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*ONTEF»E>

ABSTRACT

An investigation of photoabsorption experiments in the

141
spherical nucleus Pr, the quasispherical dynamically-

deformed Au, and the statically deformed Ho showed

that the best function for the energy dependence of the re-

duced transition probability is given by the Breit-Wigner

form rather than the Lorentz form of a resonance function.

However, the form of the resulting measured cross section

is of the Lorentz type. The dependence of the giant reso-

nance width T on the excitation energy was also investi-

gated. The variation was found to be less than 1% per MeV

if one considered the known isovector E2 resonances above

the giant dipole resonance. Best fit values of the reduced

transition probabilities for the three nuclei are given and

compared to (e, e') results.
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I. INTRODUCTION

In the attempt to fit inelastic electron scattering

data with the assumed resonance line shapes and a background

program, one finds a significant interdependence between the

assumed line shapes and background subtractions. In addi-

tion, the mutual effects that neighboring resonances have on

each other certainly depends on their assumed line shapes.

It therefore seems evident that the choice of line shape is

crucial to the proper assignment of resonance energies and

their relative strengths.

Three line forms to be considered are the Gaussian,

Breit-Wigner and Lorentz shapes. In the following

(d Q/dft dE ) = differential cross section

E = excitation energy

r = the full width at half maximum (FWHM)

E = excitation energy of the maximum,
o

The Breit-VJigner form

d
2 a(E ) / d

2
a \ (T/2)

2

1-1
dft dE \ dfi dE / (E - E )

2
+ (T/2)

2

X \ x/ X o
max

is symmetric about E1 o
2

Area (Breit-Wigner) = ir(r/2)(d O/dQ, dE ) . 1-2

The Lorentz form

2 / 2 \ ?
d cr(E ) / a o \ e r

X / \ X

dft dE Vdfi dE / (E
2
- E

2
)

2
+ E

2
T
2

x \ x/max x o x

10
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describes an asymmetric variation of the differential cross

section about the peak energy.

Area (Lorentz) = ir(r/2)(d a/dft dE )

x max
1-4

Note, that the limits of integration are -°° to +°° for Breit-

Wigner, and to +°° for the Lorentz form (see II.A.). The

Gaussian form

d ar(E )

dft dE

d
2
a

dfi dE
exp

E -E
_x o

r/2
£n 2 1-5

is symmetric about the peak energy

Area (Gauss) = (T/2) /iT/£n 2 (d o/dQ, dE )

x max
1-6

197
These three line forms are plotted in Figure 1 for Au.

Different investigators have assumed different line

shapes in their attempts to fit their cross section data.

The Gaussian line shape, which could not be justified by

purely physical argument, was used mainly because of its

mathematical simplicity. The El resonance in photonuclear

experiments has been fitted with both the Breit-Wigner and

Lorentz forms. Because the El cross section has been

measured to be asymmetric, the Lorentz form has been pre-

ferred more recently because it yields a better fit far off

resonance (several T's) at the higher excitation energies.

The primary goal of electron scattering experiments is

the determination of the intrinsic reduced transition prob-

ability (B-value) per unit energy interval, dB/dE , via the

11





measured scattering cross section. It is the first quantity

which, when integrated over energy, yields the total reduced

transition probability B(eA.) for the collective mode. One

is left with the problem of determining the relationship be-

tween d a/dft dE and dB/dE
x x

If one defines an excitation factor f (E ) by

d
2
a

dfi dE
C
l
f(E

x»

dB 1-7
dE

d a/dfi dE will yield the distribution of the desired re-

duced transition probability. Equation 1-7 can be rewritten

as (response function) = (excitation factor) x (excitation

strength function) . The left side of the equation corres-

ponds to the data to be fitted; the right side corresponds

to the fitting line shapes as modified by the excitation

factor. Note that in the following sections the excitation

factor is defined in such a way that the numerical value is

identical to 1.0 at E and corresponds to a constant B-value
o *

2 Xdistribution of B(EA) = lfm . Note furthermore, that E
o

is, therefore, not the energy associated with the maximum

cross section, but is that energy corresponding to the maximum

of the excitation strength function (B-value).

