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ABSTRACT

Constrained multi-item inventory systems with stochastic

demands are addressed. The concept of Bad Buys is introduced

and their temporal development is studied through a model

which links the financial and line-item inventory control

subsystems. The interaction of budget constraints and

control policies having stochastic resource requirement are

examined using a queueing model. Some line-item control

systems in current use are shown to be incompatible with

budget constrained financial control mechanisms. A model

and solution procedure are furnished to guide the line-item

inventory control subsystem in exercising adaptive control

of a multi-item inventory with stochastic demands and fixed

resources provided in successive fiscal periods. An inter-

active FORTRANcomputer program is furnished which exploits

the Generalized Lagrange Multiplier procedure in obtaining

optimal or near-optimal integer solutions to a class of

non-linear integer programming problems.
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I. INTRODUCTION

This paper deals with multi-item inventory systems

operating with stochastic demands and subject to resource

constraints. The theoretical setting is the field of Inven-

tory Theory, which considers ways of answering the questions

of whether to carry a stock of some good; if so, when to

obtain or replenish the stock and how much to obtain.

Operating policies are called continuous review policies if

replenishments may be initiated at any time epoch at which

prescribed conditions are met. Periodic review policies,

in contrast, can initiate replenishments only at specified

epochs of time and then when specified conditions are met.

The problem addressed herein is that of operation of a

multi-item, dynamic (in time as well as among items) inven-

tory system with performance objectives and interactive

competition among line items for limited resources. The

principal resource limitation considered is the procurement

budget, although the inventory control model for line-item

control incorporates a workload constraint as well.

Multi-item inventory models have been available for

some years; see for example, Hadley and Whitin [1], Vienott

[2] , Schrady and Choe [3] , and Muckstadt [4] . Most previous

work attempts a variety of cost minimization considering

expected values of steady-state variable costs associated

with shortage costs, ordering costs and storage costs. In
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such problem formulations, the expected procurement cost

per time period is independent of the decision variables and

is therefore dropped from the cost expression prior to

optimization. A different steady-state approach by Schrady

and Choe [3] led to continuous review policies designed to

minimize approximately the time-weighted shortages per unit

time subject to constraints on expected number of orders

placed per unit time and on the priced-out value of the

total expected on-hand inventory. The Navy Retail Supply

System uses a multi-item model, called the Variable Operating

and Safety Level (VOSL) Model, which is based on a multi-

item system described in Prichard and Eagle [5] . The avail-

able multi-item inventory models generally require stochastic

amounts of resources for implementation, do not address the

interaction between the procurement cost of their implemen-

tation and the constraint which may have been placed on such

costs, and generally permit their optimal decision variables

to assume non-integer and hence unrealizable values.

In an attempt to explain and overcome serious difficulties

experienced in attempting to ' implement available continuous-

review multi-item inventory models in inventory systems with

constraints, the author introduces the notion of an Integrated

Inventory Control System (IICS)
,

providing a conceptual

framework for this paper.

The concept of Bad Buys is introduced and defined

operationally in the context of a multi-item inventory system

11





subject to budget constraints. The stochastic nature of

the development of Bad Buys over time is then addressed.

A dichotomization of inventory policies based on the

nature of the process determining resource consumption is

made by the author. On the one hand are those policies

whose consumption of resources is stochastic (Type-S poli-

cies) and on the other hand those with resource consumption

well determined at the time of the allocation decision

(Type-D policies) . Most of the inventory policies in the

literature have stochastic resource consumption when demands

are stochastic but do not consider explicitly the interaction

between the resources needed to operate with the policies

and the resources actually made available. In this paper

the author examines the impact of various budget policies

on the capability of inventory systems to execute policies

with stochastic resource requirements.

The author develops a model which allows inventory

managers to consider a variety of demand distributions and

objective functions in exercising dynamic control over a.

multi-item inventory. The model and proposed procedure for

using the model permit consideration of the real-time inven-

tory position of each line-item candidate for replenishment

and thus account for inter-item competition for scarce

replenishment resources while not requiring steady-state

assumptions. Explicit consideration of the procurement

budget available circumvents the problems inherent in the

12





interaction of constraints on procurement funds with the

stochastic funding needs of common classes of replenishment

policies.

An interactive computer program has been developed which

is easy to use and which obtains optimal or near-optimal

line-item allocations using the model developed herein for

allocation to line items. It solves a class of non-linear

integer programming problems quickly and permits selection

of any of a set of objective functions by means of a parameter

vector.

Hadley and Whitin [6] observed:

" ... when an absolute budget constraint is imposed
on a year to year basis, a steady-state model is no
longer suitable in general. This is even more clear
where the budget is specified and may vary from year
to year. An entirely different and exceedingly
complicated model is required."

and again, in their text [1]

:

"Perhaps the most important real world constraints
are budgetary restrictions on the amount that can be
spent in procurements. ... However, as we have noted
previously, there is no simple way of including such
budgetary constraints in. a model."

It is believed that progress in optimization theory now

permits such real world constraints to be incorporated in

inventory operating systems, through conversion of Type-S

policies to Type-D policies.

A. THE INTEGRATED INVENTORY CONTROLSYSTEM (IICS)

By the acronym IICS is meant a system comprised of four

interacting subsystems, displayed diagrammatical ly in Figure (1)

.
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The first is likely to be located highest in the hierarchy

of the organization; it will be called the financial inven-

tory control subsystem (FICS) . FICS operates principally

on aggregate or macroscopic information obtained from the

inventory control information subsystem (ICIS) in order to

provide periodically fixed budgets to the line item inven-

tory control subsystem (LIICS) . LIICS operates principally

on line item or microscopic data contained in the ICIS, and

allocates available resources, such as the stock fund procure-

ment budget or the transaction processing capability of the

system, so as to convert these available resources into

stocks of the various line items carried. The inventory

control operating system (ICOS) executes the procurement

decisions made by the LIICS subject to constraints on

capabilities, while the ICIS receives, stores, processes

and provides information to the other subsystems.

B. CONTENTSAND SUMMARY

Chapter II provides a summary of historical development

of selected aspects of the Navy Retail Supply System as

well as a brief description of the present system. Problems

experienced in operating the line-item inventory control

subsystem of the Navy Retail Supply System are noted together

with several adaptations of the formal policy which have

been attempted by field activities in attempts to stay

within budget constraints.

15





Chapter III introduces the concept of Bad Buys within a

budget-constrained inventory system and addresses the

stochastic nature of their development over time.

Chapter IV addresses the interactions between the budget

policies of the FICS and the operation of a LIICS using

policies with stochastic resource requirements. An analogy

is presented between aspects of the FICS-LIICS interaction

and entities in a class of queueing models.

Chapter V presents a model and a solution procedure

which is designed to permit line-item inventory control in

a multi-item context where resources are constrained. Both

procurement budget and replenishment workload constraints

are considered with a capability provided to allow the user

to select from a class of objective functions. An interactive

computer program which provides a basis for implementation

of the proposed LIICS system is provided.

Chapter VI provides a model to assist the LIICS in

determining how much of the available procurement budget

to spend at a given replenishment epoch. Information from

the line-item allocation procedure of Chapter V is used,

together with information on time preference over replenish-

ment epochs, to produce a spending plan for the remainder

of the fiscal period. The spending plan is a projection, for

each intended replenishment epoch of the fiscal period, of

the amount of budget to be allocated, the value of the

16





effectiveness criterion to be achieved, and the value of

the shadow price of the procurement budget.

Chapter VII presents conclusions and suggestions for

further research.
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II. BACKGROUND

In this chapter we review developments leading to the

current Navy Retail Supply System, attributes of which we

have abstracted to construct the IICS model described in

Chapter I. Problems observed within this system are re-

viewed as they relate to interactions with the procurement

budgets provided by a FICS to a LIICS which attempts to

operate using prescribed Type-S line-item inventory control

policies.

A. HISTORICAL DEVELOPMENT

The basic financial reference model, predating the Navy

Retail Supply System, is depicted in Figure (2) . The inven-

tory position is defined as the stock on hand plus stock

on order less any backorders , Drawn in bold face, it coin-

cides in this model with the on-hand inventory when no

orders are outstanding. The stock on hand, represented by

a lightly drawn line, diverges from the inventory position

from the time an order is placed until it arrives. In

Figure (2) the inventory is viewed as experiencing continuous

demand at a constant rate, causing the stock on hand to vary

from a "stockage objective" of four month's demand to a

"safety level" (provided in recognition that demand and

lead time are not so regular in practice) of one month's

demands. Stocks are reordered at the time when the stock

IB
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on hand is just sufficient to carry the system until the

time when the safety level is hit — in our figure a lead

time of one month from placement of the order to its receipt

is assumed so that the reorder level is two months of stock

consumption.

In the 1950s U.S. Navy line-item inventory control

practices were based on the model of reality previously

presented as Figure (2) . Stock control clerks would estimate

the monthly demand and reorder whenever the inventory posi-

tion fell to or below the reorder point. The price of an

item and attributes of its demand pattern ether than average

demand rate affected neither the decision as to when to

place an order for a carried item nor how much to order.

Pressure from the Office of the Secretary of Defense

forced adoption of ordering policies using economic prin-

ciples. This gave rise to a number of optimization models

with variable replenishment values based on the economic-

order-quantity concept, as described in reference (1)

wherein order quantities are determined principally from a

balancing of ordering and holding costs. Assuming simple

cost relationships, order quantity expressions such as

w 1 V c

where X is the mean rate of demand, c is the per-unit cost,
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and k. is a cost parameter depending on both holding and

ordering costs, were derived by minimizing average annual

costs.

Thus, rather than always ordering three months demand,

the amount to be ordered would be proportional to the square

root of the ratio of the estimated demand rate to unit price

Consideration of the variability of demand in a lead

time led to formulas for determining reorder points r by

formulae such as

-1 k
2

r = F <
fc. + k. >

where k is the per-unit cost incurred by overage, k is

the per-unit cost incurred by shortage of stock, and F

is the inverse function of the cumulative distribution for

demand in a lead time. Operating under such policies

requires stochastic quantities of procurement funds.

Such modeling attempted unconstrained minimization of

costs which were more of the economic or conceptual variety

than they were actual accounting costs. That is, the holding

costs, shortage costs or order costs contributing to the cost

expression which was minimized were costs which did not

appear directly in the accounting systems servicing the

inventory systems. It was considered, perhaps, that a

system which could operate under the old, obviously-nonoptimal

policies could a fortiori operate if the inventory policies
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were optimal in a cost-minimization sense. These policies

were intended to operate in a "continuous-review" environment

in which stock status is closely monitored so that the re-

ceipt of demands immediately initiates a stock replenishment

as soon as the inventory position falls to the reorder point.

As these single-item models were implemented within multi-

item inventory systems there was no accounting for interactive

competition among different line-items for constrained

resources t

The need to live with tight constraints on asset value

led to the adoption of a multi-item inventory system, the

Variable Operating and Safety Level System (VOSL) . Under-

lying the Economic-Order-Quantity models, VOSL permits

management to specify, in terms of months of demand, a

range of operating and safety levels based on individual

line item characteristics while holding the aggregate values

within an overall specified limitation. This limitation,

based on a target inventory to sales ratio, is stated a. c* a

limitation of investment in inventory expressed in terms

of months of sales. This model exploited a principle known

to mathematical optimizers as the principle of constraint

relaxation. Rather than to require that each line item be

managed to attain the desired overall ratio of inventory to

sales, flexibility was granted to permit some items to have

high stock turnover and other items to have a low stock

22





turnover while maintaining the aggregate constraint for the

inventory as a whole.

A broad description of the Navy Retail Supply System

from the point of view of the financial manager is provided

by Eckelberger [ 7J . Out of a universe of some 900,000

different line items found in the 1972 Navy Management Data

List as potential candidates for stockage , some 300,000 line

items were carried in stocks of the Navy Retail Supply System;

the stocks were physically located at some 2 00 locations

worldwide. Sales of these carried items accounted for some

83 per cent of the total retail system sales, of annual

value on the order of one-half billion dollars. An additional

$100 million of transactions for not-carried items were

processed financially by this system in fiscal year 1971.

Control of budgets for procurement of stocks is exercised

by the Navy B
n leet Material Support Office, Mechanicsburg,

Pa. , through the monitoring and use of dollar-value summary

information obtained from a financial accounting system,

which operates in parallel with the line item information

system used for stock control

.

The basic policy directive for the Navy Retail Supply

System is the Navy Fleet Material Support Office Publication

"Navy Retail Management," cited as Ref. [8]. The basic

VOSL model is described in Refs. [ 9] and [10], and a detailed

look at the computer implementation of the model may be
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obtained from Ref. [11], which describes the computer

processing routine at a particular location.

