depth of the porous medium (particle
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temperature was not reported). Figure V.l shows Kolodstev's

results plotted with the results obtained by the combustion

model. Kolodstev's experiment could not be simulated accu-

rately. As stated previously, the description of Kolodstev's

porous medium was not sufficient. The description of the

porous medium and the ambient conditions used to simulate the

experiment is shown in Table V.l. Also shown are the known

parameters given by Kolodstev. In Figure V.l, the temperature

for the first inch of the 7 . 5 inches of the porous medium are

shown (temperatiires at greater depths were not reported) . As

can be seen, there is fair agreement in the shapes of the

profiles. In addition, the magnitude of the temperatures pro-

duced by the combustion model are similar to those obtained

in the experiment.

The combustion model results showed that once the reaction

moved to the air inlet surface of the porous medium, the oxy-

gen concentration penetrated the porous medium by 1 or 2

particle diameters. This observation was also reported in

the experimental results of Koizumi [37] and Kolodstev [53]

.

The response of the oxygen concentration, in general, will be

discussed in the next section.

C. EXAMPLE RESULTS

The intent here is simply to demonstrate the operation of

the computer program. The behavior of a single porous medium

subjected to several initial conditions is presented. The

description of the porous medium and the ambient conditions
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TABLE V. 1 Geometry o-f porous medium and ambient conditions
for simulating Kolodstev's C53] experiment.

• Particle Shape: spherical

• Particle Diameter ( d ) : .126 in

Unit Cell Thickness (Q): .126 in

• Spatial Thickness o-f Porous Medium (L ^i 7.5 in

Porosity ( p ) .476

-A 2
Permeability ( m ) .103x10^ -Ft

Bulk Thermal Conductivity o-f Carbon ( k^ ) : 86.0 Btu/-ft-hr—

F

Bulk Speci-fic Heat of Carbon ( C^ ) : .231 Btu/lbm-F

Bulk Density o-f Carbon Cp ): 70.3 lbm/-ft

Thermal Emissivity o-f Particles (€): .9

Ambient Temperature ( X^)

:

80.0 deg-F

• Ambient Pressure (F^): 14.7 psi

• Pressure Di-f -f erenti al (aP) : -.29 psi

• Ambient Oxygen Concentration (ct>.) : .0172 Ibm/ft

• Known parameter -for Kolodstev's experiment.
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used for the following problems are shown in Table V.2. The

boundary conditions for the examples in this section were

insulated boundaries on the porous solid temperature (ex-

pressions III. 45 and III. 46), and the Dankwerts conditions on

the air temperature and oxygen concentration (expressions

III. 47 through III. 50).

As the first example (referred to as example A) , a heat

4 2
flux of 3.0 X 10 Btu/ft -hr was applied at x = for 15 seconds

The porous medium was initially at a constant temperature of

80 degrees Fahrenheit and a constant oxygen concentration of

3
.0172 Ibm/ft (ambient conditions) . The results of this prob-

lem are shown in Figures V.2-V.4. Figure V.2 shows the tem-

perature increasing after the heat flux was removed. At 25

seconds, the porosity at x = reached .95 and the problem

transitioned to the surface recession phase. The values of

thickness for the times shown in Figure V.2 are .25 inches to

25 seconds, .226 inches at 72 seconds, .133 inches at 357

seconds, and .0238 inches at 517 seconds. The computer pro-

gram was written such that the problem terminates when the

thickness becomes 10 percent or less of the initial value.

The air temperature shown by the dashed line in Figure V.2

follows the carbon temperature with the exception of the air

inlet region at x = . Figure V.3 shows the oxygen behavior

for this problem. At 25 seconds, the oxygen concentration at

-4 3X = was 3.6 X 10 Ibm/ft and the penetration of the oxygen

was to x/L = .01. This supports the assumption of using a

planar source for the heat generation and deleting the oxygen
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TABLE V.2 Geometry o-f porous medium and ambient conditioni
for the example problems in Section V.C.

Particle Shape: spherical

Particle Diameter (d): .005 in

Unit Cell Thickness ( D): .005 in

Spatial Thickness o-f Porous Medium ( L): .25 in

Porosity ( p ) . 476

Permeability ( m ) .162x10^ -ft

Bulk Thermal Conductivity o-f Carbon ( k^.) : 86.0 Btu/-ft-hr—

F

Bulk Speci-fic Heat o-f Carbon ( C^ ) : .231 Btu/lbm-F

Bulk Density of Carbon (p^ ^
* 70.3 lbm/-ft

Thermal Emissivity o-f Particles (€): .9

Ambient Temperature (T >! SO.O deg-F

Ambient Pressure ( f^) : 14.7 psi

Pressure Di-f -f erenti al (Ap) : -.35 psi

Ambient Oxygen Concentration < <t>^) : .0172 lbm/-ft
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concentration equation during the surface recession phase.

Figure V.4 shows the decrease in the thickness of the porous

medium with time. The nondimensional parameter, X, given by

expression III. 31, had an average value of .63 at the start of

the problem. This value of X is above the minimum value of

.342 proposed by Green and Perry [20] when assuming equal

carbon and air temperatures. This suggests that a single heat

transfer equation would have been sufficient to describe the

temperature response for this problem. However, this is not

valid for all cases. For example, when d, D, and L are

doubled, that is, .01 inches, .01 inches, and .5 inches,

respectively, A equals .22, and for d, D, and L equal to .025

inches, .0 25 inches and 1.25 inches, respectively, X equals

.056. Hence, for the general case, the carbon and the air

temperatures should be treated as separate response variables.

As a second example (referred to as example B) , a heat

4 2
flux of 3.0 X 10 Btu/ft -hr was applied at x = for 14 seconds

The porous medium was initially at the same ambient tempera-

ture and oxygen concentration as in the previous example.

Figures V.5 and V.6 show the results of this problem. The

porous medium cooled to ambient conditions in approximately

41 seconds after the heat flux was removed. Applying the

heat flux for 14 seconds was not sufficient to produce the

conditions needed to sustain combustion. However, increasing

the duration of the heat flux for an additional second results

in sustained combustion. Figures V.5 and V.6 show the results

starting at 12 seconds. The behavior of the system prior to
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12 seconds is the same as in Figures V.2 and V.3 of the pre-

vious problem.

As the last example (referred to as example C) , the problem

was started with the porous medium at constant temperature

and oxygen concentration of 1100 degrees Fahrenheit and .006

3Ibm/ft , respectively. Figure V.7 shows the large cooling

effect of the air entering the porous medium at x = during

the early part of the problem. As a result of this cooling,

the heat generation began to raise the temperature interior

to the porous medium before moving as a wave to the air inlet

surface. The problem was terminated at 49 seconds with a

porosity at x = of .96. This was at the point of transition

to the surface recession phase. Figure V.8 shows the behavior

of the oxygen for this problem. At 49 seconds, the oxygen

-4 3concentration at x = was 4.1 xio Ibm/ft and the penetra-

tion of the oxygen was to x/L = .01. This again supports the

assumption of treating the heat generation as a planar source

and deleting the oxygen concentration equation during the

surface recession phase.

Other data generated by the model are spatial distributions

of the following internal properties: particle diameter (d)

,

porosity (p) , specific permeability (m) , pressure (P) , pres-

sure gradient, pore velocity (u) , Reynolds number (Re) , heat

transfer coefficient (h) , and surface area per unit volume (z)

.

As previously stated in the model development, these system

properties are functions of temperature, and hence, change
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with time. In addition, since surface recession may occur,

the spatial thickness (L) of the porous medium is provided

as output data.

D. EFFECT OF GEOMETRIC PARAMETERS

In the initial effort by Vatikiotis [2] , it was observed

that, for a given set of boundary and initial conditions, the

internal geometry of a porous medium significantly influenced

combustion. Results were reported describing the dependence

of combustion on particle size, and the thickness of the

porous medium. As a refinement of that initial work, results

are presented below which show the influence of the geometric

parameters (i.e., permeability, porosity, porous medium thick-

ness) on the minimum initial temperature needed to sustain

combustion. "Minimum initial temperature" is defined here as

the minimiom constant-value temperature distribution (i.e.,

slope equal to zero) that will sustain combustion when used

as an initial condition. A lower temperature will cause the

porous medium to cool to ambient temperature. As will be

shown in Section V.E, both the shape and magnitude of the

temperature initial conditions influences the combustion proc-

ess. In order to form a basis for comparison, the analysis

was performed with uniform distributions for the initial con-

ditions (the carbon and air having the same initial tempera-

ture) . The initial condition for the oxygen concentration

(also uniform) was taken as the concentration found in air at

the initial condition temperature and ambient pressure. However,

any oxygen concentration distribution, as an initial condition.
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would not have changed the results . The boundary conditions

used in the analyses were the insulated boundaries, expressions

III. 45 and III. 46, for the carbon temperature, and the Danck-

werts conditions, expressions III. 47 through III. 50, for the

air temperature and oxygen concentration. The results of the

analysis were obtained by varying the initial conditions until

the "minimum initial temperature" for sustaining combustion

was obtained. A geometric parameter was then changed to a new

value while all other parameters remained the same. A "mini-

mum initial temperature" for this problem was obtained. This

procedure was repeated for several values of the same geometric

parameter while keeping all other parameters fixed. The re-

sults obtained showed the "minimum initial temperature" which

sustained combustion as a function of the respective parameter.

The results for each geometric parameter are discussed

individually.

1. Effects of Permeability

Figure V.9 shows the dependence of the "minimum initial

temperature" (defined previously in this section) on permea-

bility. The description of the porous medium and the ambient

conditions used in the following analysis is given in Table

V.3. The range of permeability was determined by the magni-

tude of the Reynolds number. The largest permeability

— 8 2
(m = .4x10 f t ) , at a pressure differential of 1.5 p.s.i.,

resulted in an average Reynolds number through the porous

medium of approximately 5. It was felt that extending the
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TABLE V.3 Geometry o-f porous medium and ambient conditions
For the permeability analysis in Section V.D.

