
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1986-06

Modelling of a multilevel secure tactical
combat computer system

Cavalcanti, Claudio B.

https://hdl.handle.net/10945/21982

Downloaded from NPS Archive: Calhoun

DUD.US* cimv^.

UAVALPO. ^00L
art

MONTEREY, CALIFORNIA 9394&-B00B

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
MODELLING OF A MULTILEVEL SECURE
TACTICAL COMBAT COMPUTER

by

SYSTEM

Claudio Augusto Bailly Andersen Cavalcanti

June 1986

Th«asis Advisor: Uno R. Kodres-

Approved for public release; distribution is unlimited

T230162

EC~^' V C.aSSiP'Catiqn OP rn'S PAGE

REPORT DOCUMENTATION PAGE

a REPORT SeCuRITY CLASS'FiCATiON

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

a SECwRlTv CLASSIFICATION AUTHORITY

b DECLASSIFICATION/ DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
is unlimited.

PERFORMING ORGANIZATION REPORT NUM3ER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYM80L
(If applicable)

52

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

c. ADDRESS (Gfy. State, and ZIP Code)

Monterey, California 93943-5100

rt>. ADDRESS (Gfy, State, and ZIP Code)

Monterey, California 93943-5100

a NAME OF FUNDING/ SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

: ADDRESS (Gfy. Sfafe. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

riTLE (include Security Classification)

MODELLING OF A MULTILEVEL SECURE TACTICAL COMBAT COMPUTER SYSTEM

PE'SCNA. AUTHOR(S)
Cavalcanti, Claudio B

d -vsj of REPORT
Master's Thesis

3b TIME COVERED
FROM TO

14 DATE OF REPORT (Year. Month. Day)

1986 June
15 PAGE COUNT

121

> SUPPLEMENTARY NOTATION

COSATI COOES

E.D GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Secure System, Multilevel System, Tactical System

ASS'RAC' (Continue on reverse if necessary and identify by block number)

This work, is an analysis of the use of a multilevel secure computer system to execute
tactical combat applications programs. Using the Gemini Trusted Multiple Microcomputer
Base, currently under evaluation by the Department of Defense Computer Security Center,
applications and test programs were written and implemented in order to expose some
characteristics of the system. Using a Janus/Ada compiler with the necessary library
alterations for the Gemini machine, a simple weapons application program was implemented
in a system designed to simulate a tactical environment where classified material can be
handled in spite of the different levels of security held by the operators that can
access the system. The loss in performance due to the secure operating system's overhead
is estimated in order to establish the tradeoffs in performance gains due to parallel
processing capability of the multiprocessor system.

) Z> S~r>'3U T ON- AVAILABILITY OF ABSTRACT

L3 .NCASSiF'EDfljNL'MITED SAME AS RPT Q DTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
lAMf. OF RESPONSIBLE NOiViOUAL

Uno R. Kodres
22b TELEPHONE (Include Area Code)

(408) 646-2197
22c OFFICE S v MBOl

52Kr

DFORM 1473, 34 mar B3 APR edition may be used until e*nausted

All other editions are obsolete
SECURITY CLASSIFICATION OF '^iS ?AG£

Approved for public release; distribution is unlimited

Modelling of a Multilevel Secure
Tactical Combat Computer System

by

Claudio Augusto Bailly Andersen Cavalcanti
Lieutenant Commander, Brazilian Navy

B.S., Escola Naval, 1970

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1936

ABSTRACT

This work is an analysis of the use of a multilevel

secure computer system to execute tactical combat

applications programs. Using the Gemini Trusted Multiple

Microcomputer Base, currently under evaluation by the

Department of Defense Computer Security Center, applications

and test programs were written and implemented in order to

expose some characteristics of the system.

Using a Janus/Ada compiler with the necessary library

alterations for the Gemini machine, a simple weapons

application program was implemented in a system designed to

simulate a tactical environment where classified material

can be handled in spite of the different levels of security

held by the operators that can access the system.

The loss in performance due to the secure operating

system's overhead is estimated in order to establish the

tradeoffs in performance gains due to parallel processing

capability of the multiprocessor system.

cr--

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

during this research are not completely validated. Although

every effort has been made in order to make the programs

free of computational and logical errors, the time available

was not sufficient to perform a fully reliable job.

Documentation and software used in this work were supplied

by the manufacturers of the microcomputer used , in a

preliminary format with updates being received throughout

the research period.

Some terms used in this thesis are registered trademarks

of commercial products. All trademarks appearing in this

thesis will be listed below following the firm holding the

trademark

:

1. Gemini Computers Inc. Monterey, California.

Gemini Trusted Multiple Microcomputer Base.

GEMSOS

2. RR Software Inc. Madison, Wisconsin.

Janus/Ada development package.

3. INTEL Corporation, Santa Clara, California.

INTEL

Multibus

APX-286'

TABLE OF CONTENTS

I . INTRODUCTION 9

A. PROBLEM STATEMENT 9

B. PROPOSED SOLUTION 12

C

.

THESIS FORMAT 15

II . SECURE SYSTEMS 17

A

.

TRUSTED COMPUTER 17

- r ' 1 . Background 17

2

.

The Threats 19

3. Proposed Technology 20

B. THE GEMINI SYSTEM 21

1

.

General 21

2. Resource Management Concepts 23

3. The Operating System 26

4. The NPS Configuration 31

III . TACTICAL SYSTEM DESIGN 32

A

.

DESIGN ISSUES 32

1

.

Objectives 32

2. Hardware Simulation 34

B. SOFTWARE DESIGN 35

1 .
• The Parent Process 36

2. The Child Processes 37

C. SOFTWARE DESIGN GOALS 38

IV. IMPLEMENTATION ON GEMINI SYSTEM 39

A

.

GEMSOS LIBRARY . . 39

1 . Package "MANAG" 39

2. Package "GEMIO" 40

3. Package "CRPROCE" 40

4. Package "TABLES" 41

B

.

PROCESS STRUCTURE 41

1

.

Pathname Convention 41

2. Ring 1 Environment 42

3. Application Program Environment ... 43

4 Process Synchronization 45

C. GENERATION OF A SECURE PROGRAM 46

D. LOSS IN PERFORMANCE 47

1

.

Test Program 43

2. Performance Results ^9

V. APPRECIATION OF RESULTS 52

A. GENERAL COMMENTS 52

B. SYSTEM OPERATION 54

C. CONCLUSIONS AND SUGGESTIONS 55

APPENDIX A: APPLICATION PROGRAMS LISTING 57

APPENDIX B: LIBRARY PROGRAMS LISTING 73

APPENDIX C: TEST PROGRAM LISTING 94

6

APPENDIX D: SIMPLE ACCESS PROGRAM LISTING Ill

APPENDIX E: SUBMIT FILES LISTING 11a

LIST OF REFERENCES 118

INITIAL DISTRIBUTION LIST 119

LIST OF FIGURES

1.1 A Tactical Secure Environment 10

1.2 A Secure Process Interaction 14

2. 1 Functions of a Reference Monitor 27

3 .

