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ABSTRACT

Three-dimensional trusses are designed for minimum

weight, subject to constraints on: member stresses, Euler

buckling, joint displacements and system natural frequencies

Multiple static load conditions are considered.

The finite element displacement method of analysis is

used and eigenvalues are calculated using the subspace

iteration technique. All gradient information is calculated

analytically.

The design problem is cast as a multi-level numerical

optimization problem. The joint coordinates are treated as

system variables. For each proposed configuration, the

member sizes are updated as a sub-optimization problem.

This sub-problem is efficiently solved using approximation

concepts in the reciprocal variable space. The multi-level

approach is shown to be an effective technique which con-

veniently takes advantage of the most efficient methods

available for the member sizing problem.

Examples are presented to demonstrate the method. The

optimum configuration is shown to be strongly dependent on

the constraints which are imposed on the design.
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I. INTRODUCTION

The process of optimization of structures has undergone

important changes since its development in the early 1960s.

Minimum weight of elastic truss structures subject to multi-

ple loadings has been an active area of research. Attention

has been focused on the problem of least weight, when the

overall layout was known in advance, and when the cross-

sectional area was the design variable. Some attention has

been directed toward the optimum configuration of the

structure. Design improvements in this area often exceed

those in fixed-geometry and so shape optimization is of

major interest.

Pioneer work in shape optimization was conducted in 1964

[Ref. 1] by Dorn, Gomory and Greenberg. The optimal con-

nectivity of nodes for truss members, subject to a single

load condition, was found and minimum weight designs were

achieved. In their work only planar trusses were tested,

and the process was presented as a plastic design problem

using linear programming.

Their work was followed by Dobbs and Felton [Ref. 2]

who in 1969 investigated the effect of multiple load condi-

tions on the optimum configuration of trusses through the

use of non-linear programming methods. Again, only planar
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trusses were considered, subject to failure by stress and

elastic buckling.

Later, Pedersen [Ref. 3] considered the positions of

the joints as continuous design variables in addition to

the areas of the bars. Stress, displacement, and buckling

constraints were considered. Pedersen 1 s work is significant

because the optimization process is carried out by consider-

ing two separate design spaces. The optimization is

achieved by successive iterations using a gradient method

with move limits.

The optimization process was advanced by Vanderplaats

and Moses [Ref. 4] who divided the design space into two sub-

spaces, separating the area variables and the joint position

variables. Multiple load conditions and constraints on

stresses and Euler buckling were considered. The optimiza-

tion was carried out alternatively between the two spaces

until convergence was achieved. Three-dimensional indeter-

minate trusses were designed subject to multiple loading

conditions. This work was extended by Vanderplaats [Ref. 5]

to include displacement constraints.

In other research, Spillers [Ref. 6] considered statically

indeterminate trusses. The optimization followed an itera-

tive design where the member sizes and node locations were

the design variables.

13





Recently, Imai [Ref. 7] treated the sizing and con-

figuration variables simultaneously for either determinate

or indeterminate trusses. The optimization was achieved

using the Augmented Lagrange multiplier method.

The design problem considered in this study is the opti-

mum configuration of three-dimensional indeterminate

trusses, for multiple prescribed static load conditions.

The objective is to minimize the weight of the structure,

design variables are the node coordinates and the member

sizes. Constraints include stress, Euler buckling, dis-

placement, and the natural frequency of the system.

Some approximation concepts are introduced in order to

reduce computational effort and to reduce the nonlinear

characteristic of some constraints. Among these, a first

order Taylor Series expansion is applied to approximate the

constraints.

The optimization proceeds iteratively in two design

spaces: the member sizing space, where the structure is

optimized for a fix layout, and the coordinate space, where

the geometry is allowed to vary. In both optimization

processes the minimum weight of the structure was maintained,

subject to the requirements that the constraints remain

satisfied.

The mathematical formulation is presented in Chapter II.

The objective function and constraints are defined in terms

14





of the design variables. The analytic gradients are also

formulated.

The optimization technique is discussed in Chapter III.

Several examples are presented and explained in Chapter IV,

Conclusions and recommendations for future work are

presented.

15





II. MATHEMATICAL FORMULATION

A. INTRODUCTION

Several features are desirable when finite element

methods of structural analysis are used in optimization.

First, the number of analyses for the structure should be

kept as low as possible. Second, the amount of gradient in-

formation required during the design process should be

reduced as much as possible.

B. ANALYSIS

1. Static Analysis

The initial layout of the truss, the member sizing

and material properties (which may be different for each

member), a set of external loads, and support conditions

are initially specified.

The analysis for the stresses and deflections must

be carried out satisfying the conditions of equilibrium of

forces at the nodes and compatibility of deformation. If

the material of the structure behaves in a linear manner,

Hooke ' s law will establish the force-deflection relationship

For a truss, it is also necessary to establish the

following assumptions before selecting the method of comput-

ing the internal forces. The discrete element is treated

as pin-connected, and loads and reactions are supported at

16





the joints. In this study, the weight of the members is

not included as loads.

