

Calhoun: The NPS Institutional Archive DSpace Repository

Finline horn antennas.

Haq, Mumtaz ul
https://hdl.handle.net/10945/21343

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

appointed -- and published -- scholarly author.

NAVAL I そサ？
MOMTFは，CY： 13

NAVAL POSTGRADUATE SCHOOL Monterey, California

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ${ }^{\text {a }}$ - 2. GOVT ACCESSION NO.	3. RECIPIENT's CATALOG NUMBER
4. Title (and Subtitio) Finline Horn Antennas	5. TYPE OF REPORT A PERIOD COVERED Master's Thesis; September 1985 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Mumtaz ul Haq	0. Contract or gran t number(a)
9. PERFORming organization name and adoress Naval Postgraduate School Monterey, California 93943-5100	10. PROGRAMELEMENT. PROJECT. TASK AREA AMORKUNIT NUMEERS
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, California 93943-5100	12. REPORT OATE 1985
	$\begin{aligned} & \text { 13. NUMQER OFPAGES } \\ & 123 \end{aligned}$
14. MONITORING AGENCY NAME A AODRESS(il difteront from Controlling Offlice)	15. SECURITY CLASS. (Ot thia (OPOHt) UNCLASSIFIED
	15. OECLASSIFICATIOM SGMNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited
17. DISTRIBUTION STATEMENT (of the abstract ontored in Block 20, If difforont from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse alde tf neceesary and tdentify by block number)

Finline Horn Antennas; Printed Circuit Antennas; Finline
Monopulse Comparator; Printed Circuit-Monopulse Comparator
20. ABSTRACT COnilinue on reverse side if neceseary and identity by block number)

This thesis presents the results of an experimental investigation of the finline horn antennas. Both near-field and far-field measurements were made for horns with different physical and electrical parameters. This revealed the influence of the various parameters on the radiation pattern and led to a design which appears to be
close to the optimum with respect to gain and sidelobe levels. The application of these horns in a printed circuit monopulse comparator is also demonstrated.

Approved for public release: distribution is unlimited.

Finline Horn
 Antennas

b Y

Mumtaz ul Hag
Lt. Commander Pakistan Navy B.E. Karachi University Pakistan. 1976

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL September 1985

ABSTRACT

This thesis presents the results of an experimental investigation of the finline horn anternas. Both near-field and far-ifield measurements were made for horns with different physical and electrical parameters. This revealed the influence of the various parameters on the radiation pattern and led to a design which appears to be close to the optimum with respect to gain and sidelobe levels. The application of these horns in a printed circuit monopuise comparator is also demonstrated.

TABLE OF COHTENTS

I. INTRODUCIION 12
A. BACKGROUND 12

1. Electromagnetic Horn Antennas 12
2. Finline Horn Antennas 13
B. RELATED hOFK 15
3. Near-Field Antenna Testing 15
4. Finline Horn Antenna 16
C. PURPOSE 17
II. THEORY 20
A. NEAR-FIELD ANTENNA TESTING 20
5. Near-Field Testing Process 20
6. Error Sources 20
B. HORN ANTENNAS 24
7. Finline Horn Antenna 26
8. Design Considerations for the Eınlime Horn Antenna 28
9. Uniform Phase Front Finline Horn Antenna 30
C. MONOPULSE RADAR ANTENNAS 36
III. EXPERIMENT 41
A. NEAR-FIEL D ANTENNA TESTING 41
B. OBSERVATION OF NEAG FIELD MEASUREMENT 40
C. REDESIGN OF FINLINE HORN 46
D. GESULTS FOR fINLINE hOEN ANTENNAS 52
IV. FINLINE MONOPULSE COMPARATOR 66
a. DESIGN OP MONOPULSE COAPARATOK 66
B. perforaance of monopolse comparator 67
จ. CONCLUSION AND RECOMMENDATLON 79
A. CONCLUSIONS 79
B. RECOMMENDATIONS 80
APPENDIX A: BADIATICN PATTERNS 81
APPENDIX B: COMPUTER PROGRAM TO DRAW FINLINE HCRN ON
HP9845B PLOTTER 108
APPENDIX C: IBM COMPUTER PROGFAM TO CALCULATE FAR FIELD PATTERN 112
LIST OF REFERENCES 120
BIBLICGRAPHY 122
INITIAL DISTRIBUTION IIST 123

LIST OF TABLES

I DIFFERENT DESIGN OF FINLINE HORN ANTENNAS . . . 54 II CALCULATED AND MEASURED GAIN 64

LIST OF PIGURES

1.1 Types of dorn Antennas 14
1.2 Bilateral Finline 15
1.3 Finline Horn Antenna 17
1.4 E-Piane Radiation Pattern of Old Finline Horn 18
1.5 H-Plane Radiation Pattern of Old Finline Horn 19
2.1 Near-Field Pattern Fange Geometry 21
2. 2 Universal Radiation Pattern in E-Plane (After Jasik, ref. 12) 31
2.3 Universal Radiation Pattern in H-Plane (After Jasik, ref. 12) 32
2.4 Finline Horn Antenna with Uniform Pase Front 33
2.5 Geometry of Uniform Phase Front 34
2. 6 Square Monopulse Feed 39
2.7 Diamond Shaped Monopulse Feed 40
3.1 Near-Field Measurement Test-Bench 42
3.2 Near-Field Measurement Stt-up 43
3.3 Near-Fielã Normalized Magnitude 47
3.4 Near-Field Measured Phase 48
3.5 Modified Near-Field Normalized Magnitude 49
3.6 Modified Near-Field Phase 50
3.7 New Design of Finline Horn Antema 52
3.8 Finline Horn Antenra with Test Fixture 53
3.9 Scme of the Finline Horn Antennas Testeł 54
3. 10 Layout of Radiation Chamber 55
3.11 Gain of Finline Horn H1, H2, and H3 60
3.12 Gain of Fınline Horn $H 2$ with Different Lens 62
4.1 Picture of Monopulse Comparator with Fixture 67
4.2 Layout of Monopulse Comparator 68
4.3 E-Plane Monopulse Comparator Sum Pattern 70
4.4 E-Plane Bonopulse Comparator Difference Pattern 71
4.5 E-Elane Monopulse Comparator Sum and DifferencePatterns72
4.6 Amplified E-Plane Sum and Difference Patterns For Monopulse Comparator 73
4.7 H-Plane Monopulse Comparator Sum Pattern 74
4.8 H-Plane Monopulse Comparator Difference Pattern 75
4.9 H-Flane Monopulse Comparator Sum and DifferencePatterns76
4. 10 Monopulse Comparator Sum Port Beflectea Power 77
4.11 Monopulse Comparator Difference Port Reflected Power 78
A. 1 E-Flane Radiation Pattern of Finline Horn 81
A. 2 E-Plane Radiation Pattern of Finline Horn "A" 82
A. 3 E-Plane Radiation Pattern of Finline Horn "B" 83
A. 4 E-Plane Radiation Pattern of Finline Horn 84
A. 5 E-Plane Radiation Pattern of Finline Horn "D" 85
A. 6 E-Elane Radiation Pattern of Finline iorn "D" with Echosorb in the Feediine openiag 86
A. 7 E-Plane Radiation Pattern of Finline Horn 87
A. 8 E-Plane Radiation Pattern of Finline Horn "E" with Echosorb in the Feedline opening 88
A. 9 E-Elane Eadiation Pattern of Einline Horn "F" 89
A. 10 H-Plane Fadiation Pattern of Firline Horn 90
A. 11 E-Plane Radiation Pattern of Finline Horn "G" 91
A. 12 H-Plane Radiation Pattern of Finline Horn "G" 92
A. 13 E-Plane Radiaticn Pattern of Finline Horn "H1" 93
A. 14 H-Plane Fadiation Pattern of Finline Horn "H1" 94
A. 15 E-Plane Radiation Pattern of Finiine Horn "H2" 95
A. 16 H-Plane Radiation Pattern of Finline Horn "H2" 96
A. 17 E-Elane Radiation Pattern of Finline Horn 97
A. 18 E-Plane Radiation Pattern of Finline Horn "H3" 98
A. 19 H-Plane Radiation Pattern of Finline Horn "H3" . . 99
A. 20 E-Plane Radiation Pattern of Finline Horn "I" . . 100
A. 21 H-Plane Radiation Pattern oí Finline Horn "I" . . 101
A. 22 E-Plane Radiation Pattern of Finline Horn "J" . . 102
A. 23 H-Plane Radiation Pattern of Finline Horn "J". . 103
A. 24 Reflected Power of Finline Horn "H1" 104
A. 25 Reflected Power of Finline Horn "H2" 105
A. 26 Reflected Power of Finline Horn "H3" 106
A. 27 Reflected Power of Finline Horn "J" 107

ACKNOTLEDGEMENTS

I would like to sincerely thank to my thesis adviser, Professor Jefferey B. Knorr, for his guidance and encouragement throughout this work.

Thanks is also given to my second reader, Professor H. M. Lee, for his suggestions on the microstrip to coaxial cable transition for the monopulse comparator; to my partaer in the monopulse comaparator development, LCDB James w. Rowley, for his invaluable suggestions, encouragement, and friendship, without which, this project would not have teen as successful as it was. I would also like to thank Microvave Laboratory Supervisor, Gray Rediske and Etching Laboratory Technician, Marc Brown, for their day to day assistance.

Last but not the least, I would like to thank my wife and children for their moral support, tolerance and understanding throughout Naval Postgraduate School stay.

This thesis is dedicated to my father.

I. INTBODOCTION

A. BACRGRODED

Millimeter wave systems offer many advantages over microwave systems such as broad bandwidth, higher spatial and frequency resolution, low probability of interference or interception and small component size. The manufacturing and interfacing of conventional components at these frequencies can lead to tolarence problems. The integrated circuit approach at millimeter wavelengths offers great advantages in terms of design, low insertion losses, compatibility with hybride IC devices, cost and transition to the waveguide instruments. Meier [Ref. 1] showed that many components like a wide band SPST switch, balance mixer, an endfire antenna and a four-port forward coupler could be manufactured using finline technology.

This thesis investigates the possibility of using the near-field antenna testing technique to improve the desigu of the finline horn antenna and to optimize the gain. It also introduces a new coucept, a finline monopulse comparator and presents the experimental results.

1. Electromagnetic Horn Antennas

An open-ended waveguide can act as an antenna at microwave frequencies with a very wide beam and low gain. Basically there is an impedance mismatch at the open-end of the waveguide with respect to free space. If the dimensions of the waveguide are progressively increased to create a considerably larger radiating aperture, a highly directive radiation pattern can be achieved. This type of antenna is called an electromagnetic horn.

There are many types of horn antennas but Pyramid and Sectoral are more commonly used and are shown in figure 1.1 .

The pyramid horns start from a rectangular waveguide and are flared both in the E-plane and in the $H-p l a n e . ~ T h e ~$ width of the radiating aperture in the $H-p l a n e ~ i s ~ d e n o t e d ~ b y ~$ "A", and the height of the radiating aperture in the E-plane is denoted by "B". The flared length of the horn in the H-plane is denoted by "Lh" and flared length of the horn in the E-plane is denoted by "Le" as shown in Figure 1. 1(a).

The sectoral horns are a special class of pyramid horns. These areflared either in the E-plane or in the b-piane. The termiaclogy used for pyramid horns is also applicable to the sectoral horns.

2. Finline Horn Antennas

In finline, a dielectric substrate with metal strips on one or both sides is suspended in the E-plane of a rectangular waveguide. Sharma [Ref. 2] classified finline with metal on one side of the dielectric as unilateral finline and that with metal on both sides of $t h e d i e l e c t r i c$ as bilateral finline. A bilateral finline is shown in figure 1.2. If the fins aremade $\lambda \boldsymbol{\lambda}$, the open circuit from the waveguide opening should reflect back as a short at the edge of $t h \in f i n s$. Thus, it can be modeled as a ridged waveguide.

According to Meier [Ref. 1]. if the dielectric in the E-plane of the waveguide is extended beyond the waveguide open end and the metal strip is flared to a sufficiently large radiating aperture in the E-plane, the resulting antenna can produce a nice radiating pattern. This type of antenna nas the potential to mate with MIC's (microwave integrated circuit). Integrating an antenna witn a receiver can provide advantages in term of size, weight and production cost. Such integration is specially desireable,

Figure 1.1 Types of Born Antennas.

The quarter wavelength sections that reflect the opens at the top and bottom of the dielectric to apperant shorts across the tips of the fins (dotted lines).

Figure 1.2 Bilateral Finline.
when a large number of antenna / receiver modules are required, as in a pnased array or multichannei direction finding system.

B. BELATED WOEK

1. Neag=rield Antenna Testing

Near-iield antenna testing has not been very commonly used in the past to improve antenna design. At present only a few near-field measurement ranges are operational, but this technique appears to be heading for an exponential growth in the immediate future.

Harmening [aef. 3] presented the results of nearfield measurement made on the $A N / S P Y-1$ phase array antenna
at RCA Government System division in 1979. Stubenrauch and Nemell [Ref. 4] published the results of some of the nearfield antenna measurements performed at National Bureau of Standards and they particularly mentioned the results of measurements made on a large microstrip phased array for space born synthetic aperture radar (SAR) applications and also provided a comparison between far-field patterns obtained from conventional techniques and those calculated from near-field data.

2. Finline Horn Antenaa

In the finline structure, longitudinal metal strips and dielectric layers are suspended in the E-plane of a rectangular waveguide housing to proviàe capacitive loading to the quasi $T E 10$ mode. This loading widens the single mode bandwidth as in a similar structure, ridged waveguide. [Ref. 1]

Meier [Ref. 1] demonstrated that by extending the finline beyond the rectangular waveguide and flaring it in the E-plane, a suitable radiation pattern with sufficient gain can be achieved. The Ka band finline antenna reported ky Meier had a gain of 13.5 dB. The half power beam widths were 44 deg. in the $H-p l a n e, ~ a n d ~ 27$ deg. in the E-plane. A simpie finline taper between the aperture and the waveguide feed frovided an input VSWR of 1.8 across a 4.0 GHz band centered at 35.0 GHz .

Musitano [\&ef. 5] measured a series of radiation patterns for finline horns already designed by prof. J.B.Knorr as shown in Figure 1.3. For different flare lengths and angles he measured gain and 3 dB beam widths in the E and H-planes. Most of the radiation patterns were unsatisfactory and did not have clear main beams and the side lobes were far too high. The radiation pattern of E-plane and of $H-p l a n e$ are shown in Figure 1.4 and Figure 1.5 respectively.

Figure 1.3 Finline Horn Antenna.

C. PORPOSE

The main purpose of this thesis is to perform near-field measurements on the finline horn antenna already designed by prof. J. B. Knorr and to highlight the causes for the unsatisfactory far-field radiation pattern and using the near-fiela measurement ooservation, redesign the finline hori antenna with a uniform phase front. A secondary purpose is, to combine two finline horn antennas with a finline magic-tee to form a monopulse comparator and demonstrate sum and difference radiation patterns.

Figure 1.4 E-Plane Radiation Pattern of Old Finline Horn.

Figure 1.5 H-Rlane Badiation Pattern of Old Finline Horn.

II. TBEORI

A. near-field anteria testing

1. Near-Field Testing process

Near-field antenna testing is based on the accurate characterisaton of the RF field (phase and amplitude) or an antenna under test over a measurement plane parallel to and displaced a few wavelengths from the antenna aperture plane. The RF field is measured by precisely positioning an $B F$ probe at uniformly spaced points in the aperture plane. This near-field is then transformed by fast Fourier transform to an E-plane far-field radiation pattern. [Ref. 3]

The area of the measurement plane is finite, and the resulting truncation of the measured RFfield defines the maximum angles that will yield an accurate far-field pattern. A schematic relationship and far-field cutoff angle criterion for a planer near-field pattern range is shown in Figure 2.1. From figure 2.1

$$
\ell C=\tan ^{-1}(L x-a) / 2 D \quad \text { (eqn 2.1) }
$$

ψC is the maximumangle to which far-field patterns can be accurately determined.
2. En등 Sources

There are many error sources which contribute to the iraccuracy of the near-field measurement. These are discussed in the following paragraphs.

Figure 2.1 Near-Field Pattern Range Geometry.
a. Prote Position Error

The main contribution to tine total fractional far-field error is due to the probe position error. There are two type of probe positioning error, the first is out of plane displacement (z-direction) of the RF probe and the second is in plane horizontal (x)direction and / or vertical (y) direction displacement of the probe. The probe is modeled as Deing at a point $p+\Delta p$ on the plane $Z=d+\Delta z$ in front of the test antenna. There exists an error pattern due to the difference between the desired near electric field at the point (F, d) and the field actually measured by the probe at the pcint $(p+\Delta p, d+\Delta z)$ as given by:

$\Delta \bar{E}_{t}(\bar{P}, d)=\bar{E}_{t}\left(\bar{P}_{+}, \Delta, d+\Delta z\right)-\bar{E}_{t}(P, d)$

The displacement of the probe from a measurement plane at the instant of measurement will cause an error in phase as well as in magnitude, which in turn when transformed to far-field pattern will introduce error which is a function of antenna frequency, aperture size, illumination function and gain. In the near-field measurement, probe positioning is so critical that Warmening [Ref. 6] suggested probe positioning by Lasers for precise near-field measurements.

b. Probe Pattern Errors

The probe that measures the near-field of an antenna possesses a response which welghts the field of the probe over its volume to produce a net signal and this can introduce some error when transforming the near-field measurement to the far-field pattern. There are many different ways to overcome this error. Huss [Ref. 7] suggested that if the frobe artenna characteristics are known then probe pattern correction should be applied when transforming the near-field measurements in to far-field pattern or the separation distance between the measurement plane and antenna face should be increased to several wavelengths to avoid any probe pattern error.

The probe pattern is more important for small probes and when the measurement plane is witain 1-2 wavelengths from the antenna face.

C. Probe Polarization Error

The probe's output not only deperds upon its position on the measurement plane but is also a functicn of its polarization. If the polarization of the probe and the antenna are not matched, the probe will not respond to ail the field present at that point. It is hard to know the
polarization of the probe and the antenna both before hard. Hammening [Bef. 6] suggested that if it is assumed that the probe and antenna are not well matched, two separate scans with the probe mounted in the co-polarized and crosspolarized configuration should be performed. This would double the scan time and increase data reduction time. Then data from both scan polarizations as well as from probe calibration (if any) should be combined to obtain final antenna RF performance.
d. Multiple Eeflections

The determination of test antenca radiatior pattern from near-field measurement assumes that the measured data does not include multiple reflections from the near by objects or testing probe etc. Both amplitude and phase variations arising from multiple reflections can mask the desired field distribution along the scan plane. This is particularly true for a probe / test antenna separation distance on the order of one wavelength and for frequencies where the probe becomes electrically large. Grimm [Bef. 8] suggested that error due to multiple reflections could be avoided ϵ ither by increasing the probe to test antenna separation distance or by averaging several sets of near field data taken at various multiples of $\mathcal{N} 8$ separation.

e. Instrumentation Errors

A final scurce of far-field error is due to the imprecision of the near iield test instruments. As stated by Grimm [Ref. 8], typical microwave receivers measures $R F$ phase to within 0.05 deg for maximum amplitude input and to within 0.5 deg when the $B F$ signal amplitude is 20 dB down from the maximum. Such a small phase variation contributes negligibe error to the far-field pattern. However, the typical receiver's inability to measure RF amplitude
accurately contributes significantly to the far-field pattern error.

B. HCRY ABTEHMAS

The standard electromagnetic horn can be used either as a primary antenna or as a reflector feed driven from a waveguide. Horns are flared in the E and or H-planes according
 from the horn there may or may not be a reflection of energy. A reflected wave will inevitably disturb the incident wave and give rise to a standing wave. If this ratio is equal to 1, there is no reflected energy; i.e all the energy provided by the waveguide is transmitted into space by the horn and there is a perfect impedance match of the horn with free space. From the Reciprocity Theorem, it follows that under such circumstances, all the energy arriving from free space and entering the horn will be passed to the waveguide. The horn may therefore be considered as a transformer betw $\in \in$ waveguide and space.

The mouth of the horn is a radiating aperture and the the radiation from this aperture would depend upon the distribution of amplitude and phase in the aperture plane. In fact, it is more complicated because the external walls of the horn contain currents which influence the far-field radiation pattern. Therefore it is very difficult if not impossible to make precise calculations. For horns with large aperture, it is the amplitude and phase distribution of the aperture field which has the predominating influtnce on the radiation pattern. For horns with dimensions which do not exceed one or two wavelengths the effect of currents circulating on the external walls becomes appreciable. [kef. 9]

The field variation across the aperture of an electromagnetic horn is similar to the field distribution of the TE10 mode across a rectangular vaveguide. The field amplitude distribution is uniformin the $E-p l a n e$ and obeys approximately a cosine lav in the H-plane. If we consider the aperture of a horn in the H-plane the field intensity is maximum at the center of the horn and falls gradually to the sides and at the side wall oí the horn, the field vanishes. Therefore we can define the aperture of a horn in the $H-p l a n \in$ in another way; half the radiating aperture (A/2) is equal the distance Erom the point of maximum field amplitude to the pcint where the field amplitude becomes sufficiently negligi上le.

According to Thourel [Ref. 9]. the beam width in the E-plane and in the $H-p l a n e$ for a regular horn antenna can be approximated by $51 * \lambda / B$ and $69 * \lambda / A$ respectively. According to Ghandi [Bef. 10: p. 140] for the optimum design the gain of a pyramid horn can be approximated by $0.5 * 4 \pi *\left(A B / \lambda^{2}\right)$, the gain of a sectoral horn flaredin the H- plane can be approximated $k y 0.63 * 4 \pi *\left(A B / \lambda^{2}\right)$, and the gain of a sectoral horn flared in the $E-p l a n e$ can be approximated by $0.65 * 4 \pi$ * ($A B / \boldsymbol{\lambda}$) . The constant terms $0.5,0.63$ and 0.65 are illumination factors. Therefore, the gain of any pyramid or sectoral horn can be approximated by

$$
\begin{equation*}
\operatorname{Gain}=(\operatorname{constan} t) * 4 \pi *\left(A B / \lambda^{2}\right) \tag{egn}
\end{equation*}
$$

where the constant is the illumination efficiency. Equation 2.2 can also be written as

$$
\begin{equation*}
\text { Gain }=C *\left(A B / \lambda^{2}\right) \tag{eqn2.3}
\end{equation*}
$$

where $C=(I l l u m i n a t i o n ~ e f f i c i \in n c y) * 4 \pi$.

1. Finline Horn Antenna

The theory and design considerations for a finline horn are not altogether different from those for a standard electromagnetic horn. For the standard electromagnetic horn the $\mathbb{m} \in \mathrm{d}^{2} u \boldsymbol{l}$ of propagation is air . where as in the finline horn the medium of propagation is partially dielectric material and partially air.

Basically the finline horn is fed from a slot and the slot can be transitioned from waveguide, coaxial cable or from another micrcwave device e.g. finline magic-tee, depending upon the design requirements. The width of the slot is very critical. If it is fed from a coaxial cable it should match the impedance of the coaxial cable, if it is fed from another microwave device it should match the impedance of that device and if it is transitioned from a waveguide, then the width of the slot is a variabie parameter. The waveguide can be matched to the desired width of the slot by taper design as described by Adalbert and Ingo [Ref. 11].

In addition to the slot width, the height of fins in the waveguide is also an important factor in the design of finline horns. For the ideal design the height of fins should be $\lambda / 2$, so that the short from the waveguide wall should reflect back as a short at the edge of the fins. In that case the finline can be modeled as a riged waveguide. The ideal design requirement for the slot width and the fin height are difficult to meet, but through suitable selection of dielectric material both conditions can be satisfied. If under some circumstances the condition of $\lambda / 2$ for fins can not be satisfied, then the finline cannot exactly be modeled as a ridged waveguide but it can be visualized as two fins in the waveguiae and most of the field will concentrate between the fins depending upon the dielectric constant of
the material. In our experiment, we will consider finline horn driven with different slot widths and discuss the results obtain from these changes.

For the finline horn, we have physical control of the flare length, flare angle and radiating aperture in the E-plane, but we have no physical control on the parameters in the H-plane. However by using different dielectric material, we can control the effective aperture length in the $H-p l a n e$.

As mentioned in the preceding paragraphs, half of the radiating aperture ($\mathrm{A} / 2$) in the $H-p l a n e$ can re deíined from the maximum field strength point to the point where the field becomes negligible. If we use the higher dielectric constant material, more field will be concentrating in the dielectric and the point of negligible field strength will move closer to the center, thereby reducing the aperture size in the H-plane. Therefore, we can control the radi-
 materials. Mathematically we can defint the H-plane radiating aperture ($(\mathbb{)}$) by the following equation,

$$
A=K 1 * 1 /(E r)^{K_{2}} \text { or } A / \lambda=K 1 * 1 /(E r)^{K_{2}} \quad(e q \pi 2.4)
$$

where $k 1$ and $k 2$ are constants.
Now considering the simplified gain equation of 2.3 , we $k n c w$ the physical dimensions of B / λ of the finlife horn and we can approximate the dimensions of a / λ from Equation 2.4 . If we substitute the A / λ from Equation 2.4 into Equation 2.3 , we get

$$
\begin{equation*}
\text { Gain }=\operatorname{c1} *-\frac{B}{\lambda}-\frac{B}{\left(E_{\gamma}\right)} \tag{eqn2.5}
\end{equation*}
$$

Where c1 and c2 are constants.

If by some means we can find the values of the constants $C 1$ and $C 2$, then we can approximate the gain of a finline horn antenna. Fe will use the experimental approach to find the values of $C 1$ and $C 2$ in the next chapter. Similarly the beamwidth in E and H-planes can be approximated by $K 1 * \lambda / B$ and $K 2 *(E r)^{k}$ respectively and constant terms can be found from the experimental results.

2. Design Considerations for the Finline Horn Antenna

There are many design parameters which need to be considered for the design of a finline horn antenna. In the following paragraphs we will discuss each one of them.

Given the gain and beamwidth of the finline horn antenna, we need to calculate the flare length (Le), flare angle, radiating aperture (B) and Er. The flare length is normally defined in terms of number of wavelengths in the dielectric. The Le normally depends upon the gain we want and how long a horn antenna we can afford to make. A series of curves for different Le's has been shown by Jasik [Ref. 12:p. 10-6]. These curves are plotted for b/ג ∇s Ge* $(\boldsymbol{\lambda} / \mathrm{a})$. For a specific le, the $G \mathrm{G}^{*}(\boldsymbol{\lambda} / \mathrm{a})$ increases with an increase in b/ג and reaches an optimum value and any further increase in b / λ beyond the optimum value decreases the $G e^{*}(\lambda / a)$. As mentioned previously, we have no physical dimetrsions in the H-plane, however we have established an equivalence in terms of dielectric constant. We can still use these curves but cannot calculate the exact gain. one might consider taking b / λ for the optimur value, but tais is not always the best solution because in addition to high gain we need a well defined main beam and low side lobes. Jasik [Ref. 12: po 10-4] shows the universal radiation patterns in the E and H-planes. These Figures have been replotted in fiyures 2.2 and 2.3. As shown in Figure 2.2, for lower side lobes we need to have a lower value of
maximum phase deviation in wavelength (S), which is defined by

$$
\begin{equation*}
S=B^{2} /(8 * \lambda * L \epsilon) \tag{egn2.6}
\end{equation*}
$$

Hhere B is radiation aperture in E-plane Le is flare length in E-Flane
and λ is wavelength in air.
From Figure 2.2, we can see that for a good radiation pattern, we need to have $S<0.125$. A higher value of S will give a completely distorted radiation pattern. These curves of Figures 2.2 and 2.3 are for design of regular horn antennas. Now tine question arises as to wether we can use these curves for a finline horn and if so wether we should take the wavelength in air or dielectric. We will show in our experiment that these curves are still applicable. He sould use the wavelength in air for calculation of S because when waves leaves the radiating plane they are in the air. The Figure 2.3 shous the universal radiation patterns in the $H-p l a n e$. These patterns are also functions of maximum phase deviation (in wavelengths) in the $H-p l a n e$. Maximum piase deviaticn in wavelengths (I) is defined by

$$
\begin{equation*}
T=A^{2} /(8 * \lambda * L h) \tag{eqn2.7}
\end{equation*}
$$

Where A is radiation aperture in $H-p l a n e$ Lh is flare length in H-flane
and $\quad \lambda$ is wavelength in air.
In equation 2.7, most of the terms are unknown in tne case of a finline horn. we can see from Figure 2.3 that for this case also a lower value of I is desireable. However, a higher value of T will not seriously distort the pattern, Lut will give a wide pattern, wich can be controlled by suitable choise of dielectric material.

From the above paragraphs we can concluded that radiating aperture (B). flare length (Le), flare angle and Er are interrelated and they need to be carefully selected according to the design requirements.

3. Uniform Phase Front Finline Horn Antenna

The radiation from an aperture is governed by the distribution of the fields on it. A reflector may be considered as an aperture, and its radiation pattern is governed by its illumination. In the most general case this illumination is supplied by the horn radiating towards the reflector. The distribution of the field at the aperture thus depends upor the shape of the horn's radiating plane.

The field distribution at the aperture of a regular hora antenaa is quite lifficult to change. However, some methods bave been discussed by Ihoural [Ref. 9]. In the case of a finline horn antenna, the field distribution at the radiating aperture can very effectively be varied.

Under normal circumstances the field distribution at the aperture has a semicirclar shape and the direction of propagation is perpeadicular to the field. If we visualize,
 at the radiating aperture, then the fieid must be propagating parallel to the Z-direction. In the following paragraphs, we will discuss a method to odtain a uniform phase front on finline horr antenna.

For a uniform pnase front, basically what we want is to slow down the field in the center or make the field at the edges to go fast, so that at the horn mouth, ail the wave elements have the same phase. This can be done in several ways. Jne of the methods we considered was to drill noles in the dielectric edges to make the wave move faster on the edges and gradually slow down in the center. This conceft is quize difficult to implement because it is hard

Figure 2. 2 Oniversal Badiation Pattern in E-Plane (After Jasik. ref. 12).

Figure 2.3 Dniversal Eadiation Pattern in H-Plane (After Jasik. ref. 12).
to calculate the exact size, numbers and position of the holes. The second method we considered was to extend the dielectric beyond the horn mouth in a particular shape, so that the waves in center should keep on moving at the speed
 the sfeed in the air and in some plane in front of the horn antenna, the field will have a uniform phase front.

The finline hcrn antenna with extended dielectric is shown in Figure 2.4. Hhere plane acb is the aperture plane, the curve $a d b$ is a constant phase surface, and curve aeb is the extended dielectric shape to produce a uniform phase front at an imaginary plane xey. If we carefully visualize the Figure 2.4, we are introducing a converging lens in front of the aperture plane.

The lens theory is not a new concept. It has pen previously considered by fradin [Ref. 13]. but he put a particular shape of dielectric in the mouth of the regular horn antenna in order to change the phase front in a desired way. In that method the wave was transitioning from air to dielectric and back to air. In the fin line horn antenna, we are extending the dielectric and it is the shape of the dielectric which produces the uniform phase front at an imaginary plane. In the following section we will derive the equation to calculate the precise length of extended dielectrice beyond the aperture.

Figure 2.5 Geometry of Uniform Phase Front.

The inline horn antenna is symmetrical about its center axis, therefore we will only consider half as shown in Figure 2.5. Here L is the flare length from origin to the
constant phase surface, is the flare angle, $\in y$ is the uniform phase surface, P is the length of the extencied dielectric at the center, Q is toe racial length from edge of horn to the uniform phase front ard b is the radial length of the extended dielectric at an angle.

We need to calculate the radial extension (b) in terms of angie rom the origin. In order to obtain a uniform phase front at plane $\in \mathrm{y}$ as shown in Figure 2.5, we need to make the distances P, Q and $a+b$ electrically the same. It was assumed during these calculations that incident field at the edge of dielectric is perpendicular to the dielectric shape, therefore reflection can de neglected.

$$
Q=F \sqrt{E I}=a+b \sqrt{E I} \quad \text { (eg 2. })
$$

Enron triangle dye of Figure 2.5.

$$
L+P=(\tilde{L}+\varepsilon) * \cos (\alpha)
$$

Substituting P in term of Q from Equation 2.8 in Equation 2.9.

$$
\begin{equation*}
L+P=(L+P \sqrt{E \Sigma}) * \cos (\alpha) \tag{egn}
\end{equation*}
$$

From Equation 2. 10 .

$$
\begin{equation*}
P=\frac{(1-\cos \alpha)}{(\sqrt{\operatorname{Er} \cos \alpha-1)} * L} \tag{eg}
\end{equation*}
$$

This will give us the maximum height of dielectric at the center, In oráer to calculate the height "t" in term of angle β. From triangle ore of figure 2.5,

$$
\begin{equation*}
(L+P)=(L+a+b) * \cos (\beta) \tag{egn}
\end{equation*}
$$

where $\quad 0 \leqslant \beta \leqslant \alpha$

From Figure 2.5, when $\beta=0$

$$
R=L+P \quad O I \dot{D}=P
$$

and when $\beta=\alpha$

$$
R=L \quad \text { or } \quad b=0
$$

From Equation 2. 12 .

From Equation 2.8, we know that
$a+b \sqrt{E I}=P \sqrt{E I}$
(eg 2.14)

Solving simultaneously tue Equation 2.13 and Equation 2. 14 . we get

Suostitutlag value of ? from Equation 2.11 into Equation 2.15.

This Formula for "b" can De evaluated in zoae computer, which can draw the exact shape of the extended dielectric for the uniform phase front.

C. MONOPULSE RADAR ABTRNNAS

The typical monopulse radar antenna system consists of four identical reflector feds, interconnected with three or more u aqic-tees. Tire signals to and rofl the tour feeds are
added and subtracted in various combinations to produce three outputs.

All four of the feeds are summed together in phase to produce the sum channel. This signal is connected to the radar via a traditional T / R (transmit/receive) device.

The two differeace channels provide the tracking information. The elevation port developes the difference of the upper and lower feeds, while the azimuth port produces the difference Detween the left and right elements. If a monopulse antenaa is pointing exactly at a target there will be a strcng signal in the sum channel and adsolutely no signal in either the elevation or aziquth channels. The null in the dirference channels is the result of shifting two ldentical signals 180 degrees from each other, and then adding them toqether. The phase shifting and addition is acconplished in the magic-tees.

The radar return from a target that is slightly left of the monofulse antenna extended center line will reach the left $\in l e m e n t s$ of the antenna before it reaches the rifht elements. This will produce a slight phase sifft between the two returaing pulses in the azimuth channel.

With this alignment, there will not be complete cancellation after the two signals are shifted by 180 degrees and then added. The resulting "difference" signal will increase in ampiitude and shift in phase as the target gets farther away from the antenna boresight. There will also be a 180 degree phase shift in the difference channel as a target crosses the antenna koresight. [Ref. 14]

Since the null in the difference port can only occur with exact target/ antenra alignment, it signifies the exact center of both the sum and difference antenna patterns.

When this information is combined with range data, the target's location car be limited to an arc on the plane that bisects the two halves of the antenna. The point where the
elevation and azimuth arcs cross, is directly in front of the antenna. The line between the monopulse ant fnna and this point is commonly referred to as the boresight of the antenna.

If the outputs of the difference channels are monitored while a target is within the main bean of the sum pattern; the target can be classified as exactly centered, a little left, a little right, a little low, a little high, of a comoination of these directions.

As defined by Skolinik [Ref. 14]. botb amplitude and phase comparison monopulse systems use the phase of the difference signal to determine which siae of boresignt the target is on. The amplitude comparison systea uses the relative amplitude of the difference channel (as comparé to the sum channel) to determine how far a target is from tio extended center line. while the phase comparison system obtains this information from the exact phase of the difference channel.

These techniques were initially called simultaneous lobing, since all four lobes are sampled during each and every returning radar echo. The trait of obtairing a complete tracking solution in only one pulse, finally led to the current designation of "Monopulse". [Bef. 14]

Earlier tracking radars such as conical scanning anc lobe switching systems required numerous pulses to obtain the same information. The accuracy of these older systems was often degraded by tne pulse to pulse amplitude variations. Monopulse systems, which are free of distorticr, have achieved tracking accuracies of 0.003 degrees. [Ref. 14]

Iwo popular forms of amplitude comparison moropulse antenna systems are illustratedin Figures 2.6 and 2.7. [Ref. 14]

Square Monopulse Feed, with four Horns, and four Magic-Tees. The Sum Port is connected to the Transmit/Receive Device. The Difference Ports provide inputs to the Target Tracking Circuits.

Figure 2.7 Diamond Shaped Monopulse Feed.

III. EXPERIMENT

A. NEAB-FIELD ANTEN MA TESTING

For the near-field antenna testing, the first thing required is some sort of mechanism to hold the test antenaa in a fixed position and to position and move the measurement probe precisely in steps, parallel to the antenna aperture plane. The test-bench made for this purpose is shovn in Figure 3.1. This test-bench was made mostly of wood, except the slotted line, which was used for positioning the measurement probe. During measurement, the test-bencia was completely covered with echosorb to avoid any reflection from nearby objects / instruments.

The following test equipment was used to complete the near-ficld test set-up.

1. HP 9845B Computer with 11863E software.
2. HP 8409C Vector Network Analyzer.
3. Designed Test-Eench.

The complete set-up is shown in Figure 3.2. The aost important piece in the set-up is the network analyzer. The network anaiyzer measures the reflected and / or transuitted power and displays it as the s-parameters of a 2-port network. This equipment is controled by the Hp 98453 computer using 11863 E software.

The finline horn antenna shonn in Fiyure 1.3 das fixed on the test bench as shownin Figure 3.1, such that its E-plane was paraliel to the ground and to the s-band siotline used for frobe positionirg. A very small locp anterna was used as a weasurement probe, wich was considered the best possinle choice. The antenna was connected to cae netiork analyzer unkncan port and the measurement probe was

Figure 3.1 Near-Field Measurement Test-Bench.
connected to the transmission port as shown in Figure 3.2. The system was calibrated to measure s21, the transmission coefficient at the particular frode position.

For near-field measurement, the mumber of measurements, step size for measurement and the separation distance between the test artenna and measurement plane are very important. when transforming Erom near-rield measurements to the far-field pattern, the number of measured samples should de a poter of 2 and if the number oi samples is not a poner of 2 , it shoula be fadded up with zero's to make the total samples equal to the required number. The measurements iere aade at 10.0 GHz , ahicn gives tne wavelength of 30 ma . I工 our set-up the size of the proceyas guite smail ana ge

Figure 3.2 Bear-Pield Measurement Set-up.
decided to chose a separation distance of 5 mm, which was nuch smaller than the wavelength. When N discrete nearfield measurements are transformed to obtain the far-iield pattern, it gives N discrete points of the far-field, and these points are converted to far-field pattern with the following equation,

$$
\frac{\operatorname{Sin}(Q)}{\lambda}=\frac{n}{N \cdot S S}
$$

(eqn 3.1)
where Q is the beam angle,
N is total number of near-field measurements,
n is the far-field discrete point number,
and $S S$ is the step size.
The visible limits for any far-field pattern are ± 90 deg.. if we want far-field pattern up to visible limits. then $n=N / 2$ and $Q=90$ deg., if we substitute tnese in Equation 3.1, we get $S S \leqslant \lambda / 2$. The test antenna used for near-field measurements had an aperture of 100 mm , we elected to use 5 mm step size in order to have enough measurements to transform.

The slotted line used for probe positioning was accurately positioned farallel to the antenna aperture. 16 measurements were taken on either side of the antenia center with a step size of 5 mm apart, which gave a total scan plane of 160 mm. Substituting these values in the Equation 2.1. gives the far-field limits of ± 80.2 deg.

During near-tield antenna testing, to avoid any probe pattern anc / or probe polarization error, we decided to take the same measurements ky turning the probe at four different positions, two in the co-polarization plane and two in the cross-polarization flane. Throughout this tiresis "loop 0 deg." is the probe in the co-polarization plane and "loop 180 deg." is also the probe in the co-polarization plame but 180 deg. shifted from "loop 0 deg." measurement
position. Similarly the "loop 90 deg." is the loop in the cross-polarization plane and "loop -90 deg." is also the probe in the cross-polarization but 180 deg. shifted from the "loop 90 deg." measurement position. "Loop 0 deg." an "loop 180 deg." measurements are vectorally added to compensate for any probe pattern error. "Loop 90 deg." and "loop -90 deg." measurements are vectorally added to the "loop 0 deg." and "loop 180 deg." to compensate for any probe polarization error.

The near-field data (phase and amplitude) from each of the fcur scans was then input to a program written for IBM main frame computer, which calculates the resultant from the measured data. It also normalizes the phase and magnitude with respect to the highest value, and performs the fast Fourier transform on the resultant in order to obtain the far-field pattern. The listing of the computer program is included as appendix C.

The normalized magnitude of measured and resultant field us shown in Figure 3.3 and the phase of the measured and resultant field is shown in Figure 3.4. From Figure 3.3 it can be seen that resultant field is mainly function of the fieldin the co-polarization plane and the crosspolarization field contrioutes negligibly to the resultant, therefore for the calculation of the resultant field, the cross-polarization measurements need not be considered. If we carefully visualize the magnitude of the "loop 0 de; " ana "loop 180 deg." measurements in Figure 3.3, it can be seen that the "loop 0 deg." measurement are mirror image of the "loop 180 deg." measurements, Dut their feaks are not aligned and are not symmetrical about origin. It can also De seen from Figure 3.4, that there is a phase shift betweer the measurements. Since the test antenna is symmetrical and we exfect to have symmetrical ficld distribution a oout the origin, it will be more reasonable to take oniy one
measurement in the co-polarization plane and then add the mirror image of the same measurement oy aligning the feaks of the magnitude. This procedure will be more accurate and will eliminate any probe pattern error. The rormalized magnitude of measured and resultant field obtained with tnis procedure is shown in Figure 3.5. The measured, resultant and theoretical phase of an electromagnetic horn as explained by Jordan and Balmain [Ref. 15] is shown in Figure 3.6.

B. OBSERVATION OF NEAR FIELD MEASUREAEHT

It was observed during the near-field measurement that a siight movement on the top or bottom of the antenna greatly changes the amplitude of the field, which clearly shows the fact that field was also radiating from the top and bottom of $\mathrm{th} \in \mathrm{dielectric}$.

Ccmparing the resultant phase with the theoretical phase shown in the figure 3.6, it can be seen that theoretical phase shifts parabolically to the sides, whereas the resultant measured phase only approximates this shape. The phase deviations across the aperture contribute to loss of main beam gain and an increase in sidelobe levels.

Fourier transform of the near-ficid measurements was converted to a far-field pattern using the Equaticr 3.1. Far-field pattern was not very accurate because it was was being predicted with only 11 points, therefore it did rot have the resolution.

C. REDESIGA OF FIMLINE GORN

In this section, we will improve upon the design of the finline horn antenna and discuss the different parameters which can $\in f f e c t$ the performance of the finiine horn. As a first step to stop the radiation from the top and oottom of

Figure 3.3 Near-Field Normalized Bagnitude.

Figure 3.4 Near-Pield Measured Phase.

Figure 3.5 Hodified Near-Field Normalized Magnitude.

Figure 3.6 Modified Near-Field Phase.
the antenna through the dielectric, we decided to make the metallic flared strip throughout of uniform width. The strip width can be made $\lambda / 4$, so that the open from the edge of the fins should reflect back as a short or it can be made y2 in which case we put a copper tape on the outer edge of the fins so that the short at the outer edge reflects back as a short at the fins inner edge.

The new design of finline horn antenna with some of the variarle parameters is shown in Figure 3.7. In addition to the parameters shown in Figure 3.7. the dielectric constant of $t h \in$ material and the maximum phase deviation in wavelengths, (S), also influences the far-field radiation pattern. For the initial design, we selected Er = 2.54. iit this dielectric constant it was not possiole to obtain a fin height of $\boldsymbol{\lambda} / 2$, as explained in preceding section, therefore we had choice of selecting the different slot width and to find the optimum size of slot from experimental results. The slot was matched to the waveguide by a taperldesign.

A computer program was written on $H P$ 9845. computer, which draws the outline of finline horn antennas with tine specified parameters and uniform phase front on a HP 9872C plotter. This drawing can then further be used for etching of the horn antenna on the substrate. The listing of the program is included as Appendix E. A finline horn antenna with test fixture is shown in Figure 3. 3.

The tecanique of optimization by trial and error was used to find the best design of the finline horn antenna, The different designs of finline horns fabricated and tested are listed in table I with their parameters and some of the finline horn antennas tested are shown in Figure 3.9.

A Microline 56X1 regular standard gain horn was used as a reference, to compare the shape of the radiation pattern and calculate the gain of the finline horns. Most of our radiation patterns were taken at 10.0 GHz , the Microline 56×1 had a gain of 16.2 dB at this frequency.

Figure 3.7 New Design of Finline Horn Antenna.

Figure 3．8 Finline forn Antenna yith Test Fixture．

D．RESULTS FOR FIULIXE HORN ANTENNAS

In this section，we will discuss the results of tie far－field radiation fatterns obtained from the difreニこのに designs of finiine horn antennas ani to find out tis effect of different parameters over the performance of the fiailae horn artenna．

BGfore considering the radiation pattera，it is 1avoこー tant to mention a few possille tactors whicr coula contritute to the asymmetry of the measured patrern．

The layout or the raciation chamber is shown in eizure 3．10．It cau be seen that the champer is not symmetrical ana particularly，at +36 degree $b \in a m$ ，the test antenra fiass a saarp corner and at -36 degree beám，the test anteráa fucas

TABLE I

DIFFEREAT DESIGN OF PINLINE HORA ABTEMNAS

Finline $I e=N^{*} d$ HCIn N

Flare
Angle
（deg）
36.20
47.20
$45: 00$
45.00
$45: 00$
18.20
16.20
18.20
20.20
22.20
18.20
20.20

Strip

Width	Width	S	Er
2． 2.50	1／4	0.26	2.54
2.50	1／4	0.47	2.54
2． 50	$1 / 4$	0.37	2.54
2． 50	N4	0.37	2.54
2． 50	1／2	0.37	2.54
2．50	入2	0.10	4
2． 50	入／2	0.10	2.54
1.60	入2	0.10	2． 54
1．60	M2	0.12	． 54
1.60	入2	0.15	
0.50	入2	0.10	
1.60	M2	0.12	12．00

Eエ 54
54
54
54
54
54
54
54
54
54
20
30

Figure 3．9 Some of the Finline Horn Antennas Tested．
a straight wall. Therefore at this angle, there will be asymmetry in the measured radiation pattern. Secondly the absorber used to avoid reflections from the chamber walls is of very poor quality and when the test antenna is facing toward the side walls, it receives a high reflection which results in false side lobes.

Trancmitting Pntenna.

Pigure 3.10 Layout of Radiation Chamber.

The X-band slotted line used as a shield for the feed to the finline horn antennas is also not symmetrical. Therefore, it might contribute to some extent to the asymmetry of the measured radiation patterns of the finline horn anteanas.

The far-field radiation patterns of finline horn antennas and the return loss of some of the antennas are included in Appendix A.

Figure A. 1 shows the E-plane radiation pattern of the finline horn "A" with uniform phase design. It had a gain of 12.2 dB and E-plane beall width of 22.0 degrees but it haa high shoulders. Figure A.2 shows the E-plane radiation pattern of finline horn "A" without uniform phase design. It had a gain of 10.2 dB and E-plane beam width of 24.0 degrees. It can be seen from these two Figures that the uniform phase design increases the gain by several dBs anc narrows down the beam in E-plane. The amount of increase in gain depends upon the radiating aperture and is not a fixed number.

The Figure A. 3 shows the radiation pattern of finline antenna "B", the far-field pattern of finline horn antenna "B" had very high side lobes as compared to the radiation pattern of finline horn antenna "A". This is due to the fact that finline horn "B" had a large aperture and a nigher value of S as compared to the finline horn antenna "A".

The radiatior pattern of finline horn "C" is shown in Figuit A.4, its sidelobes are also quite higa as compared to the finline horn "A". The finline horn "C" and "D" had same parameters except that the finline horn "D" had a wide feed Line slot width as compared to the finline horn "C". It can be $s \in \in n$ from tie radiation pattern shown in Figure $A .5$, that the side lobes are even higher then the main beam. By inserting a piece of echosorb in the opening of the waveguide feed the sidelobes can te reduced as shown in figure A.6. This indicates that wide feed line slots cause pattern degradation due to secondary radiation from the \in fd of the feed lineshield. By inserting the echosorb in the moutn of the waveguide, the radiation from this source was stopped and the radiation patteri achieved with this confriguration was determined only by tne finline horr antenna. But the finline horn "C" still had a better pattern as compared to the finline horn "D".

The finline horn "E" had the same parameters as finline horn "D" except that the horn "D" had a flare strip width of V4 $_{4}$ and the horn "E" had a strip width of $\lambda / 2$ and copper tape on the outer edge to create an electrical short. The finline horn "E" also had a wide slot width. The radiation patterns of finline horn "E" with and without the echosorb in the waveguide are shown in Figures A. 7 and a.8 respectively. Comparing the patterns of finline horn "D" and "E", it can be seen that finline horn "E" had better radiation pattern as compared to the finline horn "D".

Summarizing the results of the far-field patterns of finline horns A, B, C, D and E, for lower side lobes, a lower value of S is desired, or the order of 0.1 or less. A slot width of 2.5 mal gives better results as compared to a slot width of 5.0 mm because the field concentrates in the slot. A flare strip of $\lambda / 2$ works better than a flare strip of $\lambda / 4$ because it provides a positive short at the outer edge and reduced radiation leakage from the edges of the horn.

The finline horn "F" was made with the optimum parameters obtained from the preceding results, with $S=0.1$, slot width of 2.5 mm and flare strip width of $\lambda / 2$ with copper tape on the outer edge and flare length of 150.6 mm (Le=8* \boldsymbol{m} d). which gives a radiating aperture of $47.6 m$ m. The E-plane and H-plane radiation patterns are shown in Figures A.9 and A. 10 respectively. It can be seen from these figures that the finline horn "F" had a very clear radiation pattern with a well defined main beam, gain of 10.7 ab and E-plare beam width of 26.0 degrees. H-plane beam width of 36.0 degrees. Side lobes were approximatly 13 ab below the main bean in the $E-p l a n e$ and 9-10 $d B$ below the main beam in the $H-p l a n e$.

Tc further improve the gain of a finline horn, we increased the flare length to 188.2 mm (Le=10*入d) to achieve a wider aperture while keeping the other parameters the same as for finline horn "F". The E-plane and H-plane radiation
patterns of finline horn "G" are shown in Figures A. 11 and A. 12 respectively. It can be seen from Figure A. 12 that it had gain of 13.0 dB in the $\mathrm{H}-\mathrm{plane}$ but only 11.0 dB in the E-plane. This discrefancy might te due to the fact that the finline antenna in the E-plane might not be pointing exactly at the transmitting antenna center and may be tilted down due to its extra length. The finline horn "G" had a beam width of 22.0 degrees in the E-plane and 36.0 degree in the H-plare. We were able to obtain the higher gain by increasing the width of the radiating aperture, but with the available dielectric material and under these laboratory conditions, it was not possible to make large antennas.

Next we considered improving the gain by further reducing the slot width. The finline horn "H1" had the same parameters of finline horn "F" but the slot width was reduced to 1.6 mm . The E-plane and H-plane radiation patterns of finline horn "H1" are shown in Figures A. 13 and A. 14 respectively. The finline horn "Hil had a gain of 12.2 dB and beamwidths of 25 deg. and 40 deg. in the \bar{E} and H-planes, respectively. The side loves at 36 deg. were approximatly 9 dB lower than the main beam. It can be seen from Figure A. 13 that E-plane side lobes are nigher on one side as compared to the other side. This is probably due to the shape of the radiation chamber and multi patn refiections from the corners of the chamber. The finline horn "H1" had 1. 5 dB higher gain as compared to the finline horn "F". This shows, that a slot width of 1.6 mal gives better results as compared to a slot width of 2.5mm. Therefore, for other experiments we used a siot width of $1.6 \mathbb{m}$.

The finline horn "H1" had a flare angle of 18.2 degrees. We made two more antennas with tne same parameters as finline horn "H1" but with different flare angles. The finline horn "H2" had a flare angle of 20.2 deg. and finline horn "H3" had a flare angle of 22.2 deg. The finline horn
"H2" had a gain of 13.3 dB. Beam widths were 23.0 deg. and 36.0 deg. in the $E-p l a n e$ and the $H-p l a n e, ~ r e s p e c t i v e l y . ~ T h e ~$ E-plane side lobes were 12.0 dB lower than the main beam. The radiation pattern of horn"H2" in the E-plane and in the H-plant are shovnin Figures A. 15 and A. 16 respectively. The finline horn "H3" had a gain of 12.0 dB and the beam widths were 22.0 deg. and 40.0 deg. in the E-plane and the H-plane respectively. The sidelobes were 10.0 - 12.0 dB lower than the main beam. The radiation patterns of horn"H3" in the E-plane and the H-plane are shown in Figures A. 18 and A. 19 respectively.

The gain of finline horn antennas "H1","H2" and "H3" were measured for a frequency range of 8.2 GHz to 12.4 GHz and are shown in Pigure 3.11. The reflected power of finline horn antennas "H1"."H2" and "H3" were measured on the vector network analyzer from 8.0 GHz to 12.4 GHz . The reflected power vs frequency of finline antennas "H1", "H2" and "H3" is shown in Figures A. 24 , A. 25 and A. 26 respectively. It can be seen from Figure 3.11 that finiine horn "H1" and "H2" had a steady gain over a band of frequency but the finline horn "H3" had a very oscillating gain. The finline horn antenna "H1" had a gain of $12.75 \pm 0.25 \mathrm{~dB}$ over a band of 9.8 GHz to 11.6 GHz with a VSW of 1.67. The finline horn antenna "H2" had a gain of $14.00 \pm 0.75 \mathrm{~dB}$ over a band of 9.8 GHz to 12.2 GHz with a VSHR of 1.43.

UF to this point all the finline horns were designed for a uniform phase front. If we extend the dielectric further. we can make a converging lens. In order to see the effect of this extra lens beyond the lens already extended for the uniform phase front, we extended the dielectric of finline horn "H2" in a balf circle shape and measured the gain for a frequency range of 8.2 GHz to 12.4 GHz . The E-plan radiation pattern of finline horn "H2" with converging lens is shoun in Figure A. 17. It can be seen from the radiation pattern

Figure 3.11 Gain of Finline Horn B 1 , H 2 , and H3.
that it had a gain of 13.0 dB . 20.0 deg . beam width in the E-plane and the side lobes were 12.0 db lower than the main beam. The gain of finline horn "H2" with uniform phase lens and "H2" with converging lens is shown in Figure 3.12. It can $k \in \operatorname{seen}$ that finline horn "H2" with uniform phase lens had an overall higher gain as compared to the finline horn "H2" with converging lens.

In the preceding paragraphs, we have considered the effect of the different parameters like "S", slot width, strip width, lens effect, flare length(Le) and flare angle. In the following paragraphs we will consider the effect of the dielectric constant (Er).

He made a finline horn "I" with Er=10.2, the slot was transitioned fron the coaxial cable and the width of the slot was match to the impedance of the coaxial catle. The parameters are shown in Table I. The E-plane and the H-plane radiaticn patterns are shown in Figures A. 20 and A. 21 respectively. This horn had a gain of 4.0 . B. The beam widths in the E-plane and the H-plane were 36.0 deg. an \bar{d} 96.0 deg. respectively. The side Lobes were 14.0 dB lower than themain beam in the E-plane. Tnis horn was used for the design of the monopulse comparator.

In order to see the effect of lielectric constant (Er) over a wide radiating aperture, we made the finline born "J" with the same dimensions as finline horr "ir " , but on an zr=12.0 substrate. The radiation patterns of tisis horn in the E and H-planes are shown in Fijures d. 22 and A.23, respectively. The reflected fower is shown in the Figure A.27. It had a gain of 4.6 dB .28 .0 deg . and 100 deg . beam widths in the E and H-planes respectively and the E-plane side lobes were 16 dB down. It had a VSHR of 1.67 over the same frequency range as finline horn "H2".

It can also be seen that the main beam pattern of finline horn "J" was not smooth, this was protably due to

Pigure 3.12 Gain of Pinline Horn d2 with Different Lens.
the fact that the wavelength in dielectric for this horn is much smaller as compared to the finline horn "H2" made on a lower Er material. Therefore due to the shorter wavelength the slight rough edges on the antenna will cause phase distortion.

In summary, the higher dielectric constant reduces the overall gain of the antenna, does not change the beam width in E-Flane much, but increases the beam width in $H-p l a n e b y$ a large amount.

Before concluding the results of the finline horn antennas of different designs, de would like to derive an approximate gain equation from these results.

The finline horn "H1" had a aperture of 47.6 mm . gain of 12.2 dE at 10.0 GHz and was made with Er=2.54, substituting these values in Equation 2.5 gives

$$
\begin{equation*}
12.2 \mathrm{~d} \mathrm{~B}=\mathrm{C} 1 * \frac{47.6}{30.0 *(2.54)^{-}} \mathrm{c}_{2} \tag{eqn3.2}
\end{equation*}
$$

Finline horn "I" had a aperture of 23.8 am, gain of 4.0 dB at 10.3 GHz and was made with Er=10.2. Substituting, these values in Equation 2.5 gives

$$
\begin{equation*}
4.0 \mathrm{~dB}=\mathrm{C} 1 * \frac{23.8}{29.13 *(10.2)} c_{2} \tag{Eqn}
\end{equation*}
$$

Simultaneously solving the Equations 3.2 and 3.3 gives the value of constants $C 1=23.77$ and $C 2=0.88$, substituting these values in Equation 2.5, gives an approximate gain equation for finline horn antennas,

$$
\begin{equation*}
\text { Gain }=(23.77) *-\frac{B}{\lambda *\left(E_{\gamma}\right)^{0.88}} \tag{eqn3.4}
\end{equation*}
$$

The calculated gain from Equation 3.4 and the measured gain are shown in Table II.

It can be seen from Table II, that the calculated gain is clcse to the measured gain but ve do not consider that the value of constants are exact, because the finline horn antennas used for the derivation were being optimized by the experimental results and only two finline horns were tested on different dielectric constant substrate. However, it can be seen that the theoretical aspect explaiaed in Chapter 2 works and the exact gain equation can be derived by the optimum designed finline horn antenna tested in an ideal conditions and with different type of substrate. In a similar way, the equation for beam widths can also be derived.

The summary of all the finline horns tested is as follows.

The gain of the finline hora is directly proportioual to the radiating aperture in the E-plane and decreases uith increasing value of dielectric constant, Er. The dielectric
 width in the $E-p l a n e$ is mostly controlled by the aperture size. The E-plane beamwidth has very little dependence on dielectric coustant.

The shape of the radiation pattern mostly depends upon the phase deviation in the $E-p l a n e(S)$ and the phase deviation in the H-plane (T). For a neat radiation pattern with clear main beam and low side lobes in the E-plane the valve of "S" needs to be less than 0.1 and for a neat radiation
 However, a high value T does not distort the $H-p l a n e ~ p a t t e r n$ but will give a wide keamwidth.

The slot width needs to be narrow. As we saw for Er=2.54, a slot width or 1.6 mm gave nice results. A further reduction in the slot width might improve the gain slightly.

The width of the flare strif, can be $\lambda / 4$ or $\lambda / 2$ with copper tape on the outer edge. However, in the later experiments, we concentrated on the $\lambda / 2$ configuration, because it seems to reduce the field radiated from the top and bottom edges of the antenna through the dielectric.

The extended shafe of dielectric to produce a uniform phase front at an imaginary plane increases the gain but the use of a converging lens decreased the overall gain of the one finline horn antenna which was tested.

IV. FINLINE MONOEDLSE COMPABATOB

This part of thesis was jointly done by the author and Rowley [Ref. 16], who was working on the finline magic-tee.

A. DESIGI OF BOHOPULSE COMPARATOR

Two finline borns joined with a finline magic-tee made on a single substrate can form a single channel of monopulse comparator.

Port 1 and port 2 of the finline magic-tee [Bef. 16] were flared to a radiating aperture to make a finline horn on either port. The finline horns had the same physical dimensions as finline horn antenna "I" previously described. The layout of the twofinline horn antennas joined with a finline magic-tee is shown in Figure 4.2. The monopulse comparator with fixture is shown in Figure 4.1. The outputs from the sum and difference pcrts were fed through microstrip to coaxial cable as explained by Rowley [Ref. 16] and as shown in Figure 4.2. The comparator was etched on a dielectric constant of 10.2 substrate with a thickness of 0.03125 inches. The comparator was designed at 10.3 GHz center frequency, Lecause at this frequency the fin's height was made $\lambda / 2$, so that the short from the waveguide wall would reflect back as a short at the inner edge of the slot. The width of the slot was matched to the microstrip and subseguently to the co-axial cable impedance.

The parameters of individual finline horn antennas are determined by tne gain, beamwidth and sidelobe requirements. The distance between the horns is also very important because the final shape of the pattern can be controlled by the distance between the individual elements. For the sum

Figure 4. 1 Picture of Monopulse Comparator with Fixture.
pattern the element pattera is multiplied bi the normainsed cosine Eunction and for the difference pattern tne eienent pattern is multiplied by the normalised sine function. The distarce between the nulls of the sine or cosine function depends upon the distance betweens the element in wavelenqths. For this design the distance between the horns was arditrarily chosen.

B. PERFOEMANCE OF MONOPOLSE CCMPABATOR

The microlıiie 56×1 standard gain norn antenna was usej for reference patterrs. The E-plane sum patterr is snowin in Figure 4.3. it had a gain of 8.0 dB and beam width of 24.0 deqrees. From here, it can te calculated tnat the eleqent partern had a gain of 5.0dB. wich is 1.0 da higher than the measured gain of the finline horn antenna "I". The E-piane
FINLINE MONOPULSE COMPARATOR

Figure 4.2 Layout of Monopulse Comparator.
difference pattern is shown in Pigure 4.4, it shows a nice null at the center. The E-plane sum and difference patterns are shown togather in Figure 4.5. The amplified sum and difference patterns are shown in the Figure 4.6, which shows that the null depth in the difference pattern was greater than 40 dB from the peak of the sumpattern. The H-plane radiation patterns are shown in Figures 4.7. 4.8 and 4.9. In the H-plane the comparator had the same gain as in the e-plane. The sumpattern had a very wide beall widn and there was almost no power in the difference pattern.

The sum and difference port reflected power is shown in Figures 4. 10 and 4. 11 respectively. It can be seen from these Figures that there was high reflected power on both ports. Most of the reflection was caused by $t h \in$ microstrif to coaxial cable transition because the dielectric used was very soft. The connectors center conductor were not raking a stronge contact with the microstrips and were finally soldered for continuity. It can also be seen that it had less reflected power at the higher frequencies.

The two of these single plane comparators orthogonal to each cther with one more magic-tee or two of these parailel to each other with two magic-tees can form a dual plane finline monopulse comparator system. This type of light weignt, integrated monopulse fíed system bas great possibilities for military and space applıcations in future.

Figure 4.3 E-Rlane Monopalse Comparator Sum Pattern.

Figure 4.4 E-Plane Bonopalse Comparator Difference Pattern.

Figure 4.5 E-plane Monopulse Comparator Sun and Difference patterns.

Figure 4.6 Amplified $E-P l a n e ~ S u m ~ a n d ~ D i f f e r e n c e ~ P a t t e r n s ~$ For bonopalse Comparator.

Pigure 4.7 H-Plane Monopulse Comparator Sum Pattern.

Pigure 4.8 H-Plane Monopalse Comparator Difference Pattern.

Figure $\begin{array}{rl}4.9 & H-P l a n e ~ M o n o p u l s e ~ C o m p a r a t o r ~ \\ \text { Sum and Difier ence patterns. }\end{array}$

Monopulse Comparator Sum port Beflected pouer.

Figure 4. 11 Monopulse Comparator Difference Port

V. COMCLUSION $A N D$ RECOBEENDATIOM

A. COECLUSIOVS

This thesis mainly coucentrated on the optimization of a finline horn antenna and showed its application in a monopulse comparator. A summary of the results is as follows:

1. The gain of the finline horn antenna is directly proportional to the size of the radiating aperture in
2. A higher dielectric constant decreases the gain of a constant.
3. The slot width need to be narrow to prevent secondary radiation from the end of the antenua feed line. For Er=2.54 a slot width of $1.6 \pi m$ gave satistactory results.
4. For the lower side lobes the maximumphase deviation in wavelengths. (S) needs to be lower than 1/8. This helps in calculating the flare angle and fiare length.
5. The beam width in the E-plane is mainly controlled $D y$ the size of the radiating aperture and the ream width constant of the material.
6. A uniform phase front design increases the overall gain of the finline horn antenna. we also saw that主urther extension of the dielectric beyond the uniform piase front design in a half circle shape to form a converging lens, adversly affects tae performance of the antenna.
7. An approximate gain equation for the finline horn antenna can be derived from the experimental results obtained for properly designed antennas with optimum gain and fabricated on different dielectric substrates.
8. Two finline horn antennas can be integrated wita a finline magic-tee to form a monofulse comparator. Very nice sum and difference patterns were obtained.

B. BECOHAEIDATIOMS

In view of the differeat observations made during testing, follow up york is recommended as inicated below:

1. A better fixture for holding the finline horn antenna sould be designed for further experimentation.
2. The effect of different parameters on the performance on the finline horn antenna nas been noted. However, the thickness of the dielectric was not considered: Tt might be intesting to see the effect of tà dielectric thickness by testing the same horn fabricated on different dielectric thickness material but with the same dielectric constant.
3. The material used for the monopulse comparator was very thin and soft. For better results the comparator should be fabricated and tested using a hard material. A better fixture for the monopulse comparator is also required for any further testing.
4. It might be intersting to try making four finline horn antennas and four magic-tees on a single soft substrate and bending it in a U shape to forma dual plane finiine monopulse system.
5. It might be intersting to measure near-field (phase compare with the regular horn antenra.

APPENDIX A

RADIATION PATTERNS

Figure A. EMPlane Radiation Pattern of Finline Horn man.

Figure A. 2 E-Plane Badiation Pattern of Finline Horn an.

Figure A. 3 E-Plane Eadiation Pattern of pinline Horn mbm.

Figure A. 4 E-Plane Eadiation Pattern of finline Horn ${ }^{(C N}$.

Figure A. 5 E-Plane Radiation Pattern of Finline Horn man.

Eigure A. 7 E-Plane Radiation Pattern of Finline Horn "E"。

 with Ecnosorb in the peedline opening.

Figure A.. 9 E-Plane Radiation Pattern of Finline Horn $\boldsymbol{m}^{\boldsymbol{m} .}$.

Figure A。10 H-Plane Radiation Pattern of Finline Horn mpn.

Eigure A. 11 E-Plane Radiation Pattern of Finline Horn m_{G}.

Pigure A. 12 H-Plane Badiation Pattern of Pinline Horn m_{G}.

Figure A. 13 E-Plane Radiation Pattern of Finline Horn wio.

Figure A. 14 H-Plane Radiation Pattern of Finline Horn $\mathrm{H}_{\mathrm{H}} \mathrm{m}$.

Figure A. 15 E-Plane Radiation Pattern of Finline Horn "H2".

Figure A. 16 H-Plane Radiation Pattern of Pinline Horn ${ }^{(n)}$.

Figure A. 17 E-Plane Radiation Pattern of Finline Horn min.

Figure A. 18 E-Plane Radiation Pattern of Finline Horn $\boldsymbol{m}_{\mathrm{H}} \mathbf{H \omega}$.

Figure A. 19 H-Plane Radiation Pattern of finine Horn m ${ }^{\circ}$.

Pigure A. 20 E-Plane Radiation Pattern of Finline Horn "I".

Figure A. 21 H-Plane Radiation Pattern of Finline Horn $I^{\prime \prime}$.

Figure A. 22 E-Plane Radiation Pattern of Pinline Horn mm.

Figure A. 23 H-Plane Radiation Pattern of Finline Horn mu*.

Pigure A. 24 Reflected Power of Finline Horn min.

Figure A. 25 Reflected Power of Finline Horn w $\mathrm{H}^{\boldsymbol{m}}$.

Figure A. 26 Reflected Pouer of Pinline Horn "R3".

Figure A. 27 Reflected Pouer of Finline Horn mm.

APPENDIX B

COAPOTER PROGRAB TO DRAD PINLINE GORN ON HP9845B PLOTTER

```
10
20
30
4 0
50
6 0
70
80
9 0
100
110
120
130
140
150
160
170
1 8 0
1 9 0
200
210
220
230
240
250
260
270
280
290
300
310
320
330
345
350
350
370
380
390
400
410
42B
4 3 0
440
453
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
6 1 0
620
6 3 0 ~
5+0
650 1
550
MISC. PROGRAMING INFO:
"MSCALE" ACCURATELY SCALES THE PLOTTER IN MILLIMETEFS.
BY USING "MSL゙ALE, FLL UNITS IN THIE PFOGRAM AFE IH mrn.
MECALE 200,1+2.5 CENTEFS DISFLAY ON FULL SIZE PAFEF. !
MSCALE 110.570.,91.77 CENTERS DISPLAY ON SMALL PAPER !
CLIP -102,140,-40,30 I WHEN USED LIMITS PEN TPAVEL AS SHOWN.
FRAME I WHEN USED DRAWS A BORDER AT LLIP LIMITS
!
!
PLOTTER IS "98T2R" ICOURDINATES COMPITER RNU FLOTTEP
DEG IALL HNGLEE ARE LISTED IN UEGREES
!
t
XGenter=185 ICENTER OF DPAWIHG DN PAGE IN mm FFOM LOWER LEFT.
YGeriter=12G ICENTER DF DRAWING ON FAGE IN mm FFOM LOWEP LEFT.
MSCFLE XGenter, ígerter UNITS ARE mm FROM STATED ORGIN LUCGTION
I
Pen=.35 ITHIS IS THE PEN THICKHESS, FND IT IS CDPFECTED
I FOR AUTOMATICALLY IN THE DPAWING.
Scale=1 IEHTIPE DPAWING IE SCALED TO THIS FACTOR
I
Mm=Scale ISCALES RLL LISTED mm VFLUES
In=25.4*SGE1\geqslant ICOHVERTS AND SCALEE HLL LISTED inghes VALUES
!
Linenumber*1 IFIPST DIGIT DF LINE TYPE CODE
Segmentsize=0 !SECOND DIGIT OF LINE TYPE CODE
I THE FOLLOWING YAPIABLES DESCRIBE THE ENTIRE DRRWINI. THE PEST OF THE
    PROGRFM USES THESE YRLUES EXCLUSIVELY TO LONSTRUNT THE DRFWIHGS.
    FNY CHANIE IN THESE YARIARLES WILL FESULT IN ALL HSSOCIGTED PAPAMETERS
    IN THE DPAWIHI EEINT, ADJUSTED RUTOMHTICALLY. ADJIJEIIMG THEEE %GLUES
    AHD EVALUATING THE PESILLTS IS A LIMITEU USE OF CAD ICOMPIJTEP AIDED
    DESIGN).
    USER DEFINED YAPIHBLES:
N=8 Determines the lenith of Horm. I
P=2 I Jetermines the widih of strip.,
M=3 Decermines the lengin for iransition. !
Hanglexi0.1 I Half angle of finline Horn anienma. I
Er*2.54 I Dielectric Constant. I
Freq=1.0.0E10 I Dperating frequency. I
Hwaxi.25*Mm ! Half width of slot.!
!
DIMENSIONS ÜF FIITLIRE:
```



```
1330
1358
1360
1370
1380
1390
1400 Y1h=Y3+Penn/2
1410 Y2h=Ye+Penoffset2h
1420 Y3h=Yf-Penoffsetih
1430 Y4h=Ye-Penoffset6h
1440 Y5h=Yb-Penn/2
1450 Y6h=Yb-Penn/2
1460 YTh=Yd-Penn/2
1470 Y8n=Yd-Penn/2
1480 Y9n=Yb+Penoffser5h
1490 Y10h=Ya*Penn/2
1500 1
1510 1
1520
1530 !
1540 1
550 FOR Image=0 TO 2 STEP 2
1560 LINE TYFE Linenumber,Segmentsize I Plotter select Jotted line with,
1570
158B
1590
1600
1610
:620
1530
1640
1650
1650
1 6 7 0
1680
1690 DRHW Xih,Y1h*1m
1700 [F Hfill>1 THEN GOTO 199日
17:0 X0arc= =xs+Hwa/TAN(Hangle)
1720 Y0arc=Y日
1730 LINE TYPE 4,.4*Scale I Selece linerype ro draw phase fronie and,
1740
1750
1750
1?70 f FOLLOWING LIHES fFE THE EQUATIONS THAT LEFINE PARALLEL FHMEE FRONT,
1780 ! LENSE OUTLINES. !
1790 Aarc=1-COS(Besi)
1800 Barc=1-COS(Hangle)
1810 Carc=1/SQR(Er,-COS(Beta)
1820 Darc*COS(Hangle)-1/SQR(Er)
1830 Earr=COS(Beta)*(1-SQR(Er))
1840 BxHlet(Rare+Barc*CarciDarg)/Earg , Thlckness of lens. 1
1850 Hrad=Hie+B+Pen I Padiuj from center of flare to edge,
1860
1870
1880
1890
DRAW Xarc,Yarc*Im*-1
NEXT Bera
!
I FOLLOWING LIMES DRAW DUTLINE FOR TRANSITION FROM WRVEGUIDE TO ELOTLINE.
I
xbh=xe+M+L and ad
Yb = = 0-.0!*Lamuad
MOVE Ye,ib+Im
```

```
1980 DRAW Xbh,Yba*Im
1990 NEXT Image
2090 NEXT HfIll
2010!
2828
2030 LINE TYPE 1
2048
2850 Xheading=x0-3*In
2060 Yheading=Ye+.5*In
2070 CSIJE.1*In
2080 MOVE Xheading, Yheading
2090 LRBEL "FINLINE HORN BY LCDR MUMTAZ UL HAQ"
2100 PEN 0
2118 MOVE 5008,50日
2120 END
```


APPENDIX C

IBM COMPUTER PROGRAM TO CALCULATE FAR FIELD PATTERN
∞
0
\rightarrow
\rightarrow
かuvuvuvuvuvuvuvuvuvuvuvuvuvuvuevuvuvuvuvuvu

ソUU

NMJ! ommonorniniun

 0

$$
\begin{aligned}
& 1
\end{aligned}
$$

[^0]

	\pm
	N

insuau u
Bu
\bigcirc

－FVMMGLON
のロージのゴの

がかのペNMコ ーローーNNNNN

ふ000

LIST OF REPERENCES

1. Paul. J.Meier"Millimeter Integrated Circuits Suspended in the E-Blane of Rectangular Waveguide," IEEE

2. Arvind, K.Sharma."Empirical Expression for Fin Line Design, " IEEE Iransactions on Microwave Theory and
 Facil
3.
4. C.F.Stutenrauch,and A.C.Newell, "Some fecent Near Field Measurement at NBS," Microwave Journal, pF. 37-42, Noverber 1980.

5. W.A.Hammening,"A Laser Based, Near Field Probe position Measurement System," kigroware journal. pp. 91-101, October 1979.
6. D. W. Hess,"Spherical Near Field Anterna Measurements Improved Ihrough Expanded Software Feature." 1 SN $\underline{\varepsilon}$ CT. pp. 64-83. March 1985.
7. Kenneth,R.Grimm,"Antenra Analysis by Near-Field
 1976.
8. L.Thourel. The Ątenna, pf. 239-250, John wileyEsons Inc, 1960.
9. Om.P.Gandhi. Microwave Engineering and Application. Pergamon press. 1984 .
10. Adalbert Beyer and Ingo Wolff,"Finline Taper Design Made Easy," IEEETLan Sactions ón inicrowave Theory and Techniques. $\bar{p} p .493-496,1985$.

11. A.Z.Frading Microwaye Antennas. pp. 3-22. Pergauon

BIBLIOGRAPEY

Harry Syrigos and others "Planer Havequide Yields mu-wave Monopulse Comparators," Microwaves and EE, March 1984.

1. Defence Technical Information Center Cameron Staticn Alexandria, Virginia 22304-6145
2. \quad Library, Code 0142 School
3. Department Chairman, Code 62 Department of Electrical Engineering Naval postgraduate School Monterey. Ca 93943-5100
4. Frofessor Jefferey B. Knorr, Code 62Ko Department of Electrical Engineering Naval postgraduate School Monterey. Ca 93943-5100
5. Erofessor Hung-Mou Lee, Code 62Lh
Department of Electrical Engineering Naval postgraduate School Monterey. Ca 93943-5100
6. ICDE Mumtaz ul Haq $P N$ 2
4 Cnauburji Park
Multan Eoad Lahore
pakistan
 Cak Harbor, Washington 98277

$-1+1$

21.65:9

Thesis
H20473
Haq
c. 1

Finline horn antennas.

$$
210329
$$

Thesis
H20473
c. 1

Haq
Finline horn anten-
nas.

[^0]:

