

Calhoun: The NPS Institutional Archive DSpace Repository

Effects of waveguide modes on the scattering of a finite tubular cylinder

Chung, Gyoo Pil
https://hdl.handle.net/10945/21303

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93043

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

EFFECTS OF WAVEGUIDE MODES ON THE SCATTERING OF A FINITE TUBULAR CYLINDER

by
Gyoo Pil Chung

September 1985

$$
1-7-1
$$

REPORT DOCUMENTATION PAGE	READ INSTRRUCTIONS BEFORE COMPLETING FORM
1. REPORTNUMEER	2. GOVT ACCESSION NO.

16. DISTRIBUTION STATEMENT (Of this Roport)

Approved for public release; distribution is unlimited.
17. DISTRIBUTION STATEMENT (of the obstract onfored in Block 20, If difforont from Roport)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Conifnue on reverse alde It noceasary and identify by block number)

Electromagnetic Scattering; Waveguide Mode; Finite Tubular
Cylinder; Backscattering Cross Section
20. ABSTRACT (Continue on reverso alde ll nocessery and identily by block number)

This thesis is a study of the back scattering of finite tubular cylinders with circular cross-sections and very thin conducting walls. Measurements of several scaled tubular cylinders were taken and the experimental results were compared to theoretical data and to previous results, respectively.
This research is part of an ongoing project to investigate the resonant scattering characteristics of targets. The results are expected to find applications in target identification.

Effects of waverुuide yodes on The Scattering of A Finite Tubular cylinder

$$
\begin{aligned}
& 39
\end{aligned}
$$

$$
\begin{aligned}
& \text { Subnittol in gartial fulfillogat of the } \\
& \text { rnghiromertsfor the dagren of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fron tis. } \\
& \text { Navat sujuraintmagargool }
\end{aligned}
$$

ABSIRACT

This thesis is a study of the back scattering of finite tubular cylinders with circular cross-sections and very thin conducting walls. Measurements of several scaled tubular cylinders were taken and the experimental results were compared to theoretical data and to previous results, respectively.

This research is part of an ongoing project to investigate the resonant scattering characteristics of targets. The results are expected to find applications in target identification.

TABLE OF CONTENTS

I. INTRODUCTION 9
A. RACAR AND TARGET IDENTIFICATION 9
B. pURPCSE OF THE THESIS 12
II. SYSTEM IMPROVEMENTS AND EXPEEIMENTAL MEASUREMENTS 16
A. SYSTEM IMPROVEMENT 18
B. THE TARGET 22
C. THE ANECHOIC CHAMBER AND THE TARGET SUEPCRT 24
D. MEASURED DATA 24
III. aNALYSIS OF EXPERIUENTAL DATA 58
A. THFORETICAL BACKGROUND 58
E. CCMPAKISION BETWEEN THEORY AND EXPERIMENT 61
C. COMPARISION bETWEEN NET AND PREVIOUS RESULTS 66
IV. Effects of coupling betheen the target and its SUPPORT 74
A. RAPID SPECTRAL DOMAIN FLUCTUATIONS IN THE bRCADSIDE DATA 74
E. MEASURED RESULTS wITH VARICOS SUPPORTS 75
C. CONCIUSIONS 97
V. CONCLUSIONS 99
LIST OF REFERENCES 99
INITIAL DISTRIBUTION LIST 100

LIST OF TABLES

LIST OF FIGURES

1.1 Target Scattering Configuration 13
2.1 IF Frequency Conversion Process 17
2.2 Block Diagram of System 20
2.3 Target Geometry 23
2.4 Chamber and Target Orientations 25
2.5 Head-on Cross Section of Cylinder 26
2.6 Head-on Cross Section of Cyiinder 2 27
2.7 Head-on Cross Section of Cylinder 3 28
2.8 Head-on Cross Section of Cylinder 4 29
2.9 Head-on Cross Section of Cylinder 5 30
2.10 Head-on Cross Section cf Cylinder 6 31
$2.11 \mathrm{H} \in a d-o n$ Cross Section of Cylinder 7 32
2.12 Head-on Cross Section cf Cylinder 8 33
2.13 Head-on Phase Shift of Cylinder 1 34
2.14 Head-on Phase Shift of Cylinder 2 35
2.15 Head-on Phase Shift of Cylinder 3 36
2.16 Head-on Phase Snift of Cylinder 4 37
2.17 Head-on Phase Shift of Cylinder 5 38
2.18 Head-on Phase Shift of Cylinder 6 39
2.19 head-on Phase Shift of Cylinder 7 40
2.20 Head-on Phase Shift of Cylinder 8 41
2.21 Broadside Cross Section of Cylinder 1 42
2.22 Broadside Cross Section of Cylinder 2 43
2.23 Broadside Cross Section cf Cylinder 3 44
2.24 Broadside Cross Section of Cylinder 4 45
2.25 Broadside Cross Section of Cylinder 5 46
2.26 Broadside Cross Section of Cylinder 6 47
2.27 Broadside Cross Section of Cylinder 7 48
2. 28 Broadside Cross Section of Cylinder 8 49
2.29 Broadside Phase Shift of Cylinder 1 50
2.30 Broadside Phase Shift cf Cylinder 2 51
2.31 Broadside Phase Shift of Cylinder 3 52
2.32 Broadside Phase Shift of Cylinder 4 53
2.33 Broadside Phase Shift of Cylinder 5 54
2.34 Broadside Phase Shift of Cylinder 6 55
2.35 Broadside Phase Shift of Cylinder 7 56
2.36 Broadside Phase Shift of Cylinder 8 57
3.1 Theoretical and Measured Head-on Cross Section (h/a-=6) 62
3.2 Theoretical and Measured Head-on Phase (h/a-=6) 63
3.3 Theoretical and Measured Head-on Cross Section (h/a-= 4) 04
3.4 Theoretical and Measured Head-on Phase(h/a-=4) E5
3.5 Geometry of The Problem 68
3.6 Head-on Cross Section and The Hu Cutoff Frequency, Old Results (h/a ${ }^{+}=4$) 70
3.7 Head-on Cross Section and The H\| Cutoff Frequency, Old Results (h/a $=6$) 71
3.8 Head-on Cross Section and The H_{i} Cutoff Frequency, New Results (h/a- $=4$) 72
3.9 Head-on Cross Section and The H_{i} Cutoff Frequency, New Results $\left(\mathrm{h} / \mathrm{a}^{-}=6\right)$ 73
4.1 Various Types of Support 76
4.2 Measured Broadside Cross Section (h/a- $=6$) 77
4.3 Measured Broadside Cross Section (h/a- = 6) 78
4.4 Measured Broadside Cross Section (h/a- = 6) 79
4.5 Measured Broāaside Cross Section ($\mathrm{h} / \mathrm{a}^{-}=6$) 80
4.6 Measured Broadside Cross Section (h/a- $=0$) 81
4.7 Measured Broadside Phase Shift ($\mathrm{h} / \mathrm{a}^{-}=6$) 82
4.8 Measured Broadside Phase Shift (h/a- = 6) 83
4.9 Measured Eroadside Phase Shift (h/a- = 6) 84
4.10 Measured Broadside Phase Shift (h/a- = 6) 85
4.11 Measured Broadside Phase Shift(h/a-= 6) 86
4.12 Measured Broadside Cross Section (h/a- = 4) 87
4.13 Measured Broadside Cross Section (h/a- = 4) 88
4.14 Measured Broadside Cross Section (h/a- = 4) 89
4.15 Aeasured Broadside Cross Section (h/a-= 4) 90
4.16 Measured Broadside Cross Sectiof (h/a-= 4) - 91
4.17 Measured Broadside Phase Shift (h/a-= 4) - 92
4.18 Measured Broadside Phase Shift (h/a-= 4) 93
4.19 Measured Broadside Phase Shift (h/a-= 4) 94
4.20 Measured Broadside Phase Shift(h/a-= 4) 95
4.21 Measured Broadside Phase Shift (h/a-= 4) 96