The Displacement (Stiffness) method [Ref. 8]

considers the joint displacement components as the unknowns,

and is written in the most general form using matrix notation,

Ku = F (Eq. 1)

where K is the global stiffness matrix, F is the vector or

vectors of applied loads, and u is the vector or vectors of

displacements. Equation 1 is the set of equilibrium equa-

tions, and is formulated such that the compatibility is auto-

matically satisfied.

The generality of the method is important if either

statically determinate or indeterminate trusses are analyzed.

The global stiffness matrix is symmetric and sparce. These

features are used to write the code for a computer solution,

and the matrix K is stored in compact form for efficient

numerical solution.

Once the displacements at every node are known, the

internal forces or stresses are calculated by applying force-

deflection relations. This is defined as:

r \

_ u„ .
- u.

E. D
T ^ ^

*n = -V- < V
£j

- V
kj )

(Eq. 2)
ij L

w„ .
- w. .

where i and j are element and load condition numbers respec-

tively, and k and I are node numbers associated with the

17





element i. a. . is the stress, E. is the Young's modulus,

and L. is the length. Matrix D = f (a,y,v) contains the

direction cosines. For brevity, hereafter the second sub-

script is omitted and it is assumed that the stress or

displacement corresponds to the appropriate loading condition,

2 . Dynamic Analysis

When system natural frequency constraints are imposed

in the design process, the corresponding dynamic analysis of

the structure has to be carried out. This requires the

solution of an eigen-problem to determine the natural fre-

quencies and normal modes. For linear elastic structures,

the finite element approach leads to the well-known equation

of motion, considering free vibration conditions,

£Ju + Ky = (Eq. 3)

where M is the global mass matrix, and u is the linear accel-

eration. Assuming a solution of the form

u = ^e
ia)t (Eq. 4)

where oo is the angular natural frequency of vibration of

the structure, and $ is the corresponding eigenvector.

After substitution into Eq. 3, the generalized eigenvalue

problem becomes,

K<j> = u)
2M$ (Eq. 5)

Written in matrix form for several eigenvalues, Eq. 5

becomes,

KO = tt
2m (Eq. 6)

18





where $ is the modal matrix, and 2 1 = diag (oj
2

) is the spectral

matrix.

From the static analysis, the global stiffness

matrix is already calculated, then only the global mass

matrix evaluation is needed. Both generalized and lumped

mass options are coded. These are defined respectively as:

NE

& = .1
1=1

o-A.L.p i l l

2I
3

l
3

I-, 21
(Eq. 7)

and

NE

^ - 1 L.
1=1 6

• A.L.ill
6x6

(Eq. 8)

VJhere I is the identity matrix, the sub-space iteration

method of Bathe and Wilson [Ref. 9] is used to solve for a

specified number of lowest eigenvalues and the associated

eigenvectors. The method is economically efficient for

large problems. The mass matrix may be diagonal or banded.

The method is well suited for re-analysis when small

changes are made in the design.

C. ANALYTIC GRADIENTS OF THE CONSTRAINTS

The necessity to compute gradients of the relevent

functions in a design optimization process arise from the

fact that efficient mathematical programming algorithms

require information on derivatives. Furthermore, approxi-

mate methods based on a Taylor Series expansion of functions,

19





requires determination of derivatives. Based on the static

and dynamic analyses, the gradients of forces, displacements,

and frequencies with respect to the reciprocal of the cross-

sectional areas and the coordinate variables, are formulated.

1 . Gradient of Member Stresses with Respect to the
Reciprocal of Area Variables

Stress in a member is defined as
F.
1

(Eq. 9)

also

a .
=

K.u-
(Eq. 10)

The partial derivative is then

3a.

3X
3

ax A. ~l
l

K

*i
+
A7 9X u^

-e
(Eq. 11)

The first term of the right hand side is zero, then

—- — ^— (u.

)

3X„ A, 3X„ v ~l'
(Eq. 12)

I
"£

This can be written in explicit form as

3£i
s
5s>

T
E.D.

L?
l

Wt (yi)
(Eq. 13)

2. Gradient of Nodal Displacements with Respect to the

Reciprocal of Area Variable

Consider the equation

Ku = F (Eq. 14)

20





The derivative of [K u] with respect to some variable X,

is

[KU] = ^"(F)
3n ax,

(Eq. 15}

In this case X
£

= 1/A^ and the loads are constant and in-

dependent of the areas (weight of the truss elements are

ignored) , then

t|- (?) (u) + ? ~-(u) = (Eq. 16)

or

§ 3X

Finally, then

3X
9

(u) = -k' 1

3 ?£
(K) u

-1

(Eq. 17)

(Eq. 18)

where K is the inverse of K. It is necessary to compute

the partial derivative of the global stiffness matrix K

defined as:

NE E . A

.

K = X -fc± [D
± ] (Eq. 19)

i=l

where D. is the matrix of direction cosines defined earlier,
i

Therefore, the partial derivative with respect to the

reciprocal of the area variables is defined as:

. NE E.Af

*l i=l i

(Eq. 20)
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where 5 is the kronecker delta defined by 6. = 1 if i = l

and 5 = if i ^ I. In practice the full matrix, Trvr-(K)

3
* i

is not actually stored. Instead the product, tttt-(K)u is

created directly. Details of efficient gradient computations

are given in [Ref . 10]

.

