



# **Calhoun: The NPS Institutional Archive**

# **DSpace Repository**

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1975-12

# Application of the computer for real time encoding and decoding of cyclic block codes

Cetinilmaz, Nizamettin

https://hdl.handle.net/10945/20754

Downloaded from NPS Archive: Calhoun



Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

# APPLICATION OF THE COMPUTER FOR REAL TIME ENCODING AND DECODING OF CYCLIC BLOCK CODES

Nizamettin Cetinyilmaz

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL WONTEREY. CALIFORNIA 93940

# NAVAL POSTGRADUATE SCHOOL Monterey, California





APPLICATION OF THE COMPUTER FOR REAL TIME ENCODING AND DECODING OF CYCLIC BLOCK CODES

Ъу

Nizamettin Cetinyilmaz

December 1975

Thesis Advisor:

G. Marmont

T171662

Approved for public release; distribution unlimited.

| SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| REPORT DOCUMENTATION                                     | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BEFORE COMPLETING FORM                                                                                          |  |
| 1. REPORT NUMBER                                         | 2. GOVT ACCESSION NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3. RECIPIENT'S CATALOG NUMBER                                                                                   |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| 4. TITLE (and Subtitie)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. TYPE OF REPORT & PERIOD COVERED                                                                              |  |
| Application of the Comput                                | er for Real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Master's Thesis:                                                                                                |  |
| Time Encoding and Decodin                                | g of Cyclic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | December 1975                                                                                                   |  |
| Block Codes                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. PERFORMING ORG. REPORT NUMBER                                                                                |  |
| 7. AUTHOR(a)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. CONTRACT OR GRANT NUMBER (A)                                                                                 |  |
| Nigomottin Cotingilmag                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| Nizamettin Getinyiimaz                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                                                  |  |
| Naval Postgraduate School                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| Monterey, California 939                                 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 070007 0170                                                                                                  |  |
| Novol Doctoreducto Cales                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | December 1000                                                                                                   |  |
| Monterey California 030                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13. NUMBER OF PAGES                                                                                             |  |
| Monterey, Carrionna 999                                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85                                                                                                              |  |
| 14. MONITORING AGENCY NAME & ADDRESS(If different        | from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15. SECURITY CLASS. (of this report)                                                                            |  |
| Naval Postgraduate School                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| Monterey, California 939 <sup>4</sup>                    | +0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unclassified                                                                                                    |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCHEDULE                                                                                                        |  |
| 16. DISTRIBUTION STATEMENT (of this Report)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| ** Approved for public re                                | elease; distri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ibution unlimited.                                                                                              |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                               |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| 17. DISTRIBUTION STATEMENT (of the abstract entered i    | n Block 20, if dillerent from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Report)                                                                                                       |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| 18. SUPPLEMENTARY NOTES                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······                                                                                                          |  |
| -                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| 13. KEY KORDS (Continue on reverse elde il necessary and | i icentity by block number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |  |
| 20. ABSTRACT (Continue on reverse side if necessary and  | identify by block number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |  |
| This thesis is concern                                   | ned with cycli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c block codes which                                                                                             |  |
| can be used for the detect                               | tion and corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ection of errors in                                                                                             |  |
| a transmitted message which                              | on are produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ed by various types                                                                                             |  |
| the notuel energies and                                  | ams were devel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | opea and used for                                                                                               |  |
| using the computer as are                                | nat waing war                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s. Auvantages of                                                                                                |  |
| dedicated bardware is dom                                | nstrated The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vo different methods                                                                                            |  |
| of decoding are presented                                | the minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | distance decoder                                                                                                |  |
| DD FORM 1472 FOILING LUDING                              | and a state of the | and and the second s |  |

### SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered

and the syndrome method decoder. Pseudo random noise sequences were also generated by computer program and used to simulate noise disturbance of the encoded transmitted message. Codes of several rates and with varying degrees of simulate channel noise were studied and compared with respect to the probability of error. It is shown how the methods developed in this thesis can materially help in choosing the 'best' code for a given noisy channel, consonant with other specified parameters for message transmission.

Application of the Computer for Real Time Encoding and Decoding of Cyclic Block Codes

by

Nizamettin Cetinyilmaz Lieutenant, "Turkish Navy B.S., Naval Postgraduate School, 1974

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1975



DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

## ABSTRACT

This thesis is concerned with cyclic block codes which can be used for the detection and correction of errors in a transmitted message which are produced by various types of noise. Computer programs were developed and used for the actual encoding and decoding process. Advantages of using the computer as against using various types of dedicated hardware is demonstrated. Two different methods of decoding are presented: the minimum distance decoder and the syndrome method decoder. Pseudo random noise sequences were also generated by computer program and used to simulate noise disturbance of the encoded transmitted message. Codes of several rates and with varying degrees of simulated channel noise were studied and compared with respect to the probability of error. It is shown how the methods developed in this thesis can materially help in choosing the 'best' code for a given noisy channel, consonant with other specified parameters for message transmission.

# TABLE OF CONTENTS

.

| т.   | TNT  | RODU  |                                             | 7.0 |
|------|------|-------|---------------------------------------------|-----|
| τŤ   | DAC  | vebo  |                                             | 10  |
| 11.  | DAU  | n Gru |                                             | 12  |
|      | Α.   | PRI   | NCIPALS OF BLOCK CODES                      | 14  |
|      | Β.   | DES   | CRIPTION OF CYCLIC CODES                    | 17  |
|      | C.   | CYC   | LIC ENCODING                                | 19  |
|      |      | l.    | k-stage feedback shift register             | 19  |
|      |      | 2.    | Computer application of encoder             | 28  |
|      | D.   | CYC   | LIC DECODER                                 | 32  |
|      |      | l.    | Minimum distance decoder                    | 32  |
|      |      | 2.    | Operation of minimum distance decoder       | 33  |
|      |      | 3.    | Computer decoding using the syndrome method | 38  |
|      |      | 4.    | Syndrome method decoder flow chart          | 42  |
| III. | CHAI | NNEL  | NOISE                                       | 44  |
|      | Α.   | FLO   | W CHART DESCRIPTION OF NOISE PROGRAM        | 45  |
| IV.  | BES  | r co  | DE DETERMINATION                            | 54  |
| v.   | RES  | ULTS  |                                             | 57  |
| VI.  | DIS  | CUSS  | ION AND CONCLUSIONS                         | 65  |
| APPI | ENDI | ХА    |                                             | 68  |
| APP  | ENDI | ХВ    |                                             | 71  |
| APP  | ENDÍ | ХČ    |                                             | 72  |
| APP  | ENDI | ХD    |                                             | 73  |
| APP  | ENDI | ХЕ    |                                             | 75  |
| APP  | ENDT | XF    |                                             | 77  |
| APP  | ENDÍ | XĞ    |                                             | 82  |

,

| APPENDIX H                | 83 |
|---------------------------|----|
| LIST OF REFERENCES        | 84 |
| INITIAL DISTRIBUTION LIST | 85 |

.

# LIST OF TABLES

- - -

| I.   | INDEXING | FACTOR K VS. CHANNEL &         | 51 |
|------|----------|--------------------------------|----|
| II.  | P(e) VS. | CHANNEL & FOR THE CODE (15,4)  | 58 |
| III. | P(e) VS. | CHANNEL & FOR THE CODE (15,8)  | 63 |
| IV.  | P(e) VS. | CHANNEL & FOR THE CODE (21,16) | 64 |

. .



# LIST OF FIGURES

.

| 1.  | DIGITAL COMMUNICATION SYSTEM                                                         | 13 |
|-----|--------------------------------------------------------------------------------------|----|
| 2.  | BINARY SYMMETRIC CHANNEL                                                             | 15 |
| 3.  | K-STAGE FEEDBACK SHIFT REGISTER                                                      | 20 |
| 4.  | K-STAGE ENCODER OF THE CODE (15,4)                                                   | 23 |
| 5.  | CYCLE SET OF GENERATOR POLYNOMIAL G(x)=x4+x+1                                        | 24 |
| 6.  | K-STAGE FEEDBACK SHIFT REGISTER FOR GENERATOR<br>POLYNOMIAL $G(x)=x^8+x^7+x^6+x^4+1$ | 26 |
| 7.  | THE TWO CYCLE SETS OUT OF 17 OF THE GENERATOR<br>POLYNOMIAL $G(x)=x^8+x^7+x^6+x^4+1$ | 27 |
| 8.  | CYCLIC ENCODER FLOW CHART                                                            | 31 |
| 9.  | MINIMUM DISTANCE DECODER                                                             | 34 |
| 10. | MINIMUM DISTANCE DECODER FLOW CHART                                                  | 37 |
| 11. | SYNDROME METHOD DECODER FLOW CHART                                                   | 43 |
| 12. | SIMULATED NOISE (K=3, 3 =0.26613) VS. BINOMIAL<br>DISTRIBUTION                       | 46 |
| 13. | SIMULATED NOISE (K=5, $\beta$ =0.17092) VS. BINOMIAL<br>DISTRIBUTION                 | 47 |
| 14. | SIMULATED NOISE (K=6, $\beta$ =0.13992) VS. BINOMIAL<br>DISTRIBUTION                 | 48 |
| 15. | SIMULATED NOISE (K=7, 3=0.12526) VS. BINOMIAL<br>DISTRIBUTION                        | 49 |
| 16. | SIMULATED NOISE (K=9, 🏱 =0.09797) VS. BINOMIAL<br>DISTRIBUTION                       | 50 |
| 17. | FLOW CHART OF THE SIMULATED NOISE PROGRAM                                            | 52 |
| 18. | P(e) VS. CHANNEL 3 FOR THE CODE (15,4)                                               | 59 |
| 19. | P(e) VS. CHANNEL & FOR THE CODE (15,8)                                               | 60 |

8.

| 20. | P(e) VS. | CHANNEL ) <sup>3</sup> FOR THE CODE (21,16) | 62 |
|-----|----------|---------------------------------------------|----|
| 21. | RATE VS. | 3 FOR ANY P(e)                              | 67 |

-

## I. <u>INTRODUCTION</u>

After the appearance of Shannon's classic papers in 1948 and 1949, a great deal of research has been devoted to the problem of designing efficient schemes by which information can be coded for reliable transmission across channels which are corrupted by noise. The channel is described statistically by giving a probability distribution over the set of all possible outputs for each permissible input.

In Shannon's model, a randomly generated message produced by a source of information is 'encoded,' that is each possible message that the source can produce is associated with a signal belonging to a specific set. It is the encoded message which is actually transmitted. When the transmitted encoded message is received, a 'decoding' operation is performed, that is, a decision is made as to the identity of the particular signal transmitted. The main objective is to increase the elements of any set to be transmitted, and at the same time decrease the probability of error at the output of the decoder. How well one can do these things depends essentially on the properties of the channel.

The establishment of digital technology provided a powerful way of utilization in satellite communication, data transfer between computers and in military applications.

Encoding and decoding operations were done by a minicomputer (DEC PDP - 11/40), channel noise was simulated by



a computer program. The results were obtained from the computer program close to actual world binomial distribution. The codes investigated were members of a type known as cyclic codes.

# II. BACKGROUND

In a communication channel, noise and disturbances modifying the signal create errors, a simple way to reduce uncertainty at the receiver due to errors is to simply transmit the message two or more times, a much more efficient way of providing means for detection and correction of errors involves the use of error correcting codes (controlled redundancy).

Controlled redundancy or error correction coding is commonly divided into two main groups: (1) block codes (2) convolutional codes. Convolutional codes are decoded by a statistical procedure due to it's continuous (bit by bit) nature. On the other hand to decode the block codes, a whole word (block) has to be received.

A block diagram of a digital communication system is shown in Figure 1. The information source provides a message or sequence of messages to be communicated to the receiving terminal. Message may be of various types (1) sequence of letters as in a telegraph or teletype system, (2) an analog time function as in radio or telephone, (3) a function of time and two space coordinates as in black and white television, (4) several functions of several variables as in color television, etc. Since the purpose of the source encoder is to present the information source output by a sequence of binary digits, one of the major questions of concern is to determine how many binary digits per unit time are required



Figure 1. Digital Communication System



to represent the output of any given source. The error correction encoder used in this thesis is a cyclic encoder which is a type of block encoding system. Channel is merely a medium used to transmit the signal from transmitter to receiver. It may be a pair of wires, a coaxial cable, free space, a beam of light, etc. In any kind of channel the signal may be perturbed by noise. The channel modeled in this thesis is a binary symmetric channel, which is shown in Figure 2. The error correction decoder performs the inverse operation of that done by the channel encoder, and in addition corrects the errors altering the message to the extend of that the errors can be corrected. The source decoder does the inverse operation of the source encoder, changing the data to the original signal. Destination is the person or thing for whom the message is intended.

# A. PRINCIPALS OF BLOCK CODES

As pointed out earlier, coding and decoding systems are implemented by with the aid of minicomputer (DEC PDP - 11/40). Only binary codes were considered.

Notations used in this thesis:

| k | = Number of information bits                            |
|---|---------------------------------------------------------|
| m | = Number of check bits                                  |
| n | = Total word length in bits (n=m+k)                     |
| е | = Maximum number of errors can be corrected in one word |
| R | = Data rate $(R=k/m)$                                   |
| β | = Binary symmetric channel (BSC) parameter              |



 $P(0/1) = P(1/0) = )^3$ 



X = Source encoder output

W = Error correction encoder output (code word)

[T] = Characteristic matrix of the code

G(X) = Generator polynomial

H(X) = Check polynomial

d = Hamming distance between code words

Z = Noise (as a word)

In order to correct e-tuple or less errors in one word, there are two inequalities to be satisfied.

a. Hammings lower bound inequality



or equivalently

$$2^{m} \geq \sum_{i=0}^{e} \binom{n}{i}$$

Hammings lower bound inequality is necessary but not sufficient for constructibility on an e-tuple error correction code.

b. Varsharmov - Gilbert - Sacks condition (upper bound)

$$2^{m}$$
  $>$   $\sum_{i=0}^{2e-1} \binom{n-1}{i}$ 

This condition is sufficient but not necessary.

These two bound's box in the number of check digits, m, required for a block code, where each word consists of n digits.
The code rate is the ratio of the message digits per word k, divided by n, since k equals n-m, it is obvious that increasing the number of check digits decreases the data rate, on the other hand increasing the number of check digits decreases the number of uncorrectible errors, therefore for a given signal to noise power ratio to desire to keep the data rate high, it is in conflict with the desire to minimize errors. One is than faced to with the task of making an engineering compromise.

## B. DESCRIPTION OF CYCLIC CODES

In this thesis a special class of block codes known as cyclic codes are described. This kind of codes have two special advantages over ordinary block codes:

- (1) Encoding operation is easy to instrument
- (2) A large amount of mathematical structure in the code makes it possible to find various simple decoding algorithms.

Let  $X=(x_1, x_2, x_3, \dots, x_k)$  be an arbitrary sequence of information digits with each  $x_i, 1 \leq i \leq k$  an element of a Galois field (GF 2) (which is 0 or 1). An (n,k) code is a code in which the code words  $W=(w_1, w_2, w_3, \dots, w_n)$  corresponding to each W is a sequence of n > k letters, generated by the rule

$$W_n = \sum_{i=1}^k x_i b_{i,n}$$

Where the elements  $b_{i,n}$  are arbitrary chosen elements of GF(2) the additions and multiplication are operations in GF(2)

A set containing at least two members that is closed under two operations (called 'addition' and 'multiplication') is called a field. Roughly speaking, a field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set. The field I of matric polynomials p(I) of degree  $\leq q - 1$  has  $2^{q}$  elements; I is called the Galois field of order  $2^{q}$ , written as GF  $(2^{q})$ . The type of block codes can be represented

$$b_{n-1}w^{n-1} + b_{n-2}w^{n-2} + b_{n-3}w^{n-3} + \cdots + b_1w + b_0$$

if any right or left cyclic shifts of this word is another word, and any linear combinations of such code words is another code word, the code is called a cyclic code (name of the cyclic code comes from the cyclic shifts of words to get another code word).

In the binary case multiplication of any code word by positive powers of two (left cyclic shift) is another code word, conversely multiplication by negative powers of two (right cyclic shift) is also another code word (in modulo 2).

Generation of any code word can be realized by a k-stage feedback shift register or m-stage feedback shift register.

#### C. CYCLIC ENCODING

1. <u>k-stage feedback shift register</u> (Figure 3) :

This type of encoder has binary storage cells  $F_0, F_1$ ,  $F_2, \ldots, F_{k-1}$  switches  $g_0, g_1, g_2, \ldots, g_{k-1}$  if  $g_i = 1$ the corresponding switch is closed, if  $g_i = 0$  the switch is open, the device also includes a modulo 2 adder. The system is controlled by a clock pulse. At t = 0 the binary message to be encoded is put into cells of the register. At each clock pulse the contents of  $F_i$  are shifted to  $F_{i-1}$  and the new number in  $F_{k-1}$  is

 $g_0 x_0 + g_1 x_1 + g_2 x_2 + \cdots + g_{k-1} x_{k-1}$ where  $x_0, x_1, x_2, \cdots, x_{k-1}$  is the message word to be encoded and  $x_i$  is the contents of register cell  $F_i$ .

The operation of a feedback shift register can be described by a matrix equation. If  $x_i$  is the number stored in  $F_i$  before the clock pulse and if  $x'_i$  is the number stored in the same register after the clock pulse, the contents of the register cells after the first clock pulse becomes;



Figure 3. k-Stage Feedback Shift Register.

.

In matrix form;



input word

oharacteristic matrix

Any initial message put into the shift register cells  $F_0, F_1$ , ...,  $F_{k-1}$  (unless all zeros) will repeat itself after n-1 clock pulses. At this point (t = 0 or t = n) a new message to be encoded is put into shift register cells, at each clock pulse the contents of shift register cell  $F_0$  will be taken as a encoded word bit, as one can see, the first k bits out of the shift register will be the actual message bits (information bits). At t = n-1 clock pulse the last encoded bit will be out of the shift register cell  $F_0$ , the last n-k bits out of the shift register cell  $F_0$ , the last n-k bits out of the shift register cell  $F_0$  will be the check digits. After (n-1)<sup>th</sup> clock pulse the contents of shift register cells repeat, n defines the code length and it is called the period of the shift register.

The characteristic polynomial of the [T] matrix (characteristic matrix) is defined by;

 $G(X) = X^{l_{4}} + X + 1$ which is  $G(X) = X^{l_{4}} + g_{3} X^{3} + g_{2} X^{2} + g_{1} X + 1$ 

 $g_3 = g_2 = 0$  switches are open, k-stage feedback shift register becomes as shown in Figure 4.

At t=0 if the message 000l put in shift registers the contents of shift registers will follow the period shown in Figure 5. Since the period of the characteristic matrix or the characteristic polynomial is fifteen,  $G(X) = X^4 + X + 1$ generates the code with four information digits (power of characteristic polynomial is four) and eleven check digits. The given characteristic polynomial has the period  $2^4 - 1 = 15$ , therefore it is called the maximum period polynomial or irreducible polynomial. Since the period of generator polynomial is fifteen it divides the polynomial  $X^{15}+1$  (in modulo 2).



Figure 4. k-Stage Encoder of the Characteristic Polynomial  $G(x) = x^{l_1} + x^{l_2}$ 



 $\bigcirc$ 

Trivial cycle

Numbers in the circles are the decimal representation of what is in the shift registers at  $t = t_i$ .