By a comparison of the results obtained from applying

each of the three line shapes, including the effect of the

excitation factor to experimental data, it is hoped that a

given choice of line shape is preferred over the others, that

is, that the line shape question may be solved experimentally,

12





at least for (y, abs) . Since this work considers only heavy

nuclei, in which the Coulomb barrier is high, the identity

a(y, abs) = a(y, n) + a(y# 2n) + o (y , np) + 1-8

is used.

Closely connected with the question of the resonance

line shape is the problem of the resonance width. Presently

no quantitative theory of giant resonance widths exists.

Here presented are some theories for the qualitative nature

of widths followed by a survey of experimental attempts to

show the energy dependence of these widths.

The original wording and nomenclature of the utilized

references have been retained as much as possible. Changes

have been made solely to facilitate reader understanding.

13





II. THEORETICAL AND EXPERIMENTAL BACKGROUND

A. LINE SHAPES

Danos and Greiner [2] addressed themselves to the theo-

retical aspects of the form of the giant dipole resonance.

Regarding the El absorption of a photon as an entrance

channel (doorway state) whose energy is distributed through

a succession of residual interactions among actual compound

states in the energy interval around E , one is led to the

same results as for a resonant scattering event described by

a Breit-Wigner form [3]. Unfortunately the authors do not

make a clear distinction between matrix elements (reduced

transition probabilities) and photon cross sections.

In later papers [4/5] Danos and Greiner showed that one

is led to a Lorentz term using the argument that since the

photon has no rest mass and using the concept of time re-

versal, one must choose a function which has symmetric

energy poles with respect to the imaginary axis. This de-

scription technique allows one to consider the photon absorp-

tion cross section as a superposition of a number of

individual Lorentz lines [3]. Again there seems to be

confusion between the (theoretically derived) matrix element:

and (experimentally measured) cross sections. Most authors

have generally adopted the practice of representing the form

of the measured photonuclear absorption cross section of the

14





giant resonance for heavy spherical nuclei by a single

Lorentz line and for heavy deformed nuclei by two Lorentz

lines [1]

.

Since the background in inelastic electron scattering

experiments is very high and can be calculated only approxi-

mately, it is unlikely that the choice between the Breit-

Wigner and Lorentz forms, which are very similar (Equations

1-1,3), can be easily made for (e, e'). Fortunately photo-

nuclear reaction data taken with monochromatic photons [1]

give very reliable results and are therefore more suited

experimentally for studying the problem of a line shape

choice, at least for the El state. This thesis concentrates,

therefore, on photon experiments. Note that photo-absorp-

tion experiments measure da/dE only, and not d a/dfi dE
x x

The connection between the reduced transition strength

and the photoabsorption cross section is given by [6]

E„

/
2+ 87T (A+l) . 2X-1 ,,

a dE = 7T Tica ! k B(X, k) ,

Y Y
[ (2X+1) ! !

]

II-l

where a = da/dE . It follows that
x

da/dE = C (E /E ) [dB(El,k)dE ] ,
x 2 x o x

II-2

where X = 1 . Therefore, for photoexci tation of a dipole

resonance the excitation factor is given by E /E . This
x o

can be re-expressed as

f(E
x

) = 1 + (E
x

- E
o
)/E

o
II-3

15





Note that f (E ) is normalized to unity at the resonance

energy and that it is linear in the excitation energy.

The Lorentz form can be mathematically decomposed into

a superposition of two Breit-Wigner forms as follows:

x /Lor x /max res
(T/2)

(V E
res'

2+(r/2)2

(T/2)"

(E
x
+E

res
)2+(r / 2)2

II-4

2 2 2 2where E = E - (T/2) a E , the latter approximation
res o o ^

being good for giant resonances. In the analysis of indi-

vidual resonances one usually omits the negative energy

resonance term since it contributes a practically constant

cross section of less than 1% for E ~ E and since away
x res J

from resonance, there may be more important additional con-

tributions arising from other neighboring and distant

resonances [ 7 ]

.