3 . Gradient of Frequencies with Respect to the Reciprocal
of Area Variable

Consider the eigen-problem defined by,

[K - co?M] 0. = (Eq. 21)

Taking the derivative with respect to the variable X [Ref. 11]

gives

4- {[K - u)|M] $.} =
dX

9
a 1~ -1

(Eq. 22;
•£

then

^|- {[g - u>?M]} $. + [K - oojM] g|- <J) i
= (Eq. 23)

T
Pre-multiplying through by <£. and applying the condition of

symmetry of the matrix Ik - to. M gives

3£ 3M 3u>.
2 ~ 1

*I « " »!« lt {h ]
m
'*i ^"^ 3X^ » *i

(Eq. 24)

The left hand side of the equation is zero because of Eq. 21,

(Eq. 25)

and thus

3w? Xl

3 K 3M

_3x
£

w
i axJi

f
T Mi*1 * ~l
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The partial derivative of the generalized mass matrix with

respect to the reciprocal of the area variable is defined as

3.M
~G -

3
?i

"

NE

I
i=l

°i£

p.AfL.ill 2I
3 h

I
3

2I
3

(Ec. 26)

The partial derivative of the lumped mass matrix with respect

to the reciprocal of the area variable is formulated following

the same procedure as the generalized mass matrix.

4. Gradient of Stresses with Respect to the Joint
Coordinate Variables

Since stress in a nember is

K.11.

a. =
~i

(Eq. 27)

the gradient is calculated as

8X„ «
£

1 ]
3 ?i(Jl_k. )

u. + _i_ k. —

-

1 1 ~l
(Eq. 28)

In this case, the stiffness matrix is a function of the

coordinate variables so the first term on the right hand

side of Eq. 28 is not zero.

5 . Gradient of Displacements with Respect to the Joint
Coordinate Variables

Consider the following equation

Ku = F (Eq. 29)

The gradient of u with respect to X is:
I

(u) = -K
-1 JL-(K)u

**i **l
(Eq. 30)
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The partial derivative of the global stiffness matrix K now

is defined as:

NE
A.E. 9K. 3A.E.

(K)n
i frJ l|

l) 3 (dX
i

) [K
i ]

(Eq. 31)

where (-1) * and j = 1 or 2 defines the sign of the gradient

at that particular node. Note that the terms in the summa-

tion are only evaluated for members connected to the joint

defined by the variable X
?

.

6 . Gradient of the Natural Frequencies with Respect to
the Joint Coordinate Variables

The value of the derivative of the eigenvalue co
2

found from

2**1 A _ n (Eq . 32)[K - u>fM]<j>. =

is

9o)f
•i

3K 3M

3X,
- CO'

SX
I .

h.

T
<f>7 M c|).

(Eq. 33)

The partial derivative of the generalized mass matrix with

respect to the coordinate variables are defined as:

3X
£

NE

""I ("I)

i=l

. o . A . dX

.

l li l

6L.
l

2I
3

I
3

I
3
2I

3

(Eq. 34)

where (-1)-1 and j = 1 or 2 defines the sign of the gradient

at the particular node. The partial derivative of the lumped

mass matrix follows the same procedure.
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D. APPROXIMATION CONCEPTS

At this stage the analysis tools necessary for the design

process under static and dynamic conditions may be regarded

as available. It has been pointed out that the application

of mathematical programming methods for structural design is

the most widely used because of its great generality and its

simple formulation. However, it is required that a large

number of structural analyses and sensitivity analyses be

performed. This has motivated the idea of formulating simple

and explicit approximations for the most relevant response

quantities.

These approximations can only be expected to be of

acceptable quality in some finite region of the design space

surrounding the point about which the approximations were

constructed. The total number of analyses required to find

an optimum design using approximation concepts is significant-

ly less than the number previously required.

Some sources of simplification can be considered. First,

the dimension of the design space can be reduced if a proper

subspace can be identified. Second, linking of design

variables which is imposed because of symmetry or practical

considerations also reduces the dimension of the design

space.

The objective function for the design of trusses is a

relatively simple explicit function of the design variables.
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On the other hand nonlinear constraint functions are very

complicated. From a computational standpoint, a small

portion of the constraints play an active role in the opti-

mization process; therefore, deletion of non-critical

constraints avoids effort of evaluation of irrelevant

constraints.

A method to deal with complicated constraint which is

very effective in reducing computational effort is to deduce

simple and explicit expressions for the constraints.

Linearization is directly and efficiently accomplished by

Taylor series expansions. The order of the expansion

selected is decided based on the degree of nonlinearity and

the approximation required; and a trade-off must be made

between the computational effort required for the highest

order derivatives versus improvement of approximation.

Application of a first order Taylor series expansion on

stress constraints has been found to be sufficient. This

was not the case for the natural frequency constraints,

which may still be numerically unstable during the optimi-

zation. This suggests further expansion up to a second

order. However, the computational effort needed to do this

usually exceeds the benefits. Therefore, a first order

expansion with move limits is used.

