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ABSTRACT

This thesis is concerned with cyclic block codes which

can "be used for the detection and correction of errors in

a transmitted message which are produced "by various types

of noise. Computer programs were developed and used for the

actual encoding and decoding process. Advantages of using

the computer as against using various types of dedicated

hardware is demonstrated. Two different methods of decoding

are presented: the minimum distance decoder and the syndrome

method decoder. Pseudo random noise sequences were also gen-

erated by computer program and used to simulate noise distur-

bance of the encoded transmitted message. Codes of several

rates and with varying degrees of simulated channel noise

were studied and compared with respect to the probability of

error. It is shown how the methods developed in this thesis

can materially help in choosing the 'best' code for a given

noisy channel, consonant with other specified parameters for

message transmission.
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I. INTRODUCTION

After the appearance of Shannon's classic papers in 19^8

and 19^9
1

a great deal of research has been devoted to the

problem of designing efficient schemes by which information

can be coded for reliable transmission across channels which

are corrupted by noise. The channel is described statisti-

cally by giving a probability distribution over the set of

all possible outputs for each permissible input.

In Shannon's model, a randomly generated message produced

by a source of information is 'encoded,' that is each possible

message that the source can produce is associated with a

signal belonging to a specific set. It is the encoded message

which is actually transmitted. When the transmitted encoded

message is received, a 'decoding' operation is performed, that

is, a decision is made as to the identity of the particular

signal transmitted. The main objective is to increase the

elements of any set to be transmitted, and at the same time

decrease the probability of error at the output of the decoder,

How well one can do these things depends essentially on the

properties of the channel.

The establishment of digital technology provided a power-

ful way of utilization in satellite communication, data trans-

fer between computers and in military applications.

Encoding and decoding operations were done by a mini-

computer (DEC PDP - 11/40), channel noise was simulated by

10





a computer program. The results were obtained from the

computer program close to actual world binomial distribution.

The codes investigated were members of a type known as cyclic

codes

.

11





II. BACKGROUND

In a communication channel, noise and disturbances modify-

ing the signal create errors, a simple way to reduce uncertainty

at the receiver due to errors is to simply transmit the message

two or more times, a much more efficient way of providing means

for detection and correction of errors involves the use of

error correcting codes (controlled redundancy).

Controlled redundancy or error correction coding is commonly

divided into two main groups: (1) block codes (2) convolutional

codes. Convolutional codes are decoded by a statistical pro-

cedure due to it's continuous (bit by bit) nature. On the

other hand to decode the block codes, a whole word (block) has

to be received.

A block diagram of a digital communication system is

shown in Figure 1. The information source provides a message

or sequence of messages to be communicated to the receiving

terminal. Message may be of various types (1) sequence of

letters as in a telegraph or teletype system, (2) an analog

time function as in radio or telephone, (3) a function of time

and two space coordinates as in black and white television,

(k) several functions of several variables as in color

television, etc. Since the purpose of the source encoder

is to present the information source output by a sequence of

binary digits, one of the major questions of concern is to

determine how many binary digits per unit time are required

12
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to represent the output of any given source. The error cor-

rection encoder used in this thesis is a cyclic encoder which

is a type of "block encoding system. Channel is merely a

medium used to transmit the signal from transmitter to receiver.

It may be a pair of wires, a coaxial cable, free space, a beam

of light, etc. In any kind of channel the signal may be per-

turbed by noise. The channel modeled in this thesis is a

binary symmetric channel, which is shown in Figure 2. The

error correction decoder performs the inverse operation of

that done by the channel encoder, and in addition corrects

the errors altering the message to the extend of that the

errors can be corrected. The source decoder does the inverse

operation of the source encoder, changing the data to the

original signal. Destination is the person or thing for whom

the message is intended.

A. PRINCIPALS OF BLOCK CODES

As pointed out earlier, coding and decoding systems are

implemented by with the aid of minicomputer (DEC PDP - llAo) .

Only binary codes were considered.

Notations used in this thesis:

k = Number of information bits

= Number of check bits

= Total word length in bits (n=m+k)

= Maximum number of errors can be corrected in

one word

R = Data rate (R=k/m)

« = Binary symmetric channel (BSC) parameter

14
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1-p

Channel

Input

i-P

Channel
Output

P(0/1) = P(l/0) = f

Figure 2. Binary Symmetric Channel
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X = Source encoder output

W = Error correction encoder output (code word)

[Tj = Characteristic matrix of the code

G(X) = Generator polynomial

H(X) a Check polynomial

d = Hamming distance "between code words

2 = Noise (as a word)

In order to correct e-tuple or less errors in one word,

there are two inequalities to be satisfied.

a. Hammings lower bound inequality

2
k

i=0

n

i

or equivalently

2
m n

i

i=0

Hammings lower bound inequality is necessary but not sufficient

for constructibility on an e-tuple error correction code.

b. Varsharmov - Gilbert - Sacks condition (upper bound)

2e-l
m

2

This condition is sufficient but not necessary.

These two bound's box in the number of check digits, m ,

required for a block code, where each word consists of n

digits

.

16





The code rate is the ratio of the message digits per word

k , divided by n , since k equals n-m, it is obvious that

increasing the number of check digits decreases the data

rate, on the other hand increasing the number of check digits

decreases the number of uncorrectible errors, therefore for a

given signal to noise power ratio to desire to keep the data

rate high, it is in conflict with the desire to minimize

errors. One is than faced to with the task of making an

engineering compromise.

B. DESCRIPTION OF CYCLIC CODES

In this thesis a special class of block codes known as

cyclic codes are described. This kind of codes have two special

advantages over ordinary block codes:

(1) Encoding operation is easy to instrument

(2) A large amount of mathematical structure in the code

makes it possible to find various simple decoding

algorithms

.

Let X=(x
1
,x

2
,x

3
,

x
k ) be an arbitrary sequence of

information digits with each x if
l<i<k an element of a

Galois field (GF 2) (which is or l) .
An (n,k) code is a

code in which the code words W-(w-
L
,w 2> w3

wn )
corres-

ponding to each V is a sequence of n> k letters, generated

by the rule

k

i=l

17





Where the elements b. are arbitrary chosen elements of
l , n

GF(2) the additions and multiplication are operations in

GF(2)

A set containing at least two members that is closed

under two operations (called 'addition' and 'multiplication')

is called a field. Roughly speaking, a field is a set in

which we can do addition, subtraction, multiplication, and

division without leaving the set. The field I of matric

polynomials p(I) of degree /q - 1 has 2q elements; I is

called the Galois field of order 2q , written as GF (2q ).

The type of block codes can be represented

b /-1 + b y- 2 + v 3
wn ~ 3 + +v + b

o
n-1 n-2

if any right or left cyclic shifts of this word is another

word, and any linear combinations of such code words is

another code word, the code is called a cyclic code (name of

the cyclic code comes from the cyclic shifts of words to get

another code word)

.

In the binary case multiplication of any code word by

positive powers of two (left cyclic shift) is another code

word, conversely multiplication by negative powers of two

(right cyclic shift) is also another code word (in modulo 2).

