

Calhoun: The NPS Institutional Archive DSpace Repository

Flight director laws for the longitudinal cyclic and collective controls of the UH-1H helicopter.

Smith, Gordon Kenneth

Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/20868

FLIGHT DIRECTOR LAWS FOR THE LONGITUDINAL CYCLIC AND COLLECTIVE CONTROLS

OF THE UH-1H HELICOPTER

Gordon Kenneth Smith

Library

$$
\begin{aligned}
& \text { Library } \\
& \text { Navai Posiauc nuol } \\
& \text { California } 93940
\end{aligned}
$$

NAUAL POSTERADUATE SCHOOL Monterey, Balifiopnia

Approved for public relcase; distribution unlimited.

REPORT DOCUMENTATION PAGE	READINSRUCTINNS
T. REPORT NUMEER ${ }^{\text {a }}$ 2. GOVT ACCESSION No.	3. RECIPIENT'S CATALOG NUMEER
	5. TYPE OF REPORT APERIOD COVERED Master's Thesis March 1975 6. PERFORMING ORG. REPORT NUMEER
Gordon Kenneth Smith	b. comtact or grant mumbero)
-PERFORMING ORGANIZATION NAME AND AODRESS Naval Postgraduate School Monterey, California 93940	10. PROGAMMEEEENT. PROJECT, TASK
i1. Controlling office name ano adoress Naval Postgraduate School Monterey, California 93940	12. REPORT DATE March 1975 13. NUMEER OF PAGES

16. DISTRIBUTION STATEMENT (Of thla Roport)

Approved for public release; distribution unlimited,
17. DISTRIBUTION STATEMENT (of the ebetract entored in Block 20, 11 dilloront from Report)
8. SUPPLEMENTARY NOTES
19. KEY WOROS (Conllnue on reverse side 11 neceesery and Identity by block number)
20. AESTAACT (Continue on roveree olde If noceeeery and ldentity by black nuaber)

A technique for determining flight director laws for the longitudinal control of a V/STOL aircraft in landing approach is evaluated. The method is based on the application of an optimal control model for the human pilot. The vehicle studied was the UH-1H helicopter at three approach groundspeeds: 60 knots, 40 knots, and 20 knots. The two pilot outputs were longitudinal cyclic and collective. In the analysis, ten pilot

"transfer functions" which relate the two control variables to the five displayed and perceived quantities were obtained. These transfer functions were then utilized to obtain the respective flight director laws.

Flight Director Laws for the Logitudinal
Cyclic and Collective Controls of the UH-1H Helicopter

by

Gordon Kenneth Smith
Lieutenant, United States Navy B.S., United States Naval Academy, 1968

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

> from the

NAVAL POSTGRADUATE SCHOOL March 1975

ABSTRACT

A technique for determining flight director laws for the longitudinal control of $\mathrm{a} V / \mathrm{STOL}$ aircraft in landing approach is evaluated. The method is based on the application of an optimal control model for the human pilot. The vehicle studied was the UH-1H helicopter at three approach groundspeeds: 60 knots, 40 knots, and 20 knots. The two pilot outputs were longitudinal cyclic and collective. In the analysis, ten pilot "transfer functions" which relate the two control variables to the five displayed and perceived quantities were obtained, These transfer functions were then utilized to obtain the respective flight director laws.

TABLE OF CONTENTS

I. INTRODUCTION 9
II. METHOD OF ANALYSIS 11
A. THE MODELING HYPOTHESIS 11
B. MODIFICATIONS FOR PILOT MODELING 11
C. LONGITUDINAL HELICOPTER EQUATIONS OF MOTION 11
D. ATMOSPHERIC TURBULENCE 13
E. NEUROMUSCULAR AND TIME DELAY EQUATIONS 14
F. DISPLAYED VARIABLES 16
G. OBSERVATION AND MOTOR NOISE 18
h. SYSTEM EQUATIONS AND MATRIX NOTATIONS 19
III. PILOT MODELING EXAMPLE- 30
IV. RESULTS AND CONCLUSIONS 37
LIST OF REFERENCES 40
INITIAL DISTRIBUTION LIST 41

LIST OF TABLES

I. Display Gains 18
II, A Matrix 25
III. B and γ Matrices 26
IV. H Matrix 27
V. y, C, Q, R Matrices 28
VI. w, F, v, and G Matricés 29
VII, Normalized UH-1H Longitudinal Derivatives in Stability Axis System 32
VIII. RMS Performance 33
IX. Gains for UH-1H Helicopter Director Laws - Velocity 60 Knots 36
X. Gains for UH-1H Helicopter Director Laws - Velocity 40 Knots 38
XI, Gains for UH-1H Helicopter Director Laws - Velocity 20 Knots 39

LIST OF FIGURES

1. Pilot-Vehicle System Model- 10
2. Pade' Comparisons 15
3. Transfer Function $\frac{\delta_{B}}{u}$ (s) 34
 35

ACKNOWLEDGEMENTS

I wish to thank Dr. Ronald Hess, under whose supervision I worked, for his assistance and patience during the preparation of this thesis. Thanks is also due my wife, Glenna, for her confidence and assurance throughout this project.