First order Taylor series expansion of a function, W,

of the variable, X, about a point, Xo, is written as

W(p)* W(x) = W(Xo) + (X-Xo) VW(Xo)
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The philosophy underlying the use of linear approxima-

tions is not to transform the problem into a sequence of

linear programs, but to replace the constraints by simple

and explicit approximation functions. In this study the

Taylor series expansion was used for all constraints with

respect to the reciprocal of the member sizing variables, A..

The objective function, in reciprocal space, is now non-

linear but still explicit and easily evaluated.

E. OBJECTIVE FUNCTION

The function whose least value is sought in the optimi-

zation procedure is defined as the total weight of the truss

which is given by

NE
W = V p.A.L. (Eq. 35).£-,111

1=1

Where NE is the total number of members, and p^ is the

material density, both are prescribed constants. A^ and

L. are the area and length of the ith member respectively.

F. CONSTRAINTS

The restrictions to be satisfied in order for the design

to be acceptable are formulated explicitly; behavioral and

side constraints are defined accordingly.

1. Stress

O . < a . < cr (Eq. 36)
ci — l — ti
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where o^^ and a ^ are the allowable compressive and tensile

stresses respectively for member i.

2. Euler Buckling

The Euler buckling stress is formulated as

cA.E.
a
bi
= " -q^- <=*• 37 >

where c is a prescribed constant.

3. Frequency

W
K ^ W

K ^ ^K (Eq. 38)

where oj and w
K are the lower and upper bounds respectively

on the first natural frequency of the system.

4

.

Limits on Areas

A . < A. < A (Eq. 39)mm . i max

.

^

where, A . , and A are the minimum and maximum allowablemm . max

.

l l

cross-sectional areas of the ith member, and are taken to

be the same for all members. When symmetry of design is to

be preserved, linking of the variables is required. This

is defined as

Aj^ = A. (Eq. 40)

where K and i are symmetric members.

5

.

Displacement

< ll < u* (Eq. 41)

where u« and u v are the lower and upper bounds respectively
K K

on joint displacements u .
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6. Limits on Coordinate Variables

X
K " X

K ~ X
K < EcI- 42)

where again X
K and X

K are the lower and upper bounds

respectively on the Kth coordinate variable, and if symmetry

must be preserved, linking of the variables is required.

This is obtained by

X
i

= a
i

+ b
l

XK < ECI- 43 >

where a
£
and b^ are constants and X is the coordinate

variable.

G. GENERAL FORMULATION

The inequality constraints are of the form,

G . (X) < j = 1 NIC (Eq. 44)

The constraints are normalized as follows:

Stresses

(Eq. 45)

Euler Buckling ^--1*0 (Eq. 46

°b

Note that because a and a, depend on the member area A.

,

this constraint is treated as a nonlinear function. The

Taylor series expansion is performed on a and the value

of a, is continually updated.

a -1*0

a -1*0
°c
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Displacements — -1-0
6-

A- 1 <

5 +

Frequency £-1*0
00

side constraints are

\ " A
i " °

(Eq. 47)

(Eq. 49)

x
K

- x
K

<

X
K " XK " °

(Eq
*

50)
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III. OPTIMIZATION

A. INTRODUCTION

The main goal of structural engineering is to design

structural systems that efficiently perform specified

purposes. Selection of a specific algorithm is required

and this algorithm must minimize the number of times the

structure has to be analyzed and the amount of specific

gradient information required. Finally, the algorithm

should provide reasonable assurance that it will attain an

optimum or near-optimum design.

The next two sections are a brief explanation of the

algorithm used for this work.

B. GENERAL FORMULATION

The general constrained minimization design problem is

defined as

minimize

W(X) (Eq. 1)

subject to

G. (X) ^ j = 1, . . . .m (Eq. 2)

where, W(X) is the objective function. Functions G. (X) are

the set of inequality constraints. The vector of design

variables X includes member sizing variables X and geo-

metric design variables X .

y
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C. OPTIMUM GEOMETRY DESIGN

The procedure used here was to treat the geometric design

parameters as independent design variables. The member sizing

parameters are handled as dependent variables which are

determined as a sub-problem.

Beginning with an initial geometric design vector X , the

design proceeds iteratively using the following relationship:

Xg+1 = Xq + a* S* (Eg. 3)
g g g g

v 4 '

where q is the iteration number and S is the search direction
y

*
to be determined. a is the scalar parameter determining the

distance of travel in the design space.

For each proposed geometric vector, X , the structure

was optimized with respect to the member sizing variables,

X , by the sub-optimization problem defined in Section D.

Assume that for the initial geometry the structure has

been optimized with respect to the cross-sectional areas,

and that, from this subproblem there are I active constraints

of the form:

G. (X) = k - 1,...£ (Eq. 4)

where, G.(X) is defined as active if its value is close to
3

zero.

Now, it is necessary to find the search direction, S ,

y

so that by moving in this direction in the coordinate

design space, the objective function is minimized. This

direction is found by solving the following subproblem.
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Minimize

VF(X).S (Eq . 5)

Subject to:

G
R

(X) . S < k = 1, £ (Eq. 6)

S . S * 1 (Eq. 7)

At this point, S, provides a search direction in the

combined [X + kj space which is projected onto the active

constraints. Only the S part of S is used.