The check polynomial of the same code is defined by:

$$H(X) = \frac{X^{15}+1}{G(X)} = X^{11}+X^{8}+X^{7}+X^{5}+X^{3}+X^{2}+X+1}$$

The coefficients form a code word, namely 00010011010111. The code generated by the given polynomial is a (15,4) code. The code is cyclic, therefore any cyclic shift of the check polynomial is another code word and any linear combinations of code words is also another code word. Since the generator polynomial G(x) is irreducible, fifteen cyclic shifts of the check polynomial is a code word and the code alphabet has  $2^4 = 16$  words (including the zero word). To represent the code alphabet 15 cyclic shifts of the coefficients of the check polynomial defines the all non zero alphabet letters. Example 2: Let the generator polynomial be chosen as

$$G(x) = (x^{4} + x + 1) (x^{4} + x^{3} + x^{2} + x + 1) = x^{8} + x^{7} + x^{6} + x^{4} + 1$$

The k-stage shift register becomes as shown in Figure 6. If at t = 0 the message 00000001 is put in shift register cells, the contents of the register will follow the period shown in Figure 7. The generator polynomial has the degree eight, therefore number of code words are  $2^8 = 256$  (including the zero word), and the period of the polynomial is 15. This polynomial (being a reducible polynomial) has (255/15) = 17non trivial cycle sets and one trivial zero cycle (the zero word). Since the period of the polynomial is 15 (the word length), G(x) divides  $x^{15}+1$  (in modulo 2) the check polynomial of the code is



•



Figure 6. k-Stage Shift Register For Generator Polynomial  $g(x) = x^{8} + x^{7} + x^{6} + x^{4} + 1$ 

.



Trivial Cycle

Numbers in the circles are the decimal representation of what is in the shift registers of  $t = t_i$ 

Figure 7. The two cycle sets out of 17 of the generator polynomial  $G(x) = x^8 + x^7 + x^6 + x^4 + 1$ 

$$H(x) = \frac{x^{15}+1}{G(x)} = x^{7}+x^{6}+x^{4}+1$$

The coefficients form a code word, namely 00000011010001. Any cyclic shifts of this code word is another code word, but by simply shifting it one can get only fifteen different code words. The code alphabet has  $2^{15}$ -1 = 255 (excluding the zero word) words, the other code words can be obtained by linear combinations of the 15 cyclic shifted code words. Since the generator polynomial given in this example is reducible, there is more than one maximum cycle (actually all the cycles have the same cycle length of 15, excluding the zero trivial cycle). The code generated by this polynomial is a (15,8) code. In the case where the number of check digits less than the number of information digits, choosing the shift register based upon the number of check digits (m-stage feedback shift register/  $\overline{Ref}$ . 5 page 2257) will simplify the encoder design.

## 2. <u>Computer application of encoder</u>:

Since the whole encoding operations were done with the aid of a computer (DEC PDP - 11/40), this section describes how easy it is to implement encoding operations with a computer. Encoder program used in this thesis just incorporates a matrix multiplication of the message word by the generator matrix described below.

The coefficients of the check polynomial H(x) is a code word and any cyclic shifts of this coefficients is another code

word. One can define the generator matrix as one whose rows are code words. Such a generator matrix is in the form of:

$$\mathbf{G}_{k,n} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & h_{0,k-1} & h_{0,k-2} & \cdots & h_{0,0} \\ 0 & 1 & 0 & 0 & h_{1,k-1} & h_{1,k-2} & \cdots & h_{1,0} \\ 0 & 0 & 1 & 0 & \cdots & h_{2,k-1} & h_{2,k-2} & \cdots & h_{2,0} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & h_{k-1} & \cdots & h_{0} \end{bmatrix}$$

Any source encoder output message when multiplied by this matrix, gives the encoded word as a result. If the encoded word is defined by  $[W]_{1,n}$  and the input message to the error correction encoder is defined by a  $[X]_{1,k}$  matrix

# $\begin{bmatrix} W \end{bmatrix}_{l,n} = \begin{bmatrix} X \end{bmatrix}_{l,k} \begin{bmatrix} G \end{bmatrix}_{k,n}$

This is the easy and fast way to encode the messages. By changing the rows of the generator matrix  $[G]_{k,n}$ , as for a different code, the encoder will be changed to one for the different cyclic code. To change the rows of the generator matrix  $[G]_{k,n}$  one has to define the coefficients of the check polynomial H(x) for the new code, this is easy to do for any given code. Example 3: Generator matrix of the code (15,4)

Let

After multiplication by the generator matrix, the encoded word becomes

The encoder program described by the flow chart shown in Figure 8 performs the matrix multiplication of the message word by the generator matrix. The operations used in the flow chart involved the following notations:

| MON   | = | move                                           |
|-------|---|------------------------------------------------|
| CLR   | = | clear                                          |
| ASL   | = | arithmetically shift left                      |
| BCC   | = | branch if carry is clear                       |
| XOR   | = | exclusive or                                   |
| SOB   | = | substruct one and branch if the result is      |
|       |   | not equal to zero                              |
| RO    | = | register # 0                                   |
| Rl    | = | register #1 etc.                               |
| (RO)  | = | contents of register # 0                       |
| (w)   | = | contents of address w                          |
| HLT   | = | halt                                           |
| (RO)+ | = | increment contents of register # 0 (R0) by two |





Figure 8. Cyclic Encoder Flow Chart.

The message digits are stored in a block in the form of ASCII code.

The starting address of information message to be encodes is in RO.

The starting address of encoded word is in Rl.

The number of information characters to be encoded is in R2. The starting address of rows of generator matrix is in address(g). k is the number of information message bits.

D. CYCLIC DECODER

1. Minimum Distance Decoder

The Hamming distance is defined by the minimum number of different digits between 2 code words.

Example: The Hamming distance between the following 2 code words

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

is 8. If any combinations of  $\left(\frac{d-1}{2}\right)$  or less erros occur in a received code word, the distance of this perturbed code word to the original transmitted word is less than the other original alphabet letters. For the code above if three or less errors occur in one word the distance of this noisy word to the actual transmitted word is three or less but the distance to the other code words is five or greater.

Example:

| original transmitted word | : | 0 | 0 | l | 0 | 0 | l | 1 | 0 | l | 0 | 1 | l | 1 | 1 | 0 |
|---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| error sequence            | : | 0 | 0 | l | 0 | 0 | 0 | l | 0 | 0 | 0 | 0 | 0 | l | 0 | 0 |
| received word             | : | 0 | 0 | 0 | 0 | 0 | l | 0 | 0 | l | 0 | l | l | 0 | l | 0 |

-

The distance (d;) between this received word and some of the other words is as follows:

received word: d,=9 000001001011010 d<sub>2</sub>=3

d3=5

Using the fixed properties of irreducible polynomial codes, if the received word is not in the alphabet set, the decoder takes the code word which has a distance to this received word which is equal to or less than d/2, as a decoded word.

For the code given by the coefficients of the  $H(x) = x^{11} + x^8 + x^7 + x^5 + x^3 + x^2 + x + 1$ , the Hamming distance is 8. One expects any combinations of three or less errors will be decoded correctly. Due to Varsharmov - Gilbert-Sacks condition (upper bound) for the (15,4) code e = 4 does not satisfy the inequality. In experiments it is found that out of 1365 different combinations of 4 errors 926 four errors can be corrected. Minimum distance decoder for any irreducible polynomial can be constructed as shown in Figure 9.

2. Operation of Minimum Distance Decoder

Starting from time t = 0 the received word is fed bit by bit to the shift register A. Register C has the coefficients of the check polynomial H(x) in binary representation, register D contains all zeros. At time t = n-l register A will have the whole word  $[w+z]_{1,n}$ . Where  $[w]_{1,n}$  is the original



Figure 9. Minimum Distance Decoder


transmitted word [z] is the noise due to the channel. After time t = n-1 gate #1 opens and the contents of register A enters register B. Since register C contains the coefficients of the check polynomial and every cyclic shift of this polynomial is another code word, the corresponding bits of register B and C are added (modulo 2). If the resulting number of ones after addition in modulo 2 is greater than d/2 (indicating the Hamming distance between registers B and C is greater than d/2), the contents of register C will be shifted right and the corresponding bits of registers B and C are added together again to check if the resulted number of ones are less than or equal to d/2. Note that as each clock pulse shifts register C a new digit of the next word to be decoded is shifted into register A therefore after n shifts of register C, register A will contain the complete code word, thus the decoding process is continuous. If during any one of the checks between registers B and C, the resulting number of ones is equal to or less than d/2, gate #2 opens and contents of register C will be transferred to register D as a corrected word. However, if for any of the n clock pulses nome of the additions result in d/2 or less number of ones, the cleared contents of register D (the zero word) will be taken as the corrected word. At t = n-l register A has the next received word  $[w + z]_{l,n}$ , gate #1 opens and contents of register A enters the register B, register D is cleared and another cycle begins. As a property of cyclic codes if a received word has a distance less than d/2 to the original transmitted word (code alphabet)

it can not be simultaneously that closer to another code word of the code alphabet. After one word is decoded, there is no need to continue the modulo 2 additions between registers B and C until the next received word has been completely shifted into register A.

When a reducible polynomial is used for the generator polynomial, such as  $G(x) = x^{8}+x^{7}+x^{5}+x^{4}+1 = (x^{4}+x+1)(x^{4}+x^{3}+x^{2}+x+1)$ and with check polynomial  $H(x) = x^{7}+x^{6}+x^{4}+1$ , all the cyclic shifts of the coefficients of the check polynomial H(x) is not enough to represent all of the possible code alphabet letters. Since the given (15,8) code cited above has  $2^{8}-1 = 255$ possible words (excluding the zero word), and since all the periods of the generator polynomial have length 15 (except the zero trivial cycle) one needs (255/15)=17 register C's (as described in Figure 9). With the different code words belong to the different cycle sets shown in Figure 7. Because as a property of cyclic codes, one code can be defined as a linear combinations of others and because the rank of generator matrix  $[G]_{k,n}$  is 8, it can be shown the number of register C's can be reduced to 8, instead of 17.

The flow chart shown in Figure 10 performs the modulo 2 addition between registers C and B to check the distance between original word and the received word to see if the distance is equal to or less than d/2. When the condition is met the contents of R3 is taken as the decoded word.



Figure 10. Minimum distance decoder flow chart (for irreducible polynomial).

The notation used for the minimum distance decoder is the same used for the encoder flow chart.

