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ABSTRACT

Various combat duels between an attacker, who owns a

stockpile of long range precision-guided missiles, and a de-

fender are addressed. The defender must defend a valued tar-

get, or several valued targets (called primary targets) by a

group of defending targets (called secondary targets, and are

usually understood to be surface-to-air missile batteries)

.

The problem of the attacker is to allocate his missiles be-

tween the primary and the secondary targets so as to optimize

various measures of effectiveness. The models are divided

into two different categories:

(a) Models in which the attacker must find optimal
sequencing of missiles which are either anti-
primary or anti-secondary missiles.

(b) Models in which the attacker must find optimal se-
quencing of missiles which are either real (anti-
primary) missiles or decoys. Two mechanisms by
which decoys may enhance effectiveness, namely,
exhaustion and saturation of the defense, are
quantitatively explored.

Various cases are examined in the thesis, which makes a

heavy use of stochastic dynamic programming and sequential

games techniques. Some numerical examples are also given.
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I. INTRODUCTION

A. MOTIVATION AND CONCEPTUALBACKGROUND

This work contains an analysis of various tactical deci-

sion processes involving the use of long range conventional

tactical missiles. It is written with a view towards the

future of tactical missiles warfare, which only recently has

begun to concern many people (military planners, tacticians)

throughout the military world. In this thesis we describe

some of the anticipated operational contingencies of (tacti-

cal) missile warfare. We then formulate them as dynamic deci-

sion models solvable by techniques of operations research, and

solve them. Before presenting the kind of problems which are

to be analyzed in this thesis, we briefly explain what there

is in air warfare trends today that causes conventional missile

warfare to emerge as a major concern.

The principal weapon system in today's Air-to-Ground (A/G)

warfare is still, undoubtedly, the aircraft. However, some

significant technological achievements of the last decade

(mainly in the field of Radar Technology and Electronic War-

fare) raised a new generation of Surf ace-to-Air Missile (SAM)

systems. These systems are becoming serious obstacles to a

full and effective utilization of the aircraft in the A/G

warfare. The existence of such Ground-to-Air (G/A) defense

systems can sometimes prohibit the use of the aircraft, at

least at the initial phase of an armed conflict. The reason

16





for that is that the attrition rates expected as a result of

the presence of these systems stands at such a high level that

it would be very hard, due to psychological factors, to launch

manned vehicles into such effectively defended areas.

Among the main properties which make some of the modern

SAM systems very hard to overcome are:

(1) They are operationally autonomous. The operability
of a battery does not depend on any other units of
the defense system, since each unit, or battery,
includes all components necessary for detection and
acquisition of targets, and for controlling and firing
missiles.

(2) The batteries are small, compact, hardly detectable.

(3) The batteries are very highly mobile.

(4) Very sophisticated detection sensors and avanced
acquisition, control and. ECM devices make the SAM
batteries highly effective in a very high kill
envelope

.

These developments in defense technology are very likely

to intensify trends, which can already be noticed to exist

today in the U.S. and in Europe, to develop long range, tac-

tical, conventional missiles for massive uses, at least at

the initial phase of conventional armed conflicts.

A brief description of the characteristics of tactical

missiles follows. We emphasize that we refer here to missiles

used for attacking ground targets, which are considered

mainly as alternatives for the aircrfat, in a specific,

tactical mission.

*
Examples for systems which can be characterized by (1)-

(4) above are: Soviet SA-8, SA-6 systems; the German "Roland"
SAM system; the French "Crotale" system.
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(1) The missile is directed to point targets by highly
sophisticated guidance and control systems (these
systems may be passive, active, semi-active laser
guided, or they may be of a Man-In-The-Loop type).

(2) The accuracy of the missiles is very high: Circular
Probable Errors (CEP) of a few feet are quite
typical, i.e., the missiles have almost pinpoint
accuracy.

(3) The warhead is conventional.

(4) The maximum ranges of the missiles are long enough to
make it possible to position the launchers (of the
attacking missiles) at a considerable distance from
any intercepting system for which the defender might
call. In other words, the launchers (of the attacker)
are assumed to be safe and practically invulnerable.

(5) The operations with the tactical missile are heavily
supported by an advanced tactical intelligence system.
Such networks, which are very likely to play a dominant
role in future air warfare will enable the attacker to
receive and use information on (almost) a real time
basis.

Our main concern in this thesis is the following scenario:

Suppose a group of targets of high military value is defended

by a local system, consisting of a group of independent SAM

batteries. We assume that the defense system is sufficiently

solid so as to force the attacker to avoid deploying aircrafts

as long as the defense remains highly effective. To carry out

missions which are urgent, as the attack of the group of tar-

gets mentioned above may be, the attacker may decide to use

long range tactical missiles. These missiles may be aimed at

the defending targets (i.e., SAM batteries) as well as at the

defended ones. They can be intercepted by defensive missiles,

which can be launched by the SAM batteries. Thus we consider

here a pure tactical missile warfare. The main questions
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which this thesis is dealing with are questions of optimal

allocation of the tactical missiles between the value targets

and the defending targets. (We discuss criteria of opti-

mality later.)

Our terminology thus distinguishes between two categories

of targets: We use the term "primary" to describe targets,

the destruction of which is considered as the ultimate goal

of the attacker's mission. We define as "secondary" targets

those targets which defend the primary ones. As connoted by

their name, the "secondary" targets do not have inherent value,

so that the question whether a given secondary target was

destroyed or not is not weighed in the overall rating of mission

success. This means that the objective functions taken for the

allocation processes presented in this thesis, are always

defined in terms of destroyed primary targets only, the number

of destroyed secondary targets never being a factor. The only

reason for the attacker to be sometimes willing to attack

secondary targets is that by killing secondary targets the

attacker improves the probability of missile survival, and so

indirectly increases the effectiveness of missiles aimed at

the primary targets.

It should be noted that the identification of a specific

military target as 'primary' or 'secondary' is not a matter

of a pure, factual judgment on the nature of a target. Rather,

the categorization of a target should be derived from the

specific tactical situation and from the goals defined by

the decision maker in each specific case. It is clearly a
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matter of subjective perspective. To give an example, con-

sider a case in which the tactical missiles command is re-

3
quired to support ground forces by attacking some C (control,

command and communication) centers of the enemy. Suppose

these centers are defended by SAM batteries. In that case, the

C centers are naturally the primary targets, and the SAM

batteries are the secondary ones (since the judgment of mis-

sion success should be made from the perspective of the sup-

ported forces only, who quite expectedly will judge by

evaluating damages to the C centers only) . On the other

hand, there may be a case where the goal is to destroy a

group of SAM batteries of one type, defended by SAM batteries

of another type. Then the batteries of the first type will

themselves be the primary targets

.

The general optimal allocation problem with which we deal

in Part I of this thesis is the following: The attacker has

a given number of missiles. The defender defends a primary

target with one or with several secondary targets. Probabili-

ties of hitting the primary and secondary targets with one

missile (assumed unintercepted by the defense) are given along

with a probability of surviving an interception attempt made

by the defense. The attacker launches his missiles sequen-

tially, each missile aimed at either the primary target or

a secondary target, according to the attacker's decision.

The problem of the attacker is to find decision rules which

maximize probability of killing the primary target (or, alter-

nately, maximize the number of missiles penetrating into the
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primary target) . The important question is , under what

conditions should he spend some of his missiles engaging secon-

dary targets for the hoped-for benefit of improving the sur-

vivability (hence, the effectiveness) of the rest, which are

to be aimed at the primary target? To deal with this kind

of problem, we define two types of missiles:

(1) Anti-primary (AP) type: a type of missile which is
designed to use against primary targets.

(2) Anti -secondary (AS) type: a type of missile which
j

is designed to use against secondary targets.

We have made this distinction between AP and AS missiles be-

cause primary and secondary targets usually differ in their

physical properties (hardness, size, shape, detectability by

missile seeker, etc.), so that AP and AS missiles may differ

in technical design (for example, they may have different

warheads) . It should be emphasized however that they are not

necessarily different. It is possible that the two types will,

in fact, be technically identical.

In Part II of the thesis we analyze a different concept

of missile warfare —the concept of deceiving the secondary

targets by decoys. We think of AS missiles as representing

one concept of upgrading the survival rate of AP missiles

(i.e., killing the defending targets) and of decoys as repre-

senting another concept of doing that (i.e., denying the

secondary targets their ability to function effectively)

.

Decoys are "dummy" missiles which are designed to appear

on the radar monitors of the secondary targets as real missiles.

Decoys do not have warheads nor guidance heads. Some other
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components of a real missile are either missing or technically

simplified and less sophisticated in decoys. The decoy has an

engine and some navigation devices to allow it to fly in a

path similar to that of a real missile. Its physical signa-

tures (RCS, Optical and IR signature) are very much the same

as those of a real missile. Presumably, the decoy is much

less expensive than a real missile, otherwise there is no

reason to consider it.

The idea behind using decoys is that by prudently com-

bining them with real missiles one can sometimes considerably

save in mission cost while not losing much operational effec-

tiveness (some effectiveness should however be lost, of course,

whenever a real missile is replaced by a decoy) . To put it

differently, it is expected that decoys will improve the cost-

effectiveness ratio. The goal of Part II of this thesis is

to analyze situations in which such an improvement is indeed

achieved.

B . METHODOLOGY

In this work we propose and solve models, to describe

engagement processes, or duels, which take place between an

attacker and a defender. The attacker owns a mixed stockpile

of tactical missiles. The defender is defending one primary

target with one or more secondary targets. Assumptions are

set forth about the character of the duel, and especially

about the defensive operational policy, the available informa-

tion, the number of missiles the attacker may launch etc.
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These assumptions lead to a formulation of mathematical models

that are believed to reflect particular tactical situations

which are of interest.

The above mathematical models are solved using recursive

analytic methods such as stochastic dynamic programming , sto-

chastic game theory and some notions from general decision

theory.

Although the mathematical solving techniques are often

essential to making our models usable, it is not the techni-

cal aspects which are of main concern, but rather the applica-

bility of the models. Therefore, the general theories under-

lying the techniques are only briefly sketched wherever they

are in use in this thesis. The. literature relevant to each

subject treated in this thesis is reviewed separately within

the chapter in which the specific subject is presented.

It is important to emphasize here that the duels which

are modeled in this work have to be regarded as processes

belonging to the "microscopic" analysis of tactical missile

warfare. Large operations with tactical missiles could ade-

quately described as aggregates of many such duels. The

method of this work is to isolate events or to focus on "atomic"

conflicts. We pretend that in each such event an initial

state is determined and both sides act to optimize some objec-

tive, which is a random quantity associated with the result

of the duel.
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C. STRUCTUREAND CONTENTSOF THE THESIS

The general structure of the thesis is depicted in the

following scheme (see Fig. 1.1) . Part I of the thesis is

dedicated to problems in which the choice presented to the

attacker at each stage is between launching an anti-primary

and launching an anti-secondary missile. In Chapters II and

III, one-sided models are presented. In these models, it is

assumed that each missile the attacker launches has a known

and constant probability of survival, which depends on the

number of secondary targets still alive. Probabilities of

hit (conditioned on survival) are also given, and the problem

is to find optimal decisions as a function of the number of

secondary targets present and the number of missiles the

attacker is allowed to launch. Three different objective

functions are considered: (1) Probability of hitting the

primary target; (2) Expected number of AP missiles hitting

the primary target; and (3) Expected cost of hitting the pri-

mary target. (When using this last criterion, the attacker is

assumed to have no limit on the number of missiles he has.)

Some theorems concerned with the general structures of optimal

policies are given, and detailed algorithms to find the param-

eters defining the optimal policies are given, along with some

numerical examples.

Chater IV introduces a new element to the problems dis-

cussed in Chapters II and III. We add the assumption that the

operator of the secondary target has the option of using a

"cautious" mode of operation, which differs from the normal
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Part I —Antd-primary/Anti-
Secondary Mixes

One-sided Optimal Alloca-
tion Processes (Stcch.
Dynamic Programming Methods)

TWo-sided Optimal Alloca-
tion Processes (Stoch.
Game Theory Approach

—

Chapter IV))

nse consists
ne secondary
ret (Chapter

Defense consists
of several
secondary targets
(Chapter III)

Part II —Real Missile/Decoy
Mixes

Exhaustion Models
(Stoch. Game

Approach) (Chapter
VI)

Saturation Models
(Stoch. Dynamic
Programming
Methods —Chapter
VTI)

Figure 1.1. Structure of the Thesis
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mode in that it renders the secondary target invulnerable

to AS-missile, and at the same time less effective against

any threatening missile. The attacker and the defender, both

aware of the options open to each other, are thus involved in

a duel which is quite naturally modeled as a two person, zero-

sum stochastic game. This game is fully analyzed and solved

for the payoff functions mentioned above. A review of litera-

ture on stochastic game theory and its applications is given

in Chapter IV.

Part II of the thesis is dedicated to problems in which

a choice between launching a real missile and launching a de-

coy is made by the attacker in each stage of the process.

Chapter V gives a short introduction to the concept of decoys,

review of literature, and some presentation of the models which

are treated in detail in the subsequent chapters. In Chapter

VI we consider situations in which the mechanism by which de-

coys contribute to the operational effectiveness is exhaustion.

A stochastic game is formulated where at each state the at-

tacker may use a real missile or a decoy, and the defender

may decide to fire one missile (from his limited stockpile)

or to avoid firing. Costs are associated with the real missile

and the decoy and the problems are to find min-max policies for

various payoff functions

.

In Chapter VII a different mechanism of decoy support is

examined, which is the saturation mechanism. Here we assume

that the attacker has the option of launching several missiles
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(reals and decoys) simultaneously/ where the defense can

handle only one (or even more, but less than the number of

missiles launched simultaneously) at a time. We find what

should be the optimal number of decoys to accompany a real

missile, and what is the optimal "mixture" of real missiles

and decoys, so that the expected cost of killing the primary

target is minimized. The technique used is that of stochastic

dynamic programming.

D. SOME REMARKSON THE USE AND APPLICABILITY OF THE MODELS
PRESENTEDIN THE THESIS

The models presented in this thesis are intended to aid a

decision making process concerning the acquisition and deploy-

ment of conventional tactical missiles. In general, Operations

Research models constitute only one block of a wider process

of analysis, i.e., the "systems analysis" process. The term

"systems analysis" usually describes a grand-optimization pro-

cess, conducted at many levels of the defense organizational

hierarchy of a nation, the goal of which is to suggest optimal

courses of behavior. This process combines and weighs a

broad scope of considerations, among them economic factors,

political impacts, technological uncertainties, etc. One of

the more important factors is of course the expected operational

effectiveness of the system in various combat situations. The

exploration of this must be done through operational models ,

models which attempt to foresee likely combat contingencies,

and which are intended to become vehicles with which various

quantitative questions (related to operational needs) are answered
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It is this last category of considerations within which

this thesis is applicable. Our goal was to propose and solve

models which seem adequate to various scenarios, and to sug-

gest ways in which the results obtained through them can feed

that broader process called "systems analysis." Our thesis

is a pure "Operations Research" kind of work, and since much

more should be considered at a "system" level, the reader can-

not make quick conclusions regarding the tactical missile

"system"

.

Some remarks are necessary here on the relation between

the models we propose in this thesis and the "real world"

problems. Since we deal with future situations and make

predictions —conjectures sometimes —of them, the term "real

world" really deserves some clarification. We should bear in

mind that we explore here processes that have not yet been

experienced in the battlefield, and rely on some, perhaps

optimistic, assumptions about future technological systems.

It is noteworthy that although a formal distinction be-
tween the disciplines of "Operations Research" and "System
Analysis" hardly exists and is subject to many vague, ad-hoc
interpretations, it is widely accepted that "Operations Re-
search" represents the low level of analysis, whereas "systems
analysis" represents the higher level. As Quade [6, p. 23]
points out:

"...when Operations Research came to be applied out-
side the military forces, the term was interpreted
in its narrow sense, being confined to studies of
low level problems where the decision maker had a
clear objective in mind. The term systems analysis
then began to be applied to broad "higher level"
studies that looked into aspects that OR workers had
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Hence, no certain facts about what can be viewed as "real

world" and what can only be considered as an illusive or sim-

plistic imagination, can be decided. The future reality may

deviate from what we predict, and this deviation may be of

such a degree so as to render some of our models inapplicable.

This is, however, an inevitable deficiency of all operations

research models related to future use of newly deployed weapon

systems . This is precisely the same dilemma which exists in

the analysis of anti-ballistic-missiles, or anti-submarine

warfare, both of which have never been experienced before but

have been extensively treated in the O.R. literature.

Using methodical terms, we can say that we lack here tools

for validation of our models. With regard to the problem of

validation, we quote from Fawcett [3, p. 13]. This reference

is an excellent example of a work written with the same philosophy

of research guiding this thesis. It deals with rational selec-

tion of tactics for A/G attacks in various situations. On

the validation problem, Fawcett writes:

. . .A model would be accepted as valid if its struc-
ture parallels the real world situation of interest
sufficiently accurately to allow useful conclusions
to be drawn. The decision maker must decide whether
or not this is true for a given model in a given
decision situation. Accordingly, the validity of an
operations research model is meaningful only when

usually considered 'given' (the objective, for
instance) and accepted models that seemed to some
hardly scientific..."

"...To avoid confusion, it is suggested (as we
do here) that the term "Operations Research" be
confined to efficiency problems, and "system
analysis" to problems of optimal choice."
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a specific decision is to be made; otherwise, there
is no basis for judging whether or not the model
constitutes a satisfactory representation and the
concept of validity has no meaning."

Our approach therefore was to propose and analyze models that,

as anticipated today, grasp the essential relevant factors

of tactical missile allocation processes.

Finally, it should be noted that although our interests

lie in the area of tactical conventional missiles, much of

the material here can be quite adequate to describe attack

processes involving intercontinental ballistic missiles. In

some models, only minor modifications should be made to make

th€:in adoptable for use in ballistic missile warfare research.
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PART ONE: OPTIMAL ALLOCATION PROBLEMS INVOLVING
ANTI -PRIMARY AND ANTI -SECONDARYMISSILES

II. THE OPTIMAL ALLOCATION PROBLEMWITH
A SINGLE SECONDARYTARGET

In this chapter we present a basic allocation problem

which, although simplified in many aspects, is still helpful

in gaining insight into the military operational questions

which are the theme of this thesis. Besides, the model pre-

sented in this chapter can very well be useful by itself as

it fits directly some real tactical scenario.

In the model analyzed here we assume that one primary

target is defended by a single secondary target. It is also

assumed that the defender (who operates the secondary target)

responds to all missile attacks with an attempt to intercept

the offensive missile. In Chapters III and IV we elaborate

on this model by considering the case in which several secon-

dary targets defend the primary target (Chapter III) and by

allowing a more sophisticated defense policy (Chapter IV)

.

A. DESCRIPTIONS OF THE BASIC MODEL

1 . Assumptions

We assume that the attacker is allowed to make M attacks

against a primary target, which is defended by a single secon-

dary target. Due to some technical restrictions, or by command

decision, the attacker is restricted to launch his missiles one

by one. After every launch, the attacker is informed whether
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the target at which he aimed his last missile was hit or missed.

He uses this information (which he receives through the

intelligence system, which is assumed ideal) to make the

decision of which target (the primary or the secondary) should

be the next one to be engaged.

The secondary target is always thought of as a Surface-

to-Air Missile (SAM) battery of a technologically advanced

type. Such a system has only one component the killing of

which renders the whole system inoperable. This component

is the control unit, which is usually a small vehicle or van,

with the radar installed at the outside and the operators

and control panels located inside. This control vehicle

operates 3-6 launchers which are located aroung it.* There

is no purpose in attempting to kill launchers because of their

high redundancy.

The secondary target is therefore a 'point target 1

actually. In military terminology, a 'point target' is one

with characteristic dimension which is much smaller than the

radius of effectiveness of the weapon used against the target.

(Thus being a 'point target' is not a physical feature of

the target alone; it is determined by both the target and the

weapon.

)

We shall also assume that the primary target is a point

target, although this assumption is not always necessary, as

will be discussed later.

*
The Russian SA-6 system, or the French "Crotale" are

examples for that type of defense system.
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The practical significance of the assumption that a

target is a point target is that the attack of the target by

a missile can result either in a hit, and consequently in a

complete destruction of the target, or in a miss, which means

that no damage is inflicted upon the target. No result of

intermediate significance is assumed to be possible (partial

damage, for instance) . Hence each attempt to destory the tar-

get with one missile is considered a Bernoulli trial, with a

given probability of success (discussed below)

.

Another assumption which has to be explicitly stated,

is that the primary and secondary targets are located suffi-

ciently distant from each other so that it is impossible for

a single missile to damage both- of them. The distance is not

so large, however, as to enable the defender, who uses the

radar of the secondary target for detection of offensive

missiles, to distinguish between missiles which are aimed at

the primary target and missiles which are aimed at the secon-

dary target.

The missiles to which we refer in this thesis are

guided missiles of a very high accuracy of hit (Circular Proba-

ble Error [CEP] of 3-6 feet are considered typical) . There

is no need in this thesis to refer to specific features of

the guidance system or of any other component of the missiles.

All the parameters needed for the operations research analysis

are assumed known to the attacker, and will be discussed later

In real applications of the methods offered in this thesis one

should, of course, evaluate those parameters in order to apply
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the model, and this evaluation in itself usually amounts to

a very hard preliminary analysis.

It should be noted that the missile which the attacker

uses against the primary target may or may not be of the same

type of missile used to attack the secondary one. Different

missiles would normally be required due to differences in the

vulnerability and physical characteristics between the primary

and the secondary target. But this is not essential to the

models presented in this chapter. The missiles are launched

from an airborne launcher or from a ground launcher. In all

cases we assume that the missiles have ranges long enough so

as to enable the attacker to locate the launchers in a safe

place. In other words, all the. models in this thesis assume

that the launcher is practically invulnerable.

2 . The Parameters of the Problem

We denote by q the probability that a missile launched

at either the secondary or the primary target will survive

an interception attempt made by the secondary target. In

other words, the secondary target, so long as it is alive, has

probability 1-q of intercepting an offensive missile while

it is still flying to its target, thus preventing it from

reaching the vicinity of the target.

We denote by P the probability that a single offensive

missile, aimed at the primary target (AP-missile) , will hit

the target, given that it survives the secondary target. Thus,

the overall probability of killing the primary target by an
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AP-missile is P if the secondary target is already dead, and

p -q if it is still alive.
P

We define a parameter P in a similar way: it is the

probability of hitting the secondary target by an anti-

secondary missile (AS-missile) once it survives the secondary

missile.

The parameters P and P s are sometimes called —in mili-

tary terminology —the Single-Shot-Probabilities-Of-Kill (SSPK)

.

They are of course functions of many factors such as the

physical characteristics of the targets, technical features

of the missile, launch tactics, environmental factors (weather,

visibility), etc. As was explained before, the parameters should

be estimated prior to implementation of our model by properly

evaluating the effects of each of the above factors. It is

clear, however, that in reality there is no hope of getting

an "accurate" value of P , P and q. Therefore, a sensitivity
p s * 2

analysis of the results should be carried out when implementing

the models to be presented here.

3. Policies and Criteria of Effectiveness

As long as the secondary target is alive, the decision

problem faced by the attacker at every stage is at which tar-

get to launch the next missile. Each stage is defined by the

number of missiles left to be used (denote it by M) . We denote

by AP (AS) the decision to launch a missile at the primary

(secondary) target. Let f| be the set of positive integers.

A 'policy' is a function D(M), D: |V| + {AP,AS} which prescribes
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which target should be selected for attack at any number of

missiles left to be launched, assuming, of course, that the

secondary target has not yet been destroyed. When the secon-

dary target is dead, the decision problem is, of course,

trivial. We denote by D the set of all policies.

In order for optimality concepts to be meaningful, we

have to define a criterion of effectiveness of a policy. Two

criteria of effectiveness are analyzed in this chapter.

a) Maximum-Probability-Of-Hit (MPH) Criterion: a policy

|

determines the probability that the primary target
will eventually be hit (given the number M of killing,;
attempts left). We denote by P(M;D) the probability
of hitting the primary target by M attempts, given
that the policy D is used. The problem to solve is
to find the policy D* such that

P(M;D*) = Max P(M;D) = P (M)

DeD

b) Maximum-Expected-No.-Of-Penetrators (MENP) Criterion:
In this case the objective is to bring into the
primary targets as many missiles as possible. A
penetrator is an AP-missile which survives the
secondary target. If we denote by E(M;D), the expected
number of penetrators when the attacker is using
policy D, with M missiles left to be launched, the
problem is to find the maximizing policy D* such that

E(M;D*) = Max E(M;D) = E (M) .

DeD

Criterion a) above is usually the appropriate one when the

primary target is a 'point target', and when the only measure

of success is the target being killed or not. Thus, the

natural objective function in that case is the probability that

at least one missile hits the primary target. Criterion b)

is the more natural one when the primary target is not a single

M
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'point target', but rather a compound of many small targets.

Examples are: Airfields, industrial facilities, etc. In

such cases, the relevant measure is the number of missiles, aimed

at the primary target, which penetrates through the defense.

The argument behind the adoption of such a criterion in this

case is that the expected damage inflicted upon the target

is perceived to be directly related to the number of penetrating

AP-missiles

.

A third criterion will also be examined in this thesis,

but its treatment is postponed to the next chapter where the

problem with that criterion is presented and solved in a more

general situation, i.e., where the numbers of both primary and

secondary targets are assumed arbitrary. To use this criterion,

the model is slightly changed: Rather than assuming that the

attacker is restricted to a given* number of launches , we assume

that he goes on with the attacks until the primary target is

killed. The objective is to find a policy which minimizes the

expected cost of achieving that kill (there are costs C and
P

CR associated with an AP- and an AS-missile, respectively)

.

This criterion is abbreviated by MEC (Minimum-Expected-Cost)

.

In Section B we solve the problem with MPH criterion.

In Section C the MENP criterion is treated. The problem with

the MEC criterion is solved in a more general context, as

explained above, in Section III.E.
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B. THE ALLOCATION PROBLEMWITH THE MAXIMAL-PROB-OF-HIT
(MPH) CRITERION

1 . The Functional Equation

Let us denote by Q(M) the probability of missing the

primary target, when the attacker starts with M missiles and

makes optimal decisions at each stage. It is also assumed

that the secondary target is still alive. Clearly

Q(M) = 1 - P(M) = 1 - P(M;D*)

where D* is the optimal policy. If the secondary is dead,

the probability of missing the primary target is denoted by

Q~ (M) , and is given simply by

Q (M) = (1 - P
p

)

M

We now write the stochastic functional equation for the func-

tion Q(M). We use the dynamic programming principle of opti-

mality due to R. Bellman [2]. The equation is:

M
Q(M+1) = Min{P -q(l-P ) +(1-P q)-Q(M),(l-P -q)-Q(M)} (II. 1)

s p s P

The first term inside the brackets is the probability of not

destroying the primary target, starting from state M+l, if

the offender attacks the secondary target first and then pro-

ceeds optimally. The second term corresponds to a decision

to attack the primary target f irst, and then proceed optimally.

To initiate the solution of the functional equation (II. 1),

we start from M = 1 and proceed forwards. To find Q(l), notice
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that when the offender is left with only one missile, the

optimal decision is clearly to attack the primary target.

Therefore we have:

Q(l) = 1 - P .q

as before. Let D*(M) (M = 1,2,...) be the optimal policy.

Then, D*(l) = AP . Now let M* be the smallest number such

that D*(M*)= AP whereas D*(M*+1) = AS. Thus, M* is a number

with the following property:

D*(M) = AP for M = 1,2, . . . ,M*

but

D*(M*+1) = AS.

The number M* has the meaning that the attacker has to have

at least M*+l missiles in order to afford spending at least

one missile in the indirect action of attacking the secondary

target. This does not exclude a priori the possibility that

the optimal decision at some state M > M*+l would be to act

against the primary target. In other words, it seems intui-

tively possible that for stockpiles of very large size M, and

for at least some combination of the parameters P , P and q,
P s

it would be optimal to allocate the first missile to the pri-

mary target.

This intuition is, however, false. We show that if

M* is finite, then for all values of M greater than M*, the
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optimal decision is AS. However, it is possible that M* = »,

in which case the attacker should spend all his missiles on

attacking the primary target, no matter how many he has (we

show later that this happens when P > P )

.

ctr p — s

This observation can be formulated as follows: In an

optimal policy D*, no switch is possible from attacking the

primary target to attacking the secondary one. One switch

at most is possible from the secondary to the primary target.

We put this observation formally as a lemma.

2 . The Basic Lemma

If D* is optimal, and D* (M) = AP for some M, then

D*(M') = AP for all M» < M.

Proof ; We use a method- of proof very common to prob-
*

lems of optimal sequential processes. Let us assume, by

contradiction, that D* is an optimal policy, and that for some

state M we have:

D*(M) = AP

D*(M-1) = AS

Let us consider a different policy D**(M), defined as follows:

D**(M) = AS

D**(M-1) = AP

and
D**(M) = D*(M) for all M < M-l.

*
See, for instance, R. Bellman [2, Ch. 2] for proof of

optimal policy for the "Gold Mining" problem. This method of
proof also applies to some problems in search theory and
optimal scheduling problems.
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D** is almost identical with D* . The two policies disagree

only on states M and M-l. Let us calculate now the values of

the objective functions at state M under policies D* and D**.

We calculate this by conditioning on results of the first

two stages (i.e., the first two missiles to be launched).

We have

:

Q(M;D*) = Q(M) = ( 1-P -q) •

P

g
-q ( 1-P )

M" 2

+ (1-P -q) (1-P
g

.q) -Q(M-2) (II. 2)

M-l
Q(M?D**) = P -q(l-P ) +(1-P -a)* (1-P -q)-Q(M-2) (II. 3)

s p s ^ P

Subtracting Eq. (II. 3) from Eq. (II. 2) we get:

Q(M;D*) - Q(M;D**) = P P -q(l-P )

M" 2
(l-q) > 0.

s p p

Hence,

Q(M;D**) < Q(M;D*) = Q(M)

Thus, D* cannot be an optimal policy as was assumed. This

completes the proof of the lemma!

3. Solution

The basic lemma shows that calculating M* as a function

of P , P and q is sufficient for completely specifying the
P 8

optimal policy D* . From the definition of M* , we see (using

Eq. (II. lfl that:
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Q(M) = (1-P •q)Q(M-l) for M <_ M*

so that

Q(M) = (1-P -q)
M for M <_ M*

.

(II. 4)

M* is known to be the smallest M such that the minimum in

Eq. (II. 1) is obtained by the first term, that is, M* is the

smallest M to satisfy the inequality:

P .q(l-P )

M + (1-P .q)Q(M) < (1-P .q)Q(M)
s p s P

or

P .(1-P )

M
< (p -p )Q(M) (II.

5

s p s p •

Substituting for Q(M), using Eq. (II. 4), we get

p «-<i-PJ M
* (p «- p J • d-P

r ,-q)
M

s p s p p

or

1-P M P

<i=r?qi «
1 - g* (II - 5a >

p n s

1-P
Now, since q < 1, we have *

—

_
°

< 1, so that the^ 1-P »q
P

above inequality is equivalent to

P
la(l-g£)

M > j-gS (II. 5b)

P
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As implied by its definition, M* is the least integer which

satisfies inequality (II. 5b). Therefore we can now write:

M* —= 1 +

lnd-^H)
s

1-P
ln(- -)

L__
v i-p

p
-qu

(II. 6)

where [x] denotes the greatest integer smaller than or equal

to X. From inequality (II. 5) we observe that if P P , this

inequality cannot be satisfied by any finite value of M*

.

Hence M* = °°, and this confirms a rather intuitively obvious

fact that when the kill probability of the primary target (con-

ditioned on survival of the missile) is equal or greater than

that of the secondary target, it can never be desirable to

I allocate missiles to the secondary target.

Another interesting observation is the following:

suppose we wish to know what should be the relation between

the parameters P , P , q in order for M* to be equal to 1.

We set:

ln(l--£)
s

1-P
ln( I=P"?q>

P

and this implies:

P 1-P
1 - -R > P_

P - 1 - P -q
s p ^
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or

1 + (P -P )q - P < 0.
s p s

Since we have assumed that P > P , we see that this last
s p

inequality cannot be satisfied by any triplet of values

(P ,P ,q) . In other words, the value of M* is at least 2 for
p s

all possible values of the parameters. Since when P < Pr ^ s — p

it is always optimal to launch at the primary target, we con-

clude that if the attacker has two missiles, he always has to

allocate both of them to the primary target —no matter what

are the values of P , P , q! This fact is somewhat surprising
P s

because intuitively one might very well suspect that for some

combinations of values of P , P -

, q (for instance, for small
p s

q and P and large P ) it would be better to use the first

missile to attack the secondary target, in order to consider-

ably improve the probability of hitting the primary with the

second one.

Another question of a particular importance to opera-

tional analysis is the following: Given P , P and M, what1 3 p s

values should q assume in order for it to be optimal to assign

at least one missile to the secondary target?

This question can be answered by a straightforward

argument based on inequality (II. 5a) above. If --for particu-

lar values of M, q, P ,P —the optimal decision is AS, then

the four numbers M-l, q, P , P should satisfy inequality

(II. 5a), which can be shown to be equivalent to
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< q* =

1 -
1-P

P
P 1/M-l

s
9 p

P

The optimal policy D* (expressed as a function of q for given

M, P , P ) is thus:
P s

AP if q >_ q*

D* =

AS if q < q*

Notice that q* -> 1 as M * °° as expected. When the

attacker has a large number of killing opportunities (and if

P > P ) , we expect that it always is beneficial to start

with the secondary target, unless q = 1, in which case all

missiles surely survive so that there is no need to spend

missiles on the secondary target. Notice also, that if M - 2,

we get q* < 0, and since q is a probability it can never be

smaller than q* in that case, so that the optimal decision

for M = 2 is always AP--as discussed above. We now give an

explicit expression for Q(M) for values of M greater than M*

.