Once, S , is known it is substituted back into Eq. 3

*
and a one-dimensional search on a is performed to update

the vector, X. The Optimum-Geometry design problem can be
y

summarized in the following algorithm.

1. Given an initial coordinate design vector, X , and

area design vector, A . Specify, D and P . (D ,3 o r 2 ' max max max'

maximum change in the coordinate at each iteration, and

P , total number of iterations.)

2

.

Solve the fixed geometry problem and calculate the

minimum weight (W*) for the current geometry.

3. Determine the set of active constraints.

4. Determine the search direction vector, S.

*
5. Find the move parameter a, for a D change of some

coordinate variable, or such that some coordinate constraints

becomes active.

6. Solve the fixed geometry problem for coordinates.

X = X + a, S and calculate the optimum weight, W(X).
g g 1 g
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*
7. Find the parameter a-# which minimizes the weight

using 2-point quadratic interpolation. If a. >a. do to

step 9.

8. Solve the fixed geometry design problem for coordi-

-a+1 -a * -anates X^ = X^ + ou SM and calculate the optimal weight,
g g 2 g r

9. Check convergence; if satisfied, terminate; otherwise,

set q = q+1 , update X and return to step 3

.

D. FIXED GEOMETRY DESIGN

As stated earlier, a sub-optimization problem has to be

solved for a proposed geometry design vector, X. The

structure is now optimized based on the cross-sectional

area subspace. This is defined in general as:

Minimize,

W(X) (Eq. 8)

Subject to,

G. (X) < j = 1, I (Eq. 9)

The design proceeds iteratively. Given an initial vector

of design variables X , find the X vector at the (q+1) ith

iteration defined as:

X<3
+1 = Xq + X* Sq (Eq. 10)

m m m m
* -

-
where, a , is a scaler multiplier, and, S , is a vector move

m m

direction in the design space.

Now the problem becomes one of finding the direction,

S, and the move parameter, a*. Zoutendijk [Ref. 12] shows
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that the direction may be found by solving the following

problem.

Maximize

8 (Eq. 11)

Subject to

VF(X) . S + 3 - (Eq. 12)

G. (Xm ) . S + 9 6 < j = 1,...NAC. (Eq. 13)

S . S < 1 (Eq. 14)

where the scalars 6. are named as "push-off" factors.

If some of the constraints are violated, this algorithm

is modified in order to find a feasible design [Ref. 13].

For the fixed geometry sub-problem, the reciprocals of

the member sizes are used as design variables and approxima-

tion techniques are employed [Ref. 5] . The optimization

program CONMIN [Ref. 14] is used to solve this sub-problem.
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IV. NUMERICAL EXAMPLES

A. INTRODUCTION

Design of planar trusses and space towers are presented

here and the corresponding numerical results are summarized

to demonstrate the purpose of this study.

The examples begin with an 18-bar truss. In this case,

it is shown how the optimum geometry is dependent on the

constraints imposed. A single load condition was considered

and the cross-sectional areas are linked.

Next, a 4 7-bar planar tower is designed to support a set

of load conditions given in Table VI. The design is subject

to constraints on the member stresses, Euler buckling, dis-

placement and first natural frequency. Linking was imposed

for symmetry in both cross-sectional area and coordinate

variables.

Finally, a 25-bar space tower was designed. Constraints

on stresses, Euler buckling, displacement, and frequencies

were imposed. The truss was required to support two

different load conditions. Symmetry for the member areas

and coordinates was established.

B. CASE 1: 18-BAR PLANAR TRUSS

A cantilever truss, as shown in Fig. A.l, has been used

previously as an example for the design of trusses of a
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specified geometry [Ref . 7] . This structure was designed

for optimum geometry subject to a single set of load condi-

tions given in Table I. The allowable stresses are speci-

fied as

-20,000 < a
i

< 20,000 psi

Young's modulus is taken as 10 psi and the material density

p = 0.1 lb./cu. in. The allowable stress at which Euler

buckling occurs is

a. =-SM
b

L 2

The independent coordinate variables were taken as X3,

Y3, X5, Y5, X7, U7, X9 , Y9 . The member areas were linked

in the following groups: A1=A4=A8=A12=A16 ; A2=A6=A10=A14=A18

;

A3=A7=A11=A15; A5=A9=A13=A17 . There are a total of eight

independent coordinate variables and four independent area

variables.

1. Case la

The structure was designed subject to stress constraints

only. The resulting geometry is shown in Fig. la, and the

design information is given in Table II. Weight versus

iteration history is plotted in Fig. A. 2. The number of

analyses for this design is 59, and the execution time 2.53

seconds on an IBM 30 33 computer.
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2. Case lb

Stress and Euler buckling constraints were imposed

for this case. Design information is given in Table III.

Figure lb shows the final geometry layout and the weight

versus iteration history is shown in Fig. A. 3. The number

of analyses for this design is 78 and the execution time

was 3.94 seconds.

3. Case lc

This design is based on stress, Euler buckling and

displacement constraints. The latter was applied at node

number 1 in the Y-direction. The results are shown in

Table IV. Figure lc presents the final layout and the

weight versus iteration is plotted in Fig. A. 4. The number

of analyses is 91 and the execution time was 3.94 seconds.