I. INTRODUCTION

a. Radar and target identification

A radar radiates electromagnetic waves into all diractions in space and then listens to the echoes. If an echo is stronger than a fre-set level, the radar announces the presence of a target. A radar, as an active sensor, estimat ϵ the target's angular location frcm the direction its antenna is pointing; can estimate the target distance from the arrival time of the echo; deduce the target's radial velocity from the doppler phase shift of the \in cho signal and specify if a target is electrically large or small from the strength of the received echo signal. These are the items of information that a search radar derives from the echo. Because of the confusion often associated with it, it should be pointed out that the capakility of specifying the electrical size of a target is not generaliy equivalent to one of specifying the physical size. This can be understocd from the following analogy with the naturally equipped human electromagnetic sensor: the eqes. Ignoring the effect of thermal expansion, a light bulb is of iaentical physical size whether it is on or off; but it is certainly much brighter, i.e, sending the eyes a much stronger signal when it is on than when it is off.

Fadars serve to complement human eyes. They exten $h u m a n$ senses from the visible freguencies in the EF_{F} microwave, millimeter wave and infrared regions. Even thougi humar senses are extended, considering the amount of information the eyes derive from signals they receive, it is astonishing to realize how little information the current search radar systems are providing. Specifically, target identification
is one desirable capability current search radar sets are lacking. Since search radars are operated exclusively in the microwave íreguency and HF regions, only these frequencies will be considered in the following discussions.

Human intelligence makes use of information provided $k y$ the eyes to identify objects. Identification of an object is achieved mainly through the recognition of its shape andits color. To provide information about the shape of a target. the eye, as a sensor, must be able tc resolve the outlines of the object. The engravings on a coin can easily be resolved at a short distance: the structure with whicin the atoms build up the coin can not be resolved. The fact tiat the atomic spacing is smaller than the wavelength of the visible light defies any attempt to resolve the crystalline structure of the coin by a naked eye. The fact that the engravings come with contrasting areas much larger than the visible wavelength renders them easily resolved. Besides this fundamental requirement on the resolution of the outiine of an object, a further problem is encountered when the object is moved farther away: In accordance to the Fayleigh's criterion, (see for example the Feynman Lectures on Physics, Vol.I, p.30-6) the engravings can rot be resolved when the contrasting areas extend an angle smaller than can be afforded by the resolving power of the eyes as deterained from the wavelength involved and the aperture of the pupils. To provide information akout the colors of the target, the $\in y e$ is capable of sensing electromagretic waves of frequencies ranging over an octave band from approximately 390,000 to $790,000 \mathrm{GHz}$, extending from red to violet. Thus when copper and brass are shining most intensely at two
 the eye, human beings are able to tell copper from brass.

Since the targets of interest to radar have contrasting areas of linear dimensions on the order of ten meters, the
wavelength required to gain resolution of their outlines is of the order of one centimeter or below, which is close to the millimeter wave region. At these frequencies, it is difficult to achieve such long ranges as are desirable in search radars. A practical system may use a three centimeter waveleugth. Assume only horizontal outlines of targets one hundred kilometers away having contrasting areas of one square meter are to be resolved. To satisty Rayleigh's criterion, a land-based system will employ an array of antennas dispersed over a ground area more than three kilometers in diameter to defend against targets approaching in different directions. Such a huge structure would be difficult, if not impossible, to be assemblea on a movirg platform. A spnthesized aperture would not provide the kind of instant response desired.

Identifying a target according to its color appears less formidable. The color of an object is determined by its response to waves of different frequencies. In $H F$ and microwave frequencies, different targets respond difierently at one frequency. In terms of the observed echo signais, different colcrs appear as echos of different shapes aid strengtis on the radar screen. The requirement on tie radar is clear: it has to be operated over a broad bandwidth so that there are enough differences in target responses that all targets of interest can be resclved. Bardwidth of existing search radar sets seldom achieve 20% o $\hat{\sim}$ their carrier frequencies even when chirp waveforms are utilized. Exparsicn of this bandwidth appears to not be a major proolem considering the progress in the development of multi-octave tand devices with thrusts coming mainly from the electronic warfare area. It is still an unanswered question concerning the choice of the width and the location of the desired frequercy band. Such questions can de answerea only through research into fundamental properties of the scattering of a target as is done in this thesis.

