
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1982

Software development projects: estimation of
cost and effort (a manager's digest)

Pierce, Charles James.; Wagner, Rebecca Louise.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/20337

Downloaded from NPS Archive: Calhoun

library, naval postgbaduate school
Monterey, ca 93940

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
SOFTWARE DEVELOPMENT PROJECTS:
ESTIMATION OF COST AND EFFORT

(A MANAGER' S DIGEST)

by

Charles James Fierce, Jr.

and

Rebecca Louise Wagner

December 1982

Jjg^^j^^itiafilEB Bradford D. Mercer

Approved for public release; distribution unlimited

T208061

SECURITY CLASSIFICATION OF THIS PAGE (Vnan Om Bntatad)

f REPORT DOCUMENTATION PAGE
i /report sum*** 2. GOVT ACCESSION NO

4. TITLE (and Suailtla)

SOFTWARE DEVELOPMENT PROJECTS:
ESTIMATION OF COST AND EFFORT

(A MANAGER'S DIGEST)

7. AUTHOR.' •>

Charles James Pierce
Rebecca Louise Wagner

1 PERFORMING ORGANIZATION HAMt AMO AOOREIS

Naval Postgraduate School
Monterey, California 93940

It. CONTROLLING OFFICE NAME *NO ADDRESS

Naval Postgraduate School
Monterey, California 9 3940

Ti MONITORING AGENCY NAME * AODRESSr*/ dlttatant it Controlling Ollteot

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 HtCl»llNT , 5C»T»LOG NUM3CO

S TYPE OF PEPOPT « PEHlOO COVERED

Master's Thesis
December, 1982

• PERFORMING OPG P.EPQPT MUMBEI

• . CONTRACT OR GRAhTNT NLMIERrij

!0. PPOGRAM £l£m£* t ORQjtCT TaskAREA *OR< UNIT NUM8EMS

12. REPORT DATE

December, 1982
13 NUMBER OF PAGES

103
IS. SECURITY CLASS, o< iM« rmport)

Unclassified

>S«. DECLASSIFICATION/ OOWNSRAOinG
SCHEDULE

•V DISTRIBUTION STATEMENT ol mi* Hanatt)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol tha atmlraet anlarad In Block 10, II dlttatant horn Rmport)

It. SUPPLEMENTARY NOTES

It. KEY WORDS (Cantlnua an MWM old* ll nacaaaarr and Idmnttty «r Uoem nuaMr)

Software Lifecycle
Cost Estimation
Effort Estimation
Software Cost and Effort Estimation Models

20. ABSTRACT (Cantlnua art wwh alda II nacaaamrr and IdmnUtr *» mlaam nummar)

This research focuses on the principles upon which models have been,
and may be, constructed for estimating cost and effort in software devel-
opment projects. A definition of and factors influencing software engi-
neering economics is presented. The major phases and activities of the
software lifecycle are described. Effort, time and cost estimation is
analyzed. A presentation is then given of some widely used models for
estimating cost and effort. Critical factors which must be considered

DD
FORM

I JAN 73 1473 COITION OF I MOV •• IS OaSOLETE
S/N 102-014- «601 i r\mtm ffllAtM^I

Smcumr* et«ili»tC«Tiaii o* twii •«««<—

i

W «.,. j-M

20. (continued)

when constructing a model for estimating cost arid effort in software devel-
opment projects are then presented. We summarize by citing areas that re-
quire more attention if cost and effort estimates are to be further
improved.

DD Form 1473
1 Jan 73

S/N 0102-014-6601 ftCCU«l*V CLAMI»«eA*IOM 9' r *>* **o«r»»»« 0««« !«»•»•*!

Approved for public release; distribution unlimited.

Software Development Projects:
Estiaation of Cost and Effort

(A Manager* s Digest)

by

Charles James Pierce, Jr.
Lieutenant. United Spates Navy

5. A., Queens College of The City University of New York, 1971

and

Rebecca. Louise Wagner
Lieutenant, United States Navy

B.A., Bemidji State University, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
Decs mber 198 2

)

S^^,""*******

ABSTRACT

This research focuses on the principles upon which

models have been, and may be, constructed for estimating

cost and effort in software development projects. h defini-

tion of and factors influencing software engineering

economics is presented. The major phases and activities of

the software iifecycie are described. Effort, time and cost

estimation is analyzed. A presentation is then given of

some widely used models for estimating cost and effort.

Critical factors which must be considered when constructing

a model for estimating cost and effort in software develop-

ment projects are then presented. We summarize by citing

areas that reguire mere attention if cost and effort esti-

mates are to be further improved.

TABLE OF CONTENTS

I. INTRODUCTION 9

A. BACKGROUND 9

B. PROBLEM 9

C. GENERAL PROCEDURE 10

D. ORGANIZATION 10

II. UNDERSTANDING SOFTWARE ENGINEERING ECONOMICS ... 11

A. A DEFINITION OF SOFTWARE ENGINEERING ECONOMICS 11

3. INFLUENCES ON SOFTWARE ENGINEERING ECONOMICS . 13

1. Size 13

2. Complexity 15

3. Interference 18

U. Cost 19

5. Quality 20

5. Scheduling 22
"
7
. Past Experience 25

6. Tccis 25

9. Management Policies 30

10- The Project Manager 31

III. SOFTWARE LIFECYCLE: MAJOR PHASES AND ACTIVITIES . 34

A. MAJOR PHASES 34

1. System Requirements/Feasibility 34

2. Software Requirements 42

3. Preliminary Design/Product Design 43

4. Detailed Design 45

5. Code and Debug 46

6. Debugging and Testing 46

7. Operations and Maintenance 48

B. ACTIVITY DEFINITIONS 48

C. SUMMARY 51

IV. EFFORT, TIME AND COST ESTIMATION 52

A. TIME AND EFFORT ESTIMATING 52

1. Experience and Judqement 52

2. Programmer Productivity 52

3. Cede Production Rates 54

4. Basic Man loading Pattern Over Time 54

B. COST ESTIMATING 55

1. Cost Cons id e rations 55

2. Key Factors Influencing Software

Development Costs 55

3. Traditional Cost Estimating Procedures . . 63

4. Cost Estimating Relationships and Phase

Interrelationships 64

V. THE ART AND SCIENCE OF SOFTWARE COST ESTIMATION . 56

\. CURRENTLY AVAILABLE METHODS FOR SOFTWARE

COSTING 66

1. Static Models 67

2. Dynamic Models 75

3. Dynamic Transportable Models 73

4. Overall Model Evaluation 87

3. ESTIMATING COST AND EFFORT: CRITICAL FACTORS 92

1. Discussion 92

C. SUMMARY 94

D. THE FUTURE OF SOFTWARE DEVELOPMENT PROJECTS . 95

LIST OF REFERENCES 97

INITIAL DISTRIBUTION LIST 102

LIST OF TABLES

I. Project Tasks by Activity and Phase 50

II. Adjustment Variables by Decreasing Weight 71

III. Evaluation Factors - SEL 82

IV. Evaluation Factors - Malston and Felix 33

V. Environmental Factors - Boehm 34

VI. Factors Used in Various Cost: Hodels 39

LIST OF FIGURES

3.1 Phase One: Organizing for feasibility study . . 36

3.2 Phase Two: Search for solutions 38

3.3 Phase Three: Feasibility analysis 39

3.4 Phase Four: Choice of solution 41

I- INTRODDCTION

A. BACKGROUND

The history of software engineering is replete with

tales of Droiects that have never been comoleted or have

reached completion only after numerous cost overruns and

well beyond the originally scheduled operational date. As

the problems with software engineering became increasingly

apparent, researchers directed their attention to finding

ways to more accurately predict the cost, effort and time

that a software development project would require.

Attention has been devoted to determining sound estimates

as early as possible in the project. Initially models were

developed to provide single estimates in specific environ-

ments, 'iodeis gradually evolved that could oe us~d at
»

various stages of the lifecycle. Models are new available

that can make predictions throughout the lifecycle and can

be transported to different environments.

B. PROBLEM

The problem to be addressed in this study is to find

those influences that affect estimates of cost and effort in

a software development environment. The characteristics

that are identified will not necessarily apply to ail envi-

ronments but must be evaluated to determine whether they are

contributors to cost, effort and scheduling in a particular

situation.

C. GENERAL PROCEDURE

The procedure that has been used was to research litera-

ture concerning cost and effort estimations in software

development projects. Information was gathered concerning

some of the most widely used and successful estimating

models. We gathered from this research numerous criteria

that must be considered by the estimator before implementing

any model that estimates ccst and effort in a software

development Droject. We also noted influences or. software

development projects -hat have not yet been adequately

addressed in cost and effort estimating efforts.

D. ORGANIZATION

Chapter II develops a definition of software engineering

economics and presents the major influences on software

projects. The software lifecycie is then examined in

chapter III in reference to those phases that place the

greatest demands on ressurces. Chapter IV examines "-.he

factors important in effort, time and ccst estimation.

Chapter V presents a number cf popular models that have been

and currently are in use in estimating cost and effort. Key

factors affecting software cost and effort estimation are

then presented by the authors of this research paper in hope

that these will be addressed in leveloping a superior cost

and effort estimating model.

10

II. UNDERSTANDING SOFTWARE ENGINEERING ECONOMICS

A. A DEFINITION OF SOFTWARE ENGINEERING ECONOMICS

The term software engineering has been used extensively

throughout literature to refer to the various stages of

software development and maintenance. Software now commands

the major part of any budget for a computer system. In the

mid 1950*3, 35/: of a computer project's budget was devoted

to hardware with the remaining 15"o given to software.

Today, these figures are reversed. [Ref. 1: p. 41] The

refinements and advances in hardware combined with the ever

decreasing costs of its production have turned focus on

software and its ability to exploit the system's innate

potential. The financial prominance of software in any

computer system demands that whenever we speax of software

engineering, we consider the economic impact of our task.

Hence, the term software engineering economics will be used

in this research paper to refer to the development and

maintenance of software.

That we are only now beginning to clearly understand the

complexity of the software issue can be seen froji the

numerous failed attempts to forecast the cost and effort of

software development projects. Disastrous software develop-

ment projects have motivated the development of numerous

cost and effort estimating models that have met with varying

degrees of success in accurately predicting the course of a

software development effort. Successful models have been

used as foundations upon which even more accurate models

have been developed. The majority of models that are avail-

able to estimate cost and effort were developed by private

companies to be used in their own working environment.

11

These models when applied to other environments are unpre-

dictable and therefore of questionable valu« [Ref- 2: p.

116]. We will examine the most prominent of the numerous

cost estimating models and evaluate their characteristics

and applicability. We will seek to uncover the remaining

problems that currently available cost and effort estimating

models inadequately address cr completely ignore.

We begin by develooing a definition of software engi-

neering economics through reviewing definitions of the term

software engineering as offered by a number of prominent

individuals in the computer industry. The most comprehen-

sive work on software engineering economics is a recently

published text of the same title by Barry Bcehm. Boehm

defines software engineering as "...the application of

science and mathematics by which the capabilities of

computer equipment are made useful to man via computer

programs, procedures, and associated documentation" [Ref. 3:

p. 16]. Peters and Tripp at the 3rd International

Conference on Software Engineering define sortwar- engi-

neering by identifying the concepts and their relationships

that surface in a study of software engineering [Ref. 4: p.

63]. Remus of I3M's Santa Teresa Laboratory defines soft-

ware engineering as "...the science of implementing given

functional and performance requirements in a program with

optimum guality, at minimum cost, while meeting committed

schedules" [Ref. 5: p. 267], Kerola and Freeman at the 5th

International Conference on Software Engineering present

software engineering as "...the application of methods,

tools and technigues to actions in a reliable and predict-

able manner or (a) set of stated, technical, economic and

social gcals for a software artifact" [Ref. 6: p. 91]. We

especially note the reference to the social aspects of soft-

ware engineering. If the human aspects of software

engineering are not taken into account as concernina both

12

the developers and the users, the software product will not

realize its full potential. We define the term software

engineerinq economics as the art and science of utilizing

analytical techniques, managerial principles and common

sense to affectively and efficiently conclude the develop-

ment and maintenance of software at minimal cost.

B. INPIOENCES ON SOFTWARE ENGINEERING ECONOMICS

A number of methods have been used to estimate the

size cf sof-ware development projects. Early estimates cf

project size are not likely to be very accurate as the exact

nature and scope of the project are not conclusively known.

Putnam and Fitzsimmons recommend estimating the size of a

software development project using the laws of statistics

and probability and including the standard deviation for

each estimate. Early estimates are oased on oast experience

and the available information the developers have about the

project.

As more and more attention is being given to the

early determination of the design and specifications of a

project, estimators have an increasingly large amount of

information to use. The increased effort being given to the

front-end development of a project will substantially

decrease the final cost and effort expended on a project

because of better project preparation. Structural decomoo-

sition is used to more clearly understand and closely

estimate the size cf a project by understanding and esti-

mating the size of each segment of the project. During the

development process, iterations of size estimations continue

to improve the certainty of the size of the project.

Accurately estimating size is the major obstacle in esti-

mating the cost and effort required in software development

pro jects.

13

The following criteria have been used extensively in

estimating the size of a software project: lines of source

code and executable instructions. A fairly recent develop-

ment in complexity estimation developed by Haistead that

will be discussed later isserts that size is a function of

the vocabulary of a program . The vocabulary of the program

is the sum of the operators and operands used. According to

the author, lines of coi=, length (sum of the number of

times operators and operands are used) and vocabulary are

all valid measures of program size. The problem with

Halstead's and other techniques of size measuring is that

they are after the fact tools, i.e., the developed software

must be available to use -hem. Although refinements

continue to be made in the area of estimating program size,

no absolute method has yet been developed that will conclu-

sively estimate size early on.

As the size of a project increases, other factors

become mere prominent as cost drivers. Complexity, inter-

faces and the number of oeople involved oecome the primary

cost drivers. As ne size or oroiec- ne

number of people involved in the project increases and

significant new problems are created. Brocks learned from

his experience with the I EM OS/360 project that men and

months are not interchangeable. Using man-months to measure

the size of a project is dangerous since men and months are

only interchangeable in an environment where a job can be

perfectly partitioned among workers and workers separate!

from each other to preclude communication. In reality,

training and communication take up a significant amount of

time in increasingly large projects. [Ref . 7: pp. 13-26]

And although time consuming, communication is essential for

a successful project. Esterling's research also showed that

project completion time can be improved upon only up to a

certain point by adding personnel. Added personnel eventu-

ally serve only to delay the project. [Ref. 8: p. 168]

14

2 . Complexity

Software engineers use complexity to denote treat-

ability, maintainability, readability and/or

comprehensibility of a program [Ref . 9: p. 317]. Complexity

plays an important part in two phases of a software life-

cycle: development and maintenance. The complexity of a

program will directly influence the cost and effort in

testing and debugging and in correcting bugs that subse-

quently surface frcm use. The difficulty of modifying a

program due to changing requirements will also be directly

related to the complexity of a program. Complexity measures

have proven difficult to objectify in project evaluations.

The mair. problem with both size and complexity measures is

that they are done after the fact, i.e., after the code has

been written. A complexity measure will be judged on its

ability tc predict proqrammer performance. Much research in

the complexity area implies that programmer performar.ee can

be predicted from the source code of a program.

The question being asked today is which factors of

the many researched in proqrams best capture program

complexity. Two other factors have shown to influence

proqram complexity: the programmer and the programming

task. Significant individual differences have been found in

proqrammer performance. "The important point here is not

that individual differences among programmers exist, but

that the variability is so large that experimental results

may depend, more en individual differences than on experimen-

tally induced differences" [Ref. 9: p. 317]. What might be

ver-y difficult for o-ne programmer may be easy for another

thus nullifying the value of that predictor. Programmer

performance must be based on a combination of program

related complexity measures, programmer traits and

programmer tasks.