Generation of any code word can be realized by a k-stage

feedback shift register or m-stage feedback shift register.

18





C. CYCLIC ENCODING

1. k-stage feedback shift register (Figure 3) :

This type of encoder has binary storage cells F ,F

F
2 , . . . ,F

k _ ]_
switches g ,

g;L
,g2 gk _ 1

if
gi

= 1

the corresponding switch is closed, if g. = the switch is

open, the device also includes a modulo 2 adder. The system

is controlled by a clock pulse. At t = the binary message

to be encoded is put into cells of the register. At each

clock pulse the contents of F. are shifted to F._, and the

new number in F, _, is

SoX o
+ Slxl

+ S2
X
2

+ ^k-lVl
where x

Q
x-.,Xp» . . . , x, _-, is the message word to be encoded

and x. is the contents of register cell F.

.

The operation of a feedback shift register can be

described by a matrix equation. If x. is the number stored

in F. before the clock pulse and if x'. is the number stored

in the same register after the clock pulse, the contents of

the register cells after the first clock pulse becomes;

X0=X 1

X
1
=X

2

t

X
k-2

=X
k-l

x
k-i

=g
o
x
o
+ Six i

+ + Sk-lXk-l

19
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In matrix form;

[x']=[tJ[x]

where

X =

Lk-1

input word

[
"0

X
1

L

k-1

T =

—
10 0. . . .

10. . . .

1. . . .

• >...«. • •

g g!g2 • • •
• gk-l

characteristic matrix

Any initial message put into the shift register cells F
n
,F-,,

. . , F
k _T (unless all zeros) will repeat itself after n-1

clock pulses. At this point (t = or t - n) a new message

to he encoded is put into shift register cells, at each clock

pulse the contents of shift register cell F„ will be taken

as a encoded word bit, as one can see, the first k bits

out of the shift register will be the actual message bits

(information bits). At t = n-1 clock pulse the last encoded

bit will be out of the shift register cell F
Q

, the last n-k

bits out of the shift register cell F
Q
will be the check

digits. After (n-l)
th

clock pulse the contents of shift

register cells repeat, n defines the code length and it is

called the period of the shift register.

21





The characteristic polynomial of the [T] matrix (character-

istic matrix) is defined by;

0m = |t -
1 x

\
= Agk -i

xk ~ 1+
sk -2

xk ~
2+

• • •
+§i^g

The generator polynomial of the code G(x) , in general 0(x)

/ G(x)
,
which is characteristic polynomial 0(x) is higher in

degree than generator polynomial G(x) . Hov/ever if character-

istic matrix [t] is in the form of given above, characteristic

polynomial 0(x) is equal to generator polynomial G(x). Given

a characteristic matrix [Tj , G(x) can be used to define the .

code uniquely. Example 1: If characteristic polynomial is

chosen as

G(X) = X^+X+l

which is G(X)=xV g x 3+g
2
X
2+

gl
X+l

go - &2 ~ ° switches are open, k-stage feedback shift register

becomes as shown in Figure k.

At t=0 if the message 0001 put in shift registers

the contents of shift registers will follow the period shown

in Figure 5- Since the period of the characteristic matrix

or the characteristic polynomial is fifteen, G(X) = X +X+1

generates the code with four information digits (power of

characteristic polynomial is four) and eleven check digits.

The given characteristic polynomial has the period 2-1-15.

therefore it is called the maximum period polynomial or irre-

ducible polynomial. Since the period of generator polynomial

1^ \

is fifteen it divides the polynomial X -4-1 (in modulo 2).

22
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Trivial cycle

Numbers in the circles are the decimal representation
of what is in the shift registers at t = t-

.

Figure 5« Cycle set of generator Polynomial
G(x) = x^+x+1.

2k





The check polynomial of the same code is defined by:

H(X) =
X +1

= X 1:L+X 8+X7+X 5+X3+X 2+X+1
G(X)

The coefficients form a code word, namely 000100110101111.

The code generated by the given polynomial is a (15,^) code.

The code is cyclic, therefore any cyclic shift of the check

polynomial is another code word and any linear combinations

of code words is also another code word. Since the generator

polynomial G(x) is irreducible, fifteen cyclic shifts of the

check polynomial is a code word and the code alphabet has

\\ . .

2 = 16 words (including the zero word). To represent the

code alphabet 15 cyclic shifts of the coefficients of the check

polynomial defines the all non zero alphabet letters.

Example 2: Let the generator polynomial be chosen as

G(x) = (x^+x+1) (x^+x3+x 2+x+l) = x^x^+x^+x^+l

The k-stage shift register becomes as shown in Figure 6. If

at t = the message 00000001 is put in shift register cells,

the contents of the register will follow the period shown in

Figure 7» The generator polynomial has the degree eight,
o

therefore number of code words are 2 = 2.56 ( including the

zero word) , and the period of the polynomial is 15* This

polynomial (being a reducible polynomial) has (255/15) - 17

non trivial cycle sets and one trivial zero cycle (the zero

word). Since the period of the polynomial is 15 (the word

length), G(x) divides x^+l (

^

n modulo 2) the check polynomial

of the code is

25
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Trivial Cycle

Numbers in the circles are the decimal representation
of what is in the shift registers of t = t.

Figure 7. The two cycle sets out of 17 of the generator

polynomial G(x) X +x' + x +X t1
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H (x) =
xl5+1

= x?+x6+ x^-l
G(x)

The coefficients form a code word, namely 000000011010001.

Any cyclic shifts of this code word is another code word,

but by simply shifting it one can get only fifteen different

code words. The code alphabet has 2 -1 = 255 (excluding the

zero word) words, the other code words can be obtained by

linear combinations of the 15 cyclic shifted code words.

Since the generator polynomial given in this example is

reducible, there is more than one maximum cycle (actually all

the cycles have the same cycle length of 15 i excluding the

zero trivial cycle) . The code generated by this polynomial is

a (15,8) code. In the case where the number of check digits

less than the number of information digits, choosing the

shift register based upon the number of check digits (m-stage

feedback shift register^ Ref . 5 page 22_57) will simplify the

encoder design.

2. Computer application of encoder ;

Since the whole encoding operations were done with the

aid of a computer (DEC PDP - 11/40 ) , this section describes

how easy it is to implement encoding operations with a computer.

Encoder program used in this thesis just incorporates a matrix

multiplication of the message word by the generator matrix

described below.

The coefficients of the check polynomial H(x) is a code

word and any cyclic shifts of this coefficients is another code

28





word. One can define the generator matrix as one whose rows

are code words. Such a generator matrix is in the form of:

1000.. h,, h
0>k _ 2

k,n

10

1 . . h

hl,k-l hl,k-2

2,k-l n
2,k-2

0,0

1.0

'2,0

L_
. . 1 lk-l ... h.

Any source encoder output message when multiplied by this

matrix, gives the encoded word as a result. If the encoded

word is defined by fwJ_ and the input message to the error

correction encoder is defined by a [ XJ , , matrix

M l,n=[ X]l,k[ G3 k .n

This is the easy and fast way to encode the messages.