1

Tactical Combat Model 33

3

.

2 Package THEMAIN 36

3 .

3

Package CHILD 37

4.1 Package CRPROCE 40

4.2 - Ring 1 Structure 43

4.3 Application Program Structure 44

*+ . 4 Sysgen Submit File 47

4

.

5 Package TOTIME 48

S

I. INTRODUCTION

A. PROBLEM STATEMENT

This thesis investigates the use of a multilevel secure

computer system in a tactical combat environment . The

specific application of the system proposed is to perform

the duties of a real-time system with the extra ability to

handle sensitive information in a trusted manner.

A real-time system is defined as:

A system that reacts as to affect the environment in which
it is operating. It is a collection of devices,
controlled by a stored program of instructions . This
program acts as the regulating element in a feedback loop,
which then forms part of a system. [Ref. 1: p.l]

Sensitive information is defined as a collection of data

that cannot be accessed but by those who have specific

authorization

.

The type of environment where a secure tactical system

can be implemented is shown in Figure 1.1 , which depicts a

hypothetical section of the operation's room of a combat

ship

.

The tactical program executed by this specific system

requires some secret data, in order to produce the desired

results. The system should allow the tactical program to

access the secret data, make the necessary computations and

transfer the result to the desired peripheral. The operator

who "drives" the tactical program should not have direct

INPUT

DATABASE

(MIGHT BE SECRET)

>

A

Ak
MAIN

APPLICATION

PROGRAM

7\

^
OPERATOR'S

TERMINAL

OUTPUT

Figure l.l A Tactical Secure Environment

10

access to . the secret data. The eventual access to the

secret data, i.e. to update some parameters, should be

allowed only to operators with secret clearance or above.

Another important aspect of a tactical secure combat

system is that the tactical program needs to be maintained

by on-board technicians, who might not have secret

clearance. If a "free" access to the secret data is

allowed, a skillfull maintainer with some corrupt

intentions , can easily produce a "patch" which will extract

the sensitive information and transfer to a printer- or a

display. This dangerous picture is very much likely to

exist and in fact, such a problem ocurred two years ago on

board of an aircraft carrier, involving the geographic

positions of U.S. Navy's nuclear submarines.

In order to avoid the necessity to clear all the

maintainers on-board to secret level, some sort of

independence should exist between the modules of a tactical

program. The modules should be able to receive different

security labels that cannot be changed by on-board

maintenance. The modules authorized to be maintained on

board should be re-integrated into the system with no

changes to the security parameters.

Since tactical environment automatically calls for

speed, all the necessary security techniques must not- create

too much overhead to the overall performance.

11

This research was performed in conjunction with the

Naval Postgraduate School's AEGIS Modelling Group. This

group is sponsored by the AEGIS Combat System Project Office

to conduct research in the area of combat system

development

.

To summarize the problems discussed in this section we

can state the following requirements for a tactical secure

combat system.-

1) The system will execute tactical programs that uses
sensitive information;

2) The access to the sensitive information should be
controlled

;

3) The tactical programs need to have an on-board
-maintenance by technical personnel with no clearance
to the sensitive information;

4) Changes to the security parameters should not be
possible unless by authorised personnel

;

5) There should be no large overhead due to the security
aspects of the system.

B. PROPOSED SOLUTION

This thesis proposes the use of a multilevel secure

computer system to execute the tactical combat program. The

secure computer system would be the "heart" of the proposed

system, executing the application program specifically

designed for each different situation. The multilevel

secure computer system, based upon the security level of the

operator currently logged on, would perform different kinds

of functions. The capacity of labeling the modules of

12

execution in a multilevel secure computer system would allow

the isolation of sensitive modules , thus protecting them

against unauthorized users

.

An schematic view of the proposed solution is shown in

Figure 1.2.

Here, an application program would be delivered to the

ship's system containing five independent modules. Module 1

is the "master" module, which controls the execution of the

whole system and performs tne synchronization between

modules. It would not be permitted to maintain this module

on-boara. Modules 2 and 3 contain algorithms to process

inputs and outputs and some intermediate calculations

.

Those modules can be maintained on-board. Module 4 accesses

the secret data, and cannot be maintained on-board. Module

5 contains the secret data, and cannot be maintained

on-board although alteration of some specific fields can be

done by an authorized operator

.

When an unclassified operator logs on, the master module

will activate modules 2 and 3, which will execute and call

module 4 to access the secret data. The secret data is

then, handled only by module 4 which provides the result :

f

the operation requested by modules 2 and 3, but will never

transmit the information read from module 5.

When a "secret" operator logs on, the master module will

activate directly module 4, which accesses module 5, but

this time the information read is transferred to the

MODULE 1

MODULE 2
MASTER PROCESS

PROCESS

INPUTS

MODULE 5

SECRET

DATAMODULE 4

•

1—

»

' ACCESS &

MAINTAIN

SECRET DATA

MODULE 3

PROCESS <—
OUTPUTS

Figure 1.2 A Secure Processes Interaction

14

operator whose "secret" classification ievel authorizes

access to tne information

.

There are several systems being currently evaluated by

the Department of Defense to operate as a multilevel secure

system. The Gemini Trusted Multiple Computer Base is the

one used in this research. This system is still undergoing

development and so, some restrictions were imposed.

C. THESIS FORMAT

This thesis is composed of five chapters ordered in a

sequence to provide the reader with a presentation of the

problem, some background information in secure systems and

then introduce the design and the implementation of a system

to execute tactical secure combat programs

.

Chapter I presents the problem and the solution in a

generic format.

Chapter II describes the concepts of multilevel security

and provides some detailed information about the

microcomputer used in this research, the Gemini Trusted

Multiple Computer Base.

Chapter III discusses the actual design of the

application program for the proposed system

.

Chapter IV covers the implementation and testing of the

application program using the Gemini system. Some

information about loss in performance due to overhead caused

by security checks is included in this chapter.

15

Chapter V analyzes the results, proposes some techniques

for the development of applications programs and suggests

some follow-up research.

16

II . SECURE SYSTEMS

A. TRUSTED COMPUTER

1 . Background

There is not to date an unique and generally

accepted definition for a trusted computer system

.

Depending on the origin (i.e., business or government), the

requirements can be quite different and sometimes tney even

conflict between each other. The Department of Defense,

with the purpose to define parameters for any work in the

area- - of secure systems, has elaborated a document which is

entitled DOD Trusted Computer System Evaluation Criteria and

was published in 1983 [Ref. 2] . This document established

guidelines for the test and evaluation of any new system

involving security aspects. It contains all the information

necessary to anyone involved in research with trusted

computer systems.

One of the important concepts described in this

publication, which has direct effect in the analysis

executed in this thesis, is the establishment of two basic

types of security policy: Mandatory (sometimes called Non-

discretionary) and Discretionary Security.