B. PURPOSE OF THE THESIS

To explore the possibility of identifying targets through their different responses to excitations of various frequencies and to obtain design parameters to implemert such identification technigues, it is essential to understand the paysics involved in the scattering of electromagnetic waves by a target. The most important design parameters fcr such a target identification system are, first of all, the required bandwidth of the system at one frequency and then the frequencies at which implementation of the system are practical. Simple arguments suggest that the operating frequency should be in the resorance region of the targets cf interest. In the Rayleıgh region, when targets are suall compared to the wavelengtio all targets will look alike except for $t h \in i r ~ s i z e s ~ a n d ~ i t ~ w i l l ~ b e ~ d i f f i-~$ cult to separate targets of similar sizes. In the optical region when the operating wavelength is much smaller than the target, scattering characteristics of a target will depend on localized scattering centers whose sizes are ir the order of a few wavelengths. The scattered field will depend strongly on the aspect angles and classification tecomes very difficult. Current search radars operate mostly. in the 500 MHz to 4 GHz Erequency range. For most of the targets of interest, either the target itself or part of its structure is in the resorance region for this range of frequencies. The frequencies of $H F$ radars cover either the upper kayleigh region or the lowest few resonances of most targets. It appears that current technology can be readily afplied to implement this target idertification schere.

To find the required bandwidth and the best operating frequency range the electromagnetic scattering of a target in the resonance region has to be studied. Ev \in n though the resorant frequencies depend only on the geometry and the
constituent parts of a target, the scattered electromagnetic wave has an electric field which is a vector whose polarization, strength and phase vary with the location of the receiver as shown in Figure 1.1 velow:

Figure 1.1 Target Scattering Configuration.

Figure 1.1 reveals that this field also varies with the propagating direction and the polarization of the incident wave at the target. Thus studying the scattering phenomenon experimentally is a laborious task. Added to the difficulties is the fact that classes of resonances may not be excited under certain experimental configurations and there is almost mo way of knowing it beforehand. Theoretical investigation appears to be a more efficient alternative.

With their complexity, the Maxwell equations seldom render themselves to ready solutions when applied to a finite structure. Only the sphere and the disc of $z \in r o-$ thickness have keen solved analytically. These targets have only the radius as their single geometrical parameter. Reitlinger derived an algorithm which calls for the inversion of an infinite set of infinite systems of equationsfor the solution of the spheroid problem. Because of the difficulties involved in obtaining the coeffients of the systems of equations, no sfecific result has been reportea [Ref. 1]. Recently. Lee carried out a double series expansion for the Green's function on a tubular cylindrical structure of finite length. Analytic expressions for the series expansion coefficients were obtained for both a ring and a cylinder [Bef. 2]. A system of linear equations were derived whose coefficients are linear combinations of less than eight terms of the expansion coefficients of the Green's function [Hef. 3]. Since analytic expressions are available, these coefficients can be computed to desired any accuracy efficiently.

A finite tubular cylinder, similar to a spheroid, has two geometrical parameters which can te varied independently. This property is desirable in the investigation of the effects of changing shafes on resonance characterics. Such effects will be important in answering the bandwidti problem in target identification. The tutular cylinjer
differs from the spheroid in that it separates the space into an internal and an external region which are not sealed off. Since all the targets cf practical interest are never completely sealed from the outside, this geometry offers a model for studying the coupling between the internal modes and the external modes of such targets.

There is no justification for a theory except through experimental verification. Comparison ketween experimental data and theoretical results usualiy leads to better understanding of the physics involved [REfs. 4.5]. A CW step-frequency range has been developed for measuring the back scattered electric field of a target. The purposes of the thesis work are to improve the scattering range, to ortain accurate experimental data of the back scattered field and to compare measured data to theoretical predictions.

II. SYSTEM IMPROVEMENTS AND EXPERIMENTAL MEASUREMENTS

The automated CW step-freguency range has been operating since June 1984 when the development of all the software was completed. The system was controlled by an HP - 85 microcomputer. Tests of system stability was carried out by Mario Loric [Fef. 6]. The data obtained by him from 10 GHz to 15 GHz appeared to be good. Those data tended to fluctuate randomly and deteriorated with elapsed time from initial system calioration. Below 10 GHz , the coupling between the transmitting and the receiving antennas was so strong tnat the back scattering signal from the target could not be detected.

An averaging process was designed $k y$ Geller and Haklay [Refs. 7.8]. Repeatable results were obtained by averaging four to five sets of data. This was a laborious process; in the first scan tine output frequency of the generator was increased from 10 GHz to 15 GHz at 100 MHz steps when the target was absent. The response gave the background contribution to tne received field which included antenna coupling effect and back scattering from the anechoic chamber and the target support. A stanard conducting sphere was then used as the target to calibrate the system response at each frequency stef in the second scan. The background data were taker again in the third frequency scan. The fourth frequency scan, with the target in place, provided the back scattered field strength and phase frcm the target. Ihis sequence of procedures was repeated and the results averaged.

