
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V �������7�K�H�V�L�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q���&�R�O�O�H�F�W�L�R�Q�����D�O�O���L�W�H�P�V

��������

�,�Q�W�H�J�U�D�W�H�G���D�S�S�O�L�F�D�W�L�R�Q���V�R�I�W�Z�D�U�H���V�\�V�W�H�P��

�:�D�W�H�U�V�����-�R�K�Q���&�K�U�L�V�W�R�S�K�H�U��

�0�R�Q�W�H�U�H�\�����&�D�O�L�I�R�U�Q�L�D�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

SSj A
c
Vf4 0STGIJADUAIESCĤ

NAVAL POSTGRADUATESCHOOL
Monterey, California

THESIS
INTEGRATED APPLICATIC N SOFTWARE3YS TSM

by

John Christoph er Waters

December 1982

Thesis Advisor: Dusan Zdenek 3adal
:

Approved for public release, distribution unlimited

' ZQ'i

SECURITY CLASSIFICATION OF THIS RACE,'Mm Data gntorodi

REPORTDOCUMENTATION PAGE
2. GOVT ACCESSIONMO

4. TITLE (and Subtitle)

Integrated Application Software System

7. AuTMOKi'CJ

John Christopher Waters

» PERFORMINGORGANIZATIONNAMEANO ADDRESS

Naval Postgraduate School
Monterey, California 93940

READINSTRUCTIONS
BEFORECOMPLETINGFORM

1 RECIPIENT'S CATALOGNUI

S. TYRE OF »EPO»T a PERlOO COVERED
Master's Thesis
December 1982

« PERFORMINGORG HIFQUT NUMBER

t. CONTRACTOR GRANTNUMSCRftj

to. program element, project tTs*"AREA * WORKUNIT NUMBERS

I I CONTROLLINGOFFICE NAMEANO AOONESS

^avai Postgraduate School
Monterey, California 93940

U MONITORINGAGENCYNAMEa AOORESSOfdllloront Irom Controlling OMItmj

13. REPORTQATE
December, 1982

11 NUMBEROF PAGES
172

IS. SECURITY CLASS. Co* ifii« ,|m,

tSa. DECLASSIFICATION' DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENTfa/ tni* Koporl)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT(ot Iho oboirmet ontorod In Block 30, ll dltloront from Rmpon)

IB. SUPPLEMENTARYNOTES

H KEY WOROS(Conttnuo on tovoroo «*<* II nacaaaarr ond idmntlly *r alaea ntmiomr)

Interactive npplication Software System
Relational Database Management System

20. ABSTRACTfCMi/mi* an rovoroo oldo II notooomty mmIdomtltr »r mime* mmtoot)

As increasing data processing power becomes available at

decreasing cost, greater numbers of nontechnical personnel

are gaining access to automated systems that enhance their

productivity. However, the sharp distinction between each

DO , j°"*TJ 1473 COITION OF I MOV•• IS OBSOLETE
S/N 0102-014- 6«0I

i

SECURITY CLASSIFICATION OF THIS RAOE(Whom Dmtd tmorod)

Smcvmr * eimWCttigj o» Twit »»»« /»,«, n», m ««—

«

of the support packages, and the requirement for the user to

become familiar with different models, concepts and

vocabularies is a barrier to reaching higher effectiveness.

The premise is that these common support systems have

equivalent functions and a large intersection of operations

that can be integrated. It is the purpose of this thesis to

study a possible Integrated application Software System

(IhSS) that will combine the needed capabilities into a

functional system and present the user with a single data

model and vocabulary set. The data model which is proposed

for use by the IASS is the relational data model, since it

is universally understandable, and has a robust theoretical

foundation.

DD Form 1473
1 Jan 73

Approved for public release, distribution unlimited.

Integrated Application Software System

by

John Christopher waters
Lieutenant, United States Navy

B.S., Rensselaer Polvtechnic institute, 1977

Suomltted in partial fulfillment of the
requirements tor the dearee of

MASTER OF SCIENCE IN COMPUTERSCIENCE

from the

NAVAL POSTGRADUATESCHOOL
Decerroer 1932

ABSTRACT

As Increasing data processing power becomes available at

decreasing cost, oreater numbers of nontechnical personnel

are gaining access to automated systems that enhance their

oroduct ivity. However, the sharp distinction between each

of the support nacKaaes, and the requirement for the user to

become familiar with different models, concents and

vocabularies is a barrier to reachina hiaher effectiveness.

The oremise is that these common supoort systems have

eouivaieot functions and a lara*» Intersection of operations

t K at car be integrated. It is the ourpose of this thesis to

study a nossible Ioteorated Aoolication Software Svgtem

CIASS3 t K at will combine tnp needed capabilities i n to a

functional system and oresent the user with a sinole data

model and vocabulary set. The data model which is Proposed

for use by the TASS is the relational data model, since it

is universally understandable, and has a robust theoretical

foundation ,

TABLE OF CONTENTS

I. INTRODUCTION 7

II. DESCRIPTION OF SUPPORT SYSTEMS , 11

A. TEXT EDITOR , 12

B. WORDPROCESSOR ,. 14

C. DATABASE MANAGEMENTSYSTEM 15

D. ELECTRONIC SPREAD-SHEET 20

E. EOR^s GENERATE 2?

F. ELECTRONIC MAIL 26

III. THE COMMONDATA OBJECT 28

A. TEXT 30

B. DATABASE 34

C. SPREAD-SHEET 34

D. FOR* 3 5

E. ELECTRONIC MAIL 37

IV. OPERATIONAL INTERSECTION 40

A. BASIC OPERATIONS *1

B. SUITABILITY OF OPERATIONS 48

V. APPLICATION LEVEL INTERFACE 63

4, EDITOP/WORD PROCESSOR 65

R, DATABASE MANAGEMENTSYSTEM , ,. 68

C. SPREAD-SHEET 70

D. FORM GENERATOR 74

E. ELECTRONIC MAIL 7*

VI. USER INTERFACE 84

A. USER INTERFACE MODULE 36

B. APPLICATION PROGRAMLEVEL ,. 90

1. IAS* Editor and word Processor , 91

2. IASS Database Manaqement System °5

3. IASS Spread-Sheet 101

4. IASS r orm Generator 105

5. IASS Electronic Mall 109

VII. CONCLUSION 114

APPENDIX A (Word Star) 118

APPENDIX B CVi) 127

APPENDIX C (Edit) 134

APPENDIX D C'iroff -Me) 139

appendix r (Dbase II) 142

APPENDIX E (Seauitur) 148

APPENDIX G (Vlsicalc) 156

APPENDIX H (Z1d) 163

APPENDIX I Call) 166

BIBLIOGRAPHY 171

INITIAL DISTRIBUTION LIST 172

I. INTRODUCTION

The utilization of computers in many areas, such as

personal computing or office and manufacturing automation,

is rapidly expanding. No longer is their use beino

relegated to suoport Dersonnel, but is spreading into the

ran*cs of lower ar.d middle level management. The majority of

such users are non-computer orof essionals who are coming to

depend on the computer to provide a sUDnort caoability in

the accomplishment of their Primary responsibilities.

Over the Dast years, numerous software cacxaoes nave

been made available to suoport a broad spectrum of users in

varving environments. Capabilities such as word processing,

database manaoe ment, modelir.o, form oi»nerat ion , and

electronic mail have become essential. The point to be made

is that the original purpose of introducing the computer was

to increase the effectiveness and efficiency of the

organization, while the present performance of each sucoort

package is satisfactory, the manner in which they are

presented to the user is not. As illustrated in Fiaure 1,1,

each support system is tyoically disjoint from all others,

and the user is presented with differino models, command

vocabularies, and operating instructions. This non-

integrated combination of application software reguires a

great deal of effort on the part of the user to become

familiar with a new system and remember It along with the

other systems that are used.

2

MaMMBM

Flaure 1.1 - Disjoint SupDort Systems

What is needed to increase productivity is an integrated

system that combines the caoafcilitles of the support

cacVraoes i^to a system *«hich presents the user <vith a

single, yet easy, conceotual data ^odel and vocabulary set,

It Is such a system that is called an Integrated Application

Software System CTASS), and the curoose of this thesis is to

develop a design for its implementation. Tt is imoortant to

emphasize that the IASS is not built around the already

existing apolication Drograms, but the reverse. Given an

IASS's common user interface and conceptual level, the

designer win evaluate each acolication and design a new

aDDlication proaram to capitalize on the IASS capabilities.

The design objectives for the IASS are:

(1) Fnsure a high decree of user friendliness and

emphasize simolicity.

(2) Minimize the initial and acquired user skill level

necessary to gain major functional use of the system.

(3) Minimize the learning time reauired to gain

functional use of the system,

(4) Present a looical interface between each of the

IASS's caoabilitles, but mirimize the explicit user

navigation between them.

(5) Determine the largest intersection of functional

caoabilitles for the individual apDlication oroorams and

integrate them into a common conceptual level,

(6) Develoo as small a command vocabulary as possible

at the user interface. Ensure that these commands form an

intersection of the application program commands, and are

consistent between f^ach of the applications.

C 7) Eliminate the dependence on user proarammina in

order to use the system,

(9) Embody the notion of software adaotivity whereby a

user, alreadv familiar with at least one application in the

IASS, can learn a new application by studying only the small

increment of "»ew commands and functions that are specific to

the new application.

(9) Mew applications, not originally considered in the

orioinal IASS, are implemented by adding a small increment

of functions and commands to the IASS,

(10) Allow for the interaction of the included

applications in support of each other.

While the IASS cannot be expected to comoietely

Integrate the separate features of each supoort package, it

can strive to maximize the intersection between them, Fiaure

1.2 shows a simple illustration, in Venn Diagram form, of an

IASS,

1 L

2

}

4

Figure 1,2 - IASS Support Package Intersection.

In the following chapters the basis of ar< IASS desian

will be discussed. ChaDter 2 will describe a selected oroup

of currently successful aoDlication support oroorams that

will be considered for Integration into an IASS. Chapters 3

and 4 will cover th*» conceotual level of the IASS which is

invisible to the user. Chapter 3 discusses a common data

object for the IASS, and Chapter 4 the conceptual level

operations allowed on it. Chapter 5 covers the use of the

conceptual level by the included aooiication programs.

Chaoter 6 covers how the user will interface to the Tass.

Finally, Chapter 7 Dresents the conclusions that can be made

from this limited study of an IASS,

10

II, DESCRIPTION OF SUPPORT SYSTEMS

In order to demonstrate the applicability of an

Integrated ADPlication Software System (IASS) and its

conceptual level inteoratlon aporoach, six common software

applications were selected. The epoiications w?r ft chosen

based on their cerceiv*»d effect in supportina an office

based user,

a, Toyt Editor
b. word Processor
c« Relational Database Management System
d. Electronic SDread Sheet
e. "orms Generator
f. Electronic *ail

As a non-intearated collection of apDlication software,

each of these oac^anes is imolemented to accomplish a set of

operations on a soecific file tyoe, and the set of included

oDerators is tailored for that tyDe, Commands are not

usually transferable between applications and the

apDlication vocabulary is v*rv "barooue" in that most of the

ooerators exist as a matter of convenience to the user. Too

often it is a very small oercentaae of the overall

vocabulary that is used over ninety Dercent of the time. The

majority of users only learn a subset of the vocabulary

necessary to accomplish the essential functions of the

application oac'ooe, and disregard the rest.

11

Representative commercially available software packages

corresponding to the six selected apolication tyoes were

reviewed to determine the nature of the Dertinent file tyoes

and the essential functions reauired of the apolication. The

following sections will present the results of this review

as they apoly to each apolication package,

A. TSXT EDITOR

The puroose of a text editor is to preoare a text file

in a« aoorooriate form for use by a subsequent process.

n word STAR", and the "VI" and "EDIT" systems for Unix were

analyzed. These systems are described in Appendices (A),

CS), and (C).

The text editor can be divided into five major

functional categories of commands which are supported;

<Create>, <Insert>, <Modify>, <Delete>, <Move>, and

<Retrieve>,

1

.

Creation

A facility used to define an empty file into which

the text will be entered. This involves a directory entry

of some type, the allocation of storaae space, and the

creation of a buffer area,

2. Insertion

Done an object at a time in relation to some

referenced point in the text file, such as the cursor

Dosition. It is oossible to insert any object at a

12

specified point. Insertion is non-destructive in that the

object is inserted between existing contents, without

overwriting. The object to be inserted may be entered by

the user, come from a buffer, or come from another file,

3, Modification

In relation to some referenced point in the text

file the current contents are altered , Modification is

destructive In that the current contents are destroyed by

writing over them. Global modification is Dossible.

4, Deletion

In relation to some referenced point in the text

file an object of any granularity level is removed. Global

deletion is oossible,

5

,

Movement

T*e current Doint of reference in the text file is

charged to me»t the desires of the user, Control of

movement is possible at any object level. The user should

have the capability to move to a Predefined location or to a

location that meets some condition,

6, Retrieval

while not directly resDonsive to user retrieval

commands, the text editor supoorts the user by displaying

the local area around the point of reference. In a general

sense this is a desired retrieval of text from the file.

Retrieval is automatically done for the user when the point

13

of reference changes to ensure the user can establish the

context of the colnt of reference,

B. WORh PROCESSOR

Files Dreoared by a text editor can be processed by a

word Processor (WP), M woPD STAPM
, an on-line wp, and "NROFF

•me", a wp for the UNIX ooeratina system, were analyzed.

These two systems are described in Aooendices (A) and CO),

Currently there are two accroaches to word orocessina:

CD Off-Line Formatting. In addition to the actual

text in the edited file, a combination of special

characters, and characters strinqs, c^n be embedded in the

text file for use by the wp. These soecial embedded

character strings ar& commands used by the word orocessor to

oroduce the desired orlnted format of the text file. This

r^auires a two step procedure bv the user, The user first

visualizes the desired format of the outout and then

translates it into a combination of the actual text and the

embedded WP commands. The text file is then orocessed by

the WP, This is a level of indirection that delavs feedback

to the user as to the effect of a command,

(2) On-line Formatting. In this case, while most

of the wp commands are still embedded in the text file, they

are immediately executed. As the user inputs the text, it is

disDiayed on the screen in the desired format. The user

thereby receives immediate feedbacK as to the effect of

formattino commands. However* the problem of the disolav

14

format being bigger than the display dimensions is a

Droblem, if only a minor one.

The WP, unlike the other apDlication packages, does not

directly manipulate a data object in the course of its

operation. Instead, it interceots a stream of data from tne

data object and alters the disolay format prior to output.

For this reason is seems looical to consider the wp to be a

Dart of the editor - the application package that

manipulates the data object uoon which the wp deoends.

C. DATABASE MANAGEMENTSYSTEM

Data is simply symbols which are stored. Tn and of

itself, a datum has ^o significance. However, when coupled

to an entity, the class of a datum becomes an attribute of

t * e entity and the value of the datum can be used as

information to describe an instance of the entity. When

data is stored in a computer it is known as a database. To

transform the raw data into an abstraction suitable for a

person to use and/or modify is the major function of a

Database Management System (DBMS), In a sense a DBMS acts

as an interpreter between the user and the computer. It

interorets user statements describing what is to be done

wit* the database into the lower level aiaorithms necessary

to cerform the ©Deration on the conceptual and eventually

the physical representation of the data in the comDuter,

From the oersDective of the computer, the DBMS translates

15

the physical implementation of the data through the

conceptual representation to the appropriate user view. In

this way the DBMS provides two levels of data independence.

Data independence implies that modification can be made to

the implementation of the data without affecting the logic

of the apDlication orograms. Data independence between the

conceptual schema and its physical implementation allows

changes to the ohysical implementation of the conceptual

schema wnile oermitting application Programs to run as if no

change had occurred. Similarly, data independence between

the conceptual schema and a user view allows changes to be

made to t h e conceotual schema while permitting aoolication

oroorams to run as if no chance had occurred.

In addition to the data management function, a DBMS also

provides functions to ensure svstem integrity. Towards this

end a DBMS enforces database security constraints. The

securitv facility ensures that unauthorized access to data

is not allowed, A DBMS typically ensures that the reouired

properties of data are guaranteed. These properties can be

either syntactic, that is structural, or semantic, for

instance contained within a specified domain. A DBMS

typically provides a mechanism to protect the database from

a system crash by regularly mafcing bacx-uD coDies of the

database. In the event of a system crash, a dbms tyDically

provides a facility to restore the database to a previously

consistent state. Finally, in a multi-user environment, a

16

DBMS typically provides a synchronization mechanist* to

protect the database from inconsistencies which might result

from simultaneous access to a database, especially if one

access entails a change to a shared data item,

"DBASE II" and "SEQUITUP" were reviewed as

representative relational data base models and are described

in Apoendices (F) and CF), A relational DBMS was selected

as an IftSS conceptual database model due to its familiar and

universally understood data object, the relational table,

T*e basic organizational unit in the relational table is the

named and domained field. A record of arity "n" in the

relational table contains n fields, each containing a value

from its domain. A relational table is the next hioher

level of organizational abstraction. T>e overall schema of

the relational table is defined ov onysical Properties of

the fields and embodies the relationship which is defined by

the field set.

A DBMS can be logicallv divided into three functional

parts - data definition, data manipulation, and guery

retrieval. These parts can be further refined into the

functional operators <Create>, <Insert>, <Modify>, <Deiete>,

<Move>, and Oetrieve>.

1 . Creation

The existence of a relational table is typically due

to a need oerceived by the user to organize data. Creation

is therefore the process by which the relational table is

17

defined in a database by Its identity and composition. The

existence of the table is noted in some form of a database

table directory. The composition of the table defines the

schema of the relational table. Modification of a user

defined table can be viewed as a special case of creation or

re-creation. A table name can either be changed or the

schema redefined. In addition to these explicit methods of

creatina relational tables, implicit methods also exist. As

a result of the relational operation JOIN, a new relational

table can be created. The method of namina the new

relational table Is implementation scecific. The composition

of the table, however, is derived from the schema of the

ODerand relational tables.

2. Insertion

Insert is a comconent of the set of data

manipulation ooerators. The action of an insert is to place

a record into the relational table. The orioin of the record

to be inserted is irrelevant to the ooeratlon. The effect of

the oDeration is that a new relational table is derived from

the old relational table, order not beino sianificant,

3. Modification

Modify is a component of the set of data

manipulation operators. The action of a modify is to chanoe

the data in a field. DBms's tyoically do not restrict the

orioin of the new data to what the user supplies at a

18

terminal but can be as a result of evaluation of expressions

or derived from other relations in the database,

4. Deletion

Delete is a component of the set of data

manipulation operators and is in fact the Inverse operation

of insert. The action of delete is to remove a record from

the relational table, the final disposition of the deleted

record is immaterial to the operation, 4 delete operation is

tvplcally a two step process. A record Is first marked for

deletion and then explicitly removed from the table.

5, Movement

The movement operator can be viewed either as a

passive data manipulation ocerator or a query retrieval

operator. Movement encompasses "m* process of cnancinq the

current point of reference In th<* database. The ultimate

destination is determined from manipulating data in the

database or as a direct result of a ouerv on the database.

The ooint of reference can be of any organizational

abstraction from an entire relation to an individual

character in a field. This ranqe in movement implies that

this operator subsumes the theoretical relational alaebra

operators PROJECTION and SELECTION. Movement is a required

operator in order to scan and extract Information from, or

in conjunction with, the performance of any of the other

operations on the database.

19

6. Retrieval

Retrieve Is exclusively a auery resDonse operator.

The condition of a auery specifies the information to be

extracted or derived from a database, A nuery can be in

many forms. Traditionally a auery facility is embodied in a

specialized lanouage which the user emolovs to extract

information from the database. In this simplest form, a

nuery is equivalent to the relational algebra PROJECTION

operator oossihly following the SELECTION operation on the

referenced relation. Queries can exist in subtler forms.

Movement through a database can actually be the result of an

urderlyino, implicit retrieve operation. Some uses of forms

embodv a retrieval operation as tney extract information

fro™ a database to derive its contents, ReDorts also embody

the retrieve operator in the same way as a form. From the

database, information is retrieved and disolayed in a user

specified format.

D, ELECTRONIC SPREAD-SHEET

An Electronic Spread-Sheet Dacfcage provides an important

numerical modeling caoability to the user. This application

orovides the user with a piece of "electronic" scratchoaoer

for doing fairly comolicated numerical problems, and models

that are of a recurring nature. Instead of reaching for

pencil, oaper, and calculator each time, the user will call

the electronic spread sheet and by entering the needed

20

values cause the spread-sheet to complete the

calculation/model. It compliments the Inclusion of the word

orocessor and database manaoement system In the IASS. The

commercially available "VISICALC" system was reviewed, and

Is described In Appendix CG)t

Soread-sheets are commonly divided Into addressable

(row, column} entry positions, similar to a checkerboard, and

are used to graphically dlsolay numerical data In a tabular

format. A small portion of the scread-sheet Is usually

visible on the screen at any one time and the user must use

window and screen commands to move across the entire sheet.