Mandatory Security is defined by the following

direct quote.

Security policies defined for systems that are used to
process classified or other specifically categorized

17

sensitive information include provisions for the
enforcement of mandatory access control rules. That is,
must include a set of rules for controlling access based
directly on a comparison of the individual's clearance or
authorization for the information and the classification
or sensitivity designation of the information being
sought, and indirectly on considerations of physical and
other environmental factors of control . The mandatory
access control rules must accurately reflect the laws

,

regulations, and general policies from which they are
derived. [Ref. 2: p. 72]

As it can be understood from the definition above,

the mandatory policy is expressed by a lattice of access

classes. The mandatory policy establishes that the control

of the accesses is based on an access level determined by

the user's security clearance and this policy cannot be

modified or bypassed within the system. The mandatory

policy, furthermore, establishes the limits for the

discretionary security, which is an additional set of

constraints on access to information, based on some

particular constraint, like the military "need-to-know"

policy

.

The Discretionary Security is the second type of

security policy established by the DOD document and it is

expressed by direct quote which follows

.

Security policies that are defined for systems that are
used to process classified or other sensitive information
must include provisions for the enforcement of
discretionary access control rules. That is, they must
include a consistent set of rules for controlling and
limiting access based on identified individuals who have
been determined to have a need-to-know for the
information. [Ref. 2: p. 73]

18

There -will be certain situations where although the

elements of a group, involved in an analysis or a research

project may have the same clearance, the manager wants to

limit the type of information which each one should access

.

This can be done in order to extract different and unbiased

opinions and observations . The discretionary policy is the

tool to provide this access granularity without affecting

the mandatory rules

.

2. The Threats

The attractive field of computer technology has had

in the past few years one of the fast and impressive

developments ever observed in a new science. This has lead

to a proliferation of computers and networks so that it is

improbable to find today any company or organization that

does not use some kind of a computer system.

Among all the information stored, some is

classified, and so, need special care. The few and basic

security controls first used were considered sufficient to

limit the access to classified information. The machines

were physically isolated and locked. Some more

sophisticated systems had a software coded control . As it

has always happened in human history, there is always a

conflict of interests and there is almost no limit to the

human desire and dedication. So, the computer "hackers"

entered the scene and there has been a lot of break-ins

widely reported by the press , in many types of computer

19

systems. The control processes had to be improved and the

break-in techniques improved concurrently!

The only very low break-in probability technique ended

up to be the enclosure of the peripheral, which permits

access to the classified information, in a tightly secured

vault. Evidently this is not a satisfactory solution. In

some tactical applications, for instance, the operators

might have no secret clearance, but the data the tactical

program uses, is secret. A bright and "interested" operator

can use this situation to create a software patch, for

example, which although transparent to the normal operation

of :the system, will extract some of the classified

information that is stored somewhere.

3 . Proposed Technology

Research centers and universities have conducted a

great amount of work and fortunately, some very good results

are now available to be implemented. The security kernel

technology [Ref . 3] has been considered the driving force

for the building of trusted computer systems and several

products have implemented and improved this technique in an

effort to turn the products into practical, simple to use,

and most of all, secure systems.

To determine if a system is secure or not, is a very

difficult task, starting with the problem to establish the

criteria to evaluate the performance. The Departament of

Defense is preparing a document which will contain the

20

details of such an evaluation criteria and this analysis is

not considered in this work.

The employment of secure products by potential

customers is usually not considered until some harmful

break-in happens, mainly because the practicality of its use

has not been demonstrated yet. In the tactical environment

there, are extra concerns like timing, adaptability and real-

time applicability that have to be demonstrated together

with the secure capabilities, in order to integrate these

products into a combat system.

The Gemini Trusted Multiple Microcomputer Base using

the "Gemini Multiprocessing Secure Operating System (GEMSOS)

is claimed by its manufacturers to fulfill the tactical

requirements with secure aspects, and this was the machine

used in this research.

B. THE GEMINI SYSTEM

1 . General .

The Gemini Multiprocessing Secure Operating System

(GEMSOS) was designed for the Gemini Trusted Multiple

Microcomputer Base, in order to have the system to operate

at the B3 [Ref. 2] level of classification, although the

ultimate goal is to meet the class Al , the highest level

defined. The system is currently under evaluation by the

Department of Defense Computer Security Center for

certification to the B3 class. The system was developed

21

based on the security kernel technology [Ret, 3] like all

trusted systems are, and the main idea was to provide an

off-the-shelf product, using state of the art, hardware

components and software engineering techniques . The main

characteristics of the system are [Ref. 4]

:

1) Can operate with up to eight Intel APX-286 based
microcomputers in parallel, giving a great processing
power. The microcomputers communicate through shared
memory segments providing high throughput , and the
GEMSOS minimizes bus contention by locating data and
code in the local memory of each processor, whenever
it is possible.

2) The multiple microcomputers are capable of
multiprocessing and multiprogramming. The GEMSOS can
multiplex processes to a single processor or
distribute processes to several processors, so that

-•both parallel and pipeline processing is possible.

3) Concurrent computing is independent of the programming
language used, since the GEMSOS provides its own
primitives to manipulate the abstracts eventcounts and
sequencers , in order to support communication and
synchronization among processes

.

4) A variety of I/O devices and storage, which include
fixed disks, high density floppy diskette drives and
non-volatile memory, can be directly connected to the
Multibus. Each RS-232 interface board can handle up
to 'eight devices

.

5) The system includes some other features like a real
time clock, data encryption device (NBS-DES
algorithm), a system unique identifier to prevent
covert channels, and a non-volatile memory to store
passwords and encryption keys

.

The Gemini system allows the development of

applications programs using theoretically any language

supported by the CPM-86 operating system. Some additional

files, which will change the utility library associated with

the programming language, has to be provided with the Gemini

system. As the decision was to generate application

software using the Janus/Ada computer language, the actual

coding of this work had to wait the delivery of the

Janus/Ada environment software and documentation, which

happened in late March. There are special features for the

Gemini Janus/Ada environment that cannot be easily adapted

from a normal Janus/Ada code and these will be pointed out

later in this work. The current implementation of Janus/Ada

on GEMSOS still does not include the ability to use a

Janus/Ada process as the initial Ring 1 process and some

limitations result from that.

The claimed ability to handle different hardware

configurations is an important characteristic of the Gemini

system. If the system is going to be used in real tactical

applications, this certainly is an important aspect.

2 . Resource Management Concepts

A set of resource management services that can be

invoked by an application program is provided by the GEMSOS,

in order to provide the customer with tools to control the

performance of the particular implementation under

development. The application program uses what is called a

service call, which can be treated as a subroutine call,

with arguments being passed and returned. These service

calls are called gate calls, since they make certain

security checks to allow the flux of data. The actual

details of each call is specific to the language being used

23

and is supplied in the GEMSOS interface library provided

witn each compiler (Janus/Ada in this study).