I. INTRODUCTION

VTOL aircraft have received considerable attention for both military and civilian use, due to their unique ability to operate in areas not accessible to conventional aircraft. The rotary-wing aircraft, in particular, has shown such increased diversity that display systems which will allow VTOL operations in zero/zero conditions are being actively sought. Well-designed flight directors are the heart of such systems.

A flight director is a display system which provides control commands to the pilot to enable him to complete demanding flight tasks with relative ease and precision. Recently, Levison $\angle \bar{R} e f . ~ 1 T$ has proposed an analytical technique for flight director design based upon the optimal pilot model pioneered by Kleinman, Baron, and Levison / $\overline{\mathrm{R}} \mathrm{f}$. $\underline{2} /$. A modified form of this technique is utilized in this thesis to obtain the longitudinal flight director laws for the UH-1H helicopter in three approach conditions in the presence of random vertical and horizontal atmospheric turbulence. Five vehicle motion quantities, which are normally directly displayed or perceived by the pilot, are blended to drive two display symbols, the cyclic director and the collective director. The design was undertaken at three different groundspeeds: 60 knots, 40 knots, and 20 knots. The pilotvehicle system for the optimal modeling procedure is shown graphically in Figure 1 .
Turbulence
Turbulence

$z_{p}(t)=H \quad x(t)$

Observation Noise $\square 1$

II. METHOD OF ANALYSIS

A. THE MODELING HYPOTHESIS

Subject to his inherent limitations, the well-trained, well motivated pilot behaves in an optimal manner. The pilot's control characteristics can be modeled by the solution of an optimal linear control problem and an optimal estimation problem with certain "modifications."

B. MODIFICATIONS FOR PILOT MODELING

1. A pure time delay is included in each of the pilot's control outputs.
2. Each output neuromuscular system is modeled as a first order lag.
3. Each observed variable is assumed to contain pilot induced additive white noise which scales with the variance of the observed variable. Also, each control output is assumed to contain pilot induced additive white noise which scales with the variance of the control motion.
4. If a variable is displayed explicitly, the pilot also perceives the first derivative of the variable but no higher derivatives. The first derivative is also noise contaminated.
5. The index of performance for the optimization procedure is chosen subjectively to mirror what the display system designer believes to be the task and control objectives perceived by the pilot.
C. LONGITUDINAL HELICOPTER EQUATIONS OF MOTION

The longitudinal helicopter equations of motion are shown in state variable form on the next page. The assumptions used in the derivation of these equations follow
(1)
©
§
※
กิ

1. The vehicle is idealized as a rigid airframe to which is attached a rotor.
2. The rotor is described by the tip path plane whose orientation determined propulsive and aerodynamic forces and moments.
3. No rotor degrees of freedom are considered other than control inputs which serve to describe instantaneous tip path plane orientation.
4. All coupling between longitudinal and lateral motion is ignored.
5. There is linearized small perturbation motion about the horizontal reference flight path.

D. ATMOSPHERIC TURBULENCE

The power spectral densities for the atmospheric turbulence are those suggested by Hart, Adkins, and Lacau $\angle \bar{R} e f .3 \overline{/}$.

$$
\begin{align*}
& \Phi_{w_{g}}(\omega)=\frac{2 \sigma_{\mathrm{W}}^{2} L_{W}}{U_{o}}\left(\frac{1}{1+\left(\frac{I_{V Y} \omega}{U_{o}}\right)^{2}}\right) \tag{6}\\
& \Phi_{u_{g} u_{g}}(\omega)=\frac{2 \sigma_{u_{u}}^{2} L_{u}}{U_{o}}\left(\frac{1}{1+\left(\frac{L_{u} \omega}{U_{o}}\right)^{2}}\right)
\end{align*}
$$

with

$$
\begin{array}{ll}
\alpha_{1}=\sqrt{\frac{2 U_{\mathrm{O}}}{\mathrm{~L}_{\mathrm{w}}}} \sigma_{\mathrm{w}} & \beta_{1}=\frac{\mathrm{U}_{\mathrm{O}}}{\mathrm{~L}_{\mathrm{w}}} \\
\alpha_{2}=\sqrt{\frac{2 \mathrm{U}_{\mathrm{o}}}{\mathrm{~L}_{\mathrm{u}}}} \sigma_{\mathrm{u}} & \beta_{2}=\frac{\mathrm{U}_{\mathrm{o}}}{\mathrm{~L}_{\mathrm{u}}}
\end{array}
$$

Using the concept of a white noise excited shaping filter, the following state equations can be developed.

$$
\begin{equation*}
\dot{\mathrm{w}}_{\mathrm{g}}=-\beta_{1} \mathrm{w}_{\mathrm{g}}+\alpha_{1} \mathrm{v}_{1} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\dot{u}_{\mathrm{g}}=-\beta_{2} \mathrm{u}_{\mathrm{g}}+\alpha_{2} \mathrm{v}_{2} \tag{11}
\end{equation*}
$$

Equations (10) and (11) now augment equations (1) - (5).