Examination of a sample of 100 line items' computerized

records, obtained from a January 1973 extract from a Naval

Air Station serves to indicate some of the flavor of the

attributes of the line items carried in the Navy Retail

Supply System. Representative statistics are listed in

Table (I) . Note that the ratio of the greatest to the

least value of unit price from this small sample is more

than 10,000:1. It appears that there may be significant

unanticipated effect from using inventory models which

treat order quantity as a continuous variable, permitting

order quantities such as .3 8592 magnetrons, rather than

restricting attention to feasible integer order quantities.

The range of the then-current estimates of demand per quar-

ter varied by about a factor of about 1750:1, while the

range in estimated standard deviation of demand in a quarter

varied by a ratio of over 800:1. The estimated coefficient

of variation ranged over values in a much smaller interval

about 30:1 was the factor of maximum to minimum.

The picture portrayed in our sample is not dissimilar

to that reported by the Material Readiness Index System

(MARIS) Study Group [12] in which data on prices was obtained

from the Ship's Parts Control Center, and is displayed in

Table (II) , Here, although we speak of technical material

which is outside the Navy Retail Supply System, we find
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TABLE I

HETEROGENEITYOF LINE ITEMS IN NAVY RETAIL SUPPLY SYSTEM

Attribute

Unit prices

Est. quarterly-
mean demand

Est. value of
annual demand

Est. standard
deviation of
demand in a
quarter

Est. coefficient
of variation of
demand in a
quarter

Min:

$

Max

:

540.75

Max/Min

$ .04 > 13,500

.48 841.6 > 1,750

3.36 20,958.02 > 6,200

.40 329.49 > 800

.0738 2.26 30

Average value of coefficient of variation estimate: 1.2

Data source: sample of 100 line items in VOSL inventory
segment from January 19 73 extract from
Naval Air Station, Point Mugu.
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TABLE II

SKEWNESSOF UNIT PRICES OF NAVY TECHNICAL LINE ITEMS

Cognizance Symbol Mean Median Number of
(a set identifier) Price Price Line Item s

1H $ 167.20 $ 13.66 122,461

2H 884.82 150.00 52,108

6H 1,192.25 467.50 4,012

2Y 96.07 23.80 4,167

1A 28.41 5.22 10,453

2A 285.04 8.40 64,592

6A 94.57 10.00 20,612

Data source: MARIS Study Group Interim Report

The ratio of mean to median unit price among these groups
falls betv/een about 3 and 25, with median value of the
ratio about 9.
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considerable skewness in the unit prices, with mean prices

generally far above median prices in large groups of line

items of the same "cognizance" class which should have some

similarity of use.

In contrast to most commercial inventory systems, the

Navy Retail Supply System contains an extraordinary range

of types of material, from rags to sophisticated electronic

parts, from hardware to the ubiquitous U.S. Government ball-

point pen. Although it contains items with demand patterns

suggesting seasonal demands and decentralized items where

the attainable procurement unit price might not be indepen-

dent of the quantity ordered (and so on) , the sheer size

of the system, relatively high degree of automation and

attendant low level of available skilled human stock con-

trol effort per line item have tended to generate uniform

procedures which might work best on the average but not

so well in each individual instance.

A retailer such as a supermarket or Sears, Roebuck &

Co., likes to have relatively low inventories of stocks

with high stock turnover rates. Those systems typically

face short lead times for resupply, with many substitutes

available for each individual line item. The commercial

retailer can clear its stock of excesses and recoup its

direct investment costs by placing stock on sale. If

"business is good" and demand schedules should rise, pricing

and advertising policy can be used to turn derrand schedule
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increases into increased profits. The value of a unit of

a line item of stock is very closely related to the expected

increment to profits obtained by the individual unit —

given a markup policy the value of a unit might be considered

to be proportional to the cost to a close approximation.

The scale and scope of military inventory systems typically

dwarf those of civilian enterprises. Many line items are

highly technological and have no satisfactory substitutes.

Replenishment lead times often are long and highly unpre-

dictable. Excessing actions generally return far less than

the direct investment costs and then only after long delays.

The stimulation of consumption of slow-moving stock by

marketing appeals is generally considered undesirable and

therefore this management option is foreclosed. Pricing

policies are not used as a tool to enhance the financial

viability of the inventory system. Significant increase

in the quantity of goods demanded may likely result from

war or other armed conflict; hence being caught with stocks

"too low" may have profoundly adverse consequences. The

differences between military and commercial retail inventory

systems would seem to justify larger inventories in the

military case (with lower stock turn-over rates) than in

the commercial case.

B. PROBLEMSINVOLVING TYPE-S POLICIES AND FIXED BUDGETS

After a decade of experience using the VOSL system,

several recurring difficulties of "living with" the system
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have been noted. We feel that the difficulty experienced

derives from the implementation of a Type-S policy within

a budget-constrained system. In a personnel communication

the Requirements Division (i.e., Stock Control) Director

of a major overseas stock point stated, "Over a period of

time it became obvious that the VOSL Model was going to

generate buys which exceeded our budget constraint... ."

At that stock point an aiaxiliary criterion was developed

to decide on a priority basis which of those triggered

replenishments were to be released and which were to be

ignored. Personal conversations with officers at other

activities have revealed a variety of responses to this

common dilemma of having insufficient procurement funds to

implement the VOSL policy. At a Naval Supply Center the

order quantities of triggered replenishments were decreased

by a fraction 'determined so that the cost of releasing the

indicated (modified) replenishments did not exceed the avail-

able budget. At a Naval Air Station, the VOSL orders were

released without modification until no more funds were

available, whereupon no further replenishments were released

until procurement funds became available in the next fiscal

quarter. Lewis and Perkins [ 13] report four other ordering

policy alterations:

1. Place a monetary limit, of ten dollars on resupply
requisitions

.

2. Set order quantities to be equal to 3 days of
forecast demand.
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3. Set reorder points to zero.

4. Modify stocking and replenishment criteria to stock
and order only those items having at least six
requisition demands in six months.

It is apparent that there is no consistent practice for

inventory control of items which are nominally managed by

the VOSL system. This, it is urged, is not due to capricious

and arbitrary disregard of established policies. It is,

rather, the natural result of the imposition of financial

and stock control policies which cannot be simultaneously

followed in a very complex system which is "supposed to

work." Since failure to implement duly established pol.ic.ies

is considered to reflect unfavorably upon an officer, who

is held accountable for his actions (and inspected by the

Inspector General for adherence to established policies),

the sharing of information on common problems has taken

place, so far as it can be determined, tentatively and across

informal, horizontal .lines of communication.

There are two widely separated views concerning the

source or cause of the inability to accomplish the implemen-

tation of VOSL within its intended organizational milieu.

On the one side, those with a financial management orien-

tation argue that funds are granted on a sales replacement

basis so that an efficiently functioning stock control

branch should be able to operate within the funding limita-

tions — if only the stock controllers would cease and desist

from investing in "dead stock." Those with the stock control
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orientation contend that funds are never available in quan-

tity adequate to service the vagaries of demand and that

large increases in the quantities demanded of some items,

increases in lead time, inflation and bad buys of stock are

ignored by the financial manager's view of his aggregate

statistics. Murphy's Law is seen to reign supreme over the

stock replenishment process with demand pausing after

reorders are placed for one item (or else exceeding the

stock on hand) while another item, long dormant/ receives

an unexpected flurry of demand.

Couched in engineering jargon, the financial manager,

dealing in aggregates, sees a relatively favorable signal-

to-noise ratio in the value of demands experienced in succes-

sive periods. The stock controller, making the individual

replenishment decisions, sees "with a microscope" almost

everywhere a relatively unfavorable signal-to-noise ratio

in the quantity demanded for a line item from one period to

the next.

In this chapter the development of the Navy Retail Supply

System has been summarized, the heterogeneity of line items

managed in this system has been noted and inherent differ-

ences between military inventory systems and commercial

inventory systems have been noted. Inherent difficulties

occasioned by the interaction of Type-S policies within a

LIICS which must operate within specified constraints on

procurement funds were noted as were several informal altera-

tions of official policies which have become known to the

author.
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III. THE DEFINITION OF BAD BUYS AND THEIR

STOCHASTIC BEHAVIOR OVER TIME

In this chapter the concept of Bad Buys is introduced,

mathematically defined, and two examples are presented to

illustrate their behavior over time. A third example relates

the management option of disposal action to the concept of

Bad Buys within a multi-item inventory system with asset

constraints.

When multi-item inventories are subjected to random

demands it frequently happens that one line item may have

what appears to be an excessive quantity of stock on hand,

reflecting Bad Buys, while simultaneously another line item

is out of stock with unsatisfied demands either being back-

ordered or else resulting in lost opportunities for issue.

Such an inventory may have considerable stock assets with

great dollar value, but the maldistribution of the asset

value among the various line items decreases the capability

of the inventory system to accomplish its objectives. Of

course, after the random demands have been experienced it

may be easy to determine what distribution of assets among

the various line items might have precluded the out-of-

stock conditions.

The operation of the LIICS policy is seen as a trans-

formation of usable resources into stocks of dissimilar line

items so as to maintain a desirable balance of assets over
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the entire range of the inventory of carried line items

within the limits of resources provided. Certain factors

are considered which tend to affect the presence of Bad

Buys in an inventory.

A. BAD BUYS DEFINED

Consider a multi-item inventory system containing .N

line items. At succeeding epochs of time, t , t ,
- , ... ,

orders are placed and simultaneously received. Let b be.—

p

the N component legacy vector of inventory on hand at time

(t ) while x denotes the corresponding vector of inventory

on hand at time (t ) just after any stock orders have been

placed and received. Let A be the total dollar value of
P

stock assets permitted in the inventory at time (t ) ,

A > , and let B be the budget available for procurement
P P

of stock in the period beginning at time t , made available

at time t . Let c be an N-vector of unit prices c . of
P P DP

line item j at time t . Let z (x ) be the objective function,J
p p —

p

J

and consider the following two one-period optimization

problems (PI) and (P2) (suppressing p)

:

max z (x)

T
s.t. c (x - b) <_ B

(PI) x. - b. > for all j
3 j

—

x . , b . nonnegative integers

with optimal solution x* = (xJ, x* , ... , x^)
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and

(P2)

max z (x)

T T
s.t. £X<_B + cb = A

x., b. nonnegative integers

with optimal solution x**

The relaxed problem (P2) is obtained from (PI) by

providing the option of converting into dollars without

loss any legacy of stock brought forward at the time being

considered — and then reallocating the value of such converted

legacy optimally.

Every feasible solution to (PI) is also a feasible

solution to (P2) , but since x£* may be less than the legacy

b, for some item, the converse is not true. Thus,

z(x*) <_ z(x**) .

We introduce a measure of the effect of Bad Buys L(b)

L(b) = z(x**) - z(x*)

where it is understood that the optimal solution of (PI)

is a function of the starting legacy vector b. L (b) gives

the value of the loss in objective function units due to

the maldistribution of the legacy of inventory brought
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forward; i.e. the loss due to the "inherited" bad buys.

Thus, if L is positive we say that a budget-constrained

inventory system has Bad Buys. In a multi-item inventory

system with random demands, the appearance and disappearance

of Bad Buys are stochastic events which depend on the actions

and interactions of the several components of the integrated

inventory control system.

Definition . Let B = {b: L (b) > 0}. Then a vector b e B

is defined to be a Bad Buy, and B is the set of all Bad

Buy vectors at the time epoch (t )-.

It is noted that L (b) is defined in terms of the difference

in objective function value of two related optimization

programs; thus L (b) is implicitly a function of the number

of line items, their demand distributions and cost coeffi-

cients, the choice of objective function and of the asset

constraint, A.

In the inventory model, the fixed or allocated assets

might be stocks of different line items, stocks of finished

goods, or even of personnel with different skills. The

assets subject to allocation might be dollars, raw materials

or pools of untrained people.

B. TEMPORALDEVELOPMENTOF BAD BUYS

Let D. be the random demand for item j in period p, and

suppose that a budget is provided by the FICS at the beginning
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of each time period. In the examples it is assumed that

the asset value determined by the FICS is the expected value

of the (known) demand distribution for each item multiplied

by the corresponding unit prices summed over all items and

multiplied by a constant k reflecting the desired inventory/

sales ratio. That is, the asset value for period p is

N
A = k I c. E(D. ) , k >

P j =1 DP DP

The budget increment for period p is then determined as

the difference between the asset value A and the value of
P

the inventory legacy, or zero, whichever is greater.

N
B = max {0,A - E c. b . }

P P j =1 DP DP

This amount is provided to the LIICS as a procurement

budget for period p.