Particle Shape: spherical

Particle Diameter ( d )

:

(various)

Unit Cell Thickness (0^= (various)

Spatial Thickness o-f Porous Medium ( L >! 1.0 in

Porosity ( p

)

.476

Permeability < m ) (various)

Bulk Thermal Conductivity o-f Carbon ( k^) : 86.0 BtuZ-ft-hr—

F

Bulk Specific Heat o-f Carbon ( Q, ) : .231 Btu/lbm-F

Bulk Density o-f Carbon (Pc^^ 70.3 lbm/-ft^

Thermal Emissivity o-f Particles (€ ): .9

Ambient Temperature (1^): 80.0 deg-F

Ambient Pressure ( P )

:

14.7 psi

Pressure Di-f-f erenti al (AP> s (various)

Ambient Oxygen Concentration (cfe,) : .0172 lbm/-ft
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analysis to larger values of Reynolds number would exceed the

limitations of the combustion model. Specifically, the

assumption that Darcy's law governs the internal flow for

Reynolds numbers greater than 5 would be questionable. Simi-

-9 2
larly, the smallest permeability (m = .162 x lo ft ) , at a

pressure differential of .1 p.s.i., gave an average Reynolds

number of approximately .005. The lower limit Reynolds num-

ber for which Darcy's law remains valid is not known. There

is little information in the literature that addresses a lower

limit Reynolds number. Although lower Reynolds numbers may

be valid, the analysis was restricted to a minimum Reynolds

number of .005. As can be seen in Figure V.9, the "minimum

initial temperature" for sustaining combustion is a monotonically

increasing function of decreasing slope of permeability. In

other words, as permeability increases, the temperature needed

for sustained combustion also increases. Important to the re-

sults are that pore velocity also increases with increasing

permeability. As stated previously, insulated boundaries

were imposed on the porous solid. As will be shown in Section

V.E, the results change when heat transfer occurs at the sur-

faces of the porous solid.

2. Effects of Porosity

Figure V.IO shows the dependence of the "minimum

initial temperature" for sustaining combustion on porosity.

The description of the porous medium and the ambient conditions

used in the following analysis is shown in Table V.4. The
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TABLE V.4 Geometry o-f porous medium and ambient conditions
for the porosity analysis in Section V/.D.

Particle Shape: spherical

Particle Diameter (d): (various)

Unit Cell Thickness (Q >! (various)

Spatial Thickness o-f Porous Medium (L ): 1.0 in

Porosity ( p ) (various)

Permeability (m) (various)

Bulk Thermal Conductivity o-F Carbon ( k^.) : 86.0 Btu/-Ft-hr—

F

Bulk Specific Heat o-f Carbon ( C^ ) : .231 Btu/lbm-F

Bulk Density of Carbon
( p^- > : 70.3 Ibm/ft^

Thermal Emissivity of Particles (€): .9

Ambient Temperature ( X») : SO.O deg-F

Ambient Pressure ( P )

:

14.7 psi

Pressure Differential (AP) : -.5 psi

Ambient Oxygen Concentration (<jfc> ) : .0172 Ibm/ft^
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results show that as porosity increases, the temperature

needed for sustaining combustion decreases monotonically.

This behavior is opposite, but less pronounced than that ob-

served for the permeability. In addition, pore velocity de-

creases as porosity increases. It seems reasonable that an

increase in porosity provides more oxygen per volume of por-

ous medium for combustion. The lowest value of porosity in

the analysis (p = .48) was restricted by the idealized geometry

shown in Figure III.l. For the idealized geometry, the low-

est porosity occurs for the ratio of particle diameter to

unit cell thickness, d/D, equal to 1. The maximiom value of

porosity in the analysis was limited by the highest porosity

reported for spherical particles in a stable configuration.

As stated by Scheidegger [9], this value is .875.

3. Effects of Porous Medium Thickness

Figure V.ll shows the dependence of the "minimum

initial temperature" for sustaining combustion on the porous

medium thickness. The description of the porous medium and

ambient conditions used in the analysis is shown in Table

V.5. The range of thicknesses (.25"-4.0") investigated was

limited (as in the case of permeability) by the Reynolds num-

ber. As seen in Figure V.ll, the "minimum initial temperature"

is a monotonically decreasing function with decreasing nega-

tive slope of porous medium thickness. In other words, as

the porous medium thickness decreases, the temperature needed

to sustain combustion increases. In addition, the pore velocity
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TABLE V.5 Geometry o-f porous medium and ambient conditions
for the thickness analysis in Section V.D.

Particle Shape: spherical

Particle Diameter ( d )

:

(various)

Unit Cell Thickness ( D^s (various)

Spatial Thickness o-f Porous Medium ( L ): (various)

Porosity ( p

)

.476

Permeability (m) (various)

Bulk Thermal Conductivity o-F Carbon ( k^) : 86.0 Btu/ft-hr—

F

Bulk Specific Heat of Carbon ( C^ ) : .231 Btu/lbm-F

Bulk Density of Carbon <0.): 70.3 Ibm/ft"^

Thermal Emissivity of Particles (€ ): .9

Ambient Temperature ( T^)

:

80.0 deg-F

Ambient Pressure ( F^)

:

14.7 psi

Pressure Differential (Ap>

:

-.5 psi

Ambient Oxygen Concentration ^i>J '• .0172 Ibm/ft
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decreases as the thickness increases. As in the case of the

permeability, the results showed a wide range of temperatures.

The "minimum initial temperature" for sustaining combustion

may vary as much as 700 degrees Fahrenheit over a range of

thicknesses for a particular porous medium.

E. EFFECTS OF EXTERNAL PARAMETERS

A similar analysis, as discussed in the previous section,

was performed for the pressure differential. The boundary

conditions for the carbon particle temperature equation were

then changed from the insulated boundaries, expressions III. 4

5

and III. 46, to the radiation heat transfer boundary conditions,

expressions III. 51 and III. 52. This permitted heat transfer

from the surfaces of the porous solid. The emissivity, £, was

assiomed equal to .9. With the new boundary conditions, the

effects of permeability and pressure differential on the "mini-

mum initial temperature" for sustaining combustion were again

analyzed.

1. Effects of Pressure Differential

Figure V.12 shows the effects of pressure differential

on the "minimum initial temperature" for sustaining combustion.

The description of the porous medium and the ambient condi-

tions used in the following analysis is shown in Table V.6.

The range of pressure differentials considered (.1-2.0 p.s.i.)

was governed by the Reynolds number for which Darcy ' s law re-

mains applicable. This point was discussed in Section V.D.

In the initial work of Vatikiotis [2] , the maximum pressure
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TABLE V.6 Geometry o-f porous medium and ambient conditions
for the pressure di -f -Ferenti al analysis in
Section V.E.

Particle Shape: spherical

Particle Diameter ( d ) : (various)

Unit Cell Thickness (Q^! (various)

Spatial Thickness o-f Porous Medium ( L): 1-0 in

Porosity ( p ) .476

Permeability (m) (various)

Bulk Thermal Conductivity o-f Carbon ( k^) : S6.0 Btu/-ft-hr—

F

Bulk Speci-fic Heat o-f Carbon ( C^ > : .231 Btu/lbm-F

Bulk Density o-f Carbon (p^): 70.3 IbmZ-ft"^

Thermal Emissivity o-f Particles (€ ): -9

Ambient Temperature (T ): 80.0 deg-F

Ambient Pressure ( P )

:

14.7 psi

Pressure Di f -ferenti al (AP) : (various)

Ambient Oxygen Concentration (Ob ) : .0172 Ibm/ft"^
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differential considered was approximately .35 p.s.i. As seen

in Figure V.12, the "minimum initial temperature" is a mono-

tonically increasing function of pressure differential. The

results show that, depending on pressure differential, the

minimum temperature for sustaining combustion could vary as

much as 400 degrees Fahrenheit for a particular porous medium.

In addition, pore velocity increases as pressure differential

increases.

2. Effects of Boundary Conditions

In this section, the results of allowing heat transfer

at the boundaries of the porous solid will be compared to the

results obtained with insulated boundaries. Figures V.13 and

V.14 show the results of the permeability and the pressure

differential analyses, with and without heat transfer from

the surface of the porous solid. The description of the por-

ous medium and ambient conditions for the permeability and

pressure differential analyses are shown in Tables V.3 and V.6,

respectively. As stated previously, the radiation heat trans-

fer boundary conditions were those shown by expressions III. 51

and III. 52. As seen in Figures V.13 and V.14, heat transfer

from the boundaries significantly affects the "minimum initial

temperature" at the lower values of permeability and pressure

differential (or at lower pore velocities) . The results show

that when heat transfer occurs from the boundaries, the "mini-

mum initial temperature" is no longer a monotonic function of

permeability and pressure differential. This behavior was
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suggested in the intial work of Varikiotis [2] , where in addi-

tion to radiation heat transfer, convection heat transfer

was considered at the boundaries. The additional convection

heat transfer causes the effects produced by permitting radia-

tion heat transfer at the boundaries to become more pronounced.

Moreover, these results are consistent with those reported

by Vulis [13] , Fontenot [51] , and Spalding [52] . The reason

for this behavior was summarized in Section V.C and will be

explained in Section V.G.