Applying the last three equations to the pho toexci tation

of a giant dipole resonance and assuming an intrinsic Breit-

Wigner line shape for dB/dE , one can see that the resulting

measured cross section has a Lorentz shape, given by

(da/dE x } Lor
* C

2
(VE

o
)(dB/dE

x , BW
II-5

where one has neglected the negative branch of the Lorentz

curve for the reasons previously cited. The two sides of

Equation II-5 are compared in the last two columns of Table I

16





where the right side is listed as the Lorentz approximation.

One observes indeed that this approximation is very good

with a nearly constant difference of 0.007. It will be shown

later that even differences of this order have a great impact

on the fits. The integrated cross section which results

00 / \ oc

II-6

can be seen to be only slightly dependent on the assumed line

shape. Note, though, that the limits of integration are not

identical, but this convention is widely used [3]

.

In summation it may be argued that f (E ) as defined
x

above for the photoexci tat ion of a giant dipole resonance is

identical with the term which, in a very good approximation,

makes up for the difference between the Breit-Wigner and

Lorentz forms. This is only true for an El resonance, since

Equation II-l shows that for the photoexcitation of an E2

resonance

f (E ) = C, (E /E )

x 3 x o
II-7

Alternatively it may be stated that the excitation factor

f (E ) produces the apparent asymmetry in the cross section

due to the rapidly changing momentum transfer

E /nc .

x
II-8

17





In inelastic electron scattering the momentum transfer

is described by

q
2

= (4E
f
E
i
/h

2
c
2

) sin
2

(9/2) , II-9

where E = E -E . . It is seen that the momentum transfer

for (e, e') does not change as rapidly with excitation energy

as for (y , abs). Even if the momentum transfer does not

change as rapidly in (e, e') as for (y, abs), the resulting

effect on f (E ) is not negligible. This is shown in
x

Figure 2, which compares the energy dependence of f (E )

for (e, e') and (y, abs) in the region of the giant dipole

197resonance in Au in the case of 65 MeV electrons.

Heretofore the excitation factor has been given as one

possible reason for the measured cross section being asymmet-

ric. In electron scattering, the incremental sampling of

the resonance curve by the line shape of an elastic peak,

which is used to reflect the line shape of the sampling line,

will introduce other asymmetry. The sampler's effect may in

principle be considered as a superposition of two phenomena,

asymmetry and the radiative tail. The asymmetric part gives

rise to a shift toward higher energy of the whole curve with

a right half width at half maximum (HWHM) being slightly

larger than its left counterpart. However, this difference

typically has been found to be only 20 keV for a full width

of 200 keV for the elastic line. An asymmetry of 20 keV for

a line width of several MeV as in the case of the giant

18





resonances will give rise to a negligible shift only. The

radiative tail which causes at least part of the asymmetry

in the elastic line shape (sampler) would give rise to

detrimental effects only for energies far off resonance;

however, the cross section has already dropped to values

no larger than three percent of the peak height at an exci-

tation energy of only two sampler half widths away from the

maximum. This effect is small compared to the uncertainty

arising from the underlying radiative tail. For these

reasons the fitting programs used in the evaluation of these

line shapes have assumed equal and constant right and left

HWHM's for the mathematical expressions.

Another effect which would lead to asymmetric line

shapes is the fact that the width might be a function of

excitation energy. This possibility has to be investigated,

too .

Bo ENERGY DEPENDENCE OF GIANT RESONANCE WIDTH

Goldhaber and Teller [8] proposed in their collective

model that the giant dipole resonance width is probably due

to the transfer of energy from the orderly vibrations of

the neutrons against the protons into other modes of nuclear

motion in a process analogous to damping by friction. A

nuclear model in which this ordered dipole vibration of

protons and neutrons in opposite directions corresponds to

well defined quantum states was adopted. This resonance

corresponds to the transition from the ground state to the

19





first excited state of the dipole vibration. Coupling with

other degrees of freedom broadens these states. This cou-

pling phenooenon leads to a large number of nuclear levels

each of which contains to some extent the dipole vibration.

Absorption of photons by an energy level is due to the con-

tribution from the dipole vibration. Thus, a large number

of nuclear levels actually contributes to the photoabsorp-

tion, but they all cluster around the first excited state

of the idealized dipole-vibration

.

Danos and Greiner [5] proposed that in heavy nuclei the

damping of the giant resonance is due to the thermalizat ion

of the excitation energy rather than to the direct emission

of particles; the latter process is strongly inhibited by

the angular-momentum barrier. After the absorption of a

photon, the nucleus is in a highly excited state of a partic-

ular kind, viz. the dipole state. In light nuclei a high

energy particle is emitted very soon, leaving the daughter

nucleus either in the ground state or in an excited state in

a region of very low level density. In heavy nuclei the

bulk of the reaction results in the emission of evaporation

neutrons. The decay of the dipole state therefore proceeds

via an intermediate state in which the energy is distributed

in a random manner among many degrees of freedom. The damp-

ing in light nuclei is thus a consequence of a "direct" pro-

cess, while in heavy nuclei most of the damping arises from

the " thermalization" of energy [9].

20





The thermali zation proceeds via inelastic collisions

leading from the one-particle-one-hole (p-h) state to two-

par ticle- two-hole (2p-2h) stateSo In heavy nuclei, several

hundred such states are available at the energy of the giant

dipole resonance. The rather large width of the giant reso-

nance arises from the addition of many small partial widths

of channels leading to the different 2p-2h states. In a

given nucleus the energy dependence of the widths is deter-

mined mainly by the density of states.

Huber et al [10] suggested that the coupling between di-

pole vibrations and quadrupole surface oscillations may be

very important and they include this dynamic effect in the

above cited collective model. This dynamic collective model

(DCM) predicts a splitting of the dipole strength into inter-

mediate collective states covering an energy range AT for

medium and heavy even-even quasispherical nuclei. This

splitting produces an increase in the overall giant dipole

resonance width T whenever the root mean square amplitude

3 of the surface vibrations, obtained from the reduced tran-

sition probability B(E2), increases; a similar increase

occurs when the energy E + of the first excited 2 state

decreases [11 ]

»

Dover et al [12] have drawn an analogy between the photo-

absorption cross section and the response of a system to a

weak external electromagnetic probe. In the nuclear shell

model this response is expressed in terms of the particle-

hole excitations that are induced by the external field. The

21





effect of collisions between excited particle-hole pairs

and the nuclear background leads to a damping of such par-

ticle-hole excitations. Dover et al have expressed this

damping effect not in terms of the undamped particle-hole

excitations but in terms of "quasiparticle-quasihole"

excitations, whose widths depend on the excitation energy

of the system. The mathematical approach used by the

authors shows that the dipole-s tr ength distribution, which

determines the absolute magnitude of the absorption cross

section, is given by the shell model, while the resonance

widths are determined independently by the nucleon excita-

tion energy.

Evidently any mathematical expression used in fitting

the experimental total photoabsorption cross section curve

requires a spreading parameter which characterizes the fact

that the giant dipole resonance has the experimental width

T as one of its interesting parameters. Experimenters

have tried to attribute this width to three sources [11].

Firstly, there is the direct decay width Tt of the dipole

state (approximately 100 keV). Secondly, the dipole strength

is generally split up over a certain energy range; for the

nuclei considered only the dynamic collective model (DCM)

,

which takes the coupling between dipole oscillations and

quadrupole surface motions into account, gives a formula

which can be used to predict a distribution of the dipole

strength. It predicts a splitting of the dipole strength

into several intermediate collective dipole states and this

22





splitting can be represented by a broadening term AT .

Thirdly, each dipole state has also a damping width T I .