4. Case Id

This final case includes all the constraints mentioned

before plus a constraint that the first natural frequency

be greater than or equal to 3 Hz. A non-structural mass

of fixed value W = 1,000 lbs was placed at node 1. Steady

convergence is achieved and results are summarized in Table V.

The final geometry and weight iteration history are shown in

Figures Id and A. 5, respectively. The number of analyses is

96 and the execution time was 4.7 3 seconds.

When the mass is removed from the structure, the

design fails to converge even when move limits are imposed.

First, it is known by definition that the frequency is
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proportional to the stiffness and is inversely proportional

to the mass. Second, both the K and M matrices are functions

of area and coordinate variables. Therefore, as K increases,

M also increases, and the frequency is kept closed to the

initial range.

C. CASE 2: 47-BAR PLANAR TOWER

The initial layout of the tower is shown in Fig. A. 6.

Stress constraints were imposed as well as constraints on

Euler buckling, displacement, and first natural frequency:

-15,000 < a
i

< 20,000 psi i=l,47

and
IO.IttEA.

0i '
°
bi

=
"1^ psi

l

X * 12 hz.

respectively. The members are assumed tubular with D/t=10.

7Young's modulus of 3.x 10 psi, and material density

— fi

& = . 3 Ibs/cu. in. Minimum allowable area of 10 in. was

imposed. Symmetry about the y-axis was desired during

optimization so linking of variables is necessary. Joints

15, 16, 17, 22 are kept fixed, and joints 1 and 2 allowed

to move in the x-axis direction (Y=0) . This gave a total

of 27 area design variables and 17 coordinate variables.

Nonstructural masses were attached at nodes 19 and 20, of

W=500 lbs each. The results are tabulated in Tables VII

through XII. The final geometry for the case where all
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constraints were imposed is shown in Fig. A. 7 and the

iteration history is shown in Figs. A. 8 through A. 10. When

all constraints are imposed, the design required 220 analysis

and the execution time was 160.7 seconds.

D. CASE 3: 25-BAR SPACE TOWER

The 25-bar space tower shown in Fig. A. 11 was designed

to support two independent load conditions given in Table

XIII. The allowable stresses were specified as

-40,000 < a
i

<; 40,000 psi i-1,25

Young's modulus was selected as 10 psi and the material

density p = .1 lb./cu. in. The members are assumed to be

turbular with a nominal diameter to thickness ratio of

D/t = 100., so that the stress at which Euler buckling occurs

is
10.1 tt EA.

°
bi

iZf

—

~ psi -

Symmetry with respect to both x-z plane and the y-z plane

was imposed, so linking of variables were made as follows:

the member areas were grouped in the following sequence

:

Al, A2=A3=A4=A5, A6=A7=A8=A9 , A10=A11, A12=A13, A14=A15=A16=A17

,

A18=A19=A20=A21, and A22=A23=A24=A25. For the coordinates

X4 , Y4 , Z4, X8 , Y8 were considered as variables. The joints

1 and 2 were held fixed and joints 7 through 10 were required

to lie in the x-z plane. Nonstructural masses of W=500 lbs.

were attached at nodes 1 and 2, respectively. The first
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natural frequency was limited to a value A ^ 16 Hz.

Results of this example are shown in Table XIV and the

iteration history is shown in Fig. A. 12.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The final layout dependency on constraints has been

presented for the elastic design of trusses for optimal

geometry. The truss may be planar or three-dimensional and

may be indeterminate. Multiple load conditions were con-

sidered. The design procedure was separated as: analysis,

design for fixed geometry, design for optimum geometry.

The displacement method for static analysis and the

subspace iteration method for dynamic analysis were applied.

The sequential optimization based on two design sub-

spaces present substantial advantages in the reduced

number of analyses and allow the designer to keep control

of the optimization process.

Several examples were considered. In every case, signifi-

cant weight reduction was efficiently achieved. Also, the

geometries obtained appear quite acceptable from an

aesthetic as well as structural point of view.

The graphs of Weight vs. Iteration number show that an

acceptable design can be achieved in few iterations.
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B. RECOMMENDATIONS

The following recommendations may be of theoretical

and practical value.

1. Weight due to the structure itself and other design

dependent external forces can easily be taken into account

and should be considered in future studies.

2. Application should be made to reasonable sized

structures such as offshore towers and long span roof

trusses.

3. The principles and the procedure described herein

can also be used for optimal design of frames as well as

other structures.
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APPENDIX A

@ r ©
Figure 1. 18-Dar Planar Truss. Initial Geometry.

HI » 4,780. (lbs)

Hf« 4,524. (lbs)

Figure la. Stress,

Wi= 6,430. (lbs)

Wf- 5,724. (lbs)

Figure lb. Stress, Euler 3uckling.

W1= 7,413. (lbs)

Wf» 6,465. (lbs)

Figure lc. Stress, Euler 3uckling, Displacement.

Wi= 13,686. (lbs)

Wf= 11,528. (lbs)

Figure Id. Stress, Euler Buckling, Displacement, and

Frequency.

Figure A.1. 18-Ear Planar Truss. Stress, Euler Buckling,

Displacenent, and Frequency Constraint.
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Figure A. 6. 47-Bar Planar Tower,
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Figure A. 7. 47-Ear Planar lower. Stress, Euler Buckling,

Displacement, Frequency.
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Figure A. 11. 25-Bar Space Tower,

54





on
u
o
h-

u
u
CE
EL
tn

a:
CE
m

i

in
CVJ

1*1

-21

• -01

- 8

>1
u C
c
<D

3
CP *
<D

u
Cm

K •
*.

4J +J

C c
<U a)

a e ::

0) 0)

o u
(0 (0

.H rH :: • m
& a
0) en

•H •H 1

Q a
< ) *

a, «. .

/ J

tP Oi u>
c c c
•H •H •H < > 3 F 1
r^ -H r-i

1M .* M
O o O
3 3 3 < > J t

.q J3 -Q

M U U
a; ai s < > i c • -

3 3 3
u W W
» „ < > : : I

01 Ul 01 1
0) 01 01

a> a) a) 1

4J
ui

'

n
< > ! t i "

w en

< > t

-—^L-
I

! L 1 -J «£_1_ _i

—

-9

- >

o
J3
E
D
C

C
O

+>
(0

C
©

§ o a s a s co 29 a a
in 63 in a in a in 3J m

(0 in in T T en CO ru ru —

•

-2

3

r

a
a
3

•P
(3 a
O a>

•H a
-P 0)

(D u
M rtJ

<V H
+> a.
H
• Q

Ul

>
a>

M a
J5 •H
a» H
•H .*
'if U
s 3

CO
•

Ul u
(V 0)

s H
3H w

cu %
u w
<0 </> t

a* a> >1
en H o

-P

u en <w

<d 3
aj • a»
1 M a»

in <v M
CN A En

(sqD ^q6^9M

CN

M

cn
•H

55





TABLE I

18-Bar Elanar Truss. Loads and Constants

Jcint

1

2

4

6

a

LCAE CONDITION (lbs .)

Ex Ey

0. -20,000

0. -20,000

0. -20,000

0. -20,000

0. -20,000

TAELE OF CONSTANTS

Young's Modulus E= 0. 1EC8 psi. (.69E08 KN/m )

Allowable Stress 5" = 0.2E05 psi. (.138E06 KN/m )

Density P = 0. 1 lbs/cu.in (.276E04 Kg/m
)

Buckling Coefficient c= .4E08 psi. (.276E09 KN/m )
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TABLE II

18-Bar Flanar Truss, resign Inf or nation. Stress

AREA* (sg.in.)

Member Initial

A1=A4=A8=A12=A16 10.0

A2=A6=A10=A14=A18 15.0

A3=A7=A1 1=A 15 5.0

A4=A9=A13=A17 7.07

Final

1 1.05

15.07

a. 54

5.33

COORDINATES (in.)

Joint

3

5

7

9

Initial Final

X y X y

000 0.0 99 1. 17 19.686

750 0.0 745.88 15. 12

500 0.0 494.61 34.538

250 0.0 249.54 23.609

Optimum Weight for Initial Geometry

Optimum Weight for Final Geometry

= 4,780.5 (Its.)

= 4,524.7 (lbs.)

* Areas ars the optimum values fcr the initial and final geometry.
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TAELE III

18-Bar Planar Truss. Design Information. Stress, Euler

Buckling.

AREA* (sg.in.)

Kember Initial

A1=A4=A8=A12=A16 10.00

A2=A6=A10=A14=A18 21.65

A3=A7=A11=A15 12.5

A4=A9=A13=A17 7.071

Final

11.34

19.28

1C.97

5.306

CCOBDIMTZS (in.)

Joint

3

5

7

9

Initial Final

z y X y

1000 0.0 994.57 162.31

750 0.0 747.36 102.92

500 0.0 482.90 32.962

250 0.0 221.71 17. 105

Optimum Weight fcr Initial Geometry

Optimum Weight for Final Geometry

= 6,430.7 (Its.)

= 5,713.C (lbs.)

* Areas are tie optimum values for the initial and final geometry.





TABLE IV

18-Bar Planar Truss. Design Information. Stress, Euler

Buckling, Displacement.

AREA* (sg.in.)

Member Initial Final

A1=A4=A8=A12=A16 14.18 16.27

A2=A6=A10=A14=A18 21.66 20.06

A3=A7=A11=A15 12.5 11.18

A4=A9=A13=A17 10.32 7.863

COORDINATES (in.)

Joint Initial Final

x y x y

3 1000 0.0 962.19 109.93

5 750 0.0 703.95 55.309

7 500 0.0 452.7 27.307

9 250 0.0 208.48 - 2.884

Optimum Weight for Initial Geometry = 7,413.1 (lbs.)

Optimum Weight for Final Geometry = 6,466.9 (lbs.)

* Areas are the optimum values fcr the initial and final gcemetry.
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TABLE V

18-Bar Planar Truss. Design Information. Stress, Euler

Euckling, Displacement, Frequency.

AREA* (sg.in.)

Hember Initial Final

A1=A4=A8=A12=A16

A2=A6=A10=A14=A18

A3=A7=A11=A15

A4=A9=A13=A17

31.66

40.58

12.5

21. 10

2S.66

35.29

13.03

16.09

CCCEDIHATES (in.)

Jcint Initial Final

X 1 X y

000 0.0 972.52 88.0

750 0.0 717.08 27.8 4

500' 0.0 468.75 - 3.91

250 0.0 200.98 -19.29

Cptimun Weight fcr Initial Geometry = 13,686.0 (Its.)

Optimum Height for Final Geometry = 11, 528. C (lbs.)

* Areas are the optimum values for the initial and final geometry.
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TABLE VI

47-Bar Planar Tower. Load Conditions

LOAD CONDITION 1 (lbs.)

JOINT Fx Fy

17 6, COO. -14,000.

22 0. 0.

LOAD CONDITION 2 (lbs.)

Joint Fx Fy

17 0. 0.

22 6,000. -14,000.

LOAD CONDITION 3 (Its.)

Joint Fx Fy

17 6, COO. -14,000.

22 6,000. -14,000.
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TAELE VII

47-3ar Planar Tcwer. Area. Stress, Euler Buckling.

Heater

3

It

5

7

8

10

12

14

15

18

20

22

24

26

27

28

30

31

33

35

36

38

40

41

43

45

46

* Optimum areas for initial and final geometry.

Initial Final

irea * (sg.in.) Area * (sg.in.)

3.764 2.727

3.315 2.468

0.787 0.727

0.864 0.2 13

0.856 0.938

1.754 1.076

2.087 1.691

1.188 0.695

1 .52S 1.058

2.087 1.412

0.648 0.263

0.843 0.811

1.700 1.060

1.700 1.052

1.354 0.820

0.847 0.302

3.609 2.766

1.435 0.657

0.638 0.207

2.842 2.697

0.676 0.266

1.596 1.408

3.686 3.429

1.526 0.991

0.677 0.170

4.486 3.650

1.532 1.005
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TABLE X

47-3ar Planar Tcuer. Areas. Stress, Euler Buckling,

Displacement.

Hemter Initial Final

Area * (sg.in.) Area * (sq.in.)

3 15.28 4.478

4 16.55 3.671

5 3.066 1.037

7 2.691 0.561

8 2.435 1.156

10 3.706 1. 170

12 5.263 2.318

14 4.048 0.669

15 5.077 1 .385

18 4.780 1. 169

20 1.650 0.562

22 2.231 1.295

24 4.665 1.526

26 4.816 1.511

27 3.693 1.036

28 2.923 0.566

30 17.91 5.231

31 7.091 0.949

33 2.566 0.558

35 17.59 6.175

36 6.640 1.217

38 3.385 1.076

40 28.11 7.730

41 6.792 1.570

43 2.701 0.555

45 37. 11 9.878

46 7.363 2.153

* Optimum ares for initial and final geometry.
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TABLE XI

47-Bar Planar Tower. Areas. Stress, Euler Buckling,

Displacement, and Frequency.

Henter Initial Final

Area * (sg.in.) Area * (sg. in.

)

3 16.59 4.825

4 15.37 4.605

5 1.321 0.S38

7 1.871 0.348

8 1.356 1.081

10 5.152 1.089

12 8.593 3.025

14 5.988 1.088

15 8.468 1.691

18 8.593 1.656

20 1.416 0.635

22 1.836 1.724

24 8.470 2.480

26 8.470 2.186

27 5.999 1.342

28 1.949 0.452

30 14.54 4.833

31 7.096 0.855

33 1.709 0.307

35 9.710 4.579

36 1.414 0.368

38 1.385 1.439

40 10.43 4.3 96

41 1.484 1.126

43 1.465 0.270

45 11.17 4.365

46 1.482 1.664

* Optimum areas for initial and final geometry.
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TAELE XIV

25-Ear Space lower. Design Information

Joint

EENBER

1

2

6

10

12

14

18

22

COORDINATES (in. )

Initial Strs-6c)c. I)isplaceaent Frequency

X 37.5 21 .487 33. 512 64.9 13

1 37.5 48 .271 602 .83 47.271

z 100. 1C0.27 1 14 .26 128.77

X 100. 22 .146 47. 83 107.56

1 100.

AREAS

96

•

.353

(sq.in.)

140 .53 110.077

STRESS-
INITIAL

BOCKl
FINAL

DISPLACEMENT
INITIAL FINAL

PREQUENCI
INITIAL FINAL

0.9E-3 0.013 0.668 0..029 0.54 b 0.07U

0.782 0.414 2. 032 0,.450 2.533 0.73a

0.754 0.842 3. 100 1,,219 2.635 1.209

0. 1E-3 0.033 0.533 0..015 0.547 0.054

0. 130 0.101 0.549 0. . 118 C.496 0.206

0.558 0.121 0.668 0.,084 0.533 0.350

0.982 0.739 1.592 0,.751 1.449 0.720

0.801 0.554 2.6S3 0,.668 3.36 3 1. 130

Stress-Buckl.
Initial Pinal

Height (lbs.) 229.52 128.55

Iteration 12

Tiie (sec.) 5.38

Displacement
Initial Fianal

565.2

Frequency
Initial Final

169.9 587.73 261.52

44 9

37.14 21.09

* Optimua areas for initial and final geoaetry.
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