In the examples which follow, it is assumed that the

objective of the LIICS is to maximize the expected value of

sales from stocks available in the period at hand. Since

the value of demand is equal to the sales S plus the lost

sales Y, the maximization of expected sales is equivalent

to the minimization of expected lost sales. The latter

objective is more commonly stated but the maximization

orientation is selected here. For simplicity, it is assumed

in the examples that leadtimes are zero and that demands
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in excess of available stock are lost. Further it is

assumed that the probability distributions of demand are

independent among items and over the different time periods

Later, when a solution algorithm is developed, these assump-

tions are relaxed. Random demands are incurred from a

known probability distribution. The inventory carried

forward to period p+1 from period p is determined by

b . , , = max (0,x^ - d. )

D P+ l DP DP

where d. is the observed demand for item j in period p.
DP

The LIICS solves (PI) with objective function z (x ) given
P ~P

by

N 3p
z (x ) = I c ( E iP(D. = i) + x. P(D. > x. ))

P -P j =0 DP i=1 DP DP DP DP

Three examples are presented to illustrate the solution

of (PI) and (P2) . To solve more realistic problems econom-

ically for inventories containing upwards of ten thousand

line items, an efficient solution algorithm is required.

Such a procedure for obtaining near optimal integer alloca-

tions is presented in Chapter V. It adapts the Generalized

Lagrange Multiplier (GLM) method of Everett [14] to a class

of inventory problems.

1 . Example One

Consider ?m inventory system consisting of three

line items with legacy vector, cost vector and demand
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distribution given in Table III. Total assets A are limited

to $4 8 in each period. For simplicity of notation we suppress

p where feasible.

bj = (0,5,2)

cT = (3,4,12)

Prob. i 1 2 3 4 5 E(D.)

P(D
1

=i) 1/3 1/3 1/3 4

P(D
2

=i) 1/4 3/4 3

P(D
3

=i) 1/3 1/3 1/3 1

PARAMETERSFOR BAD BUY EXAMPLE ONE

TABLE III

First, considering the relaxed problem (P2) with free

and ready conversion of stock assets into dollars, we solve

X
l

max z (x) =3(1 iP(D=i) + ^P^i > x
x
^

x
x

2

+ 4( Z iP(D
2

=i) + x
2

P(D
2

> x
2

))

x
3

+12 ( I iP(D
3

=i) + *3 P ( D
3

> x
3

))
i=l

subject to

38





3x + 4x + 12x
3

<_ 48

X - f X r\ J O *»#"**#/ • • J

In solving this problem using dynamic programming [15],

stages correspond to the three line items and the state of

the system is summarized by the assets remaining to be

allocated. The state transformation equation is

s , = s - C Xn-1 n n n

while the recursive equation is

x n
f

n
(s

n ) - max {c n
(Z iP(D n=i) + x n

P (D
n

> *„) ) + ^(1,-0^)1
x n

1 1

Adopting the convention, as is done throughout this chapter,

that in case of alternate optima, the lexicographically

smaller [16] is selected, the optimal solution to (P2)

,

for all p, is found to be x** = (4,3,2) with optimal value

z(x**) = $32.

Next the legacy vector b n
with committed assets of

0(3) +5(4) + 2(12) = $44 is used to solve the restricted

problem (PI)

:
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max z (x,

)

*1

subject to 3x
i;l

+ 4 (x
2

_-5) + 12 (x -2) <_ 48-44 = 4

x , e {0,1,2, . . .

}

x
2

'-, e {5,6,7, . . . }

X •} i E \, fc , .5 , fx , . • c J

We obtain x* = (1,5,2) with value z(x*) = $27.

Since L(b, ) = 32 - 27 = $5, Bad Buys are present

and the expected loss which results from the maldistribution

of the legacy in period one is $5 over that which would have

been attainable if there were no Bad Buys.

If no new Bad Buys are. generated, future demands

will act to "eat down" the stocks available to place the

inventory system into a more favorable position. For exam-

ple, demands occurring in period one will be applied against

il (1,5,2), the best inventory position attainable in

light of the Bad Buys reflected by the beginning stock legacy

vector. The legacy available at the beginning of period two

has the following distribution:

Legacy (b_
2 ) from Demands (d.

)

with Probability

(0,1,0) (3,4,2)

,

,(4,4,2)

,

(5,4,2) 1/4
(0,1,1) (3,4,1) -(4,4,1)

,

(5,4,1) 1/4
(0,1,2) (3,4,0) ,(4,4,0)

(
r (5,4,0) 1/4

(0,5,0) (3,0,2) - (4,0,2)
,

(5,0,2) 1/12
(0,5,1) (3,0,1) (4,0,1)

,

(5,0,1) 1/12
(0,5,2) (3,0,0)

,

- (4,0,0)
,

(5,0,0) 1/12
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By solving problem (PI) with each of the legacy vectors

y_2 and comparing each such solution with the optimal solution

to the relaxed problem (P2) it is determined that the Bad

Buys, b» , have been subject to attrition in all but the

latter event, namely the event that b- = (0,5,2). That is,

the resulting legacy vectors at period two have L(b) =

except for L( (0,5,2)) = $5. In this simple example with

stationary demand, from a known distribution, the attrition

of Bad Buys will eventually occur, transforming the legacy

vector in some period p to a state such that the optimal

vector for (PI), x * , has the same objective function value

as does x**. Thus, in this example, Bad Buys cannot be

regenerated once removed by attrition, so that, given

attrition, then for each k = 1,2, ... ,

-p+k -p+k

and

<*&&- $32 -

It follows from the above that in this example the

optimal inventory vector x* may be viewed as following a

stationary Markov process (depending on the legacy vector

b ) with two states:
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State 1 **
*p (no Bad Buys)

State 2: x : x* ? x**
-P ~P

(Bad Buy legacy)

In our particular example the probability transition matrix

is given by:

p
ij

!

State

1

2

1

11/12 1/12

In a more general case with a stationary, independent dis-

tribution for demand, unchanging unit prices and budgeting

policy, the optimal inventory vector x* can still be des-

cribed as a stationary Markov process. If state one is the

vector x** (no Bad Buys) and states 2 through m correspond

to the m other possible values of x* which contain Bad Buys
-P

in at least one line item, then the Markov process {x*}r -P
has an absorbing state at state 1, and all other states are

transient. Without lexicographical or other preference

determination over the members of the class of optimal

solutions to (P2) then state 1 would need to be expanded

to include all optimal solutions of (P2) as a closed,

communicating class.
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The corresponding steady state probabilities are readily

seen to be

it = lim P (State 1) = 1

tt = lim P (State 2) =

so that, as time passes, the probability that attrition

removes Bad Buys approaches one. Furthermore, in this simple

example, the expected sales in period p are given by

E(z(x*)) = $32 - $5(1/12) P 1

so that the expected value of sales from stock converges!

geometrically to the expected valued of sales from stock

in the relaxed problem (P2) . In the general stationary

case E[z(x*)] will still converge to z(x**), although,

perhaps, not geometrically.

2 . Example Two

In example one we showed that, if demand distributions

are stationary and all other system parameters remain static,

Bad Buys are eventually removed by attrition. In actual

practice, the situation is dynamic and Bad Buys are con-

tinually created and removed. In example two the demand

distribution is nonstationary . We show that Bad Buys can

be generated because of changes in the demand distributions
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for the line items. Again consider an inventory system

consisting of three line items with unit prices c. - c.

for all p and for j = 1,2,3. Let the initial legacy be

(0,0,0) so that no Bad Buys exist at the outset. We look

at a horizon of four periods, and we assume that the LIICS

knows exactly the demand distribution for each line item in

the period at hand, but that the demand distribution is

unknown before that time. The parameters and the demand

distributions used in the example are summarized in Table IV,

in which, for example, the probability that demand in period

two for item three equals three, P(Dn 2
= 3) , is found to be

.2. The LIICS attempts to maximize expected sales in

P(D. =i)
DP

«i

Period Item c .

DP
i=0 i=l i=2 i=3 i=4 i=5 b.,

jl B(D
jp

)

1

A
t

=24

1

2

3

3

3

3

1/3

1/6

1/3 1/3

1/2 1/2

1/6 1/6 1/6 1/6 1/6

1

5/2

5/2
3/2~

5/2

2

2

A
2

=24

1

2

3

3

3

3

1/4

1/2

1/5

1/4 1/4 1/4

1/5 1/5 1/5 1/5

1/2

3

A
3

=24

1

2

3

3

3

3

1/5

1/4

1/4

1/5 1/5 1/5

1/4

1/4 1/4 1/4

1/5

1/4 1/4

2

5/2

3/2

4

A
4

=24
i i i

...... I.

.

1

2

3

3

3

-5

1/6

1/6

1/3

1/6 1/6 1/6

1/3

1/3 1/3

1/6

1/3

1/6

1/6

5/2

5/2

1

PARAMETERSFOR BAD BUY EXAMPLE TV70

TABLE IV
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each given period subject to the constraints of the basic

model. The optimal solution to the relaxed problem (P2)

for each period is given in Table v .

Period x
-P

** z(x**)
-P

1 (1,3,4) 16.50

2 (1,5,2) 13.95

3 (2,4,2) 14.70

4 (3,4,1) 15.00

SOLUTIONS TO (P2) FOR BAD BUY EXAMPLE TWO

TABLE V

Analysis proceeds throughout the four periods as in Example

1 by obtaining x* from b. , considering the effect of d,

upon x* , obtaining a probability distribution over all

possible values of b „ , optimizing problem (PI) for each

possible legacy b^ to obtain x * , and so on. We obtain a

sequence of inventory vectors x* (each optimal for some

particular legacy vector b ) which constitutes a non-

stationary Markov chain.

In each period,, a legacy vector b is transformed
—

P

into an asset vector x* through the procurement actions of

the LIICS. This asset vector is, in turn, transformed into

a legacy vector b , for the next period by the demands that

occur in period p. This is illustrated in the input-output

diagram of Figure 3.
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ip-$\
LIICS
procurement
actions

-^ -p > Demands
in period p

->b
*p+l

TRANSFORMATIONPROCESSFOR BAD BUY EXAMPLES

FIGURE 3

Table VI provides a summary of such optimizations

over four periods. To reduce the number of entries of b
-P

which are mapped into a common vector x , the letter "G"

is used to represent line item legacies that did not change

the vector x* from that which was optimal for zero legacies
-P

of these line items. The probabilities in the last column

of Table VII are the same as the transition probabilities

P(x* * x* ) , for the Markov chain x* p = 1,2, . .. . For—p —-p+i ~P
example, the legacy (G,G,3) in period two is optimized to

vector xi = (1,4,3) with optimal value of objective function

equal to $13.65. This vector (1,4,3) is transformed by

demands in period two either to a vector in the class (G,G,G)

indicating no Bad Buys with probability .8 or else to a vector

in the class (G,G,3) with probability .2. This legacy for

period three of (G,G,3) is optimized to a vector, (2,3,3), in

period three different from that in period two by the changed
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Period b X* z(x*) b P(x* -> b ..)
-P -P -P -p-i-± -p -p+1

1 (0,0,0) (1,3,4) $16.50 (G,G,G) 2/3
(G, -G p3) 1/6
(G, pG p4) 1/6

2 (G,G,G) (1,5,2) 13.95 (G, ,G pG) 1/2
(G, ,5, pG) 1/2

(G,G,3) (1,4,3) 13.65 (G, G pG) 4/5
(G, ,G ,3) 1/5

(G,G,4) (1,3,4) 12.75 (G, ,G pG) 3/5
(G, pG p3) 1/5
(G, 3 p4) 1/10
(G, ,0 p4) 1/10

3 (G,G,G) (2,4,2) 14.70 (G, G pG) 3/4
(G, G p2) 1/4

(G,5,G) (2,5,1) 13.95 ( G
/
G pG) 3/4

(G, 5 -2) 1/4
(G,G,3) (2,3,3) 13.95 (G, G pG) 1/2

(G, >G, -2) 1/4
(G, pG ,3) 1/4

(0,0,4) (2,2,4) 12.45 (G, ,G pG) 1/4
(G, G, -2) 1/4
(G, G, -3) 1/4
(G, -3 p4) 1/16
(G,
(G;

,1

r2

p4)

p4)
}3/16

(G,3,4) (1,3,4) 12.15 (G, G pG) 1/4
(G, G p2) 1/4
(G, G, -3) 1/4
(G, ,G -4) 1/4

4 (G,G,G) (3,4,1) 15.00 - -

(G,G,2) (2,4,2) 14.50 - -

(G,5,G) (2,5,1) 14.00 - -

(G,G,3) (2,3,3) 13.00 - -

(G,G,4) (2,2,4) 11.50 - -

(G,l,4) (2,2,4) 11.50 - -

(G,2,4) (2,2,4) 11.50 - -

(G,3,4) (1,3,4) 11.00 - -

SOLUTIONS TO (PI) FOR BAD BUY EXAMPLE TWO

TABLE VI

47





demand distribution used in the optimization of (PI) . Table

VII summarizes some transient results which show the impact

of the Bad Buys generated because of the changing demand

process.

p=l p=2 p=3 p=4

P(x*
p

= x-) 1 1 .98 .72

P(x*
p

= X**) 1 .67 .57 .88

P(x*
p

= X**) 1 .67 .57 .80

P(x* = X**)
-p -p

1 .67 .56 .72

z(x**) 16, ,50 13, ,95 14, .70 15.00

E(z(x*))
ir

16. ,50 13. 70 14. ,32 14.75

E[L(b )]
"~P

.25 .38 .25

TRANSIENT RESULTS (PI) FOR BAD BUY EXAMPLE TWO

TABLE VII

3 . Example Three

We have considered the temporal development of Bad

Buys in a multi-item inventory system with asset constraints

and provided examples wherein the optimal inventory vector

relative to the inventory legacy follows a Markov process.