As shown in Figure 2.1. the voltage controlled oscillator (VCO) is serving as a lccal oscillator and is operated at some frequency between 65 MHz to 150 MHz . Its output

Figure 2.1 IF Prequency Conversion Process.
signal at the frequency f_{v} is fed into the harmonic generator in which signals of frequencies which are integer multiples of $f v$ are generated. These harmonics are combine 1 in the mixer with the input signal at the $t \in s t$ frequency f
 resultant signal is output from the mixtr and fed back to complete a phase lock loop which contrcls the vco frequency. The system can be phase locked when the mizer outputs an intermediate freguency(IF) near 20.278 MHz . This is the difference $k \in t w \in \in$ the test frequency f and the $n t h$ harmonic frequency $n \in$ where n is an integer. At a given test
frequency f, several different f_{v} 's and n 's may combine to yield the same $I F$ value. But due to the non-linearity of the characteristics of the harmonic frequency converter and the mixer, these different f_{v} and n pairs will give rise to different system responses. The random fluctuation in system frequency response was determined to be a result of this effect, called harmonic skipping, of the vector network analyzer. It was decided that the feedback loop of the analyzer be disconnected and the local oscillator frequency be controlled externally so that at one test frequency f. fv and n will always be the same. Since this technique was implemented, system repeatability has been improved and no data averaging has been required.

A. SYSTEM IBEROVEAENT

A new HP-9836CU yorkstation was installed to repiace the HP-85 microcomputer as the system controller. The softvare was converted and a data link was set up between the IEM-3033 mainirame computer and this workstation. Experimental data were sent to the mainframe and theoretical results were sent to the workstation for plotting and comparison purposes. The incorporation of the much faster HP-9836CU workstation made it possible to control the local oscillator frequency directly so that the feedback loop could be disconnected. The 100 MHz back panel output from the $R F$ source, an $H P-8672 A$ synthesized signal generator, was used to provide the local oscillator signal to replace the VCO in the vector network analyzer. The RF frequencies were chosen at integer multiples of 100 MHz plus the IF frequency. Eecause of the stability of the RF signal generator, and because the harmonic numper was completely determined riom this choice of the FF and the local.oscillator frequencies, this technique overcame the harmonic
skipping problem. The scan-to-scan repeatability had been gcod and no data averaging was necessary. Even though the specified If frequency of the vector network analyzer was 20.278 MHz , the phase was not properly locked at several frequencies $\mathrm{t} \in \mathrm{t}$ ween 12.4 GHz and 17.1 GHz . IF Erequencies which deviate from 20.278 MHz by a few KHz were chosen and the theoretical back scattered fields from the standard sphere were re-computed so that calibrations at the corresponding $R F$ frequencies could be carried out. Since these particular IF frequencies depended on how the target support was placed, they had to be changed and the theoreticai field values re-computed from time to time. These procedures were carried out expediently only after the new computer was installed.

Table I lists the components of the current setup of the automated back scattering data collection system. A functional block diagram is shown in Figure 2.2 and symbols depicting signal flow are given in Table II.

TABLE I

LIST OF EQDIPMENT

HP-9836CU
HP-7475A
HP-7245B
HP-8411E
HF-8672A
HP-8412E
HP-3455A
HP-3456A
HP-6227A
NARDA-5 292

Engineering workstation. Plotter.
Elotter and printer. Harmonic frequency converter. Synthesized signal generator. Phase and Magnitude Display. Ligital Voltmeter. Digital aultimeter. Dual DC power supply. Directional coupier.

Figure 2.2 Block Diagram of System.

TABLE II

SIGNAL FLOH SYMBOLS FOR FIGURE 2.2

\longrightarrow	Digital data path. RF signal path $(10.1-17.1 \mathrm{GHz})$. \cdots
100 MHz local oscillator signal path. 278 KHz signal path. \cdots	DC.

The automated CW step-freguency back scattering measurement system consists of four parts. As shown in Figure 2.2, they are:
(1) Digital control and data processing.
(2) RF generation and amplificatiog.
(3) EF radiation and receiving.
(4) Receiver unit.

The HP-98ミ6CO workstation controls the frequency and tne output power level of the synthesized signal generator HP-8672A. The output RF signal frcm the generator is amplified by the $6 \mathrm{GHz}-18 \mathrm{GHz}$ amplifier and fed to the transmitting horn antenna through the directional coupler. The back scattered field of the target is collected by the receiving horn antenna and fed to the test port of the harmonic frequency converter HP-8411A. The portion ofthe aøplified output signal coupled out through the directional ccupler is attenuated by 43 AB before it is fed to the reference port of the harmonic frequency converter. The harmoric frequency converter and the network analyzer $H P-8410 c$, together with the phase and magnitude display unit HP-8412B function as a phase difference and magnitude ratio meter Letween the transmitted and the received signals. The phase difference and the magnitude ratio are converted to volts that are measured by the digital voltmeters Hp-3455A and HP-3456A. Both the magnitude and the phase of th reflected
signal are digitized by these voltmeters and stored in the microcomputer.
B. THE TARGEI

Table III lists the specifications of all targets used in this experiment [aef. 9]- Tney are thin wall brass tubes of various lengths and diameters. The wall thickness of each target is much smaller than the other dimensions of that target and the wavelength of the incident field. A picture of the targets is shown in Figure 2.3.

TABLE III
TARGET SPECIPICATICN

liame	Lermeth (2r.cm)	Diameter(2a:cm)		Sa+ ${ }^{\text {co }}$
		Inmer	Giter	
Cylinder 1	11.03	1.349	1.908	5
Colinder 2	9.10	1.576	2. 5×8	f:
Crlinder 3	7.193	1.199	1.27	ς
colinter 4	5.343	0.0915	0.3525	f.
Cylinter 5	7.39 F	3. 84.9	1.908	84
Cylinder 6	6.064	1.516	1.588	12.4
Cylinder 7	4.798	1.199	1.27	4
Cylinder 8	3.566	0.8915	0.9525	4

Pigure 2.3 Target Geometry.

C. THE ANECHOIC CHAMBER AND THE TARGET SUPPORT

The anechcic chamber is 20 ft deep with a $10 \mathrm{ft} x 10 \mathrm{ft}$ cross section. The chamber is internally lined with RF absorbers so that reflections from walls are minimized. As shown in figure 2.4, two orientations of the target are tested. They are called the "Head-on" case and the "Broadside" case respectively. The direction of propagation of the incident wave is farallel to the axis of the target in the head-on case and is perpendicular to the axis of the target in the broadside case. Though the horn antennas ara arranged bistatically, the distance between the transmitting antenna and the receiving antenna is much shorter than the antenna-target distance and the scattering is considered tc be monostatic. Supports of different shapes are designed and tested to determine the effects of their coupling with the target. The results are presented in Chapter IV.

D. MEASURED ᄃATA

The experimental results obtained by stepping up the frequency or the incident wave at 0.1 GHz intervals from 10.1 GHz to 17.1 GHz , plus the selected IF frequercies, are sbown in the following figures. The first 10 figures are the head-on cross sections and phase shirts. Ihe next 16 figures show the broadside cross secticns and phase snifts. These data are used for comparison with theoretical values and dith previous experimental results in the following chapters.

Figure 2.4 Chamber and Target Orientations.
(a) Head-on case (upper figure)
(b) Broadside case (bellow figure)

Figure 2．7 Head－on Cross Section of Cylinder 3．
（OS ぬヨคヨW）NOI」コヨS SSOdコ

Figure 2.9 Head-on Cross Section of Cylinder 5.

Figure 2.11 Head-on Cross Section of Cylinder 7.

Figure 2.13 Head-on Phase Shift of Cylinder 1.

Figure 2.14 Head-on Phase Shift of Cylinder 2.

Figure 2., 15 Head-on Phase Shift of Cylinder 3.

Pigure 2.16 Head-on Phase Shift of Cylinder 4.

Figure 2.17 Head-on Phase Shift of Cylinder 5.

Figure 2. 19 Head-on Phase Shift of Cylinder 7.

Figure 2. 20 Head-on Phase Shift of Cylinder 8.

$$
\begin{aligned}
& \text { Figure 2. } 21 \text { Broadside Cross Section of Cylinder } 1 .
\end{aligned}
$$

（05 ヨヨఎヨW）NOI．コヨS 550』0

Figure 2． 22 Broadside Cross Section of Cylinder 2.
（OS と习ユ彐W）NOI」コヨS SSO\＆コ

[^0]（OS ぬヨ」ヨW）NOI」つコS SSOとつ

Figure 2． 26

Figure 2.29 Broadside Phase Shift of Cylinder 1 .

Figure 2.30 Broadside Phase Shift of Cylinder 2.

Figure 2.,31 Broadside Phase Shift of Cylinder 3.

Figure 2., 32 Broadside Phase Shift of Cylinder 4.

Figure 2.34 Broadside Phase Shift of Cylinder 6.

Figure 2.35 Broadside Phase Shift of Cylinder 7.

Figure 2.36 Broadside Phase Shift of Cylinder 8.

III. AMALYSIS OP EXPERIMENTAL DATA

A. THEORETICAL BACKGROUND

Data of tack scattered electric fields from tubular cylinders were collected and plotted as cross sections and phase shifts versus frequency. The physical meaning of these quantities are discussed in this section.

As shown in Figure 1.1, the wave incident at the target is assumed to be a plane wave and the scattered field of interest is the far field radiated by the target. In terms of the linear polarization vectors $\hat{i}, \hat{i}_{2}, \hat{S}_{1}, \hat{S}_{2}$ of the incident wave and the scattered wave respectively, the incident ficld at the target center forigin of the coordinate system) is a constant vector and can always be written as:

$$
\vec{E}^{i}=E_{1}\left(\hat{k}^{i}\right) \hat{i}+E_{2}\left(\hat{k}^{i}\right) \hat{i}_{2}
$$

The scattered wave, in the far field, can be written as:

$$
\left.\vec{E}^{x x}(\vec{r})=\frac{E^{i k r}}{r}\left[\hat{a}_{1}(\hat{r}) \hat{s}_{1}+a_{2} \hat{r}\right) \hat{s}_{2}\right]
$$

where \hat{r} gives the angular dependence of the scattered wave. Note that t he choice of $\hat{i l}$ and \hat{i} is arbitaray to the extent that $\hat{i}_{1} \cdot \hat{k}=0$ and $\hat{i_{2}}=\hat{k}^{i} x \hat{i}_{1}$. Similar relations hold between \hat{S}_{1}, \hat{S}_{2} and \hat{r}. Since the polarization of any wave propagating in the \hat{k}^{i} direction can be written in terms of linear combinations of the vectors \hat{i} and $\hat{1}$, these two components can de considered separately. Similarly, in the direction \hat{r}, the scattered far field can always be written as a linear combination of the vectors $\hat{s_{1}}$ and $\hat{\mathrm{s}}_{2}$. Thus the cross section and fhase shift of the scattered field polarized along the $\hat{s} \hat{l}_{l}$ direction is given when the incident wave is polarized aiong the \hat{i}_{m} direction and of unit strength and zero phase at the target center, as:

$$
\sigma_{\operatorname{lm}}(\hat{r}, \hat{\Gamma} \dot{i})=4 \pi\left|a_{q}(\hat{r})\right|^{2} \quad \text { and } \quad \delta_{i m}(\hat{r}, \hat{k})=\arg ^{\prime} a_{A}(\hat{r})^{\prime} \text {. }
$$