By changing the rows of the generator matrix \_G I. , as for

a different code, the encoder will be changed to one for the

different cyclic code. To change the rows of the generator

matrix ) G , one has to define the coefficients of the check

polynomial H(x) for the new code, this is easy to do for

any given code. Example 3 ! Generator matrix of the code

(15, *0

29





L<>] k,n"

100010011010111
010011010111100001001101011110000100110101111

Let [x], = [o 1
]]

After multiplication by the generator matrix, the encoded

word becomes

[w] , =[001101011110001]
j. , n

this is the modulo 2 addition of last 2 rows of the generator

matrix fe] k>n -

The encoder program described by the flow chart shown in

Figure 8 performs the matrix multiplication of the message

word by the generator matrix. The operations used in the

flow chart involved the following notations:

MOV = move

CLR = clear

ASL = arithmetically shift left

BCC = branch if carry is clear

XOR = exclusive or

SOB = substruct one and branch if the result is

not equal to zero

RO = register #

Rl = register #1 etc.

(RO) = contents of register #

(w) = contents of address w

HLT = halt

(R0)+ = increment contents of register # (RO) by two

30





Yes

MOV (RO) + to (a)

MOV "fr" tnR?

MOV "k" to R^4-

CLR "w"

I
MOV (R3) + to R5

A

ASL (a)

XOR R5 & (,w )

SOB R^
T

MOV (w) to (Rl) +

SOB B2

C HLT D

A A

Figure 8. Cyclic Encoder Flow Chart.
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The message digits are stored in a block in the form of ASCII

code

.

The starting address of information message to "be encodes is in

RO.

The starting address of encoded word is in Rl.

The number of information characters to be encoded is in R2.

The starting address of rows of generator matrix is in address (g)

k is the number of information message bits.

D. CYCLIC DECODER

1. Minimum Distance Decoder

The Hamming distance is defined by the minimum number

of different digits between 2 code words.

Example: The Hamming distance between the following 2 code

words

000100110101111
010011010111100

is 8. If any combinations of ( I ) or less erros occur in

a received code word, the distance of this perturbed code

word to the original transmitted word is less than the other

original alphabet letters. For the code above if three or

less errors occur in one word the distance of this noisy word

to the actual transmitted word is three or less but the distance

to the other code words is five or greater.

Example

:

original transmitted word : 001001101011110
error sequence : 001000100000100
received word : 000001001011010
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The distance (d^) between this received word and some of the

other words is as follows:

Code alphabet: 000100110101111 001001101011110 000000000000000

received word:

000001001011010 (1^=9 d
2
=3 d=5

Using the fixed properties of irreducible polynomial codes,

if the received word is not in the alphabet set, the decoder

takes the code word which has a distance to this received word

which is equal to or less than d/2, as a decoded word.

For the code given by the coefficients of the

H(x) = x + x +x'+xD+xJ+x +x+l , the Hamming distance is 8.

One expects any combinations of three or less errors will be

decoded correctly. Due to Varsharmov - Gilbert-Sacks condition

(upper bound) for the (15»^) code e = 4 does not satisfy the

inequality. In experiments it is found that out of 13&5

different combinations of k errors 926 four errors can be

corrected. Minimum distance decoder for any irreducible

polynomial can be constructed as shown in Figure 9«

2. Operation of Minimum Distance Decoder

Starting from time t = the received word is fed bit

by bit to the shift register A. Register C has the coefficients

of the check polynomial H(x) in binary representation, regis-

ter D contains all zeros. At time t = n-1 register A will

have the whole word [w+zl , . Where jVL is the original
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transmitted word [zl , is the noise due to the channel. Afterx , n

time t = n-1 gate #1 opens and the contents of register A

enters register B. Since register C contains the coefficients

of the check polynomial and every cyclic shift of this poly-

nomial is another code word, the corresponding bits of register

B and C are added (modulo 2) . If the resulting number of

ones after addition in modulo 2 is greater than d/2 (indicating

the Hamming distance between registers B and C is greater than

d/2) , the contents of register C will be shifted right and

the corresponding bits of registers B and C are added together

again to check if the resulted number of ones are less than

or equal to d/2. Note that as each clock pulse shifts register

C a new digit of the next word to be decoded is shifted into

register A therefore after n shifts of register C, register

A will contain the complete code word, thus the decoding process

is continuous. If during any one of the checks between

registers B and C, the resulting number of ones is equal to

or less than d/2, gate #2 opens and contents of register C

will be transferred to register D as a corrected word. How-

ever, if for any of the n clock pulses none of the additions

result in d/2 or less number of ones, the cleared contents of

register D (the zero word) will be taken as the corrected word.

At t = n-1 register A has the next received word [w + z]
1 ,

gate #1 opens and contents of register A enters the register

B, register D is cleared and another cycle begins. As a

property of cyclic codes if a received word has a distance

less than d/2 to the original transmitted word (code alphabet)
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it can not be simultaneously that closer to another code word

of the code alphabet. After one word is decoded, there is

no need to continue the modulo 2 additions between registers

B and C until the next received word has been completely

shifted into register A

.

When a reducible polynomial is used for the generator

polynomial, such as G(x) = x +x r+x^+x +1 = (x +x+l) (x +x^+x +x+l)

7 f\ h>
and with check polynomial H(x) = x'+x +x +1, all the cyclic

shifts of the coefficients of the check polynomial H(x) is

not enough to represent all of the possible code alphabet
o

letters. Since the given (15»8) code cited above has 2 -1 = 255

possible words (excluding the zero word), and since all the

periods of the generator polynomial have length 15 (except

the zero trivial cycle) one needs (255/15) -17 register C's

(as described in Figure 9) • With the different code words

belong to the different cycle sets shown in Figure 7- Because

as a property of cyclic codes, one code can be defined as a

linear combinations of others and because the rank of generator

matrix [tx]. is 8, it can be shown the number of register C's

can be reduced to 8, instead of 17.

The flow chart shown in Figure 10 performs the modulo 2

addition between registers C and B to check the distance

between original word and the received word to see if the

distance is equal to or less than d/2. When the condition

is met the contents of R3 is taken as the decoded word.
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MOV "n" to R^
I

MOV "h" to R3

MOV (RO) to (a)

XOR R3 & (a) ]

ASL Ml

SOB

CLR (Rl) +

J

£
MOV R3 to (Rl)+

SOB R2

C HLT 3

Yes

Figure 10. Minimum distance decoder flow chart (for

irreducible polynomial)

.
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The notation used for the minimum distance decoder is

the same used for the encoder flow chart.