Its meaning can be understood from the foregoing if, within

the framework of the shell model, one admits to the exis-

tence of a relatively "simple state", namely the aforemen-

tioned collective lp-lh dipole state, which is found in

roughly the same energy region as the one occupied by the

unperturbed 2p-2h states which constitute a dense background

in heavy nuclei. These more complicated states interact

with the simple state via the two body nuclear interaction

and the effect is to impart to the simple state the damping

width F4- due to the spreading of the simple state over a

certain energy range [11].

Danos and Greiner [4] assumed a power law dependence

6
T = C E 11-10

with the exponent 6 to be determined from the fitting to

their data. They found 6 to be 2.2 for ° Ho. Ambler

et al [13] found 6 to be 2.0 for
165

Ho.

Carlos et al [11] proposed the semi-phenomenological

description of the giant dipole resonance width mentioned

above. Having defined

r = r+ + at + n 11-11

and having chosen a set of nuclei for which Tt and AT

could be neglected, they studied T4- directly for medium

23





and heavy nuclei. They obtained as an empirical law for the

damping width

T+ = (0.026 + 0.005) e^
1 - 9! - 1

) n-12

for 139 <_ A _< 238. The r.m.s. deviation was found to be 0.28

MeV as compared to the experimental error of 0.2 MeV. For

90 _< A _< 150 they obtained the following result:

r = (0. 026+0. 005)E (1 * 9-0,1) + (0.76+0. 05)E3~ (0.82+0. 08)E+ ,

11-13

where all energies are in MeV, as in the previous equation.

An r.m.s. deviation of 0.3 MeV was found between experimental

and calculated values.

Commenting on the results of Carlos et al, Berman and

Fultz [1] stated that the use of a simple power law depen-

dence of T on E is fruitless (Figure 3) or is of use

only in a limited mass region; and that unless one takes

into account shell effects, or the resultant level density

in the giant resonance region, one cannot generalize the

behavior of the giant resonance width in this way.

All the previously cited references on experimental find-

ings have attempted to find the energy dependence of the

giant resonance widths by correlating their experimentally

determined constant widths to their experimentally determined

resonance energies. Their data base has extended either over

several different excitation modes of a given nucleus or over

the same mode of excitation for several nuclei. In other
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words they have attempted to find the widths as a function

of the resonance energy.

It is a secondary goal of this thesis to determine if,

for a given excitation mode of a given nucleus, the width

of the giant resonance varies continuously with the excita-

tion energy. Generalizing the concept of Danos and Greiner

[4] , one can use the expression

r - r
o

<e
x
/e

o ) , 11-14

197
as shown in Figure 4 for Au , where 2.0 and T

equals the experimentally determined FWHM. One easily sees

from this figure that the dependence of T on the square of

the excitation energy is much too strong. This work there-

fore uses

r ( E x
) = r

o
ti + c(e

x
- e

o ) 3 11-15

to investigate a linear dependence of the width on the exci

tation energy. This expression may be regarded as a Taylor

series of V i

terms

.

E which neglects second and higher order
x
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III. FITTING PROCEDURES AND RESULTS

Nuclei with varying degrees of deformation, which have

been measured with both monochromatic photon and inelastic

electron scattering experiments, were sought for this in-

141vestigation. The spherical nucleus Pr [14, 15], the

statically deformed Ho [16, 17], and the dynamically de-

197formed Au [3, 18] fulfilled these requirements.

Both the photonuclear and electron scattering data were

fit with a least-squares fitting procedure. To meet the

objectives of this thesis all three line shapes, Gauss,

Breit-Wigner and Lorentz, were incorporated into the fitting

program.

This program afforded the investigator many options in

fitting giant resonance curves. Any portion of the fur-

nished data could be fit with a variable number of lines

with any combination of line shapes of fixed or variable

resonance energy, width and peak height. A best fit is

2
determined when a minimum in chi-square X was found. Chi-

square is defined as

Y
2

= I (x.-x )

2
/0

.