From the functional equation (II. 1) we find:

Q(M) = P
g

.q(l-P )

M" i +(l-P
s

.q) .Q(M-l) (II. 8)

= P -qd-pftl-P -q) . [P .q(l-P )

M~ 2

s p s s p

+ (l-P
g

.q)Q(M-2)]

M-M* *
= ... = P -q J (1-P .q) 3 ".(l-P )

M"
] +(1-P q)

M" M .Q(M*).
s .~, s p s
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M*Noting that Q(M*) = (1-P .q) (since for M = M* the optimal

decision is AP, and it stays AP for M < M*) , we find:

Q(M) = P -q(l-P )

s p

M-M* 1-P .q . .

.

L
,

l 1-P '

:=i p

M—M* M*
+ (l-P

s
.q)

M M
.(l-P

p
.q)

M
(II. 9)

= P -q(l-P)
s p

M-l
1 - (

i-P *q », m*iS ^.M-M 1

1-P

1 - (
1-P -q

1-P

,, _ .M-M*.. „ .M*
+ (l-P

s
-q) (1-P -q) '

M*
P .q(l-P ) *

= ["^ rS ] * (1-P )P «q-P
s ^ p

M1

+ [(l-P
p

.q)
M - % . q . p

P ]d-P
s

-q)
M-M*

In all the calculations which have been done here, we assumed

P -q / P . (The case P -q = P does not pose any special

difficulty. It makes the summation in Eq. (II. 9) simpler.)

From the last equation we see that Q(M) can be ex-

pressed as

M-M* M-M*
Q(M) = A- (1-P )™ M

+ B- (1-P -q)
p s

(11.10)

where A and B are coefficients which depend on the parameters

of the problem only (but not on M) , and are given by:

A =
P -q(l-P )

P .q-P
s ^ p

M*
P -q(l-P

M'

M* p_, B . (1-P .q, -
p
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Notice that we could arrive at the expression (II. 8) (and

hence, at Eq. (11.10)), by applying a direct probabilistic

argument: We would condition the probability of miss on the

number of missiles which are spent before a hit at the secon-

dary target is achieved. The first term in the last row of

Eq. (II. 8) accounts for all the cases in which the secondary

target is destroyed by one of the first M-M* missiles. The

second term corresponds to the case in which all first M-M*

missiles fail to hit the target, thus imposing on the attacker

the necessity to switch and attack the primary target with

all the remaining M* missiles.

C. THE ALLOCATION PROBLEM WITH MAXIMAL EXPECTEDNO. OF
PENETRATORS(MENP) CRITERION

1. The Functional Equation

Let E (M) be the optimal expected number of penetra-

tors, given that the attacker is allowed to launch M missiles,

and that the secondary target is alive. A penetrator is an

AP missile which survives the defense (i.e., the secondary

target) and thus penetrates into the primary target. If the

secondary target is dead the attacker will of course launch

all his remaining missiles at the primary target, and they

are free to penetrate. The expected number of penetrators will

be equal to the number of remaining missiles.

Suppose the secondary target is alive, and the attacker

has M+l missiles. If he launches the first one at the secon-

dary target and then behaves optimally, the expected number

of penetrators will be:

47





M (with prob. P -q]

or

E(M) (with prob. 1-P «q)

so that the unconditional expected number of penetrators will

be

P .q-M + (1-P «q)E(M)

.

s s

If, on the other hand, the attacker uses the first missile to

attack the primary target, and then behaves optimally, the

expected number of penetrators will be

q + E(M) .

The functional equation for E(M) is thus:

Q(M+1) = MaxCP .q-M + (1-P -q) E (M) ,q+E (M) } . (11.11)

If the maximum in Eq. (11.11) is attained by the first term,

the optimal decision is AS, and if it is attained by the

second, the optimal decision is AP.

2 . Solution

It can be shown, by much the same way it was done in

Section II. B. 2 that using the optimal policy, the attacker

cannot switch from attacking the primary target to attacking

the secondary one. Once the attacker directs a missile against

the primary target, he should do so with all the rest.
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Thus, the number M* is defined here in exactly the

same way as it was done before (Section II. B) . For M M*

we get

E(M+1) = q + E(M)

from which we get the relation

E(M) = q.M . (11.12)

To find M* we use the fact that M* should be the least value

of M for which the first term in the functional equation (11.11)

is greater than the second term. Thus, M* is the least value

of M to solve the equation:

P -q-M + (1-P .q)E(M) > q' + E (M) . (11.13)

For M <_ M*, E(M) is given by Eq. (11.12), so that inequality

(11.13) becomes, after substitution:

P .q(l-q) -M > q
3

Hence:

M* = 1 +
Es (

'-
qi

(11.14)

It is now possible to express E(M), for M > M* by

conditioning on the number of missiles that will be required

to destroy the secondary target. With probability (1-P «q) *

•P «q, the secondary target will be destroyed by the jth

missile (j = 1, 2 , . . . ,M-M*) . In such a case, the remaining
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M-j missiles will freely penetrate into the primary target

If all the first M-M* missiles miss the secondary target,

the attacker will be left with M* missiles,

and thus will have to switch to the primary target. The

expected number of penetrators in that case is

M-M* . , *
E(M) = I (1-P .q) : .P .q(M-j) + ( 1-P .q) •

M*
•

q

j=l s s s

= M- [1-(1-P .q)
M-M*] -P e -q. I j- (1-P-q) j_1

s s j=1 s

M-M*
+ (1-P .q)

m n
-M*q .

s

We now use the formula

n ^i i / . i s v n v n+l
y ^ x

3"l _ l-(n+l)X + n-X

j-1 (1-X)
2

to simplify the second term of the above equation. After

some algebraic manipulation we finally get:

E(M) = M - =-i- + [_L_ - M*(l-q)] • (1-P -q)
M~M* (11.15)

s* q s
" q

We have chosen to express E (M) in the specific form given in

Eq. (11.15) since it is the form which enables us, as we shall

see later (Section III.D) to initiate an inductive proof of

the general form for the expected number of penetrators when

several secondary targets are present.
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D. NUMERICAL RESULTS

Figures II. 1 through II. 7 refer to the allocation problem

with iMPH criterion (Section II. B). Figures II.1-II.3 can

be considered as "decision charts", which can serve the attacker

in immediately selecting, for each state and set of param-

eters, the optimal action. For any given values of P and

M there corresponds a curve in the P -q plane, which separates

the zone where the optimal decision is AP (the zone "above"

the curve) from the zone where the optimal decision is AS

(that which is below the curve) . The curve itself simply

gives the value of q* as a function of P .

s

Notice also, that the value of M* , for a given set of

values P , P , q can very simply be discovered from the graphs
P ^

given in Figs. II.1-II.3. To do that, one must select first

the appropriate figure to use (according to the specific value

of P ) . Then one should locate the point P -q on the figure
p

r s ^ 3

and determine which is the closest curve, from below, to that

point. The M-value of that curve is exactly M* for the com-

bination of P , P , q examined. To clarify the last state-
p s ^ "*

ment, let's find the M* value of the set

P = 0.2
P

P = 0.6
s

q =0.5

From Fig. II. 1, which is the one corresponding to the above

value of P , we find that the point (P ,q) = (0.6,0.5) is
P ^
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located between the curve with M = 4 and M = 5. This means

that if M = 4, the attacker should take the AP decision,

whereas if M = 5 he should take the AS decision. In other

words, M* is equal to 4.

In Figs. II. 4 through II. 7 we present the variation of the

objective function P (M) (i.e., the probability of hitting the

primary target) with M, the number of missiles the attacker

is allowed to launch. In order for the results to be indica-

tive of the quantitative significance of using an optimal

policy, we have chosen not to present the function P (M) itself,

but rather, the "scaled" probability of hit J(M), which is

defined by:

j do = —EWL. i-Q««)
M M

1-(1-P -q) 1-U-P -M)
P P

The function J(M) is the ratio between the optimal probability

of hit, and the probability of hit which will be achieved if

the attacker uses the simple, "natural" policy of attacking

only the primary target. As long as M is less than or equal

to M* , the optimal strategy itself is an "AP-only" strategy,

and so J (M) = 1 for M <_ M* , as seen in the graphs. For

M > M* , the function J(M) is greater than 1, and has a maximum

on some finite M. Also, notice that J(M) »- 1 as M + « . The

reason that J (M) has that general form, which is seen in

Figs. II.4-II.7, is very transparent: For very large values

of M, the probability of killing the primary target becomes
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Pr. of Hit at Optimal Policy

1 - (1-P
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.q)
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26 28 30

Optimal (Modified) Objective Function J(M)
for Allocation Problem with MPH Criterion,
P = 0.2, P =0.9
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1.5[

J(M)

1.4

J(M) = Pr. of Hit at Optimal Policy

1 - (1- . Pp . q)
«

p
P

= .4 P = 0.9
s
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Figure II. 5:
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M

Optimal (Modified) Objective Function J(M)

for Allocation Problem with MPH Criterion,
P = 0.4, P^ = 0.9
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J(M) = Pr. of Hit at Optimal Policy
M

i - u-p
p

- q r

P = 0.2
P

P = 0.7

2 4

Figure II. 6: Optimal (Modified) Objective Function J (M)

for Allocation Problem with MPH Criterion,
P = 0.2, P = 0.7

P s
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very close to one even when using the non-optimal AP-only

strategy. Therefore, J (M) is very close to 1.

Notice that J(M) directly gives the improvement achieved

by the optimal policy, over what would be achieved in the

non-optimal AP-only strategy. This improvement is seen to

be more significant as the value of q gets greater. By com-

paring the various graphs we can also conclude that when P

gets smaller (q and P fixed) , or when P gets bigger (q

and P fixed), the improvement J(M) is more significant.

Figure II. 8 refers to the allocation problem with MENP

criterion. We present the function H(M) defined by

H(M) = E(M)
M-q

for P =0.7 and for q = 0.2, 0.4, 0.6. Notice that the
s ^ '

function H (M) plays here the same role that J(M) plays in

the problem with the MPH criterion. The function E(M) is

given in Eq. (11.15) and is the optimal expected number of

penetrators. The expression M*q in the denominator is the

expected number of missiles which will penetrate if the

attacker chooses to ignore the secondary target and to use

the AP-only strategy. ' Thus H (M) is the natural quantitative

measure of the significance of using the optimal policy.

The function H(M) is monotone increasing. It may easily

be shown that H(M) approaches q as M •*> ®. This can be ex-

plained as follows: as M gets large, the expected number of

penetrators gets very close to M. Using the "AP-only"
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FIGURE II. 8: Optimal (iModified) Objective Function H(M)
for Allocation Problem with MENP Criterion
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strategy the payoff is Mq. The ratio H(M) is thus very

close to q
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III. OPTIMAL ALLOCATION PROBLEMSWITH
SEVERAL DEFENSIVE TARGETS

A. INTRODUCTION

In Chapter II we have worked on a problem in which only

one secondary target was assumed to exist. In many instances,

military targets of high value are defended by more than one

secondary target. The effectiveness and survivability of the

defense increases by adding secondary targets, whereas the

survivability of offensive missiles decreases. In this chap-

ter we analyze the same problem of Chapter II, but generalize

it by allowing an arbitrary number of secondary targets to

exist.

The assumptions we make are the following: We assume that

all secondary targets are identical point targets. They are

located in the vicinity of the primary target, close enough to

the primary so that a detected offensive missile cannot be

decided in advance on its destination (i.e., whether it is the

primary or any of the secondary targets) . The secondary tar-

gets are, however, sufficiently distant from one another so

that a single missile cannot inflict damage to more than one

target. We assume also that the destruction of one secondary

target does not have any impact on the operability of other

targets, that is, the individual targets are absolutely

operationally autonomous.

Three different problems are solved in this chapter,

corresponding to three different criteria of effectiveness:
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(1) Maximizing probability of hitting the primary
target (MPH criterion)

(2) Maximizing the expected number of anti-primary (AP)
missiles which penetrate their target (MENP criterion)

(3) Minimizing expected cost of destruction of the
primary target (MEC criterion)

.

The choice of the "appropriate" criterion to use depends

on the specific military situation in which the models are

to be implemented. We would use the MPH criterion if the pri-

mary target is a point target of high value, which practically

can be assumed to exist in one of two states only: "killed"

or "alive". The second criterion described above (MENP) fits

a situation where the primary target is actually a big complex

composed of many different point and area targets (e.g.: air-

field, industrial facility) . The level of damage to such a

target can be one of a variety of partial, or intermediate

levels (between the extremes of completely "killed" and com-

pletely "alive") . The number of AP missiles which penetrate

such a target is usually quite adequate to represent the level

of damage inflicted upon the target. The MEC criterion would

be used in cases where the attacker is not limited in the num-

ber of missiles he can launch, so that the attack will be

allowed to continue until the primary target is destroyed.

B. THE SURVIVAL FUNCTION

Let N be the number of secondary targets defending the

primary target. We define a function, called the survival

function, and denoted by q(N s ), which is the probability that
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an offensive missile will survive, given that N secondary

targets are present. The function q(N ) is usually complicated

and may be found from both experimental (evaluation tests)

data and theoretical considerations. This function should

satisfy the conditions:

(1)
>

q(N ) <_ 1 (since q(N ) is a probability)

(2) q(N ) <_ q (N -1) (since presumably, more defensive
targets reduce the survivability of
the attacking missile)

(3) q(0) = 1.

The form of the function q(N ) will usually be implied by

the defensive strategy of controlling the operations of the

N units. We give some examples:

(1) Independent Operations: Here we assume that upon any

arrival of an offensive missile, each secondary target makes

an attempt to intercept the missile, independently of all the

others. In this case:

N
q(N ) = q (where q is a parameter)

(2) Coordinated Operations: Here we assume that any

potential direction of arrival of an offensive missile is

protected by n >_ 1 SAM batteries if n < N and by all N

batteries if N < n. Thus,
s —

q n = (constant = q ) if N > n
Q

v ~~ " w
** ' " s

<* ( V "
I N

q
s if N < n^ s —
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(3) When operations are centrally controlled by a single

unit, it is sometimes believed that the following process

underlies the engagement phenomena. The decision taken by

the defender is always to assign one unit to a detected offen-

sive missile. However, there is a probability r that any single

defense unit will be operative at the moment of its call, so

that the defenders have a unit to assign only if not all the

units are inoperative at the time when engagement is required.

The probability of successful interception by any secondary

target, given that it is operative, is assumed to be 1-q.

This leads to a survival function of the following form:

N N
q(N

g
) = (1-r) s + [1 - (1-r) s

] -q

or

N
q(N

s
) = q + (1-q) (1-r) S

.

The above are just the simplest types of survival functions

which occur quite frequently. However, we shall not restrict

ourselves to these special forms. Our goal is to investigate

the structure of optimal assignment policy for a general

survival function, with special emphasis on how this structure

depends on general properties (such as convexity-concavity) of

the function q(N )

.

s

C. OPTIMAL ALLOCATION—MAX. PROB. OF HIT (MPH) CRITERION

1 . Formulation

We say that the attack process is in state (N ,M) if

there are N secondary targets present and the attacker has
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M missiles to launch. We denote by Q (N ,M) the probability

of missing the primary target when starting from state (N , M)

and using the optimal policy. The parameters P and P have

the same meaning they had in Chapter II, namely, the probabili-

ties of a surviving missile to kill the secondary and primary

targets, respectively. The survival function is q(N ). The

functional equation for the optimal probability of miss is:

iP

-q(N )-Q(N -1,M-1) + (1-P -q(N ))'Q(N ,M-1)ss s ss s

(III.l)

Kl-q(N
g

) -P ) •Q(N
s

,M-l)

The first (second) term is the probability of miss

given that the first decision made by the attacker is to

launch an AS (AP) missile, and then he uses the optimal policy

The rest of this section is dedicated to solve this equation

and to analyze the structure of the optimal policy.

2 . The Optimal Policy Structure--A Fundamental Lemma

A basic observation, which can be made without solving

the functional equation, and which actually is the key to the

solution process, is that if the attacker follows the optimal

decision procedure, he can never launch an AS missile after

at least one AP missile have been launched. That is, the

optimal policy will always dictate to spend some missiles (and

possibly none) on secondary targets and then to "switch" to

the primary one, and use all the remaining launch opportuni-

ties to launch AP missiles. We present this statement as a
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lemma and prove it by probabilistic methods. We denote by D*

the optimal allocation policy. Notice that any policy D is

simply a function from the set of all states S = { (N ,M)

:

N , M = 1,2,...} to the set {AP,AS}, where AP (AS) means anti-
s

primary (anti-secondary) decision.

Lemma: Let the survival function q (N ) be strictly de-
s

creasing. If for some state (N ,M) , the optimal

policy D* satisfies

„ !

D*(N ,M) = AP
S *>

. i

'

then, for all values M1

, less than M, we have also,:

D* (N ,M') = AP
a

Proof : We prove the lemma by contradiction. Suppose there

is some state (call it (N ,M) ) , such that at the optimal policy

we have:

D*(N ,M) = AP
s

and

D* (N ,M-1) = AS
s

Let D** be another policy, which we now define by specifying

the action it dictates on all possible states. We require:

D**(N ,M) = AS
s

D**(N ,M-1) = AP
s
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and

D**(N ,M) = D*(N ,M)
s s

for all (N ,M) ± (N ,M) or (N ,M-1) . Let Q (N ,M;D) denote
s s s s

the probability of miss achieved by using policy D, when start-

ing from state (N ,M) . Then by definition of D* we have:

i

Q(N ,M) = Q(N ,M;D*)
s s

Repeating the same argument which was used in the proof

of the lemma in Chapter II (page 4 0) , we have

Q(N,M) = Q(N ,M;D*)

= [l-q(N J .P 1 *qUT ) -P -Q(N -1,M-2;D*) (III. 2)

+ [l-q(N e ) -P^l • [l-q(N ) P^ ] Q (N ,M-2 ; D*

)

s p s s s

and

Q(N ,M;D**) = q(N ).P • [l-q(N -1)-P ]-Q(N -1,M-2;D**)
s sssps

+ [l-q(N e ) -Pi • [l-q(N o ) -P^] -Q (N Q ,M-2 ; D**)
s s s p s

(III. 3!

We now subtract Eq. (III. 3) from Eq. (III. 2), and use the

following identities (which are implied by the fact that D*

and D** are identical on M < M-l)

:

Q(N ,M-2;D*) = Q(N ,M-2;D**)
s s

and
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Q(N -1,M-2;D*) = Q (N -1,M-2;D**)
s s

We then get:

Q(N ,M;D*) -Q(N ,M;D**)
s s

= q(N ).P -P «[q(N -l)-q(N )]-Q(N -1,M-2;D*) >
^ s s p s s s

where the last inequality comes from the assumption that q (N )

is strictly decreasing, and that Q(N ,M;D) is always positive.

Thus,

Q(N ,M;D**) < Q(N ,M;D*)

and this contradicts the assumption that D* is the optimal

policy! The lemma is thus proven.

If q(N ) is not strictly decreasing, as was assumed, but

simply non-increasing (as it must be!) the statement of the

lemma should be slightly modified. From the proof of the

lemma we see that if q(N ) = q(N -1)/ then policies D** and

D* give identical probabilities of miss. Thus, we can only

say that there always exist an optimal policy such that

D*(N ,M) = AP implies D* (N ,M') = AP for all M' < M. By .the

discussion above we see that the only way to change optimal

policies without destroying optimality is to reverse their

dictations on states (M,N ) , where the value N is such that
' s s

q(N ) = q(N -1) (assuming this reverse changes the policy),
s s

We will be interested however only in policies which do not

switch from AP decisions back to AS decisions. It is clear
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that for such optimal policies, there is a value of M (denote

it M* (N ) ) associated with every value of N , such that the
s s

optimal policy (D*) can be written as:

D* (N ,M)
s

AP if M < M* (N )— s

AS if M > M*(N )

s

The function M* (N ) thus completely characterizes the

optimal policy D*. It depends on the function q (N ) and on

the parameters of the problem. In the next section we prove

a theorem which is of great help in gaining some insight into

the interrelation between the functions q(N ) and M* (N ) .^ s s

3 . Non-Increasing M*-Sequences —The Monotone Miss
Probability Ratio (MMPR) Concept

Let [\ be the set of natural numbers. We define the

following function r(n) on [\:

1 -P -q(n)
f(n) = , =£1 -P -q(n-l)

P

We call this function the "Miss Probability Ratio" (MPR) . It

gives the ratio of the probability of missing the primary

target when n secondary targets are present to che proba-

bility of missing it when n-1 secondary targets are present.

It can be viewed as a measure of the marginal reduction of the

vulnerability of the primary target caused by the nth secon-

dary target.

We say that the allocation problem has the Monotone

Miss Probability Ratio (MMPR) property on the set {n: 1 n < N},
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if the function r(n) is monotone increasing on that set,

that is, if

r(n) >_ r(n-l)

for every n in the set. We now state and prove a fundamental

theorem which relates the function M*(n) to the survival

function q (n)

.

Theorem 1 : A sufficient condition for the function M* (n)

to be non-increasing on the set {n: 1 n N}

(for some N) is that the problem will have the

MMPRproperty on that set.

Proof: We begin with some preliminaries. First we observe

that the condition M* (n) < M*(n+1) is equivalent to the

condition

D*(n+l,M*(n)+l) = AP . (III. 4)

To show this, assume first that M*(n) < M*(n+1). Then

M*'(n)+1 <_M*(n+l) so that by definition of M* (n+1) , the opti-

mal decision at state (n+l,M* (n) +1) must be AP. To show that

the converse is also true, assume that Eq. (III. 4) is valid.

It implies the relation M*(n)+1 M*(n+1), so that M* (n)

< M*(n+1) . The above mentioned equivalence is thus proven.

We now seek for an equivalent mathematical expression

for the fact expressed in Eq. (III. 4). To accomplish this

we rewrite Eq. (III.1) with n+1 and M*(n)+1 replacing n and

M. Thus we have:
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Q(n+l,M*(n)+l) = Min

P •q{n+l)Q(n,M* (n) ) +(1-P .q(n+l))
s s

•Q(n+l,M*(n)

)

(l-q(n+l)P )Q(n+l,M*(n)

)

p (III. 5)

Since the second term in the brackets corresponds to an

anti-primary first decision, it is clear that Eq. (III. 4)

is equivalent to that term being smaller than the first one.

Hence,

(l-q(n+l)-P )Q(n+l,M*(n) )

P

< P -q(n+l)Q(n,M*(n) ) + (l-P -q (n+1) ) Q (n+1 ,M* (n) )
s s

This implies that the following inequality is equiva-

lent to M*(n) < M*(n+1):

P
Q(n+l,M*(n)) < P

p
-Q(n,M*(n)) (III. 6)

s p

In state (n,M*(n)) the optimal decision is AP, and it stays

AP through the whole process since no switch from AP to AS

is possible. Hence

Q(n,M*(n)) = [1 - P
p

-q(n)] M* (n)
.

Furthermore, since M* (n) < M*(n+1), we deduce that in state

(n+l,M*(n)) the optimal decision is also AP , and stays so.

Thus:

Q(n+l,M*(n)) - [1 - P -q (n+1)

]

M* (n)
.
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Substituting these expressions of Q(n,M*(n)) and Q(n+l,M*(n))

in Eq. (III. 6) we find:

1-P .q(n+l) M*(n)
( 1-P -q(n)

P

•)

P -P
s p

or:

M*(n) -ln(-
1-P .q (n+1)

E
1-P

p
-q(n)

-) ln(
P -P

P P
(III.

7

Thus we have shown that inequality (III. 7) is equivalent to

M*n) < M* (n+1) . We prefer to emphasize the equivalence of

the converses, namely, that the relation M*(n) >_ M* (n+1) is

equivalent to:

ln(

M*(n) >

P -P
s p

1-P .q(n+l)
ln(-r-| —-7-r-)

(III. 8)

1-P .q(n)
P

Notice now that M* (1) was already calculated, and is

given by Eq. (II. 6) . We have:

M*(l) = 1 +

lnd-^)
s

1-P
ln( E

1-P .q(l)
P

)

ln(l-p^)
s

ln(
1-P

D
1-P -q(l

P

(III. 9)

)

. If we put now n = 1 in (III. 8) and then replace M*(l)

in the left-hand side with the smaller quantity given in the

right-hand side of Eq. (III. 9) we arrive at a condition which

is sufficient (only!) for M*(l) > M*(2). The condition is
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p p
ln(l-=£) ln( P~?p- )

s
> § p

1-P - 1-P -q(2)
ln( l-P.q(l) ) ln( r^qTTT )

P P

or:

1-P .q(l) 1-P -q(2)

!_p _ l-p .q(l
P P

that is:

r(l) < r(2) .

Thus, we have shown that a sufficient condition for M*(l) M*(2

is r(l) r(2), which is exactly the assertion of the theorem

for N = 2. We proceed by induction on N. To carry out the

induction step, we need to use one more result which is an

immediate by-product of the analysis made so far. We show

that if it is known that M*(n+1) _ M* (n) , then M*(n+1) can

be exactly calculated. First notice that if we put an arbi-

trary M in place of M* (n) in Eq. (III. 5) , then by definition

M*(n+1) would be the smallest integer for which the first term

in brackets is smaller than the second. That is, M* (n+1) is

the smallest number to satisfy:

P -q(n+l) -Q(n,M) +(1-P .q (n+1) )Q(n+l,M)
s s

< (l-q(n+l) )P -Q(n+1,M)
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For all M, such that M < M*(n+1) we can write:

Q(n+1,M) [1-P .q(n+l)] M
,

and since M*(n+1) is assumed to be less than or equal to

M*(n) , we have also M <_ M*(n) and hence

Q(n,M) = [l-P
p

.q(n)] M
.

Thus, by substituting the last two equations into the

inequality above, we find that M* (n+1) must be the first

integer to satisfy

1-P .q(n+l) M
' l-P-qtn) '

* p -p '

s
. p

or:

M*(n+1) = 1 +

1 p
ln(l -=£)P

s
1- P -q(n)

1 n (
p

)
'

i _ P .q(n+l) ;

(III. 10)

(notice that when n = 0, we have q(0) = 1, and we have

exactly the expression for M*(l) discovered in Chapter II,

Eq. (II. 6)).

We can now proceed to carry out the induction step to

complete the proof of the theorem. We have already proven the

theorem for N = 2 . Let us now show that if the theorem is

valid for some N, then it is valid for N+1. The assumption

that it is valid for N implies, among other things, that

r(l) < r(2) < r (N)
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and that

M*(l) > M*(2) > > M*(N)

Now, it was already proven that an equivalent condition to

MMN+1) < M* (N) is (see Eq. (III. 8)):

ln(

M*(N)
S £

1-P .q(N+l)
ln( , g , ImI )

(III. 11)

1-P -q(N)
P

On the other hand, the assumption M*(N) M* (N-l) (which is

included in the induction hypothesis) implies (by the dis-

cussion above, which led to Eq. (III. 10)) that:

M*(N) = 1 +

[~~ ln(l -^H) n
s

ln(-
1-P -q(N-l)

P
1-P -q(N)

P

1X1(1 -A
S

1-P .q (N-l)
ln(-^ -7TTT-)1-P -q(N)

P
M

If now we replace M*(N) by a smaller quantity, given

in the right-hand side of this last inequality, we obviously

retain the sufficiency of condition (III. 11) for M* (N+l) <_ M* (N!

(but obviously not the necessity) . We have

ln(l--£)
s

1-P .q(N-l)
ln(-r-? )1-P -q(N)

P

which is equivalent to:

ln(
P -P

§ P
1-P -q(N+l) '

ln( 1-P -q(N) }

1-P -q(N) 1-P .q(N+l)
P

1-P .q(N-l) - 1-P -q(N)
P P

M
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or to

r (N) <_ r(N+l) ,

as a sufficient condition f rM*(N+l) . M* (N) . The proof

of Theorem 1 is thus complete.

The operational significance of this result is very

transparent. As implied by the foregoing analysis, for every

value of N , the number M* (N ) +1 is the minimum number of
s s

missiles the attacker should have in his stockpile in order

for it to be worthwhile spending the first missile (at least)

on a secondary target. The MMPRproperty indicates that the

marginal growth of the miss probability goes up as the number

of secondary targets increases. Thus it becomes more pressing

for the attacker to reduce the number of secondary targets as

this number increases. The non-increasing property of M*(n)

is just an alternative way in which this last fact is viewed.

It means that if the attacker has a given number of missiles,

then as there are more secondary targets it becomes more com-

pelling to aim (at least one) missile at the secondary targets

In other words, the minimum number of missiles he must have in

order for it to be justifiable to spend at least one on secon-

dary targets, decreases as the number of secondary targets

increases

.

We finish this section by presenting a numerical exam-

ple of non-increasing M*(n) sequence. In designing this exam-

ple we used the equivalence of the requirement r(n+l) r(n)

and the requirement:
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1-P .q(n-l) -(1-p -q(n))
2

^ (n+1) i P -(1-P .q(n-l))
p p

We took P =0.5, P =0.9, and designed the following case
p s *

N
s

12 3 4 5

q(N
g ) 0.95 0.85 0.7 0.7 0.268

M*(N )

s
17 9 7 6 6

so that M*(n) is non-increasing on the set {n: 1 <_ n <_ 5}.

4 . Increasing M*-- Sequences --Solutions

Although situations in which the survival fine tion

possesses the MMPRproperty quite possibly exist, it was

found by thorough explorations made by the author, that for

most survival functions of practical relevance (see Section

III.B), this property does not exist and the M*-sequences are

actually (strictly) monotone increasing, i.e., M*(n+1) > M*(n)

for all n. Calculation of M*(n) (for all n) in this case

is much more complicated, and we now turn to solve this general

case. For the convenience of the following mathematical

development we define the following function:

R(n,k) = Q(n,M*(n)+k)

where we now use n (not N ) to denote the number of secondary

targets. The value R(n,k) is the probability of not hitting

the primary target, when n defense units defend it and the

attackers stockpile contains k missiles more than the maximum
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level (M*(n)) that would require spending the whole stockpile

on primary targets. From Eq. (11.10) we have:

R(l,k) = A, . (1-P )

k +B., (1-P -q(l))
k

(III.li:
1 p Us

where:

M* ( 1)
(1-P J K±} -P -q(D

A
l = P

p
.q(l) -P (IH.lla)

s p

and

M* (1)

b - .lorn p >

M* (1 >

(1 "V "_Vj^B
] _ 1 - (l-q(l).P ) P .q(l)-P„

M* (1)
= (l-q(l).P )

K } - Ai (III. lib)
P L

We now prove the following useful lemma:

Lemma: Let q(n) be a strictly decreasing function of n.

Then, for any n,k, the function R(n,k) can be

expressed by:

k 5 k
R(n,k) = A.(1-P) K

+ I Bn .. [1-P e .q(j") ] (III. 12)
n P 1=1 n /D s

where A and (B .: j = 1,2, ...,n} are constants
n n, j

J

which can be calculated recursively and are functions

of the parameters of the problem only (that is, of

P , P c and (q(n) })

.

p s
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Proof: We prove the lemma by induction. Its validity for

n = 1 is already proven (see Eqs . (III. 11), (III. 11a), (III. lib)

above) . Assuming that it is true for all values of n up to

some N, we show that it is valid for n = N+l. To do that, we

consider the state (N+1,M* (N+l) +k) . The first shot in this

state should obviously be anti-secondary. We can calculate

R(N+l,k) by conditioning on the number of missiles which would

be expended before achieving the first successful anti-secon-

dary shot. If the first missile to hit a secondary target is

the jth one, where j <_ k., then the attacker will be in state

(N,M* (N+l) +k-j ) from which the probability of not destroying

the primary target is given by:

" R(N,M*(N+l)+k-j-M*(N) ) = Q(N,M*(N+l)+k-j)

since k-j >_ in this case and M*(n+1) > M* (n) , we deduce

that M* (n+l) +k-j-M* (n) > and so we can express this function

using the induction hypothesis for n = N.

If, on the other hand, the first k missiles fail to

destroy even a single secondary target, then the offender

moves to state (N+l, M* (N+l) ) in which the probability of

M* (N+l

)

eventually missing the primary is simply [1-P •q(N+l)J
ir

Now, the probability of first hitting a secondary

target on the jth missile is (1-P 'qfN+l))- 1 " -P -q(N+l),

and the probability of not hitting any secondary target with

the first k missiles is (1-P «q(N+D) . Hence we can write
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R(N+l,k) = Q(N+l,M*(N+l)+k)

k
(l-q(N+l)-P )^~ 1 -q(N+l)P • R (N, AM* (N) +k- j

)

j = l
S S

+ (l-q(N+l)-P )

k
- (l-q(N+l) -P )

M*( N+1 >

s p

where we've substituted AM* (N) for M*(N+1) - M*(N).

We now proceed in developing the last expression by

substituting for R(N, AM* (N)+k-j ) the hypothesized expression,

which is taken valid for N by the induction assumption:

R(N+l,k) =
I (l-q(N+l)-P )

j
~ 1 -q(N+l) -P [A^l-P )

AM* (N)+k "^

N
^(l.P

s
.q(U) AM* (N)+k ^]+ I BN1=1 N '

k M* (N+l)
+ [l-q(N+l)-P ] • (l-q(N+l) -P )

KB
*

X; (III. 13)
s p

A careful inspection of this rather awkward expression shows

that it can be written as:

k
N^ kR(N+l,k) = Rn '(l-P ) + I R, -(l-qU)*P ) (III. 13a)

U P 1 = 1
L ' S

where R
Q

and R, , l = l,2,...,n+l are complicated expressions

manipulated below:
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,„,,, _ ,, _ . AM* (N) -1 *q(N+l) -PgCL-P ) -k^
k

• I
j-l

l-q(N+l) *P j-l

1 - (

l-q(N+l) -P
g k

q^D.pU-pj^lN)-!^, 1-P

1 -
l-q(N+l) -P

1-P

q(N+l) -Pll-P)
s p_

q(N+l) -P -PM S p

AM* (N)

"V 1 "
(

l-q(N+l) -P
g k

1-P

For l = 1,2 . .., n, we have after similar manipulation and

by using the assumed strict decreasing nature of q(N )

:

1#*

q(N+l) • [l-P
g

-qU) ]

q(N+l) - qTD

AM*(N)

B
N, I

1 - (

l-q(N+l) .P e k

1-qU) -P,
-) (III. 13b)

and finally:

R1,N+1 (1 - q(N+l) -P )

M*(N+1)

Now substituting the expressions for R
Q , R. {i = 1,2,..., n+1

above into Eq. (III. 13a), rearranging and collecting terms,

we get





R(n+l,k)
q(N+l) -P (1-P )_s p_

q(N+l) -P -Pn s p

aM*(N)

N
(1-P )

P

N
+ I

1 = 1

q(N+l) (1-P_q U) )

q(N+l) - qU)

AM*(N)

B
N, I

(1-qU) -P
g

)

(l-q(N+l) -P )

k [(l-q(N+l) .P )
M* (N+1)

q(N+l)'P
s

(l-P )

AMMN)
.A N

q(N+l) -P e -P„^ s p

N q(N+l) • [1-P -qU)] AM* (N)
• BM ,

£=1 q(N+l) - qU)

The proof the lemma is now complete since the last

expression has exactly the required form:

R(N+l,k) =
v N+l

Vr (1 "V + J/n+i^-^^-V (III. 14)

= Q(N+l,M*(N+l)+k)

The constants A-. , and BN , , l = 1,2,..., n+l can be calcu-

lated from A^ and BN , l = 1,2,...,N as follows:

q(N+l) -P (1-P )

L

n = S P
n*+l q(N+l)P - P "Nq(N+l)P e - P„

s p
(III. 14a;
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BN+1,£

q(N+l) • (l-P
s

-q(i)) AM* (N)

/ xt , i x m B>, n for l < N
q (N+l) - q( H) N,t —

N

I (l-q(NH-l).p )

M
-Vl-.i, BN+ l,j f ° r l m N+1 -

(III. 14b)

Notice that the constants A, and B, , are known

(Eqs. Ill . lla-llb) . Hence, if the function M*(n) was found,

we could use it, along with the data of the problem, to calcu-

late A and B for all n and l (using formulae (III . 14a-14b)n n,z *

and thus to have a very convenient expression of the miss

probabilities Q(n,M) for M > M*(n). The function M*(n) it-

self can be calculated recursively as we now show:

Suppose M*(l), M*(2), . . . , M*(n) are already known.

Let N = n+l. We wish to find M* (n+l) . Returning to the

functional Equation (III.l), we write for a state (n+l,M+l)

where M >_ M* (n) :

Q(n+1,M+1) = Min{P -q (n+l) -Q (n ,M) + (1-P -q (n+l) ) -Q (n+l,M)

,

s s

(l-q(n+l) -P ) -Q(n+1,M)

}

P

By its definition, M* (n+l) should be the least value of M

such that the minimum is attained at the first term in brackets

This is so because among all states of the form (n+l,M) , the

first M that makes it optimal to launch a first missile against

a secondary target, is (by definition) M = M*(n+1) + 1. The

first term in brackets corresponds to the decision to launch





an anti-secondary missile. Hence, M*(n+1) should be the

least M such that:

P .q(n+l) •Q(n,M)+(l-P -q (n+1) ) -Q (n+l,M)
s s

< (l-q(n+l).P ).Q(n+l,M). (III. 15)
P

Now, we have to imagine that we check the numbers M*(n)+1,

M*(n)+2, and so on, to see which is the least one to satisfy

this inequality. For any M such that M = M*(n)+k <_ M* (n+1) we

have:

Q(n+1,M) = (1-P -q(n+l)

)

M* (n)+k (III. 15a)

whereas for states (n,M) (where M > M* (n) ) we proved that:

Q(n,M) = R(n,M-M*(n))

»

= A U-P) "-"*<"»+
I B .(1-P -q(j))

M- M* (n) (III.15b)
n p l^ n, 3 s

Substituting now Eq . (III. 15a) and Eq . (III. 15b) in Eq.

(III. 15) and simplifying, we conclude that M*(n+1) is the #

least number M to satisfy the following inequality:

A (1-P )

M" M* (n)
+ I B .(1-P .q(l))

M- M* (n)
n p t n,: s ^

< (1 - -E) (l - P .q(n+l)) M
. (III. 16

P
s P

The results at which we arrived here clearly provide a com-

plete solution to the optimal allocation problem with MPH
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criterion, for which it is known before that the function

M*(n) is (strictly) increasing. For each n, it can be de-

cided whether M* (n+1) > M*(n) or not by checking whether

inequality (III. 7) is satisfied or not. If it is known that

M*(n+1) > M*(n), then M*(n+1) can be found from M*(l), M*(2),

...,M*(n) and the constants A , {B .: j * l,2,...,n} by
n n, j

solving for the least M to satisfy inequality (III. 16).

Then A ,, and {B , , .: j = 1.2..... n+1} can be calculated,n+l n+l ,

j

using Eqs . (III. 14a) and (111.14b), and the whole process is

then repeated, to find M*(n+2) (assuming, again, M*(n+2)

> M*(n+1) )

.

In Fig. III.l we present a block diagram of the compu-

tational algorithm which solves. the allocation problem with

the MPH criterion for strictly increasing M*-sequences . The

diagram assumes that the M*-sequence is already known to be

monotone increasing. The confirmation of this fact is very

simple, as was explained before, and to include that we only

had to add a special loop that checks, for every n, whether

M*(n) still increases. However, since most interesting sur-

vival functions are known already (as mentioned before) to

have the strict monotonicity property, we have preferred to

eliminate this loop to avoid an obscure representation of the

algorithm.
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INPUTS

P /P / (q(n) : n=l,2, ...}
p' s ^

i

CALCULATEM*(l) , A^ Bu

M*(l) = 1 +
ln(l - <p^p s

) )

1 •

"In (

-P
P )Ui\ , ^ P
p

(q(D_J

tt-P„)
M* (1) fq(D K*

( i, - A,

CALCULATEQ(n,M)

„, = Ah a-p p
)^ (n)

+

n
+ [ Bn

(1-P q(i
i=l

n ' X S
))

M-M* (n)

Jk.

n = 1

7K
M = M*(n) + 1

Jir

M = Mfl—*

m) < d - (p /P
s
))d-P

p
*q **i»*

SET n = n+1

M*(n) = M

i =

CALCULATEA
n

q(n)-P (1-P

J

s p

M*(n)-M*(n-1)

"q^.p
g

-P
p

n-1

I

CALCULATE B
n,n

, , n ,M*(n)
B = (l-q(n)P J - A

n,n P n

n-1

I B •

j=l
n '^

e

CALCULATEB
n,i

q( n) (i-P cai)""
*»-" (n -"

s

q(n) - q(i)
B.

n-1, J: YES-

FIGURE III.l Flow Chart of Computational Program to Solve
Optimal Allocation Problem (MPH Criterion)
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D. OPTIMAL ALLOCATION—MAX. EXPECTEDNUMBEROF PENETRATORS
(MENP) CRITERION

1 . Formulation

The Max. Expected Number of Penetrators (MENP) cri-

terion may best fit a situation in which the primary target

is not a single point target, but rather a complex consisting

of many point targets. This criterion fits also "area tar-

gets" —targets which have continuously distributed value over

a large area (See Eckler & Burr, [1]) . An airbase is a good

example of such a target. In this case, a very convenient

and sensible measure of effectiveness is the expected number

of anti-primary missiles which penetrate the defense.

We denote by E (N ,M) the maximum expected number of

AP missiles succeeding to penetrate the defense. When at the

initial state the attacker has M launch opportunities and the

defender has N secondary targets, the functional equation

for E(N ,M) is:
s

E(N ,M) = Max{P -q(N )-E(N -1,M-1) + (1-P -q(N ) )
• E (N ,M-1) ,s sss ss s

P .q(N )+E(N ,M-1)

}

(III. 17)
p s s

It was explained in Chapter II that we can take P = 1

without loss of generality, since the optimal policies do not

depend on P , and the value of the objective function at the
P

optimum is simply proportional to P . The first term inside

the brackets of Eq. (III. 17) expresses, as usual, the value of

the objective when the first decision of the attacker is AS,

and he then proceeds optimally.
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We observe that there exist, as in the allocation

problem with the MPH criterion, optimal policies such that no

switch from an AP decision to an AS decision is allowed. If

q (N ) is strictly decreasing, we can say more, namely, that

no optimal policy exists which allows such a switch. This

property was proved for problems with the MPH criterion. For

the MENP criterion, its existence is even more intuitively

obvious. (The mathematical proof is immediate and we omit

it here.)

Thus we have the notion of the M*-sequence as before.

All we need to do to determine the optimal policy is to calcu-

late the M*-sequence (which for a given set of parameters and

a given survival function may differ of course from the M*-

sequence resulting if we adopt the MPH criterion)

.

2 . Non-increasing M*-Sequence —Relation to Concavity
of the Survival Function

First notice that M*(l) is exactly M* that was

calculated in Chapter II and is given by Eq. (11.14):

M*(l) = 1 +
P (l-q(l)

)

s

(III. 18)

Suppose now that for some n we have M*(n) < M*(n+1) . This

was shown earlier (see proof of Theorem 1) to be equivalent

to

D*(n+l,M*(n)+l) = AP (III. 19)

and this property is further equivalent to:
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q(n+l)+E(n+l,M*(n) ) > P -q (n+1) -E (n ,M* (n)

)

+ (1-P -q(n+l) ) -E(n+l,M*(n) ) . (III. 20)
s

Eq. (III. 20) is implied by interpreting Eq. (III. 19) as having

the second term in the functional equation (III. 17) greater

than the first (where N and M are replaced, respectively,
9

by n+1 and M*(n)+1 in that equation). We can simplify Eq.

(III. 20) by rearranging terms and have:

E(n,M*(n)) - E(n+l,M*(n)) < ~- . (III. 21)
s

In state (n,M*(n)) the optimal policy dictates to

use AP missiles only. The probability of penetration of each

missile is q(n) . Hence we can write:

E(n,M* (n) ) = q(n) -M*(n)

.

Since M* (n+1) > M* (n). we have the same situation in state

(n+l,M*(n)), that is, that only AP missiles are used at the

optimal policy, thus:

E(n+l,M*(n)) = q (n+1) -M* (n)

.

Substituting the last two equalities in Eq. (III. 21) and

simplifying we reach the following inequality:

M* (n
> < P <q(n*-q(n+l)) •

(III - 22)
9

Thus we showed that M*(n) < M*(n+1) is equivalent to

Eq. (III. 22) . For our needs we prefer to emphasize the
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equivalence of the opposite statements, namely, that

M*(n) M* (n+1) is equivalent to

M* (n
» - P (q(n}-q(n + l)) •

(III. 23)
s

If M* (n) >_ M* (n+1) we can quite simply calculate

M*(n+1) in the following way. We write the functional equation

for state (n+l,M+l)

:

E(n+1,M+1) = Max{P .q (n+1) -E (n ,M) + (1-P -q (n+1) ) -E (n+l,M)

,

q(n+l) + E(n+1,M)

}

By definition, M*(n+1) is the smallest M for which

the first term is greater than the second. That is, M*(n+1)

is the smallest M which satisfies:

P [E(n,M) - E(n+1,M) ] > 1.
s

For M < M*(n+1) we clearly have E(n+1,M) = q(n+l)*M, and

since we assume M* (n+1) <_ M* (n) , then M < M*(n+1) implies

also M < M* (n) so that we have also E(n,M) = q(n)«M. Thus,

M*(n+1) is the smallest M to satisfy:

P -M[q(n) - q(n+l) ] > 1,

or

M* (n+1) - X +
[ } 8

(q(n'- q (n+l)7 ] •
(III - 24)
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We now present a theorem which gives a sufficient

condition for the function M*(n) to be non-increasing.

We will say that the function q(n) defined on a set

{n: 1 <_ n <_ N} is 'boncave*' on the set iff:

q(n-l) - q(n) <_ q(n) - q(n+l)

for all n <_ N-l . This is analogous to the property

of concave functions defined on an interval [a,b] of the

real line, where the formal definition of concavity is that

for all A e [0,1], the function (call it f) satisfies:

f(Xa + (l-X)b) > A-f (a) + (l-X)f (b) .

Theorem 2 : A sufficient condition for the function

M* (n) to be non-increasing on the region

1 <_ n <_ N is that the survival function q(n)

be (strictly) concave on the region 1 n <_ N.

The theorem is of course analogous to Theorem 1, where

a sufficient condition for the non-increasing property of

M*(n) was given for the optimal allocation problem with the

MPH criterion. We will later discuss the similarities in the

operational interpretations of the two sufficient conditions,

given in the two theorems. Notice that in both conditions,

the parameter P (the hit probability of a secondary target,

given survival of the missile) , does not play any role. We

now prove the above theorem.
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Proof : We will use induction. First we show that if the

survival function is concave on the set {0,1,2}, then

M*(2) <_ M*(l). The concavity means that

q(0) - q(l) q(l) - q(2). (q(0) = 1 by assumption)

We have shown (Eq. III. 18) that:

M*< X
> = 1 +

[ } s
.(l- q (l)7 ]

* P
s

(l-q(D )

(III - 25)

Eq. (III. 23) states that a necessary and sufficient condition

for M*(2) _M*(1) is that

M* (1) 1 P (q(l}-q(2)) (II - 25a)
s

From (III. 25) it is obvious that a sufficient condi-

tion for Eq. (III. 25a) to be valid is

P (l-q(D) - P (q(l)-q(2) )

'

or

q(0) - q(l) = l-q(l) < q(l) -q(2),

so that the theorem is proven for N = 2. Now suppose it is

true for some N. We show that it is true for N+l also. The

induction hypothesis thus includes the assumption M*(n) M*(n-i;

for all n N. We must show that a sufficient condition for

M*(N+1) ^M*(N) is that:

q(N-l) - q(N) q(N) - q(N+l).
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To show this, notice that the assumption M*(N) <_ M*(N-1)

implies, as was explained by the argument which led to

Eq. (III. 24) , that

M*(N) = 1 +

On the other hand, Eq. (III. 2 3) shows that a condition equiva-

lent for M*(N+1) < M* (N) is:

1
p (q(N-l) -q(N)

)

M*(N) >- P (q(N)-q(N+l) )

s

The last two expressions together lead to the sufficiency

of the concavity condition

q(N-D - q(N) < q (N) - q(N+l)

for the relation

M*(N+1) M*(N).

The proof of the theorem is thus complete!

The operational interpretation of the concavity condi-

tion is quite obvious. The meaning of the concavity property

is quite analogous to the meaning of the MMPRproperty dis-

cussed with relation to the problem with the MPH criterion.

The analogy lies in the fact that both conditions reflect,

each in its own way, a phenomenon of growing marginal effects.

Both conditions indicate that the marginal effect induced by

adding one secondary target is becoming worse as more secondary
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targets are introduced. Here in the case of the MEP criterion,

the marginal effect is simply the decrease in survivability,

and concavity means that this decrease gets sharper as N

increases

.

It is noteworthy that concave survival functions are

not so much expected to occur in the real world. The most
N

• scommon function, q(N ) = q_ (corresponding to independent

operations of the secondary targets) is convex. Other forms

of the survival function with realistic appeal are also non-

concave. This does not prove, however, that M*(N ) is mono-
s

tone increasing, since the concavity of q(N ) was shown to

be sufficient only.

One enlightening example can be given for a concave

survival function. Imagine a group of secondary targets,

located around the primary target, such that each target is

responsible for intercepting missiles arriving from an angular

section of 120° (Fig. III. 2). This example shows that the

survivability should not be very much different if there are

one or two secondary targets, because in both cases the attacker

is able to find an undefended direction of penetration. If,

however, we have N =3, then the survivability drops sharply
S3

since the defender may then locate his units so as to leave

no undefended direction of arrival.

3 . Increasing M* -Sequences —Solutions

We proceed by presenting the computational procedure

for solving the allocation problem when the function M*(n) is
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a strictly monotone increasing function. For all states (n,M)

such that M M*(n) f it is implied by the definition of

M*(n) that:

E(n,M) = M-q(n).

In order to find the sequence (M* (n) : n = 1,2,...}

we have to be able to express E(n,M) for values of M such

that M > M*(n). For M*(l) we have already the expression

(Eq. (11.15) )

:

E(1 ' M) = M"
P .q(l)

' (

P -q(l) -M«(D(l-q(l)))

J

•d-P
s

-q(l)) M- M* <1) (III. 26)

where q(l), M*(l) and E(1,M) have replaced q, M* and E(M),

respectively, in Eq. (11.15).

We now state and prove the following lemma:

Lemma: For a state (n,M) such that M > M*(n), the optimal

expected number of penetrators can be expressed as

follows:

i

E(n ' M
> = «-F-| 5TTT

+
.I 1

H„,i< 1 -*< i >-V
M" M* U)

O A. X ^- -l_

(III. 27)

where {H .: n = 1,2,..., i = 1,2,. ..,n} is an,i

family of constants which can be calculated recur-

sively (as will be shown in the course of the proof)
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Proof : We prove the lemma by induction. First notice that

Eq. (III. 26) itself approves the validity of the lemma for

n = 1, since E(1,M) has exactly the form given in (III. 27)

with:

Hi,i V?TTT- MMD-U-qd)) ,

where M*(l) is given by Eq. (III. 18).

Let us therefore assume that E(n,M) is given by

Eq. (III. 27). We calculate E(n+1,M), for values of M > M*(n+1).

To accomplish that, notice that we can write, for M > M*(n+1)

:

M-M*(n+1) . ,

E(n+1,M) =
'I (1-P -q(n+l)) : ~ »P • q (n+1) • E (n ,M- j )

j = l
s S

+ (1-P -q(n+l)

)

M~M* (n+1) -M*(n+1) -q(n+l) (III. 28)
s

The argument which leads to Eq. (III. 28) is the following:

If the attacker achieves the first hit of a secondary target

with the jth missile, where j is less than or equal to

M-M*(n+1), then he is in state (n,M-j), at which the expected

number of penetrators is simply E(n,M-j). The probability of

•q(n+l) )
j

" 1
a first hit to occur at the jth attempt is (1-P *q

•P .q(n+l) . The first term accounts for all the cases in

which a hit is achieved with one of the first M-M*(n+1) mis-

siles. If all the first M-M* (n+1) missiles miss the secondary

targets, an event which occurs with probability

M-M* (n+1

)

(1-P •q(n+l)) , then the attacker finds himself in
s

the state (n+l,M* (n+1) ) , where by definition of M*(n+1), the
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optimal policy is to launch at the primary target only.

The optimal expected number of penetrators in that case is

therefore M*(n+1) -q(n+l)

.

Now notice, that since M*(n) <" M*(n+1) , we have (if

j _ M-M*(n+1) )

:

M-j >_ M* (n+1) > M* (n) ,

and thus E(n,M-j), which appears in the first term on the

right-hand side of Eq. (III. 28), can be substituted by the

expression assumed to be valid for it by the induction hypothe-

sis (see Eq. (III. 27) above). We thus have:

E(n+1,M)
M-M*(n+1)

I
j-l

(l-P
s

-q(n+l)

)

j
" 1

-P
g

.q(n+l)

M-i-
s i=l qU; i=l n ' X S

+ (1-P -q(n+l)

)

M- M*( n+1
) .M*(n+1) -q(n+l)

(a very laborious algebraic work, aimed at
simplifying this last expression, is now given
without verbal explanation)

i
n

P • S q(i
s 1=1 ^

1 - (1-P .q(n+l) )

M-M* (n+1)

n
+ I H .(l-q(i)-

i=l n ' 1

1 - (•

P
s

1-P -q(n+l)
s v

1-P .q(i) '

M-M* (i)

M-M* (n+1)

1 - (

1-P .q(n+l)

1-P -q(i)
s

P -q(n+l)
(

s
)

^l-q(i) -P '
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+ (1-P -q(n+l) )

M~M* (n+1) -M*(n+1) -q(n+l)

1-(M-M*(n+1)+1) (1-P .q(n+l)) M" M* (n+1)

P -q(n+l)
s ^

(M-M*(n+1) ) (1-P -q(n+l)) M-M* (n+l)+l

P .q(n+l)
s ^

= M 1 "J 1
1 ?

H
n i

,c 5 (n+1 ) M-M*(i- _jL. V —£_ + y -Hll± (l-a(i) -P )

P
s i £ 1

q(i)
i £ 1

q(n + l)-q(i) ll qu
' s'

1
n

1

P % qtiy
" M +M*( N+1 ) ,c 5^ n+1

(M -M*(n+1)+1) (M-M*(n+l))(l-P
B

.q(n+l))

P .q(n+l)
. s ^ P -q(n+l)

s

? w q(n+l) M ,.. _ ,M*(n+l)-M*(i
• il-i n,i q(n+l)-q(i) ^ s

(1-P
g

.q(n+U) M-M* (n+1)

This can be rewritten as follows:

n+1 n+1
E(n+1 , M) = M-1.J ^ + [H .(l-q(i).P

s 1=1 M 1=1

where the constants H ., are defined as followsn+1, l

M-M* (i)

(III. 29
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Hn+l,i

H . -q(n+l)
"' 1

. r rrr- for i < n (III. 30a)q(n+l) -qui -

n+1

F" I qlTT " M* (n+1) (1 " q (n+1) }

- [ 8il .(1-P .q(j))
MMn+1) - MMJ) (III. 30b)

for i = n+1

The lemma is now completely proven. Notice that the

constants H . can very easily be calculated by the recursive

scheme of computations given in Eqs . (III. 30a) and (III. 30b).

The calculations are initiated by first calculating

Hi,r

H
l 1

=
P -all) " M* (1) ' H-q' 1 "- (III. 31)

Notice also, that for calculating H ,, (i = 1, 2 , . . . ,n+l)

,

n+l , l

the value of M*(n+1) must be known already. We now show how

M* (n+1) can also be calculated in a recursive manner. We

assume that M*(n) is already known, and that H . (i = l,2,...,n)
n, l

are also known. We go back to the functional equation (III. 17) .

We examine all states of the form (n+l,M) where M > M*(n).

By definition of M*(n+1), the least value of M such that

E(n+1,M) is attained by the first term under the max. operation

in Eq. (III. 17), should be M*(n+1)+1. Writing this observation

explicitly we find that M*(n+1) is the least value of M to

satisfy the equation:
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P .(E(n,M) - E(n+1,M)3 > 1 . (III. 32)
s

If we start checking each M, from M = M*(n)+1 and up for

satisfying this equation, it is clear that we can substitute:

E(n+1,M) = M«q(n+1)

.(..« - „ -± . j^.d-^! *.)«-<«

and thus have M* (n+1) defined as:

n

I
i=r

n

M*(n+1) = Min{M > M*(n): M(l-q(n+l)) - ==-•
I —iy

+ l H . (l-q(i).P )«-«*<!>
, 1

) (III. 32)
1=1 s

We are now ready to summarize the computational pro-

cedure for solving the optimal allocation problem, where an

arbitrary number of secondary targets are present, and for

the MENP criterion. A flow chart of the algorithm is given

in Fig. III. 3. Notice that the two programs, the one with

the MPH criterion, and this last one for the MENP criterion,

are quite similar in flow logic. The difference, of course,

is in the recursive schemes used to calculate the constants

needed, and in the form of the test which is required to

identify M*(n) for each n.
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INPUTS

P , (q(n) : n=l,2, . . .}

CALCULATEM*(D, H
1,1

M*(l) = 1

H

+
P

s [l-q(l)]J

1,1 P
g
q(D

- M*(D d-q(D)

CALCULATEE(n r M)

i=l
n ' X S

<T

n = 1

7F
M = M* (n) +1

CALCULATEH
n,n

* = tT- * I —kr " M*(n) (1 -q
n,n P

g ^ q(i)

n
-

I H .

i=l
n ' X

(n))

(l-P
s

.q(i))
M* (n) ^ (i3

J

A.
CALCULATE H

n,i

H
n,i

Hn-ii-q (n '

q(n) -q(i)
YES

FIGURE III. 3: Flow Chart of Computational Program to Solve
Optimal Allocation Problem with MEM5 Criterion
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E. OPTIMAL ALLOCATION—MINIMUM EXPECTEDCOST OF DESTROYING
THE PRIMARY TARGET (MEC CRITERION)

1. Theory

This problem differs from the problems treated before

in that the number of stages of the process is not determined

a priori . It is decided at the beginning of the process that

it will be allowed to go on until a number N of primary

targets are destroyed.

This situation may occur when the operational 'worth'

of the N primary targets is very high, and the number of

missiles the attacker can spend on this mission is practically

unlimited. In that case, an attacker can very well decide

that he "won't stop" before the mission is fulfilled. The

problem then remains, how to carry out the mission with mini-

mum expected cost.

We assume that C and C are the unit-costs of an
P s

*
anti-primary and anti-secondary missile, respectively. We

characterize a 'state' by the pair (N ,N ) where, as usual,

N is the number of secondary targets, and N is the number

of primary targets.

As with the other two criteria, here also, no switch

from anti-primary course to anti-secondary one can ever be an

*
One must keep in mind that estimating the costs C and

C for actual implementation of the model we present here, may
be a very hard task. Different estimates may be suggested,
depending upon at what stage of the development the decision
about the missiles mix is taken. This is, however, irrelevant
to the model building process.
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optimal move. Once the attacker starts attacking primary tar-

gets, he should stay on primary targets until the end of the

process. In this model this is a very intuitive and trans-

parent conclusion, so that it doesn't deserve any further

mathematical justification.

When N =0, then the optimal policy is trivial,
S3

since only primary targets exist. We can define:

N (N ) = Min{N : D*(N +1,N ) = AS} ,s p s s p

where D* is the optimal policy (a function of (N ,N ) ) . The

number N (N ) has the following meaning: For a given number
*

(N ) of primary targets, the number N (N )+l is the least
p s p

number of secondary targets that should be present, in order

for it to be optimal to deal with a secondary target first.

Notice that we did not define N (N ) as:
s p

N (N ) = Max{N : D*(N ,N ) = AP} ,s p s s p

and that is because nothing in theory excludes the possibility
*

that there exist values of N greater than N (N )+l, such
s 3 s p

that the optimal course in states (N ,N ), for those values,
s p

is again anti-primary. We define:

N (N ) = MiniN >N (N )• D* (N +1,N ) = AP

}

s p s s p' s p

* **
The significance of the functions N (N ) and N (N )' s p s p

is explained in Fig. III. 4. This figure depicts the general
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Figure III. 4: The General Structure of Optimal Allo-
cation Policy with MEC Criterion.

structure of optimal policies with MEC criterion. The opera-
*

tional interpretation of the existence of curves N (N ) and
s p

**
N (N ) separating different decision zones in the (N ,N )s p ' v * P s

plane is quite clear. For a given N , there are the following

different possibilities:

a) It may be that N is small enough, so that the proba-
bility of survival will be high enough to make it
worthwhile just to ignore the presence of the secon-
dary targets, and go directly against the primary ones,
accepting the small rate of attrition. The number
N (N ) is just the function which indicates what
numbers of secondary targets should be regarded as
'small' within that context. (The answer is: 'small'
is less than or equal to N* (N ))

.

s p
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b) The number N may be so large, so that it would con-
sume too many anti-secondary missiles to make any
significant reduction in the attrition rate. In fact,
so many anti-secondary missiles may be required, that
it is preferable just to give up attacking secondary
targets, and use only anti-primary missiles, accepting
the high rate of attrition. Again, the question is,
what values of N are 'large' so that this argument is
valid. The answer: Those values which are greater
than or equal to N** (N ).

s p

c) For the given Nn, all the values of N , such that
N*(N )< N < N (N ) are neither too small nor too

s p s — s p
large, so that it is preferable to start shooting at
secondary targets for the benefit of later reduced rate
of attrition.

In principle, it is possible to have more values of N (for

a given N ) which are points of transition from anti-primary

optimal decisions to anti-secondary optimal decision. For
***

example, we may have a value N = N (N ) such that:
s s P

N (N ) = Min{N >N (N )+l: D* (N +1,N ) = AS} .

s p s s p s p

* * *
The existence of a finite N (N ) obviously depends on the

survival function q(N ). It was found, however, that for all

real, interesting and sensible survival functions (which are
***

explored later), finite values of N (N ) never exist. Thus,
**

in all the cases examined in this thesis, N (N ) has the
s p

property that:

D*(N ,N ) = AP for all N > N (N )

.

s p s s p

We proceed by looking for a general analytic procedure

of solving the allocation problem. Given a survival function

q (N ) and the parameters P , P , we have to show how to find
s r p s

108





* **
the functions N (N ) and N (N ) and the expected cost func-

s p s p

tion. Let C„(N ,N ) be the expected cost of destroying N
D s p p

primary targets under policy D, given also that there are N

secondary targets. As usual let D* be the optimal policy,

and D be the family of all allocation policies. We denote: -

C(N,N) = Cn *(N,N) = Min C_(N,N) .

s p D* s p De Q D s p

*
Now we make the following observation: as long as N < N (N )

,

s — s p

we have D* (N ,N ) = AP . Only anti-primary missiles are in

use, and the probability of hitting a target is q(N ) *P .

The expected number of anti-primary missiles, to hit a single

primary target, is obviously 1/P *q(N ), and so the expected
p s

cost of destroying N primary targets is

C .N *
C(N ,N ) - —JLJjL- for N < N (N ) .

s p P
p

-q(N
s

) s - s p

*
Now consider the state (N (N )+l,N ) . It is implied

s p p
*

by the definition of N (N ) that the optimal decision at that* s p c

state is anti-secondary. As a result of such a decision, two

transitions are possible, as shown here:

*<(N (N ) ,N ) Next optimal decision
is anti-primary

(N (N )+l,N ) Next optimal decision is
" " again anti-secondary.

The probability of making the upper transition in a single
*

step is ? «q(N (N )+l), so that it will take —in expectation

—

s s p
*

1/P «q(N (N )+l) missiles to make the upper transition. Once
s s p
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this transition has been made, it will be optimal to launch

only anti-primary missiles until the mission is completed.

Therefore, we find that

* C C -N
C(N (N)+1,N) = i + £*-£ .

S P P P
s

.q(N
s

(N
p

)+l) P
p

.q(N
s

(N
p

))

Since this is the minimal expected cost of destroying all the
*

primary targets, when starting from state (N (N )+l,N ),
s p p

this should be less than the cost that would have resulted

had the attacker decided to use only anti-primary missiles

from the beginning. So, we write:

C C «N C -N
jfS + F-JE < E^ . (in. 33)

P «q(N (N )+l) P .q(N (N )) P -q(N (N )+l)ssp P S P P S P

The fundamental observation is that N (N ) should be, by
s p

definition, the minimal value of N to satisfy Inequality (III. 33)

*
This is the clue to the solution; N (N ) is given by:

* C C -N
N (N ) = min{N : + -

—

p
,

P
3 P s _ ,.. in P«qN)r P «q (N +1) p ^ s

<
P ^'(N

P
+ X) '

• (III - 34)
p ^ s

*
Note that N (N ) may very well be equal to zero, which is to

say that even with the presence of one secondary target, it

is preferable to destory the secondary target first.
**

The function N (N ) is now derived by an argument very

similar to the one used in -deriving Eq. (III. 33). First notice
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that we can explicitly write C (N , N ) for values N suchc * s p s

that N*(N ) < N N (N )

.

s p s — s p

N
s C N -C

C(N ,N J = J t
5

+ 12—E (III. 35)
S P n=N (N )+l q{n)

s q(N (N )
) 'P

s p s p p

This follows from the fact that the attacker has to hit

N -N (N ) secondary targets before he switches to an anti-

primary course. The first term of Eq. (III. 35) represents

the expected cost of doing this. The second term is then the

expected cost of killing the N primary targets. Notice that
*

q (N (N )) appears in the denominator of the second term, since
s p

at the switching stage, exactly N (N ) secondary targets will

still be alive.

Since Eq. (III. 35) expresses the optimal expected cost
**

only for values of N such that N < N (N ) , it is obvious
"• s s — s p

that that expression should yield values smaller than the

expected cost associated with any other policy. Specifically,

we examine the "Anti-primary only" policy. Its expected cost
**

is C -N /q(N s ) -P , so that for all N < N (N ) we have:
p p * s p s — s p

C «N
C < N=' NJ < „(kF\ I (III. 36)

S p 9^3^ * P
p

In fact, the least N to violate Eq. (III. 36) is N (N )+l
s s p
**

(see definition of N (N ) ) . We therefore conclude that:
s p

** * c *N
N (N ) = Min{N : N > N (N ) and ,„ P. P

s p s s s p q (N +1) -Pc ^ s pV1
C N .C

J rWnWP + J
2—2

} (HI- 37)
n=N (N )+l qw * s q(N (N ))'P

s p s p p
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* *
It is possible that N (N ) will be °° . This willr s p

*
mean that for all values N such that N > N (N ) , we have

s s s p
*

to hit N -N (N ) secondary targets first, and then switch
s s p

to the primary target.

2 . Examples

We shall present three examples corresponding to

three different survival functions:

N
a) q(N ) = q n

s (Independent operations).

b) q(N ) =
s

if N =
s

q = const. if N >H s

N
c) q(N ) = q

Q
+ (l-

q()
).(l-r) S

The operational interpretation of these three functions has

been explained in Section III.B.

a) q(N
s

) = q Q
S

We substitute in Eq. (III. 33) and get:

C C -N C -N
J + __E E < E EL
N +1 N N +1

P «q n
S

P *q n
S

P «q rt

S
s ^0 p ^0 p M

or, equivalently

:

C -N -q. C -N C
P P < _I2 £ i

P P P
p p s

We see that the validity of the inequality doesn't depend upon
* *

N at all. Therefore N (N. ) = or N (N ) = <*>, depending upon
s sp sp'^^ 5 ^
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the value of the parameter q n
. We easily deduce:

•

p s p

C -P
(B) q n > 1 - „ | P ==> N„(NJ

*

C -P -N "^ J
s v "p

Since q n
is a number which has an interpretation of proba-

bility, we have <_ q Q
<_ 1, and so, if

C /P
N < ^. (III. 38)

* P P

then 1 - (C -P ) / (C -P «N ) < 0, and condition (B) above is
s p p s p —

*
always the valid one, so that N (N ) = «. This result has

a very clear operational interpretation: If there are only

a few primary targets, it is always preferable to deal only

with them, and ignore the secondary targets. The question is

of course how to interpret quantitatively the term "few".

Eq. (III. 38) gives the answer: The number of primary targets

should be less than the ratio of expected cost to destroy one

secondary target in ideal conditions (C /P ) to the expected

cost to destroy one primary target in ideal conditions (C /P )

This ratio can be viewed as the 'worth' of one secondary tar-

get measured in 'units' of the "worth" of a primary target.

If the number of primary targets is less than the "worth"

of one secondary target, then it is not profitable to deal

with secondary targets at all.
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If. however, N > C *P /C «P , then we may define:
p s p p s J

C -P
s = l -

c rl -N * (III. 39)
p s p

*
If q. < s, then N (N ) = so that if there is one^0 s p

secondary target, it should be attacked first. If q s,

only the primary targets should be attacked. Notice that we

can't say anything yet about the case N = 2, since we have

to calculate N (2) first. We find N (N ) using (III. 37):
s s p

N 4-1
N +1

C s C N -C C l-q n
S

E < y §_ + _P E = _£ 12
N +1 - L n _ P P N +1

q Q
-P

p
4 s * ( 1 -

<Io >
" q O

N -C
+

p '

p

Using simple algebraic operations this inequality can be shown

to be equivalent to:

C -P
i s P1 " C -P -N = s 1 ^0

p s p

In this form, the inequality does not depend on N ! There-

fore, if the parameters of the problem satisfy this inequality

(case B above), then from definition (III. 37), and using the
*

fact we have just proven that N (N ) = « in this case, we
s p

**
conclude that N (N ) = * also (and it does not really have

s p

any significance herel). If, on the other hand, the param-

eters of the problem do not satisfy this equation, in which
*

case we have seen that N (N ) =0, then no value of N satis-
s p s

fires the above inequality (or, as can be stated formally, using
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definition (III. 37), N (N ) = «) . This means that no matter
s p

how many secondary targets there are, the attacker should

attack them first until they are all destroyed.

(b) q(N ) - q„ = const for N > 0, q(0) = 1^ S s

This case, which is very hard to handle analy-
4

tically using other criteria (MPH, MEMP criteria) is of no

great difficulty if the MEC criterion is used. It is an

interesting case for which a simple argument leads to the
*

conclusion that N (N ) must be either or °°. The argument
s p

is that if the attacker decides to attack secondary targets,

he must be determined to attack all of them before switching

to the primary target, because no reduction in attrition will

be gained, unless he so behaves . Mathematically speaking,

the following statement must be true: It is impossible that

1 2
for some N we'll have two values, N , N , such that

p s s

< N
1

< N
2

, and.
s s'

D*(N 2
,N ) - AS

s p

D*(N ,N ) = AP
s' p

*
This simply means that N (N ) is either or *>. We now calcu-r J s p

late the condition for each case. We just carry out the

formal operation, given in (III. 34) , and discover immediately

that these conditions are identical with those found in the

previous example. That is:

c ,p *
If N < =—=*- N (N ) = » —j* always shoot anti-primary

p — C«P s p ^ .

,

F p s r missiles
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C -P *
If N > r

S
p

P
, then: If q s, then N (N ) =

P p s
S P

If q > s, then N (N ) = °°

where s is the parameter defined before (Eq. (III. 39))

The difference between this example and the
**

previous 'one is in the value of N (N ) . In example a)

,

r s p
**

N (N ) = °° always. To calculate it for this case we proceed
s p

formally, using (III. 37). We have to find the least N

which satisfies the following inequality:

C »N C -N N -C
J2 £ < _§ !_ _p_ £
^0 p ^0 s p

(III. 40)

Notice that we substitute in (III. 37) the values N (N ) = 0,
s p
**

because only in this case is there a meaning for N (N )

.

Therefore, it is assumed here that q Q
s.

The first N to satisfy inequality (III. 40) is:
s

s p

d-q, N

C .p
_J £
P -C

s p ->

(III. 41)

fi-q,

L i-s j

where s is defined in Eq. (III. 39) . Since we assume q

we deduce from Eq. (III. 41) that if N (N ) =0, then:
s p

**
N (N ) > 2

s p -

This last result is a very interesting one. It says that
* * *

N (N ) = implies N (N ) > 2 . In other words, if the
s p s p —

s,
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parameters of the problem are such that it is optimal to deal

with the secondary target, when there is only one secondary

target, then it must be optimal to deal with secondary targets

first when there are two secondary targets also. This fact

is somewhat strange, since it is hard to base it on some

common sense or intuitive argument. (It recalls a similarly

strange fact we found in Chapter II, namely that M*(l) >_ 2

always for the MPH allocation problem with one secondary

target)

.

(C) q(N
s

) = q Q
+ (l-q )r

Q
S

This example is presented to prevent the impression

which might have been created by the last two examples, that
*

N (N ) is "usually" zero or °°. ' In fact, this survival function
s p

can be considered a generalization of the functions treated

in (a) and in (b) : By putting q Q
= we get case (a) , and

by putting r
Q

= (with the convention = 1) we get case (b) .

By substituting this survival function into Eq. (III. 33) we

have:

C C -N
§ + P P

P
s

-[q +(l-q )T S
] P

p
.[q 0+( l-q ).r s

C .N
< P P

N +1

V^ +(1 -vV ]

If we put s=l-(C*P)/C«P-N as before, it can be shownr s p p s p

that the above inequality is equivalent to:
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N (1-s) -q

<l-q ).(.-r )

III. 42)

so that N (N ) = Min(N : inequality (III. 42) is satisfied}.
s p s

There are three different cases now:

(1) s < r_ , in which case the right-hand side of Eq. (III. 42)

is negative, and it has no finite solution N , which
* s

is to say that N (N ) = °° (always shoot at the primary!)

(l-S)-q
(2) If t, 1

—

r-r r > 1, then N (N ) = (which means
(l-q

Q
) • (s-r ) s p

that at least for N =1, the attacker should destroy
s 2

the secondary target first.

(3) If <

d-s)-q
-7-t r

—

t r < 1 / then

:

(l-q ) • (s-r
Q

)
-

N (N ) =
s p

In
(1-s) -q

(l-q ).(s-r )

In z.
+ 1

Here N (N ) is a finite positive number: Let us look at a
s p

numerical example: suppose C = C , and P = P , and let

N = 5, q Q
(which has the meaning of survival probability

given that one defense unit is shooting at the attacking

missile) = 0.5, r
fi

d~ r
rj

= reliability of each defense unit]

= 0.25. We have, therefore, s = 0.8, and so we fall into

category (c) and

N*(5)
s

In
0.2 x 0.5

0.5 x (0.8-0.25)
In 0.2 5

+ 1

= [0.73] +1=1
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That is, if there are 5 primary targets, then as long as

there are no more than one secondary target to defend them,

the attacker should ignore the secondary. If N = 2 he

should destroy one secondary target first. If N =3,
**

nothing can be concluded yet. We must calculate N (5) first
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IV. OPTIMAL MISSILE DEPLOYMENTGAME MODELS INVOLVING
THE USE OF A 'CAUTIOUS' MODE

OF DEFENSIVE OPERATION

A. INTRODUCTION

In developing the models of Chapters II and III, we have

assumed that in countering an offensive missile the defense

always responds in the same way. That is, it always attempts

to intercept an arriving offensive missile by launching a

defensive missile.

In reality the secondary targets can quite simply immunize

themselves against being hit by anti-secondary missiles, by

operating the units in a special deceptive mode. For example,

if the anti-secondary missile is using an anti-radiation (AR)

guidance head, the defense unit can temporarily shut off the

radar electromagnetic radiation, thus denying the missile the

signal necessary for its proper guidance. If the missile

guidance relies on some sort of electro-optic or infra-red

imaging, then deploying dummy targets, concealment devices and

other deceptive methods may very well provide the secondary

target with an almost perfect protection against the missile.

In this chapter we therefore assume that upon each arrival

of a new offensive missile, the defense may decide to work in

one of two operational modes:

(a) Mode 1 —which is the "normal" mode,

(b) Mode 2 —which is a special mode of caution against
anti-secondary targets. Usually some decep-
tion method is involved in this mode.
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It would be quite accurate to state that in Mode 2 the

defense target, while being much less vulnerable to an arriving

missile, is also much less effective in intercepting this

missile. For instance, in the example of AR missiles mentioned

above, switching off the radar renders the secondary target

itself almost incapable of detecting the missile and inter-

cepting it. When the defender detects a missile, he thus faces

the dilemma of which mode to select for the system operation.

Had he known that the missile is an anti-secondary one (i.e.,

aimed at the defense unit) he would obviously have selected

Mode 2. But he usually cannot be certain about the missile

destination. Therefore, so long as the defender cannot elimi-

nate the uncertainty about the missile destination, he cannot

avoid the possibility of making the "wrong" decisions. (By

"wrong" we mean here, either operating on Mode 1 when the

missile is anti-secondary, or operating on Mode 2 when the

missile is actually anti-primary) . Assuming that the defender

pursues an optimal course of behavior in that respect, the

attacker also has a dilemma of which type of missile to launch

at every stage of the process. If we adopt the assumption

that both the defender and the offender are aware of the choices

available to each other, and further, that they are strictly

opposed in their objectives, then we are very naturally led

to formulating the situation as a zero-sum game. Since we

are dealing with dynamic processes which progress in stages,

we don't actually have a simple unique two-by-two matrix game,
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but rather a sequence of games, related to each other. Such

sequences of games are called in the literature stochastic

games .

Section B of this chapter gives a very brief review of the

theory and applications of stochastic games, emphasizing mainly

the relation to dynamic programming. In Section C we list

and explain in detail the assumptions which underlie the models

We also introduce the notation. Section D examines and criti-

cizes the applicability and relevance of zero-sum stochastic

models to real tactical decision-making processes. Sections

E-G deal with detailed mathematical solutions of the games

which arise in our case, each section devoted to one of the

three criteria we use in this thesis (MPH, MENP, MEC criteria)

.

We give general theorems about the structure and properties of

optimal policies of both defender and attacker, and then show

the solutions to each case.

B. A BRIEF REVIEW OF STOCHASTIC GAMES THEORYAND APPLICATIONS

The two person zero-sum stochastic game was first intro-

duced in an elegant paper by Shapley [5], where he presents

the basic notion of a stochastic game and the theory which

underlies the computational methods for calculating the value-

vector and the set of optimal strategies for each player.

Following Shapley, a stochastic game is defined as a

sequential process in which the players step from position to

position according to transition probabilities controlled

jointly by the two players. It is assumed that there are a
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finite number, M, of positions, and finite sets of actions

available to each player at each position. Let A,, A_ be

the set of actions available to player 1 and player 2, respec-

tively. If, at position (state) k, player 1 chooses action i

and player 2 chooses action j , then there is an immediate

payment a. . from player 2 to player 1, and in addition,
1 ' 3

kl
there is a probability P. . that the game moves to the new

position, i. The process therefore is determined by the initial

2state and by the following M +M matrices:

P* 5, = (p ^ li=12 la
I i =1 2 la I]

for k,i = 1,2,...,M, and

k kA = (a | i = 1,2, . . . , | A.J , j = 1,2, . . . , |
A

2 |
)

for k = 1,2,...,M, where obviously:

< P
kl

< 1
lj -

and

£=1

M k q k
The number 1 - T P. . =» s. .is the probability that the game

£=1 13 1 '3

will terminate after one step, given that it is in state k

and players 1 and 2 choose actions i and j respectively.

Shapley concentrated on games which terminate, with proba-

bility one, after a finite number of stages. Obviously, a
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sufficient condition for that is

k
s = mm s . > .

i,j,k 1 '3

The stochastic games which we shall treat in this thesis

do not satisfy this condition. They do however terminate

with probability one.

State k is denoted by a symbol r which is to be regarded

as "the sequential game the players start to play when they

are in position k" . The stochastic game is sometimes con-

sidered as a collection of game elements {r : k = 1,2,...,M}

To each game element there corresponds a matrix of payoffs

A, , in which the (i,j) entry has the form

a
k

. + I P
kl T*

x '3 1=1 L3

The entries of the matrics A, (k = l,2,...,n) are therefore

mixtures of real rewards and game elements . Let a be an M-

dimensional vector of numbers a, ,

a

2 / • •

•

' a M « Shapley denotes

by A. (a) the numerical matrix obtained when the game elements

{r : I = 1,2,...,M} appearing in the entries of the matrix

A, are replaced by the numerical values a.,a.,...,o M. Then

he defines the following transformation T which maps the

M-dimensional Euclidean space into itself:

Ta = (val A
1

(a),valA
2

(a),...,valA^(a)). (IV. 1)
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The vector Ta is the vector of the minimax values of the

matrices {A_(a): k = 1,2,...,M}.

Shapley shows that the condition of certain termination

mentioned above guarantees that the stochastic game has a

unique value-vector, which is the solution of the following

set of equations:

T| - % (IV. 2)

in the vector of unknowns <j> . In fact, the role that the

certain termination condition plays here is just to make T a

contraction transformation so that Banach Theorem on contrac-

tion mapping applies and determines the uniqueness of the

solution to the system (IV. 2)

.

If $ is the solution to Eq. (IV. 1) then <j>, is the value

(in the usual Von -Neumann-Morgens tern sense) of the game ele-

ment r . Shapley further shows that sets of optimal strate-

gies of both players, in state k, are the same sets of optimal

strategies associated with the game for which the payoff

matrix is A, (<J°) ([5], p. 1097, Theorem 2).

Everett [8] and Gillette [9] in 1957 generalized the re-

sults of Shapley by relaxing the condition that termination

occurs with probability one. In the general case there is a

positive probability that the process will run indefinitely,

thus a revision of the definition of the value is necessary

(since a simple summation of rewards on all individual stages

may give infinite results) . In Gillette [9] , two different

approaches to the problem of value definition are considered,

125





namely, discounting and averaging. These two methods are most

commonly used in the literature of infinite dynamic programming

processes and infinite games. They are used to avoid having

infinite values (payoffs) as a result of summation over all

immediate rewards. Gillette's main concern is the existence

of stationary optimal strategies for both players, under each

of the above modified payoff functions (which he calls "effec-

tive" payoffs). Everett's paper deals with various "existence"

questions and mathematical properties of solutions to the most

generalized recursive game.

Hoffman and Karp [10] considered the case of a nonter-

minating game, i.e., a stochastic game in which

M JM
I P.. = 1 for all i,k,j.

1 = 1

Some papers ([11] ,[12] are the prominent ones) were written

about techniques and algorithms to solve the asymptotic value

equations (see (IV. 2) above) , of infinite games. Most of them

elaborate on variations of the basic successive approximations

technqiue (which was suggested by Shapley himself in [5]).

All the stochastic games which we actually solve in this

thesis are known to terminate in a finite number of stages.

In two of our criteria, namely, the MPH and MENP criteria,

the maximum number of stages the process is allowed to con-

tinue is prescribed (that is, we solve truncated stochastic

games). In such processes, the maximum number of stages which

are left in a given state is one of the parameters which
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determine the state. Therefore there is no meaning to sta-

tionarity in these cases, and clearly the optimal strategies

will depend on time.

It is interesting to note that the whole subject of Mar-

kovian decision processes (or stochastic Dynamic Programming)

can be viewed simply as a special case of the stochastic games

theory: If we consider one player as "dummy", that is, a

player who has only one pure action available, then the problem

for the other player will be a Dynamic Programming problem.

To see this, let us consider again Equation (IV. 1)

Ta = (val A., (a), val A- (a) , . . . ,val A (a)).

If the matrices A, (a) (k = 1 , 2 , : . . ,M) above are 1 x |aJ, as

is the case when player 1 is "dummy" and player 2 has | A-

|

pure actions available, then we can write

k 3 kival A (a) = min [a. +
J P a J (IV. 3)

l

2

k k ? k k ?where we've written a
.

(P . ) instead of a, . (P ,'.), since
3 3 1,3 1/3

player 1 has just one possible action. Now we combine Eq.

(IV. 3) with Eq. (IV. 2) and find, that in the infinite Dynamic

Programming process, the equation which we have to solve is

the following:

4>, = min [a* + £ P* V ] (IV. 4)K
j £ A

2
3 feA2 D I
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which is exactly the well-known fundamental equations of the

Markovian decisions processes (see Dreyfus & Law [14, page

175] . The <J>. is then the optimal payoff of the process given

that it starts from state k. If we deal with stochastic dynamic

processes in finite time, then a of Eq. (IV. 3) above should

stand for the optimal payoff for a process of n stages (for

some n) while val A, (a) is the optimal payoff for a process

of n+1 stages. If we denote by 4>, the optimal payoff of a

Markovian decision process which starts at state k, and lasts

n units of time (or, at most n units of time) , then Eq . (IV. 3)

should be interpreted as

:

Mn+1 , k v _k£ n,
<j>. = min [a. + \ P. .* ]K jeA

2
J 1=1- 3 l

which, apart from differences in notation, is the same as the

general recursive equation of Markovian decision processes,

as given, for instance, in Dreyfus & Law [14, p. 174, Eq.

13.4] .

As to applications of stochastic games theory to real

world processes, it seems astonishing that almost no signifi-

cant use has been made of it. The books by Luce and Raiffa

[13] and by Owen [4] mention some interesting problems for

which the stochastic game is a very natural formulation. The

main ones are:

(a) Games of Survival —which are applicable mainly to
gambling theory (see Luce & Raiffa [13, Appendix
A. 4] .

(b) Exhaustion Games—which can serve to model inspection
processes, evasion and search processes (see example
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in Owen [4, Ch. V.2]. In the second part of this
thesis we introduce a very plausible application of
exhaustion games in the evaluation of the effective-
ness of decoys in missile warfare.

(c) Allocation of Military Forces —these problems are
usually titled under the term "Blotto Games", and
were treated quite thoroughly in the literature
(see Dresher [15], and Blackett [16]). It should
be said, however, that Blotto games are not
necessarily sequential games.

Very few articles were written on applications of stochastic

games theory to the analysis of duels. Charnes and Schroeder

[7] claim to analyze tactical antisubmarine duels through the

theory of stochastic games. Their article, however, contains

very little about the antisubmarine warfare application. It

mainly repeats the general theory and analyzes some computa-

tional procedures of the general recursive equations of the

theory.

Sweat ([17], [18]) presents very attractive models for a

duel between an attacker and a defender. The models of Sweat

were probably motivated by undersea warfare problems, but they

contain many elements which make them equally applicable to

other types of warfare. We make use of some of Sweat's ideas

in this chapter as well as in Part II of the thesis, where

we analyze problems involving decoys. In the following, we

discuss briefly the work of Sweat, and its relation to this

thesis.

In [17] Sweat deals with the following problem: A duel

is initiated by an attacker at time t = -T. At some instant

in the interval [-T,0], the attacker has to launch his (single)

weapon. He always knows the current number of weapons the
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defender has. If the defender has k weapons, then his proba-

bility of survival is P, if he responds with one of his k

weapons right at the time the attacker launches his weapon,

and is q, ( <p iJ if ^ e responds after the weapon has been

launched (we use here the notation of Sweat) . The defender

may or may not detect the attacker at the time of attack, and

may also detect false targets. The process of false targets

detection is assumed to be a non-homogeneous Poisson process

on the interval [-T,0], with rate function A (t) , known to the

attacker. The defender classifies a detected object as a

'real' or 'false 1 target. Therefore two types of errors are

possible and the probability of each is known to both players.

The1 payoff is the defender's probability of survival at time

t = 0.

From the description of the problem it is clear that the

defender desires to form a policy of response to a detection

and classification of a target in a manner that will provide

high probability of detecting correctly the true target (i.e.,

the attacker's weapon) when it is launched, and at the same

time will keep the chance of being exhausted of weapons prior

to the attack as low as possible. The desire of the attacker

is, of course, just the opposite one. He would try to exploit

the presence of false targets in order to reduce as much as

possible the chances that the defneder would detect his weapon

correctly when he still has weapons in his stockpile. The

way to achieve this is to "wait" and let the defender consume
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his weapons on false targets. He cannot, however, wait too

long if the defender has relatively many missiles, because as

the process runs short of time, the tendency of the defender

will be to shoot at all targets (false and true) . The problem

of choosing the optimal time to launch for the attacker is thus

quite complicated.

Sweat solves this problem using a stochastic game in a

continuous time. There is no conceptual difference between

a stochastic game in continuous time and the games in discrete

time that were reviewed before. In fact, the game with con-

tinuous time is approximated as a game in discrete time by

dividing the time interval [-T,0] into small segments of length

At. Writing then recursive equations for the value of the game

in the approximating problem, and letting At -> 0, Sweat thus

derives an iterative system of first-order differential equa-

tions. The unique solution of that system is a vector

(V
1

(t) , . . . ,V k
(t) ) , where V

i
(t) (i = 1,2, ...,k) is the value

of the game which starts at time t, with the defender having

i weapons left.

In his second paper, Sweat [18] modifies this problem by

allowing the attacker to be one of two different types, with

different probabilities of detection and classification, and

with different probabilities of killing the defender. The

same concepts and methodology are used in solving this prob-

lem as were used in [17]

.
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C. THE ANTI-SECONDARY/ANTI -PRIMARY ALLOCATION (ASAPA) GAME
MODELS—GENERAL DESCRIPTION

In this section we present in detail the assumptions and

concepts of our game models which we consider quite adequate

in describing a situation in which secondary targets have

some simple way of protecting themselves from anti-secondary

missiles (other than shooting at them) . This model has the

following advantages over the models that were discussed in

Chapters II and III:

(1) It refers to the defender as a conscious player,

(2) It assumes that the defender is capable, to some
extent, of distinguishing between anti-primary and
anti-secondary missiles.

The way in which distinguishability is reflected in our

models, is to assume existence of the classification proba-

bilities (as Sweat [17] does. See also Gorfinkel [19]).

We introduce the following notation:

a = Probability that a detected anti-primary
missile will be classified as anti-primary.

a = Probability that a detected anti-secondary
missile will be classified as anti-secondary.

Obviously, 1-a (1-a ) is the probability that a detected

anti-primary (anti-secondary) missile will be classified as

an anti-secondary (anti-primary) missile. We assume that the

probability of detection is 1.

We assume that at each stage the attacker can choose to

launch either an anti-primary or anti-secondary missile. The

defender, after classifying the missile, selects his mode of
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operation between Mode 1 ("normal" mode) and Mode 2 ("cautious"

mode) . We assume that:

(a) The probabilities of survival of the attacking
missile when the defender is using mode 1 and
mode 2, are q, and q« , respectively.

(b) In mode 2, the secondary target is absolutely
invulnerable to the anti-secondary missiles.
(That is, the probability of hit, even if the
missile survives, is zero.)

(c) In mode 2 the secondary target is less effective
than in mode 1. The mathematical expression of
that assumption is clearly

l ± < q 2

We assume that the defender selects, at each stage, a response

program , that is, a program which dictates in which mode he

will operate his system at each of the two possible classifi-

cation outcomes.

Four response programs are possible corresponding to the

four different combinations of offensive missile types and

operation mode of the defense. We shall use the following

notation for them:

P,-S, = Use mode 1 regardless of the classification;
that is, use mode 1 regardless of whether the
offensive missile is classified as anti-
primary or as anti-secondary.

P,-S
2

= Use mode 1 if the missile is classified as anti-
primary, and mode 2 if the missile is classified
as anti-secondary.

P
2

~S, = Use mode 2 if the missile is classified as anti-
primary, and mode 1 if it is classified as anti-
secondary.

P
2

"-S
2

- Use mode 2 in either case.
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It will always be assumed that both the attacker and the

defender have perfect information about the state of the pro-

cess. As in Chapters II and III we use the notation P (P )c p s

for the single-shot-probability of kill by an anti-primary

(anti-secondary) missile, given that the missile survived the

interception attempt of the defense.

We shall restrict ourselves to the case of one secondary

target only. The case of several secondary targets requires

very heavy and awkward technical, mathematical work, but no

new conceptual difficulties are encountered. Therefore we

concentrate on the investigation of the case where only one

secondary target is present.

Notice that no consideration is made about the size of the

defender's stockpile. We assume that no constraint does really

exist in this aspect, that is, the defender always has enough

defensive weapons so that he can counter the offensive mis-

sile. This assumption is quite realistic, especially when

reloading times are far shorter than the characteristic time

elapsing between launches of the offensive missiles. Even if

the defender did have a limit on the number of missiles he has,

it would not raise any significant difficulties to our models

since we can define the number of missiles he has as the state

variable (dictating the maximum number of stages of the game)

and nothing in our models would be changed (given only that

we used either the MPH or MENP criterion) . In Part II of the

thesis, where decoys are considered, we shall formulate and
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solve problems in which the limit on number of defensive

missiles does play a role in the model.

We are now ready to formulate the games and solve them.

Before doing that, some comments are appropriate on the ade-

quacy of the game methodology to our problem.

D. COMMENTSON THE ADEQUACYOF GAME MODELS TO MISSILE
ALLOCATION PROBLEMS

A zero-sum game is, by its very nature, a mathematical

idealization of a conflict taking place between two players

of strictly contradictory interests. The degree to which re-

sults based on such models are relevant, either to the des-

cription of real processes involving human decisions or to

prescription of optimal course of behavior for any of the

players, is very controversial. The philosophy of game theory

is very hard to accept in the real decision-making world,

since in the basics of this philosophy lies the assumption

that both players are extremely sophisticated and that both are

aware of game theory itself and believe that so is their rival.

The fact that optimal behavior, as dictated by game models,

very often prescribes randomized strategies, makes it even

harder, technically and mentally, to implement in the real

world. For example: suppose that the optimal defensive policy

in our problem, in some specific case, is to randomize over

P,-S-] and P, -S- response programs. It is very hard to imagine

how does a human, who is responsible for the defense, actually

follow this prescription. The randomization action as a
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procedure to be performed in real processes is something

which is very much rejected by natural instincts. Hence, it

should be clear that the models given hereby should not be

interpreted as either descriptive or prescriptive models.

As Luce & Raiffa [13, page 63] say:

...It is crucial that the social scientist recog-
nize that game theory is not descriptive, but
rather (conditionally) normative. It states
neither how people do behave nor how they should
behave in an absolute sense, but how they should
behave if they wish to achieve certain ends. It
prescribes for given assumptions courses of
action for the attainment of outcomes having
certain formal "optimum" properties...

In addition to the importance of the game model, as pointed

out by Luce & Raiffa, we would emphasize yet another gain

from these models. This is the fact that they provide esti-

mates for the "min max" values of the relevant measure of

effectiveness (or cost) . The value of a zero sum game repre-

sents, as is well known, the "best worst" case for both players

It tells each player what is the minimum benefit (or maximum

loss) which theoretically can be guaranteed. Having the value

is therefore amounts to having a very significant, although

partial only, information to both players.

E. THE ANTI-SECONDARY/ANTI -PRIMARY ALLOCATION (ASAPA) GAME
MODELWITH MAXIMUMEXPECTEDNUMBEROF PENETRATORS
(MENP) PAYOFF

MWe denote by r, the game played when the secondary target

is alive, and there are M missiles yet to be launched by the

Mattacker. The symbol r
Q

stands for the game starting with

the secondary target already destroyed. We assume that the
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payoff is the maximum expected number of penetrators (MENP

criterion) . Clearly, we have:

MvaKTg) = M

,M
The game r, can.be described by a matrix the entries of which

are combinations of real reward and some distribution on the

M—

1

M—

1

game elements r
Q

and ?" (see Section B) . The matrix of

M
the game element r is the following:

Defender '

s

choices

Attacker '

s

choices
Attacker uses anti-
primary missile (AP)

Attacker uses an ti -secondary
missile (AS)

pr s
i ( *>

*l
+r

M-l P
s

.

qi .rr + (l-P
s

.

qi
,r«-

pr s
2

<•)

Vs
!

<*>

Cp-qj. + (1-Op) -q
2

a -q
2

+ (1-c ) .q
x

+ r
M-l

p
2

-s
2

(*) q + r

M-l

+ [l-d-a^-q^P^rf 1

a 'Q, *P • i ns u s

+ [l-a
s

.q
1

.P
s

]r
i

M-l

pM-1
F

l

(*) See Section C for definitions.

To make things clear we explain in details two of the entries

of the above matrix.
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Consider first the entry P,-S
2

--AP above. It corresponds

to the attacker launching an an ti -primary missile. There is

a probability a that it will be classified as anti-primary.

Hence Mode 1 will be selected by the defender (as the P-j-S-

response program dictates) , and the probability of penetration

of the launched missile will then be q, . If the missile is

classified as anti-secondary, mode 2 will be selected, and

the probability of penetration is then q 2
. The unconditional

probability of survival of the missile is thus a q.+(l-a ) q_

.

M-l
In addition, the next game to be played is r, (with proba-

bility one) .

Now we explain entry P, -S~ —AS. Here the attacker launches

an anti-secondary missile. If it is classified correctly,

then there is zero probability of killing the secondary target

(by the assumption we made on mode 2) . If it is classified

incorrectly (that is, as anti-primary) , as it will be with

probability 1-a , then it has probability q, -P of killing

the secondary target. The unconditional probability of killing

the secondary target is thus (1-a )q-,-P , and then the next

M-lgame is r n . The probability of not killing the target is

M—

1

l-(l-a ) q, P , and given that, the next game is r. . There-
s 1 s 1

fore, the entry is

•WW1-
" -1

+ [i-a-,
s

)-p
s

-q
1 ]rf

1

The expressions in all the other entries are similarly argued.
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M
We denote by V the value of the game r. . Following the

general procedure due to Shapley (see Section B) , we obtain

a difference equation for {V : M = 1,2,...,} by the following

method:

M-l
(1) Substitute V . for r

1
wherever it appears in the

matrix of r, . Substitute also M for r .

(2) Calculate the value of the resulting matrix. This

value is equal to th

Thus, we have the equation:

Mvalue is equal to the value of r .

vm = valM

<3l
+V

M-l Ps q1
(H-l) + (l-P

sq1
)VM. 1

c
p

q1+ d-a
p

) q2+VM_1
(I-.,,) q^ (M-l) + [1- (l-c^) q^] ^

»pV ll "V ql
W»-l a

sq l
P

s
(M" 1) + [1 ^.«lWl

*2
+Vl Vl

Since one player (the attacker) has only two pure actions, it

is known that optimal randomized defensive policies exist

which mix at most two of the four response programs available

to the defender. It has to be emphasized that we are not

interested in investigating all optimal strategies for the

game, since our main interest is in the values of the games.

Also, in order to make optimal strategies more likely to be

ever implemented, we seek for the simplest optimal strategies,

where simplest naturally means randomizing over the minimum

possible number of pure actions. In our case the number is

two.
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We start solving the above equation by making some pre-

liminary observations on the matrix.

First we notice that

M-l

This is obvious since M-l is the number of missiles the attacker

M-l
has in the game r, , so that the optimal number of pene-

trating missiles cannot exceed what he has, and clearly should

be strictly less.

If we use this relation together with the relation q, < q~

,

we can quite simply observe that no row of the above matrix

dominates any other row. However, we can show that either

row 2 or row 3 (which correspond to response programs P,-S~

and P
2 ~^i ' res Pect i ve ly) is dominated by a mixture of rows 1

and 4. Which row is the dominated one depends upon the param-

eters a , a , as we now show.
P s

First, let us compare the mixture a (1) + (1-a ) (4) with
P P

row 2. The first element in the mixture, that is, the payoff

induced by the mixture when the attacker chooses the AP deci-

sion, is:

VWl' + (1 "V ( ^2 +V
M-l» - Vq l

+ <1 "V q 2
+VM-l

*
A "mixture" will be referred to as a randomized policy,

mixing two rows. We shall denote by 5(i) + (1-6) (j) a mixture
which chooses row i with probability 5, and row j with proba-
bility 1-6. Later on we shall also abbreviate and write
H^'3 for such a mixture.
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which is identical to the first element of row 2. The second

element of the mixture (attacker chooses AS action) is:

.
p

[p,-q 1
(M-D+{i-p,.q 1 ) -v^ + d-a p) .v M_1

= a
p

.P
s

.q l(
M-l) +d-a

p
.P

s
.q

1
)V M_ 1

If we compare it to the corresponding element in row 2 (i.e.,

the element in column 2, row 2), we see that in order for the

second element of the mixture to be less than the second ele- • )

ment of row 2, it is necessary and sufficient that: '^

"*•
'

'.

* * i

i

a < 1 - a .
'•

'i

P " s •

Since we showed that the first element (column 1) of the mix-

ture is equal to the first element of row 2, it turns out that

the above condition guarantees that row 2 is dominated by this

special mixture of rows 1 and 4 (a (1) + (1-a ) (4) ) . Hence,

if a <_ 1-a , we can ignore row 2 without changing the value

of the game.

Similarly one can show that if a > 1-a , row 3 is dominated1 p — s'

by the mixture (1-a ) (1) + a (4) . Therefore, in all cases,
Cr P

it is always possible to reduce the size of the matrix of the

Mgame r, by ignoring either row 2 or row 3.

Worth noticing is the case a = 1-a . In this case, both
p s

row 2 and row 3 are dominated by mixtures of rows 1 and 4

,

and so we can leave inside the game only rows 1 and 4

.

The various domination cases described above have a very

interesting operational interpretation. To see this, notice
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that 1-a is the probability of classifying an anti-secondary

missile as an ti -primary missile. If a = 1-a , then classi-
P s

fication probabilities are the same for both missile types,

or in other words, the two types are indistinguishable. Indis-

tinguishability makes it unnecessary for the defender to classify

He needs only to decide on some mixture of mode 1 and mode 2

,

regardless of the classification. A mixture of reponse programs

P,-S, and P
2

~ S 2 ( rows 1 anc ^ 4) is just that kind of mixture,

since both programs dictate a given decision without referring

to the classification. In the cases a < 1-a and a > 1-a
p s p s

it is possible to distinguish between anti-secondary and anti-

primary missiles.

The fact that the two missile types are distinguishable

should be exploited in every optimal strategy. This rather

intuitive perception can be formalized by saying that if

a t* 1-a , no optimal strategy exists which does not associate
P ^

a positive weight with either the P.-S* or the P
?

-S, response

programs. This is intuitively plausible, since the programs

P,-S
2

and P
?

-S-| are the only programs which respond differently

to different classifications. In other words, these programs

are the ones which exploit the distinguishability property.

We present this conclusions as a theorem:

THEOREM1 ; If a j- 1-a , then no optimal defensive strategy

exists in which P-.-S, and P^-S- are the only

active actions. If a > 1-a , then the P,-S_
p s 12

program should be active in every mixed optimal

strategy, and if a < 1-a , the P
2

" s
i

program

should be active in every mixed optimal strategy.
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Proof: We examine the case a > 1-a only. The other case
p s

is similar. From the previous discussion we know that in this

case row 3 (P
2

~S,) can be ignored. That is, there are optimal

strategies which do not involve the P
2

~S, response program.

The
Mmatrix of the game r. is thus:

"^vattacker
de-\.
fender^. AP AS

pr s
i "l

+ Vl P
s , 1 (M + (W

sqi
IVH. 1

pr s
2 W^VVVi (l-a

3 )q
]

;P
s

(M-lH[l-(l-a
s )q 1

P
a lVM. 1

p
2

-s
2 "2

+ Vl Vi

Now let 5 (P-.-S-,) + (1-6) (P_-S
2

) be a mixture of rows 1 and 3

above, where 6 is the weight of P-j-S, (0 <6 < 1) . We show that

this mixture cannot be an optimal strategy. First we write

down the payoffs of this mixed strategy under each of the

possible actions of the attacker. We shall denote the above

mixture by H.' and write Pay(H^"'
3

|AP) and Pay(H}' 3
|AS) for

the payoffs of this mixture under AP and AS decisions. We

have:

.1,3Pay(H
6

'-|AP) = 5 q] _
+ ( 1-5

) q 2
+ V^ (IV. 5)

Pay (h]'
2

I
AS)

o
5P q [M-l-V ]+V

S 1 M-l M-l (IV. 6)
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We have to distinguish, as we shall see, between two possi-

bilities concerning the value of 5 : (1) 6 > 1-a and

1 2
(2) 5 <_ 1-a . We start from case (1) . Let H ' be the mixture

y(P,-S,) + (1-y) (P,-S
2 ), and let us calculate the two payoffs

of this strategy:

Pay(H^' 2
|AP) = Y q

]
_+ (1~y) a q] + (1-y) (1-a ) q 2

+vM_i (IV. 7)

Pay(H*' 2
|AS) = ^q^U-Y) (l-a

g ) q] P
g J [M-1-V M_ 1 ]

I

+ VM_ X
. (IV. 8)

1 2
If H ' is to be a preferable strategy for the defender, we

must have:

Pay(H lf2 |AP) < Pay (H*'
3

I AP) (IV. 9a)
Y o

Pay(H 1 ' 2
|AS) < Pay (H^

'

3
I AS) . (IV. 9b)

Y 5

Using Eqs . (IV.5-IV.8) above, we find that these conditions

are equivalent to:

yq x + (l-Y)a q x
+ (1-y) (l-o )q 2

< 5q 1
+(l-6)q

2
(IV. 9c)

yP
g q 1

+ (1-y) d-agJq^g < S p
3 <*i

(IV. 9d)

From (IV. 9c) we get

5 - a

1

P
y > i

E (IV. 10a)
1 — o.
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and from (IV. 9d) we have

5 - (1-a )

Y <
s_

< (IV. 10b)
(X

S

To show that there exists a value of y which satisfies these

two conditions, it is necessary that

6 - a 6 - (1-a )

R < _ .

1 " a
p

a
s

This last inequality is equivalent to:

[a - (1-a ) ]5 < « - (1-a )

,

p s p s

and this inequality indeed holds true, since we are assuming

that a > 1-a , and obviously, 5 < 1. Thus we can find a value
p s

of y satisfying (IV. 10a) and (IV. 10b) simultaneously, and

hence (IV. 9a) and (IV. 9b). Since we also assume that 5 > 1-a ,

we see from Eq. (IV. 10b) that it is also possible to find such

a value of y which is between and 1. Thus we have proven

1 2that a strategy H^ '
, with such a value of y is preferable

to H*'
3

.

The second case for which 6 < 1-a is resolved in a simi-— s
2 3lar way by considering a general mixture H ' (instead of
Y

1 2
H ' above) . We have:

Y

Pay(H^' 3
|AP) = Yta

pq 1
+d-o tp )q 2

] + (1- Y )q 2
+VM-1 (IV. 11)

Pay(H^' 3
|AS) = Yd-a

s
)P

s q 1
[M-l-V

M_ 1
] + VM_ X

. (IV. 12)
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The requirements Pay(H 2 ' 3
|AP) < Pay (H*'

3
| AP) and

Pay (H
2,3

| AS) < Pay (H^'
3

| AS) are equivalent to:

a
(IV. 13a)

and

l '«s
(IV. 13b)

Since we are assuming 5 < 1-a in this case, and since
s

a > 1-a , it is again possible to find a value of y , which
p s

is between and 1, and which satisfies both Eqs . (IV. 13a) and

(IV. 13b). Hence H
2 ' 3 is preferable to H* '

3
.

Y 5

We have thus proven that we can always find a defensive

1 3policy better than any policy of the type H '
. The proof

of the theorem is thus complete.

Another interesting observation can be made, regarding

the domination relationship between the two columns of the

matrix of the game. We see that for M = 1, the second column

is zero (since obviously V. = 0) and the first is positive.

This is quite expected, since if only one missile is to be

launched, the optimal decision is clearly to launch an anti-

primary missile. In this case therefore, the optimal strategy

for the defender is a pure one--to use the P-i-S, program

(i.e., to use the more-effective mode).

It is expected that this domination relation will continue

to hold true for some more values of M, that is, for M = 2,3,.

until for some M, domination will no longer hold. At this
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first M for which the first column (corresponding to the AP

decision) ceases to dominate, both players would resort to

randomized strategies for optimal behavior. We can deduce,

using a remarkably simple heuristic argument, that the great-

est value of M for which the solution of the game consists of

a pair of pure strategies (AP for the attacker and Pi~S, for

the defender) is precisely the number M* which has been calcu-

lated in Chapter II for the one-sided dynamic programming

model.

The argument is the following: Suppose that for some

value, which is less than or equal to the M* given in Chapter

II, the optimal strategy for the defender is randomized, i.e.,

consists of at least one active response program in which there

is positive probability of using mode 2. In the model pre-

sented in Chapter II it was assumed that the defender always

operates on mode 1, and even though the attacker knew it, his

optimal decision (for M M*) was shown to be the AP decision.

Knowing now that with some probability, the defender will use

mode 2 instead of mode 1 should not lead the attacker to change

his course. He still should desire to launch anti-primary

missiles, since in mode 2 there is a greater probability of

survival and there is a zero probability of killing the secon-

dary target anyway. Therefore, if M is the greatest M for

which the game has a saddle point in the P-i-S, —AP entry,

then the foregoing argument shows that:

M > M*
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where M* was shown in Chapter II to be given by:

M* = 1 + V1 "^'

(Notice that we should use q. , not q 2
, in place of q in

Eq. (11.14) .)

We now have to show that M can ' t be greater than M*

.

Suppose therefore that M > M* . It would then mean that for

some M > M* , the optimal policy for the attacker is AP and

for the defender is P,-S,. But then, the attacker, knowing

that the defender should use the pure strategy P,-S,, would

tend to aim his missiles at the secondary target, because for

all M > M* this is what's preferable for him, as the one-sided

model of Chapter II indicates. Thus we arrive at a contradic-

tion to a fundamental property of equilibrium of solutions of

zero-sum games. By that property, the knowledge by any player,

of the fact that his opponent does use his optimal strategy,

by no means attracts him to change his own policy. This is

clearly not so in the above case. Thus, for no value of M

greater than M* can there be a pure solution to the game.

Therefore for all M > M* , the optimal strategy for the attacker

is mixed (the two possible decisions, AP and AS, are active).

Obviously there is no M for which the optimal strategy of the

attacker is pure anti-secondary because the optimal strategy

of the defender would then be P
2

~ S 2' and the Pair of pure

strategies P
2

" S 2

—

A^ clearly cannot be an equilibrium

combination.
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We proceed now by solving the equation (which corresponds

to the case a > 1-a ) :

P s

"1
+ Vl pAo*-i) + a-p A>Vi

VM = val Vi +<1"V q2 + Vi (i-«
s )q 1

P
s

(M-i) + [i-(w
s )q 1

P
s

]v M. 1

q2
+V

M-1
V.
M-l

(IV. 14)

From the discussion made above we know that for M - 1,2,...,M*

we have

:

V
M

= M-
qi

For M > M* we know, from the Theorem 1 proven above, that the

optimal defensive strategy either mixes rows 1 and 2 in the

above matrix, or rows 2 and 3 (but cannot mix rows 1,3)

.

Starting from M = M*+l, we should find for each M, the two

values V', V" defined by:MM

VM
= Val

M

Wi P^M+ll-P^lv^ \ (ml)

Vl +a " a
p

)q 2
+V

M-l (1 - a
S

)<
3l

P
s

(M- 1) + tl - (1 - a
s )q l

P
s

]V
M-l

(r0w2)

V"M
= val

'
ctV (1 -°p , %W

M-l

(IV. 15a)

(l-a
s )q 1

P
s

(M-l)+[l-(l-a
s )q 1

P
s

]V M_ 1 \
(row 2)

Wi V
M-l
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With the assumption that V , is known (for M = M*+l we have

V u.
= M*»q, and the V ' s are then calculated recursively) , we

M* 1 M

have to find both V' and V", and then take the minimum in

order to get Vw (because the defender, who is the one to chooseM

the row, wishes to minimize the number of penetrators) . Thus,

VM
= minfV^V"] .

We now simplify Eqs . (IV. 15a) and (IV. 15b). Define:

Vq l
+ (1 "V * q 2

= q

and

M M

We multiply each of the equations (IV. 15a) and (IV. 15b) by

-1 (the value of the matrix is thus also multiplied by -1)

,

then add M to both sides of each equation. We write g' for

M - V', and g" for M - V". We also make use of yet another
M M M

trivial identity: Let b ben any constant, and let B be the

matrix of a zero-sum game. Let also J be a matrix of the

same dimensions as B, with all its entries equal to 1.

Then

:

b + val (B) = val(B + bJ)

Using this and the above definitions, Equation (IV. 15a) becomes
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gM-l " q l

9JL
= 1 + val

(1 - P
s q l )g M-l

g M_i -q i 1 - (1 - a
a

, ^i
p

s lg M-i

(IV. 16a)

and Eq. (IV. 15b) becomes:

g" - 1 + val3 M

gM-l
" q

gM-l
" q 2

[1 - (1 -°s )q l
P

s ]g M-l

gM-l

. (IV. 16b)

Equations (IV. 16a) and (IV. 16b) have forms which make it much

more convenient to apply the known explicit formulae for the

value of a 2x2 matrix (see the Appendix for these formulae)

.

Notice also that we have transformed V,, to g„, where g„ simplyMM M *

expresses the difference between the actual achievable number

of penetrating missiles and the ideally desirable number

(which is M) . The function g,„ thus measures the effect of

the defense, and so serves as a very meaningful function for

itself, besides its being a more convenient quantity mathe-

matically, as we shall see.

From (IV. 16a) we get, after applying formula (1) of the

Appendix:

9m " X +

We now define:

(q- qi ) d-q
1

P
s ) -*s q l

P
s

+ a
s q l

P
s gM-l

q-q, + -x q,P g,, -* ^1 s^l s y M-l
* gM-l *

b 1 =
q - q x
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a' =
a

s
,q

i
,p

s

so that we have:

a '
+ g M-l

?M = 1 + ^ ^q": >'gM-l •
(IV * 17a)

M-l

Similarly, from Eq. (IV. 16b) we can explicitly express the

value on the right side as:

q 2
-'^- a

s )q i
p

s q 2
+(1 - a

s )q i
p

s gM-i% q 2- q + (1 - a
s )q l

Ps9 M-l
M_1 '

Define now

q 2
-q- U-agJq^Ps

a" =

b" =

(l-a^q.P,

q 2
-q

(1 - a s )q l
P

s

and so we have

9M " l + ( b" + £
,

> -%-l • (IV - 17b >

M-l

Now g« can be written as follows:M

g M = M-VM = M-min[V',V"] = Max[g',g"] .M M n M 3M 3 M

Making the comparison between g' and g", using Eqs . (IV. 17a)

and (IV. 17b), we^ find:

a* +g M , a" + g M ,

t \ »\ ^ ^ i M-l. ^M-l.
t9 M i «i» <^> < b' + g > i b" <, >
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Notice that q, < q < q~ , and so b' and b" as defined above

are both positive. Since g M i must also be positive, we can

multiply the last inequality by the two denominators of the

two sides being assured that the inequality sign stays oriented

at the same direction. After a simple algebraic manipulation

we find:

a '

b

M - a "b

'

(g M - gM} <^=^ > gM-l - (a rt -a') - (b" -b*) (IV. 18)

We have thus found a very convenient way to check whether the

optimal defensive strategy, at state M, comprises the response

programs P-i-S, and P,-S 2 / or rather the programs P
?

-S„ and

P,-S
2

: If #q. (IV. 18) is satisfied for that M, then it is

the first case which holds. If not, then it is the second.

Notice from (IV. 18) that we have found a numerical "threshold"

which separates the two possible structures of the optimal

defense strategy. The threshold is

a'b" - a"b'
(a" -a') - (b" -b')

= Val
-a' -a"

b' -b"

= A, say. (IV. 18a)

We now prove the following lemma which will be helpful in

gaining some insight into the structure of the optimal defen-

sive and offensive strategies.

Lemma; The function g„ is an increasing function of M.
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Proof : For M <_ M* , we have V M-q., and hence

g(M) = M -V = M(l-q,) which is, of course, an increasing

function of M. To show that this is also true for M > M*,

let us develop Eq. (IV. 17a) as follows:

«
= l + < b ' ^M-l '

' 9"-l
= 1 + U " b'V'^V ^M-l

• 9M-1 + X - (b '- a ' ), b'tq , " gM-l* 1 - (b '- a '

) (IV - 19)
M—

1

By definitions of a' and b' we haves

(q-qj qiP s + <» s q?P s q - qi
b» -a' - —±-| 3 l 3 « - + q.

s^l s s

Now notice that 2

q " q l * a
p

q l * (1 - a
p

)q 2
" q l " Cl-apXqj-q^

and so:

b . ... =
( _^!£ )(q .„ , q

s

Since we work here on a case for which a > 1-a t we find
p. s'

from the last equality that

b' - a' < q
2

and so, returning now to Eq. (IV. 19) above we find

«M * »M-1 + l " q 2 * «M-1
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rience

% = Max[g
M' g A ] " gM * g M-l '

This proves the lemma.

This lemma leads to a very useful conclusion about the

structure of the defense optimal solution. We know from

inequality (IV. 18) that the least M for which the optimal

strategy mixes the P
]
_-S

2
and P

2
~S

2
response programs, can be

written as M**+l, where M** is the least integer M (greater

than or equal to M*) which exceeds X:

a' b"-a"b' ,

M** = Min{M: M ^M*,g M > X -
(a «_ a l j _ (b»-b ') '

(Notice that if gM* = M*(l-q
1

) > *. then we have M** = M*7)

Since we have just proven that gM
is an increasing function

of M, then the inequality gM
> X will continue to hold for all

values of M greater than M**. We may therefore conclude that

once the optimal defense strategy switches from P
2

~ S 2~~ P 1~ S
2

mixture type, to a P
1

"S
1
~P

1
-S

2
mixture type (and this happens

exactly at M - M**) , it can never again switch back, at lower

values of M, to a policy in which the P
2

-S
2

response program

is active.

In the following table we present a description of the

general structure of the defensive and offensive optimal

strategies.
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Table IV.

1

Optimal Strategies In the ASAPA
Game with MENP Payoff

1

Number of
offensive
missiles

left

Optimal Defensive
Strategy

r

Optimal Offensive
Strategy

M < M* Pure P, -S, response

program.

Pure AP policy.

Mf <M <M**

(*)

Randomization over P-.-S,

and P-i
_S

9
response pro-

grams.

Randomization over

AP and AS decisions.

M >M** Randomization over P^ -5
?

and P, -S
2

response pro-

grams.

Randomization over

AP and AS decisions.

(*) If M** = M*, then the second row of the table is vacuous.

The interpretation of the structure presented in Table

IV. 1 is this: When there are only a few missiles left to be

launched ("few" means less than or equal to M*), the defender's

main concern is the prevention of missile penetration--not

so much his own survival, and so he must use mode 1 only.

If the number of missiles left is large enough (more than

M**) , he must be more concerned about his survival than about

preventing penetration of immediate missiles. This is re-

flected by the relatively frequent use he should make of mode

2, which renders the secondary target less vulnerable, although

also less effective. The "emphasis" on mode 2 is shown by the
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fact that he mixes the Pi-S-, and P
2

" S 2 res Ponse programs.

(He never uses mode 1 "blindly".)

There is also an interim zone (if M** > M*) between M*

and M**, where the defender must be cautious. At that zone

he must evaluate the interception of potential anti-primary

missiles as more important than his own protection against

potential anti-secondary missiles. Thus he randomizes over

P.-S, and Pi"S
2

-

To conclude the analysis of this model, we calculate the

optimal strategies of both the defender and the attacker,

in each of the three zones of M described above.

(a) M M* : Both players use pure strategies. The

attacker launches anti-primary missiles, and the

defender uses P-.-S, response program.

(b) M* * M <_ M**: (If M** = M*, which is possible, this

zone is empty.) We denote by 5 * (M) the probability

of the attacker using an anti-primary missile (at his

optimal strategy) and by 6 D*(M) the defender using the

P,-S, response program at his optimal strategy.

(l-6_* (M) is the probability of using P-i-S^ response

program.) The calculation of 5 * (M) and 6 * (M) is

straightforward, based on the formulae (2) and (3) in

the Appendix. We first write the active sub-matrix

of the game at state M (for M* < M < M**)

:
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Defender

p
1

-s
1

p
1 -s

2

' Attacker

AP AS

g M-l" q l
(1 - P

s q l
) '%-1

gM_i-q [1 - (1 - a
s )q

-i
p

s ]g M-i

Using formulae (2) , (3) in the Appendix we find

-q)
6

D*
(M)

- 1 -

[l-(l-a
s )q 1

P
s

]g M_ 1 ^ . f q

q l
(P s' g M-l " 1}

* a *(M)

q-
qi

+a
s

-q
1

P
g

.g M„ 1

[l-(l-a
s )q 1

P
s ]g M_ 1

-(l-P
s q 1

)-g M_ 1

q " q l
+a

s* q l'
P

S* gM-l

(IV. 20a)

q-q.

a q,P
+ <?M-

»' + g M-M-l
M-l

(IV. 20b)

Notice that g # = M* - V * = M*-M*q, = M*(l-q,) and since

M* >

we conclude that g., + > —
^M* P

P
s

(l-q
x

)

Since g w is monotone increasing
M

1function of M, we have, for all M > M*, g > =—. From this
s

one can easily show that Eqs. (IV. 20a) and (IV. 20b) yield values

of 5_ # {M) and 5_*(M) between and 1, as they should,

(c) M > M**: In this zone, the active submatrix is:
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Attacker

AP AS

P1" S
2 / gM-l" q [1 - (1 - a

s
)c

*l
P

s ]g M-l

Defender

P~-S2" S
2 \

gM-l" q 2 gM-l

We denote here by 5 D
**(M) (<5,**(M)) the weight of the P

2
~ S

2

response program in the optimal defensive strategy (weight of

AP action in the optimal attacker's strategy) . We again

apply formulae (2), (3) of the Appendix, and find that:

(1 " a
s

)q l
P

s gM-l" q
6 n **(M) = -7^ , g

x
(IV. 21a)D** c5 2

- q+(1 - a
s )q l

P
s gM-l

(1 " a
s )q l

P
s' gM-l 1

5 A **(M) = -vf , p = r-rr—

±

(IV. 21b)A**
#

q
2

- q+(1 " a
s )q l

P
s* gM-l b +g M-l

It can be seen that g.„ * °° as M > °° (since g.. > g„ - + (l-q_) ,3 M 3 M 3 M—1 2

as was shown in the proof of the lemma) . Thus, we find that:

5 D
**(M) * 1 and S A**(M) - as M + «.

The solution of the ASAPA game model, with MENP payoff is

now completely at hand. For convenience of use we summarize

here the alogrithm for solving the game.

Algorithm —ASAPA Game Model, With MENP Criterion:

(1) Calculate M* (Eq. (14) , Chapter II) . Calculate the

the constants a 1

, a", b 1

, b" from the parameters

of the problem.
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(2) For a 11 values of M less than or equal to M* put:

V.. = M-q
1M

The optimal strategies are: Pure AP for the attaoker,

and pure P
±

-^
1

f° r the defender.

(3) Set M = M*+l. Calculate

^M* M*

(4) Check whether

a'b" - a"b
%-l y x =

(a" -a') - (b" -b')

If this inequality doesn't hold, calculate g M
from

Eq. (17a) (taking g M
= .g£) .

Calculate VM by

v = m -q . Calculate optimal strategies from
V M ** ^M

Eqs. (20a) and (20b). Set M = M+l and repeat the

step.

If the above inequality does hold true, set M** = M-l

Set M = M+l.

(5) Calculate gM
= g", given by Eq . (17b). Calculate

optimal strategies using Eqs. (21a) and (21b). Set

M = M+l and repeat the step.

r THF ANTI-PRIMARY/ANTI-SECONDARY ALLOCATION (ASAPA) GAME

MODELWItI MAXIMUMPROBABILITY OF HIT (MPH) CRITERION

This section differs from the previous one by the function

used to define the payoff of the game. We now define the

payoff of a game, r* or r* as the probability of eventually

hitting the primary target. For reasons of mathematical
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convenience we use probabilities of miss —rather than hit

probabilities--in all the analyses which follow. This does

not affect in any way the optimal strategies of either the

i

defender or the attacker.
»

First note the obvious fact that the value of the game r

is identical with the probability of missing the target in M

M

attempts, each having probability of hit P . This is true,

Msince by definition of V Q , the secondary target is already

dead at the beginning of this game. Thus we have:

M
val(rj) (1 - P )

P

M

M
The matrix of the game r, is

ttacker '

s

De- SVv-choices
fender '

s

choices

pr s
i

pr s
2

Vs
i

P -S
2 2

Anti -primary
Missile (AP)

M-llw Alr
i

Ant i -secondary
Missile (AS)

M-l M-lWt|W Alr
i

a (1-P q,)
P P

M1

+ (l^ )(l-p ajr^" 1

P P 2 1

p (1 - p
p

q 2
)

o „M"1
s u s

Ua-aja-pq^r^- 1
+(i-«.v. )I

i'
1

<i"WT M-l

M-l

.[l-d-a^q^lrf 1
j
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We use the parameters q and q defined by:

q = a pq] _
+ d-a

p
)q

2 q = - p
q 2

+ (1 - a
p

)q l

M
As before, let us denote by V,„ the value of the game r,

.

M 1

To find the sequence of values V (M = 1,2,... ), we start

from the obvious relation

V
1

= val r. 1 - P -q,
P 1

and use the recursive equation:

M-l
(1-P q,)V M , q,P (1-P ) +(l-q,P )V, ,

p U M-l ^1 s p U s M-l

M
= val

(1 " P
P

q) Vl (l-a,)q
1

P
8

(l-P
p

)

M"
1+ I!" (l-

s ) q^,] Vl
M-l

(1 -V )V
M-1 a sVs (1 - Pp) +tl '^l P

s
1V

M-l

(1 "V2 )V
M-1

V,
M-l

(IV. 22)

The entries in the 4x2 matrix of Eq. (IV. 22) represent

"payments" which the column player (the attacker) pays to the

row player (defender) . Therefore the goal of the defender is

to maximize payments. We can show that if a < 1-a , the
P - s

second row of the above matrix can be ignored and if a > 1-a3 p — s

the third can be ignored. This is done exactly as it was

done in the previous section: We multiply the first row by
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a and the fourth row by 1-a and add. This mixture is directly
P P

seen to be preferable to the second row if a < 1-a . Ifc p — s

a > 1-a we take the mixture (1-a ) (1 row) + a (4 row)
p - s p p

and confirm that it is better than the third row. If a = 1-a
P s

(i.e., probability of classifying a missile as anti-primary

is the same for anti-primary and anti-secondary missile) , then

both the second and third rows can be ignored, and an optimal

policy which uses only the P-i-S, and P
2

~ S 2 res Ponse programs

can be found.

We see that in no case do we need to consider all the four

possible response programs. Only three (at most) should be

considered. From here on we solve in detail the case a > 1-a
P s

only. The case a < 1-a is similar and could be carried outJ p s .

exactly the same way as we shall do here (with q replacing

q, and l-a
fc

replacing a )

.

As we saw, since a > 1-a , we can ignore the third row.
p s

We now introduce the function hw defined by:M

VMhM
= St • (IV - 23)

11 (1-p )

u
p

Notice that h_, measures the ratio between the actual proba-
ta

bility of miss, and the probability of miss that would have

existed had the secondary target already been destroyed.

MClearly, hM > 1. Dividing now Eq. (IV. 22) by (1-P
p ) , ignoring

the third row as explained, and using definition (IV. 23), we

reach the following equation:
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1 1h - t—s—val
H 1-P

\
(1 "V2 )h M-l Vl

(IV. 24)

We show that no optimal policy can mix the first and third

rows only. This result was proven in Theorem 1 for the ASAPA

model with MENP criterion. As before (Section E) we denote

by H '-^ the randomized defensive policy in which the i row

(of the matrix given in Eq. (IV. 24)) is selected with proba-

bility 6 and j row is selected with probability 1-6

.

1 3Theorem 2: A randomized defensive policy H ' cannot be

optimal, for any 6 such that < 6 < 1.

The method of the proof is identical with that which was

used to prove the same theorem in the previous section.

Different algebraic expressions are involved, however, in

Mthis case, since the matrix of the game r, examined in this

section differs from the matrix which was treated in Section

E.

Proof : We wish to prove that no policy of type H ' can be

optimal. We first write the payoffs associated with the

policy H '
, which correspond to the two possible attacker's

actions. These payoffs are calculated directly from the

matrix which appears in Eq . (IV. 2 4)

.
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Pay(H*'
3

|AP) = [1 - P
p

(6q
1

+ (1-6 ) q 2
) ] hM_ ] _

(IV. 25a)

Pay(H 1,3 |AS) = hM . - 5q,-P e [h
V(

, - 1] . (IV. 25b)2 5 ' M-l 1 S M-i

We now examine separately two cases: (1) 6 > 1-ot and

(2) 6 1-a . We show that in case (1) , a policy of the
S

1 2type H ' can always be found which is preferable on the

13 2 3policy H '
, and in case (2) a policy H ' exists which is

Y

preferable.

We begin with the case 6 > 1-a . We explicitly write

1 2the payoffs of a policy H ' for arbitrary y:

Pay(H^' 2
|AP) = [1 -

P

p
(yq 1

+ (1-y ) q) ]

h

M_ x
(IV. 26a)

Pay(H^' 2
|AS) = h^ -q^Cy+d-Y) d-a

g ) ] t^^-l] . (IV. 26b)

12 13
It is obvious that H ' is preferable on H ' if and only

Y 5

if:

Pay(H 1,2
|AP) > Pay(H^ /3 |AP) (IV. 27a)

Y <5

and

Pay(H 1 ' 2
|AS) > Pay (H*

'

3
I AS) . (IV. 27b)

Y 5

By comparing Eqs . (IV. 25a) and (IV. 26a), and then Eqs . (IV. 25b:

and (IV. 26b), we find that conditions (IV. 27a) and (IV. 27b)

are equivalent to the conditions:

Yq 1
+ d-Y)q < ^q

l
+ (l-6)q

2
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and

Y + (1-y) (l-a
g

) < 5 .

We now use the relation q = a q, + (1-a )

q

and find that the

first inequality in the last set is equivalent to

5 -a
Y >

1
B. (IV. 28)1-a
P

and the second inequality is equivalent to

6 - (1-a )

Y < — . (IV. 29)
a

s

To show that there exists a value of y (between and 1)

which satisfies both inequalities (IV. 28) and (IV. 29) we only

have to show that:

5 -a 5 - (1-a

J

£ < S_ .1-a a
P S

It is straightforward to confirm this last relation, using

the relation a > 1-a , which is assumed to hold in our case.
P s

The other assumption (5 > 1-a ) which has been made, guarantees

that not both expressions in the right hand sides of inequali-

ties (IV. 28) and (IV. 29) are either greater than 1 or less than

0, so that a value of y, which is indeed a probability (i.e.,

between and 1), exists that satisfies Eqs. (IV. 28) and (IV. 29)

We turn to the second case, i.e., 5 < 1-a . We consider— s
2 3an H ' policy, for arbitrary y. Tne payoffs are:
Y

Pay(H^' 3
JAP) = [1-P ( Yq+ (1- Y ) q 2

) ] h^ (IV. 30a)
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and

Pay(H 2 ' 3
|AS) = hM . -yq. P a (1-u ) (h M , -1) . (IV. 30b)

* y ' M-l IS S M-I

We are interested in a value of y which simultaneously satisfies

Pay(H 2 ' 3
|AP) > Pay(H 1,3 |AP) (IV. 31a)

Y Y

and

Pay(H 2 ' 3
|AS) > Pay (H*

'

3
| AS) (IV. 31b)

Y 6

Making the appropriate comparisons ((IV. 30a) with (IV. 31a),

(IV. 30b) with (IV.31b)), we deduce that the following inequali-

ties are equivalent to (IV. 31a) and (IV. 31b):

Y q + (1- Y )q 2
< Sq-L + (l-5)q

2

and

Y d-a ) < 6

These conditions are further equivalent to:

Y > A- (IV. 32
a

P

and

1^s '

(IV. 33)

Since a > l-o_» and 5 <_ 1-a (in this subcase) it is immedi-

ately verified that there exists some v, between and 1,
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which satisfies inequalities (IV. 32) and (IV. 33), simultane-

ously, hence also (IV. 31a) and (IV. 31b).

We have thus shown that a policy H. ' cannot be optimal,

since whatever the value of 5 might be, there exists a better

policy. The proof of Theorem 2 is thus complete.

Our next step is to find the recursion relations for h w

and to calculate optimal strategies. Here again, as in the

ASAPA model with MENP criterion discussed in the last section,

the optimal strategies are pure for all M less than or equal

to M*, where M* in this case is given by (see Eq. (II. 6)):

M* = 1 +

In ( 1 - *£)
s

1 -P

The argument which supports that statement is exactly that

which was explained before (p. 147 ) . The fact that we use

a different payoff does not affect the validity of that argu-

ment; it only changes the value of M*

.

For M <_ M* , the optimal pure strategy of the attacker is

AP and the optimal pure strategy of the defender is the Pi-S,

Mresponse program. The value V of the game r,, for M M* is

thus

:

VM = d-Pp-q^"

and so

1-P -q, M
JLlk-

>

P

hM
=

( ~rf ] (for M M*
)
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For M % M*, we define:

tk :i-p
•val

\

(1 - p
P
^ )h M-i ^¥ s

+[1 - (W
s »¥s ] Vi

I

(IV. 34)

\

(1 "V )h
M-l

(1 - a
s

) %V[ 1 - (1 - a
s

) ^l
P

s ] Vl
SI = im' val

V]
(IV. 35)

Notice that h' is the value of a game in which only the first
M

M
and second rows of the r game matrix (see Eq. (IV.24)),

corresponding to the P-j-S, and P.-S
2

response progr ams

(respectively) , are active. Similarly, h", the value when

the secondhand third rows (P,-S
2

and P
2

~ s o response programs

are active. Since we proved that the first and third rows

cannot be the only two active rows in an optimal defensive

strategy, we conclude that:

hM
= Max[h^, h£] .

M(We take the maximum because the payoffs in r expresses the

probability of miss of the primary target, which the defender

is interested in maximizing. The value h is always propor-
M

tional to V , with a positive constant of proportion, so that

the Maximum operation is preserved.)
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We calculate now h* and h" from Eqs . (IV. 34) and (IV. 35)

,

MM ^

using the formulae given in the Appendix. From Eq. (IV. 34)

we find:

Si ' (i-p ) Vi" val

i ,.
,

p
p

pA [a sV (i -y ( ^2^i }

]

( Vi- i] w fTvi
-

- (i=rr<Vi VHi^i'ViViVW 11
)

'

( ,

(where we. have skipped here some algebraic details). From

Eq. (IV. 35) we get:

K = 1

Vi -val
f^Vi ^sWk-r^

(i-p
p

)

i

p
P%Vi ° J

1
. 'WW^iV

(1-
p'p

(IV. 35a)

We now define

i _
P

p
(l-,

p
)(q

2
-

qi )

a
s q 1+ (l-a

p
)(q

2
-

qi

II _
P

P
a

P
( ^2" q l

d-a
s )q 2

i _
a s^l P

s
a

s q i
+ d-^

p
)(q

2
-q

1 )
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d" =
^1 s

Equations (IV. 34a), (IV. 35a) can be rewritten as

h ' = —n
M (1-P,

P P q.h M , (h M , -1)
p si M-l M-l+ -£

M-l c'h M-1 + d'(h M_ f l)
(IV. 34b)

h"M (i-P p)

P P q,h„ , (h._ , -1
p s^l M-l M-l

'M-l c"h M-l

-1)

M-l
(IV. 35b)

Notice that since q~ > q, , the parameters c 1

, c", d 1 are all

positive. Since c" > 0, we find from Eq. (IV. 35b) that:

h" >
M TT^T M-l

. !E.
P

s q l
d" "M-l

1-P q 2
1-P q

"T^P— Vl y- Vl (since "TTP
Pi! > 1

and so (h } is shown to be a monotone increasing sequence

hM = Maxth^.h-] » hj > h^ .

Using Equations (IV. 34b) and (IV. 35b) it is straightforward

now to deduce the general conditions for the P, -S~ and P^-S-

response programs to be the two active decisions in the opti

mal defensive strategy. The condition is

hM <
h M •

which by Eqs . (IV. 34b) and (IV. 35b) is equivalent to
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c "Vl + ^'Vr 11 c '
ll M-l +d, « hH-l- l)

This is also equivalent to

(c' -c" +d' -d")h M - > d' -d" . (IV. 36)M-l

In order to draw useful conclusions from inequality (IV. 36)

we first prove that

d' - d" >

To accomplish this, notice that

a q.P
d' * ^l_s

a
s q l

+(1 " a
p

)(q 2- q l
)

qi?Is
q 2

-[a
p

q 2
- (a

p
-( l-a

g
) ) q^

Now, since'a > 1-a and q n > q, , we have
p s ^2 ^1

a
p

q 2 ~ ( V (1 - a
s

))q l > ° '

and therefore:

d' > -±-2- = d" d 1 - d" > ,

as was to be shown. Returning now to inequality (IV. 36) we

see that if the parameters of the problem (P , P , q,,q_,a ,a )

are such that:

c' - c" + d' - d" < (IV. 37)
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then inequality (IV. 36) cannot hold true for any value of M.

Since inequality (IV. 37) was shown to be equivalent to h' h","» •* ^ MM
we conclude that condition (IV. 37) is sufficient to guarantee

that for all values of M (greater than M* ) , the optimal defen-

sive strategy comprises the P,-S- and P.-S^ response programs.

If, on the other hand, we have

c' - c" + d' - d" > 0,

then, since also d'-d" > we see that inequality (IV. 36)

is equivalent to:

Vl " c> -c-'+d' -d- •
(IV - 38)

Inequality (IV. 38) now serves as the sufficient and necessary

condition for h" to be greater than h', or, for the optimalM M

defensive policy to randomize over P-i-S- and P^-S- response

programs

.

The analogy between the ASAPA game model with the MPH

criterion treated here, and the ASAPA game model with the

MENP criterion discussed in Section E now becomes evident.

We define here the value M** of M by:

M** = Min{M: M>.M*,h
M

>
c , f 3 „ ~ *

','

_ d „ }

From the discussion above it is clear that M**+l is the least

value of M such that the optimal defensive strategy of the

Mgame r, consists of the Pi-S- and P
2

~ S 2 response programs.
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By definition of M**, and since h was shown to be increasing

with M, it is clear that for all values of M greater than or

equal to M**, the inequality (IV. 38) is satisfied. But this

inequality itself was shown to be equivalent to an optimal

strategy mixing P,-S~ and P^-S- response programs. We thus

reach a structure of optimal strategies which resembles that

which was discovered for the ASAPA game with MENP criterion

(see Table IV. 1)

:

(1) For M <_ M*, the optimal strategies of both defender

and attacker are pure: p i~ s
i

f° r tne defender and AP

for the attacker.

(2) For M* < M M** (if indeed M** > M*. It is possible

that M** = M* and then this case is not possible)

:

The optimal strategy for the defense is of Pi~S,

—

P l" S 2 fc yP e (defender never uses mode 2 "blindly")

.

The attacker's optimal policy is also randomized (AP-

AS) .

(3) For M > M**, the optimal defensive strategy is of the

P-,-S
2
—P 2~ S 2 t YPe ( never uses mode 1 "blindly") . The

attacker's optimal policy is randomized.

The operational interpretation of this structure is the same

as described in Section E.

We proceed by calculating the optimal strategies for both

the defender and the attacker. As before, we denote by <5-*(M)

(6 D
*(M)) the probability of selecting the AP action at the

attacker's optimal strategy (probability of selecting the P^-S,

174





response program at the defender's optimal strategy), for

values of M such that M* < M <_ M**. Similarly, 5 ^* (M)

(5_**(M)) are defined for M > M** (5 A<r (M) is the probability

of selecting the P
2

~ S 2 response program by the defender) . We

apply formulae (2) and (3) of the Appendix to the matrices

shown in Eqs . (IV. 34) and (IV. 35), and get the following

expressions

:

(1) For M between M* and M** (in case M** > M*)

:

[P q-(l-a )q P ]h^ + &-«s ,q l
P

B^ (M) = v^wwWvvf (IV - 39a>

a
s q l

P
s

(h M-l" 1]

<5**(M) = s-n —w xu ^-Tu rr (IV. 39b)A* V1^ (q 2"^l
)h

M-l
+0

8q l
P

s
( Vr 1)

(2) For M > M**:

[P o<5- (1 - a
s )q l

P
s

]h
M-l

+ (1 " a
s )q l

P
s

6«**(M) = - B .
s L s M l s L s

(iv. 40a)
'D* p

P
0t

s (q 2-qi)h M. 1
+ a-

s
) q i

p
s

( Vr 1)

^S^lVVl" 11

6***(M) = 5 j— rc= Tn \

—
tt-ju TT (IV. 40b)

A** P
p

a
p

(q^) h^ + (l-a
g

) q lPs (h^-1)

We now summarize the algorithm for solving the ASAPA game

model with the MENP criterion.

Algorithm —ASAPA Game Model with MPH Criterion:

(1) Calculate M* (Eq. (II. 6)). Calculate also c', c",

d', d" (functions of the parameters).

(2) For all M less than or equal to M*, set

VM " (1 -Vl>
M
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The optimal strategies are: Pure AP for the attacker;

pure P-j-S, for the defender.

(3) Set M = M*+l. Calculate:

VM* 1-p <3l M*

M* ,, « 4 M* K 1-P '

d-P
p

) P

(4) Check whether

h.. , >
d' - d"

M-l c* -c" +d' -d"

If this inequality doesn't hold, calculate h using

Eq. (IV. 34b) (taking h equal to h ' ) . Calculate VM
M

by V = (1-P ) *h M . Calculate optimal strategies using

Eqs. (IV. 39a) and (IV. 39b). Set M = M+l, and repeat

the step.

If the above inequality does hold true, set M** = M-l.

Set M = M+l.

(5) Calculate h M using Eq. (IV. 35b) (taking h.. = h") .M MM
Calculate optimal strategies using Eqs. (IV. 40a) and

(IV. 40b). Calculate V.. = hM (l-P )

M
. Set M = M+l andM M p

repeat the step.

G. ANTI -SECONDARY/ANTI -PRIMARY ALLOCATION (ASAPA) GAME MODEL
WITH MINIMUM EXPECTEDCOST (MEC) CRITERION

We now present the ASAPA game model using the criterion of

minimal cost of destroying the primary target (MEC-criterion)

.

In this model the stochastic game is allowed to continue until

the primary target is destroyed. Clearly the probability that
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the primary target will be destroyed in a finite number of

stages is equal to 1. The attacker desires to destroy the

target with minimal expenses. We assume that the defender

aims at exactly the opposite goal, i.e., to maximize this cost,

so that the model fits into the frame of a zero-sum game.

We denote by C the cost of an anti-primary missile and

by C the cost of an anti-secondary missile. We use also all

notations of the last two sections. The cost of destroying

the primary target is the total cost of all missiles which are

consumed in the game. This cost is, of course, a random

variable. The expectation of that random variable is the

payoff of the game. The symbol r stands for the game

played when the secondary target is alive, and r stands for

the game played when the secondary target is not present.

Clearly

Kr°) = «£

because in the absence of the secondary target, the expected

number of missiles (all anti-primary ones, obviously) that will

be consumed before the primary target is hit is 1/P .

In this stochastic game model we therefore have only two

game elements. We now write the full matrix of the game r .

The available actions to both players are the same as before,

so that in general we have a 4 x 2 matrix. (The expressions

given in the entries of the matrix are self-explanatory so

that we do not give any further explanations.)
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attacker ' s
actions

De-
fender ' s
Response Pro-^
grams

pr s
i

pr s
2

VS
1

p
2

-s
2

Anti -primary

v a-w r

C +(l-(a P q.
P P P 1

+ tt-a)Pq
2

)Jr

C +[l-(a P q,
P P P 2

+ tt-
p

)P
p

q1
)]r

T Anti-seccndary

c
p

+(i-P
p

q2
)r

C +P q.r +(i-p qjr 1

s s n l s^l

C + (l-a )P q.r
s s s^l

+ [l-(l-a
g

)P
gq1

]r"

C+aPq.r
s s s^l

+ [l-a P q, ]T"
s sTL

c +r'
s

We shall again assume that a > 1-a . Under this assumption

it can be shown that the third row is dominated by a mixture

of the first and the fourth rows. To see this we substitute

U = val(r°) = C /P , U, = vaKr 1
) for r° and r

1
in the above

o p p 1
stmatrix. Then we consider the mixture (1-a ) (1 row) +

P

a (4 row) and use the obvious relations U < U, . Thus we
p o 1

ignore the third row, and the equation which must be solved

to find the value U, is:
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u. = val

c
p

+(1 - p
Pq i

)u
i

P
sq l

C
p \

p
c

V [1 " (a
p

P
p

q l
+(1 -V P

p
q2

)]U
l

C
s

4 - (1 - a
s

)P
sql^ f[1 - (1 - a

s
)P

sq l
]U

l

C
D

+(1 - P
pq2

)U
l

C
s

+U
l

P q.U. C -C +P a, (U. -=2.)
p*l 1 p s s n l 1 P

= C + U, -val PqU, C -C + (1-a )P q, (U. -=E)pi P 1 p s s s U 1 P_
(IV. 41)

/

Wl P s

where we have made use of the relation q = a a. + (1-a )q_
p 1 p 2

(in the (2,1) entry).

The last equation can be rewritten as

val

P *q, U,pi 1

P qU,
P 1

Pp^2 U
l

C
C -C + P q, (U, -=2)

p s su 1 P
p

P

c -c
P s

= C (IV. 42)

Some useful conclusions about the optimal strategies can be

reached without really solving Eq. (IV. 42). One such conclu-

sion refers to the condition which the parameters of the problem

should satisfy in order for the game to have a pure optimal

pair of strategies (which then should be AP for the attacker,

and P, -S, for the defender, as is obvious) . It is conceiva-

ble that if the cost of an anti-secondary missile is "very

high", then the attacker will tend to give up using it, and
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thus will adopt a pure anti-primary strategy. Just how much

is a "very high" cost of an anti-secondary missile in order for

that to be true, can be discovered quite simply. We notice

that since q, < q < q~ , the three entries in the first column

of the matrix shovn in Eq. (IV. 42) form an increasing triplet

(from top to bottom) . Also, it can very easily be verified

that the three entries in the second column form a decreasing

triplet. Thus, a necessary and sufficient condition for the

first column to dominate the second is that the (1,1) entry

will be greater than the (1,2) entry, that is:

Vi u
i > c

P"V p
s q i

(u
i p

1
'

• (IV - 43)

(Notice that the matrix in Eq. (IV. 42) is a transformation

of the original matrix of the game. This transformation

involves one alternation of sign. Therefore domination of

one column of (IV. 42) on the other means that the entries

of the dominating column are greater than the corresponding

entries of the dominated column. In the original matrix,

domination between columns means just the opposite relation,

since the entries there express costs, which the attacker,

who selects the column, wishes to minimize)

.

Notice now the relation:

> * & • *
To show the validity of this we need only to observe that the

APquantity U, is the expected cost of destruction when the

180





attacker pursues a pure AP strategy. The optimal cost of

destruction can only be less than or equal to that quantity.

Satisfaction of (IV. 43) by UV is clearly a necessary condition

for the optimal at-hacker's policy to be a pure AP one. There-

fore the condition

C
P q,ut

P
< C -C +P q, (U^

P -=£)
p^l 1 — p s s^l 1 P

p

which is equivalent to

P (1-q )

C < -^-rr —* C (IV. 44)
s - P

p P

is a sufficient condition for the optimal attacker's strategy

to be a mixture of AP and AS decisions. Inequality (IV. 44)

provides a very simple and practical criterion with which one

may check whether the use of AS-missiles is justified (notice,

however, that (IV. 44) is not a necessary condition for the

benef iciality of AS-missiles)

.

We proceed by showing how to calculate the value U. for

the case in which inequality (IV. 44) holds true. A careful

analysis of the matrix of the game reveals that there is no

optimal (randomized) defensive policy which randomizes over

the first and third rows only (see Eq. (IV.42)). This is the

same property that has been proven for the other ASAPA game

models (Sections E-F) . It means that an optimal defense policy

cannot consist of P,-S and P
2

~ S 2 res Ponse programs. The

interpretation of this property is that when a f 1-a , the
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M tyP es of mrssrles are distinguish, and this di.-

J^iHty must te exploited in tne optical defensive

. s response program is a policy which does not explort

.^drstingurshahility, since hoth ,,-, and ^ program

i0 no t refer to classification of .issile type

We on.it a proof of the ahove property in thrs case. The

meth od of proof is similar to that presented rn the parallel

Ire. Presented in Sections . and ,. - oniy differences

are algebraic.

As a result of this conclusion we can solve Eg, (!».«)

by th e following method. We define U
{

as the solution of

the equation:

c

ou c -c +d-aJP sq 1
(u

1
-p E

)

3^1 p S S S -L x p

c = val
(IV. 45!

p
p

and let U£ be the solution of:

CW VC
3
+(1 - a

S
)P

S^l
(U l-^

p4u
l ~p ~s s ^ x x .

p (iv. 46)

C = val
P

Dg2
u

L
c

P^s

i ~ ~p oarh of the matrices
, .„ij.i u +-he value or eacn ui ^ i4s=

By expressing explicitly tne

, , TU k) we qet two quadratic
• „ in Prre; ( TV . 4 5 ) and ( IV . 4 b

) , *« y c
appearing in Eqs. ^xv.t^y

• ui« Ti Taking the maximum of the two

equations in the variable Ur TaKing

=+. r hP value of the game, which is:

solutions we arrive at the value ox
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PART TWO: OPTIMAL ALLOCATION PROBLEMS INVOLVING
REAL MISSILES AND DECOYS

V. OPTIMAL DEPLOYMENTOF DECOYS—GENERAL INTRODUCTION

A. BACKGROUND

In Part I of this dissertation we dealt with missile allo-

cation processes, in which the missiles of the anti-secondary

type served as penetration aids. That is, they were tools

used to facilitate the penetration of the main weapons (i.e.,

the anti-primary missiles) . In Part II, a different concept

of penetration support, namely the decoy, is analyzed.

To recognize the coherence of these two parts, one should bear

in mind that anti-secondary missiles and decoys represent

nothing more than just two different technical approaches to

the problem of improving penetration capability of the anti-

primary missiles.

The principle of a decoy is simple. The decoy has the

same physical signature as has the real missile, and thus it

produces similar signals on the detection devices. The defener

is incapable of distinguishing between a real missile and a

decoy, and may be inclined to treat all detected missiles as

if they were real ones. This fact works to the benefit of

the attacker. In principle, there are two different basic

effects through which this benefit may actually be gained:

(1) The Exhaustion Effect . This effect is significant

when the defender has a limited number of defensive
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missiles with which to counter the attacking missiles.

The decoy is a device used to force, or to tempt, the

defender to spend some or all of his missiles before

the stockpile of real (offensive) missiles is exhausted

The attacker thus hopes that some missiles will be left

for the attack after the defender is no longer capable

of intercepting them.

(2) Saturation Effect . This is the effect induced by

launching simultaneously a number of missiles (more

than the number which the defender can simultaneously

handle). The simplest case, which is quite realistic

in many situations, is that in which the defender can

engage only one missile at a time.

Chapter VI is devoted to modeling the exhaustion effects

of decoys in a scenario similar to that which was considered

in Chapters II through IV. In Chapter VII we present and

solve some of the more important models of saturation effect.

Very naturally we expect decoys to cost less than a real

missile, otherwise there is no point whatsoever in using them.

In fact, decoys are devices which in most cases are simply de-

signed to achieve tactical goals at a lower cost. It is true

that whenever a real missile is replaced by a decoy in an

actual combat process, the operational effectiveness is some-

what reduced. It is usually expected, on the other hand,

that that loss of effectiveness will be much less significant
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than the savings earned by that replacement, so that overall,

decoys will prove cost-effective.

It will be shown that the problems in which the exhaustion

effect is involved very naturally call for a stochastic-game

formulation and techniques. The problems in which the satura-

tion effect is the main concern can be formulated as determinis-

tic dynamic programming problems, as we show in Chapter VII.

B. O.R. LITERATURE ON DECOYS

It is a notable fact that the subject of optimal deploy-

ment of decoys in missile warfare is almost completely ignored

in the open literature. Although there are aspects of decoy

deployment, mainly technical ones, which are normally regarded

as classified, and thus are restricted to appear in classified

publications only , it is still hardly understandable that so

little has been done openly. It seems that much work remains

to be done that is not restricted to the classified literature.

This is especially true for problems in which basic operational

concepts of decoys deployment and methodologies of their

effectiveness evaluation are involved.

We found only two papers in the O.R. literature in which

the effect of decoys is the main theme. Both papers deal with

problems taken from the area of anti-ballistic-missiles (ABM)

vs. reentry vehicles (RV's), which is a very natural area for

For the same "economic" reasons, decoys are also widely
used in other areas of warfare, as Electronic Warfare, Mine
Warefare, passive Defense, etc.
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the decoy concept to be applied. We give here a brief summary

of these two papers and later on point out the differences

between our approach to the analysis of decoys and the approach

used in these papers.

1. Gorfinkel's Model

Gorfinkel [19] presents the following model: a "cloud":

or reentry vehicles (RV's) approach the atmosphere aimed at

an area defended by a given number of interceptors (that is,

anti-ballistic missiles) . Only one RV has a real warhead and

all the others are decoys. The defense makes a measurement

on each vehicle; this measurement is a random variable, the

distribution of which depends on the type of missile which is

actually being used (real | decoy) . On the basis of this measure-

ment the defense decides how many of its ABM's to divert to

each vehicle. An ABM diverted to any vehicle kills it with

probability P.. It is assumed that the vehicles are suffi-

ciently spread out in time so that a decision must be made on

each one while those remaining are almost totally hidden. The

opposite situation —when all objects are in view at once —is

also discussed in the paper. As soon as a vehicle is considered

and the 'proper' number of ABM's sent toward it, it is no

longer counted as part of the cloud and the ABM's directed at

it are no longer considered as part of the defensive arsenal.

A 'state' in the above process is characterized by the

number i of RV's left to be considered, and the number j of

ABM's still available to the defender. A solution of Gorfinkel's
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problem tells how many ABM's to divert to an RV in state i-j

as a function of the observed measurements on the RV. The

criterion for developing the solution is to minimize the

probability that the real warhead will penetrate.

Gorfinkel arrives at an analytic solution of the above

problem, but the validity of his solution depends on some

restrictive and rather artificial mathematical assumptions.

These assumptions are:

(1) The existence of two distributions, f w (x) and f_(y),

both known to the defender, of random variables X and Y

which represent the intensity of signals coming from

the real warhead and the decoy, respectively.

(2) The monotonicity of the likelihood ratio, which means

that the ratio f w (x)/f D (x) is a monotone increasing

function of X.

In a subsequent unpublished paper, Gorfinkel [20] has

postulated a more general model, by which the defense is

assumed to know that exactly W real weapons are present among

n offensive objects of the attack. He determined the optimum

allocation strategies for two different criteria: minimizing

the probability that at least one of the real weapons will

penetrate, and minimizing the expected number of real weapons

which penetrate.

2 . Layno ' s Model

Layno [21] presents a different ABM allocation model.

In his model the defense is facing a "cloud" of RVs , R of
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them are real and D are decoys. The defense has I interceptors

(IBM's). Each object in the cloud is detected and classified

as either a real weapon or a decoy. Layno assumes also two

types of error: Type 1 (mistaking a decoy for a real) and

Type 2 (mistaking a real for a decoy) . The probabilities P,

and P~ of the two types of errors are given. There is also

a known probability of killing an object by a single inter-

ceptor. Layno ' s problem is to find numbers x (the number of

ABM's assigned to each object classified as real) and y (the

number assigned to each object classified as decoy) so as to

minimize the expected number of real objects penetrating the

defense. The variables x and y are constrained, of course,

by the total number of interceptors available.

Layno solves the above problem using simple optimiza-

tion techniques. His emphasis is on the relation between the

ability to distinguish real missiles from decoys (which is

reflected by P, and P-) and the optimal expected number of

penetrators . Layno compares the case in which discrimination

capability does exist with the no-discrimination-capability

case. His main conclusion is that even a modest discrimination

capability significantly improves the payoff (i.e., the number

of penetrating real missiles) over the non-discrimination

case.

C. MODELS PRESENTEDIN THIS THESIS

The whole subject of decoys is viewed, in this thesis,

within a different context, i.e., the context of optimal
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deployment of offensive tactical missiles. Our approach is

offense oriented, as opposed to the defense oriented problems

treated in the literature. The two papers mentioned above

attempt to find the best way for the defender to cope with

the presence of decoys in a "cloud" of threatening objects,

whereas the main concern in this thesis is the explanation of

the best deploying policies by which an attacker can deliber-

ately exploit the fact that a decoy is hard to distinguish

from a real weapon.

A general description of the modeling effort which has

been carried out in this thesis is given in the following

scheme

:

Real-Decoy-Al location (RDA) Game,
[with Minimal Expected Cost (MEC)

. Criterion

.

Chapter VT«*-Exhaustion Models^ \ i
—

\ Real-Decoy-Allocation (RDA) Game
With Max. Expected Gain (MEG)
Cri terion

.

A
Chapter VTI —Saturation Models,

Optimal No. of Decoys To Accompany
A Single Real Missile

NOptimal Real-Decoy 'Mixtures'

Fig. V.l: List of Decoy Models
in the Thesis

As we see in the scheme, Chapter VI is devoted to modeling

the exhaustion mechanism through which decoys might help the

attacker to pursue a more cost-effective tactic. Two Real-

Decoy-Allocation (RDA) games are formulated. In each of them
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the attacker chooses, at every stage, to launch either a

real, anti-primary missile or to use a decoy instead. The

defender, being aware of the possibility of decoy deployment

by the attacker, can choose either to fire a defensive missile

(or salvo, whichever is technically relevant to him) , or to

hold his fire (anticipating that the next offensive object

to be launched is a decoy) . Decoys are assumed to be indis-

tinguishable from real missiles. The defender is restricted

by the number of missiles available to him. He cannot use

more than one defensive missile (or salvo) against each offen-

sive missile. In Chapter VI this RDA game is analyzed and

solved for two different payoffs:

(1) The payoff is the cost of destroying the primary target

We assume here that the game is allowed to go on until

the- attacker achieves a hit on the primary target.

The cost is the sum of all costs of the weapons (either

real missiles or decoys) which are used. The attacker

is seeking a policy of deployment which minimizes the

expectation of this cost.

(2) The payoff is a linear function combining the military

"worth" of the primary target and the cost of the

weapons the attacker uses in his attempt to kill the

the primary target. In this case we assume that the

attacker is limited in the number of real missiles (but

not of decoys) he can use. Therefore the success in

destructing the primary target is not certain. Thus,
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the probability of killing the target is entered into

the payoff function along with the cost of the weapons.

Chapter VII is devoted, as seen in the scheme given above

(Fig. V.l) to modeling the saturation effect. The fundamental

problem we raise is what should be the optimal "mixture" of

real missiles and decoys in a "wave" of attacking objects which

are to be launched simultaneously, so as to minimize the ex-

pected cost of destroying the primary target (assuming that

attacking "waves" are to be launched repeatedly until the

primary target is finally hit) ? As a preliminary problem, we

analyze a model in which it is assumed that the attacker is

restricted to launch only one real missile, which he can

accompany by any desired number . of decoys. This restricting

assumption may very well be realistic in case the real missile

is a very costly and scarce weapon, and the decoys for it

are very inexpensive and available in large quantities. The

question in that preliminary problem is to find the optimal

number of decoys to be launched simultaneously with a real

missile. Two effects, associated with launching more decoys,

are competing here with each other:

(1) More decoys means higher cost.

(2) More decoys means high probability of survival

of the real missile.

In solving this problem we distinguish between two cases,

corresponding to two different schemes of operations for the

defense; the first case is one in which all secondary targets

are assumed to operate independently. In the second case,

191





coordination is assumed to exist among the defense units, so

that no single offensive object (either real missile or a

decoy) is likely to be engaged by more than one secondary

target.

The saturation models of Chapter VII are treated by methods

of dynamic programming. The dynamic programming arguments

give rise to various functional equations which are then

solved in detail. Operational interpreation of the results

is also included.
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VI. OPTIMAL DEPLOYMENTOF DECOYS—MODELING
THE EXHAUSTION EFFECT

A. THE REAL-DECOY ALLOCATION (RDA) GAME—MINIMUM EXPECTED
COST (MEC) CRITERION

1 . Formulation

Suppose that a single primary target is defended by a

defense system (which may consist of one SAM battery or more)

,

and suppose that the defense is limited to a given number of

intercepting missiles (or salvos) that may be launched through-

out the process. We make the following assumptions about the

process:

(a) At each stage, the attacker launches one missile,
which is either a real one or a decoy, according to
the attacker's choice.

(b) The defender can react either by firing a defensive
missile (or salvo) on the offensive object, or by
holding his fire. For technical reasons, he cannot
launch more than one defensive missile (salvo) on a
single offensive object.

*
(c) The decoy is indistinguishable from a real missile.

(d) There is perfect information to both sides (as is
assumed everywhere in this thesis)

.

We use the following notation:

C - cost of a real missile

C - cost of a decoy (C_ < C_)
u D R

N - Number of intercepting missiles (salvos)
available to the defender

*
This assumption is implied by the specific type of decoy

that we have in mind. A decoy is thought of as an object
identical with a real one in its physical signatures, but
lacking the sophisticated guidance system, warhead and some
other elements that the real missile does have.
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q - (As before) —Probability that a real missile
survives an interception attempt made by the
defender.

P - Probability that the target is killed by a
real missile, given that it survives an
interception attempt.

It is assumed that the game is allowed to continue until the

primary target is killed. The payoff of the game is the total

cost paid for achieving the destruction of the primary target.

The attacker wishes to minimize the maximum expected cost of

Nkilling the target. Let us denote by r the game element

played when the defender has exactly N intercepting missiles

N(salvos) left. We can write r in the following matrix form:

» —

'

"^v.Attacker ' s
—— —

i— —
^s^choice

Defender 1^. Real Decoy

_ choice_ __>s^

__ Fire

Hold Fire

N-l
CR

+ (1-Pq) r x

i

c
R

+ (l-P)r
N N

The expressions in the four entries of the matrix are

readily verified. We explain two entries as examples:

(a) If the attacker launches a real missile, and the
defender fires at it, an immediate cost C_ is
incurred., by the attacker, and in addition, the
game r

N~ is played at the next stage with
probability 1-Pq, which is the probability of
missing the primary target with the real
missile.

(b) If a decoy is launched, and the defender holds
fire, a cost C_ of the decoy is incurred, and
in addition, the stochastic game stays (with
certainty) at state r N to the next stage.
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2 . General Solution

NWe replace r by its value V , and get the equation

V = val
N

\ ^

CR+ d-Pq)V
N. 1

C„ + (l-P)V, N

C + VU
D N-l

C
D

+V
M

/

(VI. 1)

Using formula (1) of the Appendix we can explicitly write

the value above as

V
N

=
[c R̂ D

(i-P) +P(i^ ) vN. 1
]v

N
- tc^g-Pg) iv^

(VI. 2)

or

i [ P ' N P . N-l
= (VI. 3)

It is convenient to work out this problem, using

dimensional analysis. To accomplish that, we define:

V
V N

CR/Pq '

'R

Notice that V„ is the cost of destruction measured in terms of

the cost of destruction that would be incurred if the attacker

used real missiles only. Thus V is a very natural dimension-
N

less quantity, with which we can evaluate the contribution of

decoys to the cost-effectiveness ratio. Clearly, V is always

less than (or equal to) one . The parameter r is the ratio of

costs of a decoy and a real missile, and its value always

lies between zero and one.
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We define also:

B = q - qr (1-P) , C = q-qr (1-Pq)

Eq. (VI. 3) thus becomes:

V
N " (B+ Vl'- VN

+ C>VN-1 " ° • (VI - 4)

This equation is readily solved for V :

B+VN-1 *
y(B+V N-l

)2 - 4CVN-l
V = i!-^ il-±- . (VI. 5)

N 2

As Eq. (VI. 5) shows, two solutions exist to Eq. (VI. 1). Only

one of them is significant (The possibility of non-unique

solution to the value-equation always exists when there are

entries with zero probability of stopping, as we have in

this stochastic game. Shapley [5] shows uniqueness only under

the assumption of non-zero probability of stopping. See Section

IV. B.)

We shall prove now that the correct value of the game

N
r corresponds to the plus sign in Eq. (VI. 5) above. Observe

first that for all N we have:

V
N " Vl • (VI " 6)

This relation is obvious since the more intercepting missiles

(salvos) the defender has, the higher is the cost which the

attacker is expected to pay for killing the primary target.

Now notice that, since q < 1 , we have:
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B = q -qr (1-P) > q -qr (1-Pq) = C

Notice also that since V = CR/P, we have V
Q

= q, and hence

VM > Vn
= q > B. Therefore, if the minus sign were the correct

one in Eq. (VI. 5), we would have:

- B+VN-1- y
' B+VN-l

)2 - 4CVN-l B+VN-l-' /(B+V N-l
)2 - 4BVlVN " 2

*
2

• i (B + Vi - y( Vi- B)2
» - B < " - 7

o

The inequality V < V , which we got here, contradicts the

obvious fact expressed in Eq. (VI. 6) above. Thus, we have

proven that if we assume that the minus sign in Eq. (VI. 5) is

the correct one, we are led to contradict an obvious property

of the process (i.e., that V„ > V ,)• Therefore, the plus

sign should be the significant one:

- B + VN . 1
^(B +V

N . 1 )

2 -4CV N. 1 (VI _ 7)

N 2

It should be noticed that Eq. (VI. 7) is meaningful only if

Nthe matrix of the game r doesn't have a saddle point. In

what follows we derive the conditions for that matrix to have

Na saddle point. We write again the matrix of r as

/c R
+ (l-Pq)V j_ CD+Vl \

c R+ (i-P)v
N c D+ vN
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For convenience, we denote by e. . (i,j = 1,2) the (i,j)

entry of the above matrix. We notice immediately that

e
22

> e
12

(VI. 8a)

(since V.
T

> V.. , ) and:
N N-l

e 21
< e

22
(VI. 8b)

To show this last inequality, assume the contrary for the

moment, i.e., assume that e,,-, >_ e^, i.e.*

or

r + (l-p)V > C +V

CR~CD CRV < — < — = VV
N - P P

which contradicts the obvious fact that V > V , hence Eq.

(VI. 8b) is correct. Now, inequalities (VI. 8a) and (VI. 8b)

show that only e, , and e-. can be saddle points. But, we can

exclude the possibility that entry e_, is a saddle point, for

if it were, the value VN would be equal to that entry (see

Eq. (VI.l)), so that we would have:

V
N = CR + (1 " P)V N V

N " -T - V
which contradicts the fact that V > V

n
. Thus, it is impossi-

ble that e-, > e,, (otherwise, together with Eq. (VI. 8b) it

would have implied that e^. is a saddle point) . The only entry
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which may be a saddle point is therefore, e , . The necessary

and sufficient condition for a saddle point to exist is:

e ll
< e 12'

or

CR
+ d-PqlV^, < C

D
+ V

N_ X

which is equivalent to:

C -Cp n —
N-l Pq ^^ N-l c

It should be noted that the fact that only e. , can be a saddle

point could be quite easily argued by discerning the nature

of the process. It is clear that the only pair of pure defense-

offense strategies which can exist as an equilibrium pair, is

the "Fire"-"Real" pair. All other three pairs are "unstable"

in the sense of game theory. For instance, the pair "Fire"-

"Decoy" is unstable because the defender would incline to alter

his action and avoid firing if he knew that his opponent was

using decoys only. Similarly, for the "Hold Fire"-"Decoy"

pair of strategies, the attacker would prefer using a real

missile if he knew that the defender was holding his fire.

We define now the value N* by

N* = Min{N: V > 1-r } (VI. 10)N c
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The solution to the problem can now be summarized as

follows: For N <_ N* the sequence of values is given by the

recursive equation (VI. 7), starting from V
Q

= q . The optimal

strategies are randomized, and can be calculated directly,

using formulae of the Appendix. We denote by n (N) the

probability with which the attacker has to choose to launch

a real missile if he adopts the optimal strategy, and by

tt^ (N) the probability with which the defender has to choose

to fire. Formulae 2 and 3 in the Appendix give:

„<*<», = B ,y
V

^- 1
= VVl (Vl.lla)

def PVN+CD~CR • \ +qr c' q
' <N) = P(V -qV )

" - - •
< VI - llb »

N
qVN-l' VqVl

For N > N*, the optimal strategies are pure: The attacker

uses a real missile and the defender fires at it —both taking

their decisions with probability one. Notice that N* is a

function of the parameters P, q, r .

At that point it seems appropriate to provide some

intuitive interpretations of the optimal strategy established

above. The main point which deserves elaboration is the exis-

tence of the number N*. The optimal policy (viewed as a func-

tion of N) dictates that if the defender has more than N*

missiles to counter the attacking missiles, the attacker should

use real missiles only. This may seem somewhat contradictory

to the rather simplistic intuitive notion that the more defensive
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missiles there are, the more desirable it becomes to use de-

coys to exhaust them. This is not so in the model we have

discussed here. The reason for that is, that if the defender

is equipped with too many missiles, the option of exhausting

him with decoys (and using real missiles later) becomes more

expensive than the option of penetrating through the defense

with real missiles (although this means accepting a lower

probability of success) . It can be argued that when the

defender has many missiles, the marginal gain expected from

using a decoy (which at most would reduce the number of mis-

siles by one) is very insignificant; the defender would still

have many missiles which would require too many decoys to

exhaust. Using a real missile, instead, would still provide

the attacker with some probability of success (although lower

than the probability he could enjoy if he exhausted the defender)

,

and of course, would save (with some probability) the cost of

all those decoys which are required for exhaustion.

The value of N* is the precise indicator of what should

be considered as "many" (defensive missiles) in the above argu-

ment. We turn now to analyze, by intuitive arguments, the

dependence of N* on the parameter r . First, if r = 1, or

if r is very close to 1 , it means that a decoy is as expensive

(or almost as expensive) as a real missile. Therefore, the

attacker cannot have any motivation to use it in place of a

real missile. The formal statement of this assertion is that

r
c : 1 implies N* = . Defininition (VI. 10) of N* reveals that

this is indeed the case. To be more precise, notice that the
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definition of N* (VI. 10) implies that a necessary and suffi

cient condition for N* to be equal to zero is:

V
Q

= q > 1 " r
c

or

r > 1-q (VI. 12)
c ^

On the other hand, if r =0 (or r is very close to
c c J

zero) it is conceivable that the attacker would prefer to

exhaust the defender, even if this requires spending many

decoys, as is the case when the defender has many missiles.

This intuitive observation is formally expressed by N* being

very large. In the most extreme case (that is, the case r = 0) ,

N* should be infinite. The practical meaning of this state-

ment is that no matter how many intercepting missiles the

defender has, the attacker will use decoys only until the

defender is exhausted. This is obvious because he pays nothing

for decoys. The equation defining N* indeed approves this

assertion: since when r =0, definition (VI. 10) reduces to:
c

N* = Min{N; V > 1} ,N

and as was shown before, there is no value of N such that

V > 1. Thus, N* = ~.

The value of N* is thus seen to increase from to

°°, as r decreases from 1 to .
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Inequality (VI. 12) given above provides a very useful

and convenient criterion for the attacker to decide on whether

decoys are at all worth acquiring and deploying. This inequal-

ity simply says that if a decoy is more expensive than 1-q times

the cost of a real missile, which it is designed to imitate, then

it is not worth deploying. It also indicates the fact which

is quite expected, namely, that as the probability of sur-

vival gets higher, the limit on acceptable decoy costs gets

lower (or the need for decoys is lessened)

.

NWe now turn to calculating the value of the game r

for values of N greater than N*. It is given by:

V
N

= C
R

+ (1 - P( 3 )V N-1 ' (VI - 13)

This equation is a simple linear difference equation.

Assuming that V ^ is already known (after performing the

recursive series of calculations using Eq. (VI. 7), from N = 1

to N = N*) , we find for N greater than N*:

V
N * C

R
+(1 -^ )(C

R
+(1 - P^ )

- V
N-2 )

= ^ (1-Pq) C
R+

(1-Pq) \_ 2

CR
+ (1-Pq) Cy- (1-Pq)

2
[C

R
+ (1-Pq) V^]

C
R

+ (1-Pq) C^+ (1-Pq) \+ ( 1-Pq)
3V

N_ 3

N-N*
... =

I (l-Pq)
1 " 1^ + (l- Pq)

N- N*.V
N*

N-N*^Mj^
(1 _Pq)

N- N*. v
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or

c c
R N-N* R

which is equivalent to

V
N

= 1 - (l-Pq)
N" N*(l - VN# ) . (VI. 14)

3. Numerical Examples

The numerical examples presented in this section are

intended to give graphical depiction of the following relations:

(a) The value VN as a function of r (decoy-to-real cost

ratio) , for various values of q (probability of sur-

vival) and N (no. of defensive missiles) . These

functions are shown in Figs. VI . 1 through VI . 4 . Each

figure corresponds to a different value of q (q = 0.2,

0.4, 0.5, 0.6) and shows four curves, corresponding

to N = 1, 2, 3, 4.

(b) The probability that the attacker selects a real missile

for launch ( tt ) , as a function of r . This is done
c

on Figs. VI . 5 (for q = 0.2) and VI . 6 (for q = 0.6).

Here again, each figure shows four curves, correspond-

ing to N = 1, 2 , 3 , 4 .

(c) The probability that the defender chooses to fire a
defdefensive missile (it ) , as a function of r . This

c
is given on Figs. VI . 7 and VI . 8 , for the same combina-

tions of values of q and N as in (b) above.

All the numerical examples shown here were calculated assuming

P = 0.5. The method of calculation we used follows exactly the

logic presented in Section A. 2, and is summarized below. For

each pair of values q, r (assuming r < 1-q) we do the following
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Figure VI . 1

:

Normalized Value of the Real-Decoy-
Allocation (RDA) Game as Function of
Decoy-to-Real Cost Ratio for q = 0.2

1.0
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.6

.4

.2
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Figure VI . 2

:

Normalized Value of the Real-Decoy-
Allocation (RDA) Game as Function of
Decoy-to-Real Cost Ratio, for q = 0.4
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Figure VI .

3

Normalized Value of the Real-Decoy-Allocation
(RDA) Game as Function of Decoy-To-Real
Cost Ratio, for q = 0.5
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Figure VI . 4

:
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Normalized Value of the Real-Decoy-Allocation
(RDA) Game as Function of Decoy-to-Real
Cost Ratio for q = 0.6
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Optimal Prob. of Real Missile Launch for the
Real-Decoy-Allocation (RDA) Game as Function
of Decoy-To-Real Cost Ratio, for q = 0.2

N = 1

Plots of tt

of vs . r
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Optimal Prob. of Real Missile Launch for the
Real-Decoy-Allocation (RDA) Game as Function
of Decoy-To-Real Cost Ratio, q = . 6
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(a) Calculate B and C (the parameters appearing in Eq

.

(VI. 5)) from P (= 0.5), q, r .

c

(b) Set V = q, N = 0.

(c) Calculate V from V , (and the parameters B, C) using
Eq. (VI. 5).

N

(d) Calculate 7r°
f

(N) and ir

def
(N) using eqs . (VI. 11a)

and (VI. lib)

.

(e) Check whether V > 1-r (see Eq. (VI. 10)). If the
answer is negative, sit N = N+l and go to step (c)

.

If positive, set N* = N.

(f) For all values of N greater than N*, calculate V
using Eq. (VI. 13)

.

Notice that we refer to VXT as the most natural measure
N

of the decoys effectiveness as exhausting devices. The value

V gives the cost of destroying the target with decoys (deployed

optimally) relative to what it would cost to do without them.

4 . Analysis of Results

In' Figs. VI . 1 through VI . 4 we note that the graphs

of V jump discontinuously to V = 1 on r = 1-q, for all

values of q and N. This reflects the fact that if r 1-q/

the optimal deployment policy uses only real missiles (as

proven in Section A. 2) . Notice also that for any pair of r

and N, the contribution of decoys becomes more significant as

q gets smaller, i.e., V is decreasing with q, for fixed r ,

and for all N.

It is also interesting to point out, that in practical

terms, V„ proves to be not very sensitive to the cost of aN

decoy (that is, to r ) . If q = 0.2, for instance, and N = 1,

V, varies from .24 to .28 as r varies from 0.1 to 0.8. If
1 c
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q = 0.6 (see Fig. VI. 4) , and N = 1, V. varies from 0.67 to

0.72 as r varies from 0.1 to 0.4. For the same value of q,

but with N 3, V_ varies from 0.77 to 0.86 when r varies
3 c

over the same region. The conclusion, which is somewhat sur-

prising is that decoy cost does not have a very significant

impact upon the overall cost of destruction. This conclusion

is of course valid only so long as the value of r doesn't* c

exceed 1-q. (For r > 1-q we have V., = 1 for all N.)^ c N

In contrast with the above conclusion is the fact

which may very easily be observed on Figs. VI.5-VI.8, that the

optimal strategies of both the attacker and the defender are

quite sensitive to r . In all those figures the curves are
c

"cut" at exactly those values of r above which the optimal

strategies are pure (i.e., the attacker should launch only

real missiles and the defender should always fire)

.

From Figs. VI . 5 and VI . 6 we see that tt , the proba-

bility of selecting a real missile to launch at the optimal

strategy, is an increasing function of r (for each N) . In

other words, the probability of using decoys decreases as the

cost of a decoy increases, which is also obvious intuitively.

We observe also that as N increases, the probability of using

real missiles decreases (hence, probability of using decoys

increases)

.

If N = 1, we find that as r approaches 1-q (from below)

,

the optimal defensive policy approaches the pure "fire" policy

def
(-it = 1) , whereas the optimal policy for the attacker is

210





still a randomized policy. For example, if q = 0.6, and N = 1,

def
we see from Fig. VI . 8 that as r * . 4 , n approaches 1,

whereas from Fig. VI . 6 we find that tt approaches 0.66. Thus,

for values of r very close to 1-q (but below it) , a very

peculiar feature of the exhaustion model is revealed. That

feature is, that whereas the attacker's optimal policy still

relies on the use of decoys to quite a significant extent,

the defender's optimal policy dictates an almost pure 'fire'

behavior. The point r = 1-q is of course a point of discon-

tinuity of tt (N = 1) (as well as of VN ) . For r 1-q, we

have tt (N = 1) = 1, whereas for all points at which r < 1-q,

the value of tt is bounded by a value less than one.

An interesting observation is the following: Let u be

ofdefined as the value of tt at N = 1, on points (r ,q) for

which r ='l-q. We show that u is independent of q (hence,

also of r ) , and is a function of P only. (Indeed, we can

see that on Figs. VI . 5 and VI . 6, the value of tt° on N = 1,

q = 0.2, r
c

=0.8 (Fig VI. 5) and the value of Tr°
f on N = 1

,

q = 0.6, r
c

= 0.4 (Fig. VI. 6) are both equal to 0.66.)

To prove this asssertion, we make use of Eq. (VI. 7)

.

We substitute N = 1, V = q and calculate B and C, which appear

in that equation, directly from their definition:

B = q-qr (1-P), C = q-qr (i-pq;

Putting r = 1-q we get:

B = q(P+q-Pq), C = q
2 (l+P-Pq)
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and thus we find from Eq. (VI. 7)

f7 = q(P+q-Pq) + q + Vq (P+q-Pq+1) 2 -4q 2
( 1+P-Pq;

= q(l + P -Pq) .

Now substituting that last expression for V in the formula

for TT°
f

(Eq. (Vl.lla)), we get:

of #« i i \

V
l

~ V
Q

u = tt (N=l,r a l-q) =
c P(V

X
-qV

Q
)

q L+P-Pq; -q
2 1+P '

P[q(l+P-Pq)-q*] L *

and so tt , calculated for points (r ,q) such that r = 1-q,

is independent of q (or r ) . Another noteworthy property of

the model described in this section is that

£ r

tt (N) *> for all N,q,
r +0

c

and

def
^

uei
-(N) *> for all N,q.

r -0
c

In other words, if the cost of a decoy is near zero, then the

defensive optimal policy tends to be a pure "hold fire" policy

and the attacker's optimal policy tends to be a pure decoys

launch policy. At r =0 the situation is —from the formal

mathematical standpoint —one in which the value of the stochas-

tic game exists but optimal policies do not. That this is so
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can be intuitively argued, because a policy for which

tt° (N) = 0, for some N, never leads to termination of the

game. The attacker is supposed to spend an unlimited number

of decoys, which would cost nothing, but would not lead to a

N
target kill either. The values of all the games r (N 1)

do exist however at r =0, and are equal to q, as can be

directly deduced from Eq. (VI. 7)

.

It is true, here, although the proof will not be shown,

that although optimal policies do not exist for r = 0, e-

optimal policies do, for every e > and every N. That is,

for any e > there is a pair of strategies, such that the

min-max cost is less than V + e , and greater than V -e.

In Table VI-1 we present values of N* for various

combinations of r and q. The number N* is the maximal number
c ^

of defensive missiles (or salvos) for which the attacker has

to use decoys in his optimal strategy (see def inition--Eq

.

(VI.10)). The table shows that as q and r become smaller,
c

N* increases and reaches very high values (N* = 135 for q = r

= 0.1). This fact, along with the monotone-increasing property

of the function 1-tt , is the formal expression of the rather

intuitive fact that as the survivability and decoy cost get

smaller, the attacker would tend to make a heavier use of

decoys

.
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Table VI-1

Values of N* for Various Combinations of r (Decoy-to-

Real Cost Ratio) and q (Probability of Surviving an

Engagement*

\^ q

C ^s.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 135 55 30 18 11 7 4 2

0.2 60 24 13 8 5 3 2 -

0.3 35 14 8 4 3 1 - -

0.4 22 9 5 3 1 - - -

0.5 15 6 3 1 - - - -

0.6 10 3 2 - - - - -

0.7 6 2 - - - - - -

0.8 3 - - - - - - -

The probability of kill P is assumed equal to 0.5
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B. THE REAL-DECOY ALLOCATION (RDA) GAME WITH LIMITED
NUMBEROF REAL MISSILES

1. Formulation

We assume now, that the attacker has M real missiles,

and in addition, he can spend decoys without any restriction

on the number available to him. We can think of the decoys

as very inexpensive dummy missiles so that it may reasonably

be assumed that the attacker has relatively many of them.

The defender has N intercepting missiles (or salvos)

,

and it is assumed as before that he can launch only one missile

(salvo) at each stage. He may choose to fire or to hold fire.

The process is terminated when the attacker either hits the

target or has all his real missiles spent already, whichever

comes first.

We use here all the parameters used in Section A; P,

q, C_, C_. It is also assumed that the primary target has

an operational value v. This means that if the target is killed,

the attacker gains a value worth v units which must be the

same units in which CR and CD are measured. In other words,

the value v serves to make the worth of the primary target

destruction comparable to the cost of the missiles. This

enables us to combine both the missile cost and target value

in one objective function, as we now show.

Let P, be the probability that the primary target will

eventually be killed. The P is, of course, a function of the

policies of the defender and the attacker. Let C be the total

cost, defined as the sum of all real missiles and decoys
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consumed in the process. The cost is of course a random

variable. Let Z be a random variable defined as:

Z =

/ 1 if the primary target is destroyed

if not.

The function vZ - C_ clearly describes the net gain of the

attacker in any realization of the process. We take the

expectation of this gain as the payoff of the game which is

to be played, that is, the payoff (paid to the attacker) is

E(vZ - C
T ) = v-P

k
- E(C

T )

.

M NLet us denote by r the game played when the attacker has

M real missiles and the defender has N defensive missiles

(salvos) . We write

VM,N = -^ M' N
>

The recursive relation which Vw „ must satisfy is:M,N

/
i

V
M,N ' VaX

^
r+p

. v+(1 -p
) vm_1( N "°D

+V
M,N

j

(VI. 15)

where, as usual, the defender selects the row and the attacker

selects the column; the first row corresponds to the defender's

decision to fire, and the second corresponds to a decision to

hold fire. The first column corresponds to the attacker's
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t

decision to launch a real missile, and the second column

corresponds to a decision to launch a decoy.

2 . General Solution

We can assume, without loss of generality, that v = 1.

We only have to remember that values of CD , CR are then

measured in terms of the target "worth", that is, they are

taken relative to the value of the target. The same is true

for v., „. Thus we can take v = 1 from now on. We will alwaysM,N

assume that C < 1 (since byassuming the opposite we reach an

absurdity; the cost of a single weapon designed to kill some

target cannot be greater than the value of killing that

target)

.

Going back to Eq. (VI. 15), notice that V appears

in both sides, so that by explicitly writing the right hand

k side, using Formula 1 of the Appendix, we will get a quadratic
I

equation in V.. „ with coefficients which are functions of

v x„ i xt i / v », i xt an<3 V™ xt i • The solution of this quadraticM-1,N-1 M-1,N M,N-1 ^

equation gives a (non-linear) difference equation of the form

VM,N f (V M-1,N-1' VM-1,N' VM,N-1 )
'

Thus, in order to calculate V„ „, we have to have the valuesM,N

of V^ , M ,
(for all N' up to N) and of V„

, XT , (for all M' upM-1,N

'

r M' ,N-1

to M) already calculated. The initial conditions can be

derived as follows:

Vn - = for all N .

,N
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This is so because if the attacker has no real missiles, no

game actually has to be played. To calculate V
Q , we first

note that the optimal attacker's strategy in the case N =

(no defense exists) should consist of real missile launches

only. The probability of killing the primary target by the

j missile launched (j <_ M, where M is the number of missiles

the attacker has) is (1-P)^ «P, and if that happens, the

attacker's gain is -jC n+l. The probability of not killing
R

Mthe target with all the M missiles is (1-P) , and in that

case the payoff is -MC_. Thus:

M
VM,0

= J (1-P) :,

' 1 -P[-JC R+1] + (1-P)
M '(-MC

R )

M A , M
„• I j(l-P) j

~ 1 +P- I (1-P) ^-MC- (1-P M

j=l j-1

Each of the two sums appearing in the last expression can

easily be calculated. Carrying out this calculation with

some further algebraic manipulation we finally find that:

C
VM,0

= (1 --|r)[l -U-P) M
] (VI. 16)

We proceed by transforming the right hand side of

Eq. (VI. 14) to an explicit expression (see Appendix, Eq . (1))

After some more algebraic work, we are able to write the

equation:
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<V N - VM,N-1» (C R- P+VM,N- (1 - P)V M-1, N '

C
D

P(l-q) + CD
(l-P)V M. ljN

- CD (l-Pq)V M_ 1 _x
. (VI. 17)

We define now:

(i--£)-v M V
VM __ = p

_
,M = 1 ^~ • (VI. 18)

'

, ^ i ^
P P

We have found that V.. .. (which is dimensionless) is a very
M, N

convenient quantity to work with mathematically. Besides, it

has a veiay transparent and useful interpretation. To see this,

Rnotice that 1 —— is the expected gain in a process in which

the attacker is unlimited in the number of missiles, and in

which no defense exists. By definition (VI. 18), VM N measures

the difference between the actual expected gain V.. ... and the

expected gain in that hypothetical, ideal case. This differ-

ence is given by V., „ not in absolute terms, but rather in

relative terms. If, for example, V„ „ is equal to -0.3, itc M,N ^
M Nindicates that the expected gain from the game r is 30

percent higher than what would be expected if no defense

existed and no limit was imposed on the number of the attacker's

missiles. The value v.. X1 is thus a very natural choice of a

function with which a very meaningful and efficient dimensional

analysis can be carried out.

Our next step is to write Eq. (VI. 17) in terms of

V"m,N' instead of V^
N . We find:
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- - C
R

C
D (1 ^ ) C

D
(1 " Pq) Vl N-l

(V -V )[(1-P)V -V 1 = ° +— '

iV M,N-l
VM,NMU^ ;V

M-1,N
VM,N J CL - G_

CD
(1 - P) Vl,N

l -T

We now define the parameter f = C_/P, and aqain define:

r
c

=
C~ *c ^ R

These parameters have very clear meanings. Substitution in

the last equation yields:

P
2

r (l-q)f
2

Pfr (1-P)

(Vr V
M,N)[(1 - P) Vl, N -\ N ] "

°

lMf)
2 Pi Vl,N

Pfr (1-Pq)
+ —

T=i Vi,N-r (VI - 19)

This equation is a difference equation, with the initial

conditions

:

V0,N
= 1 (VI. 18a)

VM^ Q
= (1-P)

M
. (VI. 18b)

Eq. (VI. 18) can be written as:

-2 -
VM M " Bm m*Vm „ + CM „ = (VI. 20)M,N M, N M,N M,

N

where:
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B
M,N = (1 - P) - V

M-1, N
+ V

M,N-1
(VI - 20a)

P2
f

2

<*.N - (1 - P) - V
M,N-l-

VM-l,N-^T' r
c

(1 ^
Pfr fPr

+ Wa - P) Vl, N * TT (1 - Pq) - V
M-1,N-1 • (VI - 20b)

and so:

BM M ± ^B M - 4CM M
77 = M,N - M,N M,N ,

7
.

M,N 2
lvl,i1 '

It remains yet to decide which of the two representations

given in (VI. 21) is the appropriate one. We first find the

answer by looking at the case M = 1 (N arbitrary) . This case

is especially interesting; it corresonds to a case in which

the attacker has a single, expensive (or espeically scarce)

real weaon'along with many cheap decoys. We shall give the

»
solution V, , for all N, along with optimal strategies for

both the defender and the attacker.

From (VI. 20a) and (VI. 20b) we have (since V , = 1) :

2-2 Pfr Pfr
C

1,N " <«> V
1,IH1 " ^2*= (1 ^ ,+ T=f (1 - P) -Tt' 1^ 1

Pfr
= (l-P)V

1 M , + ^y [(1-P) (l-f)-Pf (l-q)-(l-Pq) (1-f)
]1,W * (1-f)^

P
2

fr (1-q)
= d-P)V,

l.H-1
(1 . f)

2
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substituting in Eq. (VI. 21) we get:

J _ 2
P

2
fr

c d^)
[1-P+V, „ ,) ± V (1-P-V, X7 ,) +4.

1,N-1' " V ** v
l,N-l y

.2

V = L™
. (VI. 22)

1,N 2

We show now that the correct sign in front of the square root

is the plus sign. Suppose it were the minus sign. Then we

would have, from Eq. (VI. 22)

V
1,M <

V1,N-1

which implies

V1,N >
V1,N-1

This last inequality contradicts the obvious fact that V, M
1 ,N

(the expected payoff gained by the attacker ) should decrease

with N (the number of defensive missiles available). Thus:

\/ 2
p2fr

c
(1 ^ )

1-P+V, „ , + V (1-P-V, X7 ,) +4-
1,N-1 V »* "l,N-r n -.2

V = -
2

U=fl
. (VI. 23)

For N = we have V,
Q

= 1-P. So we can calculate V. ,

P
V. . = 1-P + ^-p-/fr (1-q) . (VI. 24)

1,

1

1-r c

Notice that Eq. (VI. 23) is valid only so long as there is no

saddle point. We show that for such values of N, the values

V, M can be written as:1,N
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Eq. (VI. 27) provides us with the complete solution to

the exhaustion problem with M = 1. Once the parameters of

the problem are given, it is a matter of straightforward

calculation to find V, „ for any N. and from that, as we
1 ,N

soon show, to calculate optimal strategies for both the

defender and the attacker. We have to use the sequence

of constants K, T which is given below for values of N from

1 to 16:

N K
N

1 1

2 1.618

3 2.095

4 2.496

5 2.847

6 3.163

7 3.453

8 3.722

9 3.973

10 4.21

11 4.435

12 4.651

13 4.856

14 5.054
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Table (Cont'd)

N K
N

15 5.245

16 5.429

Using Eqs. (VI. 20a), (VI. 20b) and (VI. 21), it is now a

straightforward task to calculate all V . It is impossi-

ble, however, to find analytic expressions for M > 1, since

it seems hopeless to solve a difference equation of the

type of Eq. (VI. 21). Some attempts which we have made to

replace Eq. (VI. 21) by an approximating difference equation,

failed to yield a tractable equation either. It is clear,

however, that this does not pose any practical difficulties

in computing the solution to any given pair of values of M

and N, especially for values at ranges of practical interest,

which are usually small.

Optimal Strategies .

We denote by tt (M,N) the probability —which is

the function of the state (M,N) —with which the attacker

chooses to launch a real missile when he uses his optimal

defstrategy. We also denote by tt (M,N) the probability

with which the defender chooses to fire when he behaves
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optimally. Once all the values V are given, the functions

7T (M,N) and tt (M,N) can be calculated by directly applying

the formulae in the Appendix. We apply those formulae to

M.Nthe matrix of the game r , as appears in Eq. (VI. 15) , and

get:

V - V
tt (M,N) = 57T3^m n„\\7 ~ZTt n pur w (VI. 29a)

-P(l-q)+(l-Pq)V .. , + V - (l-P)V . M -V -,

M-1,N-1 M,N M-1,N M,N-1

def fMM, _
VM,N~ CD

+ CR~P ~ (1 " P)V
M-1,N ,, 7T 7Q ,«

n
(
M' N' nn^\ j. n tjLwt ZT7 h p*r v (VI. 29b)

-P(l-q) + (l-FQ)V, , .. , + V. . .-(i-PJv.. , .. -V.. .. ,n ^ M-1,N-1 M,N ; M-1,N M,N-1

Equations (VI. 29a) and (VI. 29b) can be rewritten in

terms of the normalized values and the parameters r , f, P,

q as follows:

,
0f

(M,N) ="
V
M,N-1 -_

V
M,N _

-Pd^j, ._- tt-S«Vl*.l +V
M,N-1

- V
M,N

+(1 - P) Vl,M

(VI. 30a)

Pfr

^(M^N) =
-Pd-q) -IZf - WVW+VMf N-l

~ VM,N
+ (1 - P) Vl,N

(VI. 30b)

We use these formulae to calculate optimal strategies for the

1 N
r ' games (i.e., M = 1) . The values V, ., and V. XT , which

1 ,N 1 ,N-1

appear here are substituted by their expressions given in

Eq. (VI. 25) . We find:
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TT

0f
(l,N)

Wl )PVr
c (1 - <5 )

' f

P(l-q) +(K
N

-K
N_1

)P-vr
c

(l^).f

1 +
fr

**

,Vl % 2
) +1 -

«*-]

:vi.3ia:

,
def

(l,N)
Pfr-+I^P-/r

c
(l-q)f

P(l-q) +(K
N

-K
N_ 1

)P./r
c

(l-q)f

1 + r

1 +
*n © - Vi

(VI. 31b)

It should be emphasized that Eqs . (VI. 31a) and (VI. 31b), as

well as Eq. (VI. 25), are valid only for games which have no

saddle points. We can quite easily find for which values of N the

1 Ngame r ' does have a saddle point (so that the optimal strate-

gies are pure). We do this by observing Eqs. (VI. 31a) and

(VI. 31b). The right hand side of Eq. (VI. 31a) can always

represent a probability (it gives always values between and

1) , but the right hand side of Eq . (VI. 31b) will represent a

probability only if:

c fl-q .
if; KN-l

or when

:
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£r

s-i < Jf? - Vt4 (vi - 32

The sequence {K : N = 0,1,2,} is an increasing sequence,

since

*N-1 \/,
KN-l,2

. ,

KN-1 KN-1
K

N - ~2- +
V

( -2- ) +1 > -2- + -2- - KN-1

so that there is a number N defined by

NC
= MaxfN: Eq. (VI. 32) is satisfied}. (VI. 33)

c c
The number N has the property that for all N <_ N , the

1 Noptimal strategies of the game r ' are randomized, that is,

decoys should be deployed to gain optimal payoffs. For

N > N only real missiles should be used.

By squaring both sides of Eq . (VI. 32) and solving for

r , we can derive the following condition, which r should
c * c

satisfy in order for the use of decoys to become beneficial

at state (1,N)

:

r
c < (if*)- 1+! Ti -

IWV/

<Ti
>
2+1

] •
(VI - 34)

Saying it informally, Eq . (VI. 34) tells how inexpensive a

decoy should be (relative to the cost of a real missile) , in

order for it to be economical to use. It is also important

to determine under what condition the decoys do not contribute

to the overall effectiveness, at any value of N, or in other
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words, when does N as defined in (VI. 33) equal zero. Since

{K } is a monotone increasing sequence, we see that if r
IN w#

violates Eq. (VI. 32) (hence also Eq. (VI. 34)) for N = 1, it

violates that equation for all N > 1 also. Therefore, putting

N = 1 in Eq. (VI. 34) noting that K
Q

= 0, we get from Eq. (VI. 34),

that if

r
c

> ^ , (VI. 35)

then decoys do not benefit the attacker in any easel Thi£
4

may be a very useful criterion to decide whether a decoy,

as an exhausting device, should be acquired and held in the

attacker's arsenal.

3 . Numerical Example

The following numerical example illustrates the typi-

cal characteristics of the solutions to the model presented

here. We assume:

M = 1 (attacker owns a single real missile)

N = 1,2

q = 0.7

P = 0.5

C = 0.25 (i.e., a real missile costs one quarter of the
target 'worth')

.

We have also f = C_/P = 0.5.

We present here the following results:

(a) The graphs of the values V, , and V. as a
J. / J. 1 , 2

function of r , the ratio between decoy cost and
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real missile cost. These graphs are given in

Fig. VI. 9. As explained before, V (N = 1,2)

is a dimensionless quantity, expressing a relative

measure of the difference between the expected

gain (i.e., the value) in the actual game

(r '
) and the expected gain in a hypothetical

process in which the attacker attacks an undefended

primary target, with no limit on the number of

missiles he can use. We have:

V - ,
V1.H _

(1 -^' - V1,N

p p

(Notice that V may be negative also. Being

negative means that

V, > 1 -
1,N P

that is, it indicates that the gain in the game

1 N
r ' is better than that in the hypothetical

process described above.)

(b) The optimal policies for both the attacker and

the defender are given in Fig. VI. 10. They are

characterized by tt and tt , the optimal proba-

bilities of selecting, respectively, the real

missile (by the attacker) and the firing decision

(by the defender)

.

In Fig. VI . 9 we notice that at some value of r (which depends

on N, the values V. „ shows discontinuity of slope. That
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.8 1.0

FIGURE VI. 9: Dependence of the Modified Value V, on the
Decoy-To-Real Cost Ratio (RDA Game with
Limited No. of Offensive Missiles)

def , , ,

,

TT (1,1,

*
of

a,i)

.6

FIGURE VI. 10 Optimal Strategies as Functions of Decoy-To-
Real Cost Ratio (RDA Game with Limited No. of
Offensive Missiles)
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point is exactly the value of r , given in the right hand

side of Ineq. (VI. 34) (and for N = 1, the right hand side of

(VI.35)). At that value of r , the optimal defensive and

offensive policies cease to be randomized, and become pure

policies. The value V, XT thus cannot depend on r forr 1,

N

r c

values greater than the above value.

From Fig. VI. 10 we notice that tt (1,1), tt (1,2),

def def
n (1/1) and tt (1,2) , all approach zero as r -+ . We

again have a situation in which no optimal policy exists

although the value of the game does exist. If r =0, the

attacker has no motivation to stop using decoys —which costs

nothing —since he anticipates that eventually the defender

will consume his missiles. The defender, being aware that

the attacker is bound to that kind of logic, has no reason

to fire missiles. Thus the game is supposed to last forever

with no gains earned by the attacker. It is quite simple to

show however , that e -optimal policies do exist for any e > 0.
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VII. OPTIMAL DEPLOYMENTOF DECOYS—MODELING
THE SATURATION EFFECT

A. GENERAL CONCEPTS
t

The defense system is said to be in a state of saturation

if the number of missiles arriving simultaneously at the

borders of its killing zone is more than the number of missiles

which the system is technically capable of engaging. Thus,

the defense system has to select which missiles to engage,

while all the other missiles are then able to penetrate the

defense uninterrupted.

The situation we explore here is, again, one in which the

detection of targets is made through a radar monitor only, on

which real missiles and decoys produce signals with the same

characteristics (i.e., intensity, radial velocity etc.). In

other words, it is assumed that there is no way in which the

radar operator can distinguish between a real missile and a

decoy. This fact is exactly the one which the attacker is

willing to exploit. By letting each real missile be accom-

panied by one or more decoys, the real missile is protected

simply by the fact that there is a given prior probability

that it will not be chosen for engagement by the defense.

The more decoys accompanying the real missile, the more likely

it is that it will not be engaged.

In Section B of this chapter we present and solve the

problem of finding the optimal number of decoys to accompany
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a real missile, in order to minimize the expected cost of

destroying the primary target. It is clear that by launching

more decoys the protection of the real missile becomes more

effective. On the other hand, spending more decoys also in-

creases the cost of the operation. We are looking for the

optimal number of decoys, where the optimum represents a

point of "balance" between the degree of protection and the

cost

.

In Section C we consider a similar problem, differing from

that of Section B in that we make the number of real missiles

also unspecified. In that case, the attacker can launch any

mixture of real missiles and decoys, where neither the number

of missiles of each type, nor their proportion are subject to

any constraint.

The main purpose of deploying decoys, in any situation, is

to improve the cost-effectiveness ratio of a given operation.

In both models presented in this chapter we assume that the

attacking processes are to continue until the primary target

is destroyed. The objective is thus the expected cost of

destroying the target.

B. THE OPTIMAL NUMBEROF DECOYS REQUIRED TO PROTECTA
SINGLE REAL MISSILE

Suppose the attacker is restricted to launch only one real

missile at a time. This restriction may originate with some

technical or other type of constraints. However, there is no

limit on the number of decoys the attacker is allowed to launch

234





simultaneously with the real missile. We assume that the

attacker launches a "wave" of objects, one of them being the

real missile. He then receives the information on whether the

real missile hit the primary target or not. The primary tar-

get is defended by N secondary targets. We use the following

notation:

mn - No. of decoys shot simultaneously with a real
missile, at each "wave" of attack

CR - Cost of a real missile

C_ - Cost of decoy (C < C )

C° - Optimal expected cost of destroying the primary
target

P - Probability that the real missile kills the target,
given that it survives

q - Probability that the real missile survives a given
interception attempt made by any single defense
target

N - No. of secondary targets defending the primary target.

We also make the following assumptions:

(1) One real missile is launched together with m_ decoys.
The attacker controls the launches in such a way as
to let all the objects reach the boundaries of the
defense killing zone at about the same time. Conse-
quently, each secondary target is capable of engaging
exactly one missile.

(2) The operators of the detection radars sitting at the
defense targets are incapable of distinguishing between
a real missile and a decoy.

(3) It is assumed that the attack process will go on until
the primary target is killed. After each attack in
which m +1 missiles (one real and mD decoys) are
used, tne attacker is informed about tne result. He
quits immediately upon achieving a hit of the primary
target.

(4) Two cases concerning the engagement process are considered
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(a) Case 1 ; In this case each one of the N second-
ary targets operates independently of ail the
others. The selection of the missile to be
engaged is made randomly, each one of the rn D+l
missiles has an equal chance of being selected
by each of the secondary targets. Thus it is
possible that some of the missiles will be
engaged by more than one secondary target,
whereas others will be engaged by nonel

(b) Case 2 : In this case the operations of the N
secondary targets are coordinated so that the
resulting engagement pattern is of a one-on-one
type. One way to visualize that is to assume
that there is a central unit equipped with its
own means of target detection and control, and
having command links with all the N secondary
targets. This unit is responsible for distributing
the targets among the subordinate launching units
(i.e., the secondary targets) in such a way that
no more than one secondary target is assigned to
engage any single detected object. For the
saturation effect to exist we have to require that
N_ < mD+l. (Otherwise, if N >_ m-4-1 , each missile
(including the real one) will be engaged with
probability one so that no condition of saturation
really exists.) It is further assumed that any
group of N objects (out of the

5 m
D

+1
( )

s
different groups) has an equal chance of being
selected as the group of engaged missiles.

1. Solution to Case 1: Independent Operations of the
Secondary Targets

We first calculate the probability that the real

missile will survive given that it is accompanied by m_ decoys.

To do that, notice that the probability that any given second-

ary target will intercept the real missile is given by:

iThe real missile will i iThe real missile will be.
be engaged by the target' 'intercepted if engaged »

mD+ l
(1-q)
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The probability of surviving the N secondary targets

is thus

N

(1 - -^L)
S

The probability that the real missile will not kill the

primary target is therefore:

N
1- s

P (missing the primary} = 1 - P» (1 - —-rr )
(VII. 1)

r m_+ i

We now write the equation for C , the minimal expected

cost of destroying the primary target. As a result of each

ripple launch of the m +1 missile, two outcomes are possible:

(1) The primary target is killed, and so the process
ends with no more cost incurred.

(2) The primary target is not killed, in which case
the' attacker remains at the same state he was
before the launch, i.e., the optimal expected cost
left to be paid is exactly C°

.

Thus, the attacker has to pay the cost of the missiles he

launches at any single stage, plus the expected cost of con-

tinuing the process, which is either (in Case (1) above)

or C (in Case (2) ) . The probability of Case (2) is given in

Eq . (VII. 1). Therefore we have the following equation:

C° = Min {m
D

C
D+CR

+ [l-p.(l -^-) s
]-C°} . (VTI.2)

ny>_0 u
(integer)

Notice that C , the unknown optimal value of the objective

function, appears on both sides. This equation can be solved

as follows. First, denote by C (m ) the expected cost of
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destruction when there are m_ decoys accompanying each real

missile. Then:

C <V " m
D

C
D

+CR
+

i
1 - P(1 -i^X }

S
1 C(V

or

m • C + C
C(m ) = 2_D R__ (VII. 3)

Now calculate the derivative of C(m ) (disregarding,

for the moment, the fact that itu is confined to be an integer)

dC (n^) " "D 1 * - ~ " - "!)•* (1-niip)

dnu 2N
p ( 1 -^ Sv 1

= H^TI r- [C^Stq+l-N^l^ln^^g^N^l^)]
p(1 -5^

S
(m

D
+1)

It can be seen that as the variable m goes to either +», or
D

-°°, the derivative of C (m ) converges to a positive value

C_/P . Also, there are exactly two points at which this deriva^

tive becomes zero. They are the two roots of the quadratic

equation

:

S'^D + c
D

tq+l-N
s

(l-q)]-m + C
Dq - (^.(l-q) - . (VI 1. 4)
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1 2
Let m_ and m_ be the two roots of this equation. If one root

is negative and the other is non-negative, then the function

being possibly zero)

:

C(m^) will have the following (tentative) graphical from (m"

Let m be the positive root of Eq. (VII. 4). It can be seen

from the above discussion that the solution to the actual

problem (where mD is constrained to be a non-negative integer)

is

:

m.

[m£] if C( [m
D ]) < C([m

D ] +1)

(VII. 5)

[m^]+l if C( [m
D ]) > C([m

D
]+l)

(where [•] denotes, as usual, the integral part). We have

also:

C° = Min(C([m£]) ,C([m£]+l)

}
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If both roots are. non-positive then the function C (m ) has

the form

/
V

C(m
D )

1

1

1

1

1

\
\

^
s-

1
^~! """

1

i

s
2m
D

1 /

In this case the solution is simply m° = , and C = C(0)

,

since m_ is restricted (in the actual problem) to the non-

negative integers.

A third case which should, theoretically, be considered

1 2is the one where both mD and m^ are non-negative. This case

will soon be shown to be impossible for this problem.

We now give the explicit solution to Eq. (VII. 4)

through which we will be able to derive conditions for each

of the two cases mentioned above to occur.

We have from (VII. 4)

1
2 ~ [N

g
(l-q) -(l+q)±

2 N ll-q)
[N

g
(1-q) -<l+q) ]

*+4 (-^ - q) ]
(VII. 8)

where r = CD/C R is the decoy-to-real cost ratio. We now

write the conditions for each of the two cases mentioned

above:
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(a) The condition for one root to be negative and for the

other one to be non-negative is:

N (1-q)
- q

r
c

or

N
s

* - N +r '

s c

(b) The conditions for both roots to be negative are:

N -1
N (1-q) - (1+q) < q > ^^ (VII. 9a)

s

and

N (1-q) N
-5-j q < q >

+
S

r
. (VII. 9b)

c s c

Since r < 1 we have
c

N N -1
> s~T- , (VII. 9c)

N +r N +1 '

s c s

and so, condition (VII. 9a) is redundant, and we have

N
s

q >
N + r

s c

as a single condition under which the optimal value of m_

is m = 0.

We now show that it is impossible that both mQ and

2m of Eq . (VII. 8) will be non-negative. The conditions for

that should have been:

241





N -1
N (1-q) -1+q) >_ =^>q < ^j

s

and

N (1-q) N
S n - - s- qr ^ - "^^ ^ - N +r

c s c

Both of these two conditions cannot be satisfied

since from inequality (VII. 9c), we see that they contradict

each other. Thus, this case is vacuous.

We now summarize the algorithm which solves Case

1 (independent operations of the defense targets):

(a) Calculate iru (Eq. (VII. 8), taking the plus sign in

front of the square root)

.

(b) There are two possibilities regarding the optimal

number of decoys to accompany a real missile: >.

(bl) If q > (N )/(N +r ), the solution is m° = 0.
S S C D

It means that if the probability of survival

of the real missile —given that it is engaged

—

is "sufficiently high" (and to be specific,

higher than M /(N +r ), the attacker should
s s c

not resort to decoys, since their contribution

to the survivability is not worth their cost.

(b2) If q N /(N +r ), the solution is [m ] or

[m ]+l, depending on whether C ( [m ] ) is less than

or greater than C([m ]+l). The function C(m )

can be written as (see Eq . (VII. 3)):

N
f (l+m n r ) (l+m_) s

C (m_ ) =
D' N

(m
D+q)

S
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To make significant quantitative analysis of the improvements

achieved by introducing decoys, we should measure the expected

cost of destruction relative to some standard unit of cost.

The most relevant basis for that purpose is the expected cost

of destruction when using real missiles only, which clearly
N N

is C-VPq s = f/q s
. We still subject ourselves to the require-

ment that only one real missile may be launched at each attempt

(We drop this constraint in Section C, where we explore the

problem of optimal real/decoy "mixtures") . We now define the

dimensionless function C (m )

.

c(m ) n q+qmD N
C (m

D
) = _^. q = (1 +mDr c ) (__£) (VII. 10)

It is apparent from the discussion above that the value

c° s
C° = C (m_ =m°) = —3—directly indicates by how much do the

decoys contribute to the reduction of the expected cost of

destruction.

2 . Solution to Case 2: Coordinated Operations of the
Secondary Targets

In this case we assume that the operations of the

individual defense targets are coordinted and that no missile

is engaged by more than one secondary target. We assume so

even when the number of missiles the attacker launches is

less than or equal to the number of secondary targets. There-

fore, if the number of secondary targets is N , then the opti-

mal number of decoys (m_) can be either greater than N -1
D 3 s

(so that together with the real missile there will be more

than N missiles) , or it can be zero, so that the real missile
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will be launched alone. The third possibility, namely that

< mn < N -1, is surely non-optimal since under the coordinated

operations assumptions there will be (with probability one)

a secondary target which will engage the real missile. Thus,

as long as there are not more than N -1 decoys accompanying

the real missile, no protection is provided by the decoys,

although they do add to the cost. Therefore, choosing m =

is always preferable to choosing any number between 1 and

N -1. V1

If m_+l > N , there are ( ., ) different ways in whichUS N
S

N missiles can be selected to be engaged. We assume that

each group of N missiles has equal chance of being selected
S m

Das the group of engaged missiles. Since there are ( ,)

s
groups of N objects, one of which is the real missile, we

find that the probability that the real missile will be

engaged is:

m
D

( N -1 } N
PrlReal missile engaged} = -: — = —̂— .m

D
+l m

D
+l

[ N '

s

The probability that the real missile kills the primary

target is thus:

p l 1 -S^T* 1 -^ •

The equation for C in this case is therefore:
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(l-q)N n

,V- N
s

-°

C° = Min ]
(integer) (VI 1. 11)

Pq

The term in the lower row reflects the possibility that the

optimal value of m_ is zero. The upper term corresponds to

all other cases, and as was explained above, if m_. is non-zero,

it must be greater than N -1, so that the minimum in the

upper term is taken over all m_ greater than or equal to N .

As before, we are interested in a dimensionless quan-

tity representing cost, which provides a convenient quanti-

tative measure of the contribution of decoys to cost reduction.

In this case this quantity is C° defined by:

c° - c
°

C
R

/Pq •

The value C° gives the cost of destruction relative to the

cost that would have been paid if decoys had not been allowed

to be deployed. Using C° instead of C° , Eq. (VII. 11) becomes:

(l-q)N
Min {Pqfoy^+1) + [1-P(1 -

I

S
)]C°} .

|irL>N u
C = Min ?- s (VII. 12)

1 m integer k

1

We proceed by solving Eq. (VII. 12), following logical steps

similar to those made in solving Eq. (VII. 2). The only differ-

ence is that now we have different forms for the functions

C (mD ) and C(m ), which for the case of independent operations

were given in Eqs . (VII. 3) and (VII . 10) , respectively

.
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Here we define:

c (V (l-q)N

C(mJ (nu.r +1) (nu+1)

The solution m° to Eq. (VII. 12) should be either zero, or

the one which minimizes C(mD),if this minimizing value is

greater than N -1 . First we calculate this minimum of C(mD )

,

temporarily ignoring the integer constraint. Differentiating

C(mD ) we find:

dC(mD ) [2r
c

m
D

+r
c

+l] [m D+l- (1-q)

N

g
] - (m

Dr
c

+l) (m
D

+l)
= q-dm

D - [m
D

+l-(l-q)N
s ]

2

r
c
m2+2r

c
(l-(l-q)N

s
)m

D
+(r

c
+l) ( 1- (1-q)

N

g
) -1

= q
[m+1 - (l-q)N PD S

The solution to the equation dCdn-J/dnu = is

1 [(l-q)N -1]± _/[l-q)N -l]
2 -(l+-^(l-(l-q)N )+i

2 V s c c
«£ = V 2 £_ (vn. 14)

From definition (VII. 13) it is easily seen that as m + ±°°,

the function C(mD ) approaches a linear increasing curve, wi th

positive slope. Hence the root which corresponds to the minimum

is the larger one (m D , the root with the plus sign) . In
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general, m_ will be non-integer. The following figure shows

the general form of the graph of C(m_)

.

m
D

In order to find the solution to the actual problem

(i.e., with the integer constraint imposed), we must consider

three different cases:

(a) If mD >_ N , we define, for any m_

C (mi) = Min{l,C([mi]) r C([mi]+l) }mm D D u

From the discussion above it is seen that mn can be expressed

as

:

m.

[«£] if C . (mi)mm D

[»Ji+i if mm D

3 if C . (mi)mm D

C([mJ])

= C([m£]+1

= 1

(b) If m_ < N„, then the optimum is either m_ = N orD s F D s

m_ = , depending upon whether C(N ) is less than (or equal to;

C(D) = 1, or is greater than 1. This is so because if either

[m D ] or [m ] + 1 is positive and less than (or equal) to

247





N -1, it cannot be the optimum by the argument given before
s

(i.e., that no saturation effect is created). If, for

instance, N > 2, and m is such that

1 < mi < N -1— D s

then neither [m ] nor [m_] +1 can be the optimal value m .

Thus, in this case we have:

omD

N if C(N ) <
s s —

if C(N ) >
s

A remark should be made here that it is quite simple

to derive a sufficient condition for decoys to be not worthy

of their cost. From the graph of C(m_) given above, we notice

1 2that if m_ and m_ are both non-positive, then the minimum

of C(m_) on the feasible domain (m = non-negative integer)

should occur at m. = 0. Thus the solution to Eq. (VII. 12) is

necessarily m = 0. From Eq . (VII. 14) , sufficient conditions

for that to occur are:11 r
c

(1 +.L) (l-(l-q)N s ) +^ < =?> q >_ 1 - ^ (VII. 15a)
c c

L

s c

(l-q)N -1 <_ ^^ q ^ 1 -~ . (VII. 15b)
s

Since < r < 1, the existence of the first condition
c

guarantees the existence of the second, hence the second is
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redundant and we conclude that a sufficient (although clearly

not necessary) condition for decoys to be uneconomical to use

is :

q i -
N (1 +r )

*

s c
(VII. 16)

3. Numerical Example

In order to gain some feeling about the character of

the solutions given in Section B and about actual numbers of

decoys required to operate optimally in some particular cases,

we present a numerical example. Through all the following

numerical cases it is assumed that P = Probability of kill

(given survival) =0.5. We have calculated m (= optimal

number of decoys) and C(m°), the optimal normalized cost,

for various combinations of the parameters r and q.

The results are presented in the format shown in

Figs. VII.1-VII.3. In Fig. VII. 1, optimal values for Case I

(independent operations) are given when N = number of second-

ary targets = 3. The optimal number of decoys m° for any

combination of r and q is readily given by observing the zone

to which the point (r ,q) belongs. The various zones are de-

fined by a set of curves as shown. We have restricted our

calculations to values of r between 0.1 and 0.9 (decoys which

cost less than one tenth of the real missile, or more than

line tenths are rarely realistic anyway) . From a pure theoreti'

:al point of view, however, it is obvious that all curves

hould converge to q = 1, as r -* , since when r =0 (i.e.,
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INDEPENDENTOPERATIONS

Optimal No. of Decoys Required to Protect
a Single Real Missile —Case I (Independent
Operations of Secondary Targets, N = 3)
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0.1

FIGURE VII.

2

COORDINATEDOPERATIONS

P = 0.5

.1 .2 .3 .4 .5 .6
r

c

N = 3
s

.8 ,9 1.0

Optimal No. of Decoys Required to Protect
a Single Real Missile--Case II (Coordinated
Operations of Secondary Targets, N = 3)
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P = 0.5 N = 1
s

(IND. AND COORDINATEDOPERATIONS)

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

FIGURE VII. 3: Optimal No. of Decoys Required to Protect
a Single Real Missile (N = 1)

s
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when decoys cost nothing!) any number of decoys is worth

using, and the more we use the less is the expected cost of

destruction. On the other hand, as r + 1, the whole problem

becomes irrelevant to any realistic situation. This is so

mainly because the requirement that only one real missile be

launched at any single stage is absurd: If r is very close

to 1, it is obviously better to use several real missiles than

to launch decoys, which cost almost the same as real missiles

but contribute nothing to the probability of kill.

In Fig. VII. 2 the results correspond to Case II

(coordinated operations), with N = 3, as before, It is note-

worthy that in most of the area of the square Mr ,q:

<_ r 1,0 q 1} optimal number of decoys is either

three (so that decoys are added to create an excess of just

one missile over what the defense can simultaneously handle)

or zero. A comparison between Case I and Case II, for N =3,
S

reveals that there is a large area for which the optimal policy

for Case II does not use decoys (i.e., m_ = 0) whereas the

optimal policy for Case I uses one, two or even three decoys.

We also observe that the maximal survival probabilities which

requires the use of any given number of decoys is always

smaller in Case II than in Case I (for any value of r ) . For1 c

example: If r = 0.5, it requires that the probability of

survival be at most 0.145 in Case II in order that the optimal

behavior will be to launch three decoys along with the real

missile. In Case I, the probability of survival should be at

most 0.295 in order for the same conclusion to hold.
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In Fig. VII. 3 we present the results for N = 1.

Obviously, if only one secondary target is assumed to exist,

there should be no difference between Case I (independent

operations) and Case II (coordinated operations)

.

Figs. VII. 4 and VII. 5 present the optimal cost

C° = C(nC) for Case I (independent operations of secondary

targets) as a function of r for various values of q (q = 0.2,

0.4, 0.6) . Each set of three curves corresponds to either of

the two cases analyzed in Section B and to a given pair of

values of P and N (P = 0.5, N 1,3) . Notice that C(m°) = C°
s s D

is a dimensionless quantity which gives the optimal cost of

destruction when decoys are available, measured in terms of

the optimal cost when decoys are unavailable. C is thus

the natural measure of the overall effectiveness of decoys.

Having C equal 0.2 for example, means that decoys make it

possible to reduce the cost of destruction to only one fifth

of what it would cost to destroy the target by the real missile

only.

Note that the graphs of C as a function of r (for

any given q, values of the parameters q and N ) are piecewise

linear. That this should be so may be derived directly from

Eqs. (VII. 10) and (VII. 13), which give the form of C(m ) for

the two cases analyzed in Section B. From that equation we

see that for a given m , the quantity C (m_J is a linear func-

tion of r . The points on the graphs where discontinuities

of slope occur, are exactly those where the optimal number of

decoys (m ) changes.
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C. OPTIMAL MIXTURE OF REAL MISSILES AND DECOYS

1. General Solution

In Section B it was assumed that only one real missile

is launched at each stage. While this may be a very realistic

constraint, especially when the real missile is very expensive

or scarce, it does not always apply. Therefore it is of special

interest to find optimal "mixture" of real missiles and decoys

when the number of real missiles launched at any given stage

is not limited to one. We shall assume that only one second-

ary target is present, and that the objective function is (as

it was in Section B) to minimize the expected cost of destroy-

ing the primary target.

Let mR and mD be the number of real missiles and decoys,

respectively, launched simultaneously by the attacker. The

parameter P is, as before, the single shot probability of kill

of the primary target by a real missile (given that it sur-

vives) . The parameter q is the probability of survival of

the real missile given that it is engaged. We assume that the

defense target is capable of engaging only one missile out of

each "wave", and that each of the mn +m missiles has an equal

chance of being selected for engagement. Thus there are two

possibilities

:

(a) That all the mR missiles are left unengaged. The

probability of this is mn /(m_.+m_) . The probabilityU UK ITlrj

that they will all miss the primary target is (1-P)

(b) That one of the real missiles will be selected by the

defense for engagement. Thus only m -1 real missiles

will be free to penetrate. Each has a probability of
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miss which is equal to 1-P. The engaged real missile

will have a probability of miss equal to 1-Pq. The

probability for that event to occur is m_/(m_+mR).

We conclude that the probability that a group of mD decoys and

m_ real missiles, launched simultaneously, will miss the pri-

mary target is:

m m m m -1
P . (m_,m_J = —rr— (1-P) + —-^ —(1-P)

K
• (1-Pq)miss R' D y m_+m_ n\_+m_ ^

R D D R

m -1 m
= (1-P)

K [1-P+— • P • (1-q)] (VII. 17)m

where we have written

m = m
R

+ m
D

Let C (m) be the minimal expected cost of destruction when

the attacker is constrained to launch a total of m missiles

at a time. Thus we have:

C°(m) = Min <S^^ &n"
ffl

R
)+P

miss
tin

R'
ra - ,n

R)
- d0(in,}

l<nip<m

itu integer

V1
„ ."a= C^-m+ Min {(C^-CpJit^+d-P) " . [l-P+-^-P(l-q) ] -C°(m) }

l<m_<m

rru integer
(VTI.18)

There is no easy closed procedure which solves Equation

(VII. 18). Let us first express the fact, that at the optimal

value of mR (denote it by m°(m)) we have:

256





o , o
ntp-1 nu

C°(m) = C
D

-m+-(C R-C
D

)n^+(l-P) • [1-P +-~.P(l-q) ]C°(m) . (VII. 19

We now define:

C -m + (C -C )m
C(mp ;m) = * U—2—-

. (VII. 20)

1 - (1-P)
K

• [1-P +-£.P(l-q)]m

From Eq. (VII. 19) and the definition of the function C(mR ;m)

we notice that at the solution point mR = m (m) we must have

C(mR (m);m) = C°(m) = Min C(mR;m) .

l<_m R^m

The number m° (m) is the value of m_ (less than or equal to m).K K

which minimizes C(m ;m) . To find m°(m) let us first find the
R K

minimum of C(mR;m) when mR is not constrained to the integers.

After differentiating C(mR;m) and setting the derivative equal

to zero, we obtain the following equation:

mR~1
2

1 -r
c

= (1-P)
K

[a (m)+a
1

(m)m
R

+a
2

(m)m R ] (VII. 21)

where a (m) , a., (m) and a. (m) are constants (depending on mi

given by

a n (m) = 1-P-r (l-Pq)+r • m(1-P) • In (t^t) . (VII. 21a)
u c c l-p

a (m) = [ (1-r ) (1-P) +r P (1-q) ] ln(~ F) . (VII. 21b)
l c c 1-P

(1 -r )P(l-q) .

a,(m) = £ • In (,-==) . (VII. 21c)
z m 1-P
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Eq. (VII. 21) can't be solved analytically. We must resort to

some numerical procedure to solve it. For small values of

m this is not, however, necessary. One can check directly

where the minimum of the function C(mD ;m) occurs by computing

this function for all integer values of m_ between 1 and m.

Notice that as m_ * °° , C(mR;m) tends to be linear with positive

slope CR-C D - As mR
-* -« , we have C(mR ;m) * . It can also be

shown that

dC(mR;m)

dm
R mR

=0

By taking the second derivative we also find that the first

derivative (taken as a function of mR ) has exactly two roots

(which means that Eq. (VII. 21) has exactly two different

solutions). The function C(mR;m) therefore has the following

tentative form:

Let m
R be the solution to Eq. (VII. 21). From the above

figure we learn that m is always positive. Four cases are
K

possible

:
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a) ml < 1 . In this case the solution to the actual
R

problem is

mR (m) = 1

that is, only one real missile should be used

(together with m-1 decoys)

.

(b) m > m. In this case
R —

m (m) = m

i.e., all m missiles should be real.

(c) 1 <_ m < m and C([m R];m) <_ C ( [m ] +l;m)
#

In this case:

mR (m) = [m
R ] .

(d) 1 <_-m* < m and C([m R];m) > C([m R
]+l;m)

Then

m^(m) = [m R ] +1 .

So far we have solved the problem of finding the

optimal mixture of real missiles and decoys when the total

number of missiles to be launched was given (equal to m)

.

For each value of m we can find C (m) given by:

C°(m) = C(mR (m);m)

The solution to the original problem is thus:

C° = Min C°(m) . (VII. 22)
m>_l
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Since we cannot express m_ (m) and C(m (m);m) analytically,

the optimization problem given in Eq . (VI I. 22) cannot be

solved by any method other than a numerical search method.

In the example given in the next section we actually carry

out that search procedure.

To carry out a meaningful analysis of the effective-

ness of decoys, we should compare the minimum achievable cost

when decoys are actually available for use with the minimum

achievable cost when only real missiles are available. If

we denote by C this last quantity, we see that we are inter-

ested in the ratio

C°-=• (P, q, r are given )

C

R oThe value of C can be found in much the same way as C .

RSince C is the minimal expected cost of destruction when only

real missiles are available, the functional equation which

C should satisfy is

C
R

= Min{m.C + (l-P)
111

" 1
. (1-Pq) -C

R
} . (VII. 23)

m>l K

We solve this problem using arguments similar to those

we have given in solving the problem of finding C°(m). First

we define the function C (m) by:

R mCR
C*(m) = 2— . (VII. 24)

l-d-P)™" 1
. (1-Pq)

oRLet m be the solution to Eq. (VII. 23). It is immediately

seen that
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_R _R, OR.
C = C (m )

Thus we have to find the minima of C (m) on the

(positive) integers. To do that, we first find the minima

of C (m) when m is not restricted to be an integer. By

direct differentiation we find that the minima should satisfy

the equation:

(1-Pq) [1 +ln(
I ^-) -m ] • (l-P)™" 1 = 1 . (VII. 25)

It can be shown by calculus that Eq. (VII. 25) has only one

positive root (call it m ) . If m < 1, then m = 1, and if

1 T U.I- oR r 1, OR , 1, , , , . . .m > 1, then m = [m ] or m = [m ]+l, depending on whether

R 1 R 1
C ( [m ] ) is less than or greater than C ( [m ]+l).

R R

Eq. (VII. 25) can be solved either by a search method

or by an iterative method as we show next. This iterative

method is based on the well-known Banach Fixed Point Theorem.

This theorem, when applied to real functions, defined on the

real line, states that if f (x) is a function with the con-

traction property , i.e., if

|f(x
2

) - f (x
1 ) | < K- |x

2
- x

1 |

for any pair x ,x_, for some constant K < 1, then the equation

f(x) = x

can be solved by the successive approximation method. In

other words, if we take an arbitrary point x. as an initial

approximation, and then define
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x = f (x , ) for n = 1, 2, 3 ,

n n-1

then it is guaranteed that

lim x = x
n-*-°°

n
where f(x) = x

Now to apply this method to our problem, notice that

Eq. (VII. 25) can be rewritten as:

m - 1 " ln(l-P)
) ln[l-ln(l-P) -m]

ln(l-P)
I

so that, if we define

f(m) " l ~ ln(l-P)
ln[l-ln(l-P) -m ]

ln(l-P)

the problem becomes:

m = f (m) .

To show that the method of successive approximation works,

we need only to show that f (m) has the contraction property

So let m, ,m
2

be any two points on the real line (assume

m. > ru) • We have:

f(m
1

) -f(m
2

)

l
l-ln(l-P)-m

1
ln(l-P) j*

j

^ ( l-ln(l-P).m
2

)

In [l-ln(l-P) -m,] In [l-ln(i-P) -m
2

]

ln(l-P

ln(l-P)

ln(l-P

ln(l-
ln(l-P) (ia

L
-m

2
)

l-ln(l-P) -m

using now the inequality log(l+x) <_ x we find that the last

expression is less than or equal to:
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l
I

ln(l-P)
|

(m
1

-m
2

)

±

ln(l-P) |"l+| ln(l-P) | -m
2

1+| ln(l-P) |

' (m
i"

m
2

}

so we have proven

f(m,)-f(m
2

)| < K- (m
1

-m
2

)

where

K — ± . < ]_

l+|ln(l-P)

|

so that the contraction property indeed holds. In practice,

we can stop the iterative calculation of the sequence m ,

given by f (m
1

) = m , whenever it seems apparent that the

sequence is "trapped" between two consecutive integers. This

is implied by the" fact that the solution of the actual problem

is either the greatest integer smaller than the solution of

f (m) = m or the smallest integer greater than it.

oRNow let m ' be the solution to the optimization prob-

lem presented by Eq. (VII. 23). Then, from Eq. (VII. 24) we

have:

moR
-C

C
R

= C
R

(m
oR

) = 1 . (VII. 26)oR -,

1-(1-P) m " 1 (l-Pq)

Let also m and m represent the optimal solution to the
R

problem of optimal real-decoy mixture (m —total number of

missiles (reals and decoys) to be launched, m --number of reals

in the mixture). From Eq. (VII. 20) we get:
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m O c, r O
C

D
>m

° V {C R CD)1
^L fvTT ,-Cfciym ) = C = — ^ , (VII. 27

"ST 1 ™r
l-(l-P)

K [l-P+-£p (1-q)]
m

so we have, from (VII. 26) and (VII. 27):

C°
r

c'
m°

+{1 ' r cK l-d-P^'Ml-Pg)
~R oR o , _o

l-(l-P)
K

. [i-p+-g.p(l-q)]
m

2 . Numerical Example

Table VII. 1 presents the results of some numerical

cases of the optimal mixture problem. In carrying out the

calculations we have followed the following steps, for any

given combination of P, q, and r :

oR
(1) First, we calculated the' optimal number m ' of real

missiles to be launched simultaneously (where use of

decoys is not allowed) in order to minimize expected

cost of destruction. The calculation is carried out by

solving Eq. (VII. 25), using the successive approxi-
* oRmation method. The values of m are presented in

the fourth column of Table VII. 1.

(2) The optimal cost (C ) of destruction (with real

missiles only) is presented in the fifth column of

the table. The cost is measured in units of CR , the

cost of a single real missile. It' was calculated using

Eq. (VII .26)

.

(3) For m = 1,2,3,... , the solution to Eq . (VII. 18) was

found, using the method described in Section C. For

each m, we have calculated m_ (m) , the optimal number
R

The successive approximation algorithm for Eq. (VII. 25
was programmed on a TI-59 handheld calculator.
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of missiles that should be real, if a total of m

missiles are to be launched simultaneously (hence,

m-m (m) is the optimal number of decoys) . Using
R.

Eq. (VII. 20) we also calculated the value of

C(m°(m) ;m)/C_ for each m. This is the optimal cost
R R

of destruction (again, in terms of C_) , for any

given m.

(4) By keeping track of the variation of C(mR (m);m) as

m increases, the value m = m for which C(m (m);m)

attains its minimum was detected. The optimal mix-

ture thus contains mD (m°) real missiles and m -m (m°)

decoys. It is presented in column 6 of Table VII.

1

in the form (m ,m_) where m = m -m_

.

(5) The optimal cost of destruction (C ) , measured in terms

of C„, is shown in the seventh column of Table VII. 1.

(6) The ratio of optimal cost with decoys (calculated in

'(5) above) to the optimal cost without decoys (calcu-

lated in step (2)) is presented in column 8. This is

ther natural measure of the effectiveness of decoys in

saturating the defense system.

We have included in the tables the solution to the optimal

mixture problem for all combinations of the following values

of the parameters:

P = 0.2, 0.5

q = 0.1, 0.5

r = 0.1, 0.5
c

Analysis of the results . It is apparent from the results

shown in Table VII-1 that the gain obtained by introducing

decoys is more significant when the parameters P, q, r get

smaller. Notice for instance, that for all cases for which

r = 0.5 the optimal mixture is a pure "real" mixture, whereas
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for all cases for which r =0.1 the optimal mixture contains
c

at least one decoy. This reflects the sensitivity of the

optimal mixture to the cost of decoys. Notice also that the

savings which result from using decoys (optimally 1) becomes

more significant as q, the probability of survival, gets

smaller. If P = 0.2, r =0.1 and q = 0.1, for instance,

the decoys reduce the cost of destruction to only 57 percent

of the cost which would be incurred using only real missiles.

If q is raised to 0.5, the savings is much smaller, the

optimal cost being only 0.95 of the cost incurred without

decoys.
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APPENDIX

FORMULAEFOR COMPUTINGVALUE AND OPTIMAL
STRATEGIES IN A 2 x 2 MATRIX GAME

The following elementary formulae are used repeatedly in

Chapter IV and Chapter VI . Their derivation can be found in

Owen [4]

.

Let A be a 2 *2 matrix of a zero-sum game:

' a
ll

a
12

^

A -

a-, a.
\ "21 22 /

We assume that player 1 selects the row, player 2 selects the

column. The payoff a. . is paid by player 1 to player 2, if

they choose actions i and j, respectively. We denote by V

the value of the game. The optimal strategies are completely

1 2determined by the probabilities it , tt , where:

tt = Probability that player 1 selects the first row.

2
tt = Probability that player 2 selects the first column,

The formulae we use are:

V =
a H' a

22 " a
12

>a
21

(1)a
ll

+a 22 ' a 12~ a
21

1
a

22 " a
21 ,-,

TT = (2)a
ll

a
22 " a

12 " a
21

2 m
a

22 " a
12

(3)a
ll

+a
22 " a

12 " a
21
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