The starting address of received word is in RO

The starting address of decoded information word is in Rl

The number of received messages is in R2

The parity check polynomial is in (h)

The number of word bits is n

3. Computer decoding using the syndrome method

Another decoding system is achieved by using a decod-

ing table stored in the computer's memory. In computer appli-

cation of encoder section, the generator matrix for any code

is defined by:

... h1>k _ 1
h
ljk _ 2

. . . h
1>0

10 0. . . h
2

,

1
h
2

L J k,n

k-2 ' ' '
h
2,0

. . 1 h . _1
hk_2 ' ' '

h

The check matrix of the same code can be represented as
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[h] =
1—'n,m

k-1 1X
1

k-1 h
2

k-2 *

k-2 '

h
k-1 k-2

1

1

. . h

. . h

1.0

2,0

1

Matrix multiplication of any original code word "by the check

matrix will result in a [0] n matrixu J 1 ,m

[wl [Hi = To],L -U.n L Jn,ra L -»l,m

However if any error present in the received code word the

result will not "be the [6] n matrix,L J l,m '

[w + z]
n

[h] = [w]
n

[h] + [z], Ih]L J l,nLJ n,m L J 1 , n L J n , m LJ l,nLJ n,m

[o], = [ z] , [h] - fs7 ,LJ l,m L J l,nu -'n,m L -J 1 , m

The matrix \s] -. is called the syndrome. For every error

pattern [z] -. has a unique syndrome [sj , . By simply

listing the correctible error patterns and versus their

syndromes in table stored in the computer, one can find the

error pattern readily after the syndrome has been found by
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matrix multiplication of received by check matrix. The error

pattern when exclusive OR'ed with the received word yield to

most probable transmitted word.

[w+ 2ll,n
+ Hi.n = Hl.n (modul ° 2)

Restated step by step:

(1) List all of the possible syndromes [?! i an<̂

error patterns £zj -. (or the other name is 'corrector') due

to given syndrome

(2) Multiply the received word by check matrix to

obtain the syndrome

.

(3) From decoding list, get the corrector due to

obtained syndrome

(4) Add this corrector to the received word in

order to correct the errors

Example: The alphabet of code generated by polynomial

G(X) = X^+X+l

is given by the \jU matrix (one cycle of register C)
1 1 I XI

L±0





Mn,n

100010011010111
010011010111100
001001101011110
000100110101111
110001001101011
101011110001001
100110101111000
011010111100010
010111100010011
001101011110001
1110 00100110101
110101111000100
101111000100110
011110001001101
111100010011010u

m-

The last "m" columns of M matrix gives the syndrome of
ii j jn

corresponding corrector of first "k" columns (error pattern).

Example:

Error pattern [zj

100000000000000
100010000000000
100000000110000

Syndrome ]&llm
10011010111
00011010111
10011100111

As one sees any additional errors in the check digits yield

a corresponding digit changed in the syndrome, this property

of syndromes make the decoding table easier and shorter.

To make up the decoding table, first list the error patterns

\_z~L according to their weight using the [wj matrix and

list the corresponding syndromes. Since one only needs to
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correct the errors in the information digits, it is enough to

add the first k digits of error pattern Lz] -. to corres-
1 ,n

ponding digits of received word.

k. Syndrome method decoder flow chart (Figure 11)

First syndromes and error patterns (correctors) assumed

listed in memory. The program multiples the received word by

check matrix [h] and result is the syndrome {_!§, matrix

from this syndrome, listed error pattern are obtained and

added to received word for correction (in modulo 2)

The starting address of received word is in RO

The starting address of decoded information words is in Rl

The number of received message is in R2

The starting address of syndromes is in memory address "a"

The starting address of correctors is in memory address "b"

The starting address of the rows of parity check matrix

\kI is in memory address "h"

"n" is the number of code word bits.

Additional notation used is given below

TST = test address

BEQ = branch if equal to

COMP = compare two addresses
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MOV (RO) to (c)

Y

MOV "n" to R3

±

MOV CRk) to R5
7£

KQR R5 & (d)

TST (Rk)+

SOB R
1

TST (d)

IE
BEQ

T
MOV "a" to R3

MOV "b" to R^

IZZ

,i A A

COMP (d) & (R3)

_Z3
BEQ

I
TST (R3)+
TST (R^)+

£
MOV (RllO to R^

I

XOR R5 & (RO)
-——4

MOV C£Qj +. to fRl) +

SOB R2

C
y_

HLT

Figure 11. Syndrome Method Decoder Flow Chart.
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III. CHANNEL NOISE

Channel noise simulation by the computer can "be described

in two parts, (1) generation of random numbers (2) generation

of noise sequence.

(1) Generation of random numbers

Random numbers generated in this program were obtained

by using the Lehmer congruential method.

x n+1
= a xn + b (modulo T

Q )

Letting a = 257, t> = 3» the starting number x~ is chosen as

a prime number and changed for each sequence, T = 2 (all

in decimal) . Therefore the period of the random number seq-

uence is 2 . After the generation of the random numbers,

thevery k of them is taken as a selected random number, where

K is called the indexing factor which we shall see, related

to the channel B in the binary symmetric channel (Figure 2)

.

The selected random number is taken to specify the address of

a random number field, and a marker '1' is put in to this

address.

(2) Generation of noise

The markers put in the random number field were taken

to designate the ones in a sequence of zeros and ones, the

sequence has a one to one correspondence to the random number

field. The resulting sequence is exclusive OR'ed with success-

ive words of the encoded message, thereby simulating the
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introduction of error "bits. Word corresponding to carriage

return was given noise immunity, but in the probability of

error calculations, the number of carriage returns were sub-

tracted from the number of inputs

.

Figures from 12 to 16 represent the actual and binomial

distribution of errors due to the indexing factors K used.

The
J2>

• s is taken as a probability of an error (or a 1) and

is calculated by counting the number of ones out of 153000

bits (in decimal). It is found that the simulated noise

sequences more or less closely follow the binomial distribution

except for K equal to powers of 2. It is helpful to point out

that for any binary symmetric channel ,p is very closely related

to signal to noise ratio (S/N).

The channel used in this thesis is a memoryless binary

symmetric channel. Memoryless channel is the one which noise

doesn't depend upon the previous-in time - value). Binary

symmetric channel is the one which the probability of bit

zero to change the bit one is equal to the probability of bit

one to change the bit zero. Table I represents some indexing

factors K versus binary symmetric channel |p ' s

.

A. FLOW CHART DESCRIPTION OF NOISE PROGRAM (Figure 1?)

This program describes the generation of random numbers to

put into random number field by the Lehmer congruential method.

After this program one can combine the markers according to

it's word length (code length). Additional notation used in

the flow chart:
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Indexing
Pactor(k)

Channel

Z
3

? 0.26613

5 0.1709

6 0.13992

7 0.12521

9 0.0^797

10 0.09^5

11 0.0359

12 0.07506

13 0.07050

15 0.0632^2

18 0.052187

21 0.0^+561

2^ 0.03855

29 0.032961

36 0.026^29

iU 0.023132

Table I. Indexing Factor K vs. Channel )3
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V

MOV "K" to R3
E

MULT "a" by X,

ADD "b" to a.x
D_

SOB R3
2

DEC "10000 A"

BEQ

ASR 3 bits x =ax +b^ n n

I
CLR Zero bit of Yn

Add (RO) to X~ i

Y

D I

MOV "1" to (R0+Xn )

MOV "n" to R3

ASR (R0)+

ROR (R5)

SOB R3

T"

v/

DEC "10000/n"

JE
I

TST (R5)+

c
£

HLT j

Figure 1?. Flow Chart of the Simulated Noise Program,
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MULT = multiply

ADD = add

DEC = decrement

BEQ = branch if the result is equal to zero

K is the indexing factor (defines p for binary symmetric

channel

n is the word length

X-. is the starting prime number

The starting address of random number field is in RO

The starting address of noise field is in R5
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IV. BEST CODE DETERMINATION

The noisy channel theorem /~Ref . l_J7s Let a discrete

channel have the capacity C bits/sec. and a discrete source

has the entropy per second H. If H ^C there exists a coding

system such that the output of the source can be transmitted

over the channel with an arbitrarily small frequency of errors.

