
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1986

Expert systems in Civil Engineering.

Wall, Richard A. Jr.

https://hdl.handle.net/10945/21851

Downloaded from NPS Archive: Calhoun

DTrDLlY KNOX LIBEARY
MaVAL POSTGHiiDo^TE SCHOOL ^ -

MONTEREY. CALIFORNIA 93943-80f)«

EXPERT SYSTEMS
IN CIVIL ENGINEERING

BY

RICHARD A. WALL JR.

A REPORT PRESENTED TO THE GRADUATE COMMITTEE
OF THE DEPARTMENT OF CIVIL ENGINEERING IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA

SUMMER 1986

T233U9

DEDICATION

This report is dedicated to Marcia.
She postponed her education so I

could pursue mine.

TABLE OF CONTENTS

Chapter One - The History, Methodologies and
Signi-f icance of Arti-ficial Intelligence ... 1

1.1 Definition and Background 1

1.2 Strategies and Methodologies 3

1.2.1 Problem Representation Strategies 3
1.2.2 Search Techni que Strategi es 4

1.2.2.1 ANY PATH Search Technique 6
1.2.2.2 OPTIMAL PATH Search Technique ... 7
1.2.2.3 GAMING Search Technique 8

1 .

3

Trends of Devel opment 9

Chapter Two - Introduction to the Theory and Mechanics
of Expert Systems 14

2. 1 Background 14
2.2 Definition and Perspective 14
2.3 Limitations 15
2.4 Divergence from Classic Programming 17
2.5 Methods of KNOWLEDGE REPRESENTATION 20

2.5.1 RULE BASED
Knowledge Representation 20

2.5.2 SEMANTIC NETWORK
Knowledge Representation 22

2.5.3 FRAME BASED
Knowledge Representation 23

2.6 Component Parts of an Expert System 26

2.6.1 Support Requirements and
Component Functions 27

2.6.2 INFERENCE ENGINE Strategies
and Operati on 28

2.6.2.1 FORWARD CHAINING 29
2.6.2.2 BACKWARD CHAINING 30

2.7 Implementation Languages 32

2.7.1 General Purpose Programming
Languages 33

2.7.2 General Purpose Representation
Languages 33

2.7.3 Expert Building Systems 33

2.8 Domains of Application 34
2.9 Applications Case Study of PROSPECTOR 35

ii

Chapter Three - Case Study o^= the Expert System TRALI ... 38

3.1 Introduction to the Expert System TRALI 38
3.

2

Domai n Background 39
3.3 Solution Strategy Format 41

3.3.1 Conflict Determination 41
3.3.2 Phase Distribution 42
3.3.3 Calculations o-f

Cycle and Phase Lengths 42
3.3.4 Calculation of

Solution Effectiveness 42
3.3.5 Solution Presentation

and Input Modification 43
3. 3. 6 Advantages 43

3.4 System Components and Functions 44

3.4. 1 User Interface 44
3.4.2 Context 45
3.4.3 Knowl edge Base 46
3.4.4 Inference Engine 47

3.4.4.1 Conflict Resolution
in the TRALI System 48

3.4.4.2 Conflict Resolution
in the MYCIN System 50

3.5 Evaluation of Effectiveness 50

3.5.1 Advantages 50
3.5.2 Di sadvantages 51

Chapter Four - Case Study of the PLATFORM Model 54

4.1 Introduction to the PLATFORM Model 54
4.

2

Knowledge Representation 55
4.3 Knowledge Utilization 56

4.3.1 Weaknesses in Current Practices 57
4.3.2 A Knowledge Based Remedy 58

4.3.2.1 Use of the SCHEDULE IMPACT
CAUSES SI ot 59

4.3.2.2 Example of the SCHEDULE
IMPACT CAUSES 60

4.3.2.3 System Safeguards 60

4.3.3 Supplemental Benefits 62

4.4 System Integration and User Interface 63

4.4.1 ACTIVITY Graphics Representation 63

111

4.4.2 NETWORK Representation
pr i or to start 64

4.4.3 NETWORK Representation
subsequent to start 65

4.5 Evaluation of Effectiveness 66

Chapter Five - Conclusions and Recommendations
for Further Research and Development 71

5. 1 Perspective on Enthusiasm 71
5.2 Characteristics of a Suitable Domain 72
5.3 Justifications for Implementation 73
5.4 Applications in Civil Engineering 75

5.4.1 Sensor Interpretation 75
5.4.2 Structural Desi gn 76

5.5 Applications in Project Management 77

5.5.1 Cost and Time Control 78
5.5.2 Purchasing and Inventory Control 80
5.5.3 Integration of FUZZY Logic 82

5.6 Consequences to the Practitioner 84
5.7 Timetable for the Future 86

References 88

Bi bl i ography 90

IV

ABSTRACT

The fledgling -Field of Artificial Intelligence (AI) has

found numerous applications in engineering and other

disciplines. Most publicized among these are natural

language recognition programs, systems that simulate

cleverness (Eliza and the Rubix Cube solver, for example)

and 'smart' front ends for mechanical mechanisms (robots).

Unfortunately, these applications are too often seen as

'parlor tricks' or mere additions to existing technology.

It has only been recently that the field has focused upon an

application that will show these capabilities for the tip of

the iceberg that they are. In fact, the new direction has

the potential to affect the utility of computers in the same

way the invention of the transistor impacted electronics.

The goal of this new thrust is to 'clone' the experience,

judgment and problem solving abilities of bonafide human

experts into a computer program. Appropriately enough,

these resulting programs are known as Expert Systems.

To understand the basic concept and structure of expert

systems, it is necessary to first examine the background and

fundamental theories of Artificial Intelligence. This is

provided in Chapter 1, with emphasis on the methods and

significance of problem representation and solution search

strategies.

The utilization of these techniques is then examined,

as the nominal component parts of an expert system are

introduced. These are the user interface, the context, the

V

knowledge base and the inference engine. The architecture

and function of each of these parts is dissected in turn,

revealing the underlying structure of the system.

Leaving the theory behind, two operating prototype

expert systems are then examined. The first, called TRALI,

is a system designed to assist in the signal timing of

isolated intersections. This system is studied due to its

relative simplicity and functional transparency. The second

system discussed acts as an expert scheduling assistant for

a hypothetical construction project. Named the PLATFORM

Model, this expert system demonstrates the current

capabilities obtainable and points the direction of future

endeavors in this area.

Costly both in terms of money and time, it is important

to ensure that expert systems are developed and implemented

only within those fields (domains) where their strengths are

suited and their cost can be justified. Practical aspects

of these decisions are discussed along with an examination

of domains that Are not appropriate for expert systems.

Current research in the field of Civil Engineering is then

discussed, followed by suggestions for appropriate

applications in the area of Construction Management.

Finally, an attempt is made to quantify the impact of

widespread expert system use to the individual, the company

and society as a whole.

VI

CHAPTER ONE

INTRODUCTION TO THE HISTORY,
METHODOLOGIES AND SIGNIFICANCE

OF ARTIFICIAL INTELLIGENCE

1 . 1 Def i^ni^ti^gnandBackgrgund

History will no doubt record that the coining of the

phrase 'Artificial Intelligence' was indeed unfortunate.

Far less threatening would be descriptions like 'Simulated

Aptitude' or 'Synthetic Knowledge'; neither of which imparts

to the layman the imagery of a machine dominated Orwellian

society. However, for better or worse, the world will

probably be stuck with this phrase from here on out.

The methods and goals of this field called Artificial

Intelligence (AI) are not near as malevolent as one would

think; unfortunately, neither are they as clear and succinct

as one would desire. A classic definition, usually

attributed to AI guru Patrick Henry Winston, defines AI to

be "... the study of ideas that enable computers to be

intelligent" (17,p.l). Mere humanity to possess a viable

set of criteria to define 'intelligence', then this

definition may serve well. Unfortunately, such criteria do

not exist. Consider the example of a child who learns to

cry for its mother, yet cannot evaluate a simple Boolean

expression. Is it intelligent? Likewise, what measure of

intelligence can be conferred upon the computer that

evaluates 4 million expressions per second but does not

signal the operator when something goes obviously awry?

Even beyond the question of bestowing the title of

1

'intelligent', there is the dispute o-f whether or not

intelligence is absolute, or whether degrees o-f intelligence

can be attached to dif-ferent objects, actions or events.

Luckily, to operate within the -field o-f AI, it is not a

necessary prerequisite to make these weighty judgments. The

act o-f being intelligent di-f-fers -from the simulation o-f the

act in that when attempting the latter, the researcher must

-first identi-fy the principles that underlie the endeavor

(17, p. 3). In other words, one primary goal o-f the field is

to understand the principles and mechanisms of intelligence.

This knowledge can then be used to design and build

computers that are more effective for a given application

(17, p. 2). It should be noted that these definitions avoid

the struggle of defining intelligence, as was previously

discussed. As Herbert Simon, another acknowledged expert in

the field long ago pointed out, "It is not the intent (of

researchers in the field) to engage in a barren

lexicographic exercise, nor to bait those among us who are

aroused to indignant emotion whenever terms from human

psychology are used in reference to computers. Me employ

these anthropomorphic terms because we find them useful in

defining our research goals ..." (11, p. 224). In essence,

the application of AI techniques and procedures confers an

attempt at 'intelligence' upon a system; the fact that this

intelligence has little or no connection to the

'intelligence' of philosophical doctrines is of no

consequence. As the discipline matures, there will no doubt

evolve a standard by which intelligence Mill come to be

measured. At that time, the per-formance of a system will be

used to judge the validity of its place in the world of AI.

Until then, however, the gauge will remain subjective.

1 2 Str ategi^es_and_Methodgl^ggi^es

Although the concept of perceived intelligence dates to

the 1800s and earlier, the late 1950s saw the beginning of

what is currently called AI. The initial efforts were

focused along the lines of a General Problem Solver (GPS).

It was felt that all problems could ultimately be reduced to

a point where one general solution strategy could be

employed. While certain natural language understanding

programs did enjoy limited success by using this approach,

it was soon apparent that the larger the number of problem

classes a program was required to handle, the less value its

solution had on any single problem (16, p. 3).

With this realization, the emphasis shifted to the

development of methods and strategies that could be brought

to bear on specific classes of problems. Two of the more

important lines of research pursued toward this end were 1)

the representation of the problem being addressed and 2) the

search for one or more solutions within the state space of

valid answers (16, p. 4).

1.2. 1 Probl^em Representatign Strategies

Proper representation is critical, as the

characteristics of a problem (or problem class) must be

organized so as to fit the framework of a designated

solution strategy, A good description will make clear the

important -features of a problem, as well as reveal any

underlying natural constraints inherent in the problem or

problem class (17, p. 24). Conversely, a poor description may

render an otherwise easy problem unsolvable. Two important

methods in this area are Description Matching (17, p. 26) and

Goal Reduction (17, p. 33). The -former allows selection of a

solution strategy based primarily on a comparison of the

attributes of the various strategies available. The

strategy selected will usually be the one whose

characteristics most closely match those of the problem.

Goal Reduction, on the other hand, employs attainment of

subgoals as a strategy to mold the problem characteristics

to that of a solution strategy. It can be seen that both

approaches strive to represent the problem in terms of the

characteristics of predefined solution strategies, in one

way or another.

1.2.2 Search_Technigue_Strategi^es

Proper search techniques are also considered essential

to problem solution. Utilization of the proper technique

will allow quick and efficient identification of an answer.

Alternately, the wrong search strategy may extinguish any

hope of finding a solution due to control strategies that

continually select the improper branches of a search tree

for exploration. A classic testbed for search strategies is

the 8-puzzle, as shown in FIGURE 1 on page 10. This puzzle

is a square surface, containing 8 square tiles with the 9th

tile space vacant. Initially jumbled, the goal is to move

the tiles, one at a time, so as to arrange them numerically

around the periphery of the sur-face (13, p. 32). The search

tree -for this problem is constructed so that the nodes at

each successive level represent all the possible moves that

can be made -from the state as shown in the level above. The

'quality' o-f a move can be measured by a count of the number

of tiles that are in the proper locations. As used in this

context, a move's 'quality' is not absolute and can, in

fact, be calculated by any number of appropriate algorithms.

A better indicator would be to include a measure of the

distance away from home for those tiles not in their proper

locations. While this method would provide for a more

succinct representation of the problem state, it also

requires more time and effort to compute from move to move.

Fundamentally, all search techniques rely upon the

existence of a 'quality' assigned to each state of the

problem space. It is only by comparing successive

'qualities' that an algorithm can determine if it is

converging on or diverging from a solution. Although simple

in concept, this indicator has proven very difficult to

implement in practice. For example, consider the positions

occupied by chess pieces on a board. Given this

information, a chess player has little trouble determining

which side is in the better position. To date, however, no

algorithm has been developed that can reduce the positions

to a 'quality' number that describes who has what advantage.

This de-ficiency is not merely limited to chess, but occurs

in any situation wherein the characteristics o-f the problem

are even marginally dynamic.

However, for those problems whose states can be reduced

to 'quality' numbers (or a reasonable facsimile thereof),

there are three major categories of classic search

techniques that can be employed in the quest for a solution.

These three are informally known as any path, optimal path

and gaming (17, p. 88).

1.2.2.1 ANY_PATH_Search_Iechn i gue

The first, any path, contains strategies that are

designed merely to find some solution to the problem

(17, p. 89). This is usually regardless of the 'quality'

of the solution or the efficiency with which it was

found. Techniques of this type include Depth-First,

Breadth-First and Hill Climbing, to name but a few

(17, p. 88). These strategies are normally employed when

either an unsophisticated solution is acceptable or

when an initial solution is required for further

refinement. In the case of the 8-puzzle example, as

depicted in FIGURE 2 on page 11, this technique would

find a path to any node at the (n+1) level that had a

higher 'quality' number than the node from which the

search began. However, the fact that the 'quality'

number at the node adjacent to the node 'found' was

twice as great would be of no consequence to this

particular control strategy.

1.2.2,2 OPT IMAL_PATH_Search_Techn i gue

The techniques o-f the second class are designed to

discover the optimum path. In most cases, the optimum

path is defined as the shortest path, in terms o-f cost,

to traverse nodes. Cost can then be de-fined as

e-f-f iciency, expediency, link weightings or any of a

myriad o-f characteristics that would be appropriate to

a given problem class. Techniques o-f this type include

the British Museum procedure. Branch and Bound and the

A-» method (17, p. 88). These methods run the gambit from

inefficient (in the case of the British Museum

procedure that evaluates all possible solutions, and

then ranks them accordingly (17, p. 101)), to the highly

organized and effective A-» method that uses a fairly

complicated control algorithm to determine its next

move (17, p. 113). In the case of the 8-puzzle example,

these strategies would optimize the search by finding

the solution to the puzzle with the least number of

moves (i.e.- the greatest increase in 'quality' numbers

between levels). This class of techniques is

customarily employed when a solution will be

implemented on a recurring basis and thereby will stand

to gain continually from an optimum solution. This is

contrasted by the one-time-only implementation, where

the cost to determine the optimum solution is often

greater than the savings that will result from its

implementation. FIGURE 3, on page 12, depicts this

strategy on a generic search tree and demonstrates that

the 'better' solution is achieved only after a much

more intensive (and costly) search of every level.

1.2.2.3 GAMING_Search_Technigue

The third class of search techniques strives to

optimize a solution in an adversarial environment.

This situation is common in gaming theory, where, for

each move that is made toward one's optimum position,

an adversary makes a move that is away from one's

optimum position (17, p. 114). Examples of this

predicament can be found in chess, checkers, war, etc..

Control strategies that deal with this category are the

Mini max procedure, Alpha-Beta Pruning and Progressive

Deepening (17, p. 88). While the 8-puzzle is not germane

to this class of problems, any game with two players

can serve to illustrate the utility of these

strategies. In this environment, every other move

(i.e.- all the moves made by an opponent), are made for

the purpose of decreasing one's advantage. This being

the case, it is not enough to discover a path that has

a high 'quality' number. The search must look beyond

that level to determine the amount of 'damage' that can

be done to one's position by the upcoming adversarial

move. For example, two potential moves, as illustrated

in FIGURE 4 on page 13, may yield gross increases in

'quality' of 3 and 6 respectively at the (n+1) level.

Looking one level down to the (n+2) (opponent's move)

8

level, however, reveals that the opponent's potential

moves have the capability to in-Flict damage o-f 1 and 7

respectively. Therefore, the net 'quality' of the

moves, at the second level, are 2 (3 (at the <n+l)

level) minus 1 (at the (n+2) level)) and -1 (6 (at the

(n+l) level) minus 7 (at the (n+2) level)). From this

perspective, it is obvious that the better move is the

one yielding the 3 at the (n+l) level, since the

potential for injury is far less than the move yielding

the 'quality' value of 6.

1 . 3 Trends_of _Deyel^ogment

While interesting, the disjointed nature of the methods

and techniques described above failed to bring about the

long awaited revolution in artificial intelligence. By the

late 1960s, the field contained a variety of sophisticated

algorithms, all tuned to specific environments and problem

classes. However, the line that separated high-powered

algorithms from perceived intelligence had yet to be

crossed. Before this could happen, new methodology had to

be developed that could provide for a further limiting of

the problem scope, and an infusion of knowledge about the

problem to supplement, and if necessary replace the

algorithmic solution strategies that were beginning to be

used beyond their capabilities (16, p. 4). The result of

these changes became a new discipline called knowledge

engineering and the product was a new line of computer

programs called expert systems (16, p. 5).

9

ARBITRARY INITIAL STATE

GOAL STATE

FIGURE 1.

8-PUZZLE configuration showing an arbitrary initial state
(top) and the -final goal state (bottom).

10

ARBITRARY
INITIAL
STATE

= >

283
164
7-5

C4D

283 C3:
164
-75

283 C5:
-14
765

283 C5D
1-4
765

283 C33
164
75-

2-3 C53 283 C4:
184 14-
765 765

-83 C5D 283 C43 -23 C6: 23- C43
214 714 184 184
765 -65 765 765

60AL STATE =>
123 LBl 123 C6]
8-4 784
765 -65

FIGURE 2.

ANY PATH control strategy for solution to the 8-puzzle.
(Note: bracketed numbers (CD) indicate the number o-f tiles
in the home position (i.e.- the 'quality' number o-f the
state) .

)

11

CURRENT
POSITION C4:

C33 C5D

C63 L71 C GOAL

3

<= search will progress
to the C5], since all
preceeding 'quality'
numbers have a lower
value than the CURRENT
POSITION (e-f-fectively
equal to the ANY PATH
strategy)

.

< = the OPTIMAL PATH
strategy will continue
the search until the
CGOAL: state is
d i scovered , even
though all preceeding
'quality' numbers are
greater than the
current state (C5D).
Conversely, the ANY
PATH strategy would
select the C63 node
for additional search
activity-

FIGURE 3.

OPTIMAL PATH control strategy demonstrating a costlier
search approach, yet producing a more efficient solution
path within the search tree.

12

CURRENT POSITION
AFTER OPPONENT'S

MOVE
(n) level

C33 C6] <n+l) level

L-11 L-71 <n+2) level

NET => 3-1=2
QUALITY
AT THE

(n+1) LEVEL

6-7=-

1

FIGURE 4.

GAMING control strategy where the 'quality' number at the
(n-<-l) level is determined by evaluating an opponent's
possible moves at the (n+2) level.

13

CHAPTER TWO

INTRODUCTION TO THE
THEORY AND MECHANICS OF

EXPERT SYSTEMS

2.

1

Background

The choice of the phrase 'expert system' to describe

the current level o-f AI technology is perhaps more

appropriate than some alternatives. Unlike the imagery that

'Artificial Intelligence' conjures, 'expert system' does not

seem near as wicked or insidious. Technology aside, the

leaders in the field are certainly starting to comprehend

the significance of semantics.

Expert Systems are not merely the aggregate of all AI

methods and techniques so far developed. They transcend the

current state-of-the-art by the introduction of methods and

perspectives that are totally new to the field. From

outward appearances, the major change is a focus of purpose;

the goal now is not to imitate that intangible quantity

called intelligence, but rather, to duplicate the

performance of a human expert. (As such, it is recognized

that the solutions will not always be correct). An added

benefit to this stated goal is the introduction of a

standard, by way of a human expert, against which any system

can be measured. In other words, there now exists a purpose

as well as a yardstick with which to gauge performance.

2.2 Def i^ni^ti^gnandPersgecti^ve

This line of reasoning helps introduce the following

definition for expert systems:

14

An Expert System is a computer system that uses a
representation of human expertise in a specialist
domain in order to perform functions similar to
those performed by a human expert. (2, p. 1-1)

Contained within this definition are 3 clauses that help

clarify the conceptual components of expert systems. The

first addresses the fact that expert systems use "... a

representation of human expertise ...". This mandate calls

for the replacement of classic AI solution strategies with

whatever is required to. represent human expertise. At this

time, the 'whatever' is hypothesized to be task-specific

knowledge that is gained by the human expert, over the

years, as his expertise matures (14,p.80-81) . In other

words, knowledge about the task and the domain of operation

is seen to replace algorithms and the data they operate

upon. The second, which speaks to the "... expertise in a

specialist domain ...", has the purpose of conceding that

General Problem Solver (GPS) type approaches aire

foreordained to failure. This translates to a need to

restrict the scope of the problem classes that expert

systems will face. The third and final clause involves the

performance of "... functions similar to those performed by

human experts". This passage defines both the goal and the

required level of performance of expert systems.

2.3 Limltati^ons

Obvious by its absence from the above list of concepts

that define expert systems is any mention of the heuristics

15

o-f learning. While this is conceded to be an important

aspect o-f expert performance, the st ate-o-f-the-art does not

address this function of an expert system. The current

emphasis centers on the ability to derive knowledge from

rules. To reverse directions and derive rules from

knowledge is a much more complicated process that has yet to

find its way into the stage of conceptual development. This

shortcoming, it is argued by some, may represent a fatal

flaw in the basic fabric of expert systems, due primarily to

the observation that, in many fields, knowledge is

increasing exponentially as a function of time. The fear is

that, in the absence of an ability to learn, an expert

system's knowledge base may well be outdated by the time it

is released to a production environment. Mhile researchers

are continuing to investigate the mechanics of expert system

learning that will eventually alleviate the problem

completely, there are currently a number of methods being

used to minimize the impact of a system's inability to

learn. The scheme most widely used is simply to restrict

the implementation of expert systems to those fields where

the basic knowledge is fairly stable and unchanging <i.e.-

medical diagnosis, for example, where the diseases and

symptoms remain the same, even as the treatments change).

If implementation of an expert system is required in a

dynamic field, then it is desired that the specific

application be limited to an area of knowledge that is

relatively static (i.e.- in the highly volatile field of

16

computer engineering, the Digital Equipment Corporation's

expert system XCON merely configures equipment layout within

the confines of a user's space). One scheme that is not

considered a viable option is the 'updating' of a knowledge

base with rules provided by another expert (1). It has been

observed that even while two experts in a field may agree

upon the final solution, their respective methods of

attacking the problem may bear little or no resemblance to

each other. From this, it is obvious that substituting

partial methodology from one expert into the solution scheme

of another is little better than playing automated Russian

Roulette. For these reasons it is necessary, at least for

the time being, to limit the scope of the knowledge

contained within an expert system to a static 'snapshot' of

the domain of operation.

2. 4 Divergence from Classic_Prggramming

Before discussing the elements that constitute an

expert system, it is important to understand the differences

that separate them from other computer programs. For a

program to be a success in any area (i.e.- expert system,

data base manager, 3 line BASIC program, etc.) it must meet

certain minimum requirements. The following 3 criteria

define this minimum level of performance (5, p. 3):

1) the program must consider all possible
combinations of input parameters, and be able to
provide a viable output for all the potential
permutations (i.e.- the algorithm must be
COMPLETE)

.

17

2) the program must provide -for one and only one
output -for each permutation of input parameters
(i.e.- the solution must be UNIQUE).

3) the program must produce the correct solution
for each permutation of the input parameters
(i.e.- the solution must be CORRECT).

Since the task of classic programming is one of explicit

representation, these requirements are relatively easy to

meet only for programs that answer questions of the type

"How big?" or "How many?". Systems that attempt to answer

inquiries relating to "Which is best?" or "How do I proceed

from here?" must resort to other strategies if the above

requirements are to be fulfilled. This is due in part to

the combinatorial explosion that would result if all cases

were handled explicitly. (This assumes that the author had

the foresight to include all possible cases, and thereby

meet the requirement of COMPLETENESS ... which is highly

unlikely for the type of problem under consideration).

Expert systems are designed to answer these types of

questions by using knowledge, not algorithms, to fill in the

blanks, direct the search and solve the problem (2, p. 1-5).

To accomplish this, knowledge is separated into three

distinct areas: 1) the knowledge about the domain (which can

include knowledge about objects, events and performance

(13, p. 144)) 2) the knowledge about the knowledge (usually

referred to as meta-knowledge) and 3) knowledge about how to

solve the problem. To put these various components into

perspective, consider an expert system designed to schedule

18

the construction o-f a building -foundation. The domain

knowledge would consist o-f understanding the types of

materials that are used to build a foundation, the

requirements for site preparation and compaction as a

function of different soil types and a comprehension of the

various trade skills required to execute the activities of

the foundation construction. In essence, all the

information necessary to perform the mechanics of foundation

construction is included in this category. The next

category, knowledge about the domain knowledge, could

include an awareness that recent weather conditions (i.e.-

excessive rain, freezing temperatures, etc.) may alter the

soil characteristics relative to those specified in the

architect's report or the contract specification. Meta-

knowledge of this type moderates domain knowledge. The last

type of knowledge directs the utilization of the domain

knowledge and the meta-knowledge to solve the problem; it is

knowledge about the solution strategy. In the example,

knowledge of this type could be knowing the nominal sequence

of specific activities, interactions and constraints that

are required to construct a foundation.

It may well be argued from the example that certain

knowledge belongs in categories different from where it was

placed. This may well be the case, as there are no succinct

rules dictating the placement of particular knowledge into

specific categories. As the field of expert systems now

19

stands, decisions like this are usually le-Ft to the judgment

o-f the knowledge engineer and the domain expert (16, p. 8-9).

2. 5 Methods_of_KNgWLEDGE_REPRESENTATigN

Once placed within the proper category, however, the

knowledge must still be represented in a fashion that allows

it to be utilized by the expert system. In the absence o-f a

viable -format, the knowledge most germane to the problem may

be essentially invisible to the component o-f the program

that is -formulating the solution strategy. Toward this end

o-f use-fully describing the knowledge, three methods of

representation are currently being used within the field.

These are 1) systems that represent their knowledge in a

RULE type format 2) systems that rely on a SEMANTIC NETWORK

to organize their knowledge and 3) systems that utilize

FRAMES. (16, p. 63).

2.5.1 RyLE_BASED_Kngwledge_Reeresentation

Rule based systems represent knowledge in an IF-THEN

format (i.e.- IF <condition> THEN <action>) . This method

lends itself well to quantifying domain knowledge resulting

from empirical association developed over the years

(16, p. 63). Using this approach, many different kinds of

knowledge can be represented: situation/action,

premise/conclusion or antecedent /consequent, to name but a

few (2, p. 74). Further, represented knowledge need not be

just concrete fact; rules-of -thumb, heuristics and

quantifiable intuition are all fair game for representation.

20

One bene-fit o-f this method is the simplicity o-f either

adding or modifying rules. Unfortunately, this can also

prove to be a liability, as it becomes very easy to

introduce contradictions into the knowledge base

(2, p. 97, 100) . In the absence of sophisticated control

strategy that will identify this problem, it is obvious that

the results could be disastrous. Another question of

utility lies in the explicitness inherently required for

this type of representation; how is one rule for one action

any better or more efficient than an algorithmic approach?

To answer this, it is important to realize that the order in

which the rules are executed is not predetermined, as is the

case with an algorithm. The flexibility of the program

allows the parameters of the problem and the knowledge of

the domain to dictate the order in which the rules are

invoked. In addition, the <action> clause can even execute

an algorithm that will return a value to be acted upon by

another rule or set of rules. Finally, the number of rules

required can be directly related to the character of the

domain, the scope of its definition and the complexity of

the problem. Typically, a production system that has been

in development for 2 to 4 years will possess a knowledge

base of 500-1500 rules <2,p.l49). By way of exception,

XCON, an Expert System developed over the past 10 years by

the Digital Equipment Corporation (DEC) to configure VAX

computer systems, has, at last count, nearly 3500 rules in

its knowledge base <1). For single steps through the

21

solution strategy, the discrete knowledge contained within

each rule can be used to good effect. However, this same

discreteness masks the overall comprehension of

relationships within the knowledge base. This can be of

crucial importance as the system is required to select its

own solution strategy based on relationships within its

knowledge of the problem. Despite all the problems and

shortcomings discussed above, rule based systems continue to

be the most widely used representation strategy (2, p. 97).

2.5.2 SEMANI I C_NEIWORK_Kngwl edge_Reeresentatign

The second type of knowledge representation used widely

in expert systems is the semantic network. This scheme

employs a network structure with nodes that correspond to

objects, events, concepts, etc. connected by links (called

arcs) that describe the relationships between the nodes

(16, p. 70). In one sense, semantic networks lend themselves

very well to the comprehension of global relationships that,

as discussed above, was a very important shortcoming of rule

based systems. For example, the nodes 'support structure'

and 'concrete block' may be connected by an AKO arc, thereby

indicating that a 'concrete block' is A Kind Of 'support

structure'. Additionally, the nodes 'concrete block' and '8

inch CMU' may also be connected by an AKO arc, signifying

that an '8 inch CMU' is A Kind Of 'concrete block'. These

two arcs then establish an inheritance hierarchy within the

network that allows the inference of an '8 inch CMU' to be A

Kind Of 'support structure' (16, p. 70-71). While

22

relationships are easy to follow within the system, the

construction and upkeep o-f a semantic network can be quite

arduous. Additionally, the fact that relationships are easy

to interpret does not necessarily mean that they are also

easy to use; attempting to identify cause and effect

connections from a network of relationships can doom a

system to the pi ate-of -spaghetti syndrome. It is due to

this, as well as the fact that not all domains lend

themselves to representation in this manner, that the

utilization of semantic networks is on the decline.

2.5.3 FRAME_BASEp_!<now 1 edge_ReBresentat i on

The final representation scheme utilizes a vehicle

called a frame, in an attempt to incorporate the best

features of both rule-base and semantic network

representation. The author of this concept, Marvin Minsky,

describes his creation most succinctly:

A frame is a data-structure for representing a
sterotyped situation, like being in a certain kind
of living room, or going to a child's birthday
party. Attached to each frame are several kinds
of information. Some of this information is about
how to use the frame. Some is about what one can
expect to happen next. Some is about what to do
if these expectations are not confirmed- (16, p. 73)

Conceptually, a frame is an aggregate of nodes and arcs in a

semantic network that are all concerned with the same object

or event. For example, FIGURE 5a on page 37 shows a

semantic network where the node 'construction project' is

connected to the nodes 'labor', 'material', 'equipment' and

'subcontractors' by arcs of various relationships. Even as

23

this portrayal makes the relationships between the component

parts quite evident, it is questionable if the knowledge is

represented in a -fashion that allows it to be used to solve

a problem. How would a computer program use these

relationships to execute a project or to determine i-f all

required elements o-f the project were even available? While

it would no doubt be possible to trace back all the arcs and

relationships, the process would be unduly difficult and

very inefficient. As a solution to this problem of

cumbersome representation, consider the frame shown in

FIGURE 5b, on page 37, that corresponds to the example

network. This frame contains all the information of the

semantic network, but in a form that allows its utilization.

The attributes of labor, material, equipment and

subcontractors that are associated with the frame

'construction project' are known as 'slots'. Into these

slots go 'values', that are the domain specific knowledge

about the problem at hand. For example, from this

representation the system knows that a project requires

labor, material, equipment and subcontractors. If provided

a list of materials, and asked to execute a project, the

system could easily ascertain that it needed labor,

equipment and subcontractors. A more complete frame may

also include slots that provide default knowledge concerning

a project; typical duration is 60 days unless union labor is

used, in which case it will be 90 days. Represented like

this, the structure of the frame itself contains knowledge

24

about the solution strategy while the slots represent the

need -for particular domain-specific knowledge. The

variables that will -fill the slots contain this domain-

speci-Fic knowledge.

The benefits of this representation are many-fold. No

longer need the program come to a grinding halt when all

required input is not available or completely accurate

(5, p. 3). Building on the preceding example, the task of

scheduling two consecutive projects would normally require

the input of the first project's start time and duration.

If the duration was not provided, the frame described above

would find the default to be either 60 or 90 days, whichever

was appropriate. Similarly, this organization allows the

system to communicate its strategy to the user, if so

directed (5, p. 3). In the scenario above, assume that the

system had not been provided with a duration for the first

project. To solve the problem of scheduling the second

project, the system may request additional information from

the user, resulting in the dialogue shown below (CAPITALS

denote user)

:

What will be the duration of the first project?
I DO NOT KNOW.
OK, how will the labor force be procured?
WHY DO YOU WANT TO KNOW?
To determine if union labor will be utilized.
WHY DO YOU CARE IF UNION LABOR IS USED?
If union labor is used, the first project will probably
last 90 days. If not, then probably 60 days.
WHY DO YOU CARE HOW LONG THE FIRST PROJECT LASTS?
So I know when it will be completed.
WHY DO YOU NEED TO KNOW WHEN IT IS COMPLETED?
So I can schedule the start of the second project.
WHY DO YOU NEED TO SCHEDULE THE SECOND PROJECT?
Because that is the problem to be solved. (!)

25

This exchange demonstrates that the system itself can

control the problem solving strategy that will be brought to

bear, based upon the speci-fic information (or lack o-f it)

that is at its disposal (5, p. 3). Further, it is obvious

that not only is the problem o-f incomplete information

circumvented, but the user also has the option to follow the

solution strategy that the system is pursuing.

The frame approach is not the only method whereby

incomplete input circumvention, strategy explanation and

strategy derivation can be achieved. To be sure, these are

goals that all expert systems attempt to reach in one

fashion or another. The example of frames has been provided

here because this approach has yielded the best results in

these areas and it is the method that appears the most

promising at this time for further research and development.

2.6 CgmBgnentParts of _an_Expert_S^stem

Regardless of the knowledge representation chosen, all

expert systems consist of two primary parts; the knowledge

base and the inference engine (4, p. 1-10). Quite simply, the

knowledge base, as already described, contains the domain-

specific knowledge and the inference engine embraces the

control strategy that determines how the knowledge will be

used to solve the problem. For example, in a rule based

system, the introduction of a new piece of knowledge (either

by user input or by system derivation) may well cause the

conditional clauses of a number of rules to be 'true'.

26

Employing its control strategy, it is then up to the

in-ference engine to decide which rule to -fire (i.e.-

evaluate) <4,p.49). This selection is very important, as

the action o-f the -firing will cause a new piece of knowledge

to be added to that which is already known about the

problem. This, in turn, will cause other rules to prime,

and the whole scenario will be acted out time and time

again.

2.6. 1 Support B§9yi!Il?!D§Dts and Qo<Dpgnent EyD£^i9D5

Depending upon the sophistication of the expert system,

a number of other 'support' features may also be present.

These can include the user interface, the knowledge

acquisition module, the context and the explanation module

(10, p. 53).

The user interface merely provides a friendly medium

for man-machine interaction. When adding knowledge or

altering the rule-base (using a knowledge editor), this

module insulates the user from the requirement to enter

syntactically correct information. When used in reverse,

this friendly interface allows the system to present

information in an understandable and usable format (i.e.-

English responses and/or graphics as appropriate).

The knowledge acquisition module allows for the

translation of the domain expert's knowledge into the strict

format of the system's knowledge base. The amount of effort

and time required to develop and debug an expert system is

directly proportional to the sophistication of this module.

27

The context, while not truly a support -function, is a

formal repository for all information concerning the current

problem. Dynamic in nature, information is constantly added

or deleted as the system progresses toward a solution.

The final component, the explanation module, allows the

user to query the system for an explanation as to its

reasoning and strategy. Inquiries can include not only why

a particular piece of information was required or how a

certain fact was deduced, but can also ask why certain

knowledge was disregarded. This feature is very important

when both debugging a system and using it in a production

environment (4, p. 34).

2.6.2 INFERENCE_ENG INE_Strateg i es_and_geerat i on

The control strategies contained within the inference

engine dictate which 'operator' the system will invoke to

continue its search for a solution (i.e.- which competing

rule to fire, when to query the user for more information,

etc.) (10, p. 53). The idiosyncrasies of inference engine

control strategies varies significantly, each one sensitive

to particular situations germane to a specific problem

class. Some of those that have been implemented are briefly

discussed below (10, p. 54-55)

:

1) Means-End Analysis: the difference between the
current state and the goal state is used to select
an operator that has the best chance of decreasing
the difference.

28

2) Problem Reduction: the current state is -first
broken down into smaller problems. An appropriate
operator is then selected -for each o-f the
component parts.

3) Backtracking: this strategy retains a list o-f

all decision points and dependencies so that an
unsolvable solution path can quickly be discarded.

4) Plan-Generate-Test: similar to the British
Museum Method of tree search, wherein most (or
all) possible solution states are -first generated,
then tested until one is found that satisfies the
goal state.

5) Hierarchical Planning and Least Commitment
Principle: the problem is first represented as a
series of dependencies, each with intermediate
goal states. Operators are invoked to handle
intermediate goals based on inverse dependency,
with the goal being to defer decisions on highly
dependent states as long as possible.

6) Constraint Handling: conceptually, this
strategy attempts to determine a solution by
identifying all the solution states that do not
satisfy the goal state.

7) Agenda Control: each intermediate state of a
problem is first assigned a priority rating. The
strategy then consists of invoking operators to
deal with intermediate goals based on their
relative priority.

Mhile each of the above control strategies has been used

with some success, most expert systems currently under

development use two other approaches either exclusively or

together. These are forward reasoning (chaining) and

backward reasoning (chaining) (16, p. 66).

2.6.2.1 FgRWARD_CHA IN ING

The strategy of forward chaining requires the

evaluation of all rules (in a rule based system, for

example) whose conditional clauses are true.

29

Essentially, this method strives to derive all the

knowledge it can, whether or not a particular

derivation brings the problem any closer to solution

(2, p. 76-78). A system operating under this control

would query the user -for additional information only

a-fter it had derived all that it could, based upon the

knowledge originally provided and the intermediate

derivations it made to supply more knowledge to itself.

As can be seen, this approach is very inefficient, in

that many facts are derived that do not apply to the

problem at hand (2, p. 81).

2.6.2.2 BACKWARD_CHA I N ING

Backward chaining, on the other hand, begins with

a premise (theory) that the system then tries to prove

by rule evaluation < 13, p. 198). For example, consider

an expert system designed to schedule activities for a

project where the current theory is 'completion

delayed'. (The derivation of this theory may well be in

response to a user questioning the possible scenarios

that could make the project run over its estimated

completion time). To arrive at 'completion delayed'

for a conclusion, the system first interrogates the

rule base for rules that have, as their action clause,

'completion delayed'. One possible rule may be:

IF (start delayed) THEN (completion delayed)

30

At this point, the system de-fines a subgoal of

'start delayed' and reinterrogates the rule base to see

i-F it can prove this new subgoal. One possible rule it

may -Find could be:

IF (labor unavailable) or
(material unavailable)

THEN (start delayed)

Tmo new subsubgoals are defined, and the system

continues its recursive process. If the program can

somewhere obtain the fact that either labor or material

is unavailable, then the initial theory of 'completion

delayed' becomes its conclusion. However, knowledge of

an ontime start with available material will invalidate

the initial theory and cause the system to generate a

new working hypothesis. Backward chaining is

inherently more efficient than forward chaining,

because all the facts derived have a direct bearing on

the problem at hand (2, p. 82), and no effort is wasted

in deriving useless information. Typical domains where

backward chaining is effective are in medical diagnosis

(14, p. 184) and anywhere that a small amount of 'front

end' information can suggest a possible conclusion.

Domains where backward chaining cannot be supported are

those where no theories can be formulated ahead of

time. These can include on-line monitoring and process

control, to name but a few.

31

2.7 ifDElsmentati_gn_Languages

The mechanics required to implement these new

methodologies have required the introduction o-f computer

languages that o-f-fer greater flexibility in data

representation and program control. Toward this end, the

computer language of choice for programs dealing with

artificial intelligence is LISP (L^St Processor). This is

due to the ease of representation afforded by the list

environment and the ability to manipulate the component

parts of the list. Due to its recent popularity, a number

of variations are now available. These include IQLISP,

INTERLISP, INTERLISP-D and FRANZLISP (5, p. 12). A recent

entry into this list of implementation languages is C. Its

strong point is the ability to migrate to different hardware

environments essentially intact. This gives the program

designer the ability to build the system on a machine

different from the one on which the program will be

implemented.

Using the implementation languages listed above, a

number of expert system 'tools' have been written that

provide the expert system designer with a foundation of

capabilities. Divided into three categories, these tools

permit the designer to trade-off flexibility for ease of

implementation (10, p. 56).

32

2.7. 1 General^_PurBgse_Programmlng_Languages

At one end o-f the spectrum are the General Purpose

Programming Languages o-f LISP and PROLOGUE. While expert

systems can indeed be implemented directly within these

languages, no support structure -for any of the component

parts o-f an expert system exists inherent to the language.

This requires the designer to build the entire system -from

scratch. While this requires a great deal o-f time and

e-f-fort, it is also the environment in which the designer can

obtain the most -flexibility for the system.

2.7.2 General^PurpgseRegresentatign_Languages

One step of capability up from the General Purpose

Programming Languages are the General Purpose Representation

Languages. These languages, usually written in a LISP

dialect, have been developed specifically for expert systems

applications. Still quite flexible, they do not limit the

designer to a particular control strategy or knowledge

representation scheme. Examples include SRL, RLL and AGE

(all from Stanford University), KEE (Intel 1 i-Gentics

Incorporated), 0PS5 (Carnegie-Mellon University), ROSIE

(Rand Corporation) and LOOPS (Xerox PARC) (5, p. 21).

2.7.3 Exgert_Bui lding_Systems

At a level atop the tools previously described are

programs called Domain Independent Expert System Frameworks

or Expert Building Systems for short. These systems provide

the complete framework of an expert system in terms of the

33

knowledge editor, knowledge base and in-ference engine

(4, p. 92-97). Examples of these include EMYCIN (Empty or

Essential MYCIN, -from Stan-ford University), KAS (SRI

International), HEARSAYIII (USC-ISI), EXPERT (Rutgers

University) and KMS (University o-f Maryland) (10, p. 56). The

bene-fit o-f these systems is obvious, in that the designer

need supply only the knowledge about the domain of interest.

However, if the knowledge representation scheme and

inference strategies, that are essentially 'hard-wired' into

the system do not lend themselves to that particular domain,

then the headstart provided by the Expert Building System

will soon become a glaring liability. It is therefore

crucial that the knowledge engineer be conversant in not

only the domain to be modeled, but also in the capabilities

of the software available to assist in the endeavor.

2.8 Dgmai.ns_gf _A££l^i^cati^on

As capable and effective as expert systems are, and

will come to be, it is important to understand that their

application is not universal. Just as every housewife's

recipe box should not be fed into the home computer, so

should the implementation of an expert system be limited to

domains where it can function effectively. To this end,

there are six classic criteria that a domain should meet

before an expert system should be considered (2, p. 26):

1) genuine experts must exist. (this effectively
nullifies the stock market and astrology from
consideration)

.

34

2) the experts must generally agree about the
choice o-F an acceptable solution.

3) the experts must be able to articulate and
explain their problem solving methodology.

4) the problems o-f the domain must require
cognitive not physical skills

5) the tasks cannot be too di-f-ficult (i.e.- beyond
the comprehension o-f an expert in the domain).

6) the problem should not require common sense or
general world knowledge.

Once a candidate domain has proven receptive, it is still

necessary to justify the tremendous e-ffort and cost of

constructing and implementing an expert system.

Considerations that can provide this justification include

areas where the task solution has a high payoff, areas where

human experts are unavailable in the quantity required

(i.e.- not enough medical doctors to service each small

farming community) or unable to do the job (i.e.- in a

calculation intensive environment), areas where significant

expertise is being lost due to changes in employment or

death or domains that possess an unfriendly or hostile

environment (i.e.- inside the containment vessel at a

nuclear power plant or deep water salvage or construction)

(2, p. 27).

2. 9 ApEl i cat i gns_Case_Study_gf_PROSPECTOR

The decision to implement an expert system in a given

domain has often produced results in excess of the system

itself. The example of the PROSPECTOR expert system is a

good case in point. Developed between 1974 and 1983 at the

35

Stan-ford Research Institute, PROSPECTOR is a rule based

system that directs drilling and mining operations in search

o-f di-f-ferent types o-f ore and mineral deposits (16, p. 49-50).

As with all expert systems, PROSPECTOR began with intensive

dialogue between the knowledge engineer and the domain

expert, in an attempt to isolate not only the knowledge used

by the expert, but also the problem solving strategies

normally employed. Once identi-fied, this information was

used to construct the knowledge base and the control

strategy. On the first attempt to solve a problem, however,

PROSPECTOR failed miserably. It was only after this failure

that the knowledge engineers and the domain experts began to

realize that the actual procedures used by the experts to

solve problems were not congruent with those procedures

believed to be in use. After much additional work, the

final result was not only a working expert system, but also

a more lucid understanding of the true mechanics of the

domain that is now being incorporated into college texts,

etc. as a replacement for the methods that people (including

the experts) previously believed were correct (1).

36

r SITE
.PREPARATION;

SUBCONTRACTORS

(CONCRETE ^
MIXER)

CONSTRUCTION
PROJECT

CONCRETE
PUMP

FIGURE 5a.

SEMANTIC NETWORK representing the -four essential elements o-f

a nominal construction project with representative values.

CONSTRUCTION PROJECT

REQUIRED ELEMENTS
labor: tradel, trade2, trade3, ...
material: material 1, material 2, ...
equipment: equipment 1, equipment2, ...
subcontractors: scl, sc2, ...
duration: duration OR de-fault (labor=nonunion)

(labor=union)
60
90

FIGURE 5b.

FRAME representation -for the semantic network
FIGURE 5a where 'CONSTRUCTION PROJECT' identifies
FRAME, 'REQUIRED ELEMENTS' identi-fies the SLOTS and
mater i all, etc' identi-fies the VALUES.

shown in
the the
'tradel.

37

CHAPTER THREE

CASE STUDY OF THE
EXPERT SYSTEM TRALI

3-1 lQl!!!9ducti^on_tg_the_Expert_S>^stem_TRALX

The relative newness of expert systems, coupled with

their inherently long development time has yielded a

situation where no production systems exist in the -field of

civil engineering (10, p. 57). This is not unusual, however,

as the dozens of experimental systems developed across many

engineering disciplines over the past ten years have

produced a scant three to four true production systems that

are actively engaged in field operations (2, p. 149). To keep

this in perspective, it is important to remember that the

Concorde was not making trans-Atlantic crossings a mere ten

years after the Kitty Hawk experiments.

Even though no production systems currently exist in

the field, there are many small prototypes being developed

for the purpose of evaluating new techniques and validating

domains of implementation (7, p. 294). One such prototype has

been built by the Civil Engineering Department at Carnegie-

Mellon University. Named TRALI, it is an expert system in

traffic engineering designed to tackle the problem of

isolated intersection signal timing by using a hybrid method

of solution that encompasses both AI techniques and

algorithm evaluation <18,p,l-2). Use of this composite

structure is gaining in popularity because of the large

number of domains where the union of number-crunching

38

algorithms and knowledge about the domain must work in

harmony. For example, the entire gambit of potential civil

engineering applications from cradle (design systems),

through construction (project management systems) and

service life (maintenance systems) will rely heavily upon

expert systems that possess both of these capabilities. The

architecture of TRALI demonstrates the flexibility that this

combination can provide and points a direction that future

production level expert systems may well travel. It is for

this reason, as well as the fact that TRALI is a working

prototype that it is included in this discussion.

3.2 Dgmai^n_Background

The function of intersection timing is to allow all

traffic movements (through and left turns) to transit an

intersection in a timely manner and with minimal delay. The

qualification of 'isolated' limits the intersections under

study to those that are not part of an arterial network.

This is important, as arterial intersections must be

coordinated so as to provide for traffic progression along

the route. By limiting the intersections in this way, the

scope of the problem presented to the expert system has

merely been simplified. Variables within the environment

consist of the volumes for all the through and left turning

movements, the geometry of the intersection (i.e.- the

legitimate paths the movements are allowed to take) and the

presence of additional required phases (i.e. -walk, don't

walk, all red for intersection clearance, etc.). Parameters

39

that control an intersection in this regard are the cycle

length and the phase distribution; the cycle length is the

period o-f time required for all phases to be serviced and

the phase distribution is the allocation of parts of the

cycle to each phase (9!,p.2-l to 2-4). This is a classic

problem in the field of traffic engineering, and has been

the focus of many simulation and algorithmic based computer

programs. Mhile enjoying a fair amount of success, these

programs have suffered from the inability to deal with

situations that are not explicitly addressed in the program,

as was discussed in the previous chapter. For example, an

inherent shortcoming of existing programs is their inability

to accommodate an intersection with more than 4

perpendicular legs (plus left turns) or any that have

unusual geometry or requirements. FIGURE 6a on page 53

depicts the geometry of a conventional intersection that

current software is capable of dealing with. One of the

primary goals of the TRALI endeavor was to correct this

deficiency by providing traffic engineers with a tool to

handle intersections of unusual geometry (18,p.l). FIGURE

6b on page 53 portrays a representative intersection of this

type.

The input required by TRALI is conceptually similar to

that of currently used simulation software that employs

algorithmic based solution strategies (the Signal Operations

and Analysis Package (SOAP), for example). The exception is

that the intersection is not assumed to be of a given

40

geometry. Rather, the various flows are characterized by an

angle-in and an angle-out (18, p. 3). This information is

then used to abstractly describe the intersection to the

component parts o-f the program that deal with flow

conflicts, phase determination and other areas where the

geometry is critical.

3.3 Sgl^uti^on_Strategy_Fgrmat

Mhile not depending upon a preprogrammed solution

strategy, the program does follow a general line of

reasoning as it solves the intersection timing problem. The

five main tasks nominally accomplished are 1) conflict

determination 2) proposal of a phase distribution

3) determination of the optimum cycle and period lengths

4) calculation of figures of merit (measures of

effectiveness that quantify the efficiency of the proposed

design in terms of vehicle delay, etc.) and 5) modification

to data and results at the user's discretion (18, p. 3-4).

3.3.1 Conf l^i^ct_petermi^nati^on

The first of these tasks, conflict determination, uses

the information about the flow angles to identify flows that

conflict and the degree to which they interfere with each

other. For example, right angle flows present an obvious

problem wherein the only solution is most certainly the

creation of a separate phase for each flow. On the other

hand, two flows whose angle-in values are fairly close may

have the potential to be serviced by the same phase. Rules

from the knowledge base are used to determine these

41

conflicts and structure the intersection description on the

context, which is the short-term, working memory of the

system.

3.3.2 Phase_pistribution

The program then uses this information in the next step

to preliminarily assign phases to the flows. It is at this

point that the program selects the 'parent' flows, as those

that absolutely require their own phase. Commensurate with

this, TRALI attaches children (flows) to parents that

exhibit similar characteristics (or weak conflicts).

3.3.3 Ca^cul^at i^gn of_Cyc l^e_and_Phase_Lengths

The third step involves invoking certain algorithms to

calculate the optimum cycle length and phase distributions

for the preliminary phases determined in the previous step.

While the evaluation of the algorithms involve no strategic

control, the results may certainly be used by a control

strategy rule to add a constraint or new piece of knowledge,

and redirect the program back to a prior step for

reevaluation.

3.3.4 Ca l^cul^atign_gf_Solution_Ef fectiveness

The next step involves the calculation of figures of

merit or measures of effectiveness (MOEs) . As with the

procedures of step three, this is an algorithmic process

that returns values for the average delay per lane, the

average queue length and the total delay per cycle. Also

like step three, values out-of -bound may trigger a control

strategy that assigns further constraints or alters the

42

knowledge in the context, and then redirects the program to

repeat steps one or two.

3.3.5 Sg^ut i on_Presentatign_and_Xnput_Modif i catign

The last step entails the presentation o-f the solution

to the user, and the commencement o-f an interactive dialogue

should the user wish to query the system on how it arrived

at the solution or why it chose to invoke a particular rule

in the knowledge base over another. Additionally, this step

allows the user to enter new constraints or to modify the

knowledge base in preparation for the next evaluation.

Zozaya-Gorostiza and Hendrickson (18, p. 4) allude to the

importance of this for sensitivity analysis (i.e.- modifying

volumes, constraining phases, etc.). While this is

necessary when using an experimental system such as TRALI,

future production systems that are designed to optimize

parameters of a numerical nature should most certainly

include an indication of sensitivity to such parameters as a

normal compliment to its output.

3.3.6 Advantages

In describing the rationale behind constructing TRALI,

Zozaya-Gorostiza and Hendrickson develop the argument that a

major restriction of current intersection analysis programs

(SOAP, for one), is that the designer is required to pre-

program all possible combinations of situations explicitly

into the program (18, p. 2). Essentially, the control

strategies for all conceivable solutions must be considered

and addressed before the program has a chance of success in

43

a production environment. This places an impossible

requirement upon the designer and the program and all but

ensures that the necessary condition o-f COMPLETENESS (as

described in the preceding chapter) can never be met. In

other words, the applicability of the program is reduced to

only those cases foreseen by the designer. To circumvent

this problem, TRALI is provided with knowledge about how to

solve problems (herein called process knowledge (18,p.7)).

This, in conjunction with domain knowledge and the

appropriate number-crunching algorithms, allow the program

to develop its own solution strategy to meet a particular

situation. The representation for this process knowledge is

contained in a rule base (IF-THEN format). Likewise, the

domain knowledge and the meta knowledge are also represented

in this format. In all, 237 rules comprise the knowledge

base from which TRALI can draw (18, p. 6).

3-4 System_Components_and_Functi.gns

Functionally, the program is broken down into four main

components. These are the user interface, the context, the

knowledge base and the inference engine.

3.4.1 yser_ Interface

In TRALI, the user interface incorporates the

'friendliness' of the system. By default, both the

explanation and the knowledge acquisition modules are also

considered to be incorporated. However, the primitive level

on which these last two modules operate require no

amplification of their functions. The system 'friendliness'

44

consists o-F a menu-driven input -format with response error

checking (i.e. -the program will not accept a volume -for a

nonexistent -flow). Additionally, the interface allows the

user access to the context -for the purpose o-f viewing and

altering information contained therein. Since the context

knowledge is nonvolatile between runs, the user can modify

nearly any knowledge (user supplied, system derived or

calculated) before attempting another solution (18, p. 4).

3.4.2 Context

The context provides the program with a 'short-term

memory' wherein intermediate knowledge is stored as the

solution progresses. Likened to a blackboard (and actually

named that in other systems), the function is to provide a

single repository for knowledge that the inference engine

can reference as it dynamically manages the control

strategy. In TRALI, the context is organized by 'objects'

(records), which are broken down into 'attributes' (fields)

(18, p. 5). Each object describes one component of the

intersection under study and the system generates as many

objects as it requires for the particular situation.

Likewise, attributes describe the parameters of an object.

For example, each traffic movement (or flow) is defined as

an object. Attributes for the flow object include the flow

name, the volume, the angle in, the angle out and the number

of lanes. Values are placed into these attributes as they

are input (from the user) , derived (by execution of a rule)

or calculated (as the result of an invoked algorithm).

45

Using this architecture, it is obvious that the inference

engine has but to look at the context to determine not only

what is known, but also what is not known and hence, what

needs to be known. In this regard, the architecture of

TRALI is particularly interesting, as the objects of the

context behave very similarly to frames, in that the

attributes are analogous to the slots and the variables are

actually the domain specific knowledge that is input or

generated. Similar to classic frame representation, TRALI

is representing a certain amount of its process knowledge in

the object. Unlike a frame representation, however, TRALI

incorporates no default knowledge within its objects. This

is probably a function of the experimental nature of this

program.

3.4.3 Knowl edge_Base

The knowledge base, as previously discussed, contains

237 rules in an IF... THEN format. There is essentially no

limit to the number of <condition> clauses a rule may

possess. Likewise, any number of <action> clauses may be

controlled by one rule. Further, there is no format within

the knowledge base that dictates the physical ordering of

the rules. This quasi -unstructured environment, commonly

referred to as 'rules of equal level', allows the inference

engine nearly complete control in determining and executing

the solution strategy. Other expert systems, however, allow

the ordering of the rules to play an integral part in the

formation of the control strategy. For example, the expert

46

system ESIE (a relatively primitive expert system shell

written in Pascal that runs on an IBM PC), uses the order of

rules, as they physically appear in the knowledge base, to

establish the control strategy <9,p.20). Within this

architecture there is no such problem as the resolution o-f

conflicting rules, because the first rule found, whose

<condition> clauses are satisfied by the context, is

considered the dominant rule and becomes the one fired. An

obvious advantage is that this order dependent strategy

requires a less sophisticated inference engine. The value

of this must be weighed against the disadvantages; paramount

of which is a lack of flexibility in adjusting the

inferencing scheme from a central location. Likewise, the

bookkeeping difficulties associated with an order dependent

inferencing strategy in a large knowledge base would be

staggering. For these reasons, all future production level

expert systems will no doubt employ the concept of 'rules of

equal level' in their knowledge bases.

3.4.4 iQf erence_Engi^ne

To demonstrate how the inference engine uses the

process and domain knowledge to control the solution

strategy, assume that the current goal of the system (also

expressed as a rule in process knowledge), is to calculate

the phase distribution. In order to achieve this, the goal

rule informs the inference engine that it needs the volumes

for all flows. The inference engine then interrogates the

flow objects in the context and determines if it has

47

available all the necessary -Flows. If all -flows Are

available, the goal rule <condition> becomes true and the

inference engine fires the rule's <action> which, in this

case, would be the act of invoking an algorithm to calculate

the phase distribution. Conversely, if all flows were not

available within the objects, then the inference engine

would interrogate the rule base, looking for a rule whose

<action> was the missing flow. Once found, this rule's

<condition> clause would be matched against the knowledge

within the context. If the required <condition> was found

within the context, then the rule would be fired, and the

value for the flow added to the context, which would

ultimately precipitate the firing of the goal rule. On the

other hand, if the <condition> was not found within the

context, then the inference engine would begin another

search of the knowledge base to look for a rule that had, as

its <action>, the <conclusion> of the previous rule. This

recursive process would continue until either the problem

was solved, or the system has executed all the rules for

which it had <condition> information, and therefore, by

itself, could add no further knowledge to the context.

3.4.4.1 Conf l^i ct _Resgl_ut i_gn_i_n_the_TRAL I _System

In addition to controlling the solution strategy,

it is also incumbent upon the inference engine to

resolve conflicts between competing rules whose

<condition> statements evaluate as true. Depending

upon the size of the rule base, it is not uncommon for

48

the addition o-F one new piece o-f knowledge to activate

any number of rules. In a testing session of TRALI

(18, p. 9-13), the average number of rules the inference

engine had to choose from was 14. The reason this

number is so large is because TRALI uses a forward

chaining control strategy to determine which goal rules

to invoke. As discussed in the previous chapter,

forward chaining results in the evaluation of rules

regardless of whether or not the <action> clause brings

the program any closer to the solution. In a backward

chaining environment, the additional constraint of

validating a goal rule (hypothesis) would have the

effect of decreasing the number of candidate rules.

However, even in this situation, the possibility of

more than one rule's <condition> being true is quite

high. When faced with this predicament, the inference

engine usually uses some heuristic to break the tie.

In the case of TRALI, this heuristic is probably

directed by the structure of 0PS5, the General Purpose

Representation Language used. 0PS5 has a unique

feature that time stamps every new piece of knowledge

that is added to the context. This utility allows for

the differentiation between 'old' knowledge and 'new'

knowledge. With this information at its disposal, the

system nominally breaks ties by firing the rule that

incorporates the 'newest' knowledge (1). Since the

authors of TRALI make no reference to any particular

49

tie breaking scheme, it is assumed that they have

chosen to utilize this function o-f their programming

language.

3.4.4.2 Cgnf 1 i ct_Resgl ut i gn_i n_the_MYCIN_SYstem

Other systems, however, use schemes that are quite

di-f-ferent -from this. In the case of MYCIN (an expert

system designed to diagnose viral disorders of the

blood), the heuristic used to resolve conflicts between

conflicting rules is the aggregate of the certainty

factors. If 2 rules are eligible to fire, MYCIN

computes the certainty factor of the <action> for each

rule, which is based on the certainty factors for the

<condition> clauses for each rule. The rule that would

provide the <action> with the highest certainty factor

is judged as the 'dominant' rule and is the one fired

(2, p. 53).

3.5 Ev§ly§tign_gf _Ef f ecti^veness

In their conclusions on the effectiveness of TRALI,

Zozaya-Gorostiza and Hendrickson (18, p. 14) point out a

number of advantages their system enjoys over algorithmic

based design programs, as well as a number of implementation

and programming problems that were discovered during the

course of the development.

3.5.1 Advantages

First, TRALI is not constrained to a predetermined

geometry or the assignment of flows along predetermined

routes. Additionally, the heuristics contained within the

50

process rules can be used ef-fectively when the optimum

alternative "... contemplates multiple competing -figures of

merit. For example, a good design might not be that which

minimizes total delay, but one having an acceptable delay

and short average queues ..." <18!,p.l4). Secondly, they

maintain that the knowledge base can be easily updated and

enriched, without the need -for reprogramming in the classic

sense. The merit of this advantage must be tempered with an

understanding of the problems inherent when using knowledge

from more than one source (expert), as discussed in the

previous chapter. The third advantage addressed speaks to

the architecture of the entire scheme that removes the

requirement for the designer to anticipate all possible

cases that may be encountered. This is an advantage not

only of TRALI, but a pivotal benefit of all knowledge based

expert systems.

3.5.2 Disadvantages

However, Zozaya-Gorostiza and Hendrickson also point to

some problems encountered with TRALI, and expert systems in

general. Specifically, they address the need for a domain

expert that can identify the rules and strategies used for a

manual solution to the design problem. A second problem is

the nonportabi 1 ity of the hardware on which they chose to

implement their system. This is probably due to their

choice of 0PS5 as a language, and the fact that the system

development occurred prior to April 1986. Since then, a

version of 0PS5 that operates on an IBM PC has been

51

released. Additionally, a -few other General Purpose

Representation Languages that are implemented in IQLISP have

recently become available. Since this language also runs on

the IBM PC, there is no reason -for nonportabi lity to remain

a problem in the future.

The last problem encountered speaks to the

incompatibility of existing design programs and expert

systems in regards to the expert system controlling the

execution of algorithms resident within other languages.

This was seen as a problem since system compatibility is

virtually nonexistent and the 0PS5 language is highly

inefficient for numerical computations. Interim solutions

to this problem may again lie with implementation in IQLISP

or PROLOGUE, both of which are better at numerical

evaluation than 0PS5. Unfortunately, neither is near as

efficient as FORTRAN, PASCAL or any of a number of languages

designed specifically for numerical manipulations. With the

current magnitude of emphasis in this field, in addition to

the research being done on 5th generation hardware and

software, it is highly probable that the next few years will

see a language that can accommodate both the list processing

requirements of the expert system and the number—crunching

demands of algorithms with equal ease.

52

FIGURE 6a.

CONVENTIONAL INTERSECTION GEOMETRY consisting o-F -Four

through -flows and -four le-ft turning -flows. (Right turns are
assumed to occur with the through movement) .

FIGURE 6b.

REPRESENTATIVE UNCOMMON GEOMETRY o-f the type that TRALI is
designed to provide an isolated intersection timing solution
for.

53

CHAPTER FOUR

CASE STUDY OF THE
PLATFORM MODEL

4- 1 lQtrgduction_tg_the_PLATFORM_MgdeL

The next expert system to be examined was developed in

the early 1980s by Stanford University and Intel liCorp -for

the purpose o-F validating certain knowledge representation

structures and control strategies within the domain of

project management. This program operates on a set of

thirteen top level construction tasks such as design

platform, cast concrete base, make deck structure and tow to

site. Since there are no activity breakdowns within the top

level tasks, the system is identified as a "proof of

concept" testbed, and not a working prototype (6, p. 61).

Even so, the skill of an activity scheduling assistant that

the system provides, demonstrates a very practical

application in the area of construction engineering

(6, p. 58). Unlike the examination of TRALI, which dealt with

the mechanics of the expert system program, the discussion

of the PLATFORM Model will focus more on the integration of

the expert system into the project management concept and

the effective utilization of its capabilities.

The program itself is written in the KEE General

Purpose Representation Language, which is implemented in a

number of LISP dialects. This language supports an

environment where a number of knowledge representation

schemes can be used simultaneously. In the case of

54

PLATFORM, -frames (herein called 'units') are used to store

the domain knowledge, whereas rules (structured in an

IF ... THEN -format) contain the process knowledge (i.e.-

control strategies) (6, p. 59). This hybrid environment has

more -flexibility than a system where only one type o-f

representation can be used, as the particular strengths of

each representation scheme can be exploited as required

(6, p. 60). In addition, KEE also supports LISP functions

which allow PLATFORM to engage easily in the numerical

computations of CPM and PERT network evaluations.

4.2 Kn9wledge_Representatign

The basic frame used in the PLATFORM architecture is

the ACTIVITY unit. As with other systems, this frame is

composed of slots (attributes), into which variables (domain

knowledge) are entered. Some of the nominal slots found in

this unit are (6, p. 62):

1) COMPLETION STATUS (complete or incomplete)
2) DESCRIPTION
3) COMPUTE EXPECTED DURATION
4) ACTUAL DURATION
5) EXPECTED DURATION
6) MOST LIKELY DURATION
7) OPTIMISTIC DURATION
8) PESSIMISTIC DURATION
9) DURATION VARIANCE
10) ON CRITICAL PATH? (yes or no)
11) SCHEDULE IMPACT CAUSES

As can be seen from the above list, the slots of this unit

are generic enough to apply to any activity. Thus, by using

this unit (frame) for the representation of all activities,

55

the system can theoretically handle projects of any

conceivable size, with any number of activities, by simply

generating as many units as are required (6, p. 74).

The slots COMPLETION STATUS, DESCRIPTION and ACTUAL

DURATION are entered by the user. The values for the MOST

LIKELY DURATION, OPTIMISTIC DURATION and PESSIMISTIC

DURATION, likewise entered by the user, are used by the

system to calculate the EXPECTED DURATION by using the

standard PERT equation (6, p. 67):

EXPECTED DURATION = < (OPTIMISTIC DURATION) +
(4«M0ST LIKELY DURATION) +
(PESSIMISTIC DURATION)) /6

This algorithm is invoked only when the value of the slot

COMPUTE EXPECTED DURATION signifies to the inference engine

that a reevaluation is required. The slot will take on this

value whenever an event occurs that alters any of the PERT

durations. The variance of the EXPECTED DURATION is then

entered as the value for DURATION VARIANCE.

The slot ON CRITICAL PATH? is loaded with a value

whenever another LISP method, called PRINT PATHS, executes a

forward and backward path evaluation through the network.

This slot is binary and can have the value of yes or no,

represented graphically as a "*" or " ", respectively

(6, p. 63) .

4.3 Knowl_edge_ytiii2ation

Up to this point, the discussion of PLATFORM has shown

no capabilities that separate it from any of the numerous

56

algorithmic based project management programs that are

currently available. However, the final slot in the

ACTIVITY unit, SCHEDULE IMPACT CAUSES, inaugurates this

departure -from the norm and begins to demonstrate the true

power and -flexibility o-f expert systems.

4.3. 1 Weaknesses_in_Current_Pr§£^i9?5

Conventional project management techniques, including

even those that are considered progressive, rely heavily

upon CPM/PERT type networks -for their decision making

processes. While these do provide good information

regarding durations and dependencies, they show only the end

result of many decisions that were made by the project

design team. Levitt and Kunz point out that this is a major

flaw with current project management practices:

The expert's knowledge about the task domain that
was employed during the schedule creation is
unavailable subsequently for use by other members
of the project team in interpreting interim
project performance or in updating the project's
schedule. (6, p. 57)

Effectively, the personnel charged with executing the

project are given but a cryptic glimpse of the underlying

reasons surrounding many of the design conclusions. The

results of this lack of communication are, not surprisingly,

network scheduling tools that gather dust on the

superintendent's desk and only come into use when the

company lawyer must substantiate a claim or enter into other

litigation. This is obviously a dismal situation, as the

57

e-f-fort that Ment into the planning of the project is not

available during the execution, and the project manager is

•forced to redesign the wheel and second guess the project

planners at nearly every decision point.

4.3.2 A_Knowl^edge_Based_Remedy

To alleviate this shortcoming, one o-f PLATFORM'S basic

design criteria was the inclusion of domain knowledge about

the risk factors and dependencies of the activities

constituting the project. This information can then be used

by the system to forecast activity and project completion

times, based on the performance of those activities that

have been completed. The slot SCHEDULE IMPACT CAUSES is the

mechanism wherein PLATFORM incorporates the expert's

knowledge about each particular activity of the project.

Specifically, this slot contains a listing of risk factors

that were initially believed to adversely or constructively

affect the activity's duration (6, p. 71). For example,

generic activity impacts could include:

1) LABOR PRODUCTIVITY
2) WEATHER/ENVIRONMENTAL CONDITIONS
3) MATERIAL AVAILABILITY
4) QUALITY CONTROL COMPETENCE
5) FULFILLMENT OF LEGAL REQUIREMENTS

PLATFORM stores the applicable impacts in the SCHEDULE

IMPACT CAUSES slot of each activity. This provides the

system with an understanding of all the factors that

constitute a particular activity, and allow it to identify

trends in production.

58

4.3.2.1 yse_gi_the_SCHEDyLE_ IMPACI_CAySES_SIgt

When an activity is completed, its actual duration

is placed in the ACTUAL DURATION slot of the ACTIVITY

unit- This operation triggers a number o-f actions.

First, the actual duration is compared to the expected

duration to determine if the associated activity

impacts represent an accelerating or a delaying trend

(i.e.- actual duration less then estimated duration or

actual duration greater than estimated duration,

respectively). Next, the system interrogates the other

activity units that completed with the same type of

trend (short or long). If any are found, a match is

then initiated on the impacts of the second activity,

and impacts common to both are identified as

accelerating trends (where both completed activities

were short) or delaying trends (when both are long).

(PLATFORM'S lexicon specifies the former as a 'KNIGHT'

and the latter as a 'VILLIAN'). With an impact so

identified, the system then searches all the

uncompleted ACTIVITY units for an impact match. If an

unstarted or uncompleted activity is found to match,

then its EXPECTED DURATION value is changed to either

the OPTIMISTIC DURATION or the PESSIMISTIC DURATION,

depending upon if the impact is a 'KNIGHT' or a

'VILLIAN'. Once all the activities have been handled,

and their expected durations modified as appropriate,

the system then invokes the CPM algorithm that performs

59

a -forward and a backward pass on the network to update

the critical path and the project duration.

4.3.2.2 Ex amele_gi_the_SCHEDyLE_ I MPACI_CAySES

The Platform Model contains two early tasks that

have CONCRETE PRODUCTIVITY as an activity impact.

These activities are building the graving dock and

casting the concrete base. In an example run, both of

these activities were caused to complete early. This

had the effect of identifying the impact of CONCRETE

PRODUCTIVITY as a 'KNIGHT'. When uncompleted

activities were then searched, it was found that the

CONCRETE PRODUCTIVITY impact existed in two other

activities; Slipforml and Slipform2. The EXPECTED

DURATIONS of these two activities were revised to the

OPTIMISTIC DURATION, and the CPM was evaluated. The

result was a decrease in the project duration and a

change in the critical path (6, p. 71).

4.3.2.3 System_Saf eguards

It should be noted that a judgement is requested

from the user at two decision points in the above

described updating process. The first is at the point

where the system initially identifies an impact as a

'KNIGHT' or a 'VILLIAN'. Here, the user has the

opportunity to accept or reject the impact. An example

of a situation that may cause rejection would be the

identification of early problems with a batch plant

that the user knew had been corrected, and thereby

60

posed no 'VILLIAN' e-F-fect on subsequent activities

containing CONCRETE PRODUCTIVITY as an impact.

The second and subsequent opportunities to accept

or reject the system's recommendation occur when the

system proposes to change the EXPECTED DURATION value

for an activity. A user rejection at this point may be

for the reason that one activity, containing a certain

impact, is being serviced in a di-fferent way than the

other activities also containing the impact. For

example, i-f a certain inadequate batch plant is

identified as a 'VILLIAN', then the system will

recommend the alteration of the EXPECTED DURATIONS of

all activities that contain the impact BATCH PLANT

CONCRETE PRODUCTIVITY. The user would most likely

concur with those recommendations that were concerned

with activities receiving concrete from the inadequate

batch plant. However, activities obtaining their

supplies from other batch plants would obviously not be

affected, and therefore, the user would no doubt

disagree with the recommendation to alter their

EXPECTED DURATIONS. While it is recognized that this

potential problem could be alleviated by entering

separate impacts for all the batch plants being used,

it is also important to recognize that some impacts of

slightly different character (i.e.- batch plants A and

B, for example) will always need to be combined into a

somewhat broad, single impact. Because of this, it is

61

necessary that the user be allowed a voice in the

process, whenever the system is making decisions based

on these broad -factors.

With these sa-Feguards in place, it is obvious that

the system can be e-f -f ecti vely monitored and will not

produce schedules that bear no resemblance to the real

world situation it is modeling. In fact, as the

designers intended, PLATFORM operates very much like a

scheduling assistant, in that the system accumulates

information and presents it in a fashion that allows

informed decisions to be made.

4.3.3 Sugp Icement al^Benef its

In addition to employing domain knowledge to assist the

project manager in identifying trends and accessing their

impact, PLATFORM'S basic approach has the added benefit of

eliminating some of the conceptual problems that have long

plagued PERT methodology (6, p. 66). Specifically, one basic

assumption of PERT that is universally known to be untrue,

is that activity durations are independent. In its approach

to project updating, PLATFORM not only ignores this

assumption, but actually capitalizes upon the dependencies

that exist between activities; as its foundation, PLATFORM

assumes that activities have highly correlated durations-

It uses this assumption, along with the domain knowledge of

risk factor assignments to each activity, to weave an

intricate web of interdependencies. The resulting model

62

represents the real world situation with an accuracy and a

•flexibility that a purely algorithmic approach can never

hope to achieve.

^' ^ §y5^?fD_lDt?9!^§ti9D_^Dd_yser_Interface

Another basic design criteria of PLATFORM appears to

have been the user inter-face. Unlike other systems that

require the user to decode cryptic output, this expert

system displays its results in the -form o-f dynamic,

graphical representations of the ACTIVITY units (6, p. 67).

4.4. 1 ACTIVITY_GraBhi^cs_ReBresentatign

FIGURE 7, on page 68, shows an example activity image

where five of the unit slots are displayed. These slots are

(from top to bottom) a critical path indicator, the activity

name, an indicator of the schedule performance (ACTUAL

DURATION or updated EXPECTED DURATION measured against the

initially planned duration), the ACTUAL DURATION and the

current EXPECTED DURATION. Containing this information, the

graphical image bears a functional and aesthetic similarity

to the nodes on a precedence diagram. Extending the

comparison of the precedence diagram one step further,

FIGURE 8 shows an 'Image Panel' that reproduces the

information contained within selected slots of all the

ACTIVITY units. Functionally, this 'Image Panel' allows

both the system and the user to transfer information. When

the system is communicating to the user, the graphical

images represent windows to the ACTIVITY units, showing

63

realtime changes in the slot values. Conversely, when the

user is communicating with the system, modifying slot values

on the graphical image (by use of the keyboard or system

mouse) will have the effect of changing the same slot values

within the ACTIVITY unit. Effectively, the expert system is

communicating with the user through the medium of an

automated precedence network that is presented on a monitor

screen.

4.4.2 NETW0RK_Re9resentat i gn_Pr i gr_tg_Star

t

FIGURE 8, on page 69, shows the 'Image Panel' at a time

prior to the project start. Note that nine of the thirteen

images contain an asterisk in the CP slot, indicating those

activities that are on the critical path. The performance

'dials' of all the activities are shown in the NORMAL

position because no activities have yet been completed.

(Recall that at least two activities must complete before

the system attempts to identify 'KNIGHTs' and 'VILLIANs': a

necessary prerequisite before the inference engine can alter

the scheduled performance of an activity). The lower third

of the images contain information from the DURATION slots.

All the images contain a 'NIL' in the lower left hand corner

(ACTUAL DURATION slot). This is a LISP value for a variable

that contains no data. The numbers opposing the 'NIL' slots

(lower right hand corner), are the initially planned

EXPECTED DURATIONS in months. Note also the bar graph, part

64

way up the right hand side of the screen. This graphic

shOMS that the project duration time is initially estimated

to be 27 months.

4.4.3 NETWORKRepresentat i gnSubseguent_tg_Star

t

FIGURE 9, on page 70, shows the same 'Image Panel', but

at a later time when four activities have completed. These

are the Project Start (leftmost activity), the Build Graving

Dock activity (up and to the right of Project Start), the

Cast Concrete Base activity (adjacent to Build Graving Dock)

and the Design Platform activity (below and to the right of

Project Start) . The durations and schedule performances for

these activities are tabulated below:

EXPECTED ACTUAL SCHEDULE
ACTIVITY DURATION DURATION PERFORMANCE

Project Start Normal
Graving Dock 14 11 Short
Concrete Base 6 4 Short
Design 7 8 Long

The 'Image Panel' in FIGURE 9 mirrors this progress, with

the 'dials' showing the schedule performance. Additionally,

the images for the activities Slipforml (adjacent to the

Cast Concrete Base activity) and Slipform2 (the second image

to the right of the Slipforml activity) show a schedule

performance of 'short' and an EXPECTED DURATION that equals

the OPTIMISTIC DURATION input for the activities (one month,

in both cases). This is due to the system's identification

65

o-f a 'KNIBHT' in the CONCRETE PRODUCTIVITY impact for the

Build Graving Dock and Cast Concrete Base activities, as

discussed earlier. The ramification o-f identifying this

'KNIGHT' is to decrease the EXPECTED DURATION for activities

that shared the impact. The net result is twofold: 1) to

change the critical path (note the new locations of the

asterisks) and 2) to decrease the entire project duration

from 27 months to 21 months. The intermediate bar of the

duration graph in FIGURE 9 shows a duration of 22 months.

This value was provided before the system searched for other

impacts and, hence, represents the projected duration due

only to the acceleration of the completed activities

(6, p. 68-73). Additionally, the user interface is

continually active, thereby allowing the user to query the

system at any point for its strategy and methodology.

4.5 Eval_uati_gn_of _Ef f ecti_veness

The ramifications of PLATFORM'S success are twofold: 1)

the domain of project management is validated as a viable

realm for the implementation of AI systems and 2) the

function of an 'intelligent' scheduling assistant can be

accomplished by using construction task knowledge and

project management knowledge within the knowledge base of an

expert system (6, p. 73). While PLATFORM deals with only

thirteen top level tasks, the methodologies and control

strategies employed could easily be extended to handle the

volume and detail of an actual construction project. Along

66

these lines, Levitt and Kunz identify a number o-F areas that

need to be addressed commensurate with such an undertaking

(6, p. 74-75). These are:

1) the difficulties in graphically displaying the
'Image Panel' precedence network for large
projects with numerous activities.

2) the requirement to input large amounts of
project data from numerous and diverse sources.

3) the degradation of system processing speed as
the number and complexity of activities and rules
increases.

As with the TRALI expert system, PLATFORM'S utility lies not

as a domain expert, but rather, as an expert assistant.

This is not so much a breach of faith with the goals of AI

research, as it is an admission that the embryonic stages of

development will, of necessity, yield systems of a less

capable nature.

67

FIGURE 7.

GRAPHICAL IMAGE OF THE ACTIVITY unit,
CRITICAL PATH?, ACTIVITY DESCRIPTION,
per-formance, ACTUAL DURATION and
(6, p. 67)

.

showing the slots ON
a measure of schedule

EXPECTED DURATION

68

«1.<M*«0COP'r» <SCItCCHBITMIl#) •{0$K)SO*C0l.»ll

FIGURE 8.

PROJECT PRECEDENCE NETWORK prior to job commencement. Note

that the dials for scheduled performance all indicate normal

duration (6, p. 69).

69

I^^^^J^a Evftfuatr iO'i type »i^a »^3Ct-ieciuie Qf^-^tng Qock.
^~ Pun flc'iedu'e ^.:>atf•'>Q ••mention

InteJllOorp"

KEE"
IPlaTFOBM f'*

Or—toftrmnt Sy<t«m

^'!r^-f<~!Ti^'^'i''>*vi^i^?if^.;-

lEflH P3K9 D30H ESi^P

M1^llW^^^ww^^nl^fflN!UaHSBg^BgIIga^^g^fl^fll^^J

C*»f>tf«it «••). i*«« »y iwl«n<C««*.

FLOAt Oet^VAIER SLlPFORa.2 »!£ .BA££-Pl«I' OR! lOV.IO.&lie
COHIISSIOH

FIGURE 9.

PROJECT PRECEDENCE
activities. Note
per-f ormance o-f the
Slip-form2) due to
'VILLIANs' (6, p. 72).

NETWORK a-fter completion o-F -four

the changes made to the scheduled
uncompleted activities (Slipforml and
the identification o-f 'KNIGHTs' and

70

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER RESEARCH AND DEVELOPMENT

5- 1 Persgecti_ye gnEnthusi^asm

When a child receives a new bicycle, the first thing

that -friends want to do is ride it- A similar phenomenon is

evident whenever a new class o-f computer program is

introduced; persons -from all imaginable -fields attempt to

fold, spindle and mutilate the computer technique to -fit

their particular application. The advantage of this is that

the new procedure is applied to numerous problem classes.

The disadvantage is that these applications to new problems

are often at the hands of persons un knowledgeable about the

strengths and limitations of the technique. This appears to

be the case as the concept of expert systems begins to

emerge from obscurity. Such is the fervor to find

applications, in fact, that journals in the field are

literally teeming with ideas for expert system utilization.

Unbridled enthusiasm in this area, however, can quickly lead

to dismal failure. As Stansfield discovered, after an

attempt to construct an expert system that would act as a

commodity market analyst:

After a significant effort ... I am forced to the
conclusion that an intelligent, real-world system
of the kind envisioned is currently out of reach.
CSpeci-fic problems encountered were3 the
complexity of the real-world domains, and the
difficulty of describing the ways the experts deal
with them. <12,p.591)

71

5.2 Character i^stlcs_gf_a_Sui^tabl^e_Domai^n

One of the cardinal rules for expert system

applicability that was apparently overlooked in the above

endeavor was that which requires a genuine domain expert to

exist. Recall the six necessary domain criteria discussed

in chapter 2:

1) GENUINE EXPERTS MUST EXIST. In the absence of
this necessary condition, expert systems would be
required to extend domain knowledge and
understanding. No computer program, however
sophisticated, currently possesses this
capability. In addition, the undertaking of
'cloning' solution strategies into the program's
knowledge base presupposes the existence of those
strategies. Domains that do not meet this
criteria, for example, would include stock market
speculation and commodities trading, as discussed
above.

2) THE EXPERTS MUST GENERALLY AGREE ABOUT THE
CHOICE OF AN ACCEPTABLE SOLUTION. While the
problem solving strategies and methods of
different experts do not necessarily have to
match, accord on the final solution indicates a
domain wherein the problems are solvable. As
discussed, however, care must be taken not to
include different expert's strategies within the
same knowledge base. Domains that would be
excluded from consideration, based upon this
criteria, may include the problems of nuclear arms
control and the national budget deficit.

3) THE EXPERTS MUST BE ABLE TO ARTICULATE AND
EXPLAIN THEIR PROBLEM SOLVING METHODOLOGY. A
domain that satisfies the first two conditions
does not automatically meet this one. Recall the
example of the PROSPECTOR expert system that was
discussed in chapter one; the experts were unable
to articulate their actual problem solving
methodology, since they were not conscience of the
actual mechanisms that they employed. The
fulfillment of this constraint is a function not
only of the domain, but also of the personalities
and dispositions of the domain experts. An expert

72

system designed to manu-facture Coca-Cola, -for

example, Mould probably be a failure since the
experts in the field Mould be quite reluctant to
divulge their trade secrets.

4) THE PROBLEMS OF THE DOMAIN MUST REQUIRE
COGNITIVE, NOT PHYSICAL SKILLS. Used in this
context, cognitive denotes a broad range of skills
that run the gambit from meditative problem
solving to vision and robot manipulator
interfacing and control. In other words, the
problem should not be to accomplish the task, but
rather, how to accomplish the task. To this end,
the activities of brick laying and telephone pole
erection would not be good candidates, whereas the
domains of foundation design and tele-
communications system planning would.

5) THE TASKS CANNOT BE TOO DIFFICULT. As with the
requirement for a domain expert, this constraint
mandates that a solution exist and that the
discovery of the solution be possible. A classic
example of this criteria is the 3 bears analogy;
the task should not be too difficult <a plan for
world peace, for example), not too easy (taking
the square root of a number), but just right.

6) THE PROBLEM SHOULD NOT REQUIRE COMMON SENSE OR
GENERAL WORLD KNOWLEDGE. This criteria speaks
mainly to the size and complexity of knowledge
bases as well as to the early failure of General
Problem Solver (GPS) type programs that attempted
to deal with a broad range of problem classes.
While it would be possible to build a system that
would at least simulate common sense, the
knowledge base size and depth this would require
is well beyond the capabilities of current
systems.

5. 3 Jystificatigns_f gr_lmpl^ementation

The above criteria describe domain characteristics that

are considered important to the success of production level

expert systems. Due to the high cost of development and

implementation, however, these should be viewed as only

necessary conditions and not sufficient unto themselves.

The added dimension needed is justification; in what

73

situation and under what circumstances will the development

o-f an expert system be justi-fied? While this is not a

principle consideration within a research and development

environment, it is nonetheless o-f paramount importance to

the practitioners within a domain. With this in mind, -five

possible justi-fi cations are presented (2, p. 27). The

existence o-f any one, when combined with the domain

characteristics described above, should be su-f-ficient cause

to commence the implementation of an expert system.

1) THE PROBLEM SOLUTION, WHEN FOUND, SHOULD HAVE A
HIGH PAYOFF. Simple economics dictates that the
solutions provided by an expert system have a
payback su-f-ficient to cover the cost o-f the
system.

2) HUMAN EXPERTS ARE UNAVAILABLE TO PERFORM THE
TASKS. When the demand -for a certain expertise
exceeds the supply, expert systems may be employed
to make up the difference. This would be
especially attractive in a domain where the time
required to develop a human expert was
considerable.

3) HUMAN EXPERTS ARE UNABLE TO PERFORM THE TASKS.
This justification speaks to those domains where
human experts do exist, but certain problems
within the domain, due to their complexity, defeat
the application of the human expert. Problems of
this nature include those that require an enormous
number of calculations with the commensurate
bookkeeping tedium.

4) SIGNIFICANT EXPERTISE IS BEING LOST WITHIN THE
DOMAIN. This situation could occur for a number
of reasons: an economic climate that compels
experts to move to different fields or the
lessening of importance of a field such that human
experts are not replaced as fast as they are
leaving. Whatever the reason for the loss o-f

expertise, an expert system may well be justified
in this situation.

74

5) DOMAINS THAT EXIST IN HOSTILE OR UNFRIENDLY
ENVIRONMENTS. Prime candidate domains for this
justification include space travel, the interiors
of nuclear reactor containment vessels and deep
Mater mining and salvage operations. To be of any
value in these areas, the expert systems Mould
obviously need to be controlling some physical
apparatus, and not just passively solving
problems.

5. 4 Aeplicatigns_i^n_CiW l^_Engi^neeri09

As previously observed, journals in the field of Civil

Engineering are literally teeming with ideas for expert

system applications. Among these are equipment diagnosis

and repair, structural diagnosis, site investigation,

environmental sensing, quality control, structural design,

operations planning, construction planning and equipment

monitoring, to name but a few (10, p. 57-8).

Even though no production level expert systems yet

exist, there are a number of prototype systems currently

under evaluation. In addition to the two described in

previous chapters, the fields of sensor interpretation and

structural design have also produced systems with some

interesting capabilities.

5.4.1 Sensor_lnterpretatign

In the field of geotechnical interpretation, an expert

system prototype called CONE has been developed with the

capability to interpret cone penetrometer data. From the

raw data provided by the penetrometer, the CONE system

infers soil stratigraphy parameters about the various layers

of soil tested (10, p. 60). With this, the system uses its

75

knowledge base to classify the soil layers, in-fer structural

parameters and develop trend lines -for the area under study.

CONE is a rule-based system that is written in 0PS5.

Currently it is limited in scope to o-ff-site analysis.

However, an interesting proposal has been made to implement

the system within a microprocessor environment, attached to

the physical cone penetrometer. This approach is a natural

step in the progression of expert system utilization, as it

is undertaking to put the expert system's power to use at

the time and place where it can be of most benefit.

5.4.2 Structural^Desi^gn

The area of design boasts a number of expert system

prototypes. One of these, named HI-RISE, operates as an

engineering assistant for the design of high rise buildings.

This system, written in PSRL and utilizing a frame based

knowledge representation, is one of the most extensive

systems yet developed in any field (10, p. 61).

Given basic parameters about a structure to be

designed, HI-RISE develops a number of competing alternative

designs, ranks them according to a set of preliminary

criteria and presents the one with the highest ranking to

the user (10, p. 60). One of the interesting features of this

system is its ability to interface with other expert systems

and knowledge bases (called knowledge modules) during the

course of the design/selection process. As one example, a

smaller expert system, called HI-COST, is employed to

76

develop cost estimates -For the designs of HI-RISE. These

estimates are then returned to HI-RISE for use in the

ranking process.

5.5 A£2l_i cat i_ons_i_n_Prgject Management

When considering all the arguments concerning domain

criteria and development justification, another area within

the field of Civil Engineering that emerges as a potentially

qualified candidate domain is the area of construction

engineering, specifically project monitoring and management.

Satisfying the domain criteria, there is no doubt that

expert project managers and superintendents exist, nor is

there generally much disagreement about the choice of an

acceptable solution to a problem. Further, the problem

classes germane to this domain are not of a highly

theoretical or difficult nature and generally tend to

require cognitive skills, at least at the decision level

addressed by the expert system. The only domain criteria

that this field appears not to meet, at least on the

surface, is the one mandating that the solution not require

common sense or general world knowledge. As is well known,

a large percentage of problems in project management require

these exact ingredients for a solution. Fortunately, this

is not a fatal problem: the field of project management is

diverse enough to allow expert system application in

subareas that do not require common sense, general world

knowledge or creativity for the solution. A prime example

77

of this was seen in the expert system PLATFORM, where the

program's only stand-alone capabilities were the bookkeeping

and matching of activity risk factors and the computations

associated with a PERT network. To be sure, the system

could offer conclusions and recommendations it developed

based upon the knowledge it contained. However, recall that

the user was required to accept or reject a recommendation

at each decision point that required the application of

common sense or general world knowledge. Used in this

fashion, as an expert assistant, a system's ability to

comply with the 'common sense' criteria is not essential.

This is good news, as the justification that speaks to

the high payoff potential of a solution is certainly

applicable to this domain. Considering the tremendous

monetary losses that poor project management produces, and

the huge profits that good project management can yield, the

eventual introduction of production level expert systems

into this arena is a given. It is only a question of how

soon and in what areas.

5.5.1 Cgst_and_Ti^me_Cgntrgl^

The evolution of expert systems within the domain of

project management will no doubt be driven by simple

economics; those systems that provide the best

cost-to-benefit ratio will be at the forefront of

development and implementation efforts. With this in mind,

the subareas of cost control and time control emerge as

particularly good candidates for expert system development,

78

since a small improvement in efficiency can yield a

disproportionately large payo-F-f. McGartland and Hendrickson

(7, p. 298) develop the argument that the close association of

these two areas would make them inseparable within an expert

system. Specifically, the system envisioned would analyze

activity costing and completion milestone data to forecast

completion times and final costs. If the methodology of the

PLATFORM Model was also included, then the system would be

able to anticipate problems with unstarted activities based

on the project performance to date. Finally, the

'intelligence' of the system could be used to trap input

errors and question information that did not appear

'reasonable'

.

To accomplish these objectives, periodic information

about each activity would be required by the system.

Depending upon the level of definition desired, daily or

weekly input would consist of the following:

1) estimated percent complete
2) cost to date
3) actual labor used to date
4) actual material used to date
5) actual equipment used to date

This information would be compared with the estimated cost

and completion information for each activity that was either

input at the start of the project or updated by the system

during the course of an earlier run. Using these empirical

values the system would then interrogate its rule base to

determine the significance and effect of each. Possible

79

conclusions and recommendations that the system could b<

requested to make may include the following (7, p. 301):

1) Recommendation for improvements in resource
utilization and resource leveling strategies based
upon project experience to date and past trends.

2) Updating of the remaining schedule based on the
same experience to date and past trends.

3) Prediction of problems that may occur during
future phases of the project.

4) Suggestions to remedy the problems identified
above.

Mhile a system of the kind herein described Mould not be

able to manage a project by itself, the aggregate of these

capabilities would, in fact, provide the project manager

with an 'expert assistant' in the area of cost and time

control. This would have the effect of allowing the project

manager to concentrate on the supervision and common sense

aspects of the project.

5.5.2 Purchasi^ng_and_Xnventory_Contr ol^

Another area of project management that promises a high

payback potential for expert system implementation is

purchasing and inventory control. Like the dynamics of cost

and time, the correlations between purchasing and inventory

mandate that both be included in the same expert system.

The objective of an expert system in this area would be to

minimize the overall project material cost by comparing the

cost of purchasing the materials early, and storing them in

inventory, to the cost of not having the materials available

when they are needed (7, p. 303).

80

In-formation required by this system, -for each item o-f

material addressed, Mould include the consumption rate, the

storage cost, the delivery time, the delivery probability,

and the cost to the project if the material were

unavailable. The knowledge base o-f the system would then

use this in-formation to recommend reorder points and

suitable inventory levels.

I-F this system were integrated into the cost and time

control expert assistant described previously, the resulting

capabilities would surpass the sum o-f the two. Purchase and

inventory control could then be tied to specific activities

within the project. A change in a particular activity start

time or duration, either detected by the system or

recommended as a change, would cause an appropriate

modification in the purchasing and inventory strategies in

use for the materials required by the activity.

Additionally, the resource of material could be dynamically

leveled, based upon the slack time for activities that the

cost and time control system determines.

Add to this combination an expert system that controls

hiring and manpower, and it becomes obvious that as expert

system concepts are applied to more and more subareas, the

aggregate capability may theoretically approach that of the

human project manager, minus the components of common sense,

general world knowledge and creativity.

81

5.5.3 Integratign_of_FyZZY_LOGIC

0-f the three components described above, only the area

o-f creativity appears to be unapproachable at this time.

Current research in the area of Fuzzy logic is beginning to

produce methodologies that mimic applied common sense and

the application o-F general world knowledge; decisions made

on a 'gut' feel, or those made in the face of competing,

conflicting or contradictory information.

Nguyen describes the fundamental concepts of Fuzzy

logic and their application in the realm of non-numerical

problem solving:

The notion of fuzzy sets ... deals with certain
sets that may admit partial membership. A fuzzy
set is thus a set with members having a continuum
of grades of membership, from to 1. Fuzzy set
theory Ca subset of Fuzzy logic! is particularly
suitable for application in the modeling of
classes of problems involving fuzzy or imprecise
data ... for which the information may involve
uncertainty of a subjective type, such as vague
description, human errors, omissions and mistakes.
(8,p.232,240)

In other words, a fuzzy set can be described as the set of

possible solutions to a problem, where the members of the

set are the individual solutions themselves. For example,

the set of solutions to the situation where an activity's

actual duration is exceeding its estimated duration may

include the following members:

82

1) hire more labor
2) rent more equipment
3) divert labor -from another activity
4) divert material -from another activity
5) move to next activity and finish later
6) do nothing and absorb the excess time

All o-f these members (solutions), and many more, have

partial membership in the solution set. The degree o-f

membership is dependent upon the criteria used to judge the

members. In this example, the criteria may Mell depend upon

the reason for the delay: if shovel availability is less

than estimated, then solutions dealing with labor and

material will have low grades (near 0), while solutions that

address the equipment problem will enjoy greater membership

(a higher grade). The advantage of this structure is that a

solution can be dynamically selected from a preexisting set,

based upon the magnitude and importance of other factors.

The field of artificial intelligence has yet to

capitalize on Fuzzy logic to any great extent. The expert

system CONE, as previously described, does make use of this

methodology to describe the heuristics of expert judgment in

its inferencing scheme (10, p. 60). However, the lack of

widespread use is only indicative of the embryonic nature of

both fields. Mith time. Fuzzy logic will no doubt become an

integral part of expert system methodology, thereby making

the component of creativity the sole remaining

responsibility of the human user.

83

5. 6 Q9[!iseguences_fgrthePractlti^oner

Expert systems hold the potential to herald a

revolution greater than that introduced by the

microcomputer. This is because expert systems will allow

the true capability and potential o-f microcomputers to be

utilized; -for the -first time, there will be application

programs available that actually assist the user, and do not

simply regurgitate the input data in a disguised -form.

For users in the construction industry, and other areas

as well, this revolution will bring about a variety o-f

bene-fits. Among these will be (3, p. 132):

1) Shorter decision time, both in the field
(project management) and in the o-ffice (designing,
scheduling, etc). This is not because the program
is making the decisions, but rather because it is
screening out those factors that are irrelevant to
a decision and thereby preventing the user from
wasting time and attention.

2) Augmented professional judgement of the
employed human experts, in that the expert systems
will be available to offer 'second opinions' on
critical decisions. Likewise, an expert system
could also be employed as a 'knowledge based
spreadsheet' (similar to Lotus 123, for example),
to perform 'what if analyses of a broad reaching
nature.

3) The sharing of corporate expertise, as the
expert's technical knowledge and reasoning are
made available to the draftsmen, engineers and
junior project managers. Additionally, this
environment would infer an increase in the ability
to train inexperienced professionals.

It is important to remember, however, that the acquisition

of these capabilities is not without cost. In building an

expert system tailored to a particular environment, the

84

price could easily run in excess of a few hundred thousand

dollars for the hardware, software and knowledge

acquisition. It is due to this, as well as the requirement

to assemble and maintain a staff of experts during the

development, that most companies will not implement expert

systems until stand alone, off the shelf programs become

available at a reasonable price. While this is not

currently the situation, the marketplace will no doubt soon

boast a number of generic expert system applications. Since

these programs will very likely run on IBM PC compatible

microcomputers, whose numbers will have greatly

proliferated, the only cost to the user will be the capital

cost of the program, the loading of any knowledge particular

to the specific company and program maintenance/updating

costs. FIGURE 10, on page 87, shows the inverse,

logarithmic relationship of knowledge based system

development cost, as a function of time in years. From

this, it is obvious that expert systems will soon become

very affordable.

The possibility of this evolutionary profile for expert

systems suggests implications that should be considered by

future users. As discussed above, the price and

availability of 'packaged' expert systems, in a number of

disciplines, will soon make them available to nearly anyone.

The effect of this may be a dramatic increase of competition

in the marketplace. In construction management, for

example, simple, labor intensive jobs may soon be bid, and

85

won, by anyone who has an 'expert scheduler' program and the

ability to hire enough labor. While the -first 'expert

assistants' -for sale may not be very capable, the evolution

of the -field will do nothing but add more job types, of

increasing complexity, to the list of those that an expert

system can manage.

A corollary to the above scenario suggests the

reduction of staff and middle management positions, due to

the intrinsic ability of expert systems to function well at

that level. On the plus side, this would mean lower

payrolls, less hiring problems and a lower turnover rate.

On the other hand, fewer middle management positions implies

that fewer persons would be trained for the higher level

positions, and that there would be a resulting smaller pool

from which to choose the top management personnel (3, p. 134).

While these scenarios may not evolve exactly as stated,

the general impacts are clear. The widespread introduction

of expert systems will most certainly change the complexion

of the way businesses operate and, in all probability, the

way that society as a whole runs.

5.7 liO)§^§bl^e_f or_the_Future

FIGURE 11, on page 87, depicts a look into the crystal

ball, for a hint at the future of expert systems. Whether

or not the forecast is off by a year or two is

inconsequential. The reality is just around the corner,

waiting to let the human race tinker with yet another

Pandora's Box.

86

Engineenng

hours/rule

Programming
. languages -

JLISP)

1970 1975 1980 1985 1990

FIGURE 10.

The DECLINING COST o-F expert system knowledge base

development as a -function o-f time in years (4, p. 9).

1984 1985 1986 1987 1988 1989 1990 1991 1995 1996 1997

FIGURE 11.

THE TWO IMPACTS OF EXPERT SYSTEMS. The -first impact deals
with expert systems in the research and development
environment, whereas the second impact demonstrates the
accelerating e-f-fect o-f the marketplace (4, p. 10).

87

REFERENCES

1. Dankel , Douglas, D. , Lectures -from CAP-6627 (Expert
Systems), University o-f Florida, Spring Semester, 1986.

2. Dankel, Douglas D. , Lecture Notes -for CAP 6627 (Expert
Systems), instructor xeroxed class notes. University o-f

Florida, Spring Semester, 1986.

3. Elliot, Robert K. and John A. Kielich, "Expert Systems
in Accounting", Journal^_gf_Accountancy, September 1985,
p. 126-143.

4. Harmon, Paul and David King, Exgiert_SYstems, John Wiley
and Sons, Inc., New York, 1985.

5. Hendrickson, Chris T. , Daniel R. Rehak and Steven J.
Fenves , i><&ect Systems i^n IC^QlE9Ct§t i^gn Systems
Engi^neeri^ng, Department o-f Civil Engineering, Carnegie-
Mellon University, Pittsburgh, 1985.

6. Levitt, Raymond E. and John C. Kunz , "Using Knowledge
o-f Construction and Project Management -for Automated
Schedule Updating", Pr9iect_Management Journal^, Vol.
XVI, No. 5, December 1985, p. 57-76.

7. McGartland, Martin R. and Chris T. Hendrickson, "Expert
Systems for Construction Project Monitoring", JQyrQ§L
of_Constry9ti9Q_Engi^neeri^ng_and_Management , Vol. Ill,
No. 3, September 1985, p. 293-307.

8. Nguyen, Van U. , "Tender Evaluation by Fuzzy Sets",
Jgurnal^ of Constructi^gn EngineerIDS §Dd_!!!!^D§9!?0)?Ot j

Vol. Ill, No. 3, September 1985, p. 231-243

9. Reasor, Edward, ESIE - The Expert System In-ference
Engine - Knowledge Engineer's Manual, so-ftware support
documentation. Lightwave Consultants, August 1985,
p. 20-21.

10. Rehak, Daniel R. and Steven J. Fenves, "Expert Systems
in Civil Engineering, Construction Management and
Construction Robotics", The Rgbgtics Institute 1984
Annual^ Research Review, ed. Purvis M. Jackson,
Robotics Institute, Carnegie-Mellon University,
Pittsburgh, 1985, p. 51-66.

11. Simon, Herbert A., "Arti-ficial Intelligence Systems that
Understand "

, The Sci^ent i_£i^c DataLi^nk iQdex to
6!ltitlclal_ Intell igence Research_ 1 954- 1 984 , Sc i ent i -f i c
DataLink, New York, 1985, p. 224.

88

12. Stans-f ield, James L, "Conclusions -from the Commodity
Expert Project", The Scienti^fi^c DataLink Index to
Art ificial_ Intel ligence_Research_1954-1984, Sci enti -F i c
DataLink, New York, 1985, p. 591.

13. IheHandbookof Artifi^cial_Intel^l^igBnce, ed. Avron Barr
and Edward A. Feigenbaum, Volume 1, HeurisTech Press,
Stan-ford, 1981.

14. Ih?_b§Ddb90k_of_Artificial__lnteil_i_gence, ed. Avron Barr
and Edward A. Feigenbaum, Volume 2, HeurisTech Press,
Stan-ford, 1982.

15. U.S. Department o-f Transportation, Federal Highway
Administration, S0AP84_yserls_Manual., Publication FHWA-
lP-85-7, Turner-Fairbank Highway Research Center,
McLean, January 1984.

16. Waterman, Donald A., A Sui^de to Expert Systems,
Add i son-Wesley Publishing Company, Inc., Reading, 1985.

17. Winston, Patrick Henry, Arti^£i^cial^_XQt?LliQ?[l£§j 2nd
ed. , Addi son-Wesley Publishing Company, Inc.,
Reading, 1984.

18. Zozaya-Gorostiza, Carlos and Chris Hendrickson, An
Expert System for Tr^f.llc_Si^gnal^_Setti^ng_Assi.stance,
Department o-f Civil Engineering, Carnegie-Mellon
University, Pittsburgh, 1985.

89

BIBLIOGRAPHY

"Arti-ficial Intelligence", EnfllQeering News-Record, March
28, 1985, p. 20-23

Dankel , Douglas, D. , Lectures -from CAP-6627 (Expert
Systems), University o-f Florida, Spring Semester, 1986.

Dankel, Douglas D. , Lecture_Notes for CAP 6627 iixQert
Systems)^, instructor xeroxed class notes. University of
Florida, Spring Semester, 1986.

Elliot, Robert K. and John A. Kielich, "Expert Systems in
Accounting", Journal^_gf_Accountancy, September 1985, p.l26-
143.

Harmon, Paul and David King, Expert_Systems, John Wiley and
Sons, Inc., New York, 1985.

Go-f-f, Kenneth W. , "Artificial Intelligence in Process
Control", Mechani^cal__Engi^neerlng, October 1985, p. 53-57

Hendrickson, Chris T. , Daniel R. Rehak and Steven J.
Fenves , i><Bert Systems i^n IC§D§99!!I^§ti9D Systems
Engineering, Department of Civil Engineering, Carnegie-
Mellon University, Pittsburgh, 1985.

Levitt, Raymond E. and John C. Kunz, "Using Knowledge of
Construction and Project Management for Automated Schedule
Updating", Pcoi®9t_t1§Q§9e!DeQt_!Zoy!lQ^l> Vol. XVI, No. 5,
December 1985, p. 57-76.

King, Michael S. , Steven L. Brooks, and R. Michael Scheafer,
"Knowledge-based Systems", Mechan i^cal^_Engi^neer i.ng , October
1985, p. 58-61

McGartland, Martin R. and Chris T. Hendrickson, "Expert
Systems for Construction Project Monitoring", Journal^ of
Constructi^on_Engi^neerlng_and_Management, Vol. Ill, No. 3,
September 1985, p. 293-307.

Nguyen, Van U. , "Tender Evaluation by Fuzzy Sets", Journal
of _Cgnstructi^gn_Engi^neerlng_and_Management, Vol. Ill, No. 3,
September 1985, p. 231-243

Reasor, Edward, ESj[E_-_The_Expert_System_lnf erence_Engi^ne_-
_!^0owledge Engineerls M^Gyai* software support
documentation. Lightwave Consultants, August 1985, p. 20-21.

90

Rehak, Daniel R. and Steven J. Fenves, "Expert Systems in
Civil Engineering, Construction Management and Construction
Robot i cs " , The Robot ics Inst i tute 1984 Annual Research
Reyi^ew, ed. Purvis M. Jackson, Robotics Institute,
Carnegie-Mellon University, Pittsburgh, 1985, p. 51-66.

Simon, Herbert A., "Arti-ficial Intelligence Systems that
Understand" , JheSci^entificDataLi^nk Index to Arti,f i,ci,al

iDieiiiQeQce Researchj. 954- 1984, Scientific DataLink, New
York, 1985, p. 224.

Standfield, James L. , "Conclusions from the Commodity Expert
Proj ect " , The Sci.ent i f i_c DataLi_nk Index to Art i_f i^ci_al

InteIIi_gence_Research_l?54-1984, Scientific DataLink, New
York, 1985, p. 224, 591.

The_Handbgok of Artlficlal_lntelllgence, ed. Avron Barr and
Edward A. Feigenbaum, Volume 1, HeurisTech Press, Stanford,
1981.

The_Handbook of ArtlfIci_aI_InteIIIgence, ed. Avron Barr and
Edward A. Feigenbaum, Volume 2, HeurisTech Press, Stanford,
1982.

The_Handbggk_of _Arti^fIcial_lntelllgence, ed. Paul R. Cohen
and Edward A. Feigenbaum, Volume 3, Heuristech Press,
Stanford, 1982

U.S. Department of Transportation, Federal Highway
Administration, S0AP84_yserls_ManuaI, Publication FHWA-IP-
85-7, Turner—Fairbank Highway Research Center, McLean,
January 1984.

Waterman, Donald A., A_Gui de_tg_Ex pert_Systems, Addison-
Wesley Publishing Company, Inc., Reading, 1985.

Winston, Patrick Henry, Arti^f i^ci^al_lntelli^gence, 2nd ed.,
Addi son-Wesley Publishing Company, Inc., Reading, 1984.

Zozaya-Gorostiza, Carlos and Chris Hendrickson, AnExQert
System_f gr_Traf f i^c_Si^gnaI_SettIng_AssIstance, Department of
Civil Engineering, Carnegie-Mellon University, Pittsburgh,
1985.

^To-' r 91

18070

DUDLEY KNOX LIBRARY ^^--^

TSAX'Ai POS'J G-EADTJATE SCHOOL ^^-^

MOHTEREY. CALIFORHIA 93943-B008

1:hesis

W222294
c.l

218821

Wall
Expert systems in

Civil Engineering.

Thesis
W22229A
c.l

218821

Mall
Expert systems in

Civil Engineering.