where l, $\mathbb{I}=1,2$. When $\hat{r}=-\hat{k}$, the cross section is the back scattering cross section. With the polarization understood, and with discussions concentrated in back scattering, the subscripts and the arguments will be dropped henceforth. The integrodifferential equations governing the surface current distribution can be set up as equations 3.1 through 3.3
$\left(1+\frac{1}{\ell_{1}^{2}} \frac{\hat{c}^{2}}{\partial z^{2}}\right) \int_{-1}^{1} d z_{0} K_{z n}\left(z_{0} ; G_{n}\left(\ell_{1}\left|z-z_{0}\right| \cdot \ell_{2}\right)\right.$
$+\frac{i n}{\ell_{1} \ell_{2}} \frac{\partial}{\partial z} \int_{-1}^{1} d z_{0} K_{o n}\left(z_{0}\right) c_{n}\left(\varepsilon_{1}\left|z-z_{0}\right|, \varepsilon_{2}\right)$
$=-\frac{2 i}{i_{1} \sum_{2 j 0}^{j}} E_{z n}^{S c}(z)$
(mega 3.1)
$\int_{-1}^{1} d z_{0} K_{\phi n}\left(z_{0}\right)\left\{\frac{1}{2}\left[G_{n-1}\left(\ell_{1}\left|z-z_{0}\right|, l_{2}\right)\right.\right.$
$\left.\left.+G_{n+1}\left(\ell_{1}\left|z-z_{0}\right|, l_{2}\right)\right]-\frac{n^{2}}{x_{2}^{2}} G_{n}\left(l_{i}\left|z-z_{0}\right|, \hat{l}_{2}\right)\right\}$
$+\frac{i n}{l_{1} l_{2}} \frac{\partial}{\partial z} \int_{-1}^{1} d z_{0} K_{z n}\left(z_{0}\right) G_{n}\left(\ell_{1}\left|z-z_{0}\right|, \ell_{2}\right)$
$=-\frac{2 i}{i_{1} i^{\zeta} 0} E_{o n}^{s z}(z)$
(eqn 3.2)

$$
E_{z n}^{S C}(z)+E_{z n}^{i}(z)=0, \quad E_{\phi n}^{S c}(z)+E_{\phi n}^{i}(z)=0
$$

where $l_{1}=k h, l_{2}=k a .2 h$ is the length of the cylinder. a is the radius of the idealized cylinder of zero wall thickness. The components of the surface current are represented as equations 3.4 and 3.5 in which the edge conditions are satisfied term by term in the representation. The computation was carried out by Lee [Refs. 4.5].

$$
\begin{align*}
Y_{z}(\neq z) & =\sum_{n=-\infty}^{\infty} e^{i n \phi} k_{z n}(z) \\
& =\frac{1}{\pi} \sum_{n=-\infty}^{\infty} e^{i n \phi} \sum_{p=0}^{\infty} K_{i n}^{p} \sin (p+1) v \tag{eqn3.4}
\end{align*}
$$

$k_{\phi}(\phi, z)=\sum_{n=-\infty}^{\infty} e^{i n \phi} k_{\phi n}(z)$
$=\frac{1}{\pi \operatorname{sinv}} \sum_{n=-\infty}^{\infty} e^{i n \phi} \sum_{p=0}^{\infty} \pi_{p n}^{p} \cos \theta v \quad(\operatorname{eqn} 3.5)$
It is clear from equations 3.1 and 3.2 that $(k r) E^{\infty}$ depends only on l_{1} and l_{2} as r approaches infinity. Herce $k^{2} \sigma$, or equivalently, σ / σ_{0}. is only a function of l_{1} and l_{2}, if σ_{0} is a function of the length and the diameter of the crilinder which has the dimensions of area. This property is the basis fcr frequency scaling of targets in air. In this thesis, σ_{0} is chosen to be the projected physical cross sectional area of the cylinder along the direction of the incident wave. In what follows, data from head-on scattering of the cylinderswill te analyzed. For this case, σ_{0} equals $\pi\left(a^{+}\right)^{2}$
where a^{+}is the outer radius of the cylinder. The broadside case will be discussed in Chapter IV. In which case, σ_{c} is $4 \mathrm{ha}^{+}$.

B. COMPARISIOA BETKEEA THEORY AND EXPERIMENT

Throughout the following figures, $2 h / \lambda$ is used as the variable. The ordinates are either cross section divided by the projected area or phase shift in units of π. The experimental data are distributed over the $2 \mathrm{~h} / \mathrm{values}$ from 1.4 to 6.2 for cylinders with $h / a^{-}=6$ and 1.0 to 4.2 for cylinders with h/a- = 4. Cross sections from different cylinders are represented by different symbols. Experimental data points and theoretical curves for the cross section are plotted together in Figure 3.1 and Figure 3.3. For the head-on case, the agreement is obvious. Theoretical and measured phase shifts are shown together in Figure 3.2 and Figure 3.4. Deviations between measured and theoretical values and between overlapping portions of the measured data from different cylinders are evident. These deviations may be caused by the fact that the heights of the tubular cylinders on the support are different from that of the 8.095 centimeter diameter aluminum sphere used for calibration. Such differences results in different antenna to target distances which contribute to the deviations in phase.

In all the following figures, these symbols, "*", "o", "x" and"+". were used and they represent cylinders of following diameter $1.9 \mathrm{~cm} .1 .59 \mathrm{~cm}, 1.27 \mathrm{~cm}$ and 0.95 cm respectively.

Figure 3.1 Theoretical and Measured Head-on Cross Section (h/a- = 6).

Figure 3.2 Theoretical and Measured Head-on Phase (h/a-=6).

Figure 3.4 Theoretical and Measured Head-on Phase(h/a-=4).

C. COMparisics between nen and previods results

Since the wall thickness is much smaller than the cther dimensicns of the cylinder and the wavelengtin, it bas been assumed that they could be neglected. Geller and Haklay jointly carried out a series of measurements using two sets of cylinders which had length-to-outer diameter ratios of 6 and 4 respectively [Ref. 8]. Their results showed significant deviation from theoretical predictions near the H_{l} cutoff frequencies of the circular waveguide mode. This discovery caused doubt as to whether or not a theory neglecting the wall thickness could describe the scattering of a tubular cylinder in the vicinities of the waveguide mode cutoff. Because the waveguide modes are determined completely by the inner diameter of the cylinder, scattering from two sets of cylinders having length-to-inner diameter ratios of 6 and 4 are investigated in this thesis.

As shown in Figure 3.5, the target cylinder of the experiment has an inner radius a^{-}, an outer radius a^{+}and a length $2 h$. The values $2 h, 2 a^{+}, 2 a^{-}, h / a^{+}$and h / a^{-}for each of these sixteen cylināers are given in Table IV. Note that the only difference between cylinder 01 and cylinder 1 is that cylinder 01 is about 6% longer than cylinder 1. Similar relations exist between each pair of the old and the new cylinders, with sialler fractional differences.

The values of $2 \mathrm{~h} / \lambda$ corresponding to the H_{n} mode cutoff frequencies of the different sets of cylinders used for the measurements are marked vith the vertical solid lines labeled by "H" in Figure 3.6 through Figure 3.9. In Figure 3.6. the Hin cutoff frequency occurs with data from cylinder 03. Since cylinder 03 has a length-to-inner diameter ratio of 4.19. its H . value of 2.456. In Figure 3.7, the Hil cutoff frequency occurs with data irom cylinder 07. Since cylinder 07 has a

TABLE IY
PHYSICAL PARABETEBS OP TEE CYLINDERS

Cylinder $2 \mathrm{~h}(\mathrm{~cm})$	$2 \mathrm{a}^{+}(\mathrm{cm})$	$2 \mathrm{a}^{-}(\mathrm{cm})$	$\mathrm{h} / \mathrm{a}^{+}$	$\mathrm{h} / \mathrm{a}^{-}$	
01	3.81	0.9525	0.8915	4.00	4.274
02	5.08	1.27	1.199	4.00	4.237
03	6.352	1.588	1.516	4.00	4.19
04	7.62	1.908	1.849	4.00	4.121
05	5.715	0.9525	0.8915	6.00	6.41
06	7.62	1.27	1.199	6.00	6.355
07	9.525	1.588	1.516	6.00	6.281
08	11.43	1.908	1.849	6.00	6.182
1	3.566	0.9525	0.8915	3.744	4.00
2	4.796	1.27	1.199	3.776	4.00
3	6.064	1.588	1.516	3.819	4.00
4	7.396	1.908	1.849	3.882	4.00
5	5.349	0.9525	0.8915	5.616	6.00
6	$7.19 \equiv$	1.27	1.199	5.664	6.00
7	9.098	1.588	1.516	5.729	6.00
8	11.09	1.908	1.849	5.722	6.00

Figure 3.5 Geometry of The Problem.
length-to-inner diameter ratio of 6.281, its $H_{l l}$ mode cutoff frequency corresponds to a $2 \mathrm{~h} / \lambda$ value of 3.682. The theoretical model, having $a=a^{-}$. has the cutoff $2 h / \lambda$ value equal to those of the $n e w$ cylinders plotted in Figure 3.8 and Figure 3. C. The $2 \mathrm{~h} / \lambda$ value equals 2.345 for the set of cylinders with $h / a^{-}=4$ and equals 3.517 for those with h/a= 6. It is clear that the old data are distinctly different from the new data. The data in Figure 3.8 and Figure 3.9 agree with the theoretical curves over the whole frequency range being studied.

$$
\begin{aligned}
& \text { Figure } 3.9 \text { Head-on Cross Section and } \\
& \text { The Hı Cutoff Frequency. New Results }\left(h / a^{-}=6\right) \text {. }
\end{aligned}
$$

IV. EFFECTS OF COUPLIRG BETVEEN THE TARGET AND ITS SUPRORT

A. RAPID SPECTRAL DOAAIN FLUCTOATLONS IN THE BROADSIDE DATA

When the broadside data are compared to theoretical predictions, the phase shifts agree very well while the overall shape of the measured cross section data is consistent with the theoretical curves. It appears that each set of the cross section data contains a fast fluctuating couponent superimpcsed onto the smooth theoretical curve across the frequeacy range. Several possibilities exist that may cause this prcblem. One that is investigated in this chapter is the effect of the coupling between the cylinder and the stand.

The measurement procedures call for the subtraction of background frcm the measured áata when the target is present. This subtraction removes almost all unwanted signals exceft those introduced by the presence of the target. Since the data are taken in an anechoic chamber, the most significant error of this type may come from the coupling betweer the target and its support.

Even though the agreement between the head-on scattering data $a n$ dheory suggests that this coupling should be negligible, there is no assurance that the same is true for the broadside case. In order to determine whether this rapid spectral domain fluctuation is caused by the coupling between the target and its support, several supports of different gecmetry were constructed and tested. The results indicat ϵ that this coupling is negligible in this case.
B. MEASURED BESOLTS YITH VARIOUS SUPPORTS

In order to investigate the effect of the coupling between the target and its support, five different supports were constructed. Three views of each of the five different supports, (a) through (e), are shown in Figure 4. 1. They are arranged according to the order in which measurements were taken. The left most column shows the front views, the center column shows the top views and the rigint most column shows the side views.

Two sets of results for each support were obtained. Figure 4.2 and Figure 4.7 show the experimental points and theoretical curves of the cross secticns of cylinders with the length to inner diameter ratio of 6. Figure 4.12 and Figure 4.17 show the cross sections of those having the length to diameter ratio of 4 when the support of figure 4.1. (a) was used. An index list of the various supports used and the reasured data is given in Table V.

TABLE 7

IHDEX TO PLOTTED DATA FROM
TEE DSE OF DIPFEBENT TABGET SOPPORT

support	The lenotn to inner diameter ratio			
		6		4
	Cross section	Dhase shift	Cross section	Dhase shift
Fig 4-I (a)	Fig 4-2	Fig 4-7	Fig 4-12	Fig 4-I7
" (b)	" 4-3	" 4 -8	" 4-13	" 4-18
" (c)	" $4-4$	" 4-9	" 4-14	" 4-19
" (d)	" 4-5	" 4-10	" 4-15	- 4-2 ${ }^{\circ}$
" (e)	" 4-6	" 4-11	" $4-16$	" $4-21$

Figure 4. 1 Various Types of Support.

	-		-	-		\square	\square				-		
		-	-										$\sqrt{2}$
		--	-										
						0					,		+
						${ }^{4}$	7				+	\pm	
					-		80	+	+	${ }_{-1}+$			
					${ }_{6}^{88} 8$	${ }^{-8}$		\cdots					
				x^{20}									
			4										
								-					
							ш						

[^1](1)
Figure 4. 3 Heasured Broadside Cross Section (h/a-=6).

Figure 4.4 Beasured Broadside Cross Section (h/a-=6).

Figure 4.5 Measured Broadside Cross Section (h/a-= 6).

[^2]
Figure 4.7

Figure 4.8 Beasured Broadside Phase Shift (h/a-=6).

Figure 4. 10 Measured Broadside Phase Shift(h/a- = 6).

Figure 4.11 Heasured Broadside Phase Shift(h/a- = 6).

Figure 4.12 Measured Broadside Cross Section ($\mathrm{L} / \mathrm{a}^{-}=4$).

Figure 4.13 Measured Broadside Cross Section (h/a-= 4).

Figure 4.14 Aeasured Broadside Cross Section (h/a- = 4).

Figure 4.15 Measured Broadside Cross Section (h/a- = 4).

Figure 4.16 Heasured Broadside Cross Section (h/a-= 4).

Figure 4. 17 Heasured Broadside Phase Shift (h/a- = 4).

Figure 4. 18 Heasured Broadside Phase Shift (h/a- $=4$).

Figure 4. 19 Measured Broadside Phase Shift (h/a- = 4).

Figure 4. 20 Measured Broadside Phase Shift(h/a- = 4).

Figure 4.21 Beasured Broadside Phase Shift (h/a-= 4).

C. CONCLUSIOMS

As can be seen from the figures, the measured results vary slightly and not enough to cause the rapid fluctuations over the complete frequency range. Therefore this fluctuation is not caused by the coupling between the cylinder and its support. Experimental and theoretical results show that a small alignment error can not cause this problem either. It appears that the antennas, each capable of cross polarization detection, have lower isolation between feeds. The system cailibration standard, a sphere, is not sensitive to the polarization of the output from the transmitting antenna. $\begin{aligned} & \text { A } \\ & \text { cylinder, } \\ & \text { in the } \\ & \text { head-on } \\ & \text { aspect, retains the same }\end{aligned}$ symmetry. But for broadside scattering, the change with frequency in the polarization of the incident field will cause problems.

Since the polarization of the output of the transmitting antenna may change with frequency in an unpredictable madner, this $\in f$ fect may introduce the variations observed in the broadside scattering data. Improving the isolation capability of each of the antennas against cross polarization will improve the system performance of the $C \vec{f}$ step-frequency range.

V. CONCLDSIONS

The measured scattering data of finite tubular cylinder in headoon and broadside aspects were presented and compared both to the theoretical values and to previously obtained data from slightly louger cylinders.

It is evident that neglecting the wall thickness of the cylinder in the theoretical calculation is a valid approximation. on the other hand, because the waveguide modes depend only on the inner diameter of a finite tubuiar cylinder, the significant discrepancy between the theoretical values and the old experimental data demonstrates the importance of internal modes on the scattering cross section of a scatterer. Thus, in making the zero wall tnickness approximation, the inner radius of the actual cylinder nas to be chosen as the radius of the ideal cylinder. With this choice, the thickness of the cylinder is not critical.

Below the H mode cutoff frequency, it can $k \in$ seen that the lccations of maxima and minima of the scattering cross section are determined $b y$ the length of the cylinder. A minimum occurs whenever the length of the cylinder equais an integer multifle of one nalf the wavelength of the incident field. Above the H_{n} cutoff frequency, the minima are shifted away frow such values. It will require a detailed study of the excited current distributions on the inside and outside surfaces of the cylinder to exflain these phenomena.

1. Bowmang. J. J. M. B. A. Senior and P. L. E. Uslenghi,

2. Ite H. H. "Double Series Expansion of the Greers Function for a Perfectly conducting Tubular ©ylinder of Finite Length." Radio Science. 18 (1). pp. 48 -56. 1983.
3. Ite H. MS Mo thering Theory of the Finite Cylinderical Structure", in preparation.
 P Caung (1985a) "Back Scattering CFoss Section Along the Axis of a Tubular Cylinder of Finite Iength, paper presented at the International Symposium óf Antenna and Propagation, Japan at Kyoto, Japar. August 1985.
 "The H\| Circular Maveguide mode and the Back Scattering Cross Section Along the Axis of a Thin Walled Iubular Cylinder of Finite Length," to appear in IEE Eroceedings Part H.

 California. March 1985.
4. David Geller Head=on Scattering of A Tubular Cylinoter

5. Rome Air Develop Center Tech AOC Report RADC TDR 64-25 Vol 1 AD 601364 Vol 2 AD 6013363 , Ragar Q $\in f 1$ ētyion Measurements Symposiug. April 1964.

IHITIAL DISTBIBUTION LIST

No. Copies2Naval y.code 0142Naval ecstgraduate SchoolMonterey, California 93943-5100
2. Defense Technical Information CenterCameron stationAlexandria. Virginia $22304-6145$
3. Department Chairman,code 62 1Department of Electrical EngineeringNaval Pcstgraduate SchoolMonterey, California 93943-5100
4. Prof. Hung-Mou Iee, Code 62 Lh 10
Department of Electrical Engineering Naval Pcstgraduate School Mcnterey. California 93943-5100
5. Dre Michael A. Morgan Code 414 1Office cf Naval Research 800 N. Quincy St.Arlingtcn. Virginia 22217
6. Lt. Gyoo-Pil Chung 5
Comm/El EC. Department Navy H / Q
Y oung Deung po -Gu Seoul 120 Republic ō Korea

Thesis
C478442
c. 1

Chung
Effects of waveguide modes on the scatter-
Ing of a finite tubumodes on the scatter-
Ing of a finite tubular cylinder.

$$
214114
$$

[^0]: Broadside Cross Section of Cylinder 5.

 Figure 2.25

[^1]: Figure 4. 2 Beasured Broadside Cross Section (h/a- = 6) -

[^2]: Figure 4.6 Beasured Broadside Cross Section (h/a- = 6).