The starting address of received word is in RO The starting address of decoded information word is in Rl The number of received messages is in R2 The parity check polynomial is in (h) The number of word bits is n

## 3. Computer decoding using the syndrome method

Another decoding system is achieved by using a decoding table stored in the computer's memory. In computer application of encoder section, the generator matrix for any code is defined by:

|                      | 1 | 0 | 0 | 0 | • | • | • | 0 | hl,k-l             | hl,k-2             | • | • | • | h <sub>l,0</sub> |
|----------------------|---|---|---|---|---|---|---|---|--------------------|--------------------|---|---|---|------------------|
|                      | 0 | 1 | 0 | 0 | • | • | • | 0 | h <sub>2,k-1</sub> | h <sub>2,k-2</sub> | • | • | • | h2,0             |
| [G] <sub>k,n</sub> = |   |   | • |   |   |   |   | • |                    | •                  |   |   |   | •                |
|                      |   |   | • |   |   |   |   | • |                    | •                  |   |   |   | •                |
|                      |   |   | • |   |   |   |   | • |                    | •                  |   |   |   | •                |
|                      |   |   | • |   |   |   |   | • |                    | •                  |   |   |   | •                |
|                      |   |   | • |   |   |   |   | • |                    | •                  |   |   |   | •                |
|                      | 0 | 0 | 0 | 0 | • |   | • | l | h k-l              | h <sub>k-2</sub>   | • | • | • | h <sub>0</sub>   |

The check matrix of the same code can be represented as:

Matrix multiplication of any original code word by the check matrix will result in a [0] 1,m matrix

 $[w]_{l,n} [H]_{n,m} = [0]_{l,m}$ However if any error present in the received code word the result will not be the  $[0]_{l,m}$  matrix,

$$\begin{bmatrix} w + z \end{bmatrix}_{1,n} \begin{bmatrix} H \end{bmatrix}_{n,m} = \begin{bmatrix} w \end{bmatrix}_{1,n} \begin{bmatrix} H \end{bmatrix}_{n,m} + \begin{bmatrix} z \end{bmatrix}_{1,n} \begin{bmatrix} H \end{bmatrix}_{n,m}$$
$$= \begin{bmatrix} 0 \end{bmatrix}_{1,m} = \begin{bmatrix} z \end{bmatrix}_{1,n} \begin{bmatrix} H \end{bmatrix}_{n,m} = \begin{bmatrix} s \end{bmatrix}_{1,m}$$

The matrix  $[S]_{1,m}$  is called the syndrome. For every error pattern  $[z]_{1,n}$  has a unique syndrome  $[S]_{1,m}$ . By simply listing the correctible error patterns and versus their syndromes in table stored in the computer, one can find the error pattern readily after the syndrome has been found by

matrix multiplication of received by check matrix. The error pattern when exclusive OR'ed with the received word yield to most probable transmitted word.

 $\begin{bmatrix} w + z \end{bmatrix}_{l,n} + \begin{bmatrix} z \end{bmatrix}_{l,n} = \begin{bmatrix} w \end{bmatrix}_{l,n} \pmod{2}$ 

Restated step by step:

(1) List all of the possible syndromes  $[S]_{1,m}$  and error patterns  $[Z]_{1,n}$  (or the other name is 'corrector') due to given syndrome

(2) Multiply the received word by check matrix to obtain the syndrome.

(3) From decoding list, get the corrector due to obtained syndrome

(4) Add this corrector to the received word in order to correct the errors

Example: The alphabet of code generated by polynomial

 $G(X) = X^{4}+X+1$ is given by the  $[W_{n,n}]$  matrix (one cycle of register C)

<-- k-->- m-

The last "m" columns of [W] matrix gives the syndrome of corresponding corrector of first "k" columns (error pattern).

Example:

|   |   | Eı | rr | or | pa | at | tei | rn | [2 | 2] - | l,r | ſ |   |   |   |   | Sj | m | irc | ome | è | [s] | ۱ <sub>1</sub> | m |   |
|---|---|----|----|----|----|----|-----|----|----|------|-----|---|---|---|---|---|----|---|-----|-----|---|-----|----------------|---|---|
| 1 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0    | 0   | 0 | 0 | 0 | 1 | 0 | 0  | l | l   | 0   | 1 | 0   | 1              | 1 | 1 |
| 1 | 0 | 0  | 0  | 1  | 0  | 0  | 0   | 0  | 0  | 0    | 0   | 0 | 0 | 0 | 0 | 0 | 0  | l | 1   | 0   | 1 | 0   | 1              | 1 | 1 |
| 1 | 0 | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 1  | l    | 0   | 0 | 0 | 0 | l | 0 | 0  | l | l   | l   | 0 | 0   | 1              | l | 1 |

As one sees any additional errors in the check digits yield a corresponding digit changed in the syndrome, this property of syndromes make the decoding table easier and shorter. To make up the decoding table, first list the error patterns

[z]<sub>1,n</sub> according to their weight using the [w]<sub>n,n</sub> matrix and list the corresponding syndromes. Since one only needs to

correct the errors in the information digits, it is enough to add the first k digits of error pattern [z]<sub>1,n</sub> to corresponding digits of received word.

4. <u>Syndrome method decoder flow chart</u> (Figure 11)

First syndromes and error patterns (correctors) assumed listed in memory. The program multiples the received word by check matrix  $[H]_{n,m}$  and result is the syndrome  $[S]_{1,m}$  matrix from this syndrome, listed error pattern are obtained and added to received word for correction (in modulo 2)

The starting address of received word is in R0 The starting address of decoded information words is in R1 The number of received message is in R2 The starting address of syndromes is in memory address "a" The starting address of correctors is in memory address "b" The starting address of the rows of parity check matrix  $[H_{n,m}]$  is in memory address "h" "n" is the number of code word bits.

Additional notation used is given below

TST = test address

BEQ = branch if equal to

COMP = compare two addresses



Figure 11. Syndrome Method Decoder Flow Chart.

## III. CHANNEL NOISE

Channel noise simulation by the computer can be described in two parts, (1) generation of random numbers (2) generation of noise sequence.

(1) Generation of random numbers

Random numbers generated in this program were obtained by using the Lehmer congruential method.

 $x_{n+1} = a x_n + b$  (modulo  $T_0$ )

Letting a = 257, b = 3, the starting number  $x_0$  is chosen as a prime number and changed for each sequence,  $T_0 = 2^{16}$  (all in decimal). Therefore the period of the random number sequence is  $2^{16}$ . After the generation of the random numbers, every  $k^{th}$  of them is taken as a selected random number, where K is called the indexing factor which we shall see, related to the channel  $\beta$  in the binary symmetric channel (Figure 2). The selected random number is taken to specify the address of a random number field, and a marker 'l' is put in to this address.

## (2) Generation of noise

The markers put in the random number field were taken to designate the ones in a sequence of zeros and ones, the sequence has a one to one correspondence to the random number field. The resulting sequence is exclusive OR'ed with successive words of the encoded message, thereby simulating the

introduction of error bits. Word corresponding to carriage return was given noise immunity, but in the probability of error calculations, the number of carriage returns were subtracted from the number of inputs.

Figures from 12 to 16 represent the actual and binomial distribution of errors due to the indexing factors K used. The  $\beta$ 's is taken as a probability of an error (or a 1) and is calculated by counting the number of ones out of 153000 bits (in decimal). It is found that the simulated noise sequences more or less closely follow the binomial distribution except for K equal to powers of 2. It is helpful to point out that for any binary symmetric channel, $\beta$  is very closely related to signal to noise ratio (S/N).

The channel used in this thesis is a memoryless binary symmetric channel. Memoryless channel is the one which noise doesn't depend upon the previous-in time - value). Binary symmetric channel is the one which the probability of bit zero to change the bit one is equal to the probability of bit one to change the bit zero. Table I represents some indexing factors K versus binary symmetric channel  $\beta$ 's.

## A. FLOW CHART DESCRIPTION OF NOISE PROGRAM (Figure 17)

This program describes the generation of random numbers to put into random number field by the Lehmer congruential method. After this program one can combine the markers according to it's word length (code length). Additional notation used in the flow chart:







vs. Binomial Distribution.





) .

| Contraction of the local division of the loc |              |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|--|--|
| Indexing<br>Factor(k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Channel<br>ß |  |  |  |  |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26613      |  |  |  |  |  |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1709       |  |  |  |  |  |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.13992      |  |  |  |  |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.12521      |  |  |  |  |  |  |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.09797      |  |  |  |  |  |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0945       |  |  |  |  |  |  |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0859       |  |  |  |  |  |  |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07506      |  |  |  |  |  |  |  |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07050      |  |  |  |  |  |  |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.063242     |  |  |  |  |  |  |  |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.052187     |  |  |  |  |  |  |  |  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.04561      |  |  |  |  |  |  |  |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03855      |  |  |  |  |  |  |  |  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.032961     |  |  |  |  |  |  |  |  |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.026429     |  |  |  |  |  |  |  |  |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.023132     |  |  |  |  |  |  |  |  |

Table I. Indexing Factor K vs. Channel 3.



Figure 17. Flow Chart of the Simulated Noise Program.
MULT = multiply
ADD = add
DEC = decrement
BEQ = branch if the result is equal to zero

K is the indexing factor (defines  $\beta$  for binary symmetric channel

n is the word length

x<sub>0</sub> is the starting prime number

The starting address of random number field is in RO The starting address of noise field is in R5

### IV. BEST CODE DETERMINATION

The noisy channel theorem  $\[ \] Ref. 1_7 \]$ : Let a discrete channel have the capacity C bits/sec. and a discrete source has the entropy per second H. If  $H \] C$  there exists a coding system such that the output of the source can be transmitted over the channel with an arbitrarily small frequency of errors. If  $H \] C$ , it is possible to encode the source so that the equivocation is less than  $H-C+ \] where \] is arbitrarily small.$ There is no method of encoding which gives an equivocation less than H-C. The discrete source entropy for long messages consisting of discrete symbols is given by

$$H(x) = - \sum_{i=1}^{n} p_i \log p_i$$

where  $p_i$  is the probability of occurrence of a given symbol, in the above formula it is assumed that the each new symbol is independent of the proceeding ones. In the situation where the symbols are transmitted over a noisy channel a given symbol  $x_i$  may be received as  $y_i$ . Shannon's measure of equivocation or uncertainity at the receiver is to what was actually transmitted is defined as:

$$H(x/y) = \sum \sum P(x_i, y_i) \log P(x_i/y_i)$$

For the binary symmetric channel where the  $\beta$  is a conditional probability of an error being made in the channel

$$H(x/y) = -(\beta \log \beta + (1 - \beta) \log (1 - \beta))$$

Then the channel capacity

C = H(x) - H(x/y), maximized for H(x).

In the following discussion the probability of error will be used instead of equivocation, the two concepts were closely related but the probability of error is more convenient.

For clearity  $\beta$  and P(e) will be defined here as follows:  $\beta = P(0/1) = P(1/0)$  for the channel

## P(e) = <u>number of wrong decoded words</u> total number of words

note that in the case of ASCII characters where each character is represented by 8 binary digits, less than the total number of digits representing the ASCII character may be coded into a single word or on the other hand one or more ASCII characters plus a fraction of a character might be coded into a word.

A 'best code' means one that least probability of error for any given channel  $\beta$  and highest rate R=k/n. The error correction ability of the code can be derived from the Varsharmov - Gilbert - Sacks condition

$$2^{m} > \sum_{i=0}^{2e-1} {n-1 \choose i}$$

and closely related to rate R of the code. After definition of the code rate R, and word length n one can find the number of correctible e-tuple errors from Varsharmov - Gilbert -

Sacks condition. The theoretical value of probability of error is given by / Ref. 3\_7:

$$p(e) = 1 - \left[ \sum_{i=0}^{e} N_i \beta^{i} (1-\beta)^{n-i} \right]$$

where  $N_i$  is the number of correctible e-tuple errors, where  $e_i=0,1,2,\ldots$ , up to the maximum number of correctible errors per word.

The Hamming distance (d) as defined earlier is the minimum distance between code words. If d happens to be even and the maximum value of e is given by (d-1)/2, this will yield a fraction. Then number of maximum  $e_i$ -tuple errors is given by <u>(Ref. 4.7.</u>

number of correctible 
$$d/2 \text{ errors} = 1 - \frac{u(u+1)}{2}$$
  
total number of  $d/2 \text{ erros} = \begin{pmatrix} n \\ d/2 \end{pmatrix}$ 

where  $u = \frac{d!}{\left(\frac{d}{2}\right)! \left(\frac{d}{2}\right)!}$ 

Reduction in the probability of error, keeping the channel constant, results also in a reduction of the code rate. By working backward, for any given probability of error and word length, (for a given channel β), from the Varsharmov - Gilbert - Sacks condition and the theoretical value of probability of error equation, one can find the information length and code rate. Figure 21 to be described in the conclusion section relates β, rate R and the probability of error.



#### V. RESULTS

Three different code rates vs. different channel  $\beta$ 's were examined in this thesis. To get the probability of error, approximately 40000 words were mixed with noise for each given binary symmetric channel  $\beta$ . For a (15,4) code (Rate R = 4/15), two different decoding systems (Minimum distance decoder and syndrome method decoder) and two different generator polynomials G(x) were used to find the probability of error.

Table II represents the probability of error vs. channel  $\beta$ 's of the code (15,4) for two different generator polynomials and two different decoding systems. Probability of errors for those systems and for different generator polynomials for given channel  $\beta$ 's are in the limits of  $\frac{1}{2}$  l% difference. This means that for any given code rate, the minimum distance decoder and the syndrome method decoder gives the same probability of error. Furthermore using other generator polynomials of the same rate does not change the probability of error. Figure 18 shows the three dimensional representation of the (15,4) code.

Figure 19 shows the three dimensional representation of the (15,8) code using the syndrome method decoder. As one sees the shape of the P(e) vs.  $\beta$  curve is a S-shaped. As  $\beta$  increases, P(e) approaches 1.0 as a limit.

.

| Channel<br>B | P(e)<br>G(X)=x <sup>4</sup> +x+l Min.<br>Distance Decoder | P(e)<br>G(X)=x <sup>4</sup> +x <sup>3</sup> +1 Min<br>Distance Decoder | P(e)<br>G(X)=X <sup>4</sup> +x+1<br>Syndrome Decoder |
|--------------|-----------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
| 0.07050      | 5.4480 x 10 <sup>-3</sup>                                 |                                                                        |                                                      |
| 0.09797      | $2.9176 \times 10^{-2}$                                   | 3.176 x 10 <sup>-2</sup>                                               | $2.655 \times 10^{-2}$                               |
| 0.12426      | $6.2425 \times 10^{-2}$                                   | 5.795 x 10 <sup>-2</sup>                                               | 5.817 x 10 <sup>-2</sup>                             |
| 0.13992      | 1.2542 x 10 <sup>-1</sup>                                 | 1.0479 x 10 <sup>-1</sup>                                              | 1.1442 x 10 <sup>-1</sup>                            |
| 0.1709       | 1.8780 x 10 <sup>-1</sup>                                 | 1.885 x 10 <sup>-1</sup>                                               | 1.778 x 10 <sup>-1</sup>                             |
| 0.26613      | 4.9052 x 10 <sup>-1</sup>                                 | 4.878 x 10 <sup>-1</sup>                                               | 4.8309 x 10 <sup>-1</sup>                            |

Table II. P(e) vs. Channel p for the code (15,4).





Figure 20 shows the three dimensional representation of the (21,16) code using the syndrome method decoder. The shape of the P(e) vs.  $\beta$  curve is also S-shaped, but the steepness of the curve is much greater than for the (15,8) P(e) vs.  $\beta$  curve.

Tables III and IV shows the probability of error versus channel 3's for the codes (15,8) and (21,16) respectively.





| Channel  | P(e)    |
|----------|---------|
| 0.023132 | 0.0433  |
| 0.03855  | 0.07396 |
| 0.04561  | 0.09803 |
| 0.052187 | 0.13573 |
| 0.063242 | 0.17932 |
| 0.07050  | 0.20790 |
| 0.0859   | 0.27170 |
| 0.097973 | 0.35667 |
| 0.12526  | 0.48701 |
| 0.13992  | 0.54223 |
| 0.1709   | 0.6636  |
| 0.26613  | 0.90378 |

Table III. P(e) vs. Channel Beta for the Code (15,8).

.

| Channel  | P(e)    |
|----------|---------|
| 0.023132 | 0.11446 |
| 0.026429 | 0.13227 |
| 0.032961 | 0.14298 |
| 0.03855  | 0.18854 |
| 0.04561  | 0.25066 |
| 0.05218  | 0.31940 |
| 0.06324  | 0.39899 |
| 0.07506  | 0.51879 |
| 0.0945   | 0.61530 |
| 0.12526  | 0.80895 |
| 0.13992  | 0.86483 |
| 0.1409   | 0.94532 |

Table IV. P(e) vs. Channel Beta for the code (21,16).

## VI. <u>DISCUSSION AND CONCLUS</u>IONS

Two different type of decoder (syndrome method and minimum distance decoder) discussed in this thesis give the same probability of error for the same channel p. For the irreducible polynomial code the minimum distance decoder is faster than the syndrome method decoder. For the (15,4) code the number of syndromes are  $S(x) = 2^{15-4} = 2^{11} = 2048$ with the same number of correctors (error patterns). After multiplication of the received word by the parity check matrix, the result (syndrome [S] 1.m) will be checked if it is equal one of the 2048 syndromes previously listed in the computer memory in order to find the corrector. But for the same irreducible polynomial code (15,4) there is only one maximum cycle set; therefore the received word will be checked if it is in distance d/2 or less to these 15 words, and so is much shorter in time than the syndrome method decoder. On the other hand, for the reducible polynomial code (21,16), there are  $2^{21-16} = 2^5 = 32$  syndromes and the same number of correctors (error patterns). After multiplication of the received word by the parity check matrix H(x), the result (syndrome [S]<sub>1,m</sub>) will be checked if it is equal to one of the 32 syndromes previously listed in the computer memory, to find the corrector. But for the same reducible polynomial there are  $2^{16}/21 = 3121$  maximum cycles length of 21 (excluding zero trivial cycle). Therefore there are 3121 x 21 = 65536



words to be checked if the received word is in d/2 distance apart from those words, which is much longer in time than the syndrome method decoder. As a result one can predict for any given code (n,k) from the number of syndromes and number of maximum cycles for the minimum distance decoder which method is shorter in time.

For any given code (n,k), sometimes there is more than one generator polynomials, then the probability of error results do not depend upon the polynomial being used for any specific word length and information length (See tabulated results for (15,4) code in Table II).

The shape of the P(e) vs. channel  $\beta$  curve for any given code rate is an S-shaped curve: the greater the code rate the steeper the S-shaped curve. Figure 21 combines the calculated probability of errors for the 3 different codes, were investigated. For any given channel  $\beta$  and permissible probability of error one can obtain the maximum code rate from the given figure above.



### APPENDIX A

Program flow:

1. Noise program; First generates random numbers and put a marker "1" due to random number in the random number field between memory addresses 57000 - 77776. Second combines the markers in the random number field according to word length and puts the resulted noise between memory addresses 32000-32400. Noise program starts at address 10000, end of the program at the address 10212.

 Input program; Takes the input messages and puts addresses between 51000-52000 in sequential order. Location (50100) counts the number of input messages. Input program starts at address 20000, end of the program at address 20122.

3. Encoder;

A. Encoder for the (15,4) code; Takes the input messages between addresses 51000-52000, encodes and puts between addresses 52000-54000. Generator matrix is in addresses between 50200-50206, location (50140) is used for ASL, (50142) is used for encoding operations. Program starts at address 20124, end of the program is at 20240.

B. Encoder for the (15,8) code; Takes the input messages between addresses 51000-52000, encodes and puts between addresses 52000-54000. Generator matrix is in addresses between 20610-20626, location (50104) is used for encoding,



(50102) is used for ASL operations. Program starts at address 20124, end of the program is at 20204.

4. Noise mixing sequence; Adds the noise between addresses 32000-32400 to the encoded messages between addresses 52000-54000 (in modulo 2). Carriage return has the noise immunity. Noise mixing sequence for the code (15,4) is between 20242-20332, for the code (15,8) is between 20206-20250.

5. Decoder;

A. Syndrome method decoder for the code (15,4); Takes the transmitted message mixed with noise from the addresses between 52000-54000, decodes, corrects the errors if they are correcible and puts the addresses between 56000-57000. Parity check matrix H(X) is between addresses 50210-50244, syndrome S(X) is between 50246-50304, corrector (error pattern) Z(X) is between 50306-50340.

B. Minimum distance decoder for the code (15,4); Takes the transmitted message mixed with noise from the addresses between 52000-54000, decodes, corrects the errors if they are correctible and puts the addresses between 56000-57000. Register C described in Figure 9 is in address (50104).

C. Syndrome method decoder for the code (15,8); Takes the transmitted message mixed with noise from the addresses between 52000-54000, decodes, corrects the errors if they are correctible and puts the addresses between 56000-57000. Parity check matrix H(X) is in addresses between 20630-20664, corrector (error pattern) Z(X) is in addresses between 20666-20774, syndrome S(X) is in addresses between 20776-21104.

6. Output program; Takes the decoded message from addresses 56000-57000 and writes it out, program is in addresses between 20704-21000 for the code (15,4) minimum distance decoder, 21506-21604 for the code (15,4) syndrome method decoder, 20406-20502 for the code (15,8) syndrome method decoder.
- -

۰ ۰۰۰

.

. . .

NOISE PROGRAM ADDRESS 10024 HAS THE STARTING RANDOM NUMBER ADDRESS 10030 HAS THE INDEXING FACTOR.

. . . . . .

- ----

| W<br>010000 /012700 W<br>010002 /032000 010130<br>010004 /012701 010132<br>010006 /001000 010134 | 2060014<br>2012774<br>2000001<br>2000000<br>2000750 |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 010000 /012700 W   010002 /032000 010130   010004 /012701 010132   010006 /001000 010134         | 2060014<br>2012774<br>2000001<br>2000000<br>2000750 |
| 010002 /032000 010130   010004 /012701 010132   010006 /001000 010134                            | /060014<br>/012774<br>/000001<br>/000000<br>/000750 |
| 010004 /012701 010132<br>010006 /001000 010134                                                   | 2012774<br>2000001<br>2000000<br>2000750            |
| 010006 /001000 010134                                                                            | 2000001<br>2000000<br>2000750                       |
| . 010101                                                                                         | 20000000<br>2000750                                 |
| 010010 /005020 010136                                                                            | 2000750                                             |
| 010012 /077102 010130                                                                            | 1000100                                             |
| 010014 /000240 010142                                                                            | 2005026                                             |
| 010016 /012700 010142                                                                            | 2012200                                             |
| 010020 /057000 010144                                                                            | 7012700                                             |
| 010022 /012746 / 010150                                                                          | 2012201                                             |
| 010024 /012705 010152                                                                            | 2072000                                             |
| 010026 /012746 010154                                                                            | 2012200                                             |
| 010030 /000030 010156                                                                            | 2888177                                             |
| 010032 /011667 010160                                                                            | 2012707                                             |
| 010034 /000026 010162                                                                            | 2000020                                             |
| 010036 /012704 010164                                                                            | 2006220                                             |
| 010040 /177304 010166                                                                            | 2006011                                             |
| 010042 /012714 010170                                                                            | 2077703                                             |
| A1AA4 ZA1AAAA A1A172                                                                             | 2005721                                             |
| 010046 Z012637 010174                                                                            | 2012703                                             |
| 010050 /177300 010174                                                                            | 2000005                                             |
| 010052 2011467 010200                                                                            | 2006220                                             |
| 818854 Z888838 818282 818282                                                                     | 2006011                                             |
| 616655 / 6162656 - 616262                                                                        | 2077703                                             |
| 818868 / 8127316 818284<br>818868 / 177316 818284                                                | 2005721                                             |
| 010000 / 111010 010200                                                                           | 2077215                                             |
| 010002 /012103 010210                                                                            | 2000000                                             |
| 010066 2012624                                                                                   | 1000000                                             |
| B1BB2B 2012714                                                                                   |                                                     |
| 010072 2000401                                                                                   |                                                     |
| 010074 2014446                                                                                   |                                                     |
| A1AA76 ZA62716                                                                                   |                                                     |
| 010109 2000003                                                                                   |                                                     |
| B1B1B2 /877387                                                                                   |                                                     |
| 010104 2005327                                                                                   |                                                     |
| 010106 2000000                                                                                   |                                                     |
| 010110 2001414                                                                                   |                                                     |
| 010112 /011614                                                                                   |                                                     |
| 010114 /005044                                                                                   |                                                     |
| 010116 /012711                                                                                   |                                                     |
| 010120 /177775                                                                                   |                                                     |
| 010122 /005724                                                                                   |                                                     |
| 010124 /042714                                                                                   |                                                     |
| 010126 /000001                                                                                   |                                                     |

\*

71

. ·

| INPUT PROGRAM<br>INPUT MESSAGES | ADDRESS 50100 HAS THE NUMBER OF  |
|---------------------------------|----------------------------------|
| The character                   | @ defines the end of the program |
| W                               |                                  |
| 020000 /012700                  |                                  |
| 020002 /051000                  |                                  |
| 020004 /005002                  |                                  |
| 020006 /105737                  |                                  |
| 020010 /177560                  |                                  |
| 020012 /100375                  |                                  |
| 020014 /113710                  |                                  |
| 020016 /1//562                  |                                  |
| 020020 7122710                  |                                  |
| 020022 7000300                  |                                  |
| 020024 7001432                  |                                  |
| 020030 /105737                  |                                  |
| 020032 /177564                  |                                  |
| 020034 /100375                  |                                  |
| 020036 /111037                  |                                  |
| 020040 /177566                  |                                  |
| 020042 /122720                  |                                  |
| 020044 /000215                  |                                  |
| 020046 2001401                  |                                  |
| 828858 7888756                  |                                  |
| 020052 7012701                  |                                  |
| 828056 2185777                  |                                  |
| R28868 2177564                  |                                  |
| 020062 /100375                  |                                  |
| 020064 /112737                  |                                  |
| 020066 /000200                  |                                  |
| 020070 /177566                  |                                  |
| 020072 /077107                  |                                  |
| 020074 /105737                  | • ·                              |
| 020076 7177564                  |                                  |
| 020100 /1003/3                  | ·                                |
| 020102 7112131                  |                                  |
| 020106 /177566                  |                                  |
| 020110 /000736                  |                                  |
| 020112 /010237                  |                                  |
| 020114 /050100                  |                                  |
| 020116 /005000                  | •                                |
| 020120 /005002                  |                                  |
| 020122 /000000                  |                                  |

| i            | ENCO | DER          | FOR            | THE C | 00E (1 | 15,4)         |       |       |       |        |    |  |
|--------------|------|--------------|----------------|-------|--------|---------------|-------|-------|-------|--------|----|--|
| 1            | ROWS | OF           | GENE           | RATOR | MATRI  | ιχ G <b>(</b> | NI (X | RDDRI | ESSES | BETWEE | EN |  |
| ;            | 5020 | 0 -:         | 50206          | ,     |        |               |       |       |       |        |    |  |
|              |      |              |                |       |        |               |       | •     |       |        |    |  |
|              |      |              |                |       |        |               |       |       |       |        |    |  |
| М            |      |              |                |       |        |               |       |       |       |        |    |  |
| 020:         | 124  | 2012         | 2700           |       |        |               |       |       |       |        |    |  |
| 020:         | 126  | 205:         | 1000           |       |        |               |       |       |       |        |    |  |
| 020:         | 130  | 2000         | 8240           |       |        |               |       |       |       |        |    |  |
| 828:<br>828: | 132  | 7880         | 0240           |       |        |               |       |       |       |        |    |  |
| 020:         | 134  | 701.         | STUZ<br>Brog   |       |        |               |       |       |       |        |    |  |
| 020)<br>020- | 140  | 2441         | 91997<br>9677  |       |        |               |       |       |       |        |    |  |
| 020.<br>020- | 142  | 2051         | 614A           |       |        |               |       |       |       |        |    |  |
| 020          | 144  | /01:         | 2703           |       |        |               |       |       |       |        |    |  |
| 020:         | 146  | 2001         | 8882           |       |        |               |       |       |       |        |    |  |
| 020:         | 150  | 2012         | 2704           |       |        |               |       |       |       |        |    |  |
| 020:         | 152  | 1001         | 8884           |       |        |               |       |       |       |        |    |  |
| 020          | 154  | 2013         | 2705           |       |        |               |       |       |       |        |    |  |
| 020:         | 156  | 2651         | 8288           |       |        | X             |       |       |       |        |    |  |
| 020:         | 168  | 2003         | 5037.<br>Gaine |       |        |               |       |       |       |        |    |  |
| 020.<br>020. | 162  | 201          | 0142<br>2564   |       |        |               |       |       |       |        |    |  |
| 020.<br>020  | 166  | 2101         | 2301<br>6337   |       |        |               |       |       |       |        |    |  |
| 020          | 170  | 2051         | 0140           |       |        |               |       |       |       |        |    |  |
| 020          | 172  | 710          | 3002           |       |        |               |       |       |       |        |    |  |
| 020          | 174  | 207          | 4137           |       |        |               |       |       |       |        |    |  |
| 020          | 176  | 205          | 0142           |       |        |               |       |       |       |        |    |  |
| 020          | 200  | 780          | 0240           |       |        |               | ,     |       |       |        |    |  |
| 020          | 202  | 707          | 7410<br>7777   |       |        |               |       |       |       |        |    |  |
| 020          | 204  | 701.<br>785. | 5757<br>0142   |       |        |               |       |       |       |        |    |  |
| A2A          | 218  | 285          | 2888           |       |        |               |       |       |       |        | *  |  |
| 020          | 212  | 200          | 5237           |       |        |               |       |       |       |        |    |  |
| 020          | 214  | 202          | 0210           |       |        |               |       |       |       |        |    |  |
| 020          | 216  | 200          | 5237           |       |        |               |       |       |       |        |    |  |
| 020          | 220  | 782          | 0210           |       |        |               |       |       |       |        |    |  |
| 020          | 222  | 707          | 7326           |       |        |               |       |       |       |        |    |  |
| 020          | 224  | 787          | 7233           |       |        |               |       |       |       |        |    |  |
| 020          | 225  | 701          | 2737<br>2000   |       |        |               |       |       |       |        |    |  |
| 020          | 220  | 100          | 2000<br>0210   |       |        |               |       |       |       |        |    |  |
| 020          | 234  | 200          | 0000           |       |        |               |       |       |       |        |    |  |
| *            |      |              |                |       |        |               |       |       |       |        |    |  |

. . . .

•

•

## ENCODER FOR THE CODE (15,8)

•

M

| 020124 | /012700 |
|--------|---------|
| 020126 | 2051000 |
| 020130 | /012701 |
| 020132 | 7052000 |
| 020134 | 2013702 |
| 020136 | 2050100 |
| 020140 | /112037 |
| 020142 | 2050102 |
| 020144 | 7012703 |
| 020146 | 2020610 |
| 020150 | 2012704 |
| 020152 | 2000010 |
| 020154 | 2005037 |
| 020156 | 2050104 |
| 020160 | 2012305 |
| 020162 | 2106337 |
| 020164 | /050102 |
| 020166 | /103002 |
| 020170 | 2074537 |
| 020172 | 7050104 |
| 020174 | 2077407 |
| 020176 | 2013721 |
| 020200 | 2050104 |
| 020202 | 7077222 |
| 020204 | /000240 |
|        |         |

•

NOISE MIXING SEQUENCE FOR THE CODE (15,4)

W

| 020242 | 2012700 |
|--------|---------|
| 020244 | 7052000 |
| 020246 | /012701 |
| 020250 | 7832888 |
| 828252 | /013702 |
| 020254 | 2050100 |
| 020256 | 2063702 |
| 828268 | 2050100 |
| 828262 | 2822827 |
| 828264 | /104656 |
| 020266 | 2001005 |
| 828278 | 2822827 |
| 828272 | 2153610 |
| 828274 | 2881818 |
| 020276 | 2077207 |
| 020300 | 2000414 |
| 020302 | 2005740 |
| 020304 | 2011003 |
| 020306 | 2024311 |
| 828318 | 2812128 |
| 020312 | /077215 |
| 828314 | 2000406 |
| 020316 | 2005740 |
| 020320 | 2005740 |
| 020322 | 2011003 |
| 020324 | 2074311 |
| 020326 | 7012120 |
| 020330 | /077224 |
| 020332 | 2000000 |

# NOISE MIXING SEQUENCE FOR THE CODE (15,8)

| M      |         |
|--------|---------|
| 020206 | 2000240 |
| 020210 | 2000240 |
| 020212 | 2000240 |
| 020214 | 2000240 |
| 020216 | 2012700 |
| 020220 | 2052000 |
| 020222 | 2012701 |
| 020224 | 2032000 |
| 020226 | 2013202 |
| 020230 | 2050100 |
| 020232 | 2021027 |
| 020234 | /106700 |
| 020236 | 2001402 |
| 020240 | 2012103 |
| 020242 | 2074310 |
| 020244 | 2005720 |
| 020246 | 7077207 |
| 020250 | 2888248 |

APPENDIX F

# SYNDROME METHOD DECODER FOR THE CODE (15,4)

.

| N      |         |
|--------|---------|
| 020334 | 2012200 |
| 020336 | 2052000 |
| 020340 | 2000240 |
| 020342 | 2888248 |
| 020344 | 2013737 |
| 020346 | 2050100 |
| 020350 | 2050102 |
| 020352 | 2012737 |
| 020354 | 2000002 |
| 020356 | 2050104 |
| 020360 | 2012202 |
| 020362 | 2000017 |
| 828364 | 2012203 |
| 020366 | 2050210 |
| 828378 | 2005037 |
| 828372 | 2050142 |
| 020374 | 2011037 |
| 020376 | 2858148 |
| 020400 | 2012304 |
| 020402 | 2006337 |
| 828484 | 2050140 |
| 020406 | 2103002 |
| 020410 | /074437 |
| 020412 | 2050142 |
| 020414 | /077207 |
| 020416 | 7022737 |
| 020420 | 2000000 |
| 020422 | 2050142 |
| 020424 | 2001002 |
| 020426 | 2000137 |
| 020430 | 2021310 |
| 020432 | /823737 |
| 020434 | 2050246 |
| 020436 | 2050142 |
| 020440 | 2001002 |
| 020442 | 2000137 |
| 020444 | 7821274 |
| 020446 | 7012737 |
| 020450 | 2004000 |
| 020452 | 2050150 |
| 020454 | 2012737 |
| 020456 | 2000000 |
| 020460 | 2050152 |
| 020462 | 2013701 |
| 020464 | 2050150 |

\*

| М      |          |
|--------|----------|
| 020466 | 2012703  |
| 020470 | 2000013  |
| 020472 | 2012705  |
| 020474 | 2050250  |
| 020476 | 2812784  |
| 020500 | 2050306  |
| 020502 | 7012737  |
| 020504 | /000016  |
| 020506 | 2050154  |
| 020510 | 2023715  |
| 020512 | 2050142  |
| 020514 | 2001002  |
| 020516 | 2000137  |
| 020520 | 2021304  |
| 020522 | 2013737  |
| 020524 | 2050152  |
| 020526 | 2050156  |
| 020530 | 2074137  |
| 020532 | 2050156  |
| 020534 | 2011502  |
| 020536 | 7074237  |
| 020540 | 2050156  |
| 020542 | 2023737  |
| 020544 | 2050156  |
| 020546 | 2050142  |
| 020550 | 2001002  |
| 020552 | 2000137  |
| 020554 | 2021304  |
| 020556 | 2005725  |
| 020560 | 2005724  |
| 020562 | 2005337  |
| 020564 | 2050154  |
| 020566 | 2003350  |
| 020570 | 7006201  |
| 020572 | 7077341  |
| 020574 | 7005337  |
| 020576 | 7828478  |
| 020600 | 7001406  |
| 020602 | 7000240  |
| 020504 | 7000237  |
| 020000 | 20060200 |
| 020010 | 7000237  |
| 020012 | 2000102  |
| 020014 | 1000122  |

77

| ы      |          |
|--------|----------|
| 020616 | 2000240  |
| 020620 | 2000167  |
| 020622 | /000000  |
| 828624 | 2012737  |
| 020626 | 2002000  |
| 020020 | 2020450  |
| 020030 | 7020400  |
| 020032 | 7012(3)  |
| 020634 | 7004000  |
| 020535 | 7020436  |
| 020640 | 7012737  |
| 020642 | 2050012  |
| 020644 | 2020470  |
| 020646 | 7012737  |
| 020650 | 2050260  |
| 020652 | 2828474  |
| 020654 | 2012737  |
| 020656 | 2050316  |
| 020660 | 2020500  |
| 020662 | 2012737  |
| 828664 | 2000012  |
| R28666 | 2020504  |
| 828678 | 2012737  |
| 828672 | 2888484  |
| 020674 | 2020510  |
| 020676 | 2062737  |
| 020010 | 20000064 |
| 020100 | 2020622  |
| 020102 | 7020022  |
| 020704 | 7000157  |
| 020705 | 7020440  |
| 020710 | 7012737  |
| 020712 | 7001000  |
| 020714 | 2020450  |
| 020716 | 7012737  |
| 020720 | 2006000  |
| 020722 | 2020456  |
| 020724 | 2012737  |
| 020726 | 2000011  |
| 020730 | 2020470  |
| 020732 | 2012737  |
| 020734 | 2050274  |
| 020736 | 2020474  |
| 020740 | 2012737  |
| 020742 | /050332  |
| 020744 | 2020500  |
| 020746 | 2012737  |
| 020750 | 2000004  |
| 020752 | 2020504  |
| 020754 | 2862737  |
| 020756 | 2000056  |
| 020760 | 2828622  |
| 020762 | 2000132  |
| 020102 | 2020121  |

| М      |          |
|--------|----------|
| 020766 | 2012737  |
| 828778 | 2666466  |
| 020110 | 2000400  |
| 020772 | 7020400  |
| 020774 | 7012737  |
| 020776 | 2005000  |
| 021000 | 2020456  |
| 821882 | 2812777  |
| 001002 | 1000040  |
| 021004 | 7000010  |
| 021006 | 7020470  |
| 021010 | 7062737  |
| 021012 | 2000034  |
| 021014 | 2020622  |
| 021016 | 2000137  |
| 024020 | 2000131  |
| 021020 | 7020446  |
| 021022 | 7012737  |
| 021024 | 7000100  |
| 021026 | 7020450  |
| 021030 | 2012737  |
| 021032 | 2004400  |
| 024072 | 2020450  |
| 021034 | 2040727  |
| 021036 | CULERSE  |
| 021040 | 2000006  |
| 021042 | 7020470  |
| 021044 | 7062737  |
| 021046 | 2000034  |
| 021050 | 2020622  |
| 021052 | 2000137  |
| 021054 | 2020446  |
| 021056 | 7012737  |
| 021050 | 2000040  |
| 021062 | 2020450  |
| 021002 | 20102222 |
| 021004 | TOTELOU  |
| 021000 | 7004200  |
| 021070 | 7020456  |
| 021072 | 7012737  |
| 021074 | 2000005  |
| 021076 | 2020470  |
| 021100 | 7062737  |
| 021102 | 2000034  |
| 821184 | 2020622  |
| 021106 | 2000122  |
| 021100 | 2000137  |
| 004440 | 7020440  |
| 021112 | 1012131  |
| 021114 | 7000020  |
| 021116 | 7020450  |
| 021120 | 7012737  |
| 021122 | 2004100  |
| 021124 | 2020456  |
|        |          |

78

| 14        |         |
|-----------|---------|
| 021400    | 2005337 |
| 021402    | 2050104 |
| 021404    | 2001405 |
| 021406    | /110337 |
| 021410    | 2050350 |
| 021412    | 2005720 |
| 021414    | 2000137 |
| 021416    | /020360 |
| 821428    | /106303 |
| 021422    | /106303 |
| 021424    | /106303 |
| 021426    | /106303 |
| 021430    | 2012702 |
| 021432    | 2000004 |
| 021434    | /106303 |
| 021436    | /106137 |
| 021440    | /050350 |
| 821442    | 2077204 |
| 021444    | /000412 |
| 021446    | /005720 |
| 021450    | /113737 |
| 021452    | 2050350 |
| 021454    | 2056000 |
| 021456    | 2005237 |
| 021460    | 2021454 |
| 021462    | 2000240 |
| 021464    | 2000240 |
| 021466    | 2000137 |
| 021470    | 2020352 |
| 021472    | 2005337 |
| 021474    | 2050102 |
| 021476    | 2002363 |
| 021500    | 7012737 |
| 021502    | 2056000 |
| 021504    | 2021454 |
| <b>과:</b> |         |

79

L

# MINIMUM DISTANCE DECODER FOR THE CODE (15,4)

Ы

| PK     |          |
|--------|----------|
| 020456 | 2000240  |
| 020460 | 2868248  |
| 828462 | 2888248  |
| 020102 | 2012200  |
| 020404 | 2052000  |
| 020400 | 2042222  |
| 020470 | 1013(3)  |
| 020472 | 7000100  |
| 020474 | 7000102  |
| 020476 | 7063737  |
| 828588 | 7050100  |
| 020502 | 2050102  |
| 020504 | 2013201  |
| 020506 | 2050104  |
| 020510 | /012703  |
| 020512 | 2054000  |
| 020514 | 2012704  |
| 020516 | 2000017  |
| 020520 | 2005037  |
| 020522 | 2050116  |
| 020524 | 2011005  |
| 020526 | 2824185  |
| 020530 | 2012202  |
| 020522 | 2000017  |
| 020032 | 20062011 |
| 020334 | 7000500  |
| 020336 | 7000037  |
| 020340 | 7030116  |
| 020542 | 7077204  |
| 020544 | 7022737  |
| 020546 | 2000004  |
| 020550 | 2050116  |
| 020552 | 2002010  |
| 020554 | 2006301  |
| 020556 | /103402  |
| 020560 | /077421  |
| 020562 | 2000407  |
| 020564 | 7062701  |
| 020566 | 2000002  |
| 020570 | 2077425  |
| 020572 | 2000403  |
| 020574 | 2010123  |
| 020576 | 2005720  |
| 826688 | 2888482  |
| 020000 | 2040702  |
| 020602 | 7012723  |
| 020004 | 70000000 |
| 020505 | 7000720  |
| 020610 | 7162737  |
| 020612 | 7000001  |
| 020614 | 7050102  |
| 020616 | /003336  |
| 020620 | 2000240  |

| М      |         |
|--------|---------|
| 020622 | 2000240 |
| 020624 | 2000240 |
| 020626 | 2000240 |
| 020630 | 2000240 |
| 020632 | 2013702 |
| 020634 | 2050100 |
| 020636 | 2012700 |
| 020640 | 2054000 |
| 020642 | 2012701 |
| 020644 | 2056000 |
| 020646 | 2012705 |
| 020650 | 2000002 |
| 020652 | 2005004 |
| 020654 | 2012046 |
| 020656 | 2012046 |
| 020650 | 7012703 |
| 020662 | 2000004 |
| 020664 | /006316 |
| 020666 | 2006104 |
| 020670 | /077303 |
| 020672 | /005726 |
| 020674 | /077507 |
| 020676 | 7110421 |
| 020700 | 7077216 |
| 020702 | 2000000 |
| *      |         |

80

Ы

.

| 4                |         |
|------------------|---------|
| 320252           | 2012700 |
| 320254           | /052000 |
| 320256           | /012701 |
| 328260           | 2856888 |
| 220262           | 2013202 |
| 326262           | 2050400 |
| 020204           | 7000100 |
| 020266           | 7011037 |
| 920270           | 7050102 |
| 828272           | 7012703 |
| 828274           | 2020630 |
| 828276           | 7012704 |
| 020300           | 2000017 |
| 828382           | 2005037 |
| 020304           | 2050104 |
| 828386           | 2012305 |
| 828388<br>828748 | 2006777 |
| 020310           | 2050301 |
| 020312           | 7000102 |
| 020314           | 7103002 |
| 020316           | 7074037 |
| 020320           | 7050104 |
| 020322           | /077407 |
| 020324           | 2005737 |
| 020326           | /050104 |
| 020330           | 2001421 |
| 020332           | 2012703 |
| R28334           | 2828776 |
| 020336           | 2012704 |
| 828248           | 2020666 |
| 020340           | 7020000 |
| 020342           | 1012121 |
| 020344           | 7000044 |
| 020346           | 7050106 |
| 020350           | 7023723 |
| 020352           | 2050104 |
| 020354           | 2001405 |
| 020356           | 2005724 |
| 020360           | 7005337 |
| 020362           | 2050106 |
| 020364           | 7002371 |
| 020366           | 2000402 |
| 020370           | 2011405 |
| 828772           | 2074510 |
| 020312           | 2000210 |
| 020379           | 2444004 |
| 020376           | 7111021 |
| 020400           | 7005720 |
| 020402           | 7077247 |
| 020404           | 2000240 |
| مله              |         |

.

.

### OUTPUT PROGRAM

| N      |         |
|--------|---------|
| 021510 | 2012700 |
| 021512 | 2056000 |
| 021514 | 2013202 |
| 021516 | 2050100 |
| 021520 | /105737 |
| 021522 | 2177564 |
| 021524 | /100375 |
| 021526 | /111037 |
| 021530 | 7177566 |
| 021532 | 7122720 |
| 021534 | 2000215 |
| 021536 | 2001402 |
| 021540 | 7077211 |
| 021542 | 2000420 |
| 021544 | 2012701 |
| 021546 | 2000012 |
| 021550 | 7105737 |
| 021552 | 7177564 |
| 021554 | 7100375 |
| 021556 | 7112737 |
| 021560 | 7000200 |
| 021562 | 2177566 |
| 021564 | 2077107 |
| 021566 | /105737 |
| 021570 | 7177564 |
| 021572 | /100375 |
| 021574 | /112737 |
| 021576 | 2000212 |
| 021600 | /177566 |
| 021602 | 7077232 |
| 021604 | 2000000 |

#### The simple run:

. GE CODE1. SRV

EXAMPLE FOR THE CODE (15,4) CHANNEL NOISE HAS INDEXING FACTOR 9 THIS IS LOW LEVEL NOISE FOR THE CODE . CARRIAGE RETURN HAS THE NOISE IMMUNITY , TESTING FOR NOISSY CHANNEL.

Decoding with minimum distance decoder ;

EXAMPLE FOR THE CODE (15,4)CHANNE NOIVE HAS INDEXING FACTOR 9 THIS IS LOW LEVEL NOISE JOR THE COTE . CARRIAGE RETURN HAS THE NOISE IMMUNITY . TESTMNG FOR NOISSY JHANNEL.

Without decoding ; Without error correction

QHB

PLED\_R\$THEGGDM(15D4!S@NEH0N\_IQE) HAN INDEXINF!FEKUOQ S!THIC MS LK\_"DMVE FOYRU GO"THU SOTE, CERRIAGE REDUVFH@SXUH NOSM\$IMIUANY, VELPINV GLR JOIRQX BHENEL.

### LIST OF REFERENCES

- 1. Shannon and Weaver, The Mathematical Theory of Communication.
- 2. W. Wesley Peterson and E. J. Weldon, Jr., Error Correction Codes.
- 3. Robert B. Ash, Information Theory.
- 4. S.G.S. Shiva, "Some Results on Binary Codes with Equivalent Words," <u>IEEE Transactions on Information Theory</u>, March 1969, Volume IT-15, Number 2.
- 5. Robert G. Gallager, <u>Information Theory and Reliable</u> <u>Communication</u>.

# INITIAL DISTRIBUTION LIST

|     |                                                                                                                                               | No. Copies |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.  | Defense Documentation Center<br>Cameron Station<br>Alexandria, Virginia 22314                                                                 | 2          |
| 2.  | Library, Code 0212<br>Naval Postgraduate School<br>Monterey, California 93940                                                                 | 2          |
| 3.  | Professor George Marmont, Code 52Ma<br>Department of Electrical Engineering<br>Naval Postgraduate School<br>Monterey, California 93940        | lO         |
| 4.  | Associate Professor R. W. Burton, Code 522<br>Department of Electrical Engineering<br>Naval Postgraduate School<br>Monterey, California 93940 | n l        |
| 5.  | İstanbul Teknik Universitesi<br>Elektrik Fakültesi<br>Gümüssuyu, İstanbul,<br>Turkey                                                          | l          |
| 6.  | Boğazici Teknik Universitesi<br>Elektrik Fakültesi<br>Bebek, Istanbul,<br>Turkey                                                              | 1.         |
| 7.  | Ortadoğu Teknik Universitesi<br>Elektrik-Elekronik Fakultesi<br>Ankara, Turkey                                                                | 1          |
| 8.  | Derince Sinif Okullari Komutanligi<br>Derince<br>Kocaeli,<br>Turkey                                                                           | 1          |
| 9.  | Deniz Harb Okulu Komutanliği<br>Heybeliada, Istanbul,<br>Turkey                                                                               | 1          |
| 10. | Kayhan Elitas<br>Naval Postgraduate School<br>Monterey, California 93940                                                                      | 1          |
| 11. | Nizamettin Cetinyilmaz<br>Emirsultan Gelir Sokak No. 17<br>Bursa, Turkey                                                                      | 2          |



DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY. CALIFORNIA 93940

Thesis Thes C3385 C33[c.1 Cetinyilmaz Application of the computer for real c.1 164095 time encoding and decoding of cyclic block codes. Aug 10 00 33080 10:025 Thesis C3385 Cetinyilmaz Application of the computer for real time encoding and decoding of cyclic block codes.

c.1