Each entry oosition is an independent entity and can contain

any of the data tyoes - character, numeric, or function.

The consents of an entrv position can be expressed in

relation to the value of a previous entrv position.

System operations consist of <Create>, <Insert>,

<Modify>, <Move>, <Delete>, and <Retrieve>.

1, Create

The user initializes a data storage structure for a

new spread-sheet. The dimensions for the new spread-sheet

are initialized and all entry positions are set to null

values .

2, Insertion

Given an already existino spread-sheet, the user

adds a new column or row to the soread-sheet at an indicated

location. This enlarges one of the spread-sheet dimensions

bv one.

21

3, Modification

Change the current value In an existing entry

position to a new value or function,

4. Deletion

Given an already existina spread-sheet, the user

deletes an entire column or row from the soread-sheet at an

indicated location. This will reduce one of the spread-

sheet dimensions by one.

5

.

Movement

Allows the user to view the contents of the entire

sDread-sheet through the limited dimensions of t*e screen

display t>V permitting the user to maneuver the screen across

the soread-sneet ,

6, Retrieval

The tabular disday of the spread-sheet on the

user's screen is the result of a oredefined retrieval from

the stored reoresentatlon. As changes are made to entry

positions and they, in turn, effect other entry positions,

the tabular disnlay is '<eot undated by automatic retrievals.

Additionally as the user moves, or alters, the window into

the spread sneet new information must be retrieved to meet

the changed request. The user cannot specifically asVc for

information from the system, but instead accepts the single

retrieval the soread-sheet package was designed to

automatically produce.

22

E. FORMS GENERATOR

By definition, a "form" Is a printed document with

blanks to be filled in, and "format" Is the arrangement, or

plan, of a presentation. Traditionally, a document is

assumed to be a piece of oaoer, and the inout device used to

Dlace values onto the document is the human.

In the Electronic Data Processing CEDP) environment,

these notions are generalized to where a document can also

oe derived from, or stored into, a database or data file.

Regardless of the semartic generalizations Introduced by

EDP, the loaical view of a form, as well as its function,

remain the same. A form is used as a template to disDlay

information anH/or collect a set of data. A form is

distinguisnaole from a reoort in that a form recresents only

one i^sfance, or a coalescence, of a set of data elements.

The reoort contains the form as a special case, hut reoeats

it for each instance in the set of data elements.

A Form Generator is a utility to assist the user in

designing a displavable form at "desian-time" and emoloyinc

it at "use-time". Since creation and use times are

different, the desian-time disDlay must reoresent the use-

time display of the for™ as closely as oossible. From fhe

design the Form Generator must translate the visual

soecif ications into the appropriate representation for use

by the displav function at use-time. In addition to the

physical layout of the displayed form, the design and

23

internal representation must contain information regarding

the value association or derivation at use-time. The DBASE

IT form oeneration facility, and the separate "ZIP" screen

oriented form generator were evaluated and are discussed in

Appendix CH),

The design-time environment includes both initial form

design and desion modification. Form design is done by use

of an editor and an on-screen caDahility is essential to

achieve desian-time and use-time visual proximity. The

editor could be an integral oart of the form Generator or

seoarate. Value association is not done by the form

aenerator directly. The user states the value association

of a "blocK" in terms of the use-tim* function which must

evaluate the "blocK" values.

The orocess of form oeneration entails describing both

the disolay features of a "bloc*" in the form and the use-

time association. The functional list of ooerators to

suoDort a form generator are <Create>, <Insert>, <Modify>,

<Delete>, <Move>, and <Retrieve>.

1 , Creation

Creating a new form entails naming the form and

maKing it fcnowr to the rest of the system for use. Only the

empty structure is created and will reguire the user to

enter information into it.

24

2. Insertion

The user adds a new "bloc*" to the form by

specifying Its characteristics. Characteristics may be -

position, prompt, irout/output , type, and processing

information. A groupino of these "blocks" will make a form.

Actual "block" specification and addition is done throunh a

level of indirection where the user draws the "blockCsl " on

the screen and the system determines the carameters

necessary to make the form.

3. Modification

The user changes one or more of the characteristics

of an already existing "block",

4. Deletion

The user removes an entire "block" from the for".

5

.

Movement

The user has a Dolnt of reference within the aiven

form. At any given time some "block" is the ooint of

reference, and commands ar« available for the user to move

this ooint of reference,

6. Retrieval

The user desires to see the format in which the form

will be displayed both at design-time and run-time. The

retrieval operation is automatic and translates the

information stored in the form's structure into the

appropriate display. Actual design and modification of a

form is done on this disoiay and the form Generator

25

determines the additional information it will need to

recreate the finished form on demand.

F. ELECTRONIC MAIL

Electronic Mail is a facility for sending messages from

one user to another. The "MAIL" system used by the UNIX

ooeratinq system was reviewed and a description is given in

^poendix CI)

.

*n Electronic Mail system uses a nrerfefined messaae form

which contains information, such as destination, subject,

and main body. Once created, the messaae is sent to the

destination where it is placed in a message file, called a

"mailbox", for r*adlna. The major functional ODerations in

a mail system are <Create>, <Insert>, < Modifv>, <Del*te>,

<Movement>, and <Petrieval>,

1

.

Creation

The svstem aenerates an empty message form which the

user fills in.

2. Insertion

Messages are inserted into the various mailboxes

that the mail system maintains. A message is sent to

another user by storing it in the system mailbox.

3. Modification

Messages are initially created with no values in the

message form. Composing a message therefore, entails making

modifications to the null parts of the message.

26

Modifications can also be made to a message any time during

composition, before sending it to its destination. Finally,

fields in a message may be modified by the reciDient, in

order to retransmit the nessaoe.

4. Deletion

Bv reviewing messages from the system mailbox, they

are deleted from the system mailbox and placed into a local

area. The user *av delete messaaes from the system or local

mailboxes at any time,

5. Movement

All the previous commands are performed in relation

to a ooint of reference. The point of reference in a

mailbox can be changed bv the user in order to browse

through ths messaaes, or edit t^em,

5. s*»tri»yal

Reading a messaoe is done by retrieving the contents

of the message fields and displaying them to the user.

In review, Chapter 2 has shown that a general

commonality exists between the functions of the given

apDlications , This commonality has been presented as the set

of six command categories - <Create>, <lnsert>, <Modify>,

<Delete>, <Move>, and <Retrieve>, The following chapters

will lead to an integration based on this commonality.

27

III. THE COMMONDATA OBJECT

The Key to achievina an intearated system which can

support formatted and unformatted data is to map the loaical

file tyoes associated with the aoDiicat ions , Into one

conceotual data ob-ject. This conceptual data object is then

oart of a model of the applications and their use. The

functional intersection of operations on the files can. be

imolemented by a sinale set of orimitive conceotual

ooerations on the common, data object.

The IASS must reoresent each of the loqical file tyoes

associated with the included applications in such a way as

to suPDort the essential functions of each aoolicetion. The

data object chose" for *his I*SS desion is the table. The

table is a natural method of oroanizind data and therefore

should be understandable, even bv naive users. A table is a

two dimensional array containino rows and columns. The IASS

uses the table to reoresent a "real-world" entity. Each

column reDresent3 one attribute of :hat entity and each row

represents a unique occurrence of an entity. A table is

almost equivalent to a relational database relation, exceDt

that a table implies that rows and columns have an order in

the table which can be used in a Dositional addressina

scheme. Since addressina is associative in a relation, the

table must include columns which represent Kev values to

28

uniquely identify each row. with this slight modification,

any datum in a table can be accessed by specifying the name

of the table, the value of the Key, and the name of the

attribute containing the datum. Hereafter, the common data

object will be referred to as a relational table. Rows of

such tables are usually referred to as "tuoles" and columns

are referred to as "attributes". The assumotions to be made

concerning the relational table in this thesis are: CI) Pow

or column order is not sionificant, (25 All columns are

named and must be uniaue within the table, and C
3

") Each row

is uniquely identifiable by a *ey value.

In the following sections each logical file type will be

described as a relational table. The attributes of each

table tVDe were selected based noon its nerceived primary

use, As such, the set of attributes associated with eac*

table was determined in order to orovide the information

necessary to support that orlmary aoDiicatlon, These tables

are merely special cases of a relational database table.

Based on their predef inition, their use can be bounded

within the primary application and therefore can be "tvped".

To be of a certain tyoe, it is sufficient that the table

contains the minimum set of attributes necessary for that

soecific type as a subset of its total set of attributes,

(e.o. a given system table mioht have five attributes. Three

of those are the reguired attributes for a tyoe-1

application table. The remaining two attributes could be the

29

required attributes for a type-2 table.) This implies that,

as ar> implementation issue, a sinole table could be

considered to h9^9 multiple types, but for simplicity let us

assume that a table will have only one tyoe, As

apolications are added to the IASS, the accomoanylna minimal

set of attributes must be defined to reoresent the new table

tvoe. There are many structural oraanizations which could

reoresent a logical file tvoe. The final decision on the

organization of the table must be made to maximize the use

of the conceptual level operations that are available to

manioulate the data in the table. These conceptual level

operations will be covered in Chanter 4. It is important to

note that the table is a structural oroanization used as a

model and therefore problems may arise in expression the

actual aoplications by the table model.

A. TEXT

Text, as data in a text file, is a "continuous" string

of individual characters from some character set (e.g.

ASCII). The use of text as data is by character, where each

character is a unit of data used in an application.

Objects such as words, sentences, lines, or paragraphs

are loaical abstractions, hidden in the text, that are

useful as information only to a human user. Any IASS

manipulation that may alter this hidden logical abstraction

will directly effect the ability of the IASS to transform

30

the data bacfc into information, (e.g. deleting every other

word.) This will require the imoositlon of limitations on

the use of table ooerators on the text table in order to

protect this logical abstraction, (i.e. operations incapable

of talcing into account the logical abstraction of text will

not be used.)

The only naturally occurring data elements in a text

file is the single character, and the entire character

stream. Their domain is all the elements in the aodicable

character set. These two Drohiems, the continuous nature of

text and its discreteness being limited to a single

character or the entire file, make the text file the most

difficult file tyoe to model as a relational table. The

table must ouantize the continuous text stream into column

units, thus destrnyino the continuity of the text.

Additionally, while the relational table ooerators recognize

the column as being an object, in fact it has no natural

occurrence in the text file. Any definition of a column

which represents text objects between the single character

and the entire text file, is an arbitrary quantization of

the text stream. Figure 3,1 illustrates the problem by

arbitrarily choosing a column size eoual to ten characters

(the character "»" reoresents a carriage return and line

feed). This division of the text stream into units, for use

as tuples in a table, has no corresoonding unit in the

31

original text file, and has imDcsed structural limitations

by the column boundaries.

Ca) Text Stream

MR, JOHN SMITH91349 WILMINGTON DR.9CARSON, CA

(b) Tuole Representation

MR, JOHN S

MITHSt 349

WILMINGTON

DR.^CARSO
u.

N, Ca

Figure 3.1 - Text Representation Problem

This problem of using a "discrete" representation will

have to be acknowledged and steDS tafcen at the aDollcation

level to ensure t*e limitations Imposed by the problem are

not violated. In determining the size of a text tuple,

neither the single character nor the entire file are

acceotable units to be used In the relational table model

since they would reguire a larae amount of processing by the

aPDlication level to transform them into usable units. (The

araument is similar to memory management guestions of caging

32

versus segmentation and how large each unit should be.) Some

arbitrary size, between the two extremes, will haw^ to be

chosen during implementation. For now it is assumed that the

size limit exists.

The text file can be conceptually viewed as a text

table, as in Figure 3,2. The text stream is reoresented by

the set of rows in the table. Each "contents" column is

densely packed In that no unused space is left in anv row,

exceDt the verv last row in the table. The text table does

not match in any wav the oerceived "display" of the text

file, as shown in Figure 3.1. The disolay structure (line-

oriented, screen-oriented, or whatever) is considered an

application level issue and will be covered there. Each row

in the text table has a uniaue sequence number, "id", to

marlr the relative position of its contents In the text

stream.

id contents

line-1

line-2

line-n

Figure 3.2 - Text Table

33

B. DATABASE

A relation in a relational database is described as a

table, as shown in Figure 3.3. Relational database tuples

are represented as the rows of a table and the attributes as

the columns. The description of an attribute is defined by

the user, and the set of attributes define the modifiable

structure of the relation table. Chaoter l, Section (C)

covers the concents behind the relational DBMS in oreater

detail.

id atr-1 atr-2 atr-n

tuple-1

tuoie-2

tuple-n

! ' » M—I — H I
I II II I I I I II 1

I I

I I

I I

i I

Fiqure 3.3 - Relation Table

C. SPREAD-SHEET

A spread-sheet is a database used as a numerical model

in a ©redefined tabular disDlav format. A spread-sheet can

be represented as a collection of entry position tuples in a

table, as shown in Figure 3.4. Each row in the table

represents a single entry oosition in the spread-sheet. The

34

table columns represent the predetermined elements necessary

to describe the entry position, such as the location, value,

and function.

id location value function

oosition-1

Dosition-2

position-n

1 ! 1

.. I ... —-—_ 1 . 1

I 1 1

1 1 1

.. 1 1 1

1

1.
1

J

1

' —
Figure 3.4 - Spread Sheet Table

D. FCRM

A form is a template throuah which input and output

values are transmitted. The information stored in a form

database is used to preoare the visual image of the temoiate

in a user specified format.

The basic subunit of the form is called a "block", and

it represents a basic unit of data for the form. The easiest

way to visualize a "block" is to consider the Internal

Revenue Service 1040 Tax Form, It is used as an inout form,

and each entry has a corresoondino number to identify It as

a separate entity, or "block". Each of these "blocks" has

an a Dosition on the form, 9n identifying number, a prompt,

35

and space for an entry of some type. This means that the

form table must Include positional data for the block as

well as data to determine how the bloc* is to be used for

specific applications.

A form can be represented as a collection of tuples

contained in a table, as shown in Figure 3,5. Each row in

the table represents a sinale "bloc*" on the form and

contains a description of the "block". The columns of the

table are the predefined attributes of a block - urlaue ID,

screen location, prompt string, Input or outout identifier,

and the functional use of the block. Each table column

represents an element of that descriotion.

Id location Dro^ct i/o function

block-1

block-2

block-n

Figure 3.5 - Form Table

The "id" is a uniaue identifier for the block and would

be system controlled. "Location" specifies the startina

oosition for the "block" on the form. If reouired, a

"oromDt" string could be included to indicate the Duroose of

36

the entry position on the form (e,g. Name, Address, Number

of exemptions, etc.). The "i/o" field will tell the Form

Generator how to interpret the "function" field. The exact

use of the "i/o" field is implementation dependent, but some

obvious entries are "input", "outout", and "text". Lastly,

the "function" field will contain a command string for the

block. If it is an innut block, then the "function" field

might contain the location wnere the user entered value is

to be stored. If it is an outout block, it might contain a

guerv to be made on a database. If it is * text block, it

miaht contain the name of the text file that is to be

inserted in the form. As can be clearly seen, the actual

use of the form table will be verv implementation dependent

and such issues will not be directly addressed in tMs

thesis,

E. ELECTRONIC MAIL

Electronic Mail is a Preformatted message sent to

another user, hata contained in a message can be used as

information to determine addressee and subject associated

with a message. The data in a message is manipulated

tyoicaily in the course of an editina session or by an

application program to output a messaae to be read by the

recipient, A "mailbox" can contain any number of messages.

Each message contains a uniaue ID number, heading, and body.

The ID attribute is a uniaue identifier of a messaae in a

37

mailbox. The domain of the ID attribute is all uniaue

identifiers as defined in the system. The ID could be local

to a mailbox, or be of a global nature. The body of the

message is textual and its domain is a continuous stream of

characters or a reference to a text file. Heading consists

of an originator, reciDient, date, and subject. The

originator, recipient, and subject are character strinos of

some maximum length. The date is some allowable value as

determined bv the date convention used by the system. Each

message t'iDle is a complete message beinq routed from a

sender to a receiver(s).

id fro" 1 to date subj bodv

mscr-1

msa-2

mso-n
i—————»—mm ii »~—

Figure 3,6 - Mailbox Table

The mail file can be represented as a collection of mail

tuples contained in a table, as shown in Fiqure 3,6, A

"mailbox" is a table with the rows reoresentina individual

messaoes and the columns reoresentino the oredetermined

38

format of the message, such as from, to, date, subject, and

main body.

This will end the discussion of representina the loqical

file types as a single conceptual data object in the form of

a relational table. This charter has shown that each of the

five logical file types can he mapped into a table format

with varyina dearees of success, A "secret" that will be

possessed by the application level is lust how successful

this maooing was. Of the presently included file types only

the text type has shown sions of major problems. However,

similar situations could occur as new applications are added

to the Ii\SS, The solution to the problem is to accomplish at

the application level what cannot be done at the conceptual

level due to t K e modelino limitations. The next charter,

Chaoter 4, win cover the conceotual level operations that

are available to manipulate the comnon data object tables.

39

IV. OPERATIONAL INTERSECTION

A major concept behind the Integrated Application

Software System is the existence of a common "conceptual

level" that is used by all the included aoolication

pronrams, Tt is imoortant to note that it is the

acDlication programs, and not the user, that will interface

with the conceptual level.

"APPLICATION LEVEL"

"CONCEPTUAL LEVEL"

PRIMITIVE
OPERATIONS

COMMON |

DATA I

OBJECT I

Figure 4.1 - IASS Conceptual Level,

This conceptual level will manage the data in the common

data object, described in ChaDter 3. A set of primitive, or

basic, operations designed to manipulate the common data

object and enforce integrity constraints win be included at

this level. Figure 4,1 illustrates the conceptual level,

40

The application packages will call these operations to

perform desired manipulations at the conceptual level in

support of the user. The specific application determines

the combination of primitive operations necessary to

retrieve data from the data tables in conformance with the

use of the table as a model of the application. Only those

operations that cannot be accomplished at the conceptual

level, due to modelina failures, need be included in the

application level.

A. BASIC OPERATIONS

The set of table primitive operations Is the source of a

major IAS5 operational intersection. All applications

attached to the I*SS can use these commands in order to

oerform their function. However, as modelina problems will

exist, each amplication area may have limits that mafce a

certain operation meaninaless.

Since the common data object is a relational table, tne

natural set of primitive operations are the basic table

manipulation operations inherent from relational database

theory. The operations are named: INSERTION, MODIFICATION,

DELETION, PROJECTION, SELECTION, UNION, SET DIFFERENCE,

CARTESIAN PRODUCT, INTERSECTION, QUOTIENT, JOIN, and NATURAL

JOIN, These operations are set theoretic in that their

operands are tables Csets of tuples) and their results are

41

tables. This feature of the relational operators eliminates

the need for any application to be concerned with iteration

control. These operators are divided into two otouds, Unary

and Binary, based on the number of operands reauired.

1 . Unary Table Operations

The first five operators are unary operators in that

they use a single table ocerand. The operators are:

a. Insertion

Given a relation R, INSERTION adds a new tuole

to R at a specified, or default, location.

b. Modification

Given a relation R, MODIFICATION chanoes one, or

more, of the components of a tuple, or tuoles, in the

relation P.

c. Deletion

Given a relation R, DELETION removes a tuple, or

tuples, from the relation R.

d. Prolection

Given a relation R of arity "a", a PROJECTION of

R is a relation formed by removinq some of the components of

R and/or rearranging some of the remaining comoonents.

e. Selection

Given a relation R, a SELECTION on R is the set

of tuoles in R that maKe true some conditional statement

based on the components of R. The operands of the

conditional statement are constants or the components of R.

42

The operations of the conditional statement are the

arithmetic comparison operators - less than, equal to,

greater than, less than or equal to, greater tnan or equal

to, and not equal to • and the logical operators - AND, OR,

and NOT.

2. Binary Table Operators

The seven binary operators will use two tables as

operands. A description of the seven ocerators follows anri

for help in understanding them, some examoies wilt be aiven.

For tnat puroose two "reoresentative relations" are given in

Fiaure 4,1 for use in each of the descriptions and examples.

A 3 C

a b c

d a f

c b d

D z H

b
d a

a

t

Relation "R" Relation "S H

Figure 4.1 - Initial relational tables

a. Union

Given two relations, R and S, the union of R and

S are those tuoies that are in R, or S, or both. The UNION

operation is denoted by (R u S), and Figure 4.2 shows the

results. Both tables must be of the same arity, and an

attribute in the first table must be matched by the same

43

attribute in the second table, (i.e. in this case = A, E

= B, and F 9 C.)

A B C

a b c
d a f

c b d
b g a

Figure 4.2 - Result of (R(J S).

b. Set Difference

Given two relations. R and S, the SET DIFFERENCE

of R and S is the s * t of tuples that are in =>, but not in S

,

SET DIFFEPENCF is denoted (R - S) , and ""ioure 4.3 sho*s the

results, 3oth tables must be of the same arlty, and *n

attribute in the first table must be matched by the same

attribute in the second table. (i.e. in this case D = A, E

a B , and F = C,

)

A B C

a
c

b
b

c

d

Figure 4,3 - Result of CR - S),

44

c. Cartesian Product

Given two relations, R of arity "al" and S of

arity "a2 w
, the CARTESliN PRODUCTof R and S is the set of

tuples of arity "Cat a2) n whose first ai components form a

tuple in R and whose last a2 components form a tuDie in S.

CARTESIAN PRODUCT is denoted by (R X S3, and Fiqure 4.4

shows the results. Fach of the resulting attributes of the

CARTESIAN PRODUCToDeration must be unique.

A 9 C D E F

a b c b g a

a b c d a f

d a f b g *
d a f d a f

c h (J b q a

c b d A a £

Fiqure 4.4 - Result of CR x S3.

d. Intersection

Given two relations, R and S, the INTERSECTION

of R and S is the set of tudes that are in both R and S,

not those that only occur in one relation. I MTERSECTIQM is

a shorthand for R - CR - S), is denoted by (PA S), and

Figure 4.5 shows the results. Roth tables must be of the

same arity, and an attribute in the first table must be

matched by the same attribute in the second table. (i.e. in

this case D = A, F a b, and F a c.)

45

A 8 C

d a f

Figure 4.5 - Result of (R f\ s).

e. Quotient

Given two relations, x of arity "a!" and Y of

arlty N a2" where al is oreater than a2 and there is at least

one tuple In S, the QUOTIENT of x and Y is the relation of

aritv Cat - a2) composed pv; First taKe the PROJECTION of X

over the first (Kl-V:2) comoonents and call the resultina

relation T; Second, taXe the CARTESIAN PRODUCTof T and Y

and call the resultina relation U . Lastly, determine th» SFT

DTFFFPEMCF between U and X.

A B C D

abed
a b e fbeef
e d c d
e d e f

a b d p

c n

c
e

d

f

Relation Y

A R

a b

e dRelation X

CX Y)

Figure 4,6 - Result of (X r Y).

46

QUOTIENT is denoted by CX • Y), and Figure 4,6 gives sample

X and Y relations, and the result of CX ? Y).

f. Join

Given two relations, R of arity "al" and Z of

arity "a2", the result of a JOIN would be a relation of

arity Cal + a2) containing those tuDies in the CARTESIAN

PRODUCT of R and 2 where a component in R stands in some

relation to a component in Z, a JOIN is denoted by R |X| Z,
»

a"d Fioure 4.7 shows a sample relation Z and the results of

(R IXI Z) .

D E

c

d n

Relation Z

Fioure 4,7

A B c D E

a b c b m

c
t

b d b "1

C R IXI 7.)

8 = D

Result of CR IXI Z).
B = D

g. Natural Join

Given two relations, R of arity H al" and U of

arity "a2" where R and U have "cl" attribute names in

common, the result of a NATURAL JOIN is a relation of arity

Cai a2 - cl) formed by takino the CARTESIAN PRODUCTof R

and U, then performino a SELECTION cased on the eguality of

the common attributes in the tuples, and lastly oerformino a

47

PROJECTION with all possible attributes listed once. NATURAL

JOIN is denoted by (RJJCIU), and Figure 4.8 shows a samole

relation U and the results of (P 1X1 U),

B c E

b
a

c
f

1

r

Relation u

Figure 4,9

A B C E

a b c 1

d a f r

(P IX\ U)

Results of CR 1X1 \n .

9. SUITABILITY OF OPERATIONS

Looking at the conceptual data object as the relational

table, and given the list of operations from section (A),

above, it should be obvious t*at any operation, or series of

operations, performed on a table will produce a

t h eoretically useful relational table for some aDplication.

It will have a valid table structure and therefore can be

manipulated by any operator. There are an infinite number

of manipulation possibilities which can result in a endless

speculation of applications . The conceptual view of the

table and its operators only takes on sianificance when

bounded by some application. It is the application that

gives meaning to the usefulness or unsuitability of some

operation or series of operations. Therefore, the intention

of this section is to measure the usefulness of the basic

48

relational operations within the functional scope implied by

the selected set of aoplications data types described in

Chapter 3,

Before describinq each of the operations it is important

to define seme of the descriptive words that will be used

for the operations:

Table Structure - the number of attributes, or fields,

the table contains and the characteristics of each (name,

type, size).

Syntactically Correct - the results of the ©Deration is

within the bounds of the operation definitions oresented in

Section (A) above, T*ere are two subsets of this

descriotor :

Meaningful Result - The result of the operation will

be a table with an identified s*t of attributes and in all

probability, at least one tuple. The resulting table will

have the same structure as the oriainal table, or one of the

original tables, and will therefore be of that identifiable

type. The aoDlication will be able to successfully use the

resulting table,

Meaningless Result - The result of the operation

will be a table with an identified set of attributes and in

all probability, at least one tuple. The result will have

the same structure as the original table, or one of the

original tables, and therefore will be of that identifiable

type. However. due to modeling or inefficiency, the

49

resulting table will create difficulties for the

application.

Syntactically Incorrect - The operation violates one or

more of the bounds stated in the definitions presented in

Section (A) above.

In the next two subsections the effects of the various

operations win he discussed. Subsection CD will cover the

results when the operators are used on taoies of the same

type. Subsection (?) will cover operators used on tables of

differing types,

t . Intra-Tyoe Operations

This section win cover the effects of twelve basic

relational operations wnen the operands are the sane tyoe of

tables - text, database, spr*ad-s*eet , for", or nail. This

section does not cover the results of mixed tyoe operations

as they will be covered in Subsection (2). At the conclusion

of this Subsection, Table 4.1 will summarize the findlnas.

The very simple operations such as INSERT, MODIFY, and

DELETE will not be discussed in the context of each table

type since they are the minimum operations necessary to

manipulate data in any table type and therefore meaningful

for all table types,

a. Text Table Tyoe Operations

The incompatibility between a text file and its

representation as distinct units are revealed when

attempting to apply the relational operators to the text

50

table. What is in a tuple of text is merely a substring from

the original text stream. As such, the situations where a

tuole can stand alone as data for operations other than text

processina are limited. Since the domain of the "contents"

field is all character strinas from the character set, there

is no canonical ordering between the character strinas.

Whereas eouality between contents fields can be established,

there is no other comDari3on operator which will have

applicability.

(1) Projection

The PROJECTION operation is meaningful,

since it is necessary to retrieve either the "contents" or

the "id" field from the text table.

C2) Selection

The SELECTION operation is ^eaninoful but

there are restrictions. Tuples would be selected from the

table by nerforming the SELECTION condition on the "id"

field. The "contents" field oresents difficulties when used

as a basis of the SELECTION condition since it can only be

compared for eguality, and that regulres an exact

specification of the contents in the condition.

(3) Union

The union operation is meaningful on text

files and results in "apoending" the second file to the end

of the first, but there are modeling problems. The

resulting text table could have more that one tuple with the

51

same "Id" field. For this reason the union operation should

be considered with care.

(4) Set Difference

The SET DIFFERENCE operation is meaningful,

but there are modeling Droblems, This operation must be

used Keeping in mind its exactness. Only tuples from the

first table exactly matchino tuples in the second will be

removed. It cannot be auaranteed to remove duplicate

strings from the text file since the text table model cannot

accuratelv represent the text file.

(5) Cartesian Product

The CARTESIAN PRODUCT is incorrect since

the resulting table structure will have dudicate

attributes.

(6

)

Inter sect 1 fln

The INTERSECTION oDeration is meaningful,

but there are modelina problems. The result would be the

removal of all tuoles from the first text table that were

not also in the second text table. It cannot be guaranteed

to find the common string(s) in two text files since the

text table model cannot accuratelv represent the text file,

(7) Quotient

The QUOTIENT operation is incorrect since

both text tables are of the same arity.

52

C3) Join

The JOIN operation is incorrect since the

resulting table would have a structure with duplicate

attributes.

(9) Natural Join

The NATURAL JOIN operation is meaningful,

but since it duplicates the effect of the INTERSECTION

operation in a less efficient manner it should be considered

meaningless «

b. SDread-Sheet Table TyDe Operations

C 1) Projection

The PROJECTION ooeration is meaningful for

such operations as retrieving the information contained in a

specific column, or columns, of the table.

C2) Selection.

The SELECTION ©Deration is meaninaful for

removing a tuole, or tuples, from the table for processing.

(3) Union

The result of the UNinN ©Deration on

spread-sheet tables is meaningful, but there are modeling

problems. The resulting table could now have more than one

tuple attemoting to represent the same entry position,

tuples no lonoer representing the oroper entry Dosition,

and/or entry positions no longer relating to their prooer

preceding entry positions. It is almost certain that such

53

problems will occur and for that reason the UNION operator

should be considered with care.

C4) Set Difference

The SET DIFFERENCE operation is meaningful,

but there are modeling Droblems. The result of the

operation is basicly those entry Positions that are unioue

to the first spread sheet and net to the second. To ensure

usability the implementation must include positional and

value information in the tuple. The tuole cannot depend on

order in the table for position, or functions relatin.o to

other tuples for value, since these other tuoles may have

been removed hy the Sft DIFFERENCE operation.

(5) Cartesian Product

The CARTESIAN PRODUCT operation is

incorrect since the resulting table structure would have

duplicate attributes.

(ft) Intersection

The INTERSECTION operation on spread-sheet

tables is meaningful, but there are modelina problems. The

reasons are the sam* as those given for SET DIFFERENCE

above.

(7) Quotient

The QUOTIENT operation is incorrect since

both spread-sheet tables are of the same arity,

C8) Join

The JOIN operation is incorrect since the

resulting table structure would have duplicate attributes.

54

(9) Natural Join

The NATURAL JOIN operation is meaningful,

but duplicates the effect of the INTERSECTION operation in a

less efficient manner and should therefore be considered

meaningless.

c. Form Table Type ODerations

C13 Pro-lection

The PROJECTION oneratlon is meaningful,

since it can be used for retrieving marts of the bloc*

description used in the apolication.

C2) Selection

The SELECTION operation is meaningful,

since it can be used for retrieving the bloc* descriptions

used by the amplication.

C3) Union

The UNION ©Deration is meaningful, but

there are modeling oroblems. The resulting table could

contain tuples that are competing for the same position on

the display. For this reason the UNION oneratlon should be

considered with care.

C4D set Difference

The SET DIFFERENCE is meaningful, but there

could be modeling Droblems. It would be used in finding

those blocxs on a form that are not in common with those on

another form. Modeling constraints reguire that the block's

55

location information be stored in the tuple and not depend

on order in the table,

(5) Cartesian Product

The CARTESIAN PRODUCT operation is

incorrect since the resulting table structure would contain

duplicate attributes,

(6) intersection

""he INTERSECTION ©Deration is meaningful,

but there could b* modeling problems. It would he used in

finding those blocfcs on a form that are common with those of

another form. Modeling constraints reouire that the block's

location information be stored in the tuple and not deoend

on order in the table,

C7) Quotient

The quotient oceration is incorrect since

both form tables will have the same arity,

C8) Join

The JOIN ooeration is incorrect since the

resulting table structure will have duDlicate attributes,

(9) Natural Join

The natural JOIN operation is meaningful,

but duplicates the effect of the INTERSECTION ooeration in a

less efficient manner and should therefore be considered

meaningless.

56

d. Mail Table Type Operations

CI) Projection

The PROJECTION operation is meaningful in

retrieving the contents of message fields for use in the

aDpiication.

(2) Selection

The SELECTION operation is meaningful in

retrieving a message for use in the application,

C3) Union

The UNION oDeration is meaningful in addino

new messages to the messaoe table by appending mailboxes

toaether, but there are modeling problems. The resulting

mailbox could have more than one message with the same "id"

field. For this reason the union operation should be

considered with care.

(4) Set nifference

The SET DIEFFPENCE operation is meaningful

in finding those messaaes in one mailbox that are not in

another,

C5) Cartesian Product

The CARTESIAN PRODUCT operation is

incorrect since the resultinc table structure will have

duplicate attributes,

(6) Intersection

The INTERSECTION operation is meaninaful in

finding those messages that are common to two mailboxes.

57

(7) Quotient

The QUOTIENT operation is incorrect since

both mail tables are of the same arity.

C8) Join

The JOIN operation is incorrect since the

resulting table structure will have duplicate attributes,

(9) Natural Join

The NATURAL JOIN operation is meaningful,

but produces the same effect as the INTERSECTION ooeration

with less efficiency, therefore it should be considered

meaningless.

This section has described the oDerational effects

of the basic operations when used on on? or two tables of

the same type, Flaure 4,1, on the next Dane, summarizes the

findings of this Subsection.

2. Inter-Tvpe Operations

The previous section covered the effects of the five

binary ooerators when conducted on tables of the same type.

This section will cover these ooerators when used only on

tables of differing tyces. Table 4,2 will summarize the

findings of this Subsection,

a. Union

Since the UNION operation can only produce a

usable output table when the structure of the two tables are

identical, this binary ooerator could only be meaningful

58

when one of the tables was a database type that happened to

match the structure of the other table. In this special case

the result would be meaningful, and In all other cases the

UNION ooeration Is Incorrect.

Table 4,1 - Intra-Tyce Operations,

TEXT
OPERATION

DATA
BASE

SPREAD
SHEET

FORM
GEN,

ELECT.
"AIL

1. Insert M M M VI M

2. "odlfy V M M M M

3. Delete V Vt M v» M

4. ^rejection M M M M M

5. Selection CM] M M M M

6. Union [M] M CM] CM] CM]
7. Set

Difference CM] M rvj C"] M

a. Cartesian
Product - M M - m

9. Intersection CM] M [*] CM] M

10. Quotient - M - m -

n. Join - M - - -

12. Natural
Join * M » * *

m s Operation is meaninqful.
CM] s Operation is meaningful, but there

are modelina nroblems.
3 Ooeration is incorrect,

* s Ooeration meaninoless due to duplication.

b. Set Difference

Since the SET DIFFERENCE ODerator can only

produce a usable output table when the structure of the two

59

tables are identical, this binary operation could only be

meaningful when one of the tables was a database tyoe that

hapoened to match the structure of the other table. In this

special case the result would be meaningful, and in all

other cases the SET DIFFERENCE operation is Incorrect.

c. Cartesian Product

The CARTESIAN PRODUCT operator can produce a

meaningful table structure for all combinations of fable

types that will not result in a table with duplicate

attributes. The presence of duplicate attributes in the

resulting table would make the CARTESIAN PRODUCT operation

incorrect,

d. Intersection

Since the INTERSECTION operator can only produce

a valid outout table when the structure of the two tables

are identical, the operation would onlv be useful when one

of the tables was a database tyoe that happened to match the

structure of the other. In this special case the result

would be meaninaful, and in all other cases the INTERSECTION

operation is Incorrect,

e. Quotient

The QUOTIENT operator can only produce a

meaningful outout table when the arity of the second table

is smaller than the first, and all its attributes are also

found in the first table. This would then limit the tyoe of

60

the second table to database, and then require the proDer

table structure for the quotient operation,

f. Join

Given the fact tnat the actual structure of each

table type Is an Implementation issue and therefore

variable, it is conceivable that all table types could have

at least one column structure in common with another table

type and the join operation would produce a meaningful

table.

q, Natural Join

For the same reasons as stated for the JOIN

operation, it is conceivable the the NATURAL JOIN operation

would produce a valid and potentially useful table.

Table 4.2 - Inter Tyce Table Operations

TABLE-2

TEXT DATA SPREAD FORM *AIL
OPERATION TABLE-i BASE SHEET

CT! X) CDB) CSS) CFM) (ML)

UNION TX > •
m - «•

DB •i
• ? m

S5 - ? + - m

FM - ? - * m

KL •> m - +

SET TX + •
m m a

DIFFERENCE DB • + ?
• *

*9
•

SS - ? + - -

FM - -> - + •

ML o • m +

61

Table 4.2 - Ccont.)

TABLE-2

OPERATION TABLE-1

JOIN TX
DP
SS
EM
ML

TEXT

(TX)

DATA
BASE
CDB)

SPREAD
SHEET
(SS)

FORM MAIL

(ML)

CARTESIAN TX + M M M M

PRODUCT DB M + V M M

SS M M + M M

EM M M M + M

ML M M M U

INTERSECTION TX + ? - a -

DB ? 9
•

9
• ?

SS - ? + - -

pv - ? - * -

ML " •? - «• *

QUOTIENT TX * ? - - m

DB ? 1
•

•> ">

SS m o + ~ m

FM - ? M * -

ML - 7 - « +

NATURAL
JOIN

TX
DB
SS
FM
ML

9

+

s

Operation Is Dotentlallv meaninaful.
ODeration could produce a meaningful
result but depends on the database
table structure.
ODeration is incorrect,
Intersection of same command, effects
covered in section 4.3.1 and Table 4.1.

62

V. APPLICATION LEVEL INTERFACE

In the preceding chapters the structure of the

conceptual level of the IASS has been covered, ChaDter 3

discussed the table as a common data object, and Chaoter 4

introduced the primitive operations allowed on the table.

This chapter will describe how each of the aoolication level

packages interfaces to the conceDtual level. All acrlication

oacfcaaes in the IASS must maxe use of the common data oblect

as an important part of their modeling effort. If the common

data oblect can closely model a given application, then

maximum use can be made of the conceptual level in order to

accomplish the application's functions. However, if the

common data oblect is a ocor model of the acolication, then

the application will have to provide more of its own service

needs and therefore win create a large aoolication specific

series of operations.

In ChaDter 4 the twelve basic primitive operations of

the conceptual level were discussed, and they are listed

aoain in Table 5,1. These ooerations will be discussed as

svstem level operations where thev are invisible to the IASS

user. Those IASS operations that are visible to the user

will be discussed in Chapter 6.

In Chapter 2 the basic user visible functions of each

application were grouped Into six command cateaories;

63

<Create>, <Insert>, <Modifv>, <Delete>, <Move>, and

<Retrieve>. When Issued by the user they will cause the

application to oerforn one or more operations In support of

the user. while the use of the conceptual level bv the

application is ae^erally invisible to the user, the samDle

list of included operations can be viewed as to how they

will support the six visible command categories.

Table 5.1 - Conceptual Level Primitive Operations,

OPERATION ABBREVIATION

1. Insertion
2. Modification
3. Deletion
4. Projection
5. Selection

6

.

Union
7. set Difference
8. Cartesian Product
9. intersection
10. Quotient
11. Join
12. Natural Join

UN
SD
Co
IS
QT
JM
NJ

In the following sections each of the five included

application packages win be covered as to use of the

Conceptual Level and their own "Workspace" , What is meant

by the application's "Workspace" is that part of the

application program where the operationally specific

64

functions of the application occur. This would include

variables, constants, prooram logic, buffers, and whatever

other implementation specific items are necessary. The

Workspace is what makes each application unique to the user

and is tne oart that must be inserted when a new application

is added to the IASS. It is not the intention of this

chapter to focus on the workspace, so Its coverage will be

general and bMef. The primary ooint of interest will be how

each application can make use of the conceptual level.

In discussing use of the conceptual level, application

SDecific operations will be described where each requires

the use of one, or more, conceptual level onerations. If

one application ooeration can be defined in terms of a

Dreviously defined application operation, the previous

ooeration will appear in brackets, "<>".

A. EDITOR/WORD PROCESSOR

As discussed in Chaoter 3, Section (A), the Editor/word

Processor (E/w») oresents the greatest modeling oroblem for

the conceptual level. This means that the E/wp will oerform

the majority of its ooeration in the workspace and not at

the conceptual level.

1 . E/WP workspace Operations

A larne number of the operations necessary to model

the E/WP will haw« to be located in the Workspace area since

the data-table is a ooor model of text. Some of the

65

operations necessary at the Workspace level are;

reassembling text tuples into a continuous text stream,

Keeping track of the proper ordering of text tuples,

performing string searches, bloc* moves, and character

replacements. All operations for formatting and display

will be conducted here.

2. E/wp Conceptual Level Operations

Although there are modeling problems with text, it

does not mean that the E/wp cannot make use of the

conceptual level. The following ooerations use the

conceptual level but do very little direct manipulation of

the text, since that is performed in the workspace. The

ooerations themselves were chosen based on a perceived

minimum application need and the ability to use the

conceptual level. This is not a complete listing of

oosslble E/wp operations since that is a very implementation

dependent guestion,

a. Insert Text TuDle

As the Workspace finishes with enough characters

to constitute the "contents" field of a tuole, it will

determine the prooer "id" field seouence for the new tuple

and then issue an INSERT operation to olace the tuole in the

table.

b. Get Text Tuple

The E/WP must determine the "id M of the next

tuple it needs. A SELECTION is performed, based on that "id"

66

field. The resulting tuple is then DELETE'ed from the

original table and the "contents" field of the result is

pBQJECT'ed out and placed in the Workspace,

c. Append Text Files

The Workspace will <Get> the last tuple from

file-1 and then oroceed to SELECT each tuple from file-2, in

ord«*r, PROJECT'ing out the "contents" field, and place it in

the workSDace. As the worksoace qets enough characters to

make a complete tuple, it will <Insert> the tuple into the

end of file-1,

d. Insert A Text File

Tne workspace will <Get> tuples from table-1

until it finds the correct insertion ooint. Then all tudes

will be SELECT'ed fro"" table-2, one at a time. in "id"

order. The "contents" field of each will be PPOJECT'ed out

and placed in the workspace. As the worksoace gets enough

characters to form a complete tuole they win be <Inserted>

into table-1 with the orooer "id" field. When all tudes

from table-2 have been cooled into table-1, the worksoace

will <Get> the remaining original tuples from table-1 and

<Insert> them back into table-1,

e. Delete To A 3uffer

The workspace will <Get> tuples from the

referenced table and <Insert> them back into the table until

it finds the ooint at which the deletion is to beoin. From

that ooint it will continue to <Get> tuples from the table

67

until it finds the point at which the deletion is to stop.

As the workspace collects enough characters to form a tuple,

it will assign a orcper "id" and INSERT the tuple in the

buffer table. After the stop ooint, the Workspace will

continue to <Get> tuoles from the referenced table, and will

<Insert> completed tuples back into it until the end is

reached.

f. Copy To A Buffer

The workscace will <Get> tuples from the

referenced table and <Insert> them back into the table until

it finds the ooint at which the copying is to beotn. From

that ooint it will continue to <Get> tuples fro* the table

until it finds the point at which the cooying is to stop.

As the wnrksnace collects enough characters to form a tuole

it win <insert> them, with t K eir original "id", back into

the table. Simultaneously it will INSERT the same tuples,

with new "id" fields, into the buffer table. After the stop

point, the ^orksnace will continue to <Get> tuples from the

referenced table, and will <Insert> completed tables back

into it until the end is reached.

The use of the conceotual level by the E/wP is

summarized in Table 5.2.

B. DATABASE MANAGEMENTSYSTEM

1 , Database workspace

Since the DBMS packaae is a relational database

system, the user win be permitted direct access to the

68

conceptual level primitive operations without constraint.

The user accepts complete responsibility for the validity

and usefulness of all actions. This means tnere is little

need for a Workspace since the user does just about

everything.

Table 5,2 - Editor/Word! Processor Interface.

PRIMITIVE OPERATIONS
APPLICATION •—-——™——™—™———————«—

OPERATION: I M D P S UN SD CP IS QT JN NJ

a. Insert
Tuple x - - - - -

b. Get
Tuple - - X X X -

c. Apoend
File X - X X X -

d. Insert
File x - x x x -

e. Delete To
Buffer X-XXX-

f. Copv To
Buffer x-xxx-

USED X - XXX-"- - Z - "I" •

X = Primitive operation is used.
s Primitive operation is not used.

2. Database/Conceptual Level Operations

As stated above, the user is pernitted direct access

to all the conceptual level primitive operators. There are

no limits Placed on the user in structurino these ooerators

to produce a desired result. However, it is obvious that in

69

implementation some issues will be encountered that will

place limits on the user.

C. SPREAD-SHEET

The soread-sheet is very similar to a database in that

it stores the facts related to a user defined "real-world"

situation, i.e. it is a model. The major difference i« that

the user is limited to the predefined retrievals and

displays provided by the spread-sheet. The spread-sheet has

control and responsibility for the operation, while the user

has responsibility for the content,

1

.

Soread-Sheet workspace Operations

The wcrkscace is responsible for use of the spread-

sheet data table since the user does not see or manipulate

it directly. It contains the ioqic necessary to interface

with the user and control the display.

2. Soread-Sheet Conceptual Level Operations

As the user issues application specific commands the

workspace translates them into a series of application and

conceptual level operations. The list of included

operations cannot be claimed to be definite or complete

because that is an implementation issue and really without

bounds. However, the list is considered to be a workable set

of operations for a representative spread-sheet application.

70

a. Update Entry Positions

The wor^SDace must Know in which order entry

positions are to be undated, "row" or "column" order. Each

entry position is SELECT'ed in turn based on Its "location"

field, and its "function" field Is PPOJECT'ed out. The

Workspace evaluates the contents of the "function" field,

and resolves references to other entry nositions by

SELECT'lnn the* and °*CJECT' ino out the "value" field. When

the new value Is finally computed, a MODIFY ooeration is

conducted to chanae the "value" field. The worfcsoace

continues until all entry oosltions are updated.

b. Make An Entry In A Entry Position

Tbe worfcsoace must '<now which column and row

entry position Is belna referenced, and the value or

function to be entered. A ^CDI^Y ODerator will be used,

based on a condition statement, to find the tuple with the

proper "location" entry and then chanae its "function" and

"value" field. Tf the Soread-Sheet is in automatic

recalculation mode, then related entry positions will have

to be <Updated>,

c. Add A New Column Or Row

The workspace must Know the column or row on the

spread-sheet that is being referenced and where the new

columr/row is to be olaced relative to it. The modify

operator will be used to find those entry positions that

must be moved, and chanoe their "location" and "function"

71

fields to take Into account the shift In position. New

tuples, with "location" fields corresponding to the added

row/column will be INSERTED, Lastly, all entry oositions

will be <Uodated>,

d. Delete A Column Or Row

The workspace must know the column or row on the

spread-sheet t*at is beino referenced. A DELETION ooerator

is issued with a condition statement corresoondina to the

proper "location", Next, a MODIFY operation is conducted on

the "location" field of the Drooer entry positions necessary

to close the resultino gao, Lastlv, all entry positions will

be <Uodated>,

e. Append Soread-Sheets

T He workspace must Know whether sneet-2 is to be

aPDended to the side or bottom of sheet-i. Given that

information, a SELECTION is done on sheet-i to find the

maximum "location" field and it is PROJECT'ed out and saved

in the workspace, A MODIFY operation is next conducted on

all tuoies in sheet-2 to add the proper, row or column,

value saved above to all entrv position references in the

"location" and "function" fields of sheet-2, Sheet-2 is

then UNION'ed to sheet-i, and the resultino sheet is

<Updated>.

f. Spread-Sheet Intersection

Given that you want to display the common entry

positions of sheet-i and sheet-2: Perform the INTERSECTION

72

operation between sheet-1 and sheet-2. Then <Update> the

resulting table.

g. Spread Sheet SET DIFFERENCE

Given that you want to disply those entry

positions that are uniaue to sheet-1 and not found in

sheet-2! Perform the SET DIFFERENCE between sheet-1 and

sheet-2. Then <Update> the resulting table.

Table 5,3 - Soread-Sheet Interface.

PRIMITIVE OPERATIONS
APPLICATION ••—————•™———™—™——

—

OPERATION: I M d P S UN SO CP IS QT JN NJ

a. Update -X-XX-
b. w a*e An

Ertry - X - - - -
c. Add Row

Or Column X X - X x -

d t Delete Row
Or Column - X X X X -

e, Aopend
Sheets -X-XXX

f. Inter-
section -X-XX- - - X

a. Set
Difference -X-XX- X

USED XXXXXX X - X - -"-

X 3 Primitive operation is used.
= Primitive operation is not used.

The use of the conceptual level by the Spread-Sheet

application is summarized in Table 5.3.

73

D. FORM GENERATOR

It is the purpose of the Form Generator to create a

table that will be used at a later time In support of other

aPDiieation packaoes or the user directly. The Form table

Is probably the most comolex table of the five included in

the IASS 'since it will be called on to do so much. The table

reads like a set of step by step instructions on how to

input or outout the provided data. As this is a heavily

implementation dependent application, not much emDhasis will

be placed on specific uses.

1

,

Form Generator workspace Operations

The Workspace in the Form Generator must be fairly

intellioent since it has two modes of ©Deration, The first

is "desian-t ime" when it must interpret the user commands

into a series of bloc* entries in the form table. The second

is "use-time" when it must use the information in the table

to create the desired output form. This reouires that the

application logic, its ability to interface to the other

applications, and any needed structures be contained in the

Workspace,

2, Form Generator Conceptual Level Operations

The Form Generator does little more than build the

table at "design" time, and read the instructions in the

table at "use" time. It therefore seems that it can make

fairly extensive use of the conceptual level operators.

However, a complete list of all oossible operations is

74

impossible since the Form Generator application seems to be

the most implementation dependent application of all. The

list of operations that follows is intended as a

representative group of basic operations and is not

definitive,

a. Clear workspace

If th€ workspace is empty/ then do nothing.

However, if there are entries in the workspace then issue a

modify operation, based on "location", to change those

fields that have entries. If, no block was found, then issue

an IN.SEPT ©Deration to Dlace the block in the table.

Lastly, erase the workarea.

b. Find Block

First, <Clear> the workspace. Use a SELECTION

operation to find the new block being referenced, PROJECT

out the "location" field, and any other fields that are

needed. If no block was found, then wait for next user

command

.

c. Add A New Block

The Workspace must start blank since it cannot

hav^ found a referenced block where a new block is being

added. The user enters the proper information into the

workspace and when the user is finished, the Workspace will

be <Cleared>.

75

d. Edit A Block

When the user edits an already existing block

then it will have been found by the "Find Referenced Block"

operation described above. The workspace will wait until the

user is finished edltino, and then <Ciear> the worksoace,

e. Delete A Block

<Clear> the workspace. Issue a DELETE operation

based on the user aenerated condition.

f. ADpend Forms Toaether

<Clear> the worksoace. Given that form-2 is to

be appended to the bottom of form-l: Use the SELECT

ooeratien to find the block with the highest row number and

lowest column number in form-l, PROJECT out, and save in

the workspace, the "row" field. Issue a MODIFY ooeration on

all blocks in form-2, and add the saved "row" number from

form-l to the "row" field in form-2. Then UNION form-2 to

form-l

.

q. Add A Blank Line To The Form

The worksoace must know the referenced row

number on the form. Clear the workspace. Issue a MODIFY

ooeration on all blocks, on or below the referenced row, to

uodate their "location" field,

h. Form Intersection

Given that the desired display is those blocks

that are found both in form-l and form-2, first <Clear> the

workspace.

76

If position on the form is important: Perform

the INTERSECTION ©Deration on form-1 and form-2. Pass the

resulting table to the Workspace,

If position on the form is not important:

PROJECT out the "DromDt", "i/o", and "function" fields of

form-l and form-2. Do an INTERSECTION operation on the new

tables and then NATUPAL JOIN the result to the oriainal

table-1, °3ss the resulting table to tne Worksoace.

i. Form set Difference

Given that the desired disolay Is those blocks

in form-l that are not found ir form-2r first <Clear> the

workspace.

If oosition on the form is important: Perform

the SET DIFFERENCE between form-l and form-2. Pass the

resulting table to the workspace.

If position on the form is not important:

PROJECT out the "promDt", "i/o", and "function" fields of

form-l and form-2. Perform the SET DIFFERENCE between these

resulting tables. Take this result and NATURAL JOIN it to

the original table-1. Pass the resulting table to the

workspace.

The use of the conceptual level by the Form

Generator application is summarized in Table 5.4,

77

Table 5.4 - Form Generator Interface.

PRIMITIVE OPERATIONS
APPLICATION MWMM|WWMMMNMmwM^ MMMHMMWM. M

OPERATION: I M D P S UN SD CP IS QT JN NJ

a. Clear
Workspace XX----

b. Find
Block X X - X X -

C. Add
Block X - - - - -

d. Edit
Block - X - - - -

e. Delete
Block - . x - - -

f. Aopend
Forms XX-XXX

o. Blank
Line XX----

h. Inter-
section xx-x-- - - x - - x

i. Set
Difference xx-x-- x - - - - X

USED XXX XXX X - X - - X

X s Primitive operation is used.
3 Primitive ooeration is not used.

E. ELECTRONIC MAIL

The puroose of the Mail application is to enable the

user to leave messages for other users who are not presently

available. Again this is a very imDlementation dependent

application in determining exactly what services you wish to

provide. As before, ImDlementation issues will be avoided as

much as possible.

78

1, Electronic Mall Workspace Operations

The Workspace is responsible for translating user

commands into application operations necessary to create and

read messages. It contains the logic necessary to use the

Mail table, interoret user commands, and control the

display.

2. Electronic Mail Conceptual Level Operations

A fairly wide range of application operations can be

accomplished by using the conceptual level operations.

while the following list of operations cannot be considered

complete or definite, it is representative of an Electronic

Mail application.

a. Pickup Mail

Unon entering the IASS, the MAIL system is

automatically directed to pickup any mail for the user. The

MAIL system generates a SELECTION operation on the system

mailbox with the condition that the message(s) is addressed

to the user. The resulting table is SET DIFFEP.ENC'ed with

the system mailbox and then UNION'ed with the user's

mailbox.

b. Read Mail

The workspace must have an "id" of the desired

message. A SELECTION operation is performed on the user's

mailbox based on the "id" field. The subparts of the

message are PROJECT'ed out and Placed in the workspace.

79

c. Find Mail

Given a user entered condition statement the

Workarea will generate a SELECTION operation based on that

condition. The proper field(s) of the messages win be

PROJECT'ed out and olaced in the Workspace to support an

appropriate display.

d. Edit A Message

The workspace will know the "id" of the message

being edited, when the user is completed, a MODIFY operation

will be issued based on that "id" to change any fields that

were edited. Tf no message with that "id" was found by the

MODIFY operation then it must be a newly created message and

the workspace will INSERT it into the user mailbox,

e. Delete Mail

?ne workspace will know the "id" of the

messaqe(s) or be given a user defined condition statement,

Based on these, a DELETION operation will be performed on

the user's mailbox,

f. Multi-hat

Given that the workspace has a single message

with a multi-hat destination; PROJECT out the contents of

the "to" field in the messaae, and place it in the

Workspace. The workspace will find a database "alias" table

with that name which has "id" and "to" fields. The tuples in

this table correspond to the actual names in the multi-hat

name. Taking the original message, PROJECT out the "from",

90

"subj", "date", and "body" fields. Taxe the result and

perform a CARTESIAN PRODUCTwith the alias table, Now UNION

t h e results with the system mailbox.

a. Send Mail

Each time the user leaves the Mail application,

any outgoing mail is automatically sent. The Workspace

generates a SELECTION based on the condition to find all

messaces not addressed to the user. The resultina "outaoing"

table Is SET OiFFERENC'ed with the user's mailbox. A

SELECTION is then performed on the outgoino table to find

any multi-hat destinations. The resulting multi-hat table is

SET DlFFERENC'ed with the outgoing table, and the remaining

outaoino messaaes are UNiow'ed with the system mailbox. The

,m»ssaaes in the multi-hat table are then SELECT'ed one at a

time, DELET'ed from the multi-hat table, and then crocessed

by the <Multi-Hat> operation.

h. Mail Synoosis

PROJECT out the "from", "to", and "subject"

fields of all the messages in the user's mailbox. The

workarea will use this new table by SELECT'ing each message

in "id" order, PROJECT'lng out the three fields, and using

the results to create the display.

The use of the conceptual level by the Mail

aoplication is summarized in Table 5,5,

31

Table. 5.5 - Mail Intersection,

PRIMITIVE OPERATIONS
APPLICATION mmmmmmmmmmmmmmmmmmmmm——————

OPERATION: I M D P S UN SD CP IS QT JN NJ

a. PIcKud ----XX X

b. Pead - • - X X -

c. Find ---xx-
6. Edit xx----
e. Delete - - X - - -

f. Multi-
Hat ---x-x - x

a. Send --XXXX X X
h. Synopsis ---XX-

USED XXX XXX X X - -" - -

X s Primitive operation is used.
= Primitive ooeration is not used.

The result? of the preceding five sections are

summarized in Table 5.6. It shows that the application

packages can make extensive use of the majority of the

primitive operations found at the conceDtual level. This

chapter has not tried to show all the oossible aoplication

©Derations and their use of the conceDtual level. Instead a

fairly representative and basic set of operations was

discussed. The actual list of ©Derations included in each

IASS application will be a very implementation dependent

issue.

82

Table 5,6 - Application Intersection Overview.

PRIMITIVE OPERATIONS

I M D P S UN SD CP IS QT JM NJAPPLICATION

i.

2.
3.

5.

ED &
WP

D3MS
Spread

Sheet
Form

"ail

X - - X X - X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X

X

X - - X

TOTAL 1 1

X = Primitive oDeration is used.
= Primitive oDeration is not used.

83

VI. USER INTERFACE

The Integrated Application Software System (IASS)

combines the capabilities of the five software application

packages described in Chaoter 2. Each of these aooiications

performs a set of functions on an associated loolcal file

type. Intearation of these distinct systems is orouoht

about by determininc the set of common functions oerfcrrced

by each system on the associated logical fils type, defining

a common data object to represent the logical file tyoes,

and finally defining a system of primitive operations on the

common data object,

T*e previous chaoters ha\/Q covered the integration

approach at the svstem level, where it is invisible to the

user. Another integration level is vital to the IASS design

and it must occur where the us*r interfaces to the IASS's

applications. The result of integration at the user

interface will be a system-wide, common set of user

ODerations and associated commands, and a regular disolay

organization of the logicallv distinct file types at the

user interface. This is Drobably the most important command

interface since it is the one the user can actually oercelve

and evaluate.

Implementation of the IASS reauires designing for one

conceptual display model using a single physical

34

organizational schema. The IASS will therefore ensure

minimal system complexity at both the user and system

Interface. The basic IASS hierarchy is deoicted in Fiaure

6.1.

"USER"

USER
INTERFACE

PRIMITIVE
OPERATIONS

COMMON
DATA
OBJECT

MAIL

Figure 6.1 - IASS Hierarchy

85

A. USER INTERFACE MODULE

The interface between the user and the system couples

the user to the aoplications of the IASS, and allows control

of the operation of the system. The User Interface Module

(UIM) is an abstraction to contain the features of the TASS

which the user can assume are present in anv context of

system use. The UIM encompasses both the environmental and

ocerationai assumptions of the system.

The UIM is not a stand-alone entity. It deoends heavilv

on each apolication Droaram to interpret the user input* and

to determine the appropriate display structure. It is the

application oroqram that translates the common UIM commands

into a series of apolication operations that may, or may

not, ma^e use of the conceptual level,

1. UIM Disolay Format

The point of observation of the system is the

terminal screen, which is a finitely dimensioned "window"

into the logical file or data ob-Ject in reference. For all

applications the display size is not limited to the size of

the screen window. If the display is large, the user will be

able to use the UIM to maneuver the window over the display

to accomplish the desired tasKs, The UIM does not control

the type of disolay presented to the user, since this is an

application dependent reauirement. However, the UIM does

give the user a consistent method of interacting with the

display as the applications chanoe.

86

2. UIM Command Line

The UIM uses a common disDlay organization which Is

augmented by the specific aoollcation orogram in use. In any

context of use, the top line of the screen Is dedicated for

oresentation of the UIM command line. The next line will

always be used by the aoollcation prooram for its command

line. In this manner, the too two lines of the screen will

always contain system information and Dromnts for the user.

3, UIM Editing

From the results of the reguirements analysis Dhase

of this studv, the function which is common to each utility

is that of making chanaes to a referenced file, i.e.

editing. All the UI* really orovides the user with is

screen editino features. It will be the apolication orogram

that interprets the UIM commands into more cc^olex

ooerations. Editing should be done on-screen, with

immediate feedback available to the user. For user

protection, all editing will be done on a codv of the

designated file and only committed as a Dermanent

modification when explicitly directed by the user. The

common set of editing commands orovided bv the UIM may be

augmented by functions from the underlying aoollcation

oroaram to ensure that soecial editing actions, which are

specifically associated with a logical file type, are

executable.

87

4, UIM Commands

The operational assumptions of the IASS UIM

compromised a set of user commands. These commands can be

assumed to produce a similar effect when executed in any

context of system use. It is the ourpose of each application

to Drovide the appropriate translation between the UIM

commands, the disolay of the da^a object, and its conceptual

representation.

Based on the cateaories of commands defined in

Chapter 2, there are three major categories of commands in

the UIM. The first is "Movement" commands that control the

position of the cursor on the screen, and the location of

the screen in reference to the application display. T ne

second category, is "Editing" commands that make additions,

deletions, and/or changes to the data in the display. The

third category is "System" commands that are not us*»d bv the

application, but by the IASS to perform its "housekeeping"

functions. There are many different methods for attempting

to present these categories to the user, and they are all

implementation dependent. For the purpose of this thesis a

possible listing of standard UIM commands is given in Table

6.1.

All of the basic cateaories Presented in Chapter 2,

with the exception of the <Modify> command, are directly

implemented bv UIM commands. There did not seem to be any

88

simple way, short of accepting a complex command syntax, to

implement one UIM command per category.

Table 6.1 - UIM Commands

UIM UIM CHAPTER 2

CATEGORY COMMAND CATEGORY

Movement 1, Move cursor Move
- right
- left
- up
- down
- too of screen
- bottom of screen
- start of file
- end of file

2. Scroll Screen Move
- riant
- left
- up
- down

Editing 3, Find Object Move Si

Retrieval
4, Insert Object Insert
5, fooy Object Insert
6, Add Object Insert
7, Move Object Delete &

Insert
8, Delete Object Delete

System 9. Enter Application Create
10, Output Retrieval
11, Save Changes
12, Quit Application

The <Modify> category did not need a command of its own

because it became apparent that the apniication itself will

be able to determine when modification is necessary based on

89

use of the UIM, In Section (B) which follows, each of the

five applications will be covered with the intention of

showing how they use the standard UIM commands to inclement

the command categories of Chaoter 2,

3. APPLICATION PROGRAMLEVEL

The Aoolication Proaram Level (APL) consists of the

actual aoolication programs that interface to the user

throuah the UIM, and operate on the common data object by

the orimitive operations available at the conceDtual level.

Each apolication program has a specific user suoport

function and although it uses the common UIM it has certain

features that make it uniaue. Each of the lass aoplication

Droorams will be discussed in the following sections,

Four areas of each aoolication will be discussed.

First, the display format used by each aoolication to take

advantage of tne features of the UIM, Since the screen will

be the common inout/outeut medium for the IASS it is

important that the oerceived use of the display be similar

between apoiications , Second, the editing features of the

aoplication. Aaain, as this is part of the common interface

medium for the IASS it is imoortant that the user perceive a

similarity between editing features in each apolication.

Third, specialized "functions" of the aoolication. These

are the uniaue features of each aoolication that will

differentiate them from other included aoplications ,

90

Fourth, use of the standard UIM commands by the application.

This will show how the application will use a standardized

command to perform ar\ application specific ooeration.

1 , I&SS Fditor/Word Processor

The lass text table is not limited by design to

supportina any one tyoe of editor and word Drocessor

arrangement. However, as was pointed out previously, the

on-screen editor with on-line formatting is rapidly becoming

the accented standard and any regression to line oriented

editors, or the like, would meet with serious user

resistance. For this reason an on-screen editor with on-

line formatter is assumed,

a, E/wp Disolav Format

The Editor/Word Processor (E/wp) has a single

display called "oace" format, and Figure 6,2 orovides an

illustration. The screen reoresents a window over the sheet

of oaper on which the text is being written. What the user

sees throuoh the window is the format that will actually be

output. Th*» default Word Processor (wP) settinos will match

the size of the E/WP display to the size of the screen Ci.e,

no part of the text win be hidden off either side of the

screen). However, the user is free to issue wp commands that

will result in a display larger than the screen, in this

case the user will have to use cursor movement commands to

bring the off-screen portions into view.

91

« » —' ' » mmm m mm<m«, u n . « m « in nim i -

{user entered command} R#* C## {Textfile Name)
...*.. ..2, ..,*.. ..3....*.. ..4.,. .*..., 5.. ..*.,.. 6.

If you're not using the standard library, or if
will have to construct calls to other programs usi

[through temporary files. Here it is natural to maKl

F inure 6.2 - "Paas" 01: sol-ay Format for Editor/ word
Processor,

(Disolay size Is larcer than screen size.)

b, E/wp Editing

All text files make use of the word Processor

(Wp), and it is always on-line. At entry the WP is set to

certain default output values for pace length, lire size,

line SDacinq, left maroin, right ?arain, and tab size. The

user can accept these default settings or can Issue commands

to the E/wp to chance them. The E/*P continuously scans the

text stream, recognizes the commands, and Immediately

changes the output format.

Editing is accomolished by positioning the

cursor at any noint on the screen and typing in an entry.

The entry is inserted between the oresent contents of the

location. Deletion and modification are accomolished in a

similar on-screen manner. Only commands that make use of

large objects, like blocks or other files, need resort to a

command-line format. As the F/WP formatter is always on-

92

line, the user does not have to worry about startina new

lines, Indenting, line spacing, new page, and other similar

format considerations. The E/WP automatically do*s it for

the user, but the user can still taxe manual control if

reauired.

To assist the user in certain editing situations

the E/wp will provide a certain number of buffers for the

user to treat as temporary storaae areas. Actually they are

temoorarv text files created bv the E/wp and are destroved

whe* the session is ended.

The E/WP actually ooerates on a copy of the

oriainal file, so anv chanaes made during a session only

become oermanent when the user Issues a "save" command. If

the user quits without savina, then it is as if the session

never occurred,

c, E/wp Functions

CI) Formatting Commands

a series of SDeciaiized word Processing

commands must be included in the E/WP apDlication to allow

the user to modify the format of the text. These commands

must be structured in such a way so that thev are readily

distinguished in the text stream and will not be mistaken

for text.

93

d, E/WP Commands

CI) Find

Used to locate character or string sized

objects specified by the user. The located object is

displayed by scrolling the window to its location, and the

user is notified if another match exists. This operation

will use a command-line format,

(2) Insert

Used to place any valid object at a point

referenced by the cursor, The present contents are not

overwritten, merely pushed aside to make room for the new

object. This operation will use an on-screen format. It is

possible to insert laroe objects, such as buffers or other

text files, into the file being edited, but this will

r*cuire the use of a command-line format.

C3) Move

Used to change the location of line or

block size objects specified by the user. The object is

deleted from its oresent location and then inserted in the

new location. This operation will reguire the use of a

command-line format.

(4) Heiete

Used to remove any object (character, line,

block) specified by the user. The object is normally not

saved, but if the user soecifies it can be saved in a

buffer. This operation will reguire the use of both on-

screen and command-line formats,

94

C5) Copy

Used to duplicate an object and then Insert

the duplicate at a specified cursor location or into a

buffer. This operation will reauire the use of a command-

line format.

(6) Add

Used to create a blank lineCs) on the

dismay, above or below the cursor position, This operation

will reauire the us*» of an on-screen format.

(7) Output

Used to send the file to some desiqnated

output device. The cutout format of the file will exactly

match the format seen on the disolav during editina.

2 , TA55 Database vanaoement System

The main intention of the Database Wanaaement System

(DBMS) is to emphasize simolicity. It does not make sense

to follow the lead of manv currently available DBMS cackaoes

that add larqe amounts of complexity to gain minor and

seldom used capabilities,

a. DBMS Displav Format

There will be two formats in which database

tables will be displayed. The first, and default format is

called "table". The table will be displayed in a tabular,

row and column, format for the user to edit. Figure 6.3

illustrates the "table" disnlay format.

95

{user entered command) RM C## {Database name)
F** R«t## {Table name)

: Name : S5N : i Age J ! Oept ! ! Manag

: 1 !

Figure 6.3 - "Table" Dlsdav Format for DBMS-Table.

The second format win be "page", and it

diSDiays the records in a vertical format with no portion of

the table lying off-screen to the sides.

»'
(user entered command) P## C## (Database Nam*»)

(Drompt) FM R#### (Table name)

Name
SSN
Age
D*»ot
Manager

Comments

Fiaure 6.4 - "Page" DisDlav Format for DBMS-table

96

Instead, each field has at least one line on which to

display its contents, and can have more than one line if

needed. The user will scroll in a vertical direction to

view the entries in the table. Figure 6,4 illustrates the

"pace" format,

b. DBMS Editing

The Dq ms makes use of the UIM described in

section CA), above. However there are some constraints. The

user is not free to write anywhere on the screen, but is

limited to writing within field oosltions. Field positions

are the bounded locations at column and row intersections

for the "table" disolav, and the locations between the

delimiters ":" for the "oaae" disniay. Entries cannot be

made to nass throuah field boundaries, and the user -"ill be

promoted if it is attempted. To cross such boundary

reouires the use of a cursor motion command,

The UIM commands will be used to edit the

diSDiayed table. Cursor motion Keys will be used to

position the cursor in a valid fi*ld oosition. Text will be

inserted, or deleted, inside the field position. The user

will be allowed to scroll across the screen in all four

directions, up to the limit of the size of the table.

Records are added to the table by editing a

"blank" tuple, BlanK tuoles are found automatically at the

end of the table display, or created by usino the "add"

97

command to Insert them above, or below, the present cursor

position.

The IASS provides a degree of protection to the

user in that none of the editing changes (record insertions,

modifications, or deletions) are made until the user lsses a

"save" command. At that time the oriainai table is removed

and the copy on which the editing was done tafces its olace.

If the user ouits without savina, then none of the editino

changes are made.

c, DBMS Functions

C 1) Relational Operators

The following relational operations

described in Chapter 4, Section (a) are available to the

user in the DBMS, The operators are: MODIFICATION, DELETION,

PROJECTION, SELECTION, UNION, SET DIFFERENCE, CARTESIAN

PRODUCT, INTERSECTION, QUOTIENT, JOIN, and NATURAL JOIN,

The INSERTION operation is not included since it is already

performed by the fJIM, and the MODIFICATION and DELETION

operands are for mass operations where usino the UIM

modification and deletion capabilities would be too

difficult. All these operations would reauire the use of a

command-line format. The unary operations (MODIFICATION,

DELETION, PROJECTION, and SELECTION) must be used with a

DBMS table already in reference. The other binary operations

will have to specify the DBMS tables involved as oart of

their command-line format.

98

(2) Arithmetic

In suDport of conditional statements and

query processing the DBMS will have to include a basic

arithmetic capability. The following operations are needed:

Addition, Subtraction, MultiDl lcation, Division, Equals,

Greater-Than, Less-Than, Greater-Than-or-Eoual-To, and

tess-Tnan-Or-Equal-To. These are not intended as stand

alone oo«»rations, but are necessary to the successful

oerformance of other operations,

(1) Aggregate

In support of conditional statements and

query orocessing the DBMS will have to have a basic

segregate function set. The following functions need to be

included: Total, Count, »ax, ^in, and Average, These are

not intended as stand alone operations, but ar* necessary to

the successful Derformance of other operations,

(4) Query Processing

In supcort of user defined guestions across

multiple DBMS tables, there must be a capability similar to

the "Find" command, only not limited to a single table. The

result of a ouerv would be a new table containing the

desired information, but no change would have been made to

the tables that Drovided the information. A command-line

format would be required for this operation.

99

d, DBMS Commands

Ct) Find

Used to bring a tuple, from tne single

table In reference, that meets a specified condition onto

the screen by scrolling. Additionally, the user is notified

if another tuple meets the same condition. This ooeration

will reauire the use of a comnand-line format.

(2) Insert

New tuples are added to a table by editing

"blank" tuples. Plan* tudes are automatically found at the

end of the table, or are created by using the "add" command

to insert them above, or below, t h e oresent cursor Dosition.

TMs ooeration is performed in an on-screen format.

C33 nelete

n y using the (JIM editor features a single

tuple can be deleted, in an on-screen format. However, for

multiple tuple deletions a command-line format would be

regulred.

C4) Add

As an aid to the user, the add command will

place a "blank" tuole either above or below the tuple

referenced by the cursor. This operation is Derformed in an

on-screen format. If no entries are made in the blank

tuple, it is Ignored by the DRMS application.

100

(5) Output

Used to send the contents of a table, or

tables, to some designated output device. The output format

always defaults to the "table" display. If more

sophisticated output formats are desired then a Form

Generator table can be specified to control the output.

3. TASS Soread-Sheet

The soread-sneet application is a fairly well

defined and conceptually simole program. Its functions are

well defined and it is not exoected to react to unexoected

demands,

a. Spread-Sheet DisDiav Format

Scread-sheet has a sinole display format and it

is called "table". Figure S # 5 illustrates the "table"

disciay. Only the value of a ach entry Dosltion is

displayed, not its functional content. The snr»»ad-sheet

"table" disoiay does not have a direct correspondence to the

spread-sheet data table described in Chapter 3, Section CO

since there is no need for the user to be concerned with how

the application oroaram must use it.

b, SDread-Sheet Fditino

The snread-sheet mavres use of the UIM described

in Section (A), ati^ve. However, this application mafces use

of two cursors which are related to each other. The

"oosition" cursor is the lower one, and it moves across the

columns and rows of the "table" display. Its function is to

101

indicate which entry position is currently being referenced

by the application.

{user entered command) R## C»« <soread-sheet name)
<prompt) R*» C#*

H

Figure 6.5 - "Table" Displav Format for Soread-Sheet.

The UTM cursor motion commands control the "cosition" cursor

and allow it to roam over the entire spread sheet. The

"command' 1 cursor is always in the command line area of the

screen, and is used to write into the entry oosition marked

by the "position" cursor. It is on the command line that

t*e functional contents of the referenced entry position are

displayed.

c. Soread-Sheet Functions

CI) Arithmetic

Since the Soread-Sheet is a numerical

modeling tool it will need a substantial arithmetic

capability. The following operations are needed? Addition,

102

Subtraction, Multiplication, Division, Exponentiation,

Absolute Value, Truncation, Rounding, Logarithms, and

Trigonometric Functions, These operations must be capable

of stand alone operations similar to those in a calculator,

and be capable of inclusion in other operations and

conditions ,

(2) aggregate

Since the Spread-Sheet is a numerical

modeling tool it will need a substantial aggreaate modeling

capability. The following operations are needed: Total,

Count, Maximum, Minimum, Average, and Net-Present-Value.

These operations will not have a stand alone capability

since they are intended for inclusion In other onerations .

d, Scread-Sheet Commands

CI) Find

Used to find tnose entry oositions, in the

referenced spread-sheet, that meet some specified condition.

The cursor win be olaced on the first such entry oosition

and a prompt generated to show if there is another. This

©Deration will reouire the use of a command-line format.

(2) Tnsert

Used to place the contents of another

spread-sheet alongside the current spread-sheet at the

indicated edge. This operation will reguire the use of a

command-line format.

103

(3) Move

Used to chanqe the current position of an

entire row or column on the spread-sheet. This operation

will require the use of a command-line format.

(4) Delete

In reference to a specific entry position,

it sets the value to null. For rows or columns it totally

removes them and moves the surroundlna rows ar.d columns to

fill the oao. This ooeration win require the use of a

command-line format.

C5) Cooy

Used to duplicate a row, column, or

specific entry oosltion at another referenced location. This

operation will require the use of a command-line format.

C6) add

Used to Diace a blanx row or column in a

location referenced by the present cursor oosltion. This

ooeration will require the use of a command-line format.

C7) Output

Used to send the contents of the soread-

sheet to some indicated output device. The user can indicate

whether to send the soread-sheet display, which only

contains the entry oosltion values, or the contents of the

actual spread-sheet table, which contains both the value and

the function, to the output device. Subparts of the whole

soread-sheet may be indicated for output.

104

4. IASS Form Generator

The Form Generator will be an Important part of the

IASS since it is reasonable to expect other aoDlications ,

the DBMS for example, to make use of it to suoDort their

operations. It also has two modes of operation. "Design"

time is when the new form is Dreoared by the user and all of

its parts, called "blocks", are positioned and Identified as

to their function. "Use" time is when the previously

designed form is called on to output the specified

information in the prescribed format.

a. Form Displav Format

There is one available display format for the

Form Generator, called "Daae", and it is shown in Fiqure

6,6. This displays the form In the actual format for use-

time. The oromots for eacr. block are shown as well as their

associated entry positions. The "function" and "i/o" values

of each block appear on the command line when the block is

referenced by the cursor.

b. Form Editing

In "page" format the user begins with a blank

screen and is free to move the cursor to any position and

make entries. Form editing is a much more formal procedure

than in any of the other aoDlications , Entries must consist

of a set number of parts to be acceoted by the system,

First, a prompt of zero or more characters, which will

appear on the display.

105

{user entered command) R## C## {Form Name}
{prompt) 3#« Pa*

Name :—————.-----: Age :—_: Sex:..:
Address :«--—,.———_——:Heignt :_«...:

:...................: Color Hair :__••

Signatures: Date : __....:

Figure 6.6 - "Pace" format for Form Generator,

Second, the number of snaces reserved on the form for the

entry, which will also appear on the display. Third, a

symbol Indicating how this entrv will be used by the form

aenerator Cinput, output, call to text file, etc.). Fourth,

t K e query statement uoon which t h e output is based, the

table and field name where the inout is to stored, or the

name of the text file to be outcut.

Extensive use is made of the command line while

filling in each block. Only the first two parts of a block

entry are shown on the actual form. The other two parts are

disoiayed in the command line area wnen the block is

referenced.

As in previous applications the actual changes

made during editing are not effective until the user Issues

a "save" command.

106

c. Form Functions

CI) Arithmetic

since the Form Generator can make use of

DBMS queries and condition statements in acquiring the

information to complete a block, it is necessary to provide

basic arithmetic support. The following operations should be

included: Addition, Subtraction, Multiplication, and

Divisior. These are not intended as stand alone operations,

but for inclusion in other operations.

C2) Aggregate

As the Form Generator can make use of DBMS

queries and condition statements in acquiring the

information to complete a block, it is necessary to orovide

some aaqreaate function sucoort. The following functions

should be included: Total, Count, Maximum, Minimum, and

Average. These are not intended as stand alone ©Derations,

but for inclusion in other ooerations,

(3) Usage Indicators

Since the form and its blocks must be

capable of supporting a wide range of uses, each form is

tailor made by the user. The purpose of each bloc* must be

indicated by the "I/o" field in a manner that shows how the

"function" block will be treated at "use" time. For

example! The function field of an InDut-biock might tell

where the Item is to be stored. For an output-block it may

specify the database table and the query operation on it.

107

necessary to get the item. For a text-block It may soeclfy

the text file that will be Inserted In the form at that

location,

d. Form Commands

CI) Find

Used to find a block object that meets a

specified condition by moving the cursor to its start. The

user Is notified If there are any ^ore blocks that meet the

condition. This operation requires the use of a command-

line format,

(2) Insert

New blocks are inserted by editinq the

blank area of a line In the oroper manner as described in

Subsection (b) above. This is done In an on-screen format.

1 n e r forms may be inserted Into the oresent form at a

comoietely blank line, but requires the use of a command-

line format,

C3) Move

Used to move a display line(s), and the

blocks on it, to a new oosition on the form. This ooeration

reauires the use of a command-line format.

(4) Delete

Used In reference to blocks, it eliminates

the block and leaves the soace on the line blank. In

reference to lines, it eliminates all blocks on the line,

removes the blank line, and all lower lines move up. This

operation is performed in an on-screen format,

108

C5) Copy

Used to duplicate a line, or lines, on tne

form but in a different location. This operation is

performed in a command-line format,

(6) Ad,d

adds a blank line, above or below the line

referenced by the cursor. This oreraticn is oerfor^ed in an

on-screen format,

(7) Output

Used to send the contents of the form table

to an indicated output device. The user can send the

displayed version, as shown in Pioure 6,6, or can oot to

output the entire form table in tabular format so as to see
»

all the information associated w ith each ^loc*.

5. I*SS Electronic "ail

The Electronic Mail oacvraae suooorts the user in

sending m*ssaaes to other users, for reading at a later

time. Upon entry to the IAS5 the user will be promoted if

there is mail in the mailbox, Bv entering tne Mail packaae

the user will be greeted by a one line disolay synoDsis of

each message, which cannot be edited. The standard mail

display format will be entered and the user will be free to

read, edit, and/or delete current messaoes as well as

compose new ones. Each message has a uniaue ID number and

the user can refer to messaoes by the ID, originator,

109

subject, or time-stamp. Outqoinq messages are actually sent

when the user leaves the Mail apolication, by removing all

messages in the user mailbox that are not addressed to the

user and routing them to their proper destination.

a. Mail Disolay Format

There is one display format available for Mail,

and it is called "page" format. Figure 6.7 is an

illustration of "oaae" format. Zach messaae is displayed on

the screen with its fields organized in a vertical

direction. Each field has an associated entry oosition that

is deslanated by delimiters.

(user entered command) R*» C#* Mailbox
<orompt> »*-Messages

From
To
Sub1

ID: M
Date :......:
Time:......:

U
Figure 6.7 - "Page" format for Electronic Mail.

b. Mail Editing

The Mail package makes use of the standard UIM

described in Section (A), above. The user may oerform the

standard editing functions on actual messaoes or on messaae

110

"blanks". In "cage" style display the user moves between

messages by using the "scroll" command. On each message the

user may perform editing operations in any of the entry

positions. Movement between entry positions is possible only

bv usino cursor motion keys.

Outgoing messages are created by editing one of

the message "blanks" at the end of the table, or by using

the "add" command to insert a "blank" message after the

current one and then editing this "blank". Additionally,

editing the contents of the "To" field in a current message,

so that it no longer corresponds to the present user, turns

the message into an outaoing one.

All editing chances are not actually imclemented

until the user issues a "save" command. Outgoing messages

are sent wnen the user issues a "auit" command to leave the

mail package. At that time the system finds all messages

that are not addressed to the current user, updates the

time*stamo on them, and then sends them to the aorrooriate

user. Since users often ha^e collective names, such as

"oversight committee", that include more than one user,

there is a special character tacked on to the standard

destination address to indicate that the message is to the

other users in that collective address.

ill

c, Mail Functions

CI) Multi-Hat Name Designator

4 special character that is placed in front

of a name that corresponds to more than one user name. The

multi-hat name actually refers to a database table that

contains the names of the users who constitute the multi-hat

name. At use time, the system will strip the multi-hat name

from the message, *ake the proper number of copies of the

messaoe, insert the orooer user names, and send the

messages

.

d. Mail Commands

(1) Find

Used to move the display to the message

that meets a certain condition (e.g. From = 'Boss', Time <

'2 Nov*, Subj = 'Schedules'), Additionally, the user is

notified if there are more messages that meet the condition.

(2) Delete

Deletes the message being referred to by

the cursor. To delete multiple messaaes it can be used In a

command line with a condition statement,

(3) Copy

Given a message object it will duplicate

the object and insert it into the mailbox,

C4) Add

Places a blanK message above, or below, the

message being disoiayed.

112

In concluding Chanter 6 it is important to emphasize

that the UIM is a very implementation dependent part of the

IASS, What this chapter attempted to demonstrate *as that

the command categories defined in Chapter 2 could be

implemented by a common, yet simplified, user interface by

using a small command vocabulary coupled with a common

display and editing format. This is not the only way to

oresent the user interface, only a suggestion.

113

VII, CONCLUSION

The preceding six chapter have attempted to lay the

groundwork for the oossible design and implementation of

what has been called an Integrated Application Software

System CIASS). This thesis is the first small steo toward

the study of such a system, and the majority of the work

remains to he done.

This thesis apDroached the tooic from a broad

Dersoective and did not seek to get down to soecific

implementation issues. Instead ChaDter 2 reviewed the

aooarent characteristics of five acolication orograms, and

t^e appendices provided more detail on each. Chanter 3 took

the characteristics of the loaical file tyoe associated with

each application and formed them into a common data object.

Chaoter 4 took the common data object and explained a set of

operations on it. Chapter 5 described how each of th*

included applications might interface to the common data

object by using the operations of Chaoter 4. Lastly, Chapter

6 attempted to illustrate how the user would interact with

the applications in the IASS through a common interface.

One point must be emohasized and it is that an IASS is

not a relational Database Manaaement System COBMS), There

are enough DBMS applications already proven and available on

the market. See Appendices CE3 and (F) for two examples.

114

what the IASS does Is try to use the DBMS approach to

Invisibly support the user's effort to utilize the various

and unioue apolications. The IASS conceptual level is a

common bond between all included apolications and while it

is the heart of the system, it should be Kept hidden from

the user, except in soecialized applications lifce the DBMS,

If the user is always given direct access to the

conceptual level and its operations, then the IA3S is

nothing more than a DBMS. In fact, such a caoability is

already present in the DBASE II system, Appendix (E),

although it would be greatly imcroved by incorDorating some

of the better presentation ideas from the SEQUITUR system,

Appendix (F).

It must oe emonasized that this thesis is a limited, and

very subjective, view of the IASS, From the studv of this

hypothetical IASS it seems clear that such a system could be

imolemented. However, no specific estimation can be made on

the effectiveness or efficiency of such a system. It would

be reasonable to expect the efficiency to be less than that

of the individual application packages, but there is no way

o* determining how much less. These are very important

considerations and will have to be studied before the true

usefulness of an IASS can be estimated.

Much effort was placed on the conceptual level of the

IASS, and yet it seem certain that the user interface will

be the portion of the IASS that will determine its success

115

or failure as an actual system. It Is Important to define

the ultimate goals of an IASS in realistic terms so that an

measurable objective exists. After some study there appear

to be two important ooals In the IASS design.

The first is to reduce the cost of owning the separate

application proorams by combining them into one I&SS. Since

it has been shown that the five aiven apollcations have much

in common that can be factored out and placed in a common

conceptual level, it would apcear reasonable to exoect the

same from any future applications accepted for Inclusion,

This common conceptual level reduces the amount of

duplication necessary to "own" the Individual applications,

Economic savincs would hoDefully be realized from the

smaller amount of code needed, its more uniform structure*

and the sharing of capabilities between aoolications. The

design of the conceptual level and the individual

aDpiication oac^aaes will ^i9ve the major effect on achieving

this acal,

Tbe second goal is tnat the user must perceive an

improvement in using the IASS over using tne separate

applications. The IASS must be more "user friendly" tnan

the disjoint application programs it reoiaces. Simplicity

and capability must be emphasized over system

sophistication. Each capability that will be incorporated

in an application must be measured as to its complexity and

usefulness. It is not justifiable to Increase svstem

116

complexity just to add a fancy but little used feature. The

design of the user interface module and the Individual

apoiication pacXaaes will have the major effect on achieving

this goal.

It would apoear to be too early to attemDt the

implementation of such a system. Instead, more investigation

needs to be done and the objectives more tightlv defined.

117

APPENDIX A: WORDSTAR

WORDSTAR is a word processing program developed by

Micro-Pro to combine the capabilities of a screen editor and

an on-screen text formatter. The result Is a very powerful

text editor which displays the referenced file as it will

appear on the printed oaae.

WORDSTAR is orimarilv menu-driven. The commands which

are oresently valid are disDlayed in a menu, and are

executed by Keystroke combinations. On-line information is

available to the user concerning many other aspects of WORD

STAR. The menu driven feature eases user initiation to WORD

STAP and is Dart of the Heir facility. The level of help is

selectable to match the users level of experience, and

determines the extent to which the menus are dismayed on

the CRT.

WORDSTAR is composed of a set of seven hierarchically

organized menus or environments, as shown in Table A.l. The

user enters WORDSTAR in the Mo-Flle environment. At this

point there is no file in reference, the object granularity

is the file, and the menu ootions include commands to;

change the logged disk drive, set the automatic directory

dlsday feature Con/off), set the help level, print a file,

rename a file, copy a file, delete a file, run a proaram,

oeen a document file, and open a non-document file,

118

Table A.l - WORDSTAR Menu Hierarchy,

LEVEL MENU

"I" "Nc~File

Main Menu

a. Help
b. On-Screen Format
c. D rir.t Control
d. QuicK Edit
e. File/Bloc*

WORDSTAR recognizes two types of files, "document" and

"non-document". a document file can either be a text file

processed by a word processor or a program run by a

computer. A non-document file is a SDeclal puroose file

which is used by another software product, and will not be

discussed further.

The on-screen editor and formatter are invoked by

selecting the menu ODtion to open a document file, This

causes word STAR to enter the Main Menu environment with a

specific file in reference. If the file oreviously existed

it Is made current, otherwise a new file is created and made

current. On entering the Main Menu environment, a status

line and a rule are initialized. The status line contains

information about the system - the name of the file, the

page within the file, the column and row number the cursor

119

is at, and the insertion mode (on/off). The rule indicates

the right and left margin position as well as the tab

positions. The Main Menu represents the basic file editing

environment where the user will remain until it is decided

to quit the current file and return to the No File Menu or

tne operating system. In any case, WORD STAR does not

permit lateral movement between the sub-menus of the Main

y enu.

A useful feature word STAR employs is "word wrap". With

word wrap, the user does not have to insert carriace returns

at the end of each line. As the text overruns the end of

the line, WORDSTAR automatically starts the next line. In

this wav, the user merely inputs an entire block of text as

a continuous ASCII character strino, and leaves the

formattina to the system, in f»e Main Menu, the user can

edit the file in oranularities of character, word, and line.

Insertion is a "togoled" operation Con/off), where the user

is either in insert mode or overwrite mode. &ny keystroke

entered is either inserted in the text at the cursor

position, shifting characters to the right to accommodate

it, or overwrites the character at the cursor position. To

facilitate on-screen editing, the Main Menu contains

commands to control cursor movement and to scroll the

screen. It is possible to insert tabs or end-of-paraaraoh

markers. There is a "Find and Replace" command which can be

repeated any number of times. Deletions can be done on a

120

single character, a word, or an entire line. The Main Menu

also contains options to select one of the five submenus.

The Quick Editing environment supports editing on hiaher

levels of abstraction of text objects than the Main Menu.

There are additional cursor movement commands to give a

wider range of control and granularity. As in the Main Menu

environment, the user can scroll the display, but now it is

continuous at nine user selectable rates until stooped bv

command. Insertions are accomplished in the same way as in

the Main Menu environment, but deletions are oossible on a

wider range of objects. There is a feature to allow a

command to be repeated at one of nine user selectable rates,

until stooDed by command.

The Block environment provides the user a set of

operations on a blocK of text, word star considers an

entire file to be a special case of a block of text. Files

can be saved by several menu ootions: save and resume the

referenced file, save and quit to tne operating system, save

and exit the referenced file, and copy to another file.

Files may also be renamed, deleted, Drinted, or ouit without

saving changes. To suDDort these file operations, the »lock

Menu contains ootions to change the logaed disk, and to turn

the automatic directory listino on or off. In this

caoacity, the Block environment is used as a successor to

the Main or Quick Editing environments after the cursor is

positioned. Blocks in a file must be mar<ed by the user.

121

As a delimited aggregation of text, a block can be moved

within the same file. Copying blocks of text can either be

within the referenced file or between the referenced file

and an external file, Slock cooyinq between files are bi-

directional. Copying a block to an external file entails

overwritinq an existino file or creating a new file,

CoDying a block from an external file entails movinq the

entire external file to the point in the text indicated oy

the cursor. Any marked block can also be deleted. As a

precautionary measure, word STAR allows the user to hide

block markers, and only blocks which are visibly marked can

be deleted. In addition to a text block being orqanized

into a continuous, unstructured strino of text, word star

supoorts a columnar oraanization.

The previously described menus contain ©Derations to

create, edit, position the cursor, or output a text file.

The format of the file, either as it is visually disDlayed

or orinted out, is defined by a set of formatting Darameters

associated with the file or by commands embedded in the

file. The formatting Darameters associated with a file are

initially set to default values and the set of embedded

commands is initially empty.

Formatting in WORDSTAR is primarily done on-screen with

the options contained in the On-Screen Menu. The on-screen

formattino commands are those whose effects can be visually

disDlayed, and they are listed in Table a, 2,

122

Table A. 2 - word STAR On-Screen Formatting Commands.

1. Set left margin
2, Set right margin
3. Release maroins
4. Set and clear tabs
5, Indent a paragraph
6, Create a special rule
7. Center text
8, Set line soacing

The On-Screen Menu also contains options in the form of

(On/Off) tooales to control: word wrao, rule display/

variable tabbing, hyphenation help, right margin

lustif ication, soft hyohen, print empedded control

characters, and paae brea< display. If an on-screen

formattina operation needs to be applied to the previous

contents of the file, the applicable portion of the file

must be reformatted. Furthermore, these formattina

parameters are only temporarily applied when the file is

referenced. Any subsequent reference to a file requires

that the on-screen formattinq parameters be reset.

tfORD STAR combines into one menu, the Print Menu, all

options which create soecial printing effects not normally

disolayable on a video screen. There are ootions to: bold

face, double strike, underline, strike out, subscript, and

superscript. Since the effects of these ootions cannot be

123

displayed on the video screen, a special character is used

to mark the affected area. Additional special printing

effects are selectable throuah this menu on a one time

basis: overorint a character, indicate a non-break space,

and overorint a line. The Print Menu also contains ootions

which control the printer during outDut. The user may embed

commands in the text file to cause the printer to change

Ditch, or cause a pause to allow the user to change the

Drint element or ribbon.

Printing can also be directed through the use of

embedded dot commands. These commands are placed in the

text file and aooear as regular text on the disolay, but are

not cutout to a orinter and force *ood star to change a

printing parameter at print time. Dot commands alter the

default parameters WOPD STAR uses to format the orinted

page. Table A, 3 provides a listing of these commands.

Dot-commands may be placed anywhere in the text, but

since they are static and tend to destroy the relationship

between what is disolaved and what is printed, they are

usually olaced at the beginning of the text file. As with

the options of the Print Menu, dot-command actions must be

supported bv the specific orinter in use.

The last menu to be described is the Help Menu, Help is

"on-line" in that it can be invoked at any time throuah the

Main Menu, and is "dynamic" in that the level of helD can be

adjusted. The level will determine how much information is

124

dlsoiayed when an option Is selected. The Help Menu ODtlons

disolay Information on: paragraph reforming, flags in the

right-hand margin, dot and print commands, status line,

ruler line, how to set margins and tabs, and how to move

bloclcs of text.

TaHie a. 3 - WCRDSTAR Dot Commands.

1. Set line height
2. set page length
3. Set too margin
4. set bottom margin
5. Generate headers
6. Generate footers
7. Set footer margin
8. Reset oaae number
9. Offset paoe from left side of printer
10. Position nage number
11. S<»t character width
12. Force a nag* breafc
13. Prevent a cage breaV:

WORD STAR is an excellent and very oopular word

processing orogram. The screen-oriented and on-line

formattino features are different from other systems in that

they are extremely easy to use. Once exoerience is gained

with word STAR it is difficult to use line-oriented editors

or off-line formatting systems. The on-line help facility

mafces WORDSTAR easy to learn and user friendly. One aspect

of WORDSTAR that could be considered a disadvantage is the

125

large command set. However, being menu-driven, the commands

not normally used do not have to be memorized since they are

always listed In the menu.

126

APPENDIX B! VI_

H VI" Is a text editor used by the UNIX operating system

and was created by the University of California at Berkeley,

and Bell Laboratories,

VT (visual) Is a display oriented interactive text

editor with a command vocabulary size of about ninety one.

The user sees the CRT screen as a window into the text file

and all editing operations are immediately visible. Line

numbers are not disolayed and have no real use In vj,

although it Is possible to find out the number for a line.

For the sa*e of Drotection the user does not actually edit

the file, but a cony of it. At the completion of a session

the user will indicate whether to keen the edited copy or

the original.

Tnere are forty seven movement commands for control of

the cursor, which Is the editor's point of reference, and

the screen display. Scope of movement is oossible over

file, screen, oaragraph, section, sentence, line, word, and

character sized units. Up to twenty six locations in the

file can be marked for later return, or soecific locations

found that match a desired character string. Table B.l

lists the cursor movement commands available in the VI

system. Note that there is duolication, in that more than

one command does the same thing.

127

Table B.l - VI Cursor Movement Commands

1.
2.
3.
4.
5,
6.
7.
8.
o.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
3 8

39
40

Bacicwa
Forwar
Scroll
Scroll
Backsp
BacKsp
PacXup
Bacfcup
n aCKUD
»etrea
Petrea
Petrea
Petrea
Line* e
Advane
Advanc
Advane
Advanc
Advanc
Advanc
Advanc
Advanc
Advanc
M ve t

Move t
Move t
Moves
Moves
Move f
Move £
Move t
Move t

Search
Search
Search
Search
Peoeat
rind a
Find a
°evers

rd wi
d win

down
up *

ace o
ace a

a wo
a wo
to b

t to
t to
t to
t to
ed ad
e to
e to
e to
e to
•to
e to

to
to
to
pre
end
bal

curso
curso
or war
orwar
o fir
o lin

for
forw
back
for
last
sing
sino

e dir

ndow
dow

ne cha
singl

rd
rd dur
eoinni
orevio
beginn
beginn
orevio
vance
first
next 1

next 1

next c
beginn
end of
sectlo
the ne
beginn
vious

Of cu
a n c i n o
r to 1

r to n

d to b
d to e

st non
e numb
word *

ard f

o

ward f

next m
singl

le cha
le cha
ection

racter *

e characte:

ing
ng o
us 1

ing
ing
us s

to n
non-
ine,
ine,
hara
ing

nex
n bo
xt t

ing
line
rren

par
ast
iddl
eoin
nd o
-whi
er *

insert
f word
ine *

of sen
of pre
ection
ext 11
white

first
same

cter *

of wor
t word
undarv
v o e d c

of nex
*

t line
enthes
line o
e of s

nino o

f word
te spa

tence
vious paragraph

boundary
ne
soace on next line *

white soace
column *

rd

r string *

or string
atch **
e characte
racter, ba
racter, fo

of Drevio

haracter
t paraoraph

is or brace
n screen *

creen *

f word

ce on current line

r search
cxwards *

rward *

us find

*, ** Useful - see page 133, oaragraph (4)

128

Table B.l - CCont,)

41. Find first instance of next character
42. Repeat the last search command *

43. Homes the cursor
44. Mar* the present position of tne cursor *

45. Return to marked position *

46. Redraw the screen
47. Returns to previous context

* Useful - see paqe 133, paragraph (4)

The operations of insertion, modification and deletion

are supported by thirty commands that permit the user a

varied level of object control. Items that are inserted,

modified or deleted are immediately updated on the screen to

give the user a current view of the file status, T^e user

also has the ability to undo the previous command if Its

effects were undesired. Most insertion and modification

commands are structured so that they continue to operate

until the user issues a command to terminate them. Normally

durino insertion the user has control of format in that new

lines are started by entering a carrlaae return. However

there is an option that will let VI determine when to start

a new line, based on line length, and let the user just

enter text as a continuous stream. Table 8.2 lists the

thirty edit commands.

In order to use VT the user issues the command "vi"

followed by the name of the file to be edited. If this is a

129

new file, then the name will not be found in the directory

and VI win create an empty file. After entry, the user will

Issue cursor motion commands to maneuver through the file,

and issue edit commands to change the contents of the file.

There are no other modes or disolays available in VI,

1.

2.
3,
4.
5.
6.
7.
P.
«.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30

Table B,2 - VI Edit Command Sunmarv

Insert
Insert
Insert
Insert
Insert
Insert
Insert
Insert
Insert
Insert
Insert
Delete
Delete
Delete
Delete
Delete
Repeat
Join to
Reolace
Pedace
Change
Chancre
Change
Change
Undo la
Restore
Yank fo
Yan* a
Reoeat
Named b

a nu
none
"shi
at t

at e
befo
af te
new
new
text
text
last
rest
char
the
sing
last
geth

sin
cha

the
sing
the
rest
st c

cur
How
copv
last
uffe

mber
rint
ftwi
he b
nd o
re t

r th
line
line

bel
ano

of
acte
foil
le c

com
er 1

gle
ract
enti
le c
foil

of
hang
rent
ing

of
tex

r sp

of
able
dth"
egin
f li
he c
e cu

bel
aoo

ow c
ve c
ract
the
r be
owln
hara
mand
ines
char
ers
re 1

hara
o«in
the
e to
Hn

obje
curr
t in
ecif

SDace
char
blan

nine
ne
ursor
rsor
ow cu
ve cu
urren
urren
er
text
i *re
g ob

j

cter
**
*

acter
at cu
ine
cter
g obj
text

curr
e to
ct in
ent 1

serti
Icati

acters
x soaces
of line

**
rrent line
rrent line
t line **
t line **

on current line
cursor
ect
under cursor **

under cursor
rsor **

ect
on current line
ent buffer **
orevious condition
to buffer *

ine into buffer
on
on follows *

*, ** Useful - see paae 133, paragraph (4)

130

In addition to the two command categories already given

there are additional commands of a miscellaneous nature.

Table B,3 lists these additional commands.

Table B.3 - Miscellaneous VI Commands.

1, Print file status message
2. Clear and redraw the screen
3. Redraw the current "logical" screen
4, suspend or restart cutout
*, Cancel partially formed command
6, Return to position i n last edited file
7, Reformat lines in buffer
8

,

Indicate file and option manipulation
9, Quit VI, enter line-oriented editor

Some very basic formating commands for line length and

indenting are directly available, A macro creation

capability is present to allow the user to create

abbreviations for command strings. Table S.4 lists these

formatting commands, VI makes no claim to supporting a

formattino Dacfcaoe, since the file will be output in the

same format the user entered it. For special formatted

output a VI generated file must be processed by an off-line

word processor, like "NROFF -ME" described in Appendix CD),

VI provides a hioh degree of support to the user for

restructuring a file, or files. There are nine buffers

available for storina deleted text, and twenty six buffers

131

to use as temporary holding spaces while reordering and

editing. The text can be taken from other files and/or

buffers, for use In the file currently being edited. If

needed, previously deleted text from the current file can be

recovered, and also other files.

Table B.4 - VI Formatting Commands,

1. Reformatting command
2. Shift lines left one "shif twidth"
3. oeindent lines
4. Shift lines right one "shif twidth"
5. Prints current file contents

"VI" is a good screen oriented editor and has a wide

ranae of caDabilities , however it has some drawbacks.

(1) It has a poorly desianed user interface since the

command vocabulary is very larae and the individual command

strings are difficult to remember. There does not seem to

have been much thought given to the design of the command

vocabulary,

(2) It takes a fairly lono time to learn the VI system

and gain functional use. An on-line tutorial program is

used to heiD beainners, since it is hard to become familiar

with it on their own.

132

(3) VI does not Inspire user confidence in that it is

too easy to accidentally enter some unknown command strinq,

and there is little correlation between what the user wants

to do and the command(s) that must be issued,

(4) From personal use, about thirty three commands were

considered to be oenerally useful (marked by * or **), and

onlv ten of these accounted for the qreater Tajority of all

ooeratlons (marked by **), The remainino vi commands were

generally treated as "window dressinq" by all but the most

sophisticated users.

(5} There Is no heln facility, of any kind, provided by

the VI system. At the very least, an on-line listing of

commands should be Drovtded,

133

APPENDIX C: EDIT

EDIT is a text editor supported by the UNIX operating

system. EDIT is a simolified version of another UNIX

editor and contains a minimal set of ooerators. It is line

oriented which means that the main object of EDIT is a line

of text of some finite lenqth.

EDIT merely supoorts text file creation and modification

operations. The user inputs text into a file by lines,

indicating the end of a line bv a carriaae return. A

dlsolay of the file win show an ordered list of lines as

thev exist in the file. Grdering of lines is completely

determined by the system ard although the user can use line

numbers as a reference, the line number is not directly

accessible to the user to change or set. Any disolay of

text by EDIT Is done by line. Substrings can be referenced

within a line, or lines. A formatted output display by EDIT

can only be achieved If the user directly inputs the desired

format line by line. No processing of the contents of a

line is done by EDIT.

when Invoked, EDIT sets aside a temporary cooy of the

referenced file in a working buffer. If the file does not

already exist in the directory, then it is a new file and is

created. The basic set of commands available to EDIT are

listed in Table C.l.

134

Table C.l - EDIT Command Summary.

1. Edit a file
2. SDeclfy a file
3. Append llne(s)
4. Insert llne(s)
5. Insert line(s) Into an external file
6. insert line(s) from an external file
7. Delete lineCs)
8. Copy lineCs)
9

.

vnve lineC s

)

10. Print llne(s)
11. Show line number
12. List lineCs)
13. substitute a string
14. search for string
15. Undo last command
16. vafce effect of command alobai
17. Move cursor

- forward
- backward

18. Quit

Searching for a line has the effect of making the found

line the current line. Any subseauent editing ooerations

are done In relation to the current line. Lines can be

found and disoiayed by line numbers, and ranges of lines can

be specified. Lines can also be found and disoiayed forward

or backward, relative to the current line, a line can be

found by any substrino of its contents, but the entire

substring must be contained in one line, because of this

deficiency a substring may not be locatable merely because

It exists in the text file. When searching EDIT will move

135

forward or backward and will wrap around the buffer, so as

to return to the starting line if the target object is not

found,

New lines can be aooended before the current line, or

inserted after it. The user issues a command to specify that

there are no more lines to add. Upon completion the current

line is the last line added. Additions can also be made by

moving or copying lines within the text file. Moving can ce

viewed as a combination of a deletion and an insertion. By

soeclfyina a range of lines to be chanaed, they are deleted

and the system enters insert mode for the user to add the

new lines. Additionally, insertions are possible from other

text files.

Modifying a line is done bv substituting a new string

for en already existing target string on the line. If

desired, the substitution can have global effect in that it

will modify all occurrences of the target string on all

lines.

Deletion is usually accomplished by indicating the line,

or lines, to be deleted, A search command can be used with

the deletion operation when the specific line numbers are

not Know.

EDIT protects the user from making inadvertent changes

to a text file. The effects of the last executed command

that effected the buffer can be reversed. Additionally, the

effects of the editing session do not become Dermanent

136

unless the user issues a command to maKe them permanent. At

that ooint the edited copy, which is in the buffer, replaces

the oriqinal file in the directory. Leaving EDIT without

indicating to make the changes oermanent is like the editing

session never occurred.

In addition to writing a whole buffer out to the

directory, subparts can be written to another text file.

This is done by sDecifying the range of lines and the file

to be written to.

The EDIT text editor is very basic which is both an

advantage and a disadvantage. It has a minimal command set

and therefore is easy to learn. The biggest oroblew is that

it is line-oriented. As such, modifications are done a line

at a .time, wnere each line is a separate entity. It does not

treat the file as a whole, but as a disjoint collection of

lines. It imposes the idea of line numbers, which do not

exist in the text file, in order to use the editor. There

are fewer high level editing operations available, as

compared to current screen-oriented editors, and they are

limited to ooerating on lines and not the text file as a

whole, while capable of Droducino satisfactory results, due

to its line at a time limits, the operation becomes tedious

if the file is large, and/or there are a lot of small

changes which must be done. Given the advanced features of

todays line-oriented editors, EDIT is a very archaic and

frustrating way to create and modify a text file.

137

APPENDIX D: NROFF -"E

"NROFF -ME" is a text processing facility for files that

are created on the Unix operatino system. It was created by

the University of California at RerKeley, and 3ell

Laboratories. "NROFF" is a program that accepts an input

file Prepared by the user and out outs a formatted oao?r to

the user's desian. "-ME" is a macro oacxaoe that enhances

the capabilities of the "NROFF" program by addina additional

formatting abilities and commands. The input file consists

of the actual text entered by the user, throuah some editor

system, and a series of embedded NROFF -ME commands.

There is a large vocabulary of "requests", which are

really dot-commands consisting of a period followed oy a two

letter string. The basic NROFF cac^aa^ sucoorts seventeen

cateqories of commands, and »as a total of eighty seven

commands. The -ME package adds three categories and a total

of sixty commands for a grand total of one hundred and forty

seven commands. Table n.i lists the NROFF and -me command

categories, and the number of commands in each.

N»OFF -me uses thirteen predefined general variables and

twenty three predefined read-only variables to support its

processino needs. The user is provided with a macro

facilitv to define new commands in terms of the basic set of

commands and operations on the variables. This allows the

138

user to abbreviate a fairly long command stream into a

single command.

Table D,l - NROFF and -ME Commands.

COMMANDS

COMMANDCATEGORY NROFF -ME

1. Font & Character Size Control 7 9

2. Paoe Control 7

3. Text Filling, Adjusting R, Centering 6

4. Displays 22
5. Vertical SDacino 7 o

6. Line Length & Indenting 3

7. Paranraohlng 4

8. Macros, Strings, Diversions, & Traps 13 o

9. dumber Reqisters 3

10. Tabs, Leaders, & Fields 4

11. InoutOutout Conventions 9

!2, Hyohenation 4

13. Titles 3 13
14. Headings 6

15. Line Numbering 2 o

16. Conditional Input 3

17. Environment Switching 1

13, Standard Input Insertions 2

19. InDutOutout File Switching 3

20, Miscellaneous 5 6

TOTAL 87 60

NROFF -me is a good word processing system and it can

produce some complex formatting actions. However, it does

suffer from some drawbacks.

(1) Since the file is first created by the text editor

and then run by nrqFF, the user has a significant delay in

determining if the desired format was achieved.

139

C2) In addition to depending on the text editor, NROFF

must depend on other programs to preprocess the text file

before nrOFF can handle it for specialized reauests. Two

examples cf preprocessors are pacKages to handle tables and

comolex eauation symbology. While enhancing NROFF -ME's

capabilities, they add more categories and commands, and

increase the amount of time necessary for the user to see

the actual results of commands.

(1) The user manual for the NROFF pacxaae is not

presented in sufficient detail to completely understand the

effect, or use, of all commands. It aDpears that the user

is supposed to h^e a basic understanding of the system

before readina the manuals!

(4) The command vocabulary is fairly larqe and thev are

not easy to remember. Based on personal use, only about

twenty Dercent of the vocabulary is generally useful and

therefore remembered. Table D.2 presents a simDiified

listing of the most used commands.

140

Table D.2 - Basic Commands NROFF -ME

1.
2.
3.
4.
5,

6.
7.

9.
9.
10.
11.
12.
13.
14.
15,
16.
17.
lfl.

19,

22.
23,
24.

20. s

21. T

25. C

age
ine
ine
aoe
nde

De
te

eqi
eed
nse
ent
rea
efl
111
yph
nde
ect
uot
oot
eeo
tar

fca

le
bo
n'j

tar
11
bl
fl
de

abl
de
st
bo
en

qua
ult
efa

th
ont

re
ch
CO

le
sp
le
he

nt
rma
moo
n n

*

rt
er

ne
/NO
ena
rli
ion
atl
not

an
t p
sic
ft
dy
mbe
t d
St
OCX
oat
lay
e h
fin
art
dy
d
tio
ibl
ult
esi
rol
ad
anq
ndi

nqth
acinq
nqth
aders

nent
rary
ext caqe
lines
* blank lines
tne next # lines

a macro
-fill
te/No-hyohenate
ne
/Chapter headinqs
ons
es

index
aragraph

adjusted
Indented
red
isolay

inq blocx
ed text
andier *

ition

n definition
e column format

pacer formats
s

constructs
special variables
e soecial register
tional formattinq

* part of Table preprocessor

141

APPENDIX E: DBASE II

DBASE II Is a relational database system created by

Ashton-Tate of Los Angeles, California for microcomputer

systems. For this review, the CP/M version of DBASE II was

used, where the DBASE II program is an executable "command

file" residing in the system.

The DBASE II system utilizes several different file

types: database, report form, command, index, memory, and

text. Each file tyne has a specific purpose that is

identifiable by its tvce name. "Report form" files store the

information, specified by the user, for describino the

format (headings, fields, totals, subtotals, contents, etc,)

in which a "database" file is to be output, "Command" files

contain a seauence of DBASE II statements, commands, and

control structures necessary to create a user defined view,

"Index" files are a list of Dointers to a soecific

"database" file, "Memory" files contain the values of

memory variables and constants saved previously by the user,

"Text" files are collections of ASCII characters for input

into a "database" file, or created by output from a

"database" file, DBASE IT cannot directly use "text" files.

Most of the files are stored in what is Known as Standard

Data Format (SDF), and they can be used directly by any

other program that uses SDF files. Additionally, any text

142

files in SDF can be used by the DBASE II system. The file

is the largest data object supported by DBASE II which

creates, deletes, or modifies the current file(s). A

database file is brought into reference by user

specification, and a maximum of two database files can be

"ooen" at one time.

DBASE II can be used interactively or can De proarammed

to create a view of the database to supcort recurring

applications, Reqardless of method, DBASE II orovides the

user with the same basic hig*-levei data definition CDDL5

and data manipulation CDML) language. An English li'<e

command language with a very regular syntax is a user

friendly feature of DBASE II. The commands are verv

powerful in that their oDerands and results are typically

database files. The command structure is usually presented

in the following form:

COMMANDCSCOPE] [CONDITION]

The scooe modifier designates the number of records to

be selected in response to the soecific command. The

condition modifier specifies a conditional statement that

the record's field values must satisfv in order for the

record to be included in the final result. Table E.1

provides a listina of the basic DBASE II commands, with

duplicate commands having been factored out.

143

Table E.l - DBASE II Basic Commands,

1.
2.
3.
4.
5.
6,
7.
8.
9.
10
11
12
13
14
15
16
17
18
1 9

20

Dls
For
Inp
Inp
Hal
Lis
OlS
Dls
Ren
Era
Gen
Exe
Ret
Dls
Sto
Sav
Res
Sel
Set
Abo

Play a
mat sc
ut a c
ut a s

t for
t the
oiay d
olay t
erne a

se a f

erate
cute a

urn fr
Dlay t

re a v
e memo
tore m

ect a

soecl
rt a c

n ex
reen
hara
trln
user
reco
ata
he s

file
lie
a re

"co
om a
he c
alue
ry v
emor
SDec
fie
omma

oresslon on the screen
or printer output

cter strlno
g to a memory variable

lnout
rds In a database
from a database
tructure of a database

port
mroand" file

"command" file
ontents of the memory variables

in a memory variable
arlables to a file
y variables from a file
ific database for use
DBASE II oarameters
nd

21
22
23

24
25
26
27
28
29
30

31
32
3 3

34
35

Crea
Edit
"odi

CO
Upda
add
Copy
Inse
Dele
Unma
Loca

or
Goto
Move
Inde
Sort
Perf

te a ne
a data

f y a da
ntents
te a da
data fr

data f

rt reco
te reco
r* reco
te a re

eondit
a spec
f orwar

x a dat
a data

orm JOI

w dat
base
tabas
of fi
tabas
om a
rom a
rdCs)
rdCs)
rds m

cord
ion
ified
d or
abase
base
N ooe

abase

e's structure, or the
elds in selected records
e from another database
text file to a database

database to a text file
into a database
from a database

arked for deletion
based on key value,

record
backward in a database

based on a field
ration on two databases

36, Count the number of records
37, Sum a field or subfleld in a database

144

Default ordering for records In a database file is the

sequence In which the records are entered, Ordering can be

altered by inserting records into specific parts of the

database, and by sorting or indexing the database. in the

default order, the "database" file does not contain a

recognized key.

By sorting or indexino a "database" file, keys are

defined and the search time required to locate a record is

reduced. *ultiole Indexing be done for the same database,

but based on different keys. Sorting produces a new

"database" file, which is a copv of the original database,

o»ny it Is sorted. An "Indexed" file is a virtual file of

oointers to the original "database" file. whereas lookup

soeed can be enhanced by indexing a database, there is

overhead incurred in maintenance of the "index" file.

Changes made to the original database file are not reflected

in the new sorted "database" or "index" file. The orioinal

database must be sorted or indexed after each change in

order to remain current.

The data definition lanouage allows the user to define

the organization of the data In a new database file by

soecifylng the name of the database, and giving information

on each of its fields (name, type* width, decimal daces).

The structure of a new database file can also be cooled from

that of another database file. Additionally, new structures

can be created as the result of using the JOIN ooerator

145

provided by the DBASE II system. At any time, the structure

and/or contents of a file can be displayed or output. The

structure of a database file can also be modified at a later

time, but presents some problems in that all records

currently in the database file are destroyed.

Besides usino DBASE II interactively, it can be

proarammed in its own language throuah the use of "command"

files. The DML statements are embedded in the file and

iterative execution of DML statements are controlled by a

set of DBASE II control structures (If-Then, If-Then-Else,

Goto, and Do-While), "Command" files tend to make extensive

use of memory variables and input/output functions which are

also extensively suoported by DBASE II, To create a user

vie** the desiqner/proorammer will edit a "command" fileCs)

to contain the correct DBASE II statements, commands, and

control structures to manipulate the oroner "database"

files. The capabilities and limitations of any view is

dependent on the desian of the "command" filets).

The reason for the great Popularity of DBASE II is that

it is a very easy database manaoement system to learn and

use. Its English-like command lancuaqe is natural and user

friendly. Although the command set is rather extensive, the

command names accurately describe their action and use a

regular syntax so they are easy to remember. The

interactive nature and full screen disolay orientation makes

user interaction simple and direct. with its set of

146

predefined functions, input/output commands, "command"

files, and programming constructs it is easy to create views

for almost any apolication, DBASE II is a powerful

relational database svstem yet it is obvious that the

designers gave much thought to tceeDino it simple and did not

introduce comolexity for its own safce. However, there are a

couple of orobiems with DBASE IT which are worth mentioning,

and they are all orobafcly due to the justified emphasis on

simolicity,

(i) At any one time, a maximum of two databases can be

in reference. This limitation requires that databases be

explicitly brouoht into and out of us?. It would helo if

there was another method, besides using a "command" file,

for oerformlng ooerations en multiple tables.

(2) In modifyina the structure of a database the

contents are deleted. This reouires that the database be

exDlicitly saved to an external database and then be

recopled back after structure modification. It Is an

inconvenience, to say the least.

(3) The only relational ©Deration directly provided by

the system is the JOIN command. It would greatly enhance the

capability of the system to provide more of the ooerators,

C4) The dismay structure is a little bit too rioid,

and the user does not have much direct control, sort of

writing a "command" file, to effect the output format.

147

APPENDIX F: SEQUITUR

SEQUITUR is a relational database system designed by the

Pacific Software Manufacturing Company of Berkeley,

California,

SEQUITUR sees a database as a collection of named

tables, each of which contains some Kind of data related to

the subject of the database. Each database has a set of

system tables. The "Column" table lists the name, type,

size, and disDlay format of all columns authorized for use

in the database's tables. The "Table" table lists the names

of the columns that are included in each of the database's

tables. Together the "Column" and "Table" tables act as

part of a data dictionary system for the database,

SEQUITUR has a fairly larae command vocabulary of over

sixty seven commands. There are twenty five basic commands,

forty two screen editor commands, and more formed by

combinations of the previous commands. A multilevel "Help"

facility is used to support the user,

SEQUITUR offers four Kinds of help. There are status

lines at the too of the screen. An "edit card" display can

be called by the user in order to see a comorehensive list

of cursor object and motion Keys, and escaoe operations.

The "help" command summons an on-line manual, that is preset

by the user to provide no, medium, or maximum helo. Lastly,

148

there are situational help prompts that occur during the

command process.

Table F.l - SEQUITUR Basic Commands,

1. CHOOSE {database}
2. CREATE {database}
3. ADD to {table}
4. EDIT {table}
5. SHOW {table}
6. PRINT {table}
7. REPORT generator
8. FORM5 generator
9. SELECT from (table}
10. MANUAL select
11. JOIN {tables}
12. SORT {tables} *

13. UNION *

14. INTERSECTION *

15. DIFFERENCE *

16. UNIQUE rows *

17. DUPLICATE rows *

13. COPY
19, APPEND
20, RFMCVF rows
21, rename column

22, COMPACTbase
23, DUMP to {file}
24, LOAD from {file}
25, HELP from manual
26, EXIT

* = Member of SEQUITUR's
"set" commands.

The twenty five basic commands cover the major

operational capabilities of the SEQUITUR system. The

commands are oresented to the user in the form of a menu,

149

and once a choice Is made SEQUITUR enters the display mode

necessary to support that choice. Table F,l lists the basic

commands, plus the command for exiting from SEQUITUR.

The SEQUITUR display modes are organized as "tables", or

"paaes". The table mode is similar to the aporoach taken by

the "Query-by-Example" system (QBE), and Dresents the data

in columns and rows with vertical lines senaratinq the

columns and indicators for new rows. Alternatively , the

Dage mode presents the data one row at a time, with the

column headinas listed vertically. The user has the ability

to flip bacfc and forth between the two display modes at

will.

Table F.2 - SEQUITUR Cursor Object & Motion Commands.

1. Move cursor up one line
2. Move cursor down one line
3. Move cursor left one object
4. Move cursor to next object
5. Move cursor to beainning of object
6. Move cursor to orevious word
7. Move cursor to end of current object
3. Move cursor to next word
9. Object = word
10, Object = line
11, Object a sentence
12. Object * paragraph
13. Object = view
14, Object = eaoe or screen
1?, Object a column
16, Object = row
17, Object a one character

150

Once in a desired display mode the user must maxe use of

the editor commands to make chanqes to the table. All editor

commands are single keys combined with the <Control>,

<Eseaoe>, or <Tab> keys. Table F.2 provides a list of the

cursor object and motion commands available. Most

operations require two commands since the object must be

specified first, and then the actual operation.

Table F.3 - SEQUITUR Screen Editor Commands.

1, Delete left portion of object
2, Delete entire object
3, Delete right portion of object
4, Flips "insert" toaole
5, Shows rows marked for deletion
6, Flip "paae-taole" display style
7, Goto *-th object
S. Goto last object
9. Restores more recent version of row
10. Display earlier version of row
11. Executes a command
12. Search forward for column entry
13. Search backwards for column entry
14. Edit card display

The screen editor commands are used to make actual

changes (additions, modifications, or deletions) to the

displayed table on the screen. Table E.3 lists these

commands which are used in conjunction with the cursor

object and movement commands listed previously.

151

Additionally there are a number of miscellaneous

commands that are provided to aid the user. These are listed

in Table F.4.

Table F.4 - Additional SEQUITUR Commands

1.
*• •

3.
4.
5.

Get Edit Helo
Scroll Forward
Scroll 3ackwards
Interrupt Present Operation
LocK/Unlnc* Cursor Object

There are an abundance of table tyoes in SEQUITUR.

"Virtual" tables consist of pointers to data in a "base"

tablets^, and are forced by conducting relational operations

Ce.g, JOIN) on the base table(s). Virtual tables are

permanent additions to the database. All operations

conducted on the virtual table effect the base table, but

not all operations on the base table win reflected in the

virtual table,

"Slice" tables consist of the data from a "home" table,

and are formed by restricting or rearranging the columns in

the home table. Actually, slice tables are just alternate

ways of viewing the same home table. All ©Derations

conducted on the slice table effect the home table, and all

operations on the home table effect the slice table.

152

"Template" tables are used to store control information

on the operationCs) (SELECT, SORT, UNION, DUPLICATE, UNIQUE,

INTERSECTION, and DIFFERENCE) desired to be oerformed on a

set of "base* 1 tables. The user specifies once the sequence

of operations to be oerformed, and each time that result is

desired the appropriate template table is called to create

the desired virtual table.

" SEQUITUR Drovides several methods of outputtinq data to

the user:

(1) There is the "Drint" command which DromDts the user

to SDecify headino, page length, margins, Daqe number, date,

column/row divider symbol, etc. for either a "table" or

"oaae" style output. The entire table is then outDut, one

record at a tim#, in the soecifie* format.

(2) There is the H f?rm generator". The user creates a

form letter or document by making an entry in the "forms"

table in either "pace" or "table" style, and answerinq

several system prompts as to Daqe size, width, marains. The

form generator is intended for letter tyoe generation since

it only allows one text field in the form. All other entries

are pulled from an aopropriate table and the "form" reo*ated

for each row in that table.

(3) There is the "report oenerator". The user creates a

report table that is associated with a Known data table. The

report table specifies which data table columns are to be

used, how thev are positioned, what name they have on the

153

form, allotted width, and alignment. Again, the user must

specify formatting items liKe page length, line length,

maroins, delimiters, and other related items. The individual

columns in the report table can be marked for sorting,

grouoing, and/or arithmetic processina. If arithmetic

processing is opted for, then another table, the "function"

table is created to record what is to be done to each column

- total, minimum, maximum, average, or count.

Based on a very short familiarization experience with

SEQUITUP there is no doubt that it is a powerful and

complete relational DBMS, However, it is not as user

friendly as its advertisements would lead you to believe.

Seme of the problems encountered were:

(ID Too many commands to remember. This increased

learning time and added to the confusion. Too many of the

commands were just window dressing in that their effect

could have be done using other commands, CLIKe the "Object

s", extra cursor movement and deletion commands.) while

using Keys as commands leads to faster command input, it

makes thinas more difficult when there are so many commands

the symbol on the Key has little or no relation to its

effect,

C2) The structure of the user interface was unwieldy. It

was easy to get lost and difficult to recover to a Known

location. Operations that worKed under one condition did

154

not worx In another, or produced completely different and

unexpected results, (e.g. in some Instances the "execute"

command will return you to the main menu, in others it was

ignored or treated as a mistake.)

(3) There were too many tyoes of tables, ways of using

tables, editino tables, and creating relations between

tables. The user is being swamoeri with a level of detail

that is better left to the system. It s«ems that SEQUITUR

was created with si^Diicity and user suDDort being lesser

considerations to svstem soohistication.

155

APPENDIX G: VISICALC

VISICALC Is an electronic spreadsheet orogram created by

Software Arts, Inc. of Cambridge, Massachusetts and marketed

by Personal Software Inc. of Sunnyvale, CA, Its purpose Is

to allow the user to easily model a wide ranae of numerical

problems in a standard tabular format by replacing the

user's Dencil, calculator, and scratchpad.

The screen is divided into a arid of columns and rows

that for* addressable (column, row) entry oositions. The

columns, which run across the top of the grid, are lettered

starting with "A H and the rows, which run down the side, are

numbered starting with *
l " , Each entry position ts an

indeoendent entity, and can contain a character string, a

numeric value, or a function that must be calculated. Entry

oositions that contain functions are recalculated by

VISICALC each time certain conditions are met. The functions

will specify values in terms of constants, operators, and

the values of other entry positions.

The screen is used as a "window" into the spreadsheet

and is modifiable by the user. The user is given numerous

commands, see Table G.l, with which to alter the disolay

format of the screen.

156

Table G.l - VISICALC Display Commands,

1.
2.

3.

Clear Sor
Set Globa

- Tnteoe
- Dollar
- Left/R
• Graph

Set Entry
- Intege
- Dollar
- Left/R
- Graph

Reset Ent
Set Colum
Set Order

- Column
• Row w

l

S*»t Recal
- &utoma
- Manual

Move An E
window Co

- split
- split
- Single

10, window Sy
- Synchr
- Unsync

4,
5.
6,

7.

3.
9.

ead Sheet
1 Display Format To;
r

s & Cents
ight Justified

Display Format To;
r
s S. Cents
ight Justified

ry To Global Disoiay Format
n Width within A window

Of Recalculation;
Wise

se
culat ion;
tic

ntire Row Or Column
ntrol;
Screen Horizontal
Screen Vertical

Window
nchronization ;

onized
hronized

The window can be "split" into two halves so as to looK

into nonadjoining areas of the soread-sheet simultaneously.

The two windows can be "synchronized" so they move toaether,

or unsynchronized so movement is indeoendent, Disday

format may be globally set for the screen as a whole, or

individual entry oositions can be assigned their own format.

Column width is variable from 3 to 37, but columns in the

157

same window must have the same width. The value of each

entry position is calculated by "column order" (Al, A2, ...,

An, Bl, B2, ..,, Bn, CI # etc.) unless the user changes the

recalculation order to "row order" CAi, Bl, ..., nl, A2, B2,

,.,, n2, C2, etc,). By default VISICALC starts in

"automatic" recalculation mode where the value of all entry

positions are recalculated each time an entry is changed. 4s

this can significantly slow down the model when laroe grids

and/or comDlicated numerical expressions are used, the user

can enter "manual" recalculation mode where a command must

be issued to cause recalculation to occur.

VISICALC Drovides a command-line oriented editor that

enters, modifies, or deletes data In a referenced entry

Dosition(s). A cursor is orovided on the grid to indicate

t h e current entry position referenced by VISICALC. There

are screen commands to allow the user to scroll across the

grid or to move to an exact (ro«, column) entrv cosition.

If needed, the numeric orocessing capability of VISICALC can

be used HKe a calculator to support the user's

comoutational needs. A oowerful capability of VISICALC is

the replicate command. This allows the user to define an

entry once, and then have it entered in a range of

successive column or row entry positions. Additionally, the

user can specify if the original entry is to be replicated

exactly, or should any references to other entry positions

158

be updated at each new position to tafce into account

relative position on the soreadsheet.

Table 6,2 - VISICALC Cursor Movement & Entry Commands.

11, Move Cursor Right Or Up
12, Move Cursor Left Or Down
13, Change Cursor Direction;

- Up/Down
- Pight/Left

14, Move Cursor To The Other window
15, Move Cursor To A Specific Entry Position

16, Abort Last Command
17, set An Entry Position To BlanK
1?, Delete An Entire Pow Or Column
19, Inset A New Row Or Column
20. Replicate An Entrv
21, Set Title Areas;

- Horizontal Title
- vertical Title
- No Title

22, R*oeat A Label Entry
23, Maice An Immediate Numerical Calculation
24. Enter A Label In An Entry Position
25. Enter A value In An Entry Position
26. S9w^ A Conv Of The Soread-Sheet

Since VISICALC is a numerical modeling tool it has a

series of arithmetic and aoaregate functions that it

supports. Table 6.3 provides a listinq, VISICALC has been

designed to store numbers in decimal format, not binary, and

maintains them with uo to eleven significant digits or

decimal olaces.

159

Table G,3 - VISICALC Arithmetic & Aggregate Functions

n
tion
lcatlon
n
tlatlon
te The Sum Of A Range Of Values
te The Minimum In A Ranae Of Values
te The Maximum In A Ranae Of Values
he Number Of Entries In A List
te The Averaae Of A Ranae Of Values
te The Net-Present-Value Of A

Of Values
A Lookup Ooeration

415956536)
te The Absolute Value
te The integer Portion Of A Value
Root
hms, Base 2

hms, Base 10
metric Functions (Sin, Cos, Tan, Asin,

Atan)

a. Additio
o. Subtrac
c, MUltiOl
d. Divlsio
e. Cxponen
f

.

Calcula
a. Caicula
h. Calcula
i. Count T
1. Calcula
X. Calcula

Range
1. Perform
m. PI (3.1
n. Calcula
0. Calcula
o. Sauare
q. Logarit
r. Loaarit
s. Triaono

Acos

,

VISICALC maKes use of dynamic memory allocation so the

actual dimensions of the spread-sheet deoend on the amount

of memory available and the complexity of the entries made

by the user. The user does not have to worry about memory

allocation since VISICALC taxes resoonsibiiity for its use

and efficiency, As entries shrink, or are deleted, VISICALC

reclaims the extra memory space. The user is shown how much

memory remains and a warning DromDt occurs when memory space

Is nearly exhausted.

160

For a permanent copy of the contents of the spread sheet

the user "nay send the output to a printer. A suboart of the

total spread-sheet may be sent by designating the lower

right corner to be printed,

VISICALC is a powerful and fairly simple modeling tool

whose advantages seem to easily outweigh the disadvantages.

The command vocabulary is lew C?6 commands, 19 functions)

and the areater majority are actually useful and net Just

window dressing. The user manual is well written and easily

understood, but is fairly lono. VISICALC supports a Known

human weakness (small/fast short term memorv, large/slow

lone term memorv, and slow calculation soeed) bv rememherina

t*e details of a commonlv reoccurring user problem (the

situation to be modeled), limiting the user to providing a

smaller and more select set of initial incuts, *nd

performing the computations In a faster, more reliable, and

reputable manner. However it does have some problems:

(1) Command strinas and their effect must be memorized

since there is little relation to the string and the effect.

Menus provided by the system are very Door, and reguire you

to already Know the meanina of the command string.

(2) A basic understanding of VISICALC and a high degree

of operational caoability can be obtained, in a fairly short

time, by reading only the first third of the user manual.

However, to gain maximum use of the system reguires a

161

significant amount of time and effort to read the entire

user manual and experiment with the operations. Some nice to

Know features that have a major effect on model validity

(e.g. recalculation order) are discussed at the end of the

user manual and might be easily missed.

162

APPENDIX Hi ZIP

The relational data base management system "DBASE 11"/

described In Apoendix (D), contains a set of commands which,

when embedded in a "command" file, define the output format

used to generate th<* display on the screen, or cutout to the

printer. In addition to aeneratina the disolay form, the

commands also direct th* D8ASE II system to either determine

the values of the entries from a record in the referenced

database, or from memory variables. If the incut device is

the screen/Keyboard, DBASE TI may retrieve a user entered

value from the screen and store it in a field of a database

record, or in a memory variable. These form definition

commands can also be Dut into a new tyoe of file, the

"format" file, by ZIP. In this case the format, contained

in the "format" file, is used as an disolay overlay to

prompt the user to chanqe data values in an existinc record

in a "database" file.

ZIP is a CP/M proaram used to qenerate, or modify, a

DBASE II "command" or "format" file. It is a Dowerful tool

in the sense that the user is not required to know the

details of the DBASE II form generation caoability

("command" files, and disday commands). ZIP cresents the

user with a blank screen and an on-screen editor, which

supDorts several levels of cursor movement and formattinq

163

commands, to help in the form design. Table H,l lists the

ZIP editor commands.

Table H.l - ZIP Editor Commands,

1, Screen commands
- too
- bottom
• *ex t

- orevious
- first
- last

2, Middle of line
3, Insert a space
4, Add a line
5, neiete

- character
- line

6, Draw/Erase horizontal line
7, Draw/Erase vertical line
8

,

Erase/Save work file
°, Insert DBASE II command expression
10. Chance variable

- vertical ^arfcer
- horizontal marker
- tab spacing
• margin
- cage lenath

11, Quit

The cursor can be moved to any position on the blank screen

where the user will enter the information reguired by the

ZIP prooram. Information is conveniently limited to literal

strings, memory variables, record field values, and fetching

a value from the screen and storing it into a record field

or memory variable. Interspersed between these ZIP

164

formatting commands may be DBASE II executable commands if

the file tyoe is "command". There are special purpose

commands to draw, or undraw, vertical and horizontal lines

on the form.

T*e ZIP program mav be viewed as a translator between

the screen desicn made by the user and the operations of

DBASE IT, The screen contents associated with each screen

oosition are translated into a sequence of DBASE II

commands, statements, and control structures which are

organized as either a "command" or "format" file, ZIP also

places any embedded execution commands into the file and

automatically sets, or resets, the aoDrooriate system

"tooales" as needed.

ZIP is a useful supoort tool for DBASE IT in that it

relieves the user from having to orooram a "command" file in

order to create a desired disday format. However, it must

be pointed out that ZIP is a very basic formatter, is line

oriented, and is incapable of the more comolex types of

disDiays .

165

APPENDIX IJ MAIL

"MAIL" is an electronic mail facility produced by the

University of California at Berkeley and Bell Laboratories

for the UNIX oceratino system. It allows users to send

messaoes to other users, or groups of users, on the system.

The basic unit of the mail system Is the message, which

is simply a special tyoe of text file. The messaae is

Preformatted and contains fields for originator,

destination, subject, copy to, and body. Messages are

contained either in the users "orivate" mailbox or in the

"system" mailbox, A "dead-letter" file is also maintained

for each user to contain messacr<»s *hlch cannot be delivered

to a valid destination. The private mailbox and dead-letter

file are maintained as text files in the UNIX directory and

therefore can be used by other proarams running under UNIX.

Upon logging into the Unix system, a prompt appears at

the terminal indicatino that there is mail for the user.

Messages addressed to a user are initially contained in the

system mailbox, and can be read from the system mailbox by

the mail facility. The messaaes already in the private

mailbox and/or dead-letter file are text files and thus not

directly accessible to the MAIL facility.

The user may elect to read the mail by invoking the MAIL

facility. A one line summary of all messages in the system

166

mailbox is presented to the user, and each message is given

an integer identification number starting at one. At this

point the user has a number of different options available

as summarized in Table 1.1,

Table 1.1 - MAIL Command summary

1.
2.
3.
4.
5.
6,
7.
a.

9.
10.
11.
12.
13.
14.
15.
lft.

17.
IS.
19.
20,
21.
22.

23.
24.
25.
26.
27.
28.

Alia
Unal
Goto
Goto
DiSD
Diso
Diso
DiSD
Diso
Disc
DiSD
Txec
Chan
Dele
Dele
Unde
*epi
Edit
Send
End-
Exit
Quit

us
SY

Marx

List
Help
Set
Unse

s a
las

ore
nex

lay
lav
lay
lay
lav
lay
lay
ute
oe d
tern
te c
lete
v to

a 1

mes
of-m
, do
, sa
er's
stem

mes
a m
cur
+

opti
t op

name
a na
viou
t me
summ
out
a me
out
mess
size
top
the
irec
essa
urre

mes
a r

1st
sage
essa
n't
ve u

mal
mai

sage
essa
rent

*

me(s
s me
ssag
ary
all
ssag
head
age

of
few
foil
tory
oe (

s

p t m
saae
ecei
of m

to
ae
chan
ndel
lbox
lbox
(s)
oe 1

ran

)

ssage *

e * *

of commands
currently defined aliases
e

ers of messaoe list
list
each messaoe
lines of each message
owing hnix shell command

essaae, Drint next message
s marked for deletion
ved messaoe *

essages In turn
desionated users +

ae system mailbox *

eted or unsaved messages in
, save unreferenced in the

the

to be saved in system mailbox *

1st by appending to a text file
ae of message headers

ons
tions

* MAIL facility has more than one command to
oerform this action.

Useful - see page 170, paragraph (2).

167

The user may select a message and read It, After

reviewing the message the user may forget the message, save

It in the system mailbox, delete it, or prepare a response,

when the user oults the mail facility all messages which

hav^ not been deleted, saved, or reviewed are placed back:

into the system mailbox. The remaining messages, those

reviewed but no soeclal action Indicated, are placed in the

private mailbox. If the user desires, the vail facility can

be exited and the svstem mailbox left unchanged.

Additionally the user can create "alias" names that

correspond to multiple users, ask for message summaries,

append messages to files, or Invoke an editor.

The mail utility do«»s not contain its own editor, but

depends on the editcr(s) available to the UNIX system and on

the user to set an option specifying which one is desired,

When the user indicates that a message is to be created, the

editor is invoked, the user enters the text, and when

finished issues an end-of-message command to return control

to the MAIL facility, while in the editor, the user can

issue "escape" commands that directly effect the messaae

processing, A listing of th*se escape commands is provided

in Table 1,2, Contents of other files may be inserted into

the message, names of recipients added or changed, the

header field edited, or an alternate editor invoked.

169

Table 1,2 - MAIL escape commands

1. Execute UNIX shell command
2. Add names to recipients of copy
3. Read Mdeadletter H file Into message
4. Invoke text editor
5. Abort tne message being sent
6. Insert a named file Into the message
7. Create a subject field
9. Write the message Into a named file

, ° i n e the message through a crocess as a filter
10, Insert a string Into the message

+ Useful - see page 170, Daragraph (2D,

While in the MAIL facility, UNIX shell commands may be

issued. The mail facility is temporarily interrupted, the

command is executed, and then the *^IL facility 5s resumed

without adverse effect.

Table 1.3 - MAIL oDtions.

1, (Append/Prepended) messages to private mailbox
2, CYes/No) Subject line prompt
3, (Yes/No) Prompt for carbon coDy recipients of message
4, CYes/^o) Modify delete command
5, (Yes/No) Innore terminal interruDt sianals
6, (Yes/No) Include sender in group message recipients
7, (Yes/No) savino interrupted messages
8, Define default editor name
9, Define escape character
10, Define file to record outgoing mail
11, Define number of lines in the "top' 1 of a message

169

Additionally, the MAIL facility has a series of options

the user can change to tailor its operation. Table 1.3

provides a listing of these options.

The MAIL facility is a good support program and is guite

capable of accomplishing; its coals. However, it has more

than its fair share of problems.

(1) There is a very limited user manual, and exoerience

must be oained from other users or by trial a^d error.

(2) There are too many commands, and too many of those

duplicate each other. The number of commonly useful

commands is low (marked with a +), with the rest being

window-dresslna.

(3) The facility is not user friendly. The user must be

aware of location in the facility and what is exoected next,

because there ^r^ no soecial prompts and the help command

only provides a command summary.

(4) If the message redolent is on line when the message

arrives, wnatever ©Deration is in progress is rudely

interrupted bv the disolav of the message. This can be very

disconcerting to the recipient.

(5) The user can't determine which message is going

where (system mailbox, private mailbox, dead-letter file),

prior to leaving the mail facility.

170

BIBLIOGRAPHY

BrieKlin, D. & Franklin, B., VISICALC User Manual, Personal
Software, inc. 1979

Ghosh, S., Data Base Organization for Data Management,
Academic Press 1977

Horowitz, E, & Sahni, S., Fundamentals of Data Structures,
Computer Science ^ress, Inc. 19^6

Kent, w,, Data and Reality, North Holland Publishinq Co.
197a

Naiman, A., Introduction to Word Star, Sybex Inc. 1992

(jliman, j., Principles of Database Systems, Computer Science
Press 1980

DBASE IT User Manual, Ashton Tare 1 98

l

SFOUITUR User Manual, Pacific Software Manuf acturino Company
108?

U^IX Programmer's Manual, Seventh Edition, Volume 2A Bell
Telephone Laboratories, Inc 1979

171

INITIAL DISTRIBUTION LIST

l a Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

2. Fibrary, Code 0142
Naval Postgraduate School
Monterey, California 93940

3. Professor D'isar Z. 3adal, Code 52ZD
Department of Computer Science
*Javal Postgraduate School
Monterey, California 93^40

4. LT John Christopher wafers, USN
225 west 79th Street
New York, New YorK 10024

No, Copies

2

172

Thesis
W22999
c.l

200159

Waters
Integrated appli-

cation software
system.

KM 26 85 29393

200153
Thesis
W22999
c.l

Waters
Integrated appli-

cation software

system.

thesW22999

Integrated application software system.

3 2768 001 93000 1

DUDLEYKNOXLIBRARY