E. NEUROMUSCULAR AND TIME DELAY EQUATIONS

As noted in section II.B., a pure time delay and first ordger lag are included in the pilot's output. The delay is approximated by a second-order Pade' function. The quality of first and second order Pade' approximations are indicated in Figure 2 for the frequency interval of interest in pilot modeling, $\omega \tau<5$ RAD. For ease of development, a portion of Figure 1 is shown here.

where $\alpha_{3} v_{3}$ and $\alpha_{4} v_{4}$ are motor noise

$$
\begin{equation*}
e^{-\tau s} \doteq \frac{(s-4 / \tau)^{2}}{(s+4 / \tau)^{2}}=\frac{\bar{u}_{1 d}}{\bar{u}_{1}}=\frac{\bar{u}_{2 d}}{\bar{u}_{2}} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\ddot{u}_{1 d}+\frac{8}{\tau} \dot{u}_{1 d}+\frac{16}{\tau^{2}} \cdot u_{1 d}=\ddot{u}_{1}-\frac{8}{\tau} \dot{u}_{1}+\frac{16}{\tau^{2}} u_{1} \tag{13}
\end{equation*}
$$

FIGURE 2. PADE' COMPARISONS

$$
\begin{equation*}
\ddot{u}_{2 d}+\frac{8}{\tau} \dot{u}_{2 d}+\frac{16}{\tau^{2}} u_{2 d}=\ddot{u}_{2}-\frac{8}{\tau} \dot{u}_{2}+\frac{16}{\tau^{2}} u_{2} \tag{14}
\end{equation*}
$$

Now let

$$
\begin{align*}
& d_{1}=u_{1 d}-u_{1} \tag{15}\\
& d_{2}=\dot{d}_{1}+\frac{16}{\tau} u_{1} \tag{16}\\
& \dot{d}_{1}=d_{2}-\frac{16}{\tau} u_{1} \tag{17}
\end{align*}
$$

$$
\begin{equation*}
\dot{d}_{2}=-\frac{16}{\tau^{2}} d_{1}-\frac{8}{\tau} d_{2}+\frac{128}{\tau^{2}} u_{1} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\delta}_{B}=\frac{1}{T_{N}} d_{1}-\frac{1}{T_{N}} \delta_{B}+\frac{1}{T_{N}} u_{1}+\frac{\alpha_{3} v_{3}}{T_{N}} \tag{19}
\end{equation*}
$$

Using the same technique to develop \dot{d}_{3}, \dot{d}_{4}, and $\dot{\delta}_{C}$ as was used to develop \dot{d}_{1}, \dot{d}_{2}, and $\dot{\delta}_{B}$, one obtains:

$$
\begin{align*}
& \dot{d}_{3}=d_{4}-\frac{16}{\tau} u_{2} \tag{20}\\
& \dot{d}_{4}=\frac{-16}{\tau^{2}} d_{3}-\frac{8}{\tau} d_{4}+\frac{128}{\tau^{2}} u_{2} \tag{21}\\
& \dot{\delta}_{C}=\frac{1}{T_{n}} d_{3}-\frac{1}{T_{n}} \delta_{C}+\frac{1}{T_{n}} u_{2}+\frac{\alpha_{4} v_{4}}{T_{n}} \tag{22}
\end{align*}
$$

Equations (1) - (5), (10) - (11), and (15) - (22) now constitiute the state description of the pilot-vehicle system.

F. DISPLAYED VARIABLES

The displayed variables listed below are those quantities which are assumed to be displayed or perceived by the pilot.

$$
\begin{aligned}
& z_{p_{1}} \simeq \text { Displayed Groundspeed Deviation }=K_{1} u \\
& z_{p_{2}} \simeq \text { Perceived Time Rate of Change of Glideslope } \\
& \text { Deviation }=K_{2}\left(-w+U_{0} \theta\right) \\
& z_{p_{3}} \simeq \text { Perceived Pitch Rate }=K_{3} q \\
& z_{p_{4}} \simeq \text { Displayed Pitch Angle Deviation }=K_{4} \theta \\
& z_{p_{5}} \simeq \text { Displayed Glideslope Deviation }=K_{5} h
\end{aligned}
$$

The K_{i} are display gains. For example:
$K_{3}=\left|K_{3}\right| \frac{\text { radians subtended at the pilot's eye by display }}{\text { rad/sec pitch }}$

element motion

Table 1 lists the display gains for this study.
According to modification (4) in section II,B., \dot{u} should also be a perceived variable. However, since all perceived variables will be used in generating the director laws to be discussed, they must be measurable. If u represents airspeed, \dot{u} will be difficult to sense. For this reason \dot{u} was not considered a perceived variable (despite the fact the u represented groundspeed in this particular analysis).

It should be emphasized that neglecting \dot{u} imposes little constraint on the model's validity since this variable is associated with the phugoid and will be quite small throughout the approach.

Display Gain	Value
K_{1}	$3.44 \times 10^{-4} \mathrm{rad} / \mathrm{ft} / \mathrm{sec}$ K_{2} $\mathrm{~K}_{3}$ $\mathrm{~K}_{4}$ $\mathrm{~K}_{5}$
$9.67 \times 10^{-4} \mathrm{rad} / \mathrm{ft} / \mathrm{sec}$ $9.55 \times 10^{-2} \mathrm{rad} / \mathrm{rad} / \mathrm{sec}$	$6.67 \times 10^{-4} \mathrm{rad} / \mathrm{ft}$

TABLE I. Display Gains

G. OBSERVATION AND MOTOR NOISE

At present it is not possible to separate experimentally the various sources of pilot "remnant." In this paper, as is done in reference 2 , observation noise and motor noise were taken to be representations of remnant. Observation noise was taken to be pilot injected noise in observing the displayed quantities, and motor noise was considered to be random error in control movement execution. Both were considered independent, Gaussian, white noise processes.

The pilot related noise levels were set at values considerably larger than those found in documented laboratory experiments (e.g. Ref. 2) so that the design would be less sensitive to pilot noise and more forgiving of actual nonoptimal pilot behavior. Consequently, numerical values for
the observation noise and motor noise were chosen as $\rho=0.1$, and $\rho^{\prime}=.01$.
H. SYSTEM EQUATIONS AND MATRIX NOTATIONS

The system equations listed below define the optimal statefeedback controller and estimator problem. A thorough development of these equations can be found in reference 4 .

$$
\begin{align*}
& \underline{\dot{x}}(t)=\underline{A} \underline{x}(t)+\underline{B} \underline{u}(t)+\underline{y} \underline{w}(t) \tag{23}\\
& \underline{y}(t)=\underline{C} \underline{x}(t) \tag{24}\\
& \underline{z}(t)=\underline{H} \underline{x}(t)+\underline{v}(t)=\underline{z}_{\underline{p}}(t)+\underline{v}(t) \tag{25}\\
& E\left[w(t) w^{T}(T+\tau)\right]=F \delta(\tau) \tag{26}\\
& E\left[v(t) v^{T}(T+\tau)\right]=\underline{G} \delta(\tau) \tag{27}\\
& J=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left[\underline{y}^{T}(t) \underline{Q} \underline{y}(t)+\underline{u}^{T}(t) \underline{R} \underline{u}(t)\right] d t \tag{28}
\end{align*}
$$

where
A is an $n \mathrm{x} n$ plant matrix
$\underline{x}(t)$ is an $n x 1$ state vector
\underline{B} is an $n \times p$ control matrix
$\underline{u}(t)$ is a $p \times 1$ control vector
\underline{Y} is an $\mathrm{n} x$ disturbance matrix
$\underline{w}(t)$ is a $t \times 1$ disturbance vector
$\underline{y}(t)$ is a $q \times 1$ output vector
c is a q x n output matrix
Here, $\underline{w}(t)$ is a vector of linearly uncorrelated, zero mean white noise signals with Gaussian amplitude probability

distribution functions, The elements of $\underline{w}(t)$ are assumed to be sample functions from n random processes which are each ergodic and are jointly ergodic. The covariance matrix for $\underline{w}(t)$ is

$$
\begin{equation*}
E\left[\underline{w}(t) \underline{w}^{T}(t+\tau)\right]=\underline{F} \delta(\tau) \tag{29}
\end{equation*}
$$

where $\delta(\tau)$ is the unit impulse function.
The measured quantities on sensor signals are

$$
\begin{equation*}
\underline{z}(t)=\underline{H} \underline{w}(t)+\underline{v}(t) \tag{30}
\end{equation*}
$$

where
$\underline{z}(t)$ is a $u x 1$ measurement vector
\underline{H} is a $u \mathrm{x} \mathrm{n}$ measurement matrix

$$
\underline{v}(t) \text { is a } u x 1 \text { measurement noise vector }
$$

The elements of $\underline{v}(t)$ are assumed to be sample functions from p random processes each of which are ergodic and jointly ergodic. The covariance matrix for $\underline{v}(t)$ is

$$
\begin{equation*}
E\left[\underline{v}(t) \underline{v}^{T}(t+\tau)\right]=\underline{G} \delta(\tau) \tag{31}
\end{equation*}
$$

The system is assumed to be completely controllable and completely observable. It is desired to find the control function $\underline{u}(t)$ which minimizes the quadratic scalar index of performance

$$
\begin{equation*}
J=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left[\underline{y}^{T}(t) \underline{Q} \underline{y}(t)+\underline{u}^{T}(t) \underline{R} \underline{u}(t)\right] d t \tag{32}
\end{equation*}
$$

where

Q is a q x q symmetric output cost weighting matrix and at least positive semidefinite
\underline{R} is a $p x p$ symmetric control cost weighting matrix and positive definite

The solution to the linear quadratic Gaussian control
problem can be outlined as follows:
a.) The optimization problem can, by the called Separation Theorem, be broken up into two separate problems, an optimal control problem and an optimal estimation or filtering problem.
b.) The optimal estimation or filtering problem generates an optimal estimate, $\hat{\underline{x}}(t)$ of the state $\underline{x}(t)$. This estimate is optimal in the sense that
$\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \underline{\tilde{x}}^{\mathrm{T}}(\mathrm{t}) \underline{\tilde{x}}(\mathrm{t}) \mathrm{dt}$
is minimized, where $\tilde{x}(t)$ is the estimation error defined as

$$
\begin{equation*}
\underline{\tilde{x}}(t)=\underline{\hat{x}}(t)-\underline{x}(t) \tag{33}
\end{equation*}
$$

The optimal estimator (or Kalman filter) has the form

$$
\begin{equation*}
\dot{\dot{x}}(t)=\underline{A} \underline{\hat{x}}(t)+\underline{B} \underline{u}(t)+\underline{K}[\underline{z}(t)-\underline{H} \underline{\hat{x}}(t)] \tag{34}
\end{equation*}
$$

The estimator gains are given by

$$
\begin{equation*}
\underline{\mathrm{K}}=\underline{\mathrm{P}} \underline{\mathrm{H}}^{\mathrm{T}} \underline{\mathrm{G}}^{-1} \tag{35}
\end{equation*}
$$

where \underline{P} is the error covariance matrix

$$
\begin{equation*}
E\left[\underline{\tilde{x}}(t) \underline{\tilde{x}}^{T}(t+\tau)\right]=\underline{p} \delta(t) \tag{36}
\end{equation*}
$$

\underline{p} is the positive definite solution to the steady - state filter matrix Riccati equation

$$
\begin{equation*}
\underline{A} \underline{p}+\underline{p} \underline{A}^{T}+\underline{\gamma} \underline{F} \underline{\gamma}^{T}-\underline{P} \underline{H}^{T} \underline{G}^{-1} \underline{H} \underline{p}=0 \tag{37}
\end{equation*}
$$

C-

[^0]c.) The optimal control problem generates an optimal control law $\underline{u}(t)$ which is a linear function of the estimated state
\[

$$
\begin{equation*}
\underline{u}(t)=-\underline{L} \underline{\hat{x}}(t) \tag{38}
\end{equation*}
$$

\]

where \underline{L} is a $p x n$ optimal controller gain matrix. The gain matrix \underline{L} is identical to the one obtained by solving the optimal control problem with no system disturbance, exact state information, and the index of performance given by

$$
\begin{equation*}
J=\int_{0}^{\infty}\left[\underline{y}^{T}(t) \underline{Q} \underline{y}(t)+\underline{u}^{T}(t) \underline{R} \underline{u}(t)\right] d t \tag{39}
\end{equation*}
$$

the controller gain matrix \underline{L} is given by

$$
\begin{equation*}
\underline{L}=\underline{R}^{-1} \underline{B}^{T} \underline{S} \tag{40}
\end{equation*}
$$

where \underline{S} is the positive definite solution to the steady-state control matrix Riccati equation

$$
\begin{equation*}
-\underline{S} \underline{A}-\underline{A}^{T} \underline{S}-\underline{C}^{T} \underline{Q} \underline{C}+\underline{S} \underline{B} \underline{R}^{-1} \underline{B}^{T} \underline{S}=0 \tag{41}
\end{equation*}
$$

It can be shown that the state covariance matrix

$$
\begin{equation*}
E\left[\underline{x}(t) \underline{x}^{T}(t+\tau)\right]=(\underline{p}+\underline{M}) \delta(t) \tag{42}
\end{equation*}
$$

where \underline{P} is the solution ot the filer matrix Riccati equation and \underline{M} is the positive definite solution to
$(\underline{A}-\underline{B} \underline{L}) \underline{M}+\underline{M}(\underline{A}-\underline{B} \underline{L})^{T}+\underline{K} \underline{G}^{T} \underline{K}^{T}=0$

In addition to the solutions outlined above, it can be shown that the transfer matrix relating the Laplace transform

电
\qquad
of the optimal control law $\underline{u}(t)$ to the Laplace transform of the measurement vector $\underline{z}(t)$ (with $\underline{v}(t) \equiv 0$) is given by

$$
\begin{equation*}
\underline{U}(S)=-\underline{L}(S \underline{I}-\underline{A}+\underline{B} \underline{L}+\underline{K} \underline{H})^{-1} \underline{K} \underline{Z}(S) \tag{44}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{U}(S)=\mathscr{L}[\underline{u}(t)] \tag{45}\\
& \underline{z}(S)=\mathscr{L}[\underline{z}(t)] \tag{46}
\end{align*}
$$

The state variables for this study were chosen in the following order

$$
\left[\begin{array}{l}
u \\
w \\
q \\
\theta \\
h \\
w_{g} \\
u_{g} \\
d_{1} \\
d_{2} \\
\delta_{B} \\
d_{3} \\
d_{4} \\
\delta \\
\delta_{C}
\end{array}\right]
$$

The following matrix tables were developed from equations (1) - (5), (10) - (11), and (17) - (22). The matrices are labeled in accordance with equations (23) - (27).

As Table VI indicates, all but one of the elements of \underline{F} and \underline{G} are dependent upon variances of system variables
which are not known a-priori. Estimates of these variances must be made, the solution to the optimal estimation and control problem obtained, and the resulting variances used in a second iteration. This iterative process continues until the equations for the α_{i} and $V_{z_{i}}$ in Table VI are satisfied. As reference 2 points out, $2 \cdot m$ iterations are usually involved, where m is the number of displayed and perceived quantities.

The output vector \underline{y} utilized in the index of performance is given in Table V as

$$
\underline{y}=\left[\begin{array}{l}
u \\
q \\
h
\end{array}\right]
$$

The elements of the index of performance weighting matrices \underline{Q} and \underline{R} were chosen as the reciprocals of the "maximum allowable" deviations of the output and controls. Thus, when an output or control variable attains these subjectively chosen magnitudes, it makes a contribution of unity to the integrand of the index of performance. The maximum allowable deviations were chosen subjectively and varied with the flight conditions as Table V indicates.

○ 000000000000 H出

* 00000000000 H 00000

 1

$$
\begin{aligned}
& \begin{array}{|lllll}
\hline 0 & 0 & 0 & 0 & 0
\end{array} \\
& 00000 \\
& 00000 \\
& \bigcirc 0000 \text {. } \\
& 00000 \\
& \circ \circ 000 \\
& \text { - } 0 \text { ○ } 04^{10}
\end{aligned}
$$

$$
\begin{aligned}
& 004^{m} 00 \\
& \circ \hat{1}^{N} \circ \text { ○ } 0 \\
& \left\lfloor\begin{array}{lllll}
a^{-1} & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

y

III, PILOT MODELING EXAMPLE

This section presents a numerical illustration of the pilot modeling technique developed in Section H. The longitudinal dynamics of a UH-1H helicopter at an approach groundspeed of 60 knots are utilized. The normalized UH-1H longitudinal derivatives, in a stability axis system, are shown in Table VII.

A modified form of the Variable Automatic Synthesis Program (VASP) L Ref. 5T was utilized to solve the optimal estimation and control problem. The solution to this problem constitutes the pilot-vehicle model. After roughly 10 iterations the solution for the 60 -knot case converged. Table VIII shows the root-mean-square (RMS) performance figures. The ten pilot transfer functions relating the cyclic and collective control variables to the five displayed and perceived quantities were obtained. Figures 3 and 4 are Bode plot representations for the $\frac{\delta_{B}}{u}$ (s) and $\frac{\delta_{C}}{\dot{h}}$ (s) pilot transfer functions respectively.

Pure gain approximations were then made to each of the transfer functions in the frequency range of interest for modeling purposes: $.1<\omega<\mathrm{rad} / \mathrm{sec}$. The gains were then normalized by dividing by the magnitude of the largest gain for each control. The values in Table IX resulted. For example, using the gains of Table IX the cyclic and collective flight director laws become

$$
\begin{align*}
& \dot{\delta}_{B}(t)=-8,42 \cdot 10^{-4} u(t) \cdot 2,45 \cdot 10^{-4} \dot{h}(t)+q(t) \\
& +.1945 \theta(t)-4.02 \cdot 10^{-4} h(t) \tag{47}
\end{align*}
$$

$$
\dot{\delta}_{C}(t)=2.47 \cdot 10^{-4} u(t)-5.52 \cdot 10^{-3} \dot{h}(t)-q(t)
$$

$$
\begin{equation*}
=.13580(\mathrm{t})+1.96 \cdot 10^{-3} \mathrm{~h}(\mathrm{t}) \tag{48}
\end{equation*}
$$

where δ_{B}^{\prime} and δ_{C}^{\prime} are the cyclic and collective director signals respectively,
(20)

TABLE VII.

[^1]| RMS | | Performance |
| :--- | :--- | :--- |
| $\sqrt{\bar{u}^{2}(t)}$ | $=$ | $3.03 \mathrm{ft} / \mathrm{sec}$ |
| $\sqrt{\bar{w}^{2}(\mathrm{t})}$ | $=$ | $5.11 \mathrm{ft} / \mathrm{sec}$ |
| $\sqrt{\bar{q}^{2}(\mathrm{t})}$ | $=$ | $1.01 \mathrm{degree} / \mathrm{sec}$ |
| $\sqrt{\bar{\theta}^{2}(\mathrm{t})}$ | $=$ | 9.32 ft |
| $\sqrt{\overline{\mathrm{h}}^{2}(\mathrm{t})}$ | $=$ | $5 \mathrm{ft} / \mathrm{sec}$ |
| $\sqrt{\overline{\mathrm{w}}_{\mathrm{g}}^{2}(\mathrm{t})}$ | $=$ | $5 \mathrm{ft} / \mathrm{sec}$ |
| $\sqrt{\overline{\mathrm{u}}_{\mathrm{g}}^{2}(\mathrm{t})}$ | $=$ | 1.12 in |
| $\sqrt{\bar{\delta}_{\mathrm{g}}^{2}(\mathrm{t})}$ | $=$ | 1.35 in |
| $\sqrt{\bar{\delta}_{\mathrm{C}}^{2}(\mathrm{t})}$ | $=$ | |

TABLE VIII.

FIGURE 3. TRANSFER FUNCTION $\frac{\delta_{B}}{\mathrm{u}}$ (S)

FIGURE 4. TRANSFER FUNCTION $\underset{\dot{h}}{\delta_{C}}(S)$

DIRECTOR	$\begin{aligned} & \text { SENSORY } \\ & \text { VARIABLE } \end{aligned}$	$\begin{gathered} \text { LOW-FREQUENCY } \\ \text { GAIN } \end{gathered}$
CYCLIC	Airspeed Sink Rate Pitch Rate Pitch Height	$\begin{gathered} -.000842 \mathrm{sec} \\ -.000245 \mathrm{sec} \\ 1 \frac{\mathrm{ft}-\mathrm{sec}}{\mathrm{rad}} \\ .1945 \frac{\mathrm{ft}}{\mathrm{rad}} \\ -.000402 \frac{\mathrm{ft}}{\mathrm{ft}} \end{gathered}$
COLLECTIVE	Airspeed Sink Rate Pitch Rate Pitch Height	$\begin{aligned} & .000247 \mathrm{sec} \\ & .00552 \mathrm{sec} \\ & -1 \frac{\mathrm{ft}-\mathrm{sec}}{\mathrm{rad}} \\ & -.1358 \frac{\mathrm{ft}}{\mathrm{rad}} \\ & .00196 \frac{\mathrm{ft}}{\mathrm{ft}} \end{aligned}$

TABLE IX, Gains for UH-1H Helicopter Director Laws Velocity 60 Knots

IV, RESULTS AND CONCLUSIONS

The normalized director gains for the 40 and 20 -knot approach speeds are shown in the following tables. It should be noted that all of the Bode magnitude plots for the thirty pilot transfer functions (ten each for each of the three approach speeds) could be approximated by a fifth-order low pass filter. The break frequency varied somewhat between 0.4 and $0.5 \mathrm{rad} / \mathrm{sec}$. Only the director control gain changed from function to function.

In order to ascertain the reason for the rather dramatic sign reversals which occurred in some of the larger gains as the flight condition changed (e.g. in the collective-to-pitch rate and collective-to-pitch gains of Table IX and Table X), the author re-ran the $40-\mathrm{knot}$ case with identical pilot parameters, specifically \underline{Q} and \underline{R} matrices, as in the $60-k n o t$ case. The results were similar to those of Table X. This indicated that the flight condition dictated the gain sign variation and not the subjective selection of the \underline{Q} and \underline{R} matrices in the pilot model.

The director laws implicit in Tables IX - XI must be evaluated in piloted simulation before the efficiency of the design method outlined in this thesis can be determined.

DIRECTOR	SENSORY VARIABLE	$\begin{gathered} \text { LOW-FREQUENCY } \\ \text { GAIN } \end{gathered}$
CYCLIC	Airspeed Sink Rate Pitch Rate Pitch Height	$\begin{gathered} .000536 \mathrm{sec} \\ -.005287 \mathrm{sec} \\ 1.0 \frac{\mathrm{ft}-\mathrm{sec}}{\mathrm{rad}} \\ .374 \frac{\mathrm{ft}}{\mathrm{rad}} \\ -.00175 \frac{\mathrm{ft}}{\mathrm{ft}} \end{gathered}$
COLLECTIVE	Airspeed Sink Rate Pitch Rate Pitch Height	$\begin{gathered} .000426 \mathrm{sec} \\ -.0044 \mathrm{sec} \\ 1.0 \frac{\mathrm{ft}-\mathrm{sec}}{\mathrm{rad}} \\ .41962 \frac{\mathrm{ft}}{\mathrm{rad}} \\ -.00188 \frac{\mathrm{ft}}{\mathrm{ft}} \end{gathered}$

TABLE X. Gains for UH-1H Helicopter Director Laws Velocity 40 Knots.

DIRECTOR	SENSORY VARIABLE	LOW-FREQUENCY GAIN
CYCLIC	Airspeed Sink Rate Pitch Rate Pitch Height	$\begin{aligned} & -.0126 \mathrm{sec} \\ & .004448 \mathrm{sec} \\ & 1 \frac{\mathrm{ft}-\mathrm{sec}}{\mathrm{rad}} \\ & .277 \frac{\mathrm{ft}}{\mathrm{rad}} \\ & .00259 \frac{\mathrm{ft}}{\mathrm{ft}} \end{aligned}$
COLLECTIVE	Airspeed Sink Rate Pitch Rate Pitch Height	$-.01257 \mathrm{sec}$.00435 sec $1 \frac{\mathrm{ft}-\mathrm{sec}}{\mathrm{rad}}$ $.3005 \frac{\mathrm{ft}}{\mathrm{rad}}$ $.002535 \frac{\mathrm{ft}}{\mathrm{ft}}$

TABLE XI, Gains for UH-1H Helicopter Director Laws Velocity 20 Knots.

LIST OF REFERENCES

1. Levison, W.H, "A Model-Based Technique for the Design of Flight-Directors," Proc. 9th Annual Conf. Manual Control, pp. 163-172, May 1973.
2. Kleinman, D.L., Baron, S., Levison, W.H., "An Optimal Control Model of Human Response Part I: Theory and Validation," Automatica, Vol. 6, pp. 357-369.
3. Hart, J.E., Lowry, A.A., Lacau, L, L., "Stochastic Disturbance Data for Flight Control System Analysis," Technical Documentary Report No. ASD-TDR-62-347, September 1962.
4. Bryson, A.E, Ho, Yu-Chi, Applied Optimal Control, Ginn and Company, 1969.
5. NASA Ames Research Center Report TMX-2417, Users Manual for the Variable Dimension Automatic Synthesis Program (VASP, by J.S. White and H.Q. Lee, October 1971.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2
Cameron Station Alexandria, Virginia 22314
2. Library, Code 0212 2
Naval Postgraduate School
Monterey, California 93940
3. Chairman 2
Department of Aeronautical Engineering Naval Postgraduate School Monterey, California 93940
4. Asst. Professor Ronald A. Hess 57He 1
Department of Aeronautical Engineering Naval Postgraduate School Monterey, California 93940
5. Lt. G. K. Smith, USN 1
786 Tonga Court
San Jose, California 95127

32768002009243
DUDLEY KNOX LIBRARY

[^0]: $x=-$
 $-=-$

[^1]: $0.10134 \mathrm{E} 03 \mathrm{ft} / \mathrm{sec}$
 1/sec
 1/sec
 ft/sec
 $1 / \mathrm{sec}$
 1/sec
 ft/sec
 $1 / \mathrm{sec}-\mathrm{ft}$
 $1 / \mathrm{sec}-f t$
 $1 / \mathrm{sec}$
 $1 / \mathrm{ft}$
 1/sec-sec
 1/sec-sec
 1/sec-sec
 $1 / \mathrm{sec}-\sec$
 1/ft-sec-sec
 1/ft-sec-sec
 $0.10134 \mathrm{E} \quad 03$
 $-0.34137 \mathrm{E}-01$
 $0.19899 \mathrm{E}-01$
 $0.15661 \mathrm{E} \quad 02$

 00 界0LD68 ${ }^{\circ} 0^{-}$
 0.36540 E 02
 $0.14837 \mathrm{E}-02$
 $-0.12117 \mathrm{E}-01$
 -0.28505 E 01
 0.0
 $0.80591 \mathrm{E} \quad 01$
 0.80591 E 01
 $-0.32832 \mathrm{E} \quad 00$
 0.22374 E 02 $-0.11944 \mathrm{E} \quad 03$ $-0.25335 \mathrm{E} \quad 01$ \circ
 0
 19
 0
 0
 -1
 -1
 0 \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \| \|

 $$
 D^{0} x^{3} x^{3} x^{\sigma} N^{3} N^{3} N^{\sigma} z^{3} z^{3} z^{\sigma} \dot{z}^{3} x^{\infty} x^{0} N^{0} N^{0} z^{0} z^{\infty}
 $$