The introduction of disposal action as a management option

permits an introduction of cases intermediate between problem

(PI) and problem (P2)

.

Consider a modification of problem (PI) in which

the line item inventory control subsystem has the option to
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modify the stock replenishment budget B by disposal of any
tr

4" V>

of its lecracy. Let 6 be a decision vector where the j- -p

component of 6_ is the number of units of line item j to be

disposed of at the beginning of period p. Thus,

6. e {0,1,2, ... , b. }. The new legacy vector, after

disposal, is given by b' = b - 6 . Let s. be the fraction
-P —P —P JP

of the unit price of the j line item that can be recovered

by disposal action at the beginning of period p — a salvage

factor and let c be a vector whose components are

c. s. . Therefore, after disposal, the budget is
DP DP

, rn

B' = B + 6 c . We assume that disposal action is
P P -P-S/P

immediate.

In order to decide whether or not disposal actions

should be undertaken, one should look at the expected per-

formance resulting from the modified legacy b 1 and the

modified budget B 1 compared with expected performance

resulting from b and B . In example 1. b, = (0,5,2) and

B
1

= 48 - (3,4,12) (0,5, 2)
T

= 4. Consider 6. = (0,0,1),

yielding b' = (0,5,1) and B' = $4 + 12s,,. On examination

of the solution to (PI) as a funct

(assumed to lie in [0,1]) we find:

of the solution to (PI) as a function of the parameter s^^

z' (x*) = $23 if s 31 e [0,1/6)

= $26 if s 31 e [1/6,5/12)

= $29 if s
3]

e [5/12,7/12)

= $31 if s
31

e [7/12,5/6)

= $32 if s 3l £ [5/6,1.0)
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Since z'(x*) > z(x*) = $27 for all values of the parameter
-P -P

s_, >_ 5/12, a disposal of one unit of item 3 would be

justifiable if the inventory system could recoup at least

five-twelfths of the purchase price. Also, as expected,

lim z' (x*) = z(x**) = $32.
s +i -P -Ps

31
L

C. IMPLICATIONS OF THE MODELS

This section discusses implications of the models with

respect to the effect of Bad Buys on the performance of an

IICS. The simple examples presented in the preceding sec-

tion were selected to demonstrate how Bad Buys may be

generated and how they behave over time , Other ways in

which Bad Buys may be generated and removed over time are

presented in this section.

From one broad perspective, Bad Buys arise from changing

preferences over vectors of inventory stocks due to modifica-

tions of perceptions of the costs and effectiveness associated

with these vectors. Bad Buys may arise through modification

of objectives, from differential changes of the prices of

various inventory line items, from fluctuation of budgets,

from forced inclusion of new items and their associated

assets within the inventory system, from the nonstationarity

of demand distributions as well as from having to use estimates

of unknown parameters of assumed probability distributions.
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As the size of the budget, B, is decreased, the like-

lihood that a given legacy of some line item becomes a Bad

Buy is increased. Indeed, for cases in which the measure

of effectiveness is a monotonically increasing function of

the decision variables, it is possible to increase the pro-

curement resources to the point that all Bad Buys would

disappear. We would expect the number of occurrences of Bad

Buys and the loss

L(b ) =z (x**) - z (x*)—p —p -p

to increase as the budget, B , becomes more restrictive.

A legacy vector, b , with Bad Buys for a particular

objective function, z. (•) , may not contain Bad Buys for

another objective function, z_(»). For example, if our

expected sales maximization objective were changed to an

objective of maximizing expected customer waiting time saved,

a given legacy might no longer represent Bad Buys. Thus

high-level policy changes exogenous to the IICS which alter

goals of the inventory function of the parent organization

may create Bad Buys.

In large-scale inventory systems the line-items are

often partitioned into inventory subsystems each having

independent LIICS and FICS which may experience different

degrees of funding support. Often line items assigned to

one subsystem are transferred to the control of another. If

51





an item migrates from a subsystem enjoying relatively ample

funding to a subsystem suffering from tight budget constraints,

the legacy for that item will likely contain a dispropor-

tionate number of Bad Buys when viewed from the eyes of the

recipient.

Since it is generally necessary to estimate demand

distribution parameters of assumed distributions using past

demand data together with other information that may be

available, Bad Buys are often generated by using statistical

estimates of the parameters of the demand distributions.

Since incurred demands will vary, even with stationary demand

distributions (a fortiori with non-stationary demand distri-

butions) the estimates based on these changing demands will

vary so that the LIICS allocations will attempt to optimize

a "moving target" in succeeding periods. Thus even as the

occurrence of demands tends to eliminate Bad Buys, the demand

process causes changes in the statistically estimated demand

parameters which tend to generate Bad Buys through changing

evaluations of vectors of stocks.

Bad Buys may be generated through adherence to economic

order quantitits developed at an epoch when the state varia-

bles, macroscopic (such as funds available) and microscopic

(such as demands incurred to date) were less completely

known than is the case at the time of allocation. The cal-

culated order quantities may have been optimal with respect

to the expected value of the pertinent state variables and
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yet not optimal with respect to the realized value of the

state variables used in the allocation scheme.

Attrition of Bad Buys is normally accomplished by waiting

for demands for the stocks in question. In a commercial

context demand may be titilated through advertising or prices

may be cut. In a military context consumption is generally

not stimulated for the purpose of clearing stocks; thus one

might expect the impact of Bad Buys to be greater in the

latter context. Disposal actions may be an effective option

when essentially all of direct costs are recoupable by

advertising in the evening paper a "sale" of items which may

be marked down to cost. Even if military salvage actions

are an option, if the return on the dollar is on the order

of ten cents on the dollar of direct costs and if the funds

generated are not quickly made available to the LIICS for

reallocation, as may be seen from the situation discussed

in Example 3, disposal actions will be undertaken in fewer

instances. Thus we expect, and observe, that disposal actions

are generally less common and less effective in military

inventory systems than in the commercial sectors which enjoy

a ready market for the goods stocked.

The maldistribution of resources resulting from Bad

Buys obviously reduces the efficiency of an inventory system.

Furthermore, because the FICS often considers only the dollar

value of current stocks when determining the amount of money

to be allocated for the procurement of new stocks, Bad Buys
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may also have a critical impact on the budget allocation

process. The exact effect of Bad Buys on an inventory

objective function has been hard to ascertain. For a given

Az
value of assets, A, the rate y-=? of return available from

additional budget increments furnished to the system is

greater whenever the inventory is in "bad shape" with regard

to L(b), the measure of the effect of Bad Buys. This asser-

tion follows from the assertion that L(b) may be increased

by starting with an optimal vector x** and reallocating the

associated asset value to a sequence of progressively worse

vectors. In the sequence of vectors x thus obtained, the

available rates of return measured in terms of changes in

z(«) per budget dollar spent are progressively greater.

Thus, if the FICS considers only the dollar value of current

stocks in making budget allocation decisions, procurement

funds may be withheld when Bad Buys and rates of return are

high (and funds are likely critically needed) and allocate

funds when rates of return are lower.

In this chapter the concept of Bad Buys has been intro-

duced within the context of a budget-constrained multi-item

inventory system experiencing random demands. Two examples

illustrated the stochastic nature of the development of Bad

Buys over time while a third example incorporated the manage-

ment option of excessing. Operational ramifications of Bad

Buys in an IICS have been discussed as have a variety of

interacting causes for generation and attrition of Bad Buys

in operating inventory systems.
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IV . INTERACTIONS BETWEEN THE BUDGET PROCESS

AND TYPE-S OPERATING POLI CIES

In this chapter, after introductory remarks, Day-One

Buys are introduced and defined in the context of a system

which attempts to operate using Type-S policies within

constraints on financial resources. Several budgeting poli-

cies are considered together with Type--S operating policies

and their interaction is shown to generate Day-One Buys.

It is argued that Type-S operating policies are, in general,

incompatible with constrained budgets.

We examine two events which occur when specified budget

resource limitations are placed on an administrator who is

responsible for the operation of a system with Type-S policies.

The first event occurs whenever the random amount of resources

required to implement Type-S policies in a period exceeds

the available resources. This event gives rise to the "Day-

One-Buy Problem" in which an accumulation of unsatisfied

demands for resources causes significant and extraordinary

resource consumption at the beginning of the succeeding

period when resources are again made available.

The second event occurs when the budget resources avail-

able exceed the resources required to implement the Type-S

policy in the period. This event leads to an :! End-of-Period

Spending Spree" in which an attempt is made to spend all

available resources before the next fiscal period.
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Although the motivation for a study of the interaction

between the budget process and Type-S operating policies

has come from the observation of problems experienced in

multi-item inventory systems with procurement budget con-

straints, the underlying problem structure is quite general.

Some other examples of Type-S policies are:

1) Fire a fifty-round burst at each suspected guerilla

location.

2) Buy 100 shares of AT&T every day that the stock

closes below $45.00 per share.

3) Buy five dollars worth of gasoline at every Shell

service station encountered.

In each of these cases the Type-S policy fails to adjust for

differences between resources available and resources required.

Clearly, strict adherence to a Type-S policy may be undesirable

or infeasibie. In the multi-item inventory problem it is

usually necessary to take the stance to make every dollar

count.

The operation of a Type-S policy in a system with con-

strained resources with a "go for broke" adaptation to the

constraint is outlined in Figure 4, Random events cause

changes in the state status record, e.g^_, demands cause

changes in the vector of inventory positions. The policies

operate on information in the state status record and trigger

certain actions such as requisitioning of replenishment stocks.

The triggered actions are released immediately so long as

5G





Pol ides
(Type S)

£>

o
1

Increment
Resources

i
sResource\

Status Y
Record y
£

Decrement
Resources <-

State \
Status

J
Record/

Triggered
Actions

5^
Pending
Actions <I —

I

NO

Released
Actions

OPERATION OF TYPE-S POLICY WITH CONSTRAINED
RESOURCESWITH "GO FOR BROKE" ADAPTATION

FIGURE 4

57





adequate resources are available; otherwise they are held

pending receipt of sufficient resources to permit their

release. The release of actions consumes the usable resources

and periodically more resources are made available. In

the context of an Integrated Inventory Control System the

Line Item Inventory Control Subsystem might be using (r,Q)

policies or (s,S) policies (both Type-S operating policies)

constrained by a procurement budget granted quarterly by the

Financial Inventory Control Subsystem.

In contrast, the operation of a Type-D policy in a

system with constrained resources is illustrated in Figure

5. As before, random events cause changes in the state

status record. The policies, however, incorporate informa-

tion from both the state status record and the resource

status record. The actions thus determined may be restricted

to those which are feasible with respect to the available

resources — and may be optimized with respect to the actual

levels of resources available.

A. DAY-ONE BUYS

Definition: Let S be the random number of dollars needed to
. n

execute' actions triggered by Type-S policies in period n and

let B be the funds then available. Define the budget
n

deficit in period n, D , to be
n

D - max (0,D .. + S - B }.n n-l n n
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Then period (n+1) has Day-One Buys iff D >
n

The obvious counterpart to Day-One Buys are those

resources made available to a system during a period which

were not needed to execute the Type-S policies during the

period. We call these Idle Resources. When implementation

of Type-S policies is attempted within a system subject to

resource constraints there will generally be simultaneously

a positive probability that the resource consumptions

triggered within a time period will exceed the budget and

a positive probability that the available funds will exceed

the needs of the system.

Administrators of LIICS who employ Type-S policies

subject to budget constraints must attempt to protect

against Day-One Buys and Idle Resources by adjusting the

control parameters of their Type-S policies. If reorder

points are lowered and order quantities are reduced less

procurement funds will be needed. Such actions result,

however, in a worsening of customer service effectiveness

(more times out of stock, longer delays, etc.), and they

require more reorder actions with attendant increase in

the processing of transactions. If reorder points are

raised and order quantities increased, Idle Resources will

likely vanish, but at the cost of an increased likelihood

of Day-One Buys. Thus, a conservative administrator who

establishes Type-S policies with expected value of resource
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consumption far below the available budget will protect

against Day-One Buys at the cost of reduced supply effec-

tiveness and high expected Idle Resources. The bolder

administrator who attempts to adjust the control parameters

so that expected resource utilization exceeds the available

budget will achieve a higher level of supply effectiveness

at the expense of intolerable Day-One Buys. Without special

augmentation from the FIGS the effectiveness achieved by the

bolder administrator will probably not be sustainable.