If H^>C, it is possible to encode the source so that the

equivocation is less than H-C+^ where <g is arbitrarily small.

There is no method of encoding which gives an equivocation less

than H-C . The discrete source entropy for long messages

consisting of discrete symbols is given by

n
H(x) = - ^£ Pi loS Pi

i=l

where p. is the probability of occurrence of a given symbol,

in the above formula it is assumed that the each new symbol

is independent of the proceeding ones. In the situation where

the symbols are transmitted over a noisy channel a given symbol

x. may be received as y. . Shannon's measure of equivocation

or uncertainity at the receiver is to what was actually

transmitted is defined as:

H(x/y) = 2, 2 p(Xi> yi>
log PCx^)

For the binary symmetric channel where the p is a conditional

probability of an error being made in the channel

H(x/y) = - (j3 1ogja + (l-)a) log (l-)2>)

5^





Then the channel capacity

C = H(x) - H(x/y),

maximized for H(x)

.

In the following discussion the probability of error will

be used instead of equivocation, the two concepts were closely

related but the probability of error is more convenient.

For clearity j> and P(e) will be defined here as follows:

j2> = P(0/l) = P(l/0) for the channel

p/ \ _ number of wrong decoded words
total number of words

note that in the case of ASCII characters where each character

is represented by 8 binary digits, less than the total number

of digits representing the ASCII character may be coded into

a single word or on the other hand one or more ASCII characters

plus a fraction of a character might be coded into a word.

A 'best code* means one that least probability of error

for any given channel j3 and highest rate R=k/n. The error

correction ability of the code can be derived from the

Varsharmov - Gilbert - Sacks condition

2 > 2(i
i=0 x

and closely related to rate R of the code. After definition

of the code rate R, and word length n one can find the

number of correctible e-tuple errors from Varsharmov - Gilbert
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p(e) = 1 -

Sacks condition. The theoretical value of probability of

error is given by /~Ref . 3_7:

L i=0

where INK is the number of correctible e-tuple errors, where

e.=0,l,2,.., up to the maximum number of correctible errors

per word.

The Hamming distance (d) as defined earlier is the minimum

distance between code words. If d happens to be even and

the maximum value of e is given by (d-l)/2, this will

yield a fraction. Then number of maximum e. -tuple errors

is given by /~Ref . ^_/.

number of correctible d/2 errors _ ,

total number of d/2 erros

u(u+l)

(*)

where u =

ay m
Reduction in the probability of error, keeping the channel

constant, results also in a reduction of the code rate. By

working backward, for any given probability of error and word

length, (for a given channel p ), from the Varsharmov - Gilbert

Sacks condition and the theoretical value of probability of

error equation, one can find the information length and code

rate. Figure 21 to be described in the conclusion section

relates ]3> , rate R and the probability of error.
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V. RESULTS

Three different code rates vs. different channel
J2>

' s

were examined in this thesis. To get the probability of

error, approximately ^-0000 words were mixed with noise for

each given binary symmetric channel j£> . For a (15,^) code

(Rate R = ^/15) > two different decoding systems (Minimum

distance decoder and syndrome method decoder) and two different

generator polynomials G(x) were used to find the probability

of error.

Table II represents the probability of error vs. channel

Y3, ' s of the code (15»*0 for two different generator polynomials

and two different decoding systems. Probability of errors

for those systems and for different generator polynomials for

given channel B f
s are in the limits of "t 1% difference.

This means that for any given code rate, the minimum distance

decoder and the syndrome method decoder gives the same prob-

ability of error. Furthermore using other generator polynomials

of the same rate does not change the probability of error.

Figure 18 shows the three dimensional representation of

the (15,^0 code.

Figure 19 shows the three dimensional representation of

the (15,8) code using the syndrome method decoder. As one

sees the shape of the P(e) vs. B curve is a S-shaped. As

j3 increases, P(e) approaches 1.0 as a limit.
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Channel P,(e)

G(X)=x^+x+l Min.
Distance Decoder

P(e
i qG(X)=x>x^+l Min

Distance Decoder

1

P(e
i 1G(X)=X 4+x+l

Syndrome Decoder

0.07050 5.4480 x 10~3

j

0.09797 2.9176 x 10~ 2
3.176 x 10" 2

2.655 x 10" 2

0.12^26 6.2425 x 10~ 2
5.795 x 10~ 2

5- 817 x 10" 2

0.13992 1.2542 x 10" 1
1.0479 x 10" 1 1.1442 x 10" 1

0.1709 1.8?80 x 10
_1

1.885 x 10" 1

—

—

1.778 x 10
_1

0.26613 4.9052 x 10" 1 4.878 x 10" 1 4.8309 x 10" 1

Table II. P(e) vs. Channel p for the code (15.^)
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Figure 20 shows the three dimensional representation of the

(21,16) code using the syndrome method decoder. The shape of

the P(e) vs. £> curve is also S-shaped, "but the steepness of

the curve is much greater than for the (15,8) P(e) vs . )3

curve

.

Tables III and IV shows the probability of error versus

channel \2> °s for the codes (15i8) and (21, 16) respectively.
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Channel P(e)

0.023132 0.0^+33

0.03855 0.07396

0.0^561 0.09803

0.052187 0.13573

0.0632^2 0.17932

0.07050 0.20790

0.0859 0.27170

0.097973 0.35667

0.12526 0.^4-8701

0.13992 0.5^223

0.1709 0.6636

0.26613 0.90378

Table III. P(e) vs. Channel Beta for the Code (15.8).
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Channel P(e)

0.023132 0.11446

0.026429 0.13227

0.032961 0.14298

0.03855 0.18854

0.0^561 O.25066

0.05218 0.31940

O.O6324 0.39899

0.07506 0.51879

0.0945 0.61530

0.12526 0.80895

0.13992 0.86483

0.1409 0.9^532

Table IV. P(e) vs. Channel Beta for the code

(21,16)

.
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VI. DISCUSSION AND CONCLUSIONS

Two different type of decoder (syndrome method and

minimum distance decoder) discussed in this thesis give

the same probability of error for the same channel js . For

the irreducible polynomial code the minimum distance decoder

is faster than the syndrome method decoder. For the (15,^-)

code the number of syndromes are S(x) = 2 * = 2 = 20^8

with the same number of correctors (error patterns). After

multiplication of the received word by the parity check matrix,

the result (syndrome [s] , ) will be checked if it is equal
_L ] III

one of the 20^8 syndromes previously listed in the computer

memory in order to find the corrector. But for the

same irreducible polynomial code (15>*0 there is only one

maximum cycle set; therefore the received v/ord will be checked

if it is in distance d/2 or less to these 15 words, and so is

much shorter in time than the syndrome method decoder. On

the other hand, for the reducible polynomial code (21,16),

there are 2 ~ = 2? - 32 syndromes and the same number of

correctors (error patterns). After multiplication of the

received word by the parity check matrix H(x) , the result

(syndrome [sj
1 ) will be checked if it is equal to one of
J- j 111

the 32 syndromes previously listed in the computer memory, to

find the corrector. But for the same reducible polynomial

there are 2
l6
/21 = 3121 maximum cycles length of 21 (excluding

zero trivial cycle). Therefore there are 3121 x 21 = 65536
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words to be checked if the received word is in d/2 distance

apart from those words, which is much longer in time than

the syndrome method decoder. As a result one can predict

for any given code (n,k) from the number of syndromes and

number of maximum cycles for the minimum distance decoder

which method is shorter in time.

For any given code (n,k) , sometimes there is more than

one generator polynomials, then the probability of error

results do not depend upon the polynomial being used for

any specific word length and information length (See tabulated

results for (15,4) code in Table II).

The shape of the P(e) vs. channel j3 curve for any given

code rate is an S-shaped curve: the greater the code rate

the steeper the S-shaped curve. Figure 21 combines the cal-

culated probability of errors for the 3 different codes, were

investigated. For any given channel ^ and permissible pro-

bability of error one can obtain the maximum code rate

from the given figure above

.
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APPENDIX A

Program flow:

1. Noise program; First generates random numbers and put

a marker "1" due to random number in the random number field

between memory addresses 57000 - 777?6. Second combines the

markers in the random number field according to word length

and puts the resulted noise between memory addresses 32000-

32^00. Noise program starts at address 10000, end of the

program at the address 10212.

2. Input program; Takes the input messages and puts

addresses between 51000-52000 in sequential order. Location

(50100) counts the number of input messages. Input program

starts at address 20000, end of the program at address 20122.

3. Encoder;

A. Encoder for the (15.^) code; Takes the input

messages between addresses 51000-52000, encodes and puts

between addresses 52000-5^000 . Generator matrix is in addresses

between 50200-50206, location (501^0) is used for ASL, (501*4-2)

is used for encoding operations. Program starts at address

2012*4-, end of the program is at 202*4-0.

B. Encoder for the (15.8) code; Takes the input

messages between addresses 51000-52000, encodes and puts

between addresses 52000-5^000. Generator matrix is in addresses

between 20610-20626, location (5010*0 is used for encoding,
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(50102) is used for ASL operations. Program starts at

address 20124, end of the program is at 20204.

4. Noise mixing sequence; Adds the noise between addresses

32000-32400 to the encoded messages between addresses 52000-

54000 (in modulo 2). Carriage return has the noise immunity.

Noise mixing sequence for the code (15,4) is between 20242-

20332, for the code (15,8) is between 20206-20250.

5« Decoder;

A. Syndrome method decoder for the code (15,4); Takes,

the transmitted message mixed with noise from the addresses

between 52000-54000, decodes, corrects the errors if they

are correcible and puts the addresses between 56000-57000.

Parity check matrix H(X) is between addresses 50210-50244,

syndrome S(X) is between 50246-50304, corrector (error pattern)

Z(X) is between 50306-50340.

B. Minimum distance decoder for the code (15,4);

Takes the transmitted message mixed with noise from the

addresses between 52000-54000, decodes, corrects the errors

if they are correctible and puts the addresses between 56000-

57000. Register C described in Figure 9 is in address (50104).

C. Syndrome method decoder for the code (15,8);

Takes the transmitted message mixed with noise from the

addresses between 52000-54000, decodes, corrects the errors

if they are correctible and puts the addresses between 56000-

57000. Parity check matrix H(X) is in addresses between 20630-

20664, corrector (error pattern) Z(X) is in addresses between

20666-20774, syndrome S(X) is in addresses between 20776-21104.
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6. Output program; Takes the decoded message from

addresses 5^000-57000 and writes it out, program is in address-

es between 2070^-21000 for the code (15.^) minimum distance

decoder, 21506-2160^ for the code (15»*0 syndrome method

decoder, 20^-06-20502 for the code (15,8) syndrome method

decoder.
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APPENDIX B

NOISE PROGRAM ADDRESS 16924 HAS THE STARTING
RANDOM NUMBER ADDRESS 16026 HAS THE INDEXING
FACTOR.

M

810006 •812700 W
016002 •032008 010128 /866614
818884 •012701

, i 0132 /812774
818686 / e e» i e o

s

; 010124 •eoeeei
618818 •885828 010126 ^888886
818812 •877182 818148 ^888758
818814 /888248 818142 •685626
818816 •812788 018144 •812768
818828 /8578&0 818146 •657888
618822 •612746 ' 818158 •812781
816824 •612765 618152 •822888
616626 •012746 616154 •612782
618626 •888828 816156 •000177
616822 /811667 816168 •812783:
61663:4 •668826 818162 •888826
810036 •6127 64 618164 •006228
618646 •177284 816166 •866811
010042 •012714 61617 •677363
816644 •018888 618172 •005721
816046 •812637 816174 •812783
818650 •177368 810176 •888865
816852 •811467 618200 •686228
818854 •888836 816282 •006011
816056 •012701 818204 •677383
818666 •177316 618266 •885721
816862 •012783 816210 •077215
618664 •888036 816212 •088806
818866 •012624 *

818670 •812714
816672 •886481
618874 •614446
816676 •062716
0101 8 •O 00 03
616162 •677387
816184 •605327
816186 •868688
816110 •881414
816112 • 011614
618114 •885844
816116 •612711
616128 ^177775
618122 •e 57 2

4

618124 •042714
618126 •800001
*
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APPENDIX C

INPUT PROGRAM RDDRESS 50
INPUT MESSAGES

The character @ defines

W *

020 •012700
020 2 • 051
020 4 / 5 2

2 0GO6 •105727
02OO1O / 1 7 7 5 6

02OO12 /l 00275
020014 /l 12710
020616 •177562
02O02O •12 2 71
020 022 • 2

02OO24 • 14 2 2

02OO26 •005 202
2 2 • 1 5 7 2 7

02OO22 • 1 7 7 5 6 4

02OO24 /l 00 27 5

02OO26 •111027
02OO4O • 17 7 5 6 6

02OO4 2 • 1 22720
02OO4 4 •008215
2 4 6 • 14 01

02OO5O • 7 5 6

02OO5 2 •012701
02OO54 • 1

2

02O056 • 1 5 7 2 7

02OO6O •17 7 5 6 4

02OO62 / 1 2 7 5

02OO64 •112727
02OO66 • O 2

02OO7O • 1 7 7 5 6 6

02OO7 2 • 7 7 1 7

02OO74 • 1 5 7 2 7

2 7 6 • 1 7 7 5 6 4

02O1OO • 1 2 7 5

02O1O2 • 1 1 2 7 2 7

02O1O4 •000212
02O1O6 •177566
02011O • 7 2 6

02O112 •010227
020114 • 050100
020116 • 5

02O12O • 5 2

02O122 • OOOO
*

LOO HAS THE NUMBER OF

the end of the program
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APPENDIX D