3. Effects of Initial Conditions

The previous analyses of determining the effects of

system parameters and boundary conditions were performed using

constant-value initial conditions (i.e., slope of temperature

distribution was equal to zero) . The constant-value tempera-

ture defined the "minimum initial temperature" and was used

as a basis for comparing the results. To also show the effects

of the initial conditions on combustion, a single porous medium

was subjected to numerous initial conditions. The analysis

was performed as follows. The initial conditions of the car-

bon and air temperatures were given a constant slope as shown

in Figure V.15. With the slope fixed, the temperature distri-

bution was shifted (i.e., moved up or down) until the thres-

hold for sustained combustion was determined. That is, shift-

ing the initial temperature distribution slightly lower would

result in the porous medium cooling to ambient temperature.

This procedure was repeated for several initial conditions of

temperature having different constant slopes (both negative
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FIGURE V.I5 Constant-slope initial condition.
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and positive) . The boundary conditions used in the analysis

were the Danckwerts conditions, expressions III. 47 through

III. 50, for the air temperature and oxygen concentration, and

insulated boundaries, expressions III. 4 5 and III. 46, for the

carbon temperature. The results of the analysis are shown in

Figure V.16. In Figure V.16, the average temperature is plotted

as a function of AT defined by T(L) - T(0) for the particular

temperature distribution. The average temperature, T , is

defined as (T(L) + T(0))/2. As seen in Figure V.16, the curve

is not symmetrical about AT = . This result is atrributed to

the direction of the pore velocity. The largest difference

in temperature between the porous solid and the air (and great-

est heat transfer) is at the air inlet region (i.e., x = 0)

.

At the air exit region (i.e., x = L), the temperature differ-

ence between the porous solid and the air is small. The com-

bined effect of high heat transfer at the air inlet region

and low heat transfer at the air exit region produces the

following result. There is a greater likelihood that sustained

combustion will occur for a positive slope temperature dis-

tribution than for a negative slope temperature distribution

having the same average temperature and AT as defined above.

In other words, for a positive slope initial temperature dis-

tribution, sustained combustion occurs at a higher temperature.

F. EFFECTS OF PORE VELOCITY

The way the parameters (i.e., permeability, porosity,

pressure differential, and porous medium thickness) affected
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combustion is in proportion to their effect on pore velocity.

In other words, the results of the previous sections showed

that pore velocity was affected by the parameters in the same

manner as the "minimum initial temperature" for sustained com-

bustion (i.e., minimum temperature increased as pore velocity

increased, and decreased as pore velocity decreased) . An

exception to this occurred when heat transfer was permitted

from the boundaries. This suggests that pore velocity is the

dominant variable affecting the combustion process. Since

pore velocity is a function of the parameters analyzed (i.e.,

permeability, porosity, pressure differential, porous medium

thickness) , it seems reasonable that the "minimum initial

temperature" for sustained combustion may be posed as a func-

tion of pore velocity. With this approach, the "minimum initial

temperature" for sustained combustion of a porous medium with

unknown properties could be determined by specifying the

magnitude of the pore velocity. Moreover, pore velocity can

be represented by specific volumetric flowrate of filter velocity

(i.e., V/A) which is easily measured. Figure V.17 shows the

"minimum initial temperature", defined in Section V.D, as a

function of the filter velocity at ambient temperature. The

graph was made from the data obtained in the analyses of Sec-

tions V.D and V.E (for insulated boundaries on the porous

solid) . The data in Figure V.18 has a spread of approximately

±100 degrees Fahrenheit. The equation for the curve shown

in Figure V.17 is.

99





p
•H
O
O
r-\

O
>

O
U
o
ft

O

C
o
•H
-P
O

«H

OJ

CQ

JZ CD

3
<^ •P

'"'
^

rO > 0)

ftO h- S^~ — 0)O •p

o rH
-J a
UJ •H

> -P
•H

cr •H

UJ g
h- 3
_i s
.^ •H
u.

•H

(M
O 1

>
w

M

( d ) 3aniVd3dlN3i
100





Tg^ = 100 ln^(Q/10) + 650 (V.l)

where T represents the "minimum initial temperature" dis-

tribution in degrees Fahrenheit, and Q is the filter velocity

in ft/hr at an ambient temperature of 80 degrees Fahrenheit.

Figure V.17 shows promise as a simple method for determining

the "minimum initial temperature" for which sustained combus-

tion can be expected in a porous medium. Perhaps by refining

the formulation for calculating the pore velocity, there would

be a smaller spread in the data.

G. ANALYSIS OF RESULTS

The Semenov model, discussed in Section III.C and illus-

trated in Figure III. 2, may be used to explain the results

reported in Sections V.B through V.F. Before continuing, cer-

tain aspects of the Semenov model must be emphasized. First,

the Semenov model does not govern combustion. It is an analy-

tical tool which is used to describe the behavior of combustion

Secondly, the Semenov model as represented in Figure III.

2

is for a point in the porous medium. A "Semenov surface"

would better explain combustion in the porous medium. This

will be illustrated below. It follows from the Semenov theory,

as discussed by Vulis [13], that "ignition" conditions (i.e.,

sustained combustion) are determined by all the conditions of

the combustion problem in a system. This is to say, that any

change in system parameters (e.g., pressure differential,

initial or boundary conditions) for a given porous medium
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would result in a different Semenov surface. Lastly, the

Semenov model is based on quasi-steady results. For example,

the convection heat transfer, q„ , and the heat generation,

R , will be equal at their intersection (see Figure III. 2).

Conversely for the combustion model, at a particular point

and time, q, may be smaller or larger than R depending on
X, g

whether the temperatures are increasing or decreasing. How-

ever, if the rates of change in the temperatures are small,

the Semenov model can be used to analyze the results of the

combustion model

.

Figure V.18 illustrates a "Semenov surface" generated

from the results of the last example in Section V.C (Figures

V.7 and V.8) . In Figure V.18, R is a heat generation sur-

face, and represents the particle temperature-heat generation

relationship during the problem. The q. surface represents

the convection heat transfer as a function of particle and

air temperature (expression III. 14). The particular heat

transfer surface in Figure V.i8 represents the instant the

point at x/L = transitioned from the kinetic regime to

the diffusion regime of combustion. This can be seen by the

tangent point, I, between the heat generation surface and the

heat transfer surface. A difference between "classical"

Semenov S-curves (Figure III. 2) and those shown in the heat

generation surface of Figure V.18 is the sudden drop in heat

generation once a certain temperature has been reached. This

is only observed in the region away from the air inlet (x/L = 0)
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and is attributed to the total depletion of oxygen in that

region of the porous medium. One might say this is a weak-

ness in the Semenov model when applied to porous media.

Conversely, it might be argued that when the oxygen is totally

depleted the combustion problem becomes a heat transfer prob-

lem (in a pure sense) of which the Semenov model has no

application. Also in the region where the oxygen has been

depleted, it is not necessary for q^ to intersect R .

In order to visualize the results of the combustion model

more clearly, the "Semenov surface" is abandoned for Semenov

curves (illustrated in Figure III. 2). Figures V.19, V.20,

and V.21 show that Semenov model representations for locations

x/L = 0, x/L = .5, and x/L = 1, respectively, of example C in

Section V.C (transient results shown in Figures V.7 and V.8).

The heat generation curves are shown along with heat transfer

lines representing the film cooling at two different points

in time. During this discussion, the term "film cooling" will

be used to mean the heat transfer from the particle to the

air. "Convection heat transfer" will refer to the transport

of energy by the internal flow. In addition to film cooling,

heat transfer by conduction and radiation occurs within the

porous medium. This has an effect of slightly curving the

heat transfer line upward (i.e., heat transfer becomes a non-

linear vice a linear function of temperature) . However in

this problem, calculations showed that the ratio of film

cooling to conduction and radiation was approximately 5 , and
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therefore, conduction and radiation will not be considered

in order to simplify the graphical analysis.

Comparing Figures V.19-V.21 shows that the maximum heat

generation rates are different depending on the location in

the porous medium. It was mentioned in the general discussion

of the Semenov model (Section III.C) that implicit in the

shapes of the S-curves are the effects of oxygen concentra-

tion. In other words , decreasing the oxygen supply will

cause the S-curves to peak at lower temperatures. Since it is

more difficult for the oxygen to penetrate as the depth of

the porous medium increase (i.e., oxygen is consumed as the

flow passes through the porous medium) , it is a reasonable

outcome that the maximum heat generation rates decrease as

the depth increases. The difficulty for the oxygen to pene-

trate as the depth increases produces another effect as seen

in Figure V.21. Unlike those in Figures V.19 and V.20, the

S-curve and heat transfer curve does not have a tangent point

which defines the "critical ignition condition". This be-

havior is called noncritical combustion, and as discussed by

Vulis [13] , is characteristic of oxygen poor combustion.

Moreover, these observations are supported by the experimental

results of Thomas, Stevenson, and Evans [15]. In their

experiments, it was shown by decreasing the ambient partial

pressure of oxygen, that a critical combustion process (i.e.,

one in which a "temperature jump" occurs) transforms to a

noncritical combustion process.
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As seen in Figure V.7, the temperature first rises in a

local region of the porous medium (in this case near x/L = 1)

before moving as a wave toward the air inlet surface. The

direction of movement was a characteristic of all the prob-

lems in which sustained combustion was observed. This behavior

is explained as follows. Temperature rises in a region where

the heat generation is greater than the heat transfer between

the particles and the air. The region of higher temperature

widens as heat is transferred by conduction and radiation.