2 III-l
. 1 o 1
i

where x. = calculated value of the cross section
l

x = measured value of the cross section
o

a. = experimental error associated with x.
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Related to this chi-square distribution is the term "degrees

of freedom" which is defined as the number of points to be

fitted minus the number of fitting parameters. The minimiza-

2
tion of x (per degree of freedom) offers the following ad-

vantages: if the value of x i s appreciably greater than

unity, the fitted line shape is incorrect, while if the value

2
of x i- s appreciably less than unity, the experimental sta-

tistics are incorrect. Using this criterion, one can make a

choice between different line shapes or between a one line

197
or a two line fit for cases such as Au. Additionally,

197 2since the Au fits often gave a x per degree of freedom

of less than 0.25, it was assumed that the errors in the data

given by the authors were too large by a factor of two.

Therefore, the resulting x P er degree of freedom was

197
arbitrarily multiplied by four for all Au fits. Naturally

this had no effect on the fits themselves, but makes the

comparison of Figures 27-29 easier.

The photonuclear data were fit with each of the three

line shapes (Figures 5-14) . Since the Gaussian form resulted

2 197
in an unacceptably large x for ^ost of the Au fits,

this form was discarded in evaluating the best fitting shape

for Ho and Pr. These initial fits were followed by

ones in which the excitation factor f(E ) was taken into

account (Figures 15-26). A further test of the concept of

the excitation factor was made using

f (E
x

) = 1 + <- + a) (E
x
-E

q
) .

o

III-2
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By varying a in steps it was to be determined whether

f(E
x

) in the form of Equation II-3 accounted for the total

variation of da/dE as a function of the excitation en ergy

E
x

. If so, a should be close to zero (Figures 27-29).

The final objective of determining the functional de-

pendence of the giant resonance width on the excitation

energy was to be met by obtaining best fits for different

values of e (Equation 11-15) and comparing the resulting

2
X -

Table II shows most of the quantitative results of this

investigation. Those energies and widths that were held

fixed show errors of 0.00. The f (E ) coefficient refers

to the factor multiplying (E -E Q ) in Equation II-3. Com-

pared to the results of Ref. 1, larger fitting intervals

were used in this investigation. While the extracted areas

are close to those of Ref. 1, they are consistently smaller,

as are the widths. This effect is due in part to the sub-

traction of the cross section due to the isovector (AT=1) E2

state(s). Note again that this thesis aims at the more

fundamental quantity of the reduced transition probability

rather than at the excitation cross section, which varies

with experimental method, and that, therefore, the parameters

extracted are the parameters of the excitation strength func-

tion and not of the cross section. No excitation factor was

taken into account for the E2 resonances.

2
Without exception the best x was obtained for the Breit'

Wigner line shape multiplied by the excitation factor. Both
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the Breit-Wigner and Lorentz line shapes gave better values

of x with f (E ) than without f (E ) .x x

Table III shows the percentages of the Thomas-Reiche-

Kuhn (TRK) sum rule [19] exhausted by the best Breit-Wigner

fits of the El lines. This sum rule gives the total inte-

grated cross section for electric dipole photon absorption

and is defined by

/
0(E)dE = 60(NZ/A) MeV-mb . III-3

Also given are the B-values for both the photonuclear and

inelastic electron scattering experiments. The Goldhaber-

Teller model (surface oscillations) was used to extract

the B-values from the (e, e') experiments [18]. Both the

Pr and
_ Ho values agree very well, but there is a

197
significant difference between the two values for Au

(for a possible explanation see Ref. 18).

The shapes of the a curves (Figures 27-29) varied

significantly with the three elements. The deformed nuclei

have wide minima for a = 0.04 for the Breit-Wigner curves

with the Ho curve being steeper than the Au curve.

Note that the statistical error was arbitrarily changed for

197
Au for purposes of comparison. A sharp minimum at

141
a = 0.00 characterizes the Pr curve. Contained in

141
Table IV are the fitting parameters for Pr obtained with

different values of a . One observes that as a increase:

29





the parameters for the resonances change systematically.

Differences in the area under the El curve are compensated

for by the area under the E2 curve. This emphasizes once

more the importance of the excitation factor for the

evaluation of giant resonances.

197
By comparing the one and two El line fits for Au

(Figures 16,19), one observes that a better fit was obtained

for the latter. The splitting of the giant dipole resonance

resulted in a reduction of x by a factor of five. The

X was reduced even further by considering the E2(AT = 1)

state at 23 o MeV [18] (Figures 25, 26). Although this line

was outside the range of the available data, the effect

within the fitting range was detectable.. The peak height of

this line, which was allowed to vary, was 23 mb as compared

197
to the (e, e 1

) result of 31.5 mb. In all other Au fits

the energies, widths, and peak heights were allowed to vary.

Isovector E2 lines at 23.5 and 26.75 MeV [17] were used

in the Ho fits. A variation of +0.5 MeV for these

2
energies had no appreciable effect on the x / but tne

exclusion of these lines increased the x most signifi-

cantly. The results for these two lines should be considered

qualitatively rather than quantitatively. All other reported

parameters for Ho were allowed to vary.

141
Similarly an E2 line at 25.6 MeV was used in Pr [15].

The resonance width of this line was fixed at 4.0 MeV while

the remainder of the fitting parameters varied.
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For the e distribution (Equation 11-15) it was found

197 141 2
that both Au and Pr showed a minimum x for £=0.00,

while Ho achieved a minimum \ for e=-0.02. If one

takes this result seriously, it would imply that the reso-

nance width shrinks for increasing excitation energies which

seems physically untenable. One should rather conclude that

the interdependence between the not too well known struc-

tures around 25 MeV and the El resonances bring this effect

about. In any case this investigation shows that the change

of T is smaller than 1% per MeV for the spherical and

quasispher ical nuclei.
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IV. CONCLUSIONS

Of the three line shapes considered the Gaussian form

2can definitely be discarded. Reasonable values of x

for the Gaussian form resulted only for multiple line fits,

141even for the spherical nucleus Pr. Even though reason-

2able, these values of x were much worse than the corre-

2
sponding values of x for tne Lorentz and Breit-Wigner

forms

.

The choice between the Breit-Wigner and Lorentz line

shapes is less obvious. If one compares the values of x

197
for Au in Table II for the Lorentz form (7.21, Figure 10)

and the Lorentz approximation (1.17, Figure 19), the latter

corresponding to a Breit-Wigner form with the excitation

strength factor, the choice seems trivial. However, Table I

shows the nearly constant difference of 0.007 between the

two line shapes. This represents a 0.7% error since the

peak height is normalized to unity. An estimate of the

standard experimental error is 4-6%. Keeping in mind that

this work halved these errors, one calculates a change in

2
the values of X of 2 » 8 to 6.2. This results explains most

2
of the difference between the values of x for the Lorentz

form without the excitation factor and the Breit-Wigner form

with the excitation factor. Additionally this result illus-

trates not only the accuracy achieved by monochromatic photon
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experiments but also the importance of the line shape selec-

tion.

Further complicating the choice between the two forms is

the interdependence between the effect of the excitation

factor f (E ) and the consideration of the E2 isovector

lines. With f (E ) multiplying the line shapes the areas

of the E2 lines decreased significantly for all three nuclei,

regardless of line shape selection.

197 197 '

The results for Au show that Au is dynamically

deformed at an excitation energy of 13 MeV, the deformation

being about one third of that found for Ho. Moreover, if

one chooses the "right" line shape (Brei t-Wigner form), the

ratio of the two B-values is close to 1:2 for the lower

energy compared to the higher energy as expected for deformed

nuclei [20]

.

Because the Breit-Wigner line shape multiplied by the

excitation factor consistently gave better fits to the data

for all three nuclei and because the results of these fits

agree with certain predictions, the distribution of the

reduced transition probability is concluded to be of Breit-

Wigner form. This result is especially satisfying since the

theoretical reasoning for a Breit-Wigner shape is simpler

and is founded on more basic nuclear properties than is the

Lorentz shape (see II. A.). The cross section is concluded

to be of the Lorentz shape, insofar as the approximation of

Equation II-5 holds.

Every aspect of this investigation confirmed the con-

2
cept of the excitation factor. Values of x were reduced
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by factors of 2-7 by using this factor. Even the Lorentz

shape gave better fits when multiplied by f (E ) . The

141extremely sharp minimum in the Pr a curve (Figure 29)

and the broad minima regions near a=0.0 in Ho and

197
Au (Figures 27, 28) show that the form of f (E ) in

Equation II-3 is essentially correct.

2There is the disturbing fact that the absolute x "

minima for Ho and Au were achieved for a=0.04. In

the case of these deformed nuclei with their resonances

overlapping, the fitting parameters are very interdependent

2
a fact which is reflected in the opening of the x -para-

bolas of Figures 27 and 28 when compared to Figure 29=

There was no clear evidence of a dependence of the

giant dipole resonance width on the excitation energy in

the first order approximation used (11-15).
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TABLE I

EX GAUSS B-W LOR LOR-APP

C.1000 0.0000 0.0296 0.0000 0.0002

1.0000 0.0000 0.0338 0.0006 0.00 26

2.0000 0.0000 0.03 96 0.0027 0.0061

3.0000 0.0000 0.0470 0.0063 0.0108

4.0000 0.0000 0.0566 0.0121 0.0175

5.0COO 0.0001 0.06 94 0.0209 0.02 69

6.0000 0.0007 0.08o9 0.0341 0.0406

7.0000 0.0040 0.1116 0.0544 0.0612

8.0000 0.0135 0.14/9 0.0862 0.0934

5.0000 0.0662 0.2034 0.1383 C. 1457

1C.0000 0.1859 0.2916 0.2268 0. 2343

11.0000 0.4083 0.4362 0.3003 0. 3379

12.0000 0.7011 0.6612 0.6299 0.63 76

13.0000 0.9416 C.9201 0.9161 0.92 3 7

13.7000 1.0000 1.0000 1.0000 1.0077

14.0000 0.989C 0.9843 0.9846 0.9923

15.0000 0.0125 0.76 95 0.7848 0. 7925

16.0000 0.5220 0.5161 0.553 2 0. 5608

17.0000 0.2624 0.3412 0.3885 0.3961

18.0000 0.1031 0.2338 0.2824 0. 2399

19.0000 0.0317 0.1672 0.2133 C.2208

2C.0000 0.0076 0.1244 0.1668 0.1743

21.0000 0.0014 0.0957 0.1343 0. 1416

22.0000 0.0002 0.0757 0.1106 0. 1179

23.0000 0.0000 0.0612 0.0929 0. 1001

24.0000 0.0000 0.0505 0.0794 0.0865

25.0000 0.0000 0.0423 0.0687 0.0757

26.0000 0.0000 0.0359 0.0601 0.0671

27.0000 0.0000 0.0309 0.0532 0.0600

28.0000 0.0000 0.0268 0.0474 0.0542

29.0000 0.0000 0.0235 0.0426 0.0493

30.0000 0.0000 0.0208 0.0385 0.0451
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TABLE III.

TRK SU.M RULE

EXHAUSTION

(PER CENT)

B-VALUE

(FM 2
)

(ytA3SJ (E,E« > ( Y, ABS) (E,E« )

AU

HO

PR

129

lOo

109

200(REF.18>

105(REF.17)

116(RfcF.15)

65.7

43.9

35.2

100 (REF.18)

43. 5(RFF.l7)

37.6(PEF.15)
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TABL E IV.

ALPHA EO WIDTH PEAK AREA1E1 )

1

AREA(E2)

(1/MEV) <M£V) (MEVJ (MS) (MEV-MBJ (MEV-M3)

-0.06 15.26 3.85 332 20C0 260

-0.04 15.17 3.94 330 2040 220

-0.02 15.03 4.06 327 2080 160

O.OC 15.00 4.20 322 2120 135

0.02 14.90 4.33 316 2170 80

0.04 14.80 4.61 308 2230 17

0.06 14.69 4.84 296 2250 27
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