ENCODER FOR THE CODE <15,4>
ROWS OF GENERATOR MATRIX G<X> IN ADDRESSES BETWEEN
50200 -50206

W

020124 /01270O
020126 /0.51008
020120 Z00024
020122 /0E10240
02012 4 /O 12 702
02O126 /050100
O20140 /112027
O20142 /05EH40
O20144 /G12702
O20146 /00B002
O20150 /012704
02O152 /000O04
020154 /0127O5
O2015 6 /0 5 0200
020160 /O05027
020162 /050142
O20164 /GU2501
020166 /106227
02O170 /& 5014
020172 /1O2002
02O174 /074127
O2017 6 /05CU42
O2020 /0 00 240
2 2 02 / 7 7 4 1

O20204 /B12727
O20206 /05G142
020210 /0 52000
020212 /O05 227
O20214 {' 2 210
02O216 /0O5227
O20220 /020210
O20 2 22 /077226
O20224 /077222
020226 /012727
02O220 Z052000
O20222 /020210
020 22 4 /& 000
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ENCODER FOR THE CODE <15, 8)

M
628124
020126
02612 6

020122
020124
020126
020140
02014 2

020144
020146
02015
020152
020154
020156
020160
020162
02016 4

020166
02017 8

02 017 2

02017 4

02017 6

02O20
0202 2

0282O4
*

/ 1 2 7

7 5 1 8

/012701
7 5 2

/ 1 2 7 2

70 5010
7112027
7 5 8 1 8 2

7012702
/ 2 6 1

7 1 2 7 4

7 1

/ 5 2 7

/ 5 010 4

/012 2 5

710 6 2 2 7

705 0102
7 1 8 2 2

7 7 4 5 2 7

7 5 010 4

7 7 7 4 8 7

7012721
7 5 010 4

7077222
7O0 024

7^





APPENDIX

NOISE MIXING SEQUENCE FOR THE CODE <15,4)

W

620242 7012706
02O244 7652008
020246 7012701
020250 7022600
020252 7012702
020254 V050IB0
020256 7663702
2 2 6 70501 O

020262 7022027
020264 /104656
020266 7001005
6202 7 /Ei 2202 7

020272 7152610
020 27 4 7001010
02027 6 /0 7 7 28

7

0203 /0 04 14
02020 2 7 5 740
020204 7611882
020206 7874211
02.0 210 /0 121 20
020212 /077215
620214 •000466
020216 7005740
020220 7005740
026222 7011002
020224 /074211
020226 /01212O
020220 7077224
6.2022 2 7000000
*
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NOISE MIXING SEQUENCE FOR THE CODE <15, 8)

W
020
020
020
020
020
020
020
020
020
020
02G
020
020
02
02D
020
020
020
*

206
216
212
214
216
22
222
224
22 6

22 6
9 ~y 1

224
226
246
24 2

244
246
25

/0
•

•

/OO
• 01
• 05
/01
• 2

• 01
• 05
• 2

• 10
• OO
• 01
• 0?
•

• 0?
• 00

0240
O24
24

024
2?0
2

2701
2

2702
1

1 2 7

6 7

14 2

2 1 2

4 210
5 72
7207
2 4
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APPENDIX F

5VNDR0ME METHOD DECODER FOR THE CODE (15,4)

W

029224 /&12709
G20226 7 B 5 2

92024O ^000240
020242 7009249
020244 701272?
020246 7O5O100
02025O /0 501 2

020252 701272?
020254 Z000002
0202 56 7050104
02026D 7012702
2 O 2 6 2 7 & e 8 01?

020264 7012703
O202 6 6 7050210
02027 70 05 02?
020272 /050142
02O27 4 7041027
020276 7950140
020400 7912294
0204O2 /0 6 22

7

020404 7659140
0204 6 /I 0280

2

02041O ,-'074427

020412 79 501 42
02O414 7077297
920416 7922727
020420 7609099
020422 7659142
020424 7691992
020426 7686127
020420 /021210
0204 22 76 22 72?
020424 7656246
020426 7659142
020440 7901062
020442 766813?
020444 7621274
020446 7612727
020450 7694969
020452 7856159
020454 7912727
0204 5 6 7999996
0204 6 9 7 501 5 2

920462 7612761
0204 6 4 /0 501 5

W
020466 7012763
020470 70 012
020472 7012765
0204 74 /n 50250
020476 /O12704
020509 7659206
020592 7612727
020504 7000016
020506 7050154
020510 7022715
020512 7050142
020514 7001002
020516 7000127
02052O 7921204
020522 701272?
020524 7950152
020526 7050156
920520 7074127
026522 7650156
02O524 7011502
O20 5 26 70 7 4 22?
02054 79 50156
020542 7022727
020544 7050156
020546 7059142
020550 7091002
020 c

.
c

,
-j 7 6 8 012?

020554 7021204
020556 7005725
020560 700 5724
020562 700522?
920564 7050154
920566 7002250
02057O 7006201
02O572 7077241
020574 70O5227
02O576 7020470
02O6O0 70O1406
02O6 2 7OO024
0206O4 7O0 622?
020606 7O50150
O20610 7006227
020612 7050152
020614 7OO0722
*
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M
626616 / 2 4

620620 / 016 7

620622 /

620624 / 1 2 7 3 7

020 6 26 / 2

62063:0 / 2 4 5

026632 /012737
020634 / 4

626636 •826456
62664 6 •012737
620642 /00OO12
62664 4 / 2 4 7

62664 6 /012737
6266 5 6 •050260
626652 •626474
6266 5 4 •612727
6266 5 6 •650316
6266 66 •02656 6

626662 / 1 2 7 3 7

626664 /0 6 612
0206 6 6 • 2 5 4

6266 7 •612737
026672 / 4 4

626674 • 6 20510
626676 / 6 2 7 3 7

6207O0 • 6 4

6207O2 • 2 6 2 2

62670 4 / 013 7

626706 •626446
626710 • 012 7 3 7

026712 • 1 O

020714 • & 2 9 4 5

020 716 /012737
020726 • 6

020722 / 2 4 5 6

020724 / 1 2 7 3 7

020726 • 011
02O730 /O2O4 70
020732 /012737
02O734 •656274
2 7 3 6 /020474

02O74O • 012 7 3 7

02O74 2 /050332
02O744 •626566
620746 • 6 1 2 7 3 7

62075 • 4

02O752 • 2 5 4

626754 •062737
626756 /00OO56
620 76 /0 20 622
626762 •666137
626764 ' •626446
*

W
626766 /012737
02077O • 4

02O772 •620450
020774 /012737
020776 • 5

021OOO •626456
021OO2 •61 2737
021OO4 •860816
021OO6 / 2 4 7

021610 / 6 2 7 3 7

021O12 /0 00 34
021O14 /0 20622
021O16 / 013 7

021O2O /020446
021O22 /012737
021O2 4 / 1

021O2 6 / 2 4 5

021O3 /012737
O21032 / 4 4

021034 /020456
021O36 /012737
02104O / 6

021O4 2 / o 20 4 7

021O44 /062737
02104 6 / 3 4

021O5O / 2 6 2 2

621052 /000137
021O54 / 2 4 4 6

02105 6 / 012 7 3 7

21O6O / 4

021O62 / 2 4 5

021O6 4 / 1 2 7 3 7

021O66 /O042O0
6210 70 /02G456
6216 7 2 / 012 7 3 7

021674 / 5

621076 / 2 4 7

62110 /062737
621102 / 3 4

021104 /020622
021106 / 013 7

021110 / 2 4 4 6

621112 /0127S7
621114 /000O20
621116 /020450
621120 /0 12 73

7

621122 /00410O
621124 /020456
*
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w
02140Q
021402
021404
021406
021410
021412
021414
02141S
021420
021422
021424
021426
021430
021432
0214 2 4

621426
021440
0214 4 2

021444
6214 4 6

0214 50
021452
021454
021456
0214 60
0214 6 2

021464
021466
021479
0214 72
021474
621476
02150
021502
021504
*

•005337
•050104
/ 1 4 5

•110337
• 5 3 5

• 5 7 2

•000137
Z020360
•106303
•106303
•106303
• 1 6 3 3

• 1 2 7 2

• 4

•106303
•106137
•0 5 350
• 7 7 2 4

• 9 4 1

2

• 5 7 2

• 1 1 2 7 3 7

•05035
• 5 6

•605237
•821454
• 2 4

• 2 4

• 1 3 7

•020352
•005337
• 5 1 2

•002363
/ i 2 7 3 7

•056000
•021454
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MINIMUM DIS

W

620456 •066246
6264 6 • 2 4

626462 •600240
6204 6 4 • 6 1 2 7

020466 / 5 2

02047O / 1 2 7 2 7

020472 • 5 010
020474 /05O102
0204 7 6 • O 6 2 7 2 7

020 5 • 5 010
0205 2 / 6 5 6 1 2

020 50 4 • 012 7 01
0205O6 • O 5 010 4

020510 • 012 7 2

620512 • 5 4 B

620514 • 012 7 6 4

020516 • 017
0205 2 • 6 5 2 7

0205 22 •05911

6

020524 • 0110 5

020526 •674165
0205K • 1 2 7 O 2

026532 • 017
020524 • O O 6 2 5

62052:6 •005527
0205 4 •656116
02054 2 •077204
020544 • 0227 2 7

02054 6 • O 4

62055 / 5 011

6

020552 • 2 01
020554 • 6 2 1

620 55 6 / 10 2 4 2

02O560 •677421
626562 •000407
626564 • 6 2 7 01
626566 • O 2

020576 • 7 7 4 2 5

6265 7 2 • 4 2

620574 • 1 1 2 2

626576 • 6 5 7 2

620660 • 4 2

626602 • 1 2 7 2 2

020604 • O

620 6 6 • 5 7 2

02O610 • 1 6 2 7 2 7

020612 • 1

020614 • 5 1 2

626616 •002226
02O620 •00024O

TflNCE DECODER FOR THE CODE (15/ 4)

W

020622
020624
626626
026620
020622
620 624
020626
020640
020642
02O644
02064 6

206 5

0206 5 2

02065 4

0206 56
020660
020 662
6206 6 4

&2&GG&
020 67
020672
6206 7 4

6 2 6 7 6

02070
026 70 2

*

• 2 4

•000240
• 2 4

•000240
• 1 2 7 2

• 5 1

• 1 2 7

/ 5 4

•012701
• 5 6

• 012 7 5

• 2

• 5 4

• 1 2 4 6

•012046
• 012 7 2

• 4

• 6 2: 1

6

• 610 4

• 7 7 2 2

•005726
• 7 7 5 7

•110 4 21
• 7 7 216
•

80





SVHDROME METHOD DECODER FOR THE CODE (15,8)

W
02C252
020254
020256
020260
020262
020264
020266
0202?©
020272
020274
02O276
2 3

020 2 2

020204
020206
020210
020 212
020214
2 2 1

6

02O220
020 2 2 2

020224
2 2 2 6

2 2 2

2 2 2 2

020 2 2 4

02022 6

02024
2 2 4 2

020244
0202 4 6

02025
02O25 2

020254
02025 6

02026
020 2 6 2

020264
020266
020270
020272
020274
020276
020 4

02O4 02
020404

/ 1 2 7

/ 5 2 6

/012701
/ 5 6 O

/ 1 2 7 2

/ 5 1

/011027
/ 5 1 2

/012702
/02062O
/ 012704
/ 017
Z005027
/ 5 010 4

/012205
Z006227
/ 5 1 2

/ 1 2 2

Z074527
/ 5 1 4

/ 7 7 4 7

Z005727
/ 5 010 4

/ 1 4 2

1

/ 1 2 7 2

/ 2 7 7 6

/ 1 2 7 4

/ 2 6 6 6

/ 1 2 7 2 7

/ 4 4

/ 5 1 6

/ 2 2 7 2 2

/ 5 010 4

/ 014 5

/ 5 7 2 4

/ 5 2 2 7

/ 5 1 6

/ 2 2 7

1

/ 4 2

/ 1 1 4 5

/ 7 4 5 1

/ 2 1

/ 1 1 1 2

1

/ 5 7 2

/ 7 7 2 4 7

Z000240
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APPENDIX G

OUTPUT PROGRAM

w
02151O / 1 2 7

621512 / 5 6

021514 /012702
621516 / 5 1

02152O /105727
621522 /177564
021524 / 1 2 7 5

0215 26 /111027
021550 /177566
021522 •122726
021524 •066215
02152 6 / 014 2

0215 4O /& 7 7211
02154 2 / 9 4 2

021544 / 012 7 01
021546 •686812
021550 /105727
02155 2 •177564
02155 4 •168275
021556 .• A A <-. "? -> -7

02156O • 2

0215 62 •17 7 5 6 6

621564 •677167
0215 6 6 /105727
021570 •177564
021572 • 10 2 7 5

021574 •112727
021576 •000212
021600 •177566
021602 •077222
021604 •

*
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APPENDIX H

The simple run:

. GE C0DE1. SRV

.EXAMPLE FOR THE CODE <15, 4> CHANNEL NOISE
HfiS INDEXING FACTOR 9 THIS IS LOW LEVEL
NOISE FOR THE CODE . CARRIAGE RETURN HAS
THE NOISE IMMUNITY . TESTING FOR NOISSV CHANNEL.

Decoding with minimum distance decoder

EXAMPLE FOR THE CODE < 15, 4>CHANNL NOIVE
HAS INDEXING FACTOR 9 THIS IS LOW LEVEL
NOISE JOR THE COTE .CARRIAGE RETURN HfiS

THE NOISE IMMUNITV . TESTMNG FOR NOISSV JHANNEL.

Without decoding ; without error correction

QHR
PLED-R$THEGGDM<15D4 ! S@NEH8N.IQE
HAH I NDEX INF! FEKUOQ 8 ! THI C MS LK_ " DMVE
FOVRU G0"THU 50TE. CERRI AGE RE 3UVFH§SXUH
NGSM*IHIUA\V. VECPINV G_R JGIRCiX BHENEL.
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