In addition, the increasing temperature simultaneously in-

creases the reaction rate. At some moment, the oxygen enter-

ing through the upstream side of the high temperature region

is totally consumed within that region. When this occurs,

the simultaneous increase in temperature and reaction rate

will occur only on the upstream side of the region of high

temperature. As the increasing temperature moves towards the

air inlet surface, the front of the region of depleted oxygen

also moves nearer the air inlet surface. This results in the

temperature response appearing to move in the form of a wave

toward the air inlet surface. It is interesting to note, that

the magnitude of heat transfer by conduction and radiation in

the increasing temperature region was approximately twice

that of the convection heat transfer at the outset of the

example (Figures V.7 and V.8). It seems reasonable that by

increasing the pore velocity to a sufficient magnitude, the

region of increasing temperature would not propagate but blow
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out (i.e., toward the x/L = 1 surface) . In fact, this is

observed for the problems in which the porous medium cools

to ambient temperature.

Up to this point, the thermal response of the porous medium

has been discussed in terms of "sustained combustion" or

"cooling to ambient temperature". The Semenov curves gener-

ated from the results of the combustion model can be used to

determine transition from kinetic to diffusion combustion.

The kinetic and diffusion regimes of combustion are discussed

in Section III.C. In a practical sense, the exothermic proc-

ess occurring in the kinetic regime is synonymous with the

term "oxidation". The process occurring in the diffusion

regime is simply called "combustion". From everyday experi-

ence, one knows that oxidation can be a slow process, occurring

at low reaction rates. Conversely, combustion can produce

considerable heat, reflected by high temperatures and reaction

rates. As will be shown, transition from oxidation to combus-

tion occurs rapidly. In addition, the porous medium may be

undergoing oxidation in one part, and combustion in the other.

It is important to understand the behavior of the thermal

process at this level. Especially, if there is a need to

closely control the process.

Each point within the porous medium will transition from

oxidation to combustion at different times. This can be

seen in Figures V.19-V.21 which were obtained from the results

of example C. The locations x/L = 1, x/L = .5, and x/L =

110





transitioned at 12.5 seconds, 22 seconds, and 41 seconds,

respectively. Therefore at the start of the problem, the

porous medium as a whole, was undergoing oxidation. More-

over, transition from oxidation to combustion started at

x/L = 1 and moved to x/L = with time. This is consistent

with the behavior observed for the temperature response. As

discussed by Vulis [13] , the theoretical value for "critical

ignition" temperature of the carbon can be calculated using

the "N, N. Semenov equation" given by.

^I
= W~^^ ' (1- 4R^T^/E)^/^] (V.2)

where E is the activation energy of the Arrhenius expression,

R is the universal gas constant, and T is the absolute air
u ^ a

temperature. This equation is derived by equating the

Arrhenius expression III. 16 to the convection heat transfer

expression III. 14, and requiring the slopes be equal. Note

that the theoretical "critical ignition" temperature is a

function of air temperature and activation energy only. Since

the transition from oxidation to combustion at x/L = 1 shows

a noncritical behavior, equation V.l does not apply. The

theoretical "critical ignition" temperatures for locations

x/L = and x/L = .5 are 1831 degrees Fahrenheit and 1492

degrees Fahrenheit, respectively. The values obtained by the

combustion model (Figures V.19 and V.20) are approximately

1825 degrees Fahrenheit for x/L = 0, and 1440 degrees Fahren-

heit for x/L = .5. Once the "critical ignition" temperature
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was reached, the increase to the "combustion" temperature

occurred in less than 1 second for both cases . Examples A

and B in Section V.C (Figures V.2-V.6) were the same problem as

example C, discussed here, except combustion was initiated

differently. Example C was initiated with the porous medium

at a constant temperature known to sustain combustion. In

examples A and B, the porous medium was subjected to a heat

flux at the air inlet surface (x/L = 0) with the porous medium

at ambient temperature. The amount of time for which the heat

flux was applied determined if sustained combustion occurred.

Sustained combustion was observed for example A in Section

V.C. The amount of time the heat flux was applied in example

B was not sufficient for sustaining combustion and the porous

medium cooled to ambient temperature. It is interesting to

note that the temperature at x/L = in example A reached the

"critical ignition" temperature of 1825 degrees Fahrenheit.

The maximum temperature obtained at x/L = in example B was

approximately 1650 degrees Fahrenheit. There is good agreement

between the theoretical values of "critical ignition" tempera-

ture and those obtained by the combustion model

.

The pore velocity significantly affects the combustion

process. This was discussed in Section V.F. Increasing pore

velocity has two effects. First, the internal heat transfer

coefficient, h, is increased, thereby, increasing the amount

of film cooling. Secondly, the supply of oxygen is made greater

(i.e., convection mass transfer of oxygen molecules increases).

The combined effect is that by increasing pore velocity, higher
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local temperatures are needed for transition of the porous

solid from oxidation to combustion. In other words, assume

that transition occurs at a particular air temperature for a

given pore velocity. Increasing the pore velocity without an

increase in air temperature may not be sufficient for transi-

tion to occur. This is illustrated by Figure V.22. Increas-

ing the pore velocity will increase the slope of the heat

transfer line, and also change the shape of the heat genera-

tion curve as shown. It is apparent that an increase in air

temperature is needed to make the steeper-sloped heat transfer

line tangent to the heat generation curve. In addition, higher

pore velocities produce higher combustion temperatures once

transition occurs. In the general discussion of the Semenov

model, it was pointed out that the temperature dominates the

combustion process in the kinetic regime. Increasing the

oxygen supply will have the greatest effect in the diffusion

regime (i.e., increasing the combustion temperature). This

behavior described by the Semenov model, combined with the

effects produced by convection heat transfer (energy trans-

port by internal flow) and to a lesser extent, heat transfer

by conduction and radiation, will determine if the porous

medium will undergo sustained combustion for an increase in

pore velocity.

Figure V.23 shows the effects of decreasing the pore

velocity. The slope of the heat transfer line becomes smaller,

and the heat generation curve changes shape as shown. In

113





X

<

X

TEMPERATURE ^
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114





I
X
Z5

<
UJ

X

TEMPERATURE
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particular, lower combustion temperatures will occur in the

diffusion regime. Unlike the increasing pore velocity case

above, there is less certainty in predicting the behavior of

combustion when pore velocity is decreased. It appears that

conduction and radiation heat transfer become more of a factor

at the lower pore velocities. This seems reasonable since the

ratio of conduction and radiation heat transfer to convection

heat transfer increases with decreasing pore velocity. In

addition, the effects of heat transfer from the boundaries at

the lower pore velocities must also be considered (shown in

Figure V.13 and V.14). The combined effects of all the heat

transfer mechanisms, including the boundary conditions, will

determine if the porous medium will undergo sustained combus-

tion as the pore velocity is decreased.

Lastly, the effects of the boundary conditions must be

considered separately. The results of changing the boundary

conditions were presented in Section V.E. It was observed

that for heat transfer occurring at the surfaces of the porous

solid Ce.g., radiation boundary conditions), higher initial

temperatures were needed to sustain combustion. Allowing heat

transfer from the surfaces of the porous solid (either by

convection or by radiation or by both) , affects the combustion

process in the boundary condition regions as follows. Return-

ing to the Semenov model, there is nothing explicitly asso-

ciated with the boundary conditions that would change the shape

of the heat generation curve. In addition, since pore velocity
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determines the magnitude of the internal heat transfer coeffi-

cient, it appears that the slope of the heat transfer line

will also be unaffected. However up to this point, only film

cooling was considered in the heat transfer line of the Semenov

model. Noting that heat transfer from the porous solid boun-

daries results in steeper temperature gradients in regions

near the boundaries, heat transfer by conduction and radiation

must also be considered. With the additional components of

heat transfer, the heat transfer line will curve upward. This

means that the heat transfer changes from a linear function

to a nonlinear function of temperature. The change of the

shape is illustrated in Figure V.24. As can be seen, the

increased heat transfer by conduction and radiation may pre-

vent transition from oxidation to combustion. This, in turn,

will restrict the heat generation to the kinetic regime. It

is reasonable to expect that as the reaction moves towards the

air inlet boundary, the combined effects of greater heat trans-

fer and lower heat generation will oppose sustained combustion.
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VI. CONCLUSIONS

The main objective of developing a model which predicts

the combustion behavior of a porous medium has been achieved.

The results of the mathematical model are in good agreement

with those obtained by experimental methods. Moreover, the

analyses presented have shown that combustion and heat trans-

fer in porous media is a complex process involving the inter-

action of heat transfer and heat generation. This interaction

depends upon the geometric parameters of a porous medium,

boundary conditions, environmental and initial conditions.

The behavior of a system can change radically by altering any

number of parameters. This point was demonstrated by examples

A and B in Section V.C where a difference of one second in

applying a surface heat flux meant combustion or extinguish-

ment. The results have also shown that conduction and radia-

tion between particles may play a significant role in deter-

mining combustion behavior and should be accounted for. The

computer program makes it possible to look at a large number

of cases. Similar analyses by experimental methods would be

economically impractical.

Based on literature surveys performed during this inves-

tigation, it appears that much of the engineering develop-

ment associated with porous media invoJ-ves a trial and error
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process. It seems reasonable that an analytical model would

be an essential tool for the engineer to employ in the de-

sign process. In this investigation, the model has been

assessed for its applicability, and to some extent, its

accuracy. It is hoped that in the future the model will be

used to determine the effects of the design variables (i.e.,

the geometric parameters, pressure differential, etc.) on

performance. Specifically, the model shows promise for

evaluating the combustion efficiency and stability of a sys-

tem. It is in this capacity that the combustion and heat

transfer model will be of greatest value.
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APPENDIX A

FORMULATION OF FIELD EQUATIONS

1. PRESSURE DISTRIBUTION EQUATION

Darcy • s law for one dimensional flow, neglecting body

forces, is.

Q = - -(|^) (A.l)
U dx

Substituting in the Dupuit-Forcheimer relation, and solving

for u, equation A.l becomes.

The continuity equation (derived in Appendix B) is.

3(pp^) .

Substituting equation A. 2 into equation A. 3 yields.

3(pp ) mp ,

Expanding terms, equation A. 4 becomes.

4. <i^.i|S.l 3P,|P.^!4!£i= (A.5)
dx '^a

m 3x y 8x dx mp 3t
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Equation A. 5 with associated boundary conditions (presented in

Section II. B) is solved for the pressure and pressure gradient

distribution. The pressure gradient is then substituted into

equation A. 2 to obtain the pore velocity.

2. POROUS SOLID HEAT TRANSFER EQUATION

To perform energy balances on both the porous solid and

on the air, a differential volume of porous medium was segre-

gated into respective volumes of constituents, that is,

dV = (l-p)dV for the solid, and dV = pdV for the air (shown

in Figure A.l). The convention used for the energy balance

of an arbitrary differential volume, dV, is.

Heat into
dV

Heat
Generation

Heat out
of dV

Increase in
Internal Energy

The heat transfer mechanisms considered for the carbon

particles are conduction, radiation heat transfer between

particles, convection heat transfer from the particles to

the air, and heat generation. Applying the above convention,

the energy balance on a differential volume of porous solid

is.

^l-P^^cond^^l ^ (l-P)q^ad^A| + q dA'
X X ^

(A. 6)

(1-P^^cond^^
x+dx

-K (l-p)q^^^dA
^ , + q dA'x+dx ^conv

* (i-pjqint-^v
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POROUS MEDIUM AIR SOLID

dV

C> +
p-dV (]-p)-dV

FIGURE A.l Separating a differential volume of
porous medium into respective volumes
of solid and air.
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Representing terms on the right side of expression A. 6 by

Taylor series expansions (neglecting higher order terms)

,

the energy balance becomes

,

(l-p)q^O„d'^A + (l-p)q^^^dA + q dA-
X X

(A. 7)

= ^^"P^^ond^ -^ 37^^1-P^^cond^^^^ ^ (l-P)q..^dA
X

^rad'
X

+ ^[(l-p)q ,]dxdA + q dA' + (l-p)q. .dV
3x ^ ^rad ^conv ^ ^int

Subtracting terms, and rearranging, expression A. 7 becomes.

- I— [(l-p)q ,]dV - -|-[(l-p)q ,]dV - q dA'
dx ^ ^cond' ax"- ^ ^rad ^conv

+ q dA' = (l-p)q. ^dV^gen ^'^mt (A. 8)

Substituting the following expressions into equation A. 8,

dT

^cond
- k

e 3x
Fourier's law (A. 9)

dT

^rad
= - k

r 9x
Radiation analogy to (A. 10)
Fourier's law

^conv ^
^^"^c

"
^a^

Newton's law (A. 11)

q = R
^gen g

Heat generation (A. 12)
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^int ^
^c ^c TT Internal energy (A. 13)

yields

,

|-[(l-p) (k +k ) -5-^]dV - h(T -T^)dA' + R dA' (A. 14)

3T

Dividing through by dV, and defining dA'/dV as z, the specific

internal area (i.e., surface area per unit volume), equation

A. 14 becomes.

ijjKl-pXk^+k^) if] - hz(T^-T^) + R^z (A.15)

3T
= (1-p) P^ c^ ^

The expressions used to obtain the values of the properties

and parameters in equation A.15 are presented in Section

III.E.

3. AIR HEAT TRANSFER EQUATION

The formulation of the air heat transfer equation will

begin with the general one dimensional energy equation.

9T

PPait^^^l-') = fe^P^alir) ^ ^^^V^a^ ^ ^x ^^'^'^

l-(puP) -|-(p U T )

3x ^ dx ^ XX
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As in the porous solid heat transfer equation, the time and

position dependent porosity appears inside the differential.

Expanding terms and neglecting body forces, the air energy

equation becomes ,

- T— (puP) - TT— (put )

9x ^ 8x '^ XX

Consider the momentum equation for the x-direction (neglecting

body forces)

,

It^PPa^^ = - fe^PPa^^) - Is^^P-^xx^ - fe^PP) (^-^^^

and the continuity equation.

It^PPa^ = -^k^PPa^ " PPal^ ^^'^^^

Multiplying the continuity equation through by u, and substi-

tuting this into equation A. 18, the momentum equation becomes.

P^al^ = - PPa-0- k'P^' -k<P^xx> '^-2°'

Multiplying equation A. 20 by u and noting that.

^u 8u ^ 2 3u ,^ ^, ,upp^ Dt = ^PPa 3t
-^ PPa^ T^ ^^-21)
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equation A. 20 becomes,

^P Pa ST = - ^ ll^^PP^ - ^ k^P^xx^ ^^-22)

The energy equation A. 17, after substituting

1 2
D(yu ) /Dt = uDu/Dt and expanding terms, is,

ST

„ 8u 8 pP
P P 7T u '^
^ 8x 3x

3 - , 3u
U TS— (PT^ ) - P T :r—

3x '^ XX ^ XX 3x

Substituting equation A. 22 into the above energy equation and

cancelling terms, equation A. 23 becomes.

3T

The viscous dissipation term, px 3u/3x, is neglected because

the fluid is a gas flowing at a low velocity. Therefore, the

energy equation for the air in the porous medium is,

PP ^ = |-(pl^ -^) + hz(T -T )
- pp|^ (A. 25)^^aDt dx '^ a dx ca ^3x

With specific enthalpy for a gas defined by,

k = e + P/p (A. 26)
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De/Dt can be expressed as.

De _ Dfi 1 DP .
P ^a n, ni\

Dt " Dt "
p^ Dt 2 Dt KP^.^n
^ Pa

2Multiplying the continuity equation through by P/(pp ) gives,
a

p °Pa P DP P 3u

Pa
Dt PPa ^^ p^ 3x

(A. 28)

Substitution of the above expression into expression A. 27,

the substantial derivative of internal energy can be expressed

as.

De ^ D^ J^ DP ^ iii _l_ DP ,, 29)
Dt Dt ~ p^ Dt " p^ 9x " pp^ Dt ^A.^^;

a a a

Substituting expression A. 29 into equation A. 25, the energy

equation reduces to.

PPa5|-P§|-^^ = k'P'^a^' ^'^^'(V^a' ^^-^"^

The specific enthalpy can be represented in terms of tempera-

ture , as

,

dfi = T ds + - dP (A. 31)

where s is specific entropy. For a perfect gas, ds may be

expressed by.
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^^ = =p ¥- ^<5P l^-^^'

Substituting expression A. 32 into expression A. 31, and can-

celling terms, enthalpy can now be written as.

dk = c dT (A. 33)
p

or.

r-.t DT
^ = c -^ (A. 34)
Dt a Dt

Substituting expression A. 34 into equation A. 30, the air

energy equation or heat transfer equation becomes.

3 T 9T

Initial results showed that pP changed slowly with time.

Therefore, the substantial derivative of pP , as shown here.

§t(pp) = It^p^^ " ^ Is^^p^^
^^'^^^

is reduced to u8(pP)/8x. The expressions used to obtain the

properties and parameters in the coefficients of equation

A. 35 are presented in Section III.E.
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4. OXYGEN MOLECULE DIFFUSION EQUATION

The final consideration in formulating the field equa-

tions for the model is the transport of oxygen molecules.

The oxygen molecule transport equation is obtained by a con-

servation of species belance on the differential volume of

air, dV = pdV. The convention used for the species balance
a

is given by.

0^ into
^ dV

O2 out ^02 + O2
of dV Consumption Accumulation

The transport mechanisms considered were diffusion resulting

from concentration gradients, convection, and consumption of

oxygen by combustion. Applying the above convention, the

species balance on the oxygen becomes.

P nij . £j- dA + p m dA = p m , . - _ dA^ diff '^ conv ^ diff
X X

(A. 37)
x+dx

+ p m dA^ conv x+dx
+ m dA ' + p m dVcons ^ ace

Representing the terms on the right side by Taylor series

expansions (neglecting higher order terms) , the species balance

becomes

,

pin, .^^dA + pm dA = p m , . ^^ dA^ diff ^ conv ^ diff
X X

(A. 38)

+ T:r(pm, . ^^)dxdA + pm dA + ^r— (pm ) dxdA + m dA' +pm dV
3x '^ diff ^ conv 3x ^ conv' cons ^ ace

X
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Cancelling terms and rearranging, equation A. 38 becomes,

k<P™diff'<^^ - b'P"conv'^^ - "cons"^^' = P-^acc"^^ '^-^S'

Substituting the following expressions into equation A. 39,

diff e 3x Pick's law (A. 40)

^conv = ^ ^ Convection transport (A. 41)

"'cons = ^0.
Consumption by
combustion

(A. 42)

mace at
Accumulation (A. 43]

yields.

k'P "elt'^^ - kc^P*'^^ - \'^- = P H <^^ <^-44)

Dividing both sides by dV, and letting dA'/dV equal the

specific internal area, z, the oxygen molecule diffusion

equation becomes

,

8_
8x (P-'eH) -|3r<-P*' - ^0^^ = P|! (A. 45)

The methods and expressions for obtaining the properties and

parameters in the coefficients of equation A. 45 are presented

in Section II. F.
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5. TRANSFORMATION OF FIELD EQUATIONS FROM A FIXED COORDINATE
TO A MOVING COORDINATE SYSTEM

As discussed previously, the reaction rate at the air in-

let surface of the porous medium results in surface recession.

To account for this surface recession, the field equations

must be transformed from a fixed coordinate to a moving coor-

dinate system. The method of transforming the field equations

will be shown for only the porous solid heat transfer equa-

tion since the approach for the other field equations (i.e.,

air heat transfer, and combined Darcy ' s law and continuity

equation) is identical.

The porous solid heat transfer equation with the modified

heat generation term is.

ST
|-[(l-p) (k +k )-^] - hz(T -T ) + R'6^(x= 0) (A. 46)
ax"" ^ e r 9x c a g

8T

= ^l-P^^c^cTF

Since the x coordinate is a function of time during surface

recession (e.g., T (x(t),t)), the time derivative term in

equation A. 4 6 must be expanded using the chain rule.

3T , 3T
'^ [T^(x(t),t)] = (^) (§$) + (^)St' c dx ' 'dt' . ' 3t

t 1 x

(A. 47)

The X coordinate in the field equations is nondimensionalized

by n = x/L. Substituting n foi" x, expression A. 47 becomes.
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dx.dt. ^^x ^ ^^ti X

Noting that.

in = i
9x L

(A. 49)

and.

dx _ _ dn _L dL dL /tv cn^dt^^dt-'^dt^^dt ^^-50)

expression A. 48 becomes.

9T , aT ,_ 9T aT
{ £) {^) + ( £) = II(^) £ + £ (A 51)^ax\^dt^ ^ at ^ LMt^ an at {a.^^d

Upon substituting n = x/L into the remainder of equation A. 46,

and substituting expression A. 51 for the time derivative term,

the porous solid heat transfer equation for the surface

recession problem is.

aT
l"^ i_[(l-p) (k +k )_£] -hz(T -T ) +R'6^(n= 0) (A. 52)

dr\ e r an c a g

. aT aT
= (l-p)p^c [2-L^ + 3^]c c L an at

As Stated in Section III.G, the thickness, L, as a function

of time, and L can be obtained from expression III. 44. The

air temperature and combined Darcy ' s law and continuity
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equation appear similar to equation A. 52 for the surface

recession problem.
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APPENDIX B

FORMULATION OF AUXILLIARY EQUATIONS

1. CONTINUITY EQUATION

The law of conservation of mass requires that the substan-

tial derivative of the fluid mass in a differential volume be

zero. Therefore, the continuity equation for a fluid in a

porous medium is expressed by.

^^(pp^dV) = (B.l)

or in an equivalent form.

I^(PP^) +u|3^(pp^) -PP,|^ = (B.2)

2. RADIATION HEAT TRANSFER ANALOGY TO FOURIER'S LAW

Radiation heat transfer in the model was represented by

an analog to Fourier's law of conduction heat transfer shown

by.

Jrad = -"^r ^ '^-2'

where k is an equivalent conductivity of the particles due

to radiation. The development is as follows. Assuming air

to be transparent to radiation, and treating the idealized

geometry of the porous medium (Figure III.l) as a series of
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closely spaced walls, the net radiation heat flux between

adjacent walls is,

[ . = ^-^(T^ - T^^, ) (B.4)
^rad 2-e x x+dx '

where T and T , are the respective absolute wall tempera-

tures, e is the emissivity of the carbon, and a is the Stefan-

Boltzman constant. Expanding q , in a Taylor series about

T .J,./ and neglecting higher order terms, the series expan-

sion may be written as.

'rad 2-£ x x 2-e x+dx 9x

Simplifying, the above expression becomes.

4ae "3 9T , ,^ ^.q J = - n T
, , TT— dx ( B . 6

)

^rad 2-e x+dx dx

Equating expressions B.3 and B.6, and noting that 9T/3x = 3T/3x,

k becomes,
r

'^r
= 5?f'^-W <^-''

where dx is now equal to 6, the pore diameter. From the close

spacing of the particles, the temperature difference will be

small as compared to the magnitude of the temperature. Noting

this, the average absolute temperature of the carbon particle

136





may be substituted for T , . The equivalent radiation con-

ductivity expression becomes.

k = ^P (B.8)
r 2-e c

and the radiation heat transfer from particle to particle

may be represented by.

^rad 2-e c 8x

For small pore diameters equation B.9 will be a good approxi-

mation of the radiation heat transfer between particles.

3. POLYNOMIAL APPROXIMATIONS OF THERMAL PROPERTIES

Relations giving the dynamic viscosity, thermal conduc-

tivity, and specific heat at constant pressure of air at

different temperatures were required. A simple method to

obtain values for these properties is to fit empirical data

with 2nd order Lagrange polynomials.

The general form of the 2nd order Lagrange plynomial is.

(T.-T„) (T.-T-) (T.-T^) (T.-T, )

^1 (T^-T2) (^^-^3) 1 (T2-T^) (T2-T^) ^2 ^n.JLV)

(T.-T,) (T.-T„)

(T.,-T, ) (T.,-T^) 3

where k. is the property value at the ith temperature, T..
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Choosing three temperatures that are representative of

those observed during the analysis, the corresponding values

of the properties are,

sc:ript) Temp. y k
a

c
a

deg-F Ibm/ft-hr Btu/ft-hr-F Btu/lbm-F

1 80 4.7973x10"^ 1.5161x10"^ .24020

2 1340 1.0045X10"-'- 3.9013x10"^ .27268

3 3140 1.5725x10"^ 7.1647x10"^ .31196

Applying expression B.IO to each set of properties results

in the following set of polynomials.

y = -3.308x10"^ T^ + 4.633 xlo"^T +4.427xl0~^ (B.ll)
a a

k = -2.608 X lO"-'-^ T^ + 1.930 xl0"^T + 1.361xlo"^ (B.12)
a a a

c = -1.293x10"^ T^ + 2.758x10 ^T + .238 (B.13)
a a a

Each expression gives property values within two percent of

the data for temperatures to 3000 degrees Fahrenheit.

4. JUSTIFICATION OF THE DANCKWERT ' S BOUNDARY CONDITIONS

The Danckwerts ' boundary conditions for the air heat

transfer are.

3T

^a TF = Pa ^^a^^a-T«.) ^^-l^^
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3T

Bischoff [41] presents a discussion of these boundary condi-

tions applied to mass diffusion equations in porous media.

An analogous discussion is made here for the Danckwerts'

boundary conditions applied to the air heat transfer equation.

The porous medium with entrance and exit regions is shown

in Figure B.l, The air temperature, T , for each section of
a

the region is distinguished by subscripts, as are the proper-

ties. The air heat transfer equations for each of the regions

are as follows,

d^T dT
a a^

k ^ - p u, c —5 = x<0 (B.16)
a , 2 ^a 1 a dx —

dx

, dT dT

d^T dT
a_ a .^

k ^ - p u^ c -g—^ =0 X > L (B.18)
a ^2 ^a 2 a dx -

with the boundary conditions.

T (-0°) = T (B.19)
^1

T^ (0) = T^(0) (B.20)
a-. a
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Flow ={>

Entrance
Region Porous Slab

Exit

Region

a^ a^ 1 V^a'^ ^2 ^2 2

x = x = L

FIGURE B.l Justification of the Dankwerts
boundary conditions.
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Pa^l^a^^O^ -Ky\^'^^ = PPa-^a^a^O^ -P^aS^tT^^O)]

(B.21)

T^ (L) = T^(L) (B.22)
^2 ^

Pa^2Va (1) -^l^t%(^)^ = PPa^^a^a^Q) -P^^[T (L) ]
2 2 ax a

(B.23)

T (oo) = finite (B.24)
^2

The above boundary conditions impose the restriction that

there is no convection heat transfer from the porous solid

to the air at the boundary surfaces. The difficulty of mixing

Danckwerts' and convection heat transfer boundary conditions

is discussed in Section III.H. For convenience, the thermo-

physical properties will be treated as constant in the entrance

and exit regions.

An analytical closed-form solution of this set of equations

is unknown because of the nonlinearity of the temperature

dependent properties in equation B.17. However, the solutions

of equations B.16 and B.18 are.

p u, c
T^ = K-|_ + K2 exp ( ^]^ X) x £ (B.25)

1 a

P u^ c
T^ = K3 + K^ exp i ^^ X) X ^ L (B.26)

2 a
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Applying boundary conditions B.19 and B.24, the following

results are obtained.

K, = T (B.27)
1 °°

K^ = (B.28)

The solutions, B.25 and B.26, become,

p u, c
T = T + K^ exp( ^

,
—- x) X < (B.29)

1 a

T = K. X > L (B.30)
32 J

It would be necessary to have the solution for the nonlinear

equation B.17 to solve for K2 and K^. However, the constants

need not be known to continue with the analysis.

From equation B.29,

T (0) = T + K^ (B.31)
a-, «> 2

and.

|.[T (0)] = '-^^^2 '2.32)
1 a

Substituting these into equation B.21 gives.
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Pa^lVco^Pa^l^a^2-Pa^lV2 = P^a^^a^a^^^ " P^^i^^^a ^^^ ^

(B.33)

Cancelling terms and noting u, = up (i.e., i^-iP-i = ^2^9^

yields,

pp^uc^T^ = PP^uc^T^(O) - pk^^[T^(0)] (B.34)

Rearranging, the Danckwerts ' boundary condition at x = is.

^a lrf'a<°'l = Pa"=a<^a " ^-' '^•^^'>

Noting that K-. is a constant, the derivative of equation B.30

is.

^ T =0 (B.36)
dx a^

and.

|j[T^^(L)l = (B.37)

Sbustituting these expressions and equation B.22 into equa-

tion B.23, and noting U2 = up (i.e., u,p- = U2P2) gives.

PPa'^'^a^a'" -
''a aST'^^a'^*! = PPa'^'^a^a*" '^•2^'

Upon cancelling terms, the second Danckwerts' boundary

condition becomes,

143





^[T^(L)] = (B.39)

An important consideration for using the Danckwerts

'

boundary conditions is that it simplifies the analysis since

equations similar to B.17 may be solved independently without

having to consider entrance and exit regions.

5. PRESSURE DIFFERENTIAL CALCULATION RESULTING FROM EXTERNAL
FLOW AT SURFACE X = L

To obtain the pressure differential, AP, for simulating

the conditions of Fontenot's experiments [1] (discussed in

Section III.H), Bernoulli's equation was used. The following

observations showed this to be a valid assumption. Schlichting

[54] points out that for the ratio of u/U in the range of

.0001 to .01, the effects of "blowing" or "suction" on the

potential flow over the external surface of the porous medium

may be neglected. A typical value of u/U^ for the model at

which U = 25 knots was .0028. For steady flow over a flat

plate, the flow field outside the boundary layer may be

described by Bernoulli's equation. This is a direct result

of the Navier-Stokes equation. In addition, the pressure

gradient across the boundary layer may be taken as zero.

Therefore, Bernoulli's equation.

2

f
— + ^ = constant (B.40)
Pa 2

may be used to obtain the pressure differential across the

plate. The parameters in equation B.40 are defined as follows
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P, pressure; p , density of air; U, free stream velocity of
a

the air over an external surface of the porous medium. For

the model, the density of the air was approximated by the

ideal gas law as,

p^ = P/R^ T (B.41)
a. a a

where R is the gas constant of air, T is the absolute tem-
a ^ a

perature of the air, and P is the pressure. Substituting

equation B.41 into equation B.40 gives.

R T „2
/

^ ^ dP + ^ = constant (B.42)

Upon integrating, equation B.4 2 becomes.

2
U

R T ln(P) + ^5- = constant {B.43)
a a ^

or,

2 2
U^ . U^

R^ T ln(P,) + -^ = R T ln(P_) + -:f (B.44)
a a-> J. z a a.^ z z

Letting,

P, = P , U, = 0, T = T = T , P„ = P^ , U^ = U
1 » 1 a, a^ «>' 2 L 2 =

1 2

and substituting these into equation B.44, yields.
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R^ T In(P^) = R^ T ln(P_) + -^ (B.45)

Rearranging, equation B.45 becomes,

R T ln(P /P^) = -^ (B.46)

Taking the exponential of both sides, and solving for P ,
Li

results in.

P^ = P exp(-U^/2R T ) (B.47)
L 00 1^ ^ oo^ a OO'

From the above expression, and noting that AP = P^ - P^ , AP

may be expressed as.

AP = P^[exp(-uf/2 R^ T )
- 1] (B.48)

oo * 00 a ^^

Expression B.48 was used to approximate the pressure differ-

ential across the porous medium when simulating the conditions

of Fontenot's experiments [1].
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APPENDIX C

NUMERICAL FORMULATION

1. FINITE ELEMENT METHOD

The solution of the system of nonlinear, coupled, partial

differential equations given by equations III. 32, III. 38, and

III. 39, si±>ject to boundary and initial conditions, was ob-

tained by a Galerkin formulation of the finite element method,

The solution of equation III. 12 was obtained using a shooting

method

.

a. Galerkin Formulation

A Galerkin formulation of the Finite Element Method

was used to obtain solutions of the porous solid and air

energy equations, and the oxygen diffusion equation. A con-

venient form of equations III. 32, III. 38, and III. 39 was

used in the formulation as shown by,

ST 9 T
l"^ IrrLd-p) (k +k^)^] -hz(T -T^) +R z = (l-p)p c^^

dx] erdri ca g ccdt

(CD

!^T 9 T
l"2 |_(pk _^) -pp^ c uL"1 ^+hz(T^-T^) (C.2)

dri ^ on a a dri c a

3 T
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where the spatial coordinate, x, was nondimensionalized by

n = x/L.

The closed domain (0,1) was partitioned into (n-1)

contiguous elements of variable length i., i = l,...,n-l.

This defines an n nodal point model. The three field varia-

bles, T , T , <p were approximated by,
c a

T^(n,t) = ij;^(n,t) =
I G(n)9^(t) (c.4)

T^(n,t) = ^^{n,t) = [ G(n)e2(t) (c.5)

<l>(n/t) = H)^{T],t) = I G(n)e^(t) (c.6)

where G., for i = l,...,n is a set of specified basis func-

tions with local support, and the sets {Q^,Qy,Q~,; i = l,...,n}

are the solution coefficients to be determined. The G. were
1

]^selected to atisfy the condition G. (n-) = 5. ., where the

k kKronecker delta, 5. ., is defined by 5 . .
= 1 for i = j, and

]^
5.. = for i 7^ j . As a result, 9,, 9-, and 9-, are the

values i|^, , i)y, ij;, at the nodal points (i.e., 9, (t) = i|;,(ri-/t))

i

Linear interpolation functions (shown in Figure C.l)

were used as the basis functions. These are the lowest

polynomial functions which provide the necessary function

continuity.

As a measure of error, a residual function, r., is

defined for each field equation by,
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n-2 n-1 n

FIGURE C.l Linear shape functions used in the
Galerkin formulation of the FEM.
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r^(n,t) = K^ii,) - ^^ i = 1,2,3 (C.7)

where A. denotes the spatial operator of the ith equation.

For convenience, the following convention for differentiation

is adopted,

!-()=()' (C.8)

.2
^( ) = ( )" (C.9)

3n

|^( ) = (

*

) (C.IO)

For field equations C.l, C.2, and C.3, the residuals are.

- n n
r, = l"^[(1-p) (k +k ) J G!9. ]'-h2 I G. (9^ -9^ ) (C.ll)

-L ® ^ i=l ^ ^1 i=l ^ -^i ^i

, n n .

+ Re" z I G 9 - (l-p)p c I G 9

^ "^i i=l ^ -^i ^ ^ i=l ^ -"i

-9 '^ -1 ^
r^ = L (pk^ y G!9o )' - pp^c^uL ^

I G!9„ (C.12)
^ ^ i=l ^ "^i ^ ^ i=l ^ ^i

n n .

+ hz j; G. (9, -9, ) + uL"^(pP) ' - p p^ c I G.9^
i=l ^ -^i ^i ^ ^ i=l " ^i
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r3 - L"^(P^e I G|e )• - l"^ (p u f G.9 )• (C.13)
i=l i i=l i

_, n n

- «o 83:^.^, V3. - P J, Vs.
2 1 1=1 1 1=1 1

where the coefficients multiplying the response variables are

themselves functions of the response variables, and thus,

the equations are nonlinear. In accordance with the Galerkin

method, the final system of ordinary differential equations

was obtained by setting each residual, r., orthogonal to each

basis function, G., that is.

1 i=l,2,...,n
/ G. r . dn = (C.14)

I - j = 1,2,3

The 3n ordinary differential equations given by equations C.14

retain the character of the original set of partial differ-

ential equations. Thus, linear field operators transform to

matrix operators and nonlinear, coupled field operators become

nonlinear, coupled algebraic operators. Incorporation of

the boundary conditions resulted in 3n nonlinear coupled

ordinary differential equations,

A(t) ^{B^,Q^,Q^) + F(t) = BCt) ^p (C.15)

subject to initial conditions, where B is a 3n x 3n matrix.
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A is the operator associated with the field operator A . in

expression C.l , and F is an excitation vector.

Adopting the convention.

n
<G.> {9.} =

I G.9. (C.16)
1 1 i=l ^ ^

and applying the operation of expression C.14 with an integra-

tion by parts on the second order derivatives gives.

{G^}l"^(1-P) (k^+k^)<G^>'{e^}|J - l"^(1-p) (k^+k^) / {G^} •<G^> 'dn

1 I

-hz / {G. }<G.>dn{9,} + hz / {G. }<G . >dn (9 } (C.17)0^3 J- 0^^
,1 1 ,

+ R z9, / {G. }<G.>dn{9^} = (l-p)p c / {G . } <G . >dn ( 9 , }gjQ^i:) 3 ^^^cc Q^ij 1

{G.}L~^pk^<G,>'{9-,}|i - L ^pk^ / {G . } ' <G .

> 'dn {9„ } (C.18)
1 a J. z vj a ^ 13 z.

_-, 1

pp c uL / {G. }<G.>'dn{9»} + hz /{G. }<G.>dn{9, }aa^i;] z 1;) 1

1 -1 ^

hz / {G. }<G.>dn{9^} + uL "^(pP)' / {G.}dn
^ ^ ^

1

P P^ C;, / ^^i }<G >dn{9^}
a a Q^ 13 /
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{G.}L"^pf <G.> '{9 } 1^ - L~^pl? / (G.} '<G.>'dn{9 } (C.19)

-1 1 1
1

puL "" / {G.}<G.>'dn{9 } - L (pu) • / {G . }<G . >dn{9 .}0^ -^ O'"'^

-1 1 1 •

R^ 29^ / {G.}<G.>dn{9 } = p / {G.}<G.>dn{9 }

^2 0^^ J qi:i j

The first term in each of the above expressions is a boundary

term which permits incorporation of natural boundary condi-

tions. Implementation of the boundary conditions is presented

in Section C.l.b. The coefficients in equations C.17, C.18,

and C.19 are comprised of variable dependent properties, and

were taken as the average value of the properties over an

element. In the limit, as the elements get smaller (i.e.,

n -> <») , the average values of the coefficients converge to

the exact values.

Inspection of expressions C.17, C.18 and C.19 shows

the four operators,

/ {G.}'<G.>'dn (C.20)

/ {G.}<G. >'dn (C.21)

/ {G.}<G. >dn (C.22)

/ {G^}dn (C.23)
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To formulate these operators, the global shape function,

G., was defined on the local level by.

(i-1) ^ ^(i)
i

= g|^-^^©g^^^ (C.24)

where g, and g^ were defined by.

(1 -
Y~) for E, in element (e)

e
g{®^ = (C.25)

for E, not in element (e)

for E, in element (e)

g2®^ = (C.26)

for E, not in element (e)

and I is the length of the eth element. The (+) notati
e

on

in expression C.24 means that G. is the union of g, and

g^"^ . The local shape functions (i.e., the elements) have

the following properties,

Z
e

(i) / g|^^ gi"^^
= if j ?^ m (C.27)IK

1 if i = j

(ii) g/^^ (nJ = 6^. = (C.28)
1 2 i:

if i 7^ j
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Having defined the local shape functions, the ele-

mental matrix operators contributing to the global matrix

operators C.20 through C.23 are.

/ {G.}'<G >'dn - ^
-1

-r

(C.29)

/ {G^}<G.>'

-1 Ij

(C.30)

/ ^G.}<G > - -^

_1

(C.31)

/ ^G.} (C.32)

The derivations of these operators are presented in Section

C.l.d of this appendix.

b. Implementation of Boundary Conditions

Having formulated the system matrices for the field

equations, treatment of the boundary conditions will now be

discussed. Each field equation is considered individually.

1. Porous Solid Transfer Equation

The third set of porous solid heat transfer

boundary conditions (i.e., expressions III. 57 and III. 58) will

only be considered since the first and second sets are sub-

sets of the third. The third set of boundary conditions for
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the porous solid are.

9 Q

L"-'-(k +k )-^ = h^ (T -T ) + ae{T^-T^) n = (C.33)
e r 8ri 1 c o° ' c <»

38

L"-^(k +k )^ = -h_(T -T ) - ozii^-il) n = 1 (C.34)

Since the first term in expression C.17 is.

-2 ^
{G.}L ^(l-p)(k +k )<G.>'{9,}| (C.35)

1 e r 1 1 Q

or in analogous form,

3 6

l"^(1-P) (k^+k^) -j^ (C.36)

Natural boundary conditions, C.3 3 and C.34, may be directly

substituted into equation C.36. The response dependent

parameters, h, , h« , and T , changing with time, are evaluated

continuously within the integration routine. Thus, the boun-

dary conditions are incorporated in the system matrices as

follows

.

(1) -L (l-p)h, : added to the stiffness matrix A(t)
at location A, ,

~

(2) l"-'- (1-p) [h^T -a£ (t'^-t'*) ] : added to the excitation
vector F(t) at location F,
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(3) -L (l-p)h^: added to the stiffness matrix A(t)
at location A-, ^ -, ^ ~

3n-2 , 3n-2

(4) l"-'-(1-p) [h^T -ae (T -t"^)]: added to the excitation2°° Coo
vector F(t) at location
P

2. Air Heat Transfer Equation

The first and second set of boundary conditions

for the air heat transfer equation are.

3T
l"-"- k ^^ = p c u(T -T ) n = (C.37)

a 3n ^a a a 00

3T
-5-^=0 n = 1 (C.38)
3n

Since these are both natural boundary conditions, they are

substututed for the first term of expression C.18 at n =

and n = 1/ respectively. The time dependent properties and

parameters in the coefficient are evaluated continuously

within the integration routine. The boundary conditions are

implemented by adding.

(1) -p p c u L : to the stiffness matrix A(t) at location

(2) pp c uL T : to the excitation vector F(t) at
^ "* location F-

The third set of air heat transfer boundary conditions are.

T = T n = (C.39)
a <»

157





8T^ = n = 1 (C.40)

The essential boundary condition at n = is imposed in the

Galerkin equation as follows. The A,, . row of the A(t)

matrix, the B^ . row and the B. ^ column of the B(t) matrix,

and the F- location of the excitation vector, F(t), are all

set equal to zero. The B2 2 location of the B(t) matrix

is then set equal to one.

3. Oxygen Transport Equation

For the oxygen diffusion equation, the first and

second set of boundary conditions are.

l""^ ^o I^ = ^(<J^ - 't>J n = (C.41)

1^ = n = 1 (C.42)
dn

since these are natural boundary conditions, they were sub-

stituted for the first term in expression C.19. The proper-

ties are evaluated continuously within the integration routine

The boundary conditions are implemented by adding.

(1) -p u L : to the stiffness matrix A(t) at location
A ~
^3,3

(2) puL (|) : to the excitation vector F(t) at location
° F3
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The third set of boundary conditions for the oxygen diffusion

equation are,

^ = <1)^ n = (C.43)

1^ = n = 1 (C.44)

The essential boundary condition at n = is imposed in the

Galerkin equation as follows. The A^ . row of the A(t)

matrix, the B-. . row and the B. ^ column of the B(t) matrix,

and the F^ location of the excitation vector, F(t), are all

set equal to zero. The B^ ^ location of the B(t) matrix is

then set equal to one.

4. Surface Recession Problem

As discussed previously, the oxygen diffusion

equation is eliminated during the surface recession phase of

a problem. By doing this, a reordering of the system matrices

must take place, including the locations for applying the

boundary conditions. The boundary conditions of the particle

and air temperature equations are implemented the same as above

except the indices identifying the matrix locations of the

form, 3n-i, are changed to 2n-(i-l).

c. Treatment of the Reaction Rate Term

An exponential reaction rate term appears in both the

porous solid heat transfer and the oxygen diffusion equation.

The modified Gear integration routine requires calculating or

approximating the Jacobian matrix from the system matrices

,
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A(t) and BCt), In order to include the reaction rate term

in the Jacobian matrix, thus improving the efficiency of the

integration routine, the exponential terms were treated as

follows. The reaction rate terms were multiplied and divided

by the oxygen concentration (only the heat generation term

is shown, oxygen consumption is treated identically)

,

-1 ^
R z9-> y G.e. (C.45)
g 3

.

> , 1 3 •

^ 1 1=1 1

Applying the operation of expression C.14, and moving the

reaction rate term divided by the oxygen concentration out-

side the integral, the Galerkin operator for the heat

generation becomes.

R z e"-"- / {G. }<G.>dn{6-,} CC.46)
g 3 Q^ 1 : 3

The coefficient of expression C.46 is treated as a time

dependent parameter. The Galerkin operators are distributed

into the stiffness matrix at locations, 3n-2,3n for heat

generation, and 3n,3n for oxygen consumption. During the

surface recession phase, reaction rate is treated in a

different manner as discussed in Section III.G.

d. Derivation of the FEM Operators

In the section on the finite element formulation,

the following four differential operators were identified, -
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1

/ {G?}<G!>dn (C.47)
^ ^

1

/ {G.}<G:>dn (C.48)
^ ^

1

/ {G.}<G.>dn (C.49)

1

/ {G^}dn (C.50)

where the G. are the global basis functions. These operators

are constructed on the element level by introducing the

corresponding element basis functions, g.. The global and

element basis functions are related by,

G. = g{^-^' ® g^^* (C.51)

where g, and g„ are defined by

(1 - •^) for ? in element (e)

g£^^ = (C.52)

for E, not in element (e)
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^2

for ^ in element (e)

for C not in element (e)

(C.53)

and Z is the length of the (e)th element,
e ^

The derivation of the local elemental matrices

according to the Galerkin method for the global operations

proceeds as follows:

For operator C.47,

global local

/ {G'}<G!>dii

i^\-l

<g^ g^>d^] (C.54)

Noting that

,

(C.55)

^2 = — (C.56)

the elemental matrix becomes

e

-(i)2]
i

e

dC

-1

-I

(C.57)
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For operator C.48,

global local

I

1 {G.}<G:>dn
^ ^

<g-^ g^>dC] (C.58)

Substituting in the local shape functions gives.

(1 - ^)

e

e e
(C.59)

Carrying out the operations gives

e e

.,4.
2Z'

1 . ^ ^-

^e Z
^

e

2£'^

d^

-1 1

_-l 1_

(C.60)

For operator C.49,

global local

/ {G.}<G.>dn
^ ^

£

g-^ g2>dC] (C.61)
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Substituting in for the local shape functions

(1 -

e

<(1 - f)(f)>d^
e e

(C.62)

the elemental matrix becomes

(1-2 — + —
e i^

4 .2'
e i

e

4 ,2'
e £

e

(1-2 f+M
e £

e

dC

1 =r

L^ 1

(C.63)

For operator C.50,

global local

/ (G^ldn
'e Wl,

d^] (C.64)

Substituting in the local shape function, and integrating,

the expression becomes

^e
dC (C.65)
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This last operator is used for the excitation vector as

described in the FEM formulation.

2. SHOOTING METHOD

The solution of equation III. 12 is obtained by the

shooting method, a general discussion of the shooting method

with examples is presented by Gerald [55] . The method is

based on iterative solutions of equation III. 12 until a solu-

tion is reached which also satisfies the boundary conditions,

P(0) = P^ and P(l) = P^. Along with the boundary condition

at n =0, an initial estimate to dP/dn is specified, and

equation III. 12 is integrated from n = to n = 1 using

Euler's method. An approximate Newton's method is then used

as follows.

dp dp

dP dn .

" dn

^\. = ill,., -^^^^i-i P(i), -p(i);_, ^^-^'^
dP i-2

to provide a better approximation of dP/dn . The procedure is

repeated until the solution has converged. A solution satis-

fying equation III. 12 and its associated boundary conditions

is calculated at each time step. The current values of the

properties are used and 9p /3t is approximated by linear
a

I'

interpolation using the current and past values of p . The
a

dp /dt term was neglected for the first two integrations of a
a

problem. The reason for this is associated with the difficulty

of specifying a reasonable set of initial conditions for the
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temperatiore and oxygen diffusion equations. When equation

III. 12 was treated as an initial condition problem, the

pressure gradient in a small region of the porous medium would

approach zero for some initial conditions of temperature and

oxygen concentration (the starting heat generation rate for

those initial conditions was large at time, t = 0) . The

pressure gradient approaching zero resulted in numerical

instabilities for the temperature and oxygen diffusion equations
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