If Day-One Buys are not recognized and dealt with

formally, they tend to be carried forward without special

compensation to the following budget period. This increases

the likelihood that the next period will have Day-One Buys.

Eventually the replenishment actions of the LIICS may cease

while demands incurred tend to creat significant Bad Buys

due to the maldistribution of the inventory assets. If

Day-One Buys are recognized and dealt with only informally

two coexisting systems tend to develop: (1) the "official"

Type-S policy system and (2) the "unofficial" policy system

which modifies the nominal policy in ways not officially

recognized — determining "how we really operate around here."

We discussed in Chapter III the effect that the pro-

curement budget has on the generation of Bad Buys. The

more restrictive the budget, the larger is the impact on

Bad Buys. Furthermore, we have argued above that the
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phenomenon of Day-One Buys is caused by the interaction

between the budget process and Type-S operating policies.

In the material that follows we look at some commonly used

budget allocation procedures, and we show that most lead to

potentially critical problems.

B. THE BUDGETINGPROCESSRELATED TO DAY-ONE BUYS

Assume that there are no pending actions at the beginning

of period 0. Let S be the random number of budget dollars

needed in period n to implement a Type-S operating policy.

We assume that {S : n = 1,2, ...} constitutes a sequence of
n

independent random variables with distribution function

2
F(»), expected value y, and variance a . Let B be the pro-

curement budget available for ordering stock in period n

and let D = . The budget deficit (Day-One Buys) in period

n, D , is easily seen to be
n

Dn -max (0, d + S
n

- b ).

The budget deficit process {D : n - 1,2, ...} may be viewed

as the analogue of the customer waiting time in a single

server queue. The budget allocations {B } play the role of

the customer inter-arrival times, and the system needs {S }
' n

correspond to the service time process. Thus, if Bn is

random, we have stochastic arrivals and stochastic service

times. The idle resources,
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I = max ( , B - S - D ,

)

n n n n-1

are analogues of the idle times in the queueing model. In

Figure 6 we depict the budget problem in the context of a

single-server queue.

ARRIVALS

(BUDGETS)

Waiting
^Line

(Deficits)
-*

Service
Facil ity
(Requirements)

SERVED UNITS

(EXPENDITURES)'

BUDGET PROCESSAS A QUEUEING SYSTEM

FIGURE 6

As illustration of the queueing analogy, consider an inven-

tory system with E(S ) = $4000 for all periods n which allo-

cates a constant amount B = $4000 each period. Assume that

there is no deficit at the start of period one and that the

sequence of values of S over the first six periods is as
n

given in Table VIII. The deficits D and idle resources I

are displayed.

Period S
n

B
n

Dn
I

n
1 $3500 $4000 $ o $500
2 4500 4000 500
3 4500 4000 1000
4 4000 4000 1000
5 3500 4000 500
6 4000 4000 500

BUDGET DEFICIT - QUEUEINGANALOGYEXAMPLE

TABLE VIII
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Although the total budget provided in the six periods is

equal to the total resources required, the average value of

the deficit is approximately $583. In the following material

we examine various commonly used budgeting policies, and we

exploit the queueing analogy to assess the impact of the

policies with respect to the expected sizes of budget deficits

and the probability distribution of budget deficits.

C. CLASSES OF BUDGET POLICIES

1. Bn = (1+a) E(S )

n n

This budget policy attempts to allocate slightly

more or less funds than are needed "on the average." For

a = , the "right" amount of funds are provided "on the

average." This is a logical choice of policy if S has zero

variance since the LIICS makes full use of the resources

provided while the FICS allocates no more funds than are

actually needed. Unfortunately, this policy has been adopted

in large multi-item inventory systems where S is random.

Experience and simulations alike (see [13] , [17]) and well-

known analytical queueing results all have shown that the

system cannot work under such a combination of budgeting and

operating policies with a < 0. With a <_ 0, the analogous

queueing situation is the D/G/l queue with traffic intensity

greater than or equal to one. For such a case, the system
.

is guaranteed to "blow up" in the sense that the expected

deficits grow without bound as n gets large. If, on the other
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hand, a is strictly positive (the traffic intensity is less

than one) the stochastic process {D } possesses a steady-

state distribution, but the expected value of D may still

be large. Marshall [18] has shown that the expected, value

of the budget deficit process {D } at steady state is bounded

above and below by

Var [S n ] E[S
n ] Var [S n ]

2(B - E(S )) " T" - E(D
n ) - 2"(B - E(SJ)-n n

regardless of the particular distribution of S . Table IX

gives some numerical examples using the bounds above. Note

that the bounds are proportional to the variance of S andn

inversely proportional to the difference between B and u.

When S is deterministic and constant and S < B there is
n n n

no deficit. With even modest variability, however, the

steady-state expected value of the budget deficit can be

very large. For example, when the standard deviation of

S„ is only one-fifth the magnitude of the mean of S , the
n J n

expected budget deficit is between one-half a period's

budget and a whole period's budget when a = 0.02. It is

assumed that this reflects catastrophic failure of the IICS.

In actual practice the true mean u is unknown. Thus,

instead of using the budget policy B = (l+a)y, what is

usually done is to replace u by some statistical estimate.

Let S be any unbiased estimator of )i which is independent

of S . Consider the class of budget, policies;
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B
n

= (l+cx)y, S
n

are i.i.d., y = E(S ) = $100,000

2Let c = o/v, where a = Var(S )

.2 .4 1.0

.05 U
L

.02 U
L

.01 U
L

$ 40,000

100,000
50,000

200,000
150,000

$160,000
110,000
400,000
350,000
800,000
750,000

$1,000,000
950,000

2,500,000
2,450,000
7,200,000
7,150,000

UPPER AND LOWERBOUNDSON THE STEADY-STATE EXPECTEDDEFICIT

FOR B
n (1+a) y

TABLE IX

2. B = (l+a)S
n

[_

With this policy the needs generated in a period are

estimated and the budget provided is proportional to that

estimate. Because of lead times in the budget process the

estimator S may employ only data for periods n-k, n-k-1

,

..., where k >_ 1. If the estimator perfectly estimates y

the expected deficits are the same as in case 1. above.

The sampling variance inherent in the estimator may tend

to increase the expected values of both the idle resources

and the budget deficit from those experienced in case 1.

This class of budget policies includes a large number of

cases that may well have been employed in the past. Among

these are:
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2a) B
n

= (l+ct)S
n _ k , k = 1,2, ...

2b) B = (l+a)S~ where 3" is a sample mean or a
moving average of previous values
of {S-^S^, .../ ^ „, }.

2c) B = (l+a)S where S is a forecast of S obtained
by using exponential smoothing.

Since D and B are not necessarily independent for this

class of policies (both depend on the values S.. , ... ,S _.)

standard queueing results for GI/G/1 queues are not applicable

Generally speaking, little can be said analytically about

the magnitude of waiting times (budget deficits) when the

service process and the arrival process are not independent.

In the budget policies discussed above, the FIGS

does not take into consideration the present plight of the

LIICS when determining the budget allocation for the LIICS.

Certainly, it would be reasonable for the FICS to "bail out"

the LIICS if large deficits exist — that is, to provide funds

for the Day-One Buys in addition to funds for "normal opera-

tions during the fiscal period." The following policy

considers this sort of feedback.

3. Bn
= (l+a)u + D

n _ 1

e In this case the FICS funds all deficits and allocates

an additional amount equal to some multiple of the expected

needs of the system. Now

D. = max (0,D. + S. - B.) = max (0,S. - (l+a)u)
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and

D.
1

= max (0,S.
x

- (l+a)y)

so that the random variables D. are independent and

identically distributed. It is noted that

E (D n ) = E(max(0,S - (l+a)y)

/ (s - (l+a)y) dF (s)
(l+a)y b

For example, suppose the S. are each normally distributed

with mean y = $100,000 as before and coefficient of variation

c = o/\i. Various values of E (D ) are given in Table X. .

EXPECTEDVALUE OF Dn for B « (1+a) y + D , , all n

\ c
a %.

0.2 0.4 1.6

.05 $5728.00 $13,584.00 $37,440

.02 7020.00 14,976.00 38,910

.01 7488.00 15,460,00 39,390

TABLE X

As seen in Table X , the expected deficits can be

relatively large even when previous deficits are funded each

quarter. Similar results can be obtained for the idle resources
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As with policy 1, the parameter y is unknown and,

in actual practice, must be estimated by some statistical

estimator S . This leads to the class of policies:

4
-

Bn " (1+a)s n
+ D

n-1

Assume that S is an unbiased estimator of u (E(S )=u)
n K n M

and that S„ is a function of the values of the S . for

j < n-1. Now,

E(D
n ) = E(max(0,S

n
- (l+a)S n ))

where the expectation is taken with respect to the joint

distribution of the random variables S and S . By then n a

assumption on S and the indeDendence of the S . this isc n j

simply the product of the distributions of S„ and S . Thus,c * L n n '

the expected deficits in period n will depend on the distri-

bution of the estimator S„

.

n

Let S be fixed at s and define

g(S ) = max (0,s - (l+cx)S n ) .

Then, g(S ) is easily seen to be a convex piecewise linear

function of the random variable S . Furthermore, since S
n

is unbiased,

g(E(S n )) = max (0,s - (l+a)y),
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and by Jensen's Inequality (see Feller, [19])

E(D
n

|S
n

= s) = E(g(S n )) > g(E(S n )) = max (0,s - (1+a) y)

Finally,

E(D
n ) = E(max (0,S

n
- (l+a)S

n )

= E{E(D
n

|S N)}

> E(max(0,S
n

- (1+a) y)

Thus we have proved

Theorem 1: Let {S.} be i.i.d. random variables with mean y

and let S . be an unbiased estimator of y which is independent

of all S, for k j> j . Then the expected deficit for a budget

policy 13 = (l+a)S + D n can be no smaller thanc n n n-1

/ (s - (l+a)y) dF(s)
(l+a)y

Intuitively this result is not surprising, for the

estimator S will have some variability causing extra

uncertainty over the case when y is known.

Clearly, if the objective were to minimize both

deficits and idle resources, the optimal budget policy would

be a "blank check" policy.
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5. B = S
n n

This is the financial policy implicitly assumed by

most modeling formulations in the literature of inventory

control. Here, the budget is random and is equal to the

amount of resources required to implement whatever Type-S

policies are employed. Such uncertainty in the level of

expenses being committed causes financial managers much

discomfort. Blank check policies are contrary to the

appropriations process of the federal government and are

often ruled out by legally imposed budget mechanisms.

In an attempt to limit the risk of too great a

budget consumption, financial administrators may adopt a

modification of the "blank check" policy which makes avail-

able to the LIICS an amount equal to the actual requirements,

but only when that amount does not exceed some specified

upper bound B.

6. B = min (S ,B)
n n'

This policy completely eliminates Idle Resources,

but makes the budget deficit problem severe. No explicit

capability is provided for the reduction of any budget

deficits which might be generated. For x >_ , consider

that, since D = max{0,D , + S„ - Bh } , then
n n-l n n

B-x CO

E(D p = x ) = x / dF(s) + / (x+s-B)dF(s)
n n " 1 B-X

CO

= x + / (s-B)dF(s) > x
B-x

7.1





Eliminating Idle Resources by this policy thus leads in

expected value to deficits which increase without bound so

long as P(S > B) > 0. The reaction to such a trend might

lead to its counterpart next discussed.

7. B^ = max (S .B)
n n

This policy completely eliminates the budget deficit,

but at the expense of uncertainty as to the financial assets

needed to operate the system until the period has ended.

Furthermore, unless B is smaller than the minimum of the

essential range of S , Idle Resources are not eliminated.

D. IMPLICATIONS OF THE MODELS

Several points seem clear from a quantified study of

the implications of variability of demand for constrained

resources under Type-S policies.

First, even modest amounts of variability of the amount

of resources required to implement Type-S policies from one

time period to another within a constrained budget scenario

can lead to significant long-term average quantities of

resources made available but not used in the periods granted

while, for the same sequence of time periods enough pent-up

unfunded needs from time to time to significantly decrease

system effectiveness. If many locations of a world-wide

inventory system operate independently, each with individual

procurement budgets, one might expect that some of these

activities use less funds than were made available while
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others run short of funds and cannot implement the Type-S

policies. Where Day-One Buys exist and where Type-S

operating policies are designed to generate resource needs

in amounts equal, on average, to a fixed periodically

granted budget level one would expect Day-One Buys to worsen,

statistically, in succeeding periods to the point where

extraordinary actions are required to clear the accumulated

deficits. In the governmental context such actions may be

called reprogramming of funds or supplemental appropriations.

One expects that naval support activities serving widely

varying fleet populations, as the fleets are periodically

redeployed, would have great difficulty in operating under

Type-S inventory replenishment policies. Activities having

a relatively stable population of customers and level of

activity, reflected in a lesser coefficient of variation

of the random variable S should be affected in much lesser
n

degree.

Finally, it is noted that the informal adaptations of

the nominal, formal Type-S ordering policies as noted in

Chapter II are a natural consequence of the adoption of an

inventory ordering policy unsuited to the FICS with which

it has been coupled. Official retention of unimplementable

policies results in parallel systems — one the "official"

policy or doctrine and another "the way we do it here."

The formal system may thus serve as only an occasionally

infeasible point of departure for a LIICS administrator.
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Problems of the interaction between the FICS and LIICS

have been addressed in the case that the LIICS uses Type-S

policies while the FICS provides budgets on a periodic

basis which constrain the actions of the LIICS administrator

Either subsystem may have policies which are reasonable

(or even optimal) when considered independently within a

particular context, yet their interaction can produce

profoundly adverse consequences, greatly impairing the

performance of the IICS of which they are each a part. In

the succeeding chapters we propose an operating system for

the LIICS which is designed to operate in an environment

with constrained procurement funds. To change the financial

control mechanisms to a "blank check" policy as described

above would require approval at the highest levels of the

executive department and in the congress; conversion of

Type-S policies to Type-D policies may be within the

capability of a single agency.
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V. MODELAND PROCEDUREFOR LINE-ITEM CONTROL

IN A MULTI -ITEM LIICS WITH LIMITED FUNDS

In this chapter we view the exercise of line-item inven-

tory control as a process of transforming resources into new

distributions of inventory position over the line items in

the inventory. Attributes desired of a LIICS inventory

control model which are not generally available in previous

models are discussed. The situational context contemplated

for use of the model is presented, followed by the model and

a solution procedure. The chapter concludes with an example

of how the model might be used in a multi-item inventory

system with budget constraints.

The essential problems of control in a LIICS with

multiple line items are:

1) Mow much resources to commit at a point in time, and

2) How shall these resources be allocated among the

diverse opportunities afforded by the various line items.

In a typical continuous review inventory system, operating

with Type-S policies, the first question is answered by a

two-stage process. ?Tn the first stage, management specifies

the reorder point and the order quantity (or the requisition

objective) — often on a quarterly basis. ' In the second stage

the application of random demands against stock assets

triggers the reorder of a certain quantity of each line item

having assets at or below the reorder point. Prior to the
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replenishment epoch, there may have been a weighing of

stipulated costs in a model which led management to believe

that the expected hypothetical costs of this model would be

minimized by the choice of order policies specified for the

line items. By appeal to the law of large numbers one might

hope that these choices, over a large number of budget periods,

would be least costly in terms of the hypothesized costs —

providing that the stated policies are implemented as designed.

While such rationale may be comforting, such Type-S policies

are inadequate to assure that, faced with fixed budgets and

manpower, it will be possible to implement the policies in

a particular period of time. Thus in the world of applications

of inventory theory it is not impossible to find inventory

policies with claims of optimality which provide infeasible

decision responses to random demands in cases where procurement

funds are limited.

The determination of the quantity of the available pro-

curement funds to use at a replenishment epoch is not trivial

and must be answered with regard to the financial milieu as

well as the asset distribution of the LIICS. If funds are

more scarce at the procurement epoch than previously antici-

pated, the line item inventory control system should adapt

accordingly. The aggregate financial and workload conditions

need to be reflected in the line item allocations made by

a multi-item inventory system operating under constraints.

In the following chapter we present a model to guide the
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LIICS in determining how much of the available procurement

funds to use at a particular replenishment epoch.

In a constrained multi-item inventory system, we question

whether it is sufficient to consider only those items

experiencing demands at the replenishment epoch or whether it

may be optimal to order stocks of items at times other than

the times they experience demands. The usual varieties of

continuous-review (Type-S) systems make this simplification.

Actual military inventory systems do not always place orders

when the reorder point is hit; further, orders are often

placed at times other than at the epochs of demand arrivals.

The principal determinant appears to be the relative avail-

ability of funds, although sometimes workload considerations

affect the determination. Also, batching in the supporting

data processing system partially accounts for the non-

concurrency of demands and replenishments. Certainly it

seems clear that financial and operational (workload) con-

straints and the relative availabilities of the assets they

reflect do change over time so that it may be optimal to

place orders for units of items at times other than when they

experience demands. Such orders, for example, might be

triggered by changes in availability of procurement funds

in the constrained inventory system or by changes in estimates

of the underlying demand process.
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A. ATTRIBUTES NEEDEDBY LINE-ITEM ALLOCATION POLICIES

A policy for line item allocation should possess the

following attributes:

1. The policy should enable the administrator who is

held accountable for the replenishment actions to exercise

adaptive control, consistent with policy, in responding to

changes in asset distribution, resource availability, system

objectives and perceptions of line item attributes.

2. It should consider alternate line item investment

opportunities (range and depth) across the inventory at each

replenishment epoch.

3. It should provide for determination of stock range

questions through an optimization process integral with the

replenishment process rather than as a separate, ad hoc

decision.

4. It should permit implementation and operation without

undue expense to either scarce human resources or scarce

dollars.

5. It should permit full consideration of the integer

nature of replenishment quantities.

6. It should consider the real time inventory position

of every line item in determining replenishments for each

item.

7. It should provide as an optimization byproduct infor-

mation useful in determining the adequacy or propriety of

the funding levels and the ability to handle the workload;
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and provide information useful for examining the balance

of procurement budget resources versus operating subsystem

resources (i.e. , on the relative productivity of additional

units of various resources)

.

8. It should provide a means of assessing the impact on

various measures of interest (possible measures of effec-

tiveness) of a particular policy, such as the effect on

"requisitions short" of optimizing "sales from stock" and

vice versa. It should provide further a means of adjusting

decisions to compensate for undesirable consequences of

choosing one measure at the expense of others.

The current VOSL LIICS policy lacks most of these

attributes whereas the model and procedure presented in

Section B satisfy each of the above attributes.

B. THE LINE-ITEM ALLOCATION MODELAND SOLUTION PROCEDURE

1. Framework

Consider the case in which an administrator, respon-

sible for the replenishment decisions, determines replenishment

of stocks of various line items on a periodic basis, say,

weekly. Suppose, that a fixed amount of procurement budget

has been allocated to the replenishment epoch at hand and

that a target number of reorder actions has been established

as a working constraint for the allocation epoch. The admin-

istrator's task is to transform the available resources

(procurement funds and operating subsystem assets used in

the replenishment process) into replenishment orders for
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different line items. By the Principle of Optimality it is

known that the present allocation decision, if it is to be

optimal, must be optimal with respect to the state of the

inventory system at the time of the reallocation decision,

regardless of past decisions or states; the state of the

inventory system reflects not only the status of individual

line items, but also the status of procurement budget accounts,

as well as the workload capability of the inventory control

operating subsystem.

2 . Measures of Effectiveness

The model that we develop permits the choice of

several possible objective functions and can be adapted to

the case where unsatisfied demands are backordered and to - the

case where unsatisfied demands are considered to be lost

sales. Let it. > be the penalty (reward) per unit for item

j and let D. be the demand for item j in a period. Let x.
3 3

be the inventory position for item j after ordering in a

period. Let D. = d.. Then the number of sales for item j*
3 3

in the period is given by

d. if d. < x.
3 3™3

x . if d . > x •

3 3 3

The expected sales for item j is therefore
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X .

3
I d.P(D. = d.) + x.P(D. > x.)

d.=l 3 3 3 3 3 3

which is equivalent to

CO

E(D.) - E (d. - x.)P(D. = d.)
3 d.=x.+l J D 3 3

3 3

We assume that the inventory system seeks to minimize the

expected penalty incurred, or, equivalently , to maximize the

expected penalty avoided. Mathematically, the objective

is to maximize

N
z(x) = Z tt.((E(D.) - E (d. - x.)P(D. = d.))- j=l J J d.=x.+l J J 3 D

Several interpretations and uses of the penalty coefficient

it. are possible. Four are illustrated in Table .XI below.
3

Each reflects a formulation of system objective which has

been adopted or considered by the Navy Supply System.

Alternately, tt . may be taken as a linear combination of various

coefficients if the LIICS administrator wishes to weight the

individual coefficients.

Reference 120 J provides a listing of commonly used

objective functions for Navy applications and an indication

where each is used.

3. The Line-Item Allocation Model

There are two macroscopic consequences of first magni-

tude associated with an inventory policy, namely, the
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Penalty Coefficient Objective

tt. = c. Maximize expected sales from
3 3 stock

tt. = 1/y

.

Maximize the expected requisi-
3 - 1 tions filled as in the VOSL

model (y. = average quantity
of item 3 demanded per
requisition)

tt. = 1 Maximize the expected number
of units issued from stock

3 3
tt_. = (LT..+TMNIS-TMISS) Maxi mize expec ted customer,

waiting time per unit avoided~
^y i ss ue from stock , where
LT^ is the lead time for item

j , TMNIS is the calendar time
anticipated to process a request
which must be referred to the
wholesale system and TMISS is
the anticipated time to effect
issue from stock of a demanded,
available item.

INTERPRETATIONS AND USES OF it .

3

TABLE XI

investment of money in stocks and the generation of replenish-

ment tasks [5], It is evident that an actual inventory system

with limited resources might be unable to carry out a pre-

scribed inventory policy if either the amount of procurement

funds available or the number of replenishment actions which

can be processed exceed the available resources. These

considerations along with the fact that the x. must be integers
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led to choice of the nonlinear integer programming model:

max z (x)

N
(P3) s.t. Z c. (x. - b.) < B

j=l J J J ~

N
Z H(x. - b.) < R

j=1 J 3 -

x e X = {x: x. e {b
.

,b

.

+1 ,b

.

+2 , ...} for all j = 1,2, ..., N}

where

c. is the unit price of line item j

x. is the inventory position of line item j

b

.

is the inventory legacy for line item j ; brought
* forward to the replenishment epoch

H(«) is the Heaviside unit function:

H(x) =1, x >

= 0, otherwise

x is 'a Nxl vector of inventory positions for the
N line items in the inventory

B is the procurement budget available at the
reallocation epoch

R is the maximum number of reorder transactions
to be considered in the present allocation.

?

Observe that the model is an integer nonlinear programming

problem, separable in the line items. The objective function
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z(*) is the sum of z.(«) which have a discrete domain:

x. e (b
.

, h. + , , ...}, Further, the z.(*) are non-decreasing

functions satisfying a type of concavity on the integers such

that, if

< b. < i < k < m,

then

((k-i)/(m-i)) Zj (i) + ((m-k)/(m-i))z_.(m) < Zj (k) .

4 . Solution Procedur e

Problem (P3) lends itself readily to formulation

as a dynamic programming problem, see Bellman and Dreyfus

[13] . The recursive functional is given by

f*(B,R) = max(z n
(x

n ) ; f$_
1

(B-o n (x n -b n ), E-H(x n-b n ))}

x n e{b
n'

bn+l' bn+2' ••• }

where f*(B,R) denotes the maximal return attainable from

consideration of allocation of B procurement dollars and R

possible replenishment actions over the first n of the N

line items. The dynamic programming solution is thus built

up recursively. The dynamic programming formulation does not

permit quick and easy solution, however, as the two constraints

provide an unpleasant recursion for, say, 10,000 line items.
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We selected a more efficient solution procedure that

adapts the Generalized Lagrange Multiplier (GLM) method of

Everett to a class of inventory problems. Consider the

problem (L3) below:

N
max L(x, A) = z(x) - A ( ( Ec.(x. -b.)) -B)

(L3) x " L j=l : 3 3

\
- X„(( I H (x. - b.)) - R)

j=l J J

x e X and X , X_ - with optimal solution x* ( X_) .

Problem (L3) is the Lagrangian problem associated with (P3)

.

We have that

Theorem 2: If x* {X) solves the Lagrangian problem (L3) , then

x*(X) solves the modified problem (P3) where

B = B(X) E c. (x*(X) - b.) E g (X)
J J J

R = R(X) E H (X*(X) - b.) E g (X)
J J z

Proof: (see Everett, [14])

(k)
If X > can be found such that the original

constraints of (P3) are met with equality through solution of

problem (L3) , the solution x*(X) is an optimal solution to

(k)
(P3) . Guidance on how to adjust A_ in the event that

R f R(X) or B f B(X) can be obtained from
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Theorem 3 : Let X and X. be vectors of Lagrange

multipliers with x/ ' > X^
2)

, while X?
1 * = X?

2) for all

j 7* k. If x(r l5
) solves (L3) with X = X

(l)
, for i = 1,2; then

g k
(x(x (2)

)) > gk (x(x (1)
))

Proof: (see Everett, [14])

In solving problem (P3) through examination of a

sequence of solutions to (L3) , it is helpful to knov; a

bound on how inferior to the optimal solution an incumbent

x* (_X) might be. From consideration of the Minimax Dual

Problem we have

Theorem 4: jz^(x*) < z (x* ( X) ) - A^BU) - B) - X
2

(R(X) - R) ,

where x* is the optimal solution to P3.

Proof: (see Lasdon, [21])

Following Everett, we separate the N-variable

optimization problem into N -one-variable problems. Choosing

trial values of A, and A~ we maximize

L. (x. ,X) = z j^ x j) ~ \ c * (x. - b.) - ^
2

H(x
j

" b
j

)

over the set of values permitted, namely x. = b. ,b. ., ...

We consider two cases — that of ordering some positive quan-

tity of line-item j and that of not ordering item j . In

the first case, the separated Lagrangian expression is
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maximized utilizing

+Theorem 5: Let B, be the set {b.+l. b.+2, ...}. Then
D 3 3

L. (x. ,A) is maximized over x. e B. at the smallest value of

x. e B. which satisfies the inequality

it.P(D.. > Xj) <_ \C..

# +
Proof: Let x. be the smallest value of k . e B. which

3 3 3

maximizes L(x.,_A). Being an integer, it is necessary that

L.(x#+1,A_) - L.(x#,A.) <_ and L.(x#,X) - L.(x#-1,A_) > 0. Thus

# +
x. is the smallest value of x . e B. such that

3 3 3

\

Al.(x,,A) = L,(x +1,A) - L.(x.,A) <
J J J J J J

Since AL.(x.+l;A_) = tt.P(d. •> x.+l) - Ac. we have that

x J is the smallest x. e b! such that tt.P(D. > x +1) < lC.fl

ii

Denote the maximizing value of case one by x . . Next, evaluate

L.(b.,A) - z . (b . ) , considering the second case. Since

x. e {b.}(jB. we have the maximizing value x*(A) from
D D D 3 ~

Theorem 6: x* ( A) = b . if L . (b

.

,\) > L. (x! (X) , X)

= x. (A) otherwise.

The vector x*(A) thus obtained, together with

z(x* (>.)), the number of reorders and their cost to the
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procurement budget are determined. An upper bound U ( X) is

computed from each such iteration on a pair of Lagrangian

multipliers using Theorem 4:

A decision is then made whether to choose another pair of

Lagrangian multiplier values or whether the solution thus

obtained is close enough. Decreasing the non-negative

multiplier value tends to use more of the corresponding

resource, increasing it uses less. When the replenishment

actions generated by a point (A. , A
2 ) in the non -negative

2quadrant of E exactly consume the available resources, B

and R, we know that the solution is optimal. Due to the

integer nature of the problem exact equality may be impossible

because of "duality gaps. 1
' In such a case the investment of

a great deal more effort through a dynamic programming

formulation and solution procedure might obtain a marginally

superior solution to (P3) . Alternatively, and much more

efficiently, it may be possible to compare two vectors

x*(A * ') and x * ( X '), one feasible and near-optimal and

the other "super-optimal" (i.e., with greater value of

objective function than that achievable with budget B and

number of reorders R) and slightly infeasible, line item

by line item and "fill the duality gap" on an item-by-item

basis, incrementing values from one vector to the other until
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there is sufficiently small slack in the constraints. In

many instances this latter procedure will not be necessary.

The solution procedure results in an (r(t), R(t))

inventory policy, interpreted as a policy in which the reorder

point and requisitioning objective vary as dynamic functions

of the distribution of assets in the inventory, the presence

of bad buys, the workload implications, and the availability

of funds. Perhaps of primary importance, the procedure

provides the accountable LIICS administrator with an instru-

ment under his control with which he can live within budget

or other constraints, respond to a number of changes in

objective function, and obtain the ,: shadow price" of the

procurement budget or replenishment action resources.

Experience in implementing the solution procedure

through an interactive computer program furnished in Appendix

A has pointed up the great sensitivity of the resource

implications of small differences in the multiplier values

when some line items with large unit prices are at the

margin; relatively large overexpenditures of constrained

resources are often accompanied by relatively small incre-

ments in effectiveness measures. This latter observation

complements the often quoted result of classical inventory

theory that the total cost function, as a function of the

order quantity, is relatively flat near the optimum. A

traditional (s,S) inventory policy (Type-S) results from
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the operating policy reflected by choosing just one value

of the Lagrangian multiplier pair (A ,A
? ) and making just

one pass through the inventory, ordering the resulting

number of line items in the indicated quantities.

C. ILLUSTRATIVE EXAMPLE

Using a computerized program such as that furnished in

Appendix A, the accountable inventory controller, operating

in the Line Item Inventory Control Subsystem, would sit down

at a remote computer terminal , having an idea as to how much

of his available budget he was willing to spend, and how

many reorders were tolerable. Further, he would know whether

these figures were firm constraints or rough guidelines.

After signing in to the computer system he need only initiate

execution of the computer program and input data such as

unit costs, inventory position, lead time, and demand parameters.

Certain program constants, such as the shadow prices of

procurement budget and workload constraint , budget available,

constants selecting the objective function for optimization

and possibly other objective functions for evaluation might

be entered unless the accountable person elects to use default

values stored in the computer files. A message is returned

to the terminal by the computer that the values of program

constants provided have generated XXXX stock replenishments

costing $XXXXXX.XX and achieving objective function values

XXXXXX.XX which compare to a maximum attainable (for the
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given budget of $ XXXXXXX.XX and XXXXXXX reorders) of no

more than XXXXXXX. XX , whereas if infinite resources were

available the objective function value might be as great as

XXXXXXXXXX.XX. Several other objective function values

attained by the present candidate decision vector (such as

expected sales, expected units issued from stock, etc.)

might also be printed. The accountable person reviews infor-

mation obtained thus far and determines whether to execute

the present candidate decision (generating automated replen-

ishments) , whether to print on hard copy the candidate deci-

sion (for manual review) , or whether to iterate the computa-

tion. The computer program queries the accountable person

whether the same objective function is to be used and whether

the same shadow prices are to be used. Any required changes

are typed in at the console and the computer shortly types

a message describing attributes of interest for the currant

candidate decision vector. Alternate decision vectors can

be generated at the console or read in through other terminals

and the objective function values attained by these vectors,

together with their costs and number of transactions required

may be computed. The above procedure can be performed for

all line items of an inventory or for any identifiable subset

of these items.

In changing the shadow prices which control the GLM

optimization process, increasing the value of a Lagrangian

multiplier will cause less consumption of that resource.
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Sensitivity analysis for the two resources is readily avail-

able. Regardless of the choice of objective function used

in the optimization, the value of each of the four "pure"

objective functions attained by x*(X) is displayed. Together

with information on the bounds, the user is presented quan-

tified informatiin on trade-offs in one measure of effective-

ness obtained at the expense of decrease in other measures.

One can thus determine, for example, the percentage loss in

attainable expected sales resulting in a decision to optimize

the customer-time-saved measure.

A model , solution procedure and framework for use has

been proposed for use under the assumption that the LIICS

administrator knows how much resources are to be allocated and

whether these resource quantities are goals or constraints.

In the following chapter a model and solution is presented

to guide the decision of the LIICS administrator in deter-

mining a resource consumption plan. It is intended that the

models in this chapter and the subsequent chapter would

interact in that information obtained in the one would be

used in the other as the LIICS operates in real time.
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VI . DEVELOPMENTOF A LIICS BUDGETALLOCATION PLAN

In the preceding chapter it was assumed that the LIICS

administrator knew at each allocation epoch how much pro-

curement funds were then available; further it was assumed

that he knew whether the amount intended for allocation was

a constraint or a goal with some variability permitted.

In this chapter a procedure for determining a budget alloca-

tion plan is presented. The line-item allocations at an

epoch are viewed as a one-input, one-output production

process. In this process, the resource consists of procure-

ment funds and the product is the improvement in value of

objective function attained (over the value of the legacy

inherited at the epoch) . The nature of this production

function is discussed. Means of estimating this production

function through exploitation of properties of the GLM

solution procedure of the line-item allocation model of the

previous chapter are presented. Solution of the budget

allocation model used in preparation of the budget allocation

plan is described, followed by examples demonstrating pre-

paration of a budget allocation plan with associated effec-

tiveness attainment plan and projection of shadow prices to

be used in the line-item allocation plan at each allocation

epoch covered by the plan.

By budget allocation plan is meant a vector of dimension,

E, equal to the number of allocation epochs remaining in the
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period. The elements of the vector, B , are B , B
-p P p+1

'

... , b
d+ e_i* Each element has as its value the planned

allocation of funds at the corresponding allocation epoch.

We suppose that the objective of the budget allocation

model is to maximize the expected value of

p+E-1

K=p K - K

measured at allocation epochs after allocation. We construct

a simple, deterministic model for this purpose. In essence,

we use properties of the GLM optimization procedure used

in the line-item allocation model as we solve another non-

linear optimization problem using the GLM method. The

answers to the latter problem make it possible for us to

estimate the value of the triple (B , A* ,z (x ( A*) ) ) at each
P P — P

allocation epoch remaining in the fiscal period.

By z (B ) is meant the optimal value of the line-item

allocation model objective function at epoch t , viewed

as a function of the available procurement funds, B . It
;

.
. E \

is necessary for our purposes to make some assumptions about

the form of the production function z (B ) . We assume all

other relevant factors do not change significantly from one

allocation epoch to another within the fiscal period. By

z (B (X )) is meant the optimal value of the line-item

allocation model objective function at epoch t generated by

a choice A of shadow price (Lagrangian multiplier) for

94





the procurement budget, using a GLM solution procedure as

outlined in the preceding chapter. Since there are in

reality two constraints in the line-item allocation model,

the quality of the estimates generated through the process

of this chapter depend on the workload shadow price assuming

a role of secondary importance in the optimization process.

We thus consider properties of problem (Pi) as proxy for

those properties of (P3)

.

A. SHAPE OF THE PRODUCTIONFUNCTION

Examination of the form of the class of objective

functions considered reveals that they are bounded above

by

N oo N
2 = E 7T . Z i[P(D. = i) ] = I TT.E(D-)max j=1 3 . =0 3 j=1 3 3

and further that they are bounded below by zero where

tt. > OU.. When a GLM procedure is used for optimization,

we obtain a set of triples (B (X
(l)

) ,

X

(l)
,z (x (X^

l}
) )

)

P P P

associated with each trial value X . From GLM theory
P

we know that if r ' < A ' < r , then the budget expen-

diture resulting from each multiplier will decre ase mono-

tonically (or not change) , as will the value of the measure

of effectiveness evaluated at the point x* U) attained by

each GLM procedure trial solution. Further we know that

points (B(X
(l)

),z (B(X
(l)

) ) ) generated by the {X
(l)

} can be
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used to construct a convex polyhedron containing the true

curve z (B ) through application of the bounds cited above,

as in Figure (8) . To the extent that it is true that the

demands experienced by the inventory system between alloca-

tion epochs generates approximately the same function z (B )

for succeeding values of p = 1,2,3, ..., then it is reasonable

to use a relatively simple, deterministic model to solve

the budget allocation problem; we drop the subscript p.

B. PROPERTIES OF B(A)

We consider properties of problem (PI) as proxy for

problem (P3) ; they hold for problem (P3) where the workload

constraint is not binding.

Theorem 7; B(A) is a monotone non-increasing step function

of A _> 0.

N
Proof: B(A) = E c . (x^ (A) - b.), where the x, are restricted

to the integers so that B(A) is a step function. Everett

has shown that the amount of a resource consumed is a non-

increasing function of its multiplier, where consumption of

any other resources does not. change.

Theorem 8; lim B(A) =
A-H-«>

Proof: By Theorem 5 we have that

x!(A) = b. + 1 if A >_ it.P(D. > b.+l)/c. .

96





Z(B(X))

B(X (1)
) B(X (2)

)

BOUNDSON z(B)
FIGURE 8

Legend: Q is a lower bound from B(X=«°)(z(b))

(T) is an upper bound from B ( A=°H z
max )

(T) is an upper bound from B(a' ') < B

Q is an upper bound from B(X^ ') > B

0is a lower bound from B^' 1
') < B

z(B) is known to lie wholly between the shaded areas





Further, whenever

tt.P(D. > (b.+l))
X > J J_ _1

c .

3

then

L..(b..,X) = Zj(b.) > L.(b.+1,A) = z.(b.+l) - c.X

= z
j

(b
j

) + 7T

j
P(D

j
>(b

j
+l)) - Cj X

so that

B(X) =0 for X > max {ir.P(D.>b.+l)/c. }.[]
j=l,N J J -J J

Theorem 9: If P(D. > i) > for all i = 1,2, ... and

x*(X) > b. for some X >

then lim B(X) = +°°

Proof: For some j meeting the hypothesized conditions,

# +x. (X) increases without bound as X * /by

Theorem 5.Q

Theorem 10: (B(X)} generated by values of X constitutes a

discrete set.

98





Proof: The decision variables x are restricted to a discrete
N

set; clearly their procurement cost S c . (x . - b.) can take
j=l •* 1 ^

on only discrete values. \J

C. PROPERTIES OF Z(B(X))

We continue to use problem (PI) as proxy for (P3) and

have

Theorem 11: z(B(X)) is a monotone strictly increasing

function of B ( X)

.

Proof: z(B(X)) is assured to be a monotone non-decreasing

function of B(X) since the feasible regions for succeedingly

larger values B(X) include those of smaller values B(X),

Strict monotonicity is assured by requiring, as indicated

in Theorem 6 , that

L.(x*(X),X) > Ljfb^X) for x*(X) > b .. . Q

Theorem 12: z(B(X)) is a concave function of B(X) for all

points in its domain: (B(X) generated by values of

X e [0,+-) }.

Proof: Follows from the Lambda Theorem of Everett [12] . [J

While using the GLM optimization procedure, values of X

are chosen, x*(b,X) are computed as described above, together

99





with B(A) and z (x* (b , A) ) . Thus points may be obtained

relating z(B(X)) the "product" to B(A) the "resource."

From consideration of Theorems 3 and 4 it is clear that the

slope of line segments adjoining each point thus obtained

must decrease as points in product-resource space having

successively greater values of resource B(A) are considered.

Further we know that

Theorem 13: Let B(A (l)
) < B < B(A ( ^). Then

(i) z(B) >_z(B(A (l)
)) by restriction

(ii) z(B) <_z(B(A ( ^)) by relaxation

(iii) z(B) = z(B{A (l)
)) + A

(l) (B-B(A (l)
) ) restated

from Theorem 4

,

while, following directly from the objective function we

have

N
Theorem 14: lim z (B) = z max = £ tt.E(D.)

A familiar exponential function may be used as rough

approximation to the production function in the case of no

Bad Buys; e.g., in solving (P2) . Approximately,

z(B) = z m (1 - exp(-vB)
max

where z is given in Theorem 14 and v is a parameter to be
max *

estimated. z (B) is readily seen to be a continuous concave

function with z(0) =0 and with lim z (B) = z mav as required
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by Theorem 14. Further, its slope decreases monotonically

,

consistent with Theorem 12. Where there are Bad Buys, then

the rate of increase in objective function for marginal

dollars invested, Az(B)/AB, will tend to be greater for the

total assets invested, since the maldistribution of stock

assets means there are relatively many "good new investment

opportunities .

"

At each allocation epoch the production function tends

to yield diminishing marginal returns, while demands incurred

between replenishment epochs tend to make available greater

rates of return Az(B)/AB. Thus our model leads to a policy

of smoothing the amounts of budget to be allocated at

successive line-item allocation epochs.

When "too much" is spent early in the fiscal period,

the relatively small increment to z (x) obtained by the "last

dollars spent" at the early epochs does not compensate for

the subsequent inability to take advantage of relatively

great rates of return available in the later epochs. In

the latter epochs the Bad Buy loss function L(b ) would be
~P

relatively great.

D. BUDGETALLOCATION MODEL

It may be that we do not wish to place equal value en

the measure of effectiveness at allocation epochs throughout

the quarter. We may have a time preference so that we wish

to discount the return at each successive epoch. For exam-

ple, a LIICS may be penalized in future budget allocations
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only for Bad Buys existing at the end of a fiscal period,

although it is rewarded for issues throughout the period.

In a retail system one might prefer to spend more early in

the period, providing a slightly greater level of protec-

tion while there remains time for some attrition of any

Bad Buys. In this case one might choose the model

p+E-1
(P4) max E cv W(B, ) ; B, an E~vector

B k=p

p+E-1
s.t. Z B < B

k=p k ""

where {c ,} , for k = p, p+1, ..., p+E-1, are a set of constants,

and z (B) is approximated by a non-decreasing concave function

W(B) using information obtained in the solution to the LIICS

allocation model. Forming an associated Lagrangian opti-

mization problem (L4) , associated with (P4) , we have

p+E-1 p+E-1
(L4) max L(B,y) = E c,W(B ) - y( E B, - B)

B k=p K k k=p K

p+E-1
for B, > for all k and E B, < 3 , where B is the amount

k " k=p k "

of budget remaining available at time p. Examination of the

Kuhn-Tucker conditions [21] , necessary and sufficient for

determining the optimal solution for this concave programming

problem, yields the following result:

102





dW(B.)
Ck "d'B"'

L" = y '
f ° r a11 k = P' P+1

' ••• ' P+E-l.
k

Since W(B, ) is constructed to be monotone non-decreasing and

concave, we know that the constraint will be binding,
p+E-1

yielding additional information that £ B = B. Since
k=p k

we anticipate solving the LIICS allocation by a GLM pro-

cedure , we have

dW(B,)

~5b;
A

k'

as the shadow price, A* is approximately equal to the rate

of change in the objective function per increment of the

resource, so that the sequence of optimal Lagrangian

multipliers throughout the period in this simple model

would be governed by the relationship

A
k c.

k

and y would be determined by the requirement that the

budget B would be just exhausted at the final allocation.

k-1
For example, where c. = .99 , corresponding to about a 1

per cent discoutn per allocation period, and where y = .8,

we have
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A*: .8 .808 .816 .824 .833 .841 .850 .851

where A* is an estimate of the final budget constraint

multiplier to be used in the LIICS allocation solution

procedure at epoch k. This succession of values would

correspond generally to successive values of B,(A£) which

decrease as X, increases. Suppose a discounting factor

B, and the number of allocations remaining in the fiscal

period, E, are given and that z (B (A)) in successive

epochs is essentially the same concave and monotone increasing

function of B ( A) . Then it is possible to use the GLM pro-

cedure to determine a budget allocation plan for the re-

mainder of the period. The plan can be stated in terms of

estimated final Lagrangian multiplier values for (Pi), A*;
Jl

the master (budget allocation mode) Lagrangian multiplier,

y; the estimated budget to be spent at time p, B ; and the

projected effectiveness value, z(x*), for each remaining

allocation epoch in the fiscal period.

E. BUDGETALLOCATION PLAN EXAMPLE

As a simple example, suppose z = 1 and consider
max o

z(B ) = 1 - exp(-B ) while B = .9 and where I B = B = 3.
P P p-1 P

Applying our optimality condition we have

exp(-B_) = y, exp(-B ) = \, exp(~B = —H-y
3 I .9 1 L9)

^
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We need to determine y so that these relationships hold

while the budget B = 3 is just consumed.

To obtain a solution to this problem, determining B,

,

B
2 , B

3
and y, we use a GLM procedure. Our starting value

y is obtained by consideration of the case where the

discount factor B is equal to one. Since

dz (B
k )

= V

for all periods k, thus B .
= B. for i f k, thus B. = =-(B) .

re B
L

= | = j = 1, so that exp(-l) = y
(0) = .36788.He

Solving for B. yields

i:

B.: 1.23 1.11

We see that the total of the B.. is more than the amount

available, so that our Lagrangian multiplier value, y ,

was too small. Now let y = .408; then we obtain

l:

B.: 1.107 .996 .897

in which case the sum of the B
i

is within one-half of one

per cent of B, which we may consider close enough. Using

this value of the Lagrangian multiplier for the budget
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allocation model we obtain the following allocation plan

for the three remaining allocation epochs of this fiscal

period:

Now Next Time Fi nal T ime

Spend 1.107 Spend .99 6 Spend .897

use X = .408 use X = .453 use X = .503

attain z(x)=.670 attain z(x)=.631 attain z(x)=.593

In this chapter a model has been presented which com-

plements and interacts with the model presented in the

previous chapter. In conditions where the form of the

optimal return function of the line-item allocation model,

viewed as a function of the budget available for expenditure

at the epoch, does not significantly change within the fiscal

period, the budget allocation model presented may be useful

as a guide as to how much available resources to allocate

at a given epoch. Further, the model just presented may be

used to project the effectiveness to be attained and to

estimate the value of procurement budget Lagrange multiplier

to be used at the each allocation epoch remaining in the

fiscal period.

If it is considered that the production function z (B)

will change in scale, although not radically in form, it

would be possible to suitably modify the above procedure.

If it develops that the production function z (B) changes

IOC





markedly in form and scale from allocation epoch to alloca-

tion epoch it may be preferable to estimate it as a function

of variables external to the models of the Integrated

Inventory Control System, rather than in modeling efforts

which presuppose the variety of system stability assumed

above

.
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VII. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

A. CONCLUSIONS

It is concluded that the adoption of Type-S inventory

policies in Line Item Inventory Control Subsystems of

Integrated Inventory Control Systems which operate with

fixed procurement budgets and fixed transaction-processing

resources is undesirable where there is even rather modest

variability in the amount of such resources that are required

from period to period to operate under the policies. Further,

it is to be expected that, in such cases, the lack of ability

to exercise fine control of the inventory through the exe-

cution of approved policy will tend to cause the development

of formal systems operating in parallel with ad hoc ,

individualistic, and non-optimal modifications of the

formal systems.

It is concluded that the presence of Bad Buys in Inven-

tory Systems can significantly reduce the attainable effec-

tiveness of the inventory system for the given value of

stock assets; Bad Buys are a normal consequence of operating

inventory systems under conditions of uncertainty and failure

to account for their influence can lead to significant bias

in estimates of effectiveness attainable and consistent

failure to meet designed effectiveness in multi-item

inventories operating under constraints.
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It is concluded that a feasible , efficient method of

effecting line item Inventory control is available using

an adaptation of Everett's Generalized Lagrangian Multiplier

Method and interactive computer programming, which gives

the accountable person a valuable tool in doing the best

possible with the assets actually available at the time of

decision. Further, that the use of a GLM procedure provides

valuable information for financial managers as to the rela-

tive effectiveness of additional procurement funds versus

additional transaction processing capability. If more than

one LIICS were linked financially through control of the

procurement budget by a common FICS, information on the

relative contribution of inventory procurement budget

dollars toward specified objectives might serve to sharpen

financial control of this asset, contributing toward greater

system effectiveness.

It is concluded that the Day- Que-Buy Problem is amenable

to operations research analysis, and is a subject of signi-

ficance to the many levels of the governmental hierarchy.

Failure to accommodate satisfactorily the interaction of

Type-S policies and the policies governing the provision of

resources necessary to execute the policies leads concurrently

to idle resources, resource deficits and ad hoc policy

modification on the informal level, reflecting loss of

effective policy control by management.
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In April 1974 Secretary Clements initiated action within

the Office of the Secretary of Defense which has resulted

in the current project RIMSTOP which has in its charter,

among other items, responsibility to develop standard

stockage policies (range and depth) for all of the Department

of Defense "below the wholesale level" —which would include

the retail supply systems of the various services. It is

argued that such efforts are not likely to result in signifi-

cant improvements, and may be counterproductive, if such

policies are developed without regard for their ultimate

feasibility of implementation within the organizational

structure and attendant compartmentalized constraints on

resources. An example would be the adoption of Type-S

policies in a system with budget constraints.

B. SUGGESTIONSFOR FURTHERRESEARCH

The author is aware of no quantified analysis of the

influence of Bad Buys as defined above on the operation of

inventory systems. Using the computer program developed

herein one could evaluate sample legacy vectors obtained at

random from various inventory systems, evaluate the assets,

reoptimize starting from zero legacy subject to the con-

straint that the new inventory position could have value no

greater than the previous legacy. The difference in effec-

tiveness measure attained is one estimate of the difference

in system effectiveness attainment lost due to ^ad Buys.
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Statistical estimators of demand parameters could be

evaluated by simulations of actual demands being processed

by different estimators, resulting in different allocation

decisions for a given inventory policy and different

attained levels of Bad Buys.

Having defined the Day-One-Buy Problem and shown that

this problem, of very general occurrence, falls into one or

another categories of queueing models, the door has been

just opened to this important area in Chapter IV. It is

expected that some types of Budget Policies found in exis-

tence, when coupled with a Type-S policy, will be shown to

have unfavorable consequences — such as being dominated by

other policies in both consideration of Budget Deficit and

Idle Resources, The effect of time lag in compensating for

deficits or trends in such systems remains an open subject.

The effect on the larger system supported by the subsystem

controlling the inventories with a Type-S policy —or

expending resources in other pursuits in accordance with a

Type-S policy remains unexplored. Opportunities to shift

some of the inherent variability from variability of per-

formance levels under strict budgets toward variability of

resource consumption under specified performance standards

need to be sought out and evaluated.
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