The GEMSOS kernel is divided into three basic

management areas, which are: segment management, process

management and device management

.

a . Segment

Segments are discreet and logical objects

(entities) that contain all the information to be

manipulated in a Gemini system. The segments of concern to

the applications programmer are the code, data and stack

segments

.

~. The GEMSOS kernel allows some application

program to move data within the system in such a way as to

be immediate available to a particular process or not.

There are eight different calls provided for tnis

management. These calls will handle the movement, creation

and termination of data as well as the transfer of the

necessary information to the Kernel's mandatory security

model, which will deny or accept the request for service.

The segment manager controls a "Known Segment Table" (KST)

,

where the segment numbers are related to the system-unique

identifier of the segment usable by the memory. The segment

when created, will receive a tag associating it to a

particular collection of segments, called a volume, which is

the unit of secondary storage. A volume can be treated as

separate entity and so be called by a process. A detailed

24

description about each of the segment management calls is

contained in [Ref. 5].

b. Process

The management of a process includes the actual

management and the synchronization between processes

.

(1) Management . When created, each process is

uniquely identified by code, stack and data segments and at

the same time, a fixed amount of resources is assigned to

it. There are four primitives to manage a process.

(2) Synchronization . Once a segment is created

in an application program, an eventcount and a sequencer are

automatically associated with it. These two abstract

objects have the same name as their owning segment. The

process can then be synchronized with other processes by

means of four primitives supported by the kernel, which are:

advance, await, read and ticket.

c. Device

The Gemini system treats the management of

devices in a very peculiar way, which is, to reside most of

the functions dealing with I/O management in the code at the

application level. This design is two-fold. It reduces the

size of the kernel making verifications easier, but it also

makes the I/O applications software more difficult to be

coded. There are six calls to handle a device. The I/O

device controller is treated as a process , which is then

synchronized with the segments eventcounts and sequencers to

perform the desired functions . More information about

device management, process management and synchronization,

can be found in [Ref. 5].

3 . The Operating System

The Intel APX-286 supports four protection levels

and GEMSOS uses them as four hierarchical rings to enforce

the security layering. They are numbered from to 3 ,

being the most privileged one. The mandatory and

discretionary policy are supported in rings and l

respectively. The mandatory policy, as already mentioned,

cannot be modified and is represented as a lattice of access

classes in the distributed kernel contained in ring 0. This

distributed kernel in ring will virtualize processors,

storage, I/O and objects (processes, segments and devices).

Ring 1 supports the discretionary policy and any other

security requirements. The supervisor, which is built on

the kernel, uses the virtualized objects to perform the

normal functions of an operating system. The other two

rings , 2 and 3 , are used by the programmers for the

development of applications.

The implementation of a reference monitor [Ref. 3]

is the base of the GEMSOS. All the access by the active

entities, subjects, to passive entities, objects, has to be

mediated by the reference monitor as shown in Figure 2.1.

All these checks are performed by the security

kernel located in ring 0. The subjects are processes

26

allowed to perform in a specific domain, and objects are

pieces of information that are observed or modified. Both

have security labels assigned to them. The result of the

comparison between the security labels of the subjects

versus the objects, is what decides if the transaction is

approved

.

SUBJECTS

USERS, PROCESSED

JOB STREAMS ...
">

REFERENCE

MONITOR

7K

AZ

OBJECTS A
FILES, PROGRAMS

A

TERMINALS ... /

REFERENCE MONITOR DATABASE

USER ACCESS, OBJECT SENSITIVITY

NEED-TO-KNOW ...

Figure 2.1 The Functions of a Reference Monitor

27

security late! is a tag t-hat represents the access

class of an entity. This access class is defined as having

two components: a compromise level and an integrity level.

There are properties that establish the criteria for an

access to be granted based on the compromise and integrity

protection enforcement rules . These properties are listed

in [Ref. 4: pp. 16,17] and are summarized here as follows:

Compromise Properties

.

lj If a subject has "observe" access to an object, the
compromise access component of the subject must
dominate the compromise access component of the
object

.

2) If a subject has "modify" access to an object, the
- compromise access component of the object must
dominate the compromise access component of the
subject

.

Integrity Properties.

1) If a subject has "modify" access to an object, then
the integrity access component of the subject
dominates the integrity access component of the
object

.

2) If a subject has "observe" access to an object, then
the integrity access component of the object dominates
the integrity access component of the subject.
Compromise can be related to the secure distribution

of information, and integrity to the secure modification of

information. "Dominates" in the above properties, means

access level greater than or equal to the referred entity.

The number 1 property of both compromise and

integrity protections are the traditional security policies

which are called simple security properties. They state

that in order to observe/modify some information one has to

have a clearance at least equal to or greater than the

information referenced

.

The number 2 property, on the other hand, is not

usual and it is called the *-property (star property). The

purpose of this protection is to avoid an indirect

observation or modification of an entity by an "inferior"

one. In the compromise situation, for example, a secret

process could modify an unclassified file if this protection

did not exist. This "modification" could easily be the

transmission of secret data that the secret process has

access, to the unclassified file. In the integrity

situation, it prevents a secret process of observing an

unclassified file, and this observation could be "read some

data and include it in your computation" , which will allow

the secret process to be influenced by an unclassified user.

In [Ref . 6] there are some more comments about the types of

attacks (Trojan Horse) that can result if these properties

are not enforced

.

Ring integrity is enforced, in addition to all those

properties already mentioned, in the Gemini system. It

means that, subjects can only access objects with equal or

greater ring number, which enforces the hierarchical

structure of the rings.

The rigid observance of the properties mentioned

above, would transform the simple task of distributing

messages (when they have different access classes), into a

29

very complicated and resource consuming procedure. As the

Gemini system is a multilevel system, this would be the

case. In order to avoid this problem, the x -property for

compromise and integrity are relaxed within a certain range

of security levels. The process, which has certain

flexibility in order to execute some trusted activities, is

called "trusted" subject, and it is up to the application

programmer that his "trusted" process does not violate the

security policies. In GEMSOS , the implementation of

"trusted subjects" are in the form of multilevel subjects

and they are trusted within a range, demarcated by their

maximum and minimum access classes . As mentioned already

,

only subjects guaranteed not to improperly observe or modify

information, should be created as multilevel subjects.

Extreme caution should be emphazised when interfacing with

devices

.

The range of access classes for devices , should be

chosen depending on the physical location in which they

operate. Devices can be single level or multilevel, and the

classification is based on the data they manipulate , whether

they have a security label attached to it or not.

The security properties of single and multilevel

devices are the following [Ref. 4: pp. 21,22]:

30

Single-level Devices

.

1) To receive ("read") information:
Process maximum compromise >=Device minimum compromise
Device maximum integrity }=Process minimum integrity

2) To send ("write") information:
Device maximum compromise }=Process minimum compromise
Process maximum integrity >=Device minimum integrity

Multi-level Device.

1) To receive ("read") information:
Process maximum compromise }=Device maximum compromise
Device minimum integrity >=Process minimum integrity

2) To send ("write") information:
Device minimum compromise >=Process minimum compromise
Process maximum integrity >=Device maximum integrity

4 . The NPS configuration

The Gemini system used during this research has the

following configuration:

1) one Intel APX-286 microcomputer

2) two 1.2 Mbyte floppy disk drives

3) one RS-232 interface board with a maximum of eight
ports

This system proved to be sufficient for the

execution of some preliminary processes like the ones

presented in this thesis. However, the amount of time

expended during compilation, linking and sysgening and the

constant swapping of floppy disks due to the floppy disk

drive environment was a big constraint.

31

Ill . TACTICAL SYSTEM DESIGN

A. DESIGN ISSUES

1 . Objectives

The primary objective of this design was to develop

a model which would demonstrate the use of the Gemini

Trusted Mul-tiple Computer Base in a tactical combat

environment. Based on the requirements for a tactical

secure combat environment listed in the introductory

chapter, the model shown in Figure 3.1 is presented.

In this model , the Gemini computer would be used to

receive • the encoded data from a tracker radar, and transmit

some positioning information to a weapons device. The

actual devices being controlled in this model , are

irrelevant at this point. The application program executed

by the Gemini computer would make use, for the computation

of the results, of some stored information classified as

secret. This can be better understood, if we suppose that

the tracker radar is tracking an incoming missile, and the

desired response, is the firing of a chaff burst as a

defensive procedure. During the computation phase, the

program has to access data about our own ship which might be

classified. The operator controlling the tactical picture

cannot have direct access to his data. However this data

has to be updated eventually by some authorized operator.

32

TRACKER

RADAR

ENCODER

GEMINI

SYSTEM

OP'S

TERM.

Figure 3.1 Tactical Combat Model

33

in addition to all that, the system has to nave a

very fast response, and the steps of execution (reception of

radar data, computation of results, transmission or

position) have to be precisely synchronized.

2 . Hardware Simulation

The construction of the model described in the

previous section, would be ideal, since the attachment of

different devices to the Gemini computer would be tested.

Response time, encoding input techniques and many other

aspects would be revealed. This should be part of a follow-

up research

.

"_ As a preliminary research, the development of the

application program was considered the main task.

The complete model, will then be simulated as

follows: One terminal attached to a serial port is going to

simulate the radar input. The values sent to the "main"

process will be generated by software. Another terminal

will perform the same simulation of the weapon to be driven,

showing on the screen the transmitted values. The "main"

process will make use of the secret data stored in another

segment, simulating a secondary storage.

These simulations will not disturb the development

of the application program. The processes to be created in

order to perform the simulations described above, would be

necessary in the complete model as well. The- main

34

difference would be in the code itself, since the processes

would be executing controlling functions.

B. SOFTWARE DESIGN

The application software for this system was designed

using the modular programming construction technique. In

the particular case of the system used, which had a floppy

disk environment, this technique was very useful, because

the modules could be compiled separately. Unfortunately,

the testing of the modules cannot be done separately, when

the modules execute calls to the GEMSOS. To prepare a

program to be executed in the Gemini computer, which is

going" to be explained in a further section, takes about 15-

17 minutes, and the main process (the parent process) has to

be included always, since the creation of processes and

synchronization are coded in the main process

.

The application software was then divided in four

application programs

:

1) "THEMAIN", the parent process, containing the
initialization, creation of processes, synchronization
and deletion of processes (log off).

2) "RADAR", a child process, performing the simulation of
the radar inputs , and the transmission of data to the
parent process

.

3) "COMPUTE", a child process, which receives data from
the "RADAR" process , execute some computations , and
tramsmit the results to the "CHAFF" process.

4) "CHAFF", a child process, which will receive data from
the "COMPUTE" process, and will simulate the
positioning of a weapon.

35

1 . The Parent Process

This is the controlling process for the whole-

system. The creation of the child processes is established

in this module, together with the security parameters and

the synchronization scheme. This module has to be designed

and coded by a programmer cleared to the maximum level of

security to be used, since he will decide the levels for

each of the child processes to be created. The coding of

the child modules, will be given to different programmers,

depending upon the security level of the module.

The general algorithm for a parent process is shown

in Figure 3.2.

Package body THEMAIN is

begin
perform initialization;
create segment to be parent

;

create segment to perform synchronization;
create processes

;

loop
call child 1

call child 3

call child 2
exit when some condition;

end loop;
delete processes

;

end THEMAIN;

Figure 3.2 Package THEMAIN

There are some other procedures, to transfer data to

and from the child processes, not shown here. They, can be

found in the program listing in Appendix A.

36

2. The Child Processes

These processes will perform some defined function

which has been determined by the software manager. The

actual details of implementing the code are left to the

programmer in charge.

In our application program, the child modules

execute the general algorithm described in Figure 3.3.

This is just a general algorithm, and the full

listing of each module used in the application program

developed in this research, is shown in Appendix A.

Package CHILD body is

begin
receive data from parent
perform calculation;
execute simulation;
pass data to parent

;

end CHILD;

Figure 3.3 Package CHILD

As it was mentioned before, the child processes can

be maintained separately, as long as the synchronization

part of each module is not changed. If a module is to be

labelled as secret, the maintenance can be restricted to

Authorized personnel . The preparation of the complete

program to be executed in the system, will be done by a user

with the necessary level of security.

37

C. SOFTWARE DESIGN GOALS

The configuration used for this research had some

restrictions, as already mentioned, and among them, the

amount of time necessary for each development step

represented considerable difficulty. The GEMSOS calls using

the Janus/Ada language are yet under development. A

preliminary version of the Janus/Ada software library and

manuals were received in March 86. Due to these reasons,

the following sequence of steps has been established for the

development of the application program:

1) Demonstrate the attachment and detachment of a
terminal

.

2)~ Demonstrate an application program which samples an
input device, performs calculations, and presents the
result, all synchronized sequentially.

3) Extract some information about overhead caused by some
GEMSOS calls.

4) Synchronize the application program via a real-time
clock

.

5) Label one of the child processes as secret, and test
the access for different operators

.

This research was performed in cooperation with

another student, Major Miguel Reyes, Peruvian Air Force,

who has one more quarter to work on this system. Hopefully,

the steps not accomplished by this thesis would be

demonstrated in his work.

38

' IV. IMPLEMENTATION ON GEMINI SYSTEM

A. GEMSOS LIBRARY

When developing Janus/Ada application programs to run on

GEMSOS, the standard I/O and file type utilities provided

with the normal Janus/Ada compiler, cannot be used.

Instead, the GEMSOS gate calls provided by the

manufacturers, have to be used. As the Janus/Ada

environment provided for use with the GEMSOS, is not

complete yet, some of the utilities necessary for the

development of the application program had to be

constructed. Four packages were built to modularize the

procedures, functions and declarations
>

necessary for the

present application: MANAG , GEMIO, CRPROCE , TABLES.

1 . Package MANAG

This package includes rhe procedures necessary for

the management of segments and terminals . To create a

segment, a number of parameters should be passed to the

GEMSOS call CREATE_SEGMENT . These parameters are then

explicitly passed in this procedure.

Any device to be used by the Gemini system needs to

be attached. This applies to the screen terminal as well.

The GEMSOS call ATTACH_DEVICE , has a specific configuration

parameters which are used with terminals. The same applies

for the GEMSOS call DETACH_DEVICE . Two procedures were then

39

built, in such a way that some parameters which are

constants for terminals do not have to be passed.

2. Package GEMIO

This package is designed to be the I/O package for

the Gemini system. The procedures included here, are the

ones found to be necessary up to this point of the research.

Evidently, many more have yet to be developed, in order to

have a comprehensive I/O package. Some of the procedures

included in this package were taken from the demonstration

program supplied by the manufacturers of the Gemini

computer

.

3-. Package CRPROCE

In order to create a process, the general algorithm

presented in Figure 4.1 has to be applied.

Package body CREATE A PROCESS is

begin
makeknown the mentor segment
specify the address for the process stack
specify the address for the process code
specify the address for the process mentor
specify the address for the trap segment
calculate the stack size
create the segment for the stack
makeknown the segment for the stack
swap in this segment
create the segment for data
makeknown the segment for data
swap in this segment
complete the record for the CREATE_PROCESS call
call the GEMSOS CREATE_PROCESS

end CREATE A PROCESS

Figure 4.1 Package CRPROCE

40

As it can De seen from Figure 4.1, the creation of a

process involves a large number of steps. The size of this

procedure alone, justifies the construction of a package

containing just this procedure.

4. Package TABLES

The purpose of this package is to concentrate a

great number of the declarations necessary for the

implemented application program. Since, as already

mentioned, the utilities programs coded in Janus/Ada have

not yet all been delivered, some procedure to supply the

parameters necessary for the create and makeknown calls, had

to be built. For the time being, a simple loop that will

generate fixed numbers is what will be used. A correct

procedure, which will look for the next free number to

allocate, should be done in the future. This package has a

preliminary procedure to load access classes yet to be

tested

.

B. PROCESS STRUCTURE

1 . Pathname Convention

Since all information in the Gemini system is stored

in segments , some method to make reference to these segments

is needed . A pathname is the shorthand method used for this

purpose of aliasing a segment. It consists of a sequence of

entry numbers that together define all of the mentor

segments to a particular segment. The pathname "3,8"

41

indicates that the target segment is at entry 8 of its

mentor segment, which itself has entry 3 in the system

mentor segment. Pathnames may be up to 5 entry numbers long

in the present implementation.

The pathname is used during the generation of a

program to run in the secure environment, and it will be

explained in the next sections

.

2 . Ring 1 Environment-

The current implementation of Janus/Ada on GEMSOS

does not allow the use of a Janus/Ada process as the initial

Ring 1 process. The Ring 1 Login and the Ring 1 Loader

provided have to used in order to run Janus/Ada programs

.

Another restriction imposed by this preliminary

version is that, the file R1TRAP.CMD, which contains the

trap handler and debugger, has to be sysgened (to be

discussed later), at entry six off the system mentor

segment. Figure 4.2 shows the Ring 1 environment segment

naming hierarchy. The segments which have fixed "positions"

in the ring 1 structure are shown in Figure a. 2, which are:

1) SSAT- System Segment Aliasing Table; containing the
bootstrap and kernel segments.

2) Vlloader- Ring 1 loader code segment.

3) Vllogon- Login process code segment.

4) NV . DS at 5,0- Shared segment for loader processes.

5) NV.DS at 5- Appliccation Root

6) Rltrap- Trap entry and debugger

SSAT

SYSTEM MENTOR

TRAP

NV.DS LOGIN

Figure 4 . 2 Ring 1 Structure

The entry of concern for the applications

programmer, is entry number 5. In the current

implementation, this is the position were the application

program should be located.

3. Application Program Environment

The application program developed in this research,

is composed of four segments. The mentor segment for the

code segments (the application mentor) will be at entry 5

43

off the system mentor. The mentor segment for the stack and

data segments will be at entry 5 off the application mentor.

The parent process will be located at entry off the

application mentor. The child processes will be located at

entries 7, 8 and 9 off the application mentor. This scheme

can be better explained by the diagram in Figure 4.3.

APPLICATION MENTOR

PARENT

—V

—

STACK DATA

Figure ^ . 3 Application Program Structure

44

The entries used for this structure, were chosen

with no special reason. Other combinations could have been

chosen. The only restriction is to position the parent

process at entry off the application mentor.

These entry numbers are treated as paths, when

referenced. So, entry 7 off entry 5 off the system mentor,

is called 5,7. This will be used in the file with the

commands for the sysgening phase. Those entries have to be

passed as parameters during the creation and makeknown of

segments

.

For the application program developed, a segment for

the 'purpose of executing the synchronisation was created,

and will be located at entry 6 off the application mentor.

4 . Process Synchronization

Process synchronization is accomplished using the

eventcount of the synchronization segment (5,6), and the

eventcount of the stack segment of each child. Advancing

each eventcount in turn, the parent process would prepare

each child to execute its code, as soon as the parent makes

an AWAIT call. The child, would then, after execution.

advance the eventcount of the syncronization segment, which

is the one being read by the parent process . This scheme

would be repeated and the synchronization between all

processes is achieved. The actual sequence of

synchronization used in the programs developed , can be seen

in the programs' listing in Appendix A.

C. GENERATION OF A SECURE PROGRAM

To prepare programs to run in the Gemini Secure

Operating System tGEMSGS) environment is much more

complicated than running a Janus/Ada program in a non-secure

environment. There are some specific calls the program has

to make, in order to be recognized by the GEMSQS , and gain

access to the security kernel. The programs are compiled

and linked like normal Janus/Ada programs. The command

(CMD) files, will then be put in the secure environment. To

assign the security classification and prepare the programs

to run in a secure environment, a secure volume must be

created by running the operating system generation program

(SYSGEN). Execution of the SYSGEN program will include the

application programs into a segment structure, which will

then be transformed into a bootable executable program.

The SYSGEN program reads a submit file to identify the

segment structure. This submit file, for the current

implementation, will have the format as in Figure 4.4.

Except for the application.cmd and the child.cmd files,

all the other segments are to be sysgened exactly as

described in Figure 4.4. The submit file used to SYSGEN the

application program implemented is listed in Appendix E .

File : Application . ssb

bs : ld3 . cmd
ks : kO . cmd
ks : kl . crad

ks :kOh . cmd
ks : k2 . cmd
cs : vl loader . cmd ; 2

;

ds : vl login. cmd ; 2 , 10

;

ds : nv . ds ; 2 , 5 ;

ds : nv . ds ; 5

;

ds : application . cmd ; 5 , ;

ds : childl . cmd ; 5 , 7

;

ds : child2 . cmd ; 5 , 8

;

it ft it if ii ii if t» if tt ti if it ft tt ft ti

tilt itttti if ft it tt tt tt tt tt tt ft it it

ds : rltrap . cmd ; 6

;

end *

Figure 4.4 Submit File

D. LOSS IN PERFORMANCE

In order to achieve a secure environment, we have

developed our program using four different processes, which

can have different access classes. During the execution of

the secure program, the operating system will perform

security checks each time a process is brought into

execution and each time a segment is accessed. Evidently,

some overhead, in comparison with a non-secure system,

exists . A test program was developed in order to extract

the preliminary measurements of such a overhead.

47

1 . Test Program

The same structure used In the application process

developed, was used in this test program.

The algorithm used in the main program is described

in Figure 4.5.

Package body TOTIME is

begin
perform initialization
create parent segment
create synchronization segment
create processes
case

execute calculations with no calls
execute calculations with one call
execute calculations with calls

every loop
end case
delete processes

end TOTIME;

Figure 4.5 Package TIME

When the procedure to execute calculations with no

calls is activated, the program will perform a simple

arithmetic calculation 30000 times. These calculations will

be performed by the main process, after the creation of all

child processes, and with values already in the main

process, so there, are no GEMSOS calls.

48

When the procedure to perform calculations with one

call is activated, the program will activate two processes:

CALC1 and STODISP. The STODISP process will supply one

value to the CALC1 process. CALC1 process will receive this

value and perform the same arithmetic calculation as before

30000 times as well. The actual value passed by one process

to the other is irrelevant, and it is there just to provoke

a call to the operating system during the transmission of

the value. The result of the calculation will be displayed

by the STODISP process

.

Finally, the procedure to perform calculations with

call"' in every loop is activated. The program will then

activate CALC2 and STODISP processes. Process CALC2 will

perform the same calculations as before, but this time will

include in every loop of the computation, a transmission of

data between the STODISP and CALC2 segments.

Because a loop statement is being used to control

these tests, two measurements are taken at the first step

(calculations with no GEMSOS calls), in order to estimate

the contribution of the loop control code to the overall

time taken by the calculation.

All those steps are measured and analysed.

2 . Performance Results

The results obtained from the test program are the

following

:

1) With no GEMSOS calls, 30000 operations => 3.33
seconds

.

2) With four (4) GEMSOS Sails , 30000 Operations = • 3:2,8
seconds

.

3) With four (4) GEMSOS cails for each operation, 300
operations => 23.8 seconds.

At the first step, no GEMSOS calls, another

measurement was taken, doubling the number of operations and

maintaining the same loop number, in order to estimate the

time delay contribution of the loop control. The time

measured was 6.03 seconds, which shows that the actual

operations take 2.7 seconds, and the loop control is

responsible for 0.63 seconds. Since we execute the loop

30000 times, it is possible to estimate the time delay for

each.; loop to be 21 useconds . The times measured show that

each mult/div operation, which there are 12 on each loop, is

using 7.5 useconds, which is the expectable time delay for a

APX-286 CPU.

The time measured during the execution of the second

step, the same number of operations plus four GEMSOS calls,

did not show any appreciable difference.

At the third step, where there are four GEMSOS calls

on each loop, and the loop is executed 300 times, the time

measured was 23.8 seconds. As the test executes the loop

300 times, each loop uses 79 milliseconds. Assuming the

same loop delay time as before, each loop control uses 21

useconds , and the time delay of the actual calculations is

(12 x 7.5 useconds) 90 useconds. Therefore, as four GEMSOS

50

calls are executed in each loop, each call uses an average

of 19 milliseconds.

These preliminary measurements are far from

complete, but the results obtained can be considered as a

design parameter to be expected when the security

environment is used with the Gemini system.

51

V. APPRECIATION OF RESULTS

A. GENERAL COMMENTS

The development of application programs to execute in

the Gemini microcomputer proved to be much more time

consuming that it was anticipated. Testing and debugging of

the programs could not be done using the techniques and

skills normally used when working with non-secure systems.

Some factors can be listed as the major ones which

contributed to this problem. They were:

1

)

"-'• new terms and concepts that had to be completely
understood before attempting to use the system

2) preliminary version of the manuals provided, which are
still being updated and developed

3) preliminary version of the library programs which do
not include yet, most of the common needed procedures

4) the system used was configured with two floppy disk
drives

.

The Janus/Ada gate calls for the Gemini Secure Operating

System (GEMSOS), are not yet very well explained in the

manuals provided. As such, any time a new call was to be

tested, in order to increase our understanding of a new

concept, the complete process of preparation of a program to

run in a secure environment had to be executed. Since this

process involves the access to a large number of files, the

fact that the system used floppy disk drives , imposed a time

delay of at least 7 minutes

.

As discussed in Chapter III, in order to prepare a

program to run in the secure environment, the operating

system generation program (SYSGEN) had to be executed, whicn

would create a secure volume containing the program segment.

Before running the system generation program, the

application program had to be compiled and linked in the

normal way.

After the creation of the secure volume, the system has

to be reinitialized with the secure application program

volume. If a problem is found in the execution of the

program, the system will either execute an interrupt trap-

halt"" indicating the processor's register contents, or

sometimes will halt completely not giving any indication on

the screen. The error then, must be corrected before any

further progress can be achieved. After the correction has

been made, the preparation process has to be repeated

completely to check if the modification was successful . The

average amount of time from compilation to the final run of

a program, was found to be between 15 to 17 minutes for the

application programs developed in this research.

The use of the modular programming technique is very

important for the compilation and linking phases, but as the

preparation of the secure program has the "sysgening" phase,

where all the modules have to be included, the modularity

does not bring great advantages to the preparation phase.

53

Improved versions of the Gemini system will certainly

become available in the near future, which will reduce

significantly the effects of these problems. System

libraries will be expanded, making the process of writing

programs to be run in the secure system less complicated and

time consuming.

B. SYSTEM OPERATION

The system designed proved the possibility of using a

secure computer system as the main building block in a

tactical computer system. The ability of handling different

and somewhat independent processes , easily synchronized by

the "calls already provided by the operating system, was

demonstrated by the model implemented. The actual code of

the modules used do not represent any real application, but

only exemplifies that they can be independently developed,

and integrated into a complete system.

Due to the problems already discussed in the previous

sections, the amount of time for this research, was not

sufficient to proceed with the next step scheduled, which

was, to label one of the processes as secret and then limit

the access based on the security level of the operator

logged on the system.

The use of the system clock to control the

synchronization between the different processes involved in

54

the application program could not be completed in time to be

included in this thesis

.

The overhead analysed has shown that an average of 19

miliseconds is used for each GEMSGS call, where

synchronization and security checks are performed. This

time delay has to be taken into account when the tactical

system is designed, but certainly it is not a high price to

pay in order to be able to develop a system with a large

number of security possibilities available.

C. CONCLUSIONS AND SUGGESTIONS

In this thesis , a model of a tactical combat system was

developed to demonstrate the possibility of using a

multilevel secure computer system in this environment. The

Gemini Trusted Multiple Microcomputer Base used in this

research, proved to be able to synchronize the execution of

independent processes which will give the capability of

assigning different security labels to these processes.

Although it has not been possible to achieve all the

desired goals proposed when this thesis was first planned,

the concepts and research done, will certainly facilitate

any further work to be done in this new area.

Most of this research was done in conjunction with

another student, Major Miguel Reyes, working with the same

microcomputer, which to a certain extent guarantees that the

55

results here obtained are completely Known by a follow-up

researcher

.

The unit testing of application program modules should

first be accomplished on development systems which have

existing tools for testing the logical correctness and real

time performance. A specially trained "lead programmer"

should take the unit tested modules and incorporate these

into a system's program which synchronizes the units and

produces the necessary communications between the units in a

secure systems environment. The art of systems integration

programming in a secure environment requires an in-depth

understanding of GEMSOS functions as well as the real-time

performance of the system.

56

APPENDIX A

APPLICATION PROGRAM LISTING

This application program is compiled and prepared for

execution in the manner discussed in Chapter III. The

program consists of four packages, each one generating a

separate command (CMD) file. The packages to be sysgened as

child processes are designed to have procedures which can be

altered without modifying the overall synchronization of the

application program.

57

This package controls the operation of the complete —
system

with arl, alib.i, agate, manag, tables, gemio, alib, crproce;
package tody THIMAIN is
use arl, alibj, agate, mar.ag, tables, gemio, alib, crproce;

constants

STLIO V
STDIO'R
10 PORT

CONSTANT integer := 15
CONSTANT integer := 0?
CONSTANT integer := 0; — port for main program

— variables

ini t

calls
ch_table
ch~level
seg_-mode
ch_t.ab
ch_lev
w_class
class
rd_class
in_choice
pass_rad
pass_chaf
mentor
entryx
def _seg
def_off
def _size
size
succe ss

seg_number
synchr_seg
choice
eve value

rl_process_def ;

rl_param;
user_level

;

seg_acress_type ;

r l_parame t ers;
level_record ;

access_class ;

access_class 5

access_class ;

string?
radar_input

;

chaff"out;
in teger
integer
integer
integer
integer
integer
integer
integer
integer
integer
int eger

--necessary for all kernel

procedure INITIALIZATION is

begin

— attach serial port for writing

attach_tew (IO_FORT, STDIOJf);

— attach serial port for reading

58

attach_ter (IO_PORT, STEI3_P.);

— load parameters to create up to 4 children

load_param_to_4_chld (init, ch_ table)

;

—load access classes for Top-Secret, Secret, Confidential
and Unclassified .

load_access_class (ir.it, ch_level);

— prepare class for accessing main terminal

w_class := irit-. resources. min_class J

end INITIALIZATION;

procedure STACF_AND_SYNC_CREATIQN is

begin

— creating segment for s tack(parent) .Will be unclassified
-- so as to obey compatibility property : segment compromise— must dominate mentor compromise.

mentor := ini t

.

ini tial_seg(2) >

en try* : = f?

;

class :~ in it

.

resources .min class!
size := 128;

cr_segment(init,ment or, entryx, size

,

class, sue cess);

if success /= then
put_succ

(

"success stack oarent ", success , w_class)

;

put In (STDIO W,w class, '");

end if;

— makeknown this segment

seg_mode := r_w?
seg_number * = 31

J

mk_segmen t(init, me ntor, entryx,
seg_numter, seg_mode,surcess N

;

if success /= 8 then

put_succ ("success makeknown
stack parent"

,

success , class);
put_ln (STDIOJ* ,w_class, " '

)

;

59

end if;

— creating synchronization segment . Will be Tcp-Secret.

mentor := ini t . ini tial _seg(2)

;

entry* := 6;
class := init . resources .min_class;

cr_segmen t(init, mentor , entryx , size, class, success);

if success /= £ then
put sncc("success sync is" .success ,w class);
DUt"ln(STDIO_V,w_class,"");

end if;

— make known this segment

seg_mode := r_w;
seg'numter := 51»

mk_ segment (init,mentor,entryT,seg_numter, seg_mode, success)

;

if success /- then
put succ("success rrkknown sync" , success ,w class) »

put In (STDIO W f w class ,"'
)

;

end if!

synchr_seg := seg_numcer;

— swapin this segment

swapin_segment(seg_numter .success)

5

if success /= then
put 5uc*("success swapin sync" .success ,w_class)

;

put_ln(STDIO W,w class/'")?
end if;

end STACK_AND_SYNC_CR2ATI0N;

procedure PROOFS S_CREATICN is

begin
put_ln(STDIO_W,w_class ,"Eegin Process Creation");
type_any_key_to_continue(w_class) ;

— start creating processes in the system— process 1 == > Radar— process 2 == N Compute— process 3 =- > Chaff

60

— MOTE :— all processes with unclassified acess class— next version to have process 3 changed to Top-Secret in
order

to access Secret data.

for i in 1 . .3 loop

ch_tat := ch_table(i) ;

ch_lev := ch~level(4);

to_creete_process(init,ch_tat
,

ch_lev , i , synchr _s eg , success)

;

end loop;

end PROCESS_CREATION J

procedure MENU (selection : out integer) is

— Present option to run tactical program or alter date
field— Data field to secret in next version

begin

then

put_ln (STDIO_V/,w_class ,"?un Tactical
Progran == > < any lrey >"} >

put ln(STDIO_W,w class, "Alter
Data Field == > < A >");

put ln(STDIO W,w class, "Exit Program
== > < E >");

get_str(STDIO_P.
A
rd_class ,ir_chcice] ;

it

if In_choice = a" or in_choice = "a" then
ielecti on

elsif i^_choice
selection

else
selection

end if;

end MENU;

procedure ALTER is

begin
put_ln(STDIO_V,w_class ,"Not implemented yet");

end ALTER;

procedure RECEI VE_F^_RADAR is

= i;
= "e" or in choice =
= 2;

= 3;

61

begin
def_seg :=

Ii"b_rrk:_sel (ldt table.ch table(1) .seg_nurrber_data)

;

def_off := 0?

def size := radar_inpu t 'si ze /6>
rrove_bytes (def_seg,def_cff

f get_ss(),
pass_rad'ADDRESS,def_size J

;

end RECEIVE_FM_RADAR ;

procedure ?ASS_TO_COMPUTF is

"begin
def_seg :=

~