15

One of the newest approaches re measuring complexity

has been presented by Halstead in which lines of code are

broken dewn into operators and operands. Three advantages

of this approach are:

1. An explainable methodology for calibrating a
measurement instrument.

2. A more nearly universal measure, since the
approach is consistent across the boundaries of
programming languages.

3. The ability to relate seme of the effects of
programming stvie to measured quantities.
fBer. 10: p. 3731

The rules for this method seem to combine lines of cede,

decision nodes and operation codes, variables and punctua-

tion. The emphasis given to each area is questionable but

at least they are all included. [Ref. 10: p. 374]

Halstead defines length as a function of sum of

operator usaae and operand usage. Length can be estimated

from vocabulary with reasonable certainty according to

Halstead. Volume is a function of vocabulary and length.

Lines of code, length and volume are equally valid as rela-

tive measures cf program size. Program size measured in

lines cf code, length cr volume is a function of vocabulary.

Halstead also presents an equation for measuring

difficulty. Difficulty is defined as the measure of ease of

reading and ease of writing a program. Difficulty affects

the effort needed to code an algorithm, to inspect and

review it and to evaluate it later when changes need to be

made to it. Various levels of difficulty are experienced

due to the skill level of the programmer, poor program

structure or the lack cf experience with a language and

possibly the complexity of the algorithm. [Ref- 10: p. 381]

Halstead identifies six code impurities that if eliminated

reduce the level of complexity of the program. They are as

follows:

16

1. Complementary Operations: unreduced expressions

2. Ambiguous Operands : the same variable means

different things

3. Synonymous Operands: giving the same value to more

than one variable name

4. Common Subexpressions: subexpressions used more than

cr.ce in a program. The subexpression should be given

a unique variable name

5. unwarranted Assignments: assignment of a variable to

a subexpression even though the variable is used only

once in the program

6. Unfactored Expressions: easy to understand but at

Tiimes hard to fellow in coding. [Ref. 10: pp.

382-383]

Halstead's measures are attractive in that they are easy to

automats.

Another measure of complexity that has achieved seme

measure cf universal acceptance is that presented by T.

HcCabe. In 'AcCa-bt's cyciomatic complexity measure, all the

decision points in the Procedure Division cf a program are

counted, those for each paragraph and section are summed,

and those for the entire prcgram are summed. A paragraph is

assumed to be the size of a module and assigned a complexity

value of one to start. When a complex conditional statement

is encountered, each simple conditional expression is

assigned a value of one. Research to correlate Halstead's

and KcCabe's measures with programming effort have shown the

following (especially respecting Halstead's work):

1. reasonable correlation exists between the measures

and programming effort.

2. A comparable correlation exists between the measures

and the number of instructions in the programs.

3. Number of instructions seem to be as good an indi-

cator of software development effort reguired for

17

large programs (over 1000 DSI (delivered scarce

instructions)) as the Kalstaad and McCabe measures.

The measures, however, correlate better than DSI with the

amount of terminal time required to program small programs.

[Ref. 3: p. 481]

The weaknesses of the measures lie in their net

accounting for such factors as personnel experience, hard-

ware constraints, managerial factors and the use cf tools

and modern programming practices. The user must also become

accustomed to using the measures and, as already stated, the

measures involve a knowledge cf program characteristics that

are not learned until the program is written.

3 . Interference

Interference factors include the total of ail

disturbances that affect programmers' productivity.

Administrative or non-direct work includes such activities

as budget preparation, union meetings, and status report

sub missions. Social interactions are a second source of

time less. Thirdly, interference includes the time consumed

in regaining a creative thought pattern after interruption.

Creative people are subject to environmental influences on

their ability to evolve a new program. A fourth source of

interference is the time spent coordinating wi^h other

proqrammers while developing a program. A fifth source of

interference is the number of miscellaneous interruptions

that result from passing social interactions, trips to the

head, etc. [Ref, 8: pp. 16 4-166]

Intercommunication is essential to any project. To

minimize intercommunication, as few people as possible

should be involved in a large project if completion time is

important (as inevitably it is) . Brooks suggests the use of

programmer teams to improve upon the completion time cf a

project. The task is divided up into a number of segments

18

and each ream operates on its own as far as possible to

complete a segment of the project. Ssterling's research

showed that programmer productivity can be increased in an

interrupt free environment. Interference factors command a

large portion of the programmer's time and must be addressed

in any estimation of cost and effort.

U. Cost

Cost has played a major role in developing software

engineering economics due to the many cost overruns on soft-

ware engineering projects. Cost overruns have become the

driving factor in efforts to develop software cost and

effort estimating techniques. Escalating personnel costs

have driven companies to new awarenass of software develop-

ment projects. A severe shortage of software engineers

presently exists along with greater shortages in the number

cf senior software engineers whose competence an I expertise

in quiding a project can often result in an outstanding

product as opposed to a ae dice re product. The job mar ken

for software engineers is good and the cost of hiring

programmers and analysts continues to grow in dominance in

the overall cost picture. Estimates indicate that the cost

per man-year of a software engineer will be 100,000 dollars

by the mid 1980's (this includes salary, fringe benefits and

support costs).

Software projects will usually take at least two to

three years to complete. One programmer will usually not

suffice to complete a project so a number cf salaried soft-

ware engineers must be anticipated. But as already

discussed, adding programmers to accelerate a software

development project will only be beneficial up to a certain

point beyond which diminishing returns will be realized.

19

Initial development cost may be expensive for a

project hut. experience indicates that for every five dollars

spent on initial development, between seven and twenty

dollars will be spent on maintenance. With this skyrock-

eting picture of costs throughout the lifecycle of a

project, estimates for a software development project, and

the subseguent plans for and implementation of a software

development project must be carefully managed. Since so

much of costs will involve personnel, software development

environments will be increasingly looked to for the best

ways to exploit the potential of software engineers.

[Ref. 11: p. 227]

Recent findings indicate that contrary to intuitive

feelings about the matter, the total cost of a project will

decrease along with development time when overtime is paid

to workers. If time and a half is paid, the overall cost

decreases; if double time is paid, the overall cost remains

constant. Indirect, costs will have a separate impact en

overtime work since they do not vary over time. If the

indirect costs are high, savings can be realized by hiring

consultants and by-the-hour people. [Eef. 8: p. 170]

Thus we see that the primary driver of the cost of a

software development project is the personnel involved.

Personnel must be carefully selected for a particular soft-

ware development project. As will be discussed later, past

experience of the programmer is of considerable importance.

After personnel are selected for a development project, the

management process implemented will determine how fully

their collective potential is exploited.

5 . Quality

The guality desired in a given software product will

directly influence the cost and effort. devoted to the

project. Quality will generally vary according to the

20

\

nature of the project. Software developed for a manned

lunar flight will cf necessity be of far greater quality

than that to support standard business applications.

Eemus defines guality as "...the number of program

defects normalized by size over time" [Ref . 5: p. 268]. we

find this to be a useful, working definition cf quality.

Quality cf a software product can be improved by increased

attention given to the front-end design process with

emphasis en modularization. Modularization or dividing the

project into small segments that are mere intelligible

enables the programmer to mere easily understand the objec-

tive of a task assigned. A better understood assignment

will lead to a better product.

Programming environment has a significant impact on

guality. The ability of the programmers to work in an envi-

ronment conducive to and supportive of creative thought will

foster a superior software product.

The cost of quality software will not gc down a

2

dramatically as the cost of hardware [Ref. 11: p. 226].

Very cheap, unwarranted, unsupported software will appear en

the market and be available to the consumer. Inexpensive,

mass marketed, supported software is not a practical possi-

bility for the future. Four types of software products will

be available in the future:

1. Quality products requiring no supoort and known
to be correct and to function predictably and
reliably

2. Quality products that are sold to customers
willing to pay the support costs

3. Custom-made products, developed fcr a specific
user's needs

4. The others. [Ref. 11: p. 227]

21

Prices for type 1 products will be high and vary according

to market demand. Type 2 products will be priced consider-

ably higher than type 1 products. Type 3 products will be

the highest priced of all software. Type 4 products will be

moderately priced for mass consumption. Especially sophis-

ticated software will be sold along with associated hardware

in what will be a turnkey system.

6 . Sch edul ing

Scheduling is important in software development

projects so as to avoid slow down in a program due to the

lack of coordination among interdependent segments cf the

project. Scheduling shows where in time all important

project events take place.' The schedule should include

milestones, reviews, key meetings, audits, documentation

releases and product delivery dates.

Scheduling is also important for marketing at i sales

purposes. A product must be available at the time when the

marketing personnel have premised it. The bottom line for

any organization is customer satisfaction and hence profit.

Project management differs from production manage-

ment in the nature of the task. Production management

involves the performance of a repetitive job. Project

management is much more difficult in that the job to be

performed and the results cf the effort are not clearly

understood at the outset and are unique for the most part.

The following characteristics apply to all projects in

varying degrees:

1. The project itself will last for weeks, months or

even years. During this time, many changes may occur

in the project which may affect cost, technology and

resources.

2. The project is usually complex involving many inter-

related activities that must be monitored.

22

3. Projects are expected to be completed on time with

any delays costing the developers into thousands of

dollars per day of delay. Not only is money lost but

also much ill will may be created from overdue

projects.

4. Projects often are sequential in nature with the

start of one project dependent on the completion of

another. [Hef. 12: p. 273]

As a result of the naturs of projects, planning,

control and coordination of projects is a complicated task

that requires close attention. Until recently, no formal,

generally applicable method was available to manage the

progress of projects. Two methods are now available that

have proven to be very useful in project management: PERT

(Program Evaluation and Review Technique) and CPM (Critical

Path Method)

.

Two differences exist between PERT and CPM. ~?h?

first involves estimating activity durations. An activity

is an effort that consumes resources and a certain amount of

time. PERT uses the weighted average of three estimates in

order to arrive at an expected completion time based on a

probability distribution of completion times. Because of

this, PERT is looked upon as a probabilistic tool. CPM is a

deterministic tool, i.e., only one estimate is made for

duration of an activity. The second difference between the

two methods is that CPH can give an estimate of costs as

well as completion time for a project. PERT is fundamen-

tally a tool to plan and control time; CPM is a tool that

can be used to plan and control both time and cost of a

pro ject.

PERT and CPM attempt to answer the following

questions:

23

1. Which activities are critical? That is, which
must be completed on time to keep the project on
schedule?

2. Which activities are noncritical?

3. How much flexibility does management have in
executing the noncritical activities?

4. What is the earliest exppcted completion date for
the project?

5. What is the best wav to handle delays that are
detected during execution of the project?
[Ref. 12: pp. 274-275]

In addition, PERT answers the following questions:

1. What is the chance of completing a project by a
desired date?

2. For how iona should a project be planned so that
a given probability of completion is attained?
TRef. 12: pp. 274-275]

CPM answers the following additional questions:

1. What is " the least-cost wav to expedite -he
completion or a project?

2. What is the shortest oossibie time for = oroject
to be completed? [Ref. 12: pp. 274-275]

PERT and CPM provide numerous advantages for the

project manager. The requirements of the methods force

managers to plan ahead in detail to determine what has to be

done to meet project objectives on schedule. Definite deci-

sions must be made regarding execution times and completion

times for activities in the project. The tools of CPM and

PERT provide for improved communication among departments in

the organization and between the developer and clients. The

devices allow for identifying critical activities in the

project and thus close attention can be given to these

phases. Since critical activities are most likely to be

24

potential problem areas, these difficulties can be spotted.

early and adequately planned for.

Resources are more easily managed using PERT and

CPM. Once bottlenecks and problems are identified in the

project, resources can be more easily moved around to

correct difficulties. Deviations from schedules are more

easily identified and accommodated. , Since PERT and CPM

provide an overall picture of the project, the tools can be

used easily to oresent the Drolect to lower levels of

management. PERT and CPM ari easily adapted to computers.

Alternate ways of executing projects can be evaluated using

PERT and CPM. PERT provides the probability of completing a

project en schedule while CPM allows management to evaluate

the costs of rushing activities. Many scheduling problems

can be avoided through close adherence to management tools

like PERT and CPM.

Again we observe that attention to the front-end

development of a project will add immeasurably to its smooth

accomplishment. The ability tc adhere to a schedule will

additionally contribute to a project's success as the

employees will realize personal gratification as milestones

are met. Improved motivation will mean an improved product.

7 • gagt Experien ce

Past experience plays a significant role in software

development projects. Companies that have past experience

in large jobs will tend to overestimate a job and manage the

job as a large job. Companies with experience in small jobs

will tend to underestimate a job and manage it as a small

job. This entire concept has been neglected in each cost

and effort estimating model reviewed by these researchers.

[Ref. 13: p. 43]

25

Research has found that experience is important if

the experience that a programmer has is related to the

current project. Merely programming for a number of years

will not mean that someone is a good programmer, only that

he has been programming for a number of years. He may have

been making the same mistakes and using the same procedures

during those years. So the developmental pattern of the

individual programmer and analyst must be examined in order

to ascertain the maturity of the individual. Programmer

productivity varies greatly on the same task, seme research

reporting variation of 5:1 while other research has found

variation up to 20:1. Literature on programmers' experience

will he addressed again in another segment of this paper.

8 . Tcols

Software tools have become increasingly a topic of

research in this decade as software has become sc dominant a

factor in the development of computer systems. The ergo-

nomics of software engineering has been described as ''...the

discipline of analyzing and understanding the requirements

for quality software engineering tools, and of translating

this understanding into innovative tool design" [Ref. 11: p.

223],

Ergonomics deals with the mutual adjustment of man

and machine. Man has done most of the adjusting as of this

time and machines now must adjust to human needs. This

evolution has come about due to the increased costs of

hiring and supporting programmers. Man initially exerted

all efforts to exploit computer capabilities; now, computers

must evolve to exploit human potential. The easier software

development tools are to use and the more affective they are

in assisting the programmer to produce his product the more

efficient will be the entire development program.

26

4.

The tools used during the production process can be

divided into a number of groups.

1. The design language should be general enough to

permit a description in general terms and specific

enough to be unambiguous. Analyzers assist in

finding obvious problems and automate some intercon-

nection cross references. Tools such as the Problem

Statement Language/Problem Statement. Analyzer are

computer-aided structured documentation and analysis

techniques that aid in developing the requirements

and specifications for a program and in the formula-

tion of documentation as the project proceeds.

2. Editors and on-line document handling facilities

allow machine use for writing, producing ana main-

taining specifications and user publications.

3. Cede library facilities improve testing and integra-

tion of fixes for code errors.

A data dictionary* sy stem, a

recor i, store an 1 o recess information about ail or

software system used to

firm's significant data entities and related data

processing functions, provides the following bene-

fits :

a) Security and access control for data base environ-

ments

b) Standardization of data elements

c) Identifies redundancies in the data base

d) Automatic documentation with current information

e) Improved transportability between computing envi-

ronments

f) Assists auditing [Ref. 14]

g) Interactive code facilitates program development

allowing each programmer to use a terminal in his

work

27

h) Test; simulators allow simulation of complicated

hardware configurations

i) Test control and test case libraries facilitate

testing procedures

j) Service data bases provide solutions to errors

found that are not yet corrected for public usage.

raef. 5: pp. 273-274]

Software Development Environment (SEE) is the name

now uss'3
. to describe the tccls available to programmers to

develop a software product and to maintain it. SDE's can be

as simple as a mixture of assorted tools with little direct

relation to one another, or as sophisicated as a particular

development methodology using tools or software utilities

that are highly integrated and non-repetitious. [Ref. 15:

p. 20] SDE is a recently developed concept.

It appears the software development environment should
be adaptable, user-centered, ~ suagest ive, helpful and
supportive, not imposing. The tools of the environment
should be portable, methodoloay independent, catalogued
with rescect to assumed user sophistication and they
should have a specific purpose. finally, the environ-
ment should support large-scale software production and
provide a consistent interface through the entire soft-
ware life cycle. [Ref. 15: p. 21]

SDE should provide tools that are integrated and user

friendly. User friendly characteristics should include such

things as human interfaces other than text, such as menu

selection capability, graphics and possibly voice recogni-

tion. Not much concern has been shown up to now as to the

cost cf implementing such environments or the cost of

sustaining such environments [Ref. 15: p. 21].

Common potential benefits to be derived from the use

cf SDE include improved software quality, reduced cost of

software, improved programmer productivity, and more manage-

ment visibility. The prevalent feeling is that the use of

software tools and the SDE is good but as of now no experi-

mental data exists to corroborate these feelings.

28

The cost of SDE has not been closely studied as the

environments have been developed to support large systems

and these systems are usually used by large organizations

that have substantial resources. Most of the effort is

directed toward supporting the development phase and not the

maintenance phase. Companies feel that the development cost

will be shortened and therefore support the SDE. Not much

attention is paid to the maintenance pJiase as maintenance is

considered a scarce cf income for the companies. [Ref. 15:

P- 24]

We believe that little attention has been given to

estimating maintenance costs for the same reason: mainte-

nance is seen as a source of revenue. The SDE is made up of

a number cf components. The software development tools and

in some cases an implicit set of operating procedures are

generally understood to be part cf the SDE. The SDE also

includes the organization that is supporting the environment

and the integration of the SDE with the corporation as a

whole. An SDE integrated with the corporation as a whole is

important for the proper functioning and utilization of the

environment.

An automated software development environment

requires sophisicated software support for complex directo-

ries of files, a sophisicated database management system and

a standard interactive capability. These capabilities

require considerable hardware support.

SDE has had a stated goal of reducing the time to

develop software. Studies done by 3oehm indicate that the

development time is not reduced but that the time spent in

development is shifted from writing source code and debug-

ging to developing the requirements and specifications.

[Ref. 16] The major problem with the concept of a software

development environment is getting companies to aliccate

necessary funds to its development and support. Hardware,

29

personnel and training must be provided to implement a soft-

ware development environment and to maintain its smooth

operation in the company,

9 . Man agement Policies

Management by Objectives (MBO) is guite compatible

with using PERT and CPM and scheduling methods. "MBO refers

to a formal, or moderately formal, set of procedures that

beains with goal setting and continues through performance

review" [Ref. 17: p. 144]. a 30 is a participative process

that involves communication among managers and staff members

at all levels. Established links of communication facili-

tate the planning and control of a project. MBO assumes

that workers are motivated to perform their jobs and want to

do as good a job as possible. This view of human behavior,

called Theory Y, is opposed to Theory X, a view that holds

workers tc he net very rail able and only interested in work

as a means of survival. People will avoid work whenever

possible according tc Theory X.

Programmers are known tc be highly motivated indivi-

duals who want to create as good a product as possible.

They generally are not too interested in other non-

scientific people and are mostly concerned about exploiting

the fullest potential of the computer. A sharp program

manager will recognize the needs of his programmers, meet

those needs to allow the programmers tc produce their best

product, and insure a cooperative climate exists among

programmers and programming teams and groups. The critical

role of a program manager will be more closely addressed

later in the research.

MBO involves primarily the establishment of goals

through a joint effort of management and subordinates.

Objective measures of performance are arrived at, i.e.,

lines of source cede generated. Performance reviews and

30

regular periodic reviews are made. A primary purpose cf HBO

is to achieve efficient operation of an organization through

the efficient operation and coordination of its parts. It

has great value in performance planning and appraisal.

Managers in the organization are encouraged to work with

personnel above and below them in an effort to achieve the

best, product possible. When problems arise, the team works

together to solve them rather than to seek someone to hang.

Since programmers are creative people, progressive manage-

ment policies like M3 emphasizing the goals of

sei f -act ualizat ion are encouraged.

10, The Project Manag e r

Software development projects are often large scale

projects requiring the highest coordination. The qualities

that the Federal Government seeks in its program managers

are herein presented for their overall application to any

large scale, software development project. Oftentimes,

government acquisition is the driver behind a software

development project. The characteristics cf the project

manager who guides a software development project to its

completion will be critical fcr the success of the project.

Managing an acquisition program for a large scale, govern-

ment purchase is a demanding task and requires an individual

of unique skills and personal character traits. "The accom-

plishment of this objective requires the successful

integration of people, financial and material resources. - .in

one word— Management" [Ref. 18: p. 8], "A program manager

is expected to have an in-depth technical understanding cf

many areas, to plan, organize, and control with the preci-

sion cf a military campaigner, to integrate ideas and write

'Like a journalist, 1 and to build and motivate a team of

managers he may have never met before or work with again"

[Ref. 19: p. 6]. The responsibility fcr the success or

31

failure of the acquisition program lies in the hands of the

program manager. The job must be done efficiently, within

the budget and on time. The success of the program will be

a direct reflection on how well the team has been motivated

to achieve its goal.

Even if we know the proper way to build and motivate

a project team, more importantly we must find a program

manager who can successfully implement this knowledge. Most

importantly, a orogram manager should be an individual with

a positive attitude and keen insight into human nature.

Successful projects emerge from people who believe that the

job can be done regardless of the obstacles. If the program

manager is a positive thinker, he will foster this attitude

en his team.

An achieving program manager will demand outstanding

results. Outstanding effort is admirable but if the product

is not delivered as advertised, the effort is empty. if

production has been taking an inordinate amount cf time on

the oart of certain individuals, personnel reassignments

should be considered. A program manager should be one who

remains above interteam sguabbles and criticism and be the

individual who puts such destructive forces to rest. He

should be an individual who is bound by his work, keeps his

promises and thereby generates a feeling of confidence and

certainly within team members. [Ref. 20]

An effective manager "...must have skill in communi-

cations, which spans such areas as the ability to axpress

idsas clearly, the ability to lead discussions and arbitrate

differences, the ability to ask the kind of questions that

stimulate and encourage creative thinking and problem

solving. He must also master the skill of listening so

that he understands what is said and what lies behind the

words" [Ref. 21: p. 15].

32

A recer.t study indicated that employees view communica-
tions with supervisors as the most satisfying and
important relationships in the working environment, but
least able to establish. In another study conducted at
Loycia University. essential attributes of a gcod
manager were compiled. It was found most important that
managers listen well. Since attentive listening is the
best way to stay in touch with everything that is
happening, such managers are well informed. Good
listening, in addition to keeping managers well
informed, promotes good human relations. [Ref. 22: pp.
4.-6]

A program manager must feel secure within himself.

He must be able to function with the knowledge that he will

be held personally accountable for the sncc^ss or failure of

the acguisiticn program and will be dealt with accordingly.

Above all else, we feel that a program manager must have a

talent fcr human understanding. He must have insight into

behavioral patterns that indicate personal or professional

trouble within the staff member. Through personal attention

tc the need- of the individual, he will generate a loyalty

that will motivate the best actions from the indivivual thus

improving the psrscn for future achievements and thrusting

the current project to a successful completion.

Above all else, the program manager is the key tc a

project's success. Sound estimates of cost and effort will

be for naught if a competent program manager is not at the

helm.

33

III. SOFTWARE LIFECYCLE: M^OJ EH^SES AND ACTIVITIES

This chapter describes the major phases and activities

of a software development project. With any type of

project, whether it be developing a software system or

building a little red wagon, a person needs to know exactly

what it is he is setting oat t o do before he can even begin

to estimate what he needs in terms of time, money, and

effort to complete the project. Throughout the literature

on software engineering economics, reference is made to the

lifecycle phases of software development projects.

Essentially, a project is broken down into parts so that

what may at first appear to be an insurmountable task may be

viewed as a composite of less complex components. An under-

standing of the phases and activities involved in the

production of software is the first step toward answering

the question "Where dees the money go?".

A. MAJOE PHASES

1 • System Requirements /Fea sibility

We will devote cons iderable attention to this phase

of the software lifecycle. Too often we charge off to

battle when no war exists. The corporate manager must first

determine that a real need exists in his company and that

the need can best be satisfied with improved software or

initially computerizing an area of his operations. The

perceived problems, however, may be found to be solvable

within his existing framework.

During the system requirements/feasibility phase,

software concepts must be delineated and evaluated and a

preferred alternative chosen by management.

34

Once the need for a new information system is perceived,
a feasibility study determines whether or not desired
objectives of a proposed information system can be
achieved within existing constraints. The study identi-
fies the cost of proposed changes (monetary and
organizational) and estimates the benefits of the new
system. On this information, the manager decides
whether to implement the new system or discontinue the
study. [Ref. 23: p. 233]

A feasibility study is undertaken when the need for

a new or better information system is perceived by an organ-

ization. A feasibility study is a costly undertaking and

before beginning the company should evaluate whether

existing solutions :c similar or identical problems exist

and whether they can be satisfactorily adapted to their own

ccmDany

.

Whan a software development project is contemplated,

the market* s existing software should be examined to deter-

mine whether the needed wheel has already been invented. In

assessing the requirements of a particular software develop-

ment project, the existing hardware must be reviewed as to

whether it can perform up to -he expectations and demands of

the contemplated system. If the hardware is nonexistent or

outdated, the feasibility study must incorporate the areas

of hardware and software.

The four phases of a feasibility study are:

1. Organizing fcr the feasibility study.

2. Search for a solution.

3. Feasibility analysis.

4. Choice of a solution. [Ref. 23: p. 233]

Phase one, organizing for a feasibility study, is

undertaken when one or all of the followina become aooarent:

1. Changes in organizational goals, plans and info:
matron requirements.

35

Phase One: Organizing for feasibility study

TRef. 23: p. 234]

System

problem

recognition

jFcrmulation I

jet need for

isystemcnanget

Management
aooemts

team for study

Management
states oDjectives.

policies, and

constraints

To Pnase Tjvo

^ase T .vo

Figure 3-1 Phase One: Organizing for feasibility study.

2. Changes in organizational structure (=.g.,
appointment cf new top management)

.

3. Changes in the anvironment (e.g., legislation
requiring the company to supply new data to
government agencies).

4. Changes in technology that may make new systems
feasible. [Ref. 2 3: p. 234]

36

If the need for change has been clearly identified,

then management must undertake to clearly define the prob-

lems and search out possible solutions. A feasibility study

team is recommended for this task. The team usually

consists of rwc to eight members with the following

qualifications:

1. Members should reflect a knowledge cf the system

technigues. The nature of the problem will determine

whether ""-his knowledge be in the area of operations

research, statistics, computer science, information

science or business functions.

2. Members should have the ability to relate to people

since their work will lead them to exchanges with

many individuals in the company. Change and possible

less of jobs always concern employees and these fears

should be alleviated by the group members.

3. Members should have a thorough understanding of the

organization.

4. Members should be able to iigest details and relate

them to the overall picture of the organization.

5. Members should have a position in management for

clout.

6. Members should have experience in the project under

consideration. [Ref . 23: p. 235]

Personnel may have to be hired ^ o meet some needed

gualifications.

After the team has been identified, management will

state the objectives of the study and the related policies

and constraints. The team will need to know such things as

permissible error rate, how many decimal points answers

should be carried to, response time requirements, the number

of users anticipated on the system, location cf the users,

etc. Goals are set by management and the feasibility study

is tc determine whether the acals can be met within

37

Phase Two: Search for solutions

From Phase One

Analyze

existing

system

11

Analyze

relevant

aata

Phase One

, Phase Two

Economic

information

To Phase Three

[Ref. 23: p. 237]

i
1

Organizational

information

Financial

information

10

Technical

information

Phase Two

Phase Three

Fiqure 3.2 Phase Two: Search for solutions.

technological constraints and resource constraints of the

company. If goals cannot be met as originally defined,

either the goals are redefined cr the project is scrubbed.

Phase two, the search for solutions, may take two

forms. For a situation where major overhuals are to be done

on a system, a fresh approach to the problem disregarding

38

Phase Three: Feasibility analysis

From Phase Two

Reoort

to

i management

Recommend
feasible

methods of

solution

24

Preparation

of analysis,

schedules and

budgets

25

Documentation

of prooosed
system

To Phase Four

Phase Two

Phase Three

Phase Four

fRef. 23: p. 239]

Figure 3.3 Phase Three: Feasibility analysis.

39

the existing system is recommended. When changes to the

subsystems within the existing structures are to be under-

taken, then a thorough evaluation of all the information on

the environment is recommended so that current performance

of the system can be evaluated and changes recommended.

[Ref. 23: pp. 237-238]

The solutions uncovered in phase two are tested in

phase three, feasibility analysis, regarding their economic,

financial, organizational and technical viability consid-

ering imposed constraints. The economic feasibility of

implementing a new system is usually accomplished by

performing a cost- benefit analysis of the proposed under-

taking. The cost-benefit, analysis will da-srmir.e whether

the benefits of the new system will be greater than the

costs reguired to implement the new system. What must be

taken into account are the costs encompassing the software

and hardware as required.

Increased attention is being given to organizational

adjustments that must be male when a new information system

or a revised information system is contemplated. "The major

reason Management Information Systems (MIS) have had so many

failures and problems is the way systems designers view

organizations, their members, and the function of an MIS

within them" [Ref* 2U : p. 17]. Although management informa-

tion systems are cited, the authors include any computer

based information systems effort. Faulty views of the

organization result in a faulty design of the information

system and hence a less than optimal operating system. The

Socio-Technical System (STS) design approach offers excel-

lent advice on implementing an information system by taking

a realistic view of the organization. The feasibility study

group would do well to recommend or incorporate ideas from

this approach. Both the technical and social aspects of a

new system must be considered in the design of the system.

40

ST5 is a fairly recent development in the quest for
organizational systems which are both more satisfying to
their members and more effective in meeting ^ask
requirements. This aDproach is used for redesigning
existing work systems as well as for new site designs.
[Ref. 24: p. 171

Phase Four: Choice of solution

From Phase Three Phase Three

26
Phase Four

Report

to

management

27

Management
review

No Yes

30

Authorization

of solution

oudget ana
priority

Yes /Worth
recycling

Go to box 5 (See Figure 3.1)

fRef. 23: p. 248

]

Figure 3.4 Phase Fear: Choice of solution.

41

In phase four, choice of a solution, the feasibility

team recommends various alternatives to management with a

ranking of their desirability. If no desirable solutions

exist, management may want to change their constraints in

order to find a feasible solution. Although management will

have been involved in the feasibility study as it

progresses, it must now make a final review of the alterna-

tives and settle on a choice.

2- Software Re ju ire men ts

Defining software requirements means defining the

aspects cf an acceptable solution to a problem. In this

phase, we look at the computer and the people who need to

use it. For example, a company may consider a number of

ways cf paying its employees: cash, computerized payroll

checks, manually produced payroll checks or direct deposit

to an account. [Hef. 25: p. 199] Other additional require-

ments must be considered before a selection cf software or

the development d£ software can begin: processing time,

ccsts, error prooabiiity, chance of fraud or theft.

When designing a system, documentation should be

designed first. Documentation is important in both the

initial development of the system and in the subsequent

maintenance. "A software specification and standard shou ld

require that the doc umenta ti cn to be prov i ded on a project

be specified. It should also be required that the various

ley els of document at ion be consistent (e.g., sub- programs

specifications should be consistent with the associated

program specification)." [Ref. 26: p. 11] The following

documentation can be found in varying degrees in computer

software development projects in the phases indicated:

Functional Requirements Document Problem Definition

Data Requirements Document Problem Definition

System and Sub-System Specs System Design

Program Specification System Design

42

Data Base Specification System Design

Test Plan System Design-

User Manual Programming

Operations Manual Programming

Program Maintenance Manual Programming

Test Analysis Report Test. [Ref. 27]

During the course of a software development project,

oral communication and written documentation must be

balanced for the best results of a project. "A requirements

analysis car. aid in understanding both the problem and the

tradeoffs among conflicting constraints, thereby contri-

buting to the best solution" [Ref. 25: p. 199]. Absolute

necessities must be distinguished from bells and whistles.

Time and space limitations, facilities plans for the future,

and individual facilities requirements must be addressed.

The money required for and the money available to implement

tha system mast be considered. The management cf the

project must also be considered. As already discussed, P3RT

and CrM are popular methods of monitoring progress. "Once

all these guestions have been answered, specifications of a

computer solution to the problem may begin" [Ref. 25: p.

199]. To summarize, what is needed is "a complete, vali-

dated specification of the required functions, interfaces,

and performance for the software product" [Eef . 3: p. 37],

3 . Preliminary D esign/ Product Design

When we lock to determining the specifications of

the software, we are actually asking what do we want the

sof-ware to do? We want to determine , for example, the

format of the input and output. What information would be

desired for the production of a check and how should this

information appear on the check. Algorithms must be consid-

ered for deductions from the basic check such as life

insurance and health insurance plans.

43

A primary concern will be the size and content of

the database. Beyond that, we will have to determine the

layout of the database that will be most effective. If

anything but a totally new system is being incorporated,

plans must be made for conversion of the data in the old

system to the new system. Compatability must be considered

if new equipment is tc be adopted to existing equipment.

The answers to these questions should be put forth

in a document called functional specifications [Hef . 25: p,

199]. This document should be painstakingly prepared giving

thorough definitions of the specifications required. The

mere complete this is, the fewer the errors will be in the

final prcducx. "Because it describes the scope of the solu-

tion, this document car. be used for initial estimates of

time, personnel, and other resources needed for the project.

These specifications define only what the system is tc do,

but not how tc do it." [Ref. 25: p. 199]

This theme of describing what and not how something

is to be done is important for deriving the most from the

programmers working en the project. If the how is to be

defined by the person writing the specifications, he may be

limiting himself to an antiquated solution to the problem

and not availinq himself o f th e creativity of the program-

mers. Herein we have once again an instance where a good

manager will guide the development of the specifications and

not unknowingly limit himself by doing the programmers job.

With a basic knowledge of the system and programming, he

will be able to clearly evaluate original solutions to the

problems and employ the best technology available to the

programmers.

44

** • Det aile d Design

Much has been written about the design phase of a

software development project.

To reiterate, A com
so many system stat
h cw to organ

i

ze th
wil 1 be handl ed co
a do iv when confront
and rule. This is
known as mcdu iar iz
div laizig a pro cram
be compiled se parat
o th er modules. [Re

plex system is one
es that it is diff
e program logic
rrectly. Tae ob
ing this type of s

an old idea in
ation. Modulari
into subprograms (

sly, but which ha
f. 28: p. 66]

in which the r e are
icult to unde r stand
so that all st a tes
vious techni que to
ituation is * div ide
proarammi £g. and is
zation co nsis ts o f
mod ii 1 ss} whi ch can
ve con neetion s w ith

What is now considered to be tae most effective way of

developing a software project was set forth in a classic

article oy Stevens, Constantine and Meyers in 1974 and

subsequently refined and developed by Parnas (Ref. 29],

[fief. 30], [Ref. 31].

Essentially, the concept of modularization is used.

A particular ie sign 'decision is assigned to on< iOuii.e. The

-i — ^-* writhm to implement that designloo ci coming up with an

decision is then given zo one programmer or a group

programmers perhaps organized into programming teams as

recemmended by Brooks [Ref. 7: pp. 29-37]. when the work is

modularized, it becomes easier for the programmers to under-

stand. Communication lines can be established between

programming teams so that questions can be answered. Each

module is developed as an entity in itself and how it does

its job becomes the secret cf the module. The module will

require certain inputs and will deliver certain outputs.

The internal workings of that module will not be revealed to

designers cf other modules . The module will then not be

tampered with.

The connections between modules are the assumptions
which the modules make about each other [Ref. 32].
Modules have connections in control via their entry and
exit points; connections in data, explicitly via their

45

arguments and values, and implicitly through lata
referenced by more than one module; and connections in
the services which the modules provide for one another
[fief- 28: p. 66].

The beauty of this concept is that development time

is shortened and modifications can be more easily made to

one black hex, the mcduli;, when changes are required down

the line.

5 • Co d e an d Debug

During the coc.^ and debug phase, software is actu-

ally produced that meets the specifications and is certified

to meet -he user's requirements. Code is said to be veri-

fied when it meets the specifications of the design; code is

said tc be validated when it proves tc do what the user

wants it to do.

When converting data to code, errors are oftentimes

made that are not easily detected. Wrong character usage

can be caught without much trouble but correct characters

used improperly will pass undetected.

The credibility of data is often directly related to the
origin of coding. Coding at the data source may lead to
Inadvertent errors due to a misunderstanding of the
coding structure or carelessness in applying valid and
relevant codes. Trained coders, selected and supervised
with care and motivated as tc the importance of their
job, make fewer errors. [Eef. 23; p. 163}

6 - Debugging a nd Testi ng

Since computers are not forqiving in nature and

react to any errors, testing and debugging is extremely

important. After each module has been coded, testing and

debugging should be done; after each module has been tested

separately, all the modules must be tested together as a

system. System tests including acceptance testing are of

ccursa very important.

46

We can classify programming errors according to

three types:

1. Syntax

2. Code Logic

3. Problem Logic

Syntax errors include such problems as emitted

parentheses, incorrectly spelled (and thus unrecognizable)

variable names, wrong data codes and miscounted character

lengths. Compilers are us ad to find these errors.

Code logic errors are not as easy to find and

include operable statements that produce incorrect results.

Some such bugs are cbvicus-a misspelled word or misa-
ligned title on an output report, "for example. Other
errors are difficult to discern, such as transferring
control incorrectly after an I? statement and bypassing
some intended instructions. Still others are
insidious- f or example, errantly substituting one vari-
able name for another in an eguation. The results mav
seem undecipherably random. [Eef. 33: o. 311]

Problem logic errors exist when the program does not

adeguately address the user's problem. For example,

although a program may be correct for payroll, a wrong

understanding of the tax laws or the payroll deductions by

the programmer may render the output of the program useless

to the user.

Historically,* testing took a major share of the

e ffor t devoted to a pro iec t, often as inach as 50%. With

increased emphasis being put en the front-end development of

a program, this phase is c ensuming less of the resources of

the project and is generally consuming about 34% of the

47

7 • Operations and Main te na nce

This phase concerns implementing the developed soft-

ware in production and keeping that software functional. A

number cf areas are to be considered:

1. Operating personnel and computing facilities must of

course be available

2. Errors that arise from usage must be corrected

3. Modifications must be made to the software as the

user requirements change

4. Changes must be made as efficiency requirements

change. [Ref. 34: ?. 32]

B. ACTIVITY DEFINITIONS

Once the lifecycle phases have been defined one should

estimate for each phase the fraction of the total amount of

resources that are to be allocated to it. The activities to

be performed in each cf the phases should then be determined

and resources assigned accordingly. [Ref* 35: pp. 625-631]

A typical allocation cf resources in custom software

development and test is:

1. Requirements Analysis: 8%

2. Preliminary Design: 1855

3. Interface Definition: H%

4. Detailed Design: 16°?

5. Cede and Debug: 20%

6. Development Testing: 21 £

7. Validation Testing and Operational Demonstration:

13%

Summing the four phases prior to code and debug shows

that we allocate 46* of our total dollar there, 20% goes to

coding, and the remaining 34% goes to the two major phases

that follow coding. TRef. 35: p. 630]

48

In order to enhance the reader's understanding of just

how the dollars axe being spent, a description of the activ-

ities involved is presented. A breakdown of the tasks

performed within each activity during each phase is

presented in Table I. The completion of each major phase of

the software life cycle reguires that various functions or

activities be performed during each phase. We summarize

these activities as follows :

1. Requirements Analysis: Determination, specification,

review and update of software functional, perfor-

mance, interface, and verification requirements,

2. Product Design: Determination, specification, review

and update of hardware/software architecture, program

design and data base design.

3. Froaramming: Detailed design, cede, unit test, and

integration of individual computer program compo-

nents; includes programming personnel planning, tool

acquisition, data base development, component level

documentation, and intermediate level programming

management.

U. Test Plannning: Specification, review, and update of

product test and acceptance test plans; acquisition

of associated test drivers, test tools and test data.

5. Verification and Validation: Performance of indepen-

dent requirements validation, design verification and

validation, product test, and acceptance test; acqui-

sition of requirements and design verification and

validation tools.

6. Project Office Functions: Project level management

functions; includes project level planning and

control, contract and subcontract management , and

customer interface.

7. Configuration Management and Quality Assurance:

Configuration management includes product

U9

TABLE I

Project Tasks by Activity and Phase

Plans and Product ntegration

-"•' tivity 1 v-quirernents Design Programming and Test

Requirements Analyze existing Update require- Update require- Update require-

analysis system, de-

termine user

needs, inte-

grate, docu-

ment, and

>terate re-

quirements

ments ments ments

Product design Develop basic

architecture;

models, pro-

totypes, risk

analysis

Develop prod-

uct design;

models, pro-

totypes, risk

analysis

Update design update design

Programming Top-level per- Personnel plan- Detailed design, integrate soft-

sonnel and ning, acquire code and unit ware, update

tools plan- tools, utilities test, compo- components
ning nent docu-

mentation.

integration

planning

Test planning Acceptance Draft test pians, Detailed test Detailed test

test require- acquire test plans, acquire plans, install

ments, top- tools test tools (est tools

level test

clans

Verification and Validate re- V 4 V product V & V top por- Perform product

validation quirements. design, ac- tions of code. test, accep-

acquire re- quire design V 4 V design tance test.

quirements, V 4 V tools changes V 4 V design

design V & V changes

tools

Project office Proiect level Proiect level Protect level Protect level

functions management. management, management. management.

protect MIS status moni- status moni- status moni-

planning, tonng, con- tonng. con- tonng, con-

contracts, li- tracts, liaison. tracts, liaison. tracts, liaison,

aison, etc. etc. etc. etc.

CM/QA CM/QA plans. CM/QA of re- CM/QA of re- CM/QA of re-

procedures, quirements. quirements. quirements,

acceptance design; proi- design; code. design; code,

plan, identify ect standards, operate li- operate li-

CM/QA tools acquire

CM/QA tools

brary brary; monitor

acceptance

plan

Manuals Outline portions Draft users', op- Full draft users' FinaJ users', op-

of users erators man- and opera- erators', and

manual uals, outline

maintenance

manual

tors' manuals maintenance

manuals

[Ref. 3: p. 50

3

50

identification , change control, status accounting,

operation of program support, library, development and

monitoring of end item acceptance plan; quality

assurance includes development and monitoring of

proiect standards, and technical audits of software

products and processes.

8. Manuals: Development and update of users' manuals,

operators' manuals, and maintenance manuals.

[Bef. 3: pp. 46-50]

C. SUMMARY

A software development project's major phases and the

activities of each phase have been presented. We feel that

a manager needs a sound understanding of this aspec^ of

software engineering economics if he is to not only under-

stand but also contribute to his organization's development

effort. The foundation of knowledge that is laid here

concerning -he software li fecycie (and as is true for all

the ideas set forth in this research) will be built upon and

refined as the organization interacts with professionals in

the computer industry. With a sound , working knowledge of

software engineering economics, managers will increasingly

find that they are assisting in the development of an infor-

mation system that fulfills their needs in an efficient and

effective manner.

51

IV. EFFOET, TIME AJP COST ESTIMATION

Herein we look specifically at the factors affecting

effort, time and cost estimations. We feel that focusing

cur attention on this particular area of software engi-

neering economics is essential for it is her? that the

organization 1 s life-line is tapped. Effort, ~ime ani cost

estimates will directly affect the stability and solvency of

a company. Inaccurate estimates according to Murphy's Law

will prove to be underestimates and accordingly drain the

company of added resources that may or may not be conven-

iently available. A project may be scuttled due to the

inability to provide additional support.

A. TIME AND EFFORT ESTIMATING

1. Experience and Judgement

Every estimate is influenced to seme extent hj the

experience and judgement of its author. Some items influ-

encing the estimate are so well understood that judgement

seems to be replaced by the mere mechanical application of a

rule, while others depend heavily upon the experience of the

estimator. [Ref. 36: p. 48] The person responsible for

ensuring the validity of an estimate should remain well

aware of the skills and qualifications of the individual who

prepared the estimate to give him/her a basis for deter-

mining its accuracy.

2 • Programmer Productivity

Programmer productivity plays a major in part in

estimations of the amount of time and effort that will be

expended on a software development project. The paragraphs

52

that follow focus or. some of the more important aspects of

productivity. As productivity increases, software develop-

ment costs decrease. In addition to worker quality and

motivation, productivity depends on the use of advanced

technology and the proper use and training of workers to

effectively interface with the new technology. Short-term

investment in training and jcb modification should lead to

savings in the long-run due to increased productivity.

[Bef. 37]

There are certain ncn-human elements that can have a

great effect on productivity. The development environment

is a key factor in this regard. One must ensure that

adeguate hardware and software support is available to the

proarammer s. It is not uncommon for projects to become

bcttlenecked because throughput capacity, disk space, C?Q

capacity, or the like have been exceeded. The demand for

these computing resources during design, development, inte-

gration and test is generally greater than curing

operations. The delays caused by such bottlenecks resul- in

high levels of frustration and lower productivity among the

programmers. [Hef . 38]

It should also be noted that poor programmer produc-

tivity is as much the result of bad management decisions and

planning as it is the result of inadeguate tools, or lack of

talent. Productivity is affected by an organization's

structure, goals, product type and experience in developing

software. Care should be taken to ensure that an organiza-

tion's software development process does not become a

hindrance to productivity through imposed inflexible manage-

ment procedures. [Ref. 39]

According to Jack Stone there are certain changes

that could be made to the programmer's physical environment

to increase his/her productivity. One of his suggestions is

to give each programmer a private office to ensure quiet

53

surroundings rather than grouping the programmers together

"like cattle in a box car". Another of his suggestions is

to ensure that the programmer has available to him/her" state

of the art computer services (a CRT terminal with on-line

interactive operating system controls, editors, compilers,

and debug facilities). [R ef - 40] As previously discussed,

improved programmer productivity is among the potential

benefits that may be derived from the use of SDE.

3 • Code Production Rat es

A working standard of the typical code production

rate per Drogrammer man- month is 1 object instruction/ man-

hour, which is eguivalent to 156 instruct ions/man- month , or

1870 instructions/man-year for nontime-critical software.

Wide variations in programmer productivity do exist however.

[Ref. 35: p. 631]

4 . 2a sic M anl oad ing ? a 1 1 er n Over Time

Research on the man-effort loadings of medium to

large scale software development projects has revealed a

basic manioading pattern over time. Initially, there is a

rise in man-effort followed by a peaking and then an expo-

nential tailing off. The time varying nature of a project's

work profile is to be expected since software development

itself is a time dependent process. [Ref. 41: p. 128]

vary. Since the rate of problem resolution is influ-
enced by both factors, it too will be a time dependent
process. Presumably, consumption of project resources
reflects the rate of problem resolution, hence, the time
varying nature of the manioading curve. [Ref. 41: p.
128J

54

B. COST ESTIMATING

1 • Cost Cons iderations

A detailed understanding of the factors that impact

on the cost of a software development project is required in

estimating its cost. Two major problems are involved in the

estimation of software development costs. One of these is

the level cf uncertainty and risk. The other problem is the

lack cf a quantitative historical cost data base. [Ref. 42:

pp. 16-171

Three factors contribute to the amount of risk and

uncertainty involved. These are that the requirements are

subject to change, something new may be required during the

development process, and risks are inherent in the software

development process itself. [Ref. 42: p. 17]

For a good software cost estimate one should work

from firm requirements, understand the required croduc 4
:

well, and carefully manage the development cycle tc ensure

that coding does net b=gin before the design has been

thoroughly worked out, verified, and validated [Ref. 42: p.

17].

Without accurate measures of prior costs it is

extremely difficult tc estimate the cost of a new project.

To solve this problem cost summaries should be archived and

distributed by the project manager of the development effort

to the appropriate personnel for estimation purposes.

[R9f. 42: p. 17]

2- K§2 Factors Influen cing Software Development Costs

The key factors influencing the cost of a software

development project may be divided into the following four

categories:

1. Requirement Factors

2. Product Factors

55

3. Process Factors

4. Resource Factors

a. Requirement Factors

(1). Quality of Specifications. Incomplete

requirements definition is a major cause of cost overruns.

The developer interprets the vaque, poorly written require-

ments, prices the software package on the basis of that

interpretation, and proceeds to design the software on that

same basis. [Ref. 42: p. 17]

One of the keys to accurately costing

software is to devote extra effort in solidifying the

requirements before entering the detailed design phase of a

project. Understanding the requirements is the basis for

analysis of many of the other costing factors, including

difficulty, interfaces, size, tools, use of existing soft-

ware, and data base complexity. Poor estimates of software

size or data base complexity are often blamed for ccst over-

runs, <«:.en the actual reason for errors in these estimates

is incomplete or inadequate specification of requirements at

the outset of the initial software costing. [Ref. 42: p.

17]

(2) . Stability of Requirements. There are many

projects for which the well specified requirements against

which the detailed design is prepared change during the

project. It is the responsibility of the project manager to

fully understand the software requirements and to ensure

that it is understood that changes in the requirements base-

line are just that, changes! The projec"1- manager should

then define the cost and/or schedule impact so that the

change may be fairly evaluated. If the change justifies the

estimated impact on the project, a decision to incorporate

it may then be made. The change should then be reflected in

the reguirements specification and incorporated into the

56

design; its impact on the project budget and schedule

should also be stated. Once the impact of changes on the

project is known, many changes that at first appeared

attractive lose their appeal- [Ref . 42: p. 17]

b- Product Factors

Product factors are those factors derived from

the characteristics of the software product tc be developed

and delivered, including both code and documentation.

Following is a discussion of the six product factors.

(1) . S oftware Size. A very common method of

costing software is to estimate the number of instructions

to be developed and multiply by a "magic number" (dollars

per instruction) tc get the estimated development cost.

Although this estimating technigue is net very precise when

used alone # it can be very useful when used in conjunction

with the ether factcrs.

Significant sizing considerations include

the following:

1. Care must be taken to isolate the deliverable soft-

ware from the ncndeliverable test software,

simulations, and support software, which should be

less costly to produce.

2. As the size of the software increases, other factors

such as complexity, interfaces, and the number of

people involved, begin to have a greater influence on

the cost.

3. When trying to use size as a costing parameter, care

must be taken that the cost base being used is

derived from the same sizing parameter. Projects or

companies may track costs by lines of code, number of

object instructions, number of executable source

statements, total instructions or lines of code

developed, or delivered instructions or lines of

code.

57

4. When using size/cost factors, consideration should

also be given to productivity differences between

languages.

5. When object code sizing estimates are based on

similar existing software, consideration should be

given to differences in the expansion ratio from

source to object instructions between different

HCL's, compilers for the same HOL, or different

operating systems.

6. As size increases, the number of individuals involved

in the development effort increases and the amount of

time spent in intercommunication and coordination

becomes significant, driving the cos- versus size

from linear toward seme higher multiple- [Ref. 42:

pp. 20-21]

(2). Difficulty. One of the more important

factors affecting software development costs is the relative

difficulty cf the software application. Software personnel

productivity (and therefore cost) will vary with the type of

system being developed. Real-time applications are gener-

ally considered to cost u p to five times as much as HOL

non real-time applications. [Ref. 42: p. 21]

(3) . R eliability Reguir ements. According to

Bruce and Pederson the reliability of a software program may

be determined by four major criteria. These are:

1. the program must provide for continuity of operation

under nonnominal circumstances;

2. the design, implementation techniques, and notation

utilized must be uniform;

3. it must yield the required precision in calculations

and outputs; and

4. the program must be implemented in a manner that is

understandable

.

58

As the level of requirements for handling

non nominal conditions increases so does the amount of veri-

fication effort required and, along with it, the cost.

[Ref. 42: p. 21]

(4) . External Interfaces. Cos- increases as

the complexity of external interfaces increases due to the

additional effort required for design, implementation, and

integration [Ref. 42: p. 21] .

(5) . Ian gua ge Requirements. Experience has

shown that it takes an average programmer about the same

amount of effort to write a line of code in high order

language as in an assembly language. Apparently the thought

process reguired to write a single statement is almost inde-

pendent of the language in which the statement is written.

It will take a programmer significantly longer to write a

program in assembly language than it would to write the same

program in KOL, since a tycical HOL statement expands to

5-10 assembly language statements. Early in a project a

programmer's familiarity with a language will affect the

cost per statement more than the language being used.

[Ref. 42: p. 21]

(6) . Document a ticn Requirements. The cost

factors associated with the preparation and acceptance of

required documentation must be evaluated iiong with ail

other cost factors [Ref. 42: p. 21].

c. Process Factors

Management structure, management controls,

tools, use of available software, and data base methods are

all software costing factors associated with the development

process. A discussion of these factors follows. [Ref. 42:

p. 21]

59

(1). 11 an age men t Structure. Management struc-

ture effects the organization's policies regarding the

allocation of resources fo r a software development project

[Ref. 42: p. 22]. If the structure is such that upper level

management arbitrarily imposes standards without under-

standing their purpose, use, or implications on the software

development process, the standards may prove to be counter-

productive. Management should tie software development to

organizational and product goals and ensure that the process

is usable at the working level. [Ref. 39] The structure

should be such that the programmers and engineers are able

to get what they need when they need it without the hassle

of having to get reguests through an inflexible approval

chain

.

(2) . M anage men t Controls. This factor covers

the cost of project support in such areas as management

information processing, scheduling support, and clerical

supDort. The cost estimator must realize the neei for -his

type of suooort and have seme understanding of the ralativ»

magnitude of this type of project cost. [Ref. 42: p. 22]

(3) • Developme nt Methods. This factor attempts

to quantify the impact of various development methods. The

development methods cf interest include such approaches as

top-down design and testing, structured programming, use of

chief programmer teams, and use of structured walk-throughs.

TRef. 42: p. 22]

(4) . Tools. The cost estimator must consider

how the software will be developed, tested, and maintained

and what tools will be needed to accomplish these tasks.

For seme projects the development of software and hardware

tools is a major cost item. The cost estimator must deter-

mine whether compilers and other tools are required,

available, need to be converted, or need to be developed.

The costs associated with the tools are a function cf the

60

tool complexity, use, features, and maturity. Experience

provides the best basis for analyzing the cost, impact of

support software and tocls on overall project cost.

[Ref. 42: p. 22]

(5) . Available Soft ware. Significant reduc-

tions in the cost of projects may be achieved through the

use of existing software. Adapting the existing software as

part of a system reguires analysis of the software apart

from the new development. The costs for modifying the

existir.g software can in this way be determined subjec-

tively. Care must be taken to include the cost of

interfacing the modified software to the new software and

revalidating the reguiremen ts. [Ref. 42: pp. 22-23]

(6) . P at a Base. The size, complexity, and

special file access requirements for the data base a: 3 very

important parameters in deriving an accurate software devel-

opment estimate. The cost estimator must review the data

base requirements and subjectively analyze their impact on

cost. [Bef* 42: p. 23]

d. Resource Factors

Software development costs for a given project

may vary substantially, depending on such factors as the

experience of the available personnel, the guality of the

project staff, and availability of development computer

resources [Ref. 42: p. 22].

(1). Number of People. With projects that

require large staffs the major contributor to the reduction

in productivity (increased cost) is the increase in the time

needed for communication between the people [Ref. 42: p.

23].

(2) . Experience of Peo£le. Existing data indi-

cates that there is no direct correlation between the number

of years of experience that a person has and his/her

61

productivity. However, experience with a specific type cf

application does have an effect on the development effort

required. Generally speaking, a programming group will

require from 50-100^ more effort to develop a variant of a

previously developed, familiar program. [Eef • 42: p. 23]

(3) . P ersonnel Performance. Individual produc-

tivity variations are to be expected in the development cf

software due to the fact that it is an analytical, and some-

times creative activity that requires abstract reasoning.

Nonetheless, experienced estimators have found variations in

productivity to be as high as 10:1. The assessment of

productivity is extremely important because cost estimation

is generally reduced to deriving a productivity figure per

unit cf effort per person within a given skill category.

The use of such average productivity figures for estimating

cost, tends to even out for large projects, but may prove to

bc disastrous for small pro jects. [Ref. 42: p. 23]

(4) . A vailabil it v of Computing l~§.2ii*££il« As

the requirement for computer time increases during the

development cycle, the impact of insufficient computing

resources en schedule and cost increases. The amount of

computer time required for a given development effort is

easily underestimated. [Ref. 42: p. 23]

(5) . S uitab ili ty of Compjiting Resources.

During the software maintenance phase, when there may be

little capacity available for corrections, modifications, or

required test drivers to verify changes, there is an asymp-

totic effect on development costs as the hardware speed and

memory size constraints are approached which could prove to

be crippling [Ref. 42: pp. 23-24]. A normal person would

not ordinarily jump into a sports car and speed off down

some winding mountain road he had never driven on before in

the black of night. If he did, without warning, he could

find himself at the bottom cf a canyon, surrounded by steep

cliffs.

62

3 . Tra diti onal Cost 5s ti mating Procedures

Traditional cost estimating procedures begin by

fixing the size of each activity and determining its star-

date and duration. When and if it becomes necessary to do

so, adjustments are made -co account for the skill levels of

the assigned personnel, the complexity of the project, and

the degree cf uncertainty in the requirements. The amount

and type of manpower and resources are then converted to

dollar costs. Other direct costs, z'ich as documentation and

travel, are also added in.

Traditional cost estimating methods include:

1. Tcp-Down Estimating: The estimate obtained using

+ his method is based on the total cost or the cos* of

large portions of completed projects. A problem with

this method is that it carries with it the risk of

overlooking important technical problems that may not

:e readily apparent. [Ref. 35: p. 6 18]

2. Similarities and Differences Estimating: In this

method jobs are broken down to a level of detail

where the similarities to and differences from

previous projects are most easily recognizable.

Those units that cannot be compared to previous

projects must be estimated by some other means.

TRef. 35: p. 618]

3. Ratio Estimating:

The estimator relies on sensitivity coefficients
or exchange ratios that are invariant (within
limits) to the details of design. The software
analyst estimates the size of a module by its
number of object instructions, classifies it by
type, and evaluates its relative complexity. An
appropriate cost matrix is constructed irom a

-,-i«- *•

cost aata base in terms of cost per instruction,
that type of software, a* that relative

complexity level. [Ref. 35: pp. 618-619]

63

The appeal of using this method is in its

simplicity, speed, convenience, and usefulness in a

variety of environments. A major shortcoming is in

the lack of a valid cost data base that covers a

number of estimating situations. [Ref . 35: p. 619]

4. Standards Estimating: In standards estimating,

systemat ically developed standards of performance are

depended upcn. New tasks are calibrated from these

standards. This lethcd is reliable only for repeat-

edly performed operations that have been well

documented. The rub is that the same software devel-

opment projects are net performed over and over

again. [Ref. 35: p. 619]

5. 3cttom-Up Estimating: Government research and devel-

opment contracts are most generally estimated using

the bottom-up approach. A work break down is done on

-.he project until it is reasonably obvious what steps

and resources are required for each task. The costs

are then estimated for each task and a pyramid is

developed to estimate the total cost for the project.

Using this technique, the estimating assignment can

be given to the people actually doing the work. One

problem with this technique is the inavailaoiii-*-y of

the total cost structure at the inception of the cost

estimating job. [Ref, 35: p. 619]

^ • Cos

t

Est imati ng Relationships and Phase

Interrelation ships

Software cost estimations should include the effects

cf resources consumed in one lifecycle phase on subsequent

phases. A large contribution to the resource requirements

for any one phase derives frcm the ways in which the ether

phases are completed. An important factor affecting the

utilization of resources is the need to conform to a

64

development plan. The plan is an essential management tool

for ensuring that the needed resources are available for the

project at the right time and in the correct amount.

Changes in the plan, whether caused by changes in require-*

ments or by failure to meet commitments, may affect

cost-driving parameters. [Ref . 43: p. 70]

65

V. THE ART AHD SCIENCE 0? SOFTWARE COST ESTIMATION

Until absolutely reliable, comprehensive methods of

estimating cost and effort in software development projects

are developed, the techniques will be referred to both as an

art and a science. We apor opriately use the term science as

estimating techniques are becoming more and more accurate

and comprehensive. Mathematical and scientific principles

are increasingly being applied to ail areas of cost and

effort estimation. Researchers are now developing models

that can be used in numerous environments.

A. CURRENTLY AVAILABLE METHODS FOR SOFTWARE COSTING

Many models estimating cost and effort exist on the

market today and generally cover the time from the design

and specifications phase thru the test and debug phase an

i

the beginning of operations. They can ordinarily be classi-

fied as theoretical or empirical. Theoretical models are

those based on global assumptions such as the rate at which

people sclve problems. Empirical models use information

from former projects to evaluate current projects and derive

basic formulas from the available information in the data

base. [Ref. 3: p. 511] We will present a number of avail-

able cost and effort estimating models according to their

classification as static, dynamic or dynamic transportable

models. We will examine some models in more detail than

ethers to give the reader added insight into the complexity

of estimating cost and effort. Some of the more significant

features of the models will be pointed out. We will then

enumerate criteria which may be used to judge a model for

estimating cost and effort in software development projects.

66

1 • Sra ti c Models

Models that do not treat time explicitly and do not

have the capability to adapt to the actual behavior of the

system at any instant of time during the lifecycle are

termed static models.

a. Doty

The Doty model estimates the manpower, cos- and

development time for software development projects. System

size is estimated by comparisons of the system under consid-

eration to comparable known systems. The model is therefore

empirical. Doty found that the writing of high order

languages (HOL) and assembly language instructions takes the

same amount of time. Since HOL programs are smaller than

assembly language programs, productivity is increased with

HOL programs. Clarity and maintainability are higher with

HOL. TRef. 2: p. 108]

b. " SOFCOST"

In recognition of the need to establish good

cost estimations before proceeding on a software development

project, Grumman Aerospace Corporation has developed an

empirical model to provide viable, credible cost estimates.

Sefore completing its own model, Grumman used the Price-S

model to estimate costs. Presently, both the "SOFCOST"

model and the Price-S model are used in parallel as indepen-

dent cost estimates to act as checks and balances for

estimates of the project system analyst. "SOFCOST" allows

the analyst to estimate the effort and elapsed time to

complete a software development project. It is a parametric

model developed from statistical software history. This

empirical model uses for its primary parameter functional

size. Tie basic estimating relationship is influenced by:

67

1. Experience

2. Complexity

3. Environment

4. Technology

5. Hardware

6. Reliability

7. Language

3. Requirement Definition.

The model operates interactively with the user

to develop a software work breakdown structure (SWBS) , a

functional size matrix for the SW3S and the time and effort

computed for each item in the SWBS.

There are five levels to the SW3S, the computer program
configuration item, the category of software, the func-
tions per category and two output levels - task and
phase. The two output levels provide the manpower tasks
of technical, support, management:, configuration control
and documentation' per development phase of definition.
design, code, test, inter gration and acceptance for each
function in the SwBS. The number of system computer
resource hours is also computed and provided as output.

* "SOFCOST" also derives an elapsed time schedule for
each of the functions in the SWBS providing durations
for each of the phases included in "Level Five of the
SWBS. A cumulative schedule is computed providing for
overlap in each phase. [Ref . 44: p. 674]

Grumman's research included 30 different models

and a review of research conducted by industry and govern-

ment. The work resulted in a requirements and design

document for an in-house model. The model net only included

prior software/cost relationships but also charcteristics

unigue to the Grumman environment.

Research concluded that the primary cost driver

is executable lines of source code. "SOFCOST" was therefore

designed to aid the user in estimating the number of lines

of code. The estimator can make comparisons between his

function and comparable functions found in the data base

including function and size as its key parameters. The

68

det er mir.aticn of size of a project is thus a critical factor

and one that is addressed using the judgement of the

analyst.

"SOFCOST" has three objectives:

1. to construct an SWES,

2. to determine a credible size for the functions
beinq estimated,

3. to estimate software cost and schedule for each
functional task. [Ref. '44: p. 674]

As is becoming increasingly common in literature

on the topic, Grumman feels that the interactive user devel-

oping an estimate for cost and effort for a project should

be knowledgeable in computer software design and the partic-

ular system's reguire ments. The SW3S will be established in

an interactive session. After the five levels are

completed, the user interacts with the orcgram to answer

questions that affect the basic cost computation. Costs ar?

given in manhours or manmonths and elapsed time schedules

are displayed.

Translator 1 establishes the SWBS. Translator 2

establishes a size estimate for all functions in the SWBS

using functions of a comparable nature from the database.

Translator 3 of the program takes the output from translator

2 and computes manpower effort and schedules elapsed time.

It is here that the estimator begins to interact to deter-

mine the adjustments to the basic estimates. Language is

first considered. Prior studies showed little difference

between productivity of HOL. Differences occurred in the

productivities of HOL's" compared to assembly language in the

order of 2 or 3 to 1 improvement in productivity (this is in

keeping with Doty's findings).

69

After the language type is established in Translator 3
and an adjustment made in the size of the scarce code
for language the basic manpower versus line of code for
relationship in the model is exercised. "SOFCOST"
computes the effor 4

: for the phases of design. code and
test with a parametric equation for each phase. The
effort computed during the design phase includes those
steps in the software development cycle of requirement
definition, preliminary design and detail design. The
code phase equation output includes coding, debugging
and module test. The test phase effort includes
subsystem, system, integration, and acceptance testing.
The equations for the design, code and test efforts were
regressed from historical data Published from studies
conducted by SDC, GSC, I EM and rSW and from actual data
produced at Grumman. These regressions when taken with
various combirations of the published source dat

9

produced correlation coefficients in excess of 853 when
converted to the log-linear form. The F value measure
of statistical acceptability based on the number of
observations in the regression were on the averaqe
greater than 200 ard indicative of rearession sianifi-
cance. [Ref. 44: p. 6 77]

Interactions are then performed to adjust the

basic computation effort. Thirty questions are asked the

user and he evaluates each on a scale of 3 to 10. The

inputs ar = used to derive a productivity index factor.

Adjustment factors are computed for each question.

Individual adjustments are weighted. Table II lists the

adjustment factors in weighted order.

An adjusted manpower effort is computed after

ail cf the individual adjustment questions have been

answered.

This adjusted effort is then distributed among the
phases or definition, design, development, test, inte-
gration and acceptance in accord with the results of
published history. This is a variation of the standard
40-20-40 allocation. This adjusted computed effort
represents the technical effort expended upon the
embedded program (application, tactical) by the
personnel assigned as programmers, analysts, systems
engineers, etc. Translator 3 then takes this computed
efrcrt and determines the support. management, and
ccnriquration/quality control efforts as some function
of the technical effort. Both the documentation and
computer resource efforts are computed separately using
a parametric eauation relationship" formulated for these
tasks. f Ref. 44: p. 678]

70

1
..__ ^

TABLE II

Adjustment Variables by Decreasing Weight

Percent of real time programming design
Percent of new algcri thm design
Percent of existing code reutilized
Percent of require men ts ill-aefined
Percent of time share facilities employed
Percent of pushing th e state of the art
Number of interfacina di spia ys
Number of :Interfacing equip excluding displays
Pisr^p t>» of user excer ience
Percent. of concurr ent hardware/software development
Percent of cede inspe ction technique employed
- — re — r t of c han ore ant icipated for the Program
Percent of top down d esign employed
Percent of computer t ime utilized as a desiqn goal
Percent of security i n design
Percent of structured programming employed
Percent of input/outp ut centre! programming design
Number of average yea rs experience of personnel
Percent cf orevicus e xperience with the computer
? erce r.t of a op li cat ion/f unct icnal experience
Percent of chief prog rammer team technique employed
Percent cf memory capacity utilized as a design qoal
Number °f Joroara mming locations
Percent or 'software p erscnnel experience
Number of instruct ionsin the comnuter set
Percent or language e xperience
? erce r.t cf previous e xperience with similar algorithms !

ed requirements aloneP e **c- nt of user de fin
Ler.gt h Cf "the compute r instruction word
D <=. t-(^c r> + of user/contr actor interface complexity
[Bef. 44: p. 677]

For schedulinq, elapsed time is computed both as

a function of the computed manpower effort and also as a

function of the adjusted lines of code. Start and end dates

are computed for each phase. An optimized schedule is

output and differences between planned schedules and opti-

mized schedules are hiqhiighted. Requirements documents

usually dictate planned schedules and recognition cf accel-

erations and/or stretchouts that might happen if the

planned/contract schedule were followed.

71

Thus, "SOFCOST" 'ases historical data and empir-

ical data from the environment to develop estimates of cost

in manhours or manmonths and scheduling for various phases

of a project. The interactive sessions with the user allow

a mere clearly defined SWBS. The primary cost driver was

found to be executable lines of code. The basic computa-

tions are adjusted by an interactive session with the user

in which specific environmental factors are evaluated and

accounted for.

The key factors in this model that are critical
•C.C-. , >•-to the estimation ertort are tn

project and the determination of unique environmental

factors that affect costing and scheduling. In both of

these activities, the judgement of the estimator as he

interacts with the computer is critical to the success of

the project.

c. Lifecycle Cost Estimating

The bottom-up decomposition methodology and a

top-down regression analysis is used at the conceptual

requirements level to provide fast and accurate estimates of

software lifecycle costing (LCC) employing unique software

structures. The software structural model is further

analyzed and manipulated to give useful design alternatives

in the form of such criteria as program control, logic

paths, and data transfer that improve the operational quali-

ties of the software and provide minimum LCC designs. This

technique seeks to obtain a uniquely realizable decomposi-

tion strategy and finally give a machine designed

cost-effective software structure. Silver feels that the

current method of using an empirical top-down approach and

multiple regression analysis employing extensive data bases

to estimate software sizing and costing is unsatisfactory.

The uniqueness of each software packaqe precludes this

approach.

72

The overall problems of proaram management and cost
control, as well as the selection of cost-effective
design alternatives are addressed by using a combined
Graph Theory "bott cms-up" decomposition methodology to
provide accurate and rapid assessments of both technolo-
gical feasibililty and" economic risks in conjunction
with a "tops-down" regression analysis employing cost
estimating relationships (CERs) . At the sortware
reguirements and conceptual level, structural decomposi-
tion identifies critical milestones and exposes
subseguent cost drivers through the specification of
connectivities and paths which yield minimum Life Cycle
Costs (LCC) . This is accomplished bv utilizing the
properties of aggiomera tive poiythetic" clustering to
define a topology for determining objective decomposi-
tion strategies related to computer sortware structures.
The mathematical basis for mapping the software struc-
ture onto a particular graph metric space is discussed
in terms of formulating a quality index for c^eratiDr.al
structural partitioning. The use of potential multi-
attribute semi-metrics is illustrated" with a view
towards obtaining an optimal, decomoosition strateav and
ultimately provide machine designed" cost-effective ' soft-
ware structures. [Ref . 4 5: p. 665]

Silver found that the traditional methods fail

to provide a comprehensive and useful software management

eguatior. that has terms that are functionally separable and

independently linearly related to system qualities such as

file structure, memory requirements, and number of applica-

tion crcgrams. The equations are ail too often complex.

The subjective role cf the estimator is not accounted for.

Silver feels that the top-down approach does not give the

necessary accuracy and certainty of estimations to be

exhaustively useful in estimating cost and effort in soft-

ware development projects. A methodology should give

accuracy and certainty early in the development process of

the cost and effort involved.

"The assumption is inherently made that attri-

butes of design quality at the requirements level are

sufficiently manifest in the structural characteristics of

the design process itself, so that they can be costed in

detail. Furthermore, the analysis of a given software

structure is an appropriate vehicle for comparing different

strategies on a cost-effective basis." [Ref. 45: p. 667]

73

Attempts have been made to explain a methodology

for the characterization of the software design process in

terms of a software structural framework.

The essential conclusion reached is that software struc-
tural decompositions may indeed serve as the basic
underpinning for the design activity and associated
cost/performance specifications at the requirements
level- [Ref. 45: p. 667]

Cur look at this method is concluded with the author'

remar ks:

The conclusions emanating from this study will be
deferred to a more comprehensive paoer dealing with the
details of the methodology. The intent of this investi-
gation is to lay the foundation for decomposition and
recombination without resorting to excessive riacr,
while at the same time reoort some interesting results.
TRef. 45: p. 671]

d. GRC

Cost is figured as the non-linear function of

the number of deiivpred instructions. This model has

numerous different estimating relationships which are diffi-

cult to summarize. It has a number of good features,

inciu3ing a thorough definition of the quantities being

estimated and a set of relationships for estimating such

guantities as training and installation costs and labor-

grade distributions. Some drawbacks, however, include the

use of 'number of outputs formats' as the basic size param-

eter and seme evident typos or mistakes in the 0.0 values

given in the effort multiplier tables. [Ref. 3: p. 519]

System development cost is generally reduced if excess

processor capacity is available, especially for virtual

memory systems. The model considers the laximum processor

capacity utilized in estimating the constrained software

cost. [Ref. 2: p. 105]

74

e. TRW

The empirical TRW-Wolverton Model assumes that

the total effort exerted in completing a program is linearly

proportional to the number of instructions to be produced.

The following is used in this model: cost-per-instruction

matrix, organized by software category (control, I/O, pre-

processor/post-processor, algorithm, data management, and

time-critical) ana degree cf difficulty (old program- easy,

medium, hard; new proar am- easy , medium, hard). An histor-

ical computer usage matrix is kept by category of software

to estimate the cost cf computer time needed fcr a project.

The net cost becomes a product of cost per instruction and

the projected number of instructions to be produced.

Solverton has noted in his analysis that past experience

does not impact on programmer productivity significantly.

[Ref. 2: p. 104] The heart of the estimate is a number of

curves shewing software cost per object instruction as a

function of the relative degree of difficulty (0-100),

novelty cf application, and type of project [Ref. 3: p.

512]. Software is broken into parts and costs estimated

individually in the best use of the model. "This mcdel is

well-calibrated to a class of near-real-time government

command ana control projects, but is less accurate for some

other classes of projects. In addition, the model provides

a good breakdown of project effort by phase and activity."

[Ref. 3: p. 513]

2 • Dyn amic Mod el

s

These models use real time input and indicate where

we are now and where we are going at a particular instant in

time.

75

a. TRW (SCEP)

The new TRW Software Cost Estimating Program

(SCEP) was developed by Bcehm and Wolverton. This model was

developed using the set of criteria presented later to eval-

uate software cost estimating models. Comments on this

model's performance according to the criteria set forth will

be given later in the overall analysis of the models.

^ « 'Ralston a ^ d F e " i x "4 ^ d s 1.

This model gives a method for estimating

programmer productivity. Programmer productivity is

measured in the rate of production of lines of code (LOC) .

Given an estimate of the lines of code to be produced, the

model estimates the total man-months of effort required.

Man-months become a function of the LOC to be produced.

From the data oase cf IBM-Federal Systems Division (I3M-FSD)

consisting of 60 projects [Ref. 3: p. 406], a set of rela-

tions was developed to be used for cost estimation

processes. The relationships are:

1. productivity vs percentage of new cede

2. productivity vs percentage of effort at primary loca-

tion

3. productivity vs percentage RJE use

4. delivered source documentation vs delivered code

5. duration vs delivered code

6. duration vs total ma n-month effort

7. staff size vs total effort

8. computer cost vs delivered code

9. computer cost vs total man-months of effort

The main problem with the model is the diffi-

culty in determining how change in the ratings of

productivity of cost drivers is due to other correlated

factors or by double counting using four factors to account

76

for the use of modern programming practices [Hef• 3: p-

517].

c. Aron Model

Aron found that large system building efforts

increase gradually, reach a peak, and then decline to zero.

The peak time and system testing seem to coincide. He

investigated the following ways of estimating software

ccs-s: experience, constraint, units-of-wcrk, and quantita-

tive. Experience depends en exoosure to similar jobs in

similar environments. Using constraints, the manager just

aarees to do a job within given constraints. In the units-

cf-wcrk approach, the job is broken down into smaller units,

cost is estimated for each unit based on past experience

with units of the same size. Whan quantitative estimation

is used, the job is broken down into smaller tasks, classi-

fied as easy, medium or hard depending on interactions with

ether rasks. The man-months for each method is given by the

deliverable instructions divided by the productivity, and

total man-months is the sum of man-months for each task.

[Hef. 2: p. 106]

d. Putnam Model

Empirical observations by Aron provided the

basis for the Putnam model. Norden found that research and

development projects reflected overlapping phases and he

indicated them by the Raleigh form. Norden found that the

work cycles of the Raleigh form have the characteristic of

90% of the work being done in two-thirds of the time with

10% of the work taking one-third of the time at the end.

This gives the reason for the long delays at the end of a

project. Putnam found that software projects usually

conform to Ray leigh-Norden forms. "He related the system

attributes, number of files, modules, and reports t.c the

77

manpower, understanding exactly what the software develop-

ment process consists of over its life cycle, maintaining a

data base that reflects the history of actual software

development costs, and developing the most cost-effective

allocation of resources to different phases of software."

[Ref. 2: p. 106]

Putnam has developed Monte-Carlo simulation and

linear programming to estimate development time and manpower

from the trade-off law in the systems definition phase.

"Other parameters that can be estimated are the contract

milestones from computed development time, the impact of

reguirement changes during the development phase, optimal

future resource allocation during the development phase, and

computer usage and resource allocation during the operations

and maintenance phase." [Ref. 2: p. 106] The SLIM model,

the updated version of the Putnam model, also has the abi li-

lies of estimating computer costs and using the PERT sizing

techniques,

3 • Tynam ic Trans per tab ie Mc dels

Models that use real time information and are

portable to different environments are termed herein dynamic

transportable models. These models can be evolved to

reflect specific environmental influences.

a. Met a Model

The Meta model i s an empirical model based

primarily on the work of Boehm and Walstor. & Felix. This

model permits the development of a resource estimation model

for any particular organization. The model itself can be

used from the beginning of the design phase through accept-

ance testing and includes programming, management and

support hours. Effort is expressed as some measure of size.

Deviations from the average are explained by environmental

78

attributes known for each project. A background equation is

computed, environmental factors analyzed and the model

predicts effort for the project. A size measure is chosen

from available data. Estimating size for each project is

accomplished by taking the total number of new lines written

and addinq them to 20* of any old lines used in the project.

A base-line relationship of lewer standard error is derived.

The size measure is called developed lines. Developed

modules is arrived at in the same manner. Effort is

measured in man- months. The Beta model is employed as

fellows:

1. Compute the background equation

2. Analyze the racier available to explain the
difference between actual effort and effort as
predicted by the background equation

3. Use this model to predict the effort for the new
project. [Ref. 46: p. 108]

Cci 1 a c"~ ir q d at a a be ut t he s " v i r or it. er t is cor— as

follows:

1. Choosing a set of factors

2. Grouping and compressing this data

3. Isolating the important factors

4. Incorporating the factors bv performing a
multiple regression to predict the deviations of
the points from the computed base-line.
fBef. 46: p. 111]

As a rule of thumb, 1055 to 15"5 of the number of

data points should be the number of environmental factors

used to predict a given number of points. The Beta model

collects data from a particular environment and uses that

data to make predictions about the environment.

79

Good managers car. usually estimate the cost and

effort of a software development project better than the

predictions of a model brought in from another environment.

The expectation is that this model will assist those

managers in making even better predictions concerning cost

and effort. The Met a model is developed by duplicating the

basic steps of the model with information from a unique

environment. The model is molded into the environment which

will use it and not simply tuned to accommodate the new

environment. The model itself is based or. earlier works by

Walst.cn S Felix and Bcehm who attempted to relate project

size to effort. Measures used to express size in the Heta

model are:

1. Lines of Source Code (LOSC)

2. Executable Statements

3. Machine Instructions

u. Number of Modules

A base line equation is used in conjunction with

individual attributes of a project that affect the base line

equation. Boehm and Waist en S Felix have suggested similar

models. Environmental differences explain variations from

the averaaes arrived at by various equations. Environmental

differences are accounted for by a number of factors such

as:

1. Skill and experience of the programming team

2. Use of good programming practices

3. Difficulty of the project (complexity)

A two step approach is used to develop the

model.

1. Effort exerted on an average project is expressed as

a function of size.

2. Deviations from the average are attributed to envi-

ronmental characteristics. The background equation

is derived from the relationship between effort and

80

size. The measurement cf size depends on the data

available.

The use of the model is as follows:

1. Estimate size of new project

2. Use base-line to get standard effort

3. Estimate necessary factor values

4. Compute difference this project should exhibit

5. Apply that differ a nee to standard effort.

[Bef. 46: p. 114]

The main difficulty with the Met a model involves

identify inq significant environmental factors and deciding

how many to use in the estimating process. Tables III, IV

and V include environmental factors identified by Walstcn S

Felix, Bcehm and those identified at the Software

Engineering Laboratory at the NASA/Goddard Space Flight

Center where Bailey and Basil! collected the data to demon-

strate the Meta model. For any particular project,

attributes selected for study depend on what information is

available in the data base.

Of the original 71 attributes that the

researchers thought to have influence on the effort for a

Met a project, 21 were selected for analysis and grouped into

three major categories. Predicting a variable with a few

data points (18) using many factors is not statistically

sound. The problem with adding the points of each attribute

that indicated its influence and using the sum for the

influence of that category is that some individual factors

that may be very influential lose their identity. Two ways

around this are to use more data points and evaluate each

attribute independently or to determine the relative affect

of each attribute and weigh them independently. Bailey and

81

ogr
rma
ee
sig
sig
lk-
1k-
de
p-d
p-G
rue
era

Pr
Fo
Tr
De
De
Sa
Sa
Co
To
Tc
St
Li
LrXi

FO
Fo
UY-
Fo
He
It
In
Ti
Te
Or.

is
Ov
Re
?e

Am

am
1
ch
n
TV
th
th
re
c*
cw
tu

rea

rma
rma

r Pr
T
t
7
a
a
V
u
s
z
i

it ae
rmal
avy
era
div
mel
am
sc

o a

usa
rce

m
ti
id
y.
32.

he
ev
-

1

abl

desi
esig
rts
or ma
ecis
ough
ough
ding
des
COd

ed c
r,

oqra
rain
est
eloD
ocum
nage
e er.

al d
pecs

ule
lopm

TABLE III

Evaluation Factors - SEL

gn language (development and design)
n review

lisms
ion not.es
: design
: code

ign

ode

mmer Teams
incj
plans
ment folders
entation
ment involvement and control
hancement
ecisions
and no changes

ent

fR

cur.'
a:
ef.

e cede
programmer effort
management effort

documentation
ize
6: p. 112]

3asiii did not have the r^guisite criteria for eithe:

tion so they used the described method of grouping.

soiu-

£. ?rice-S and ?rice-SL

The Price-S and the ?rice-SL are empirical

models developed by RCA and can be used in conjunction to

estimate the software costs during a support period for a

given project [Ref . 47: pp. 663-664], The ?rice-S model

uses a top down approach to determine the resources required

in a software development project. The model delivers cost

and schedule for size, type and difficulty of the subject

82

1 "'- "
----- i

TAELE 17

Evaluation Factors - Walston and Felix

Customer experience
Customer participation in definition
Customer interface complexity
Development location
Percent programmers in design
Programmer qualifications
Proarammer experience with machine
Programmer experience with language.
Programmer sxperience with amplication
Wcrked together on same type" of or obi em
Customer originated program desijn changes
Hardware under development
Develccment environment closed
Development environment open with requ-st
Development environment open
DeveioDment environment RJE
Development environment TSO
Percent code structured
Percent code used code review
Percent code used top-down
Percent code by chier-pr ogrammer teams
Ccmplexitv of application crocessing
Complexity of program flow-
Complexity of internal communication
Complexity of external communication
Ccmolexitv of data-base structure
Percent code non-math end I/O
Percent, code math and computational
Percent code CPU and I/O control
Percent code fallback, and recovery
Percent code other
Proportion code real time of interact ive
Desian constraints: main storage
Design constraints: timing
Desian constraints: I/O capability
Qnclassi fied
TRef. 46: p. 112]

»„.._.,. . _ _. _ .-i

project. The Price-S model uses information from historical

data bases to estimate the costs of a new project. The

Price-S model gives information about the software when if

is installed for operation. The Price-SL model uses infor-

mation about the environment to estimate the cost to be

incurred during a particular support period. Combining

these two models, we arrive at cost estimates up to a

particular point in the development phase and throughout a

given support period.

83

1

TABLE V

i

Environmental Factors - Boehn

Required fault freedom
Data base size
Prcduct complexity
Adaptation from existing software
Execution time constraint
Main storage constraint
Virtual machine volatility
Computer response time
An sly st capability
Applications experience
Prcarammer CaDaoility
Virtual machine experience
Programming ianguaqe experience
Modern programming practices
Use cf software tools
Required development Schedule
TRef. 46: p. 112]

•

The Price-s model provides the following cost

drivers:

1. Instructions

2. Application

3. Platform

u. Development Schedule

Software size is measured in the number cf instructions.

Application refers to the type of software being developed.

Platform refers to the environment in which the software

operates. Development schedule is self explanatory. A

development schedule is computed and compared with a design

schedule and the degree to which the design schedule is

normal, accelerated or stretched out will affect the amount

cf repair activity. Accelerated schedules will be mere

costly and stretched out schedules will cost less due to the

extra time to develop better quality software.

8U

The ?rice-SL identifies two primary cost

drivers:

1. Support Schedule (SSTART to SEND)

2. Growth Factor

Shorter schedules will see bugs more quickly found bur a

lower total number of bugs. Shorter schedules will preclude

enhancements to the system and the anticipated growth factor

will probably be lower for short schedules. The number of

installations and the amount of average usages will affect

the number of bugs found. The higher either of these, the

more bugs. Other support economic parameters are modifiers

of the calculated costs and include multipliers for support

mark-ups and support escalation.

Costs for the Price-SL are categorized as

follows:

1

.

Maintenance

2. Enhancement

3. Growth

Software cos-.s are estimated for the following five elements

in each category:

1. Systems Engineering: technical tasks of the entire

software system such as updating test plans and test

specifications.

2. Programming: cost for implementing design and code

changes.

3. Configuration Control: cost of maintaining system

integrity and determination of system baseline.

4. Quality Assurance: cost of maintaining system

integrity and determination of system baseline.

5. Documentation: cost of all changes needed to support

Maintenance, Enhancement and Growth.

6. Program Management

Costs on a yearly basis are provided for the three major

areas or the five elements. The ?rics-S and the Price-SL

85

models are available from RCA and can be used to estimate

cost in varying environments.

C. COCOMO

The constructive COst MOdel detailed by Boehm in

his mcst recent publication is a most powerful instrument

for estimating cost and effort in software development

projects. The more detail that is provided as input to a

cost estimation model, the mere accurate the estimates will

probably be. The CCCOMC model allows the preparation af

estimates in good detail and specifies and processes them

with considerable efficiency. The following factors impact

cost:

1. Cost Driver: Product Attributes

a) RELY: Required software reliability

i) Does the software perform its intended func-

tions over the next utilization and

subsequent utilizations?

ii) DATA: Data base size

iii) CPLX: Software product complexity

2. Cost Driver: Computer Attributes

a) TIME: Execution time constraint

b) STOP.: Main storage constraint

c) VIRT: Virtual machine volatility

d) TURN: Computer turnaround time

3. Cost Driver: Personnel Attributes

a) ACAP: Analyst capability

b) PCAP: Programmer capability

c) VEXP: Virtual machine experience

d) LEXP: Language experience

4. Cost Driver: Project Attributes

a) MOD?: Use of modern programming practices

b) TOOL: Use of software tools

c) SCED: Development schedule constraint

86

Hierarchical decomposition is used to aid in

producing cost estimates. The lowest level is the module.

Cost drivers that are described at this level are:

complexity and adaptation from existing software; program-

mer's capability level and experience with the language and

virtual machine on which the software is to be built. The

second level is the subsystem level. A number of cos*

drivers affect this level. The cost drivers vary from

subsystem to subsystem but are u snail"' the same for ill

modules in the particular subsystem. The top level is the

system level. This level is used to apply overall proiect

relations like nominal effort and schedule equations and tc

apply the nominal project effort and schedule breakdowns by

phase

.

For each cost driver, a set of tables is used to

account for its affect en each major development phase.

^ • Overall Model Evaluation

Ecehm has enumerated a number of criteria upon which

software cost estimating models can be evaluated.

1. Definition: do we understand frcm the model what

ccsts it is estimating and what costs it is

excluding?

2. Fidelity: do estimated costs compare favorably with

actual costs?

3. Objectivity: are ccst drivers related to factors

that are objectively measurable and not open to mani-

pulation to get what we want?

4. Constr uctiveness : is it clear from the model why a

particular estimate is arrived at and is the software

project more understandable because of the model?

5. Detail: does the model sufficiently breakdown the

project for estimation purposes?

87

6. Stability: do small input changes produce small

output changes?

7. Scope: is the model applicable to the type of

project needed to be estimated?

8. Ease of Use: are the inputs and options used by the

model easy to understand and specify?

9. Prospectiveness: does the model only use information

that can be found before completion of the project?

This criterion is used only for cost prediction.

10. Parsimony: are redundant factors and factors that do

net contribute tc the result of the model avoided?

[Ref. 3: p. 476]

We will examine the models presented with rsspect to

the apDiicabiiity of a number of the above criteria.

a. Definition

The I3;i-FSD mod si, the 3ailey-3asiii acd-ri and

the 1979 GRC model provide fairly thorough definitions of

the inputs and outputs used. COCOMO provides as thorough as

possible definition cf the activities and quantities found

in the model while not overly constraining either the

model's generality or a project's flexibility, [Eef. 3: p.

521] The TRW (SCEP) model uses a standard work breakdown

structure to define costs included and excluded in

estimates.

b. Fidelity

COCOMO estimates come within 20X of the actual

development figures for the projects in the COCOMO database

7 0% of the time. This means a standard deviation of« J- n,U<&

residuals of roughly 20% of the actuals. [Ref. 3: p. 521]

An analysis of the IEM-FSD model reported a standard devia-

tion cf 1.7 1 [Ref. 48: p. 5 21]. Ths Bailey-Easiii showed a

standard deviation factor cf 1.15 for a fairly uniform set

88

1

. -_,

TABLE YI

Factors Osed in Various Cost Models

soc. TRW Putnam RCA. 80&NG. GPC.

Group ten '96S 1972 SUM Doty PfttCES 6M 1977 1979 COCOMO

Size Sourca tntmjctions X X X x x

iiwawi Oc»eci inatrucnora

Numoer of rouonee

Number of data -tema

Numoer of output format*

Documentation

Numoer of personnel

X

X

X X

X

X

X

X

X

X

X

X

Program T«pe X X X t X X X

anriouta* Complexity

Language X

X

X

1 X X

X X

Reuse

floquifoO roluttxitty

X X

X

XXX
Compuiw Tim© constraint X X X

i
XXX

annbutM Storaqe constraint X X X X

riardware configuraoon X X

Concurrent rtaroware dewefoomenl X * X

Pwtonnax Personnel caoabtfrty X

•imfjuls* Personnel contmurry

Hardware experience X X X X

Applications experience X X X X

Language experience X X ') «

Pnmci Tools and tecnmouea X X X I

artnoule. Customer interlace

Rooutremems doiirnoor*

X

X X

Requirements volatility X X X X X

Scneouie X X

Secunry

Computar access X X X X

Truvu1/rot\OHling X X X

[Ref. 3: P. 511]

„ -J

of 13 prelects a: NASA/Goddard [Ref. 46: p. 115.]. The

fidelity of the CCCCMO model with respect to the actual

costs of projects in the database is better than other

models' estimates of those costs. A large portion of the

database was used tc calibrate the model's parameters. No

future projects have yet been completed to evaluate the

goodness of the model's estimates.

The Putnam 197 8 model gives extreme overesti-

mates en small projects and estimates large projects

reasonably well. Putnam' s more recently developed SLIM

39

model appears to have overcome this problem. [Ref . 49: p.

196] The TEW (SCEP) model is still in an experimental state

and needs more comparisons of SC2? estimates with actual

proiect results [Ref- 49: P- 198].

c. Objectivity

The SLI2J and the Price-S models have made some

proqress in expanding a single complexity factor into a

number of constituent element 3 [Ref. 3: p. 522]. The orig-

inal Jrice-S model was extremely sensitive to the subjective

ccmDlexity factor [Ref. 49: p. 198]. The COCOHO model has

tried to make the complexity factor more objective in a

number of ways. Complexity has been made a module level

instead cf a subsystem or system level rating. Sources of

productivity have been separated from the complexity cost

drivers as much as possible and made into separate cost

drivers. A rating scale for each complexity rating has teen

developed. The TRW (SCEP) model includes a complexity

factor. The complexity rating is a characteristic of each

unit in the software, and a complexity scale is available to

provide a unique complexity rating for each type of unit.

d. Construct ivenes s

The COCOMO mode 1 provides a detailed listing of

the factors affecting the cost of a project. It estimates

the impact of an individual factor. The model provides

increased understanding of the software lifecycle for the

project. [Ref. 3: p. 522] The TRW (SCEP) model provides a

scale to indicate the degree of impact cf factors on project

activities.

90

e. Detail

Models requiring mors datail usually produce

more accurate estimates.

1. The gathering o^f greater detail tends to increase
people's understanding of the job to be done; and

2. if the added detail results in the overall esti-
mate being the sum of soma smaller individual
estimates, the law of large numbers tends to work
to decrease the variance of the es-imate.
fHef. 49: p. 200]

CCCOMO is a hierarchy of models with th? Basic

COCOMG being used for early estimates and the Intermediate

and Detailed COCOMO's being used for more detailed and accu-

rate estimates. The TRW- Wolverton model is an effective

micro model and provides detail in phase and activity break-

downs. The 1979 GRC model also provides detail in phase and

activity breakdowns. [Ref. 3: p. 522]

f. Stability

The Doty model has discontinuities at the neigh-

borhood of 10,000 source instructions. Small differences in

sizing can lead to large differences in cos- in this area.

[Ref. 50] Most cost estimating models, CCCOMO included,

avoid this problem by providing a number of rating levels

for cost driver attributes and allowing interpolation

between them.

g. Scope

The IBM-FSD model, the Meta model, the ?rice-5L

and the COCOMO models have all been developed to meet a wide

variety of projects and applications. Algorithmic cost

models in general have a difficult time in general in esti-

mating cost for projects under 2000 DSI. [Ref. 3: p. 523]

91

h. Ease of Use

SLIM and Price- S are well engineered for ease of

use and understanding. CCCOMO hierarchy of models makes

them easy to use and to understand. [Ref. 3: p. 523]

The TRW (SCEP) model overestimates costs on

projects less than five person years in total effort, but it

functions well for projects over the range of 6 0-2000

nanmonths.

i. Pro spectiveness

Most current cost models including COCO MO use

parameters that can be estimated rather well at the begin-

ning of a project. The only exception for C0COM0 is the

difficulty with sizing the project.

j. Parsimony

The Waist on-Fei ix model uses different entries

for modern programming practices where one would be alright

for practical estimation of projects. [Ref. 48] The CCCOMO

model makes efforts to only use factors that have a. consid-

erable affect on software productivity. The model can be

tailored to a particular environment to eliminate redundancy

in factors. [Ref. 3: p. 521]

B. ESTIMATING COST AND EFFORT: CRITICAL FACTORS

1 • Discussion

We conclude that what is needed in the field of

estimating cost and effort in software development projects

is a reliable, dynamic, transportable model that is easy to

use. It appears intuitively obvious to us that cost, effort

and time can be saved by adopting an already existing cost

and effort estimating model to a new environment rather than

92

genera-cinq an entirely new model from the ground up. The

model should be able to estimate cost and effort throughout

the iifec7cle of a software project. Most models now only

estimate through the completion of testing and the beginning

of operation giving little or no attention to the

maintenance phase. The maintenance phase of a software

lifecycle currently consumes the major portion of resources

expended upon a software development effort [3ef. 34: p.

viii].

Any measure of effort should be linked to the

successful completion of the functions of a project. The

preliminary work, on a particular design decision may be well

understood by software developers. The basic steps may

account for a major physical portion of the effort. The

concluding work done to implement a design decision and the

integrating of numerous design decisions/modules to make the

system operational often commands the greatest effort. The

model should measure effort in the number of lines of source

code (LQSC) produced but should also relate this figure to

the area of applicability of the lines. To reiterate, LQSC

produced at the beginning of the development of a design

decision may be far easier to produce than those at the end

of the effort.

Statistical investigation should be used to estab-

lish relationships which make it possible to predict cost

and effort in terms of other variables. Regression tech-

niques are used to perform this task. Since the number of

variables affecting the cost and effort estimated for a

given project will be many, multiple regression analysis

will be necessary. In using observed data to formulate a

mathematical equation to predict desired values from given

values (a procedure known as curve fitting), three problems

arise :

1. the kind of equation to be used must be decided

93

2. the best of this type must be found

3. the goodness of fir of the equation must be

determined.

[Ref. 51: pp. 431-433]

The equation usually chosen results from the inspec-

tion of the data in most instances, but the most objective

methods for deciding on what curve to fit to numerous points

should be used. Differences in project estimations will be

explained in accordance with environmental variations. The

key to estimating ccst and effort in a software development

project is to isolate those elements that cause prci^c 4-

estimates to differ from expected values. Once these

elements are identified, they can be accounted for in the

estimation process and extremely accurate estimates can be

achieved.

C. SUMMARY

We have endeavored to present a number of environmental

f".:tcrs influencing software levelopment projects, and the

methods new in use to predict cost and effort for those

projects. From oar study of the literature in the area of

software development and frcm an analysis of various models,

we have tried to assimilate those problems that should be

addressed in the development of a dynamic, transportable,

prediction model. We also endeavored to alert the novice to

and refresh the experienced reader with the problems he may

expect to encounter with software cost and effort estimation

models. As it is probably painfully apparent to the reader

at this point, models are often complex and difficult to

understand. We recommend to the average manager that he

familiarize himself with the information presented in the

research and then go and hire someone who is technically

competent for specific guidance. If it is of any

94

compensation to the reader, the authors of this research

have had as difficult a time as he or she may have had in

understanding the models presented.

The key to the success of any such model is the ability

of the estimators to identify variables in the environment

affecting the estimations and account for these variables in

the mathematical equation predicting cost and effort. The

weaknesses with current estimating procedures are sixfcld:

1. estimating size

2. determining environmental influences

3. determining complexity

4. understanding the models themselves

5. lack of attention to the experience of the developers

6. lack of attention tc the management effort and the

project manager.

k hopeful avenue cf research that may provide more reli-

able estimates is Silver's method of using structural

decompcsi*: icn of requirements and design parameters. what

is missinq or under emphasized in most proposals for esti-

mating cost and effort in software development projects in

private industry is consideration of the management effort

and the project manager. Unless a sound team is organized

under a strong leader, all estimations of project cost and

effort will prove to be under estimates.

D. THE FUTURE OF SOFTWARE DEVELOPMENT PROJECTS

Estimating cost and effort in software development

projects has already been influenced by the introduction of

various tools and the concept cf software development envi-

ronments. Programmer productivity is expected tc increase

as tools are refined and better integrated with one another.

What is especially exciting in the long term future of

programming, that is, programming into the early decades of

the 21st century, is the concept of automatic programming.

95

The term 'automatic programming* has been used for many
vears to refer to the process by which an executable
program may be produced from nonprocedural
specifications of the task to be Derformed. Over the
lenaer term, it will be possible for programmers to
create running programs by providing a specification of
program functions and outputs, without having to proceed
with a detailed program design or with the production of
code. TRef- 52: p. 204]

The present differences between application programmers

and system programmers are likely to increase. System

programmers deal with the details of "he low level computer

whereas application programmers deal with the development of

proarams to meet user specifications. With the anticipated

advent of automatic programming, the user-operator will

carry out what we now consider programming as he interacts

using natural language with the computer. The application

programmer will increasingly be involved with understanding

the needs of particular application areas for software,

i.e., medical and information system applications, their

information requirements, organizational structures and

their personnel makeup. He will assist the user-operators

of the companies in understanding their needs and converting

these needs into specific requests to be automatically

proqrammed by the computer into an affective application

software program.

...it can be seen that the nature of programming and
proarammers is certain to change, and that an increasing
share of what we now term programming will be carried out by
user-operators, who will Have tools' at their disposal that
permit them to interact naturally with a computer system and
specify their requests. It is only when" such tools are
provided that the exponential growth in the number of
programmers and the cost of software can be slowed and that
attention may be devoted to making the greatest possible
beneficial use of the computer. [Ref. 52: "p. 205]

96

LIST OF REFERENCES

1. Forman, J.J.
f

"How H uch Does Con f igurement Management
Cost?," Software Enaineerina Standards Application
Worksjipja, "Proceedings, "TB-2T3 Aug. 7~T9~ST7~pp. UT-^h.

2- Mchanfy, S.N., "Software Cost Estimation: Present and
Future," Software — ? rac and urience. Vol. II,
19 61, pp.-TT}3-TTT7

3. 3oehm, 3.W., Software Engineering Jc_2n0mJ.cs, Englewood
Cliffs, New Jersey :~~ PrennTce Hall, Inc. ,"7931.

4. Peters, L. J. Z- Tripp, L. L. , "A Model of Software
Engineering," 3rd International conference on Software
Engineering, Prccee3Ings7 T0-T7, Hay, 197B, pp. oT^TJ.

5. Pemus, H., "Planning and Measuring Program
Implementation* " Software Engineering Environment,
Proceedings, 16-20~June7~T980 7~oo7"27l~2357

6. Kerola, P. S Freeman, P., "A Comparison of Lifecycle
Models," 5th I ntern ational Conference on S^ftv^r^
Engineering, Proceedings, Ti3J, p. yTJ-^T.

1

.

Brooks, P.P., The Mythical Man- Month, Philliprr.es:
Addiscn-Wesiey PuBIisning Company, Inc., 193 2.

6. Esterling, 5., "Software Manpower Costs: A Model,"
DalaMtion, March, 19 81, pp. 16 4-170.

9. Schneider. G. M. , Sedlmeyer, R.L. S Kearney, J., "On
the Complexity of Measuring Software Complexity,"
AEIP Conference Proceedings, Proceedings, 4-7 May,
T9"B17 pp7"TT7^J-227

10. Christensen, K., Fitsos, G.P. S Smith, C.P., "A
p
vo
erspective on Software Science." x3M Svs em Journals,
ol. 20, no. 4, 1981, pp. 372-337.

11. Spier, M.J. & Gutz, S., "The Ergonomics of Software
Engineering, n oftware Engineering Environments,
Proceedings, 16~ZU~J"une, 19?0"7~pp7~2T3-235'7

12. Turban, E. & Meredith. J.R., Fundamentals of
Management Science, Piano, Texas: "Business
P~uIIicaTIor.s,~Tnc77~1 981, pp. 27 1-311.

97

13. Roberts, E. , The Dynamics of Research and Development,
New YorK.: Harper Z HoTS7~79oTJ, ~pp7~3TT=5Tr~

14. Federal Information Processing. Standards Publication
75, ^Gulaelir.e"" for Planning ana Using a "Data
Dictionary System," 2 August 1980.

15. Prentice, D. , "An Analysis of Software Development
Envircnments," ACM 3IGSOFT SOFTWARE ENGINEERING NOTES,
October, 1981, p?7 T9-T7T~

16. Bcehm, E. W. , "Software and Its Impact: A Quantitative

17. Stcner, A.F.
f

Management, End
Jersey: Prentice-HaIl,"Tnc. , 1982.

Snglewood Cliffs, New

18. Duncan, C.S., "The Challenges Facing Program
Managers," Program Managers Newsletter, October, 1977,
pp. 8-9.

19. Caron, P-F. & Roderick, B., "The Challenge of Program
Management: Building and Motivating a Team,"
Government Contracts Service, November 15, 19*79, do.

20. Smith, G.A., "Seme Thoughts on the Art of Motivation,"
£££a£IA M anagers Newsletter, March, 1976, p. 19.

21. Acker, D.D., "Managing Creativity and Innovation,"
Program Managers Newsletter, Summer, 1976, p. 15.

22. Blair, R. S. , Colonel, USAF, "Managers Are You Really
Listening To Your Employees?" Proaram Manager,
May- June, 1981, pp. 4-6. —

23. Hussain, D. & Hussain, K.M. , Information Processing
Systems f_or Management, Homewood, Illinois: ~ "RTcEard
TT Irwin, ~Tnc. , lydK

24. Bcstrom, R.P. 5 Heinen, J.S., "MIS Problems and
Failures: A Socio-Te chnical Perspective PART I: THE
CAUSES," MIS Quarterly. Sept., 1977, pp. 17-22.

25. Zelkowitz, M.V., "Perspectives on Software
Engineering, " ACM Computing Surveys, June, 1978, pp.
197-215. * * x" * v

98

31.

33.

34.

35.

26. Schneidewind, N.F. , Software Maintenance; Improvement
Through Be tt er "HBejreiopmenl: "Stand ai as " aricT

Documentation, "Honterey, CalifTl Navai Postgraduate
ScnooT7~T9B27

27. Young, R. A., "Life Cycle Concepts and Document Types,"
in Software Maintenance: Improvement Through 3etter
Develop ment *"5t anflaf3 s and Documentation, ""Monterey,
CaTir . :~^avai Postgraduate Scnool, 7WZ.

28. Liskov, 3.H., "A Design Methodology for Reliable
Software Systems," Fall Joint Computer Conference,
Proceedings, 1972, pp. "55-717

29. Stevens, W.P., :^rs, G.J. S Constant ine, L. L.

,

"Structured Design," IBM Svstems Journal, Vol. X, Ho.
3, 19 74, pp. 21 6-2^4,

'

30. Parnas, D.L., "On the Criteria to be Used in
Decomposing Systems into Modules," smmun rati
the ACM, December, 19 72, pp. 173-133.

Parnas« D.L., "Designing Software for Ease of
Extension and Contraction," 1322 Zrar- tactions on
Sc ft ware Engineering , March, 1977, pp. ll'S-7'3'5.

~

32. Parnas, D.L. , "Information Distribution
Design Methodology, H in "A Design Methodcloqy for
Reliable Software Systems,," F ai,l Joint Computer
Conference, Proceedings, 197^, pp. o5-71.~

Mader, C. , Information Systems, Chicago: Chris Mader,
1979, pp. 33o="3TZ7

McClure, C. L. , Ma nagin a, Software Development and
Maintenance, New YoEk: Van fiostranG RemEoTc Company,
T9ST7

wolverton, R.W., "The Cost of Developing Large-Scale
Software," :EE Transactions on Computers, Vol. C-23,
No. 5, June7~T^7U7~5p7~"oT5=o3H7

36. L€cht, C.P., Jhe Ma.nage rcent of Computer Programming
Projects, New york

:""
" American Management Association",

Inc. , ~T96 7.

37. Frick, R. K. , "Viewing Cost as a Management Tool"
National Ae 3 space and Electronics Conference,
Proceedings r""T9^ZT"Ha y ,~T"98 1 ,~pp7"~"BHF=H9~0.

99

38- Barakat, D. H. , "Productivity and the Development
Environment," Proceedings of the IEEE COMPCON, Fall
19 81, p. 24*.

39. Kiser, B.C. Stewart, "Software Management Productivity
Understanding the Software Development. Process"
Proceedings of. the IEEE CCMPCON, Fall, 1981, p. 244.

40. Stone, J., "Productivity Measures Prove
Counterproductive," C ompu terwor Ld , 1 September, 1980,
p. 29. " ~

41. Wiener- Ehrlich, W.K., Hamrick, J. & Rupolo,V.,
" Applicability of tne Rayleiqn Model to Three
Different Tvo cs of Software Projects," P^cc^edir.as of
the IEEE CCjlPCON, Fail, 1981, pp. 12 8-1437' '

42. Bruce, P. S Pederson, S.M., The Software Development
Project, Planning and Management, Ie« York": "John wTXey
ana Sons, 73*d"Z, Dp. 7 6-74".

43. Thibodeau, R. £ Dodson, E. N. , "The Implications of

47.

48.

Tugus :t,~T97"5, pp. 7U-7o*.

44. Dircks, H.F., M, 50FC03T , Grumman' s Software Cost
Estimating Model," National Aercspac* and Eiiectrc _cs
Conference, Proceedings7""79-2T~*Hay ,"*T"9877~pp7 cT^^B^T

45. Silver, A.N., "Software Life Cycle Cost (LCC)
Estimating Using Structural Decomposition of
Requirements and Design Parameters," National
Aerc< and Electronics Conference, Proceedings'!
"TO=27HIay, 7^B17~P" o£5=o72:

46. Bailey, J. W„, 5 Basili, V. R., "A Meta-Modei for
Software, Development Resource Expenditures,," Fifth

Software Engineering,International Conference o:
Proceedings ,~9-T7"TTar en, 193*7, pp7~TT77" 1757

Mauro , C. , "RCA Price System," National Aerospace and
Electronics Conference, Proceedings, T9-2T Hay, "793*77
pp. o""51-oo""T.~

bgrtware engineering economics sn
ZTersey: Prenxice-FIall , Tnc.7~"T981 .

100

49. Boehm, B.W. Z Wolverton, R.W.. "Software Cost
Modeling: Seme Lessons Learned," The Journal
Sistems and Software, Dec., 1930, pp. T93-2UT7

50. Boehm, 3. W. & Wclvercon, R.W.
f

"Software Cost
Modeling: Some Lessons Learned," cited bv 3oehm, B.W.
in S o ft wa r e Engineering Economics. Enalewood Cliffs,
New Jersey, Prentice- Hall 7 Tnc77 1981.

51. Freund. J.E. & Williams, ?.J., Eiementarv Business
Statistics: The Modern Aporoach, Eiiglewood cTTTrs,
Tie w"Jersey: Pf entice -TIall, rnc77""*9 82 , ?p. 43 1-4 54.

52. aasserman, A.I. & Gutz, S., "The Future of
Programming," Communications of :he ACM, March, 1982,
dc. 196-2 05.

101

INITIAL DISTRIBUTES LIST

3.

11.

Naval postgraduate School
Monterey, California 93943

Department: Chairman, Code 59
Department cf Administrative Sciences
Naval Postgraduate School
Monterey, California 9 3940

4. Curricular Office, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 9 3940

5. Captain Bradford D. Mercer, USAF
Cede 52ZI
Department of Computer Science
Naval Postgraduate School
Monterey, California 9 3940

6. Associate Professor We issi nger-Ba vicn
Code 5 4WR
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943

7. Lieutenant Chuck Pierce, USN
4383 Hydrangea Court
San Diego, California 92154

3. Lieutenant Rebecca L. Wagner, U3N
96-926A Iho Place
Aiea, Hawaii 96701

9. Vice Admiral 3.R. Nagler, USN
CNO (OP-094)
Department of the Navy
Washington, D. C. 20 35 3

10. Rear Admiral P.E. Sutherland, (JSN
Naval Data Automation Command
Washington Navy Yard
Washington, D.C. 20374

Captain A.H. Fredricks on, USN
CNO (OP-94 2)
Department of the Navy
Washington, D.C. 20350

12. Dr. Joel S. Lawson
Cede 06T
Naval Electronics Systems Comnaid
Department of the Navy
Washington, D.C. 23360

102

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virgina 22314

2. Library, Code, 0142

13. Lieutenant Commander Ronald Modes, USN
Codt 52MF
Department of Computer Science
Naval Postgraduate School
Monterey, California 9 3940

13. Mr. & Mrs. Lew Zuber
992 Church Street
Bohemia, Long Island, New York 11716

14. Mr. 5 Mrs. Charles J. Pierce
138 Connecticut Avenue
Massapequa, Long Island, New York 11758

15. Mrs. Renetta M, Lynch
145 12 Chesterfield Road
Hockville, Maryland 20 853

103

ZffiZVl
Thesis
P5325
cl

Thesis
P5325
cl

Pierce
Software develop-

ment projects: est-
imation of cost and
effort (a manager's
digest)

.

4

SEP 3

27 FfB BO

12 AUG 1965
85 30 7 8 6"

3 5 3 06

7UU757

Pierce
Software develop-

ment projects: est-

imation of cost and

effort (a manager's
digest)

.

as.*—«*sfiss

3B^S

''it I yA

UUOu

Bftfiff

91

W
wSp

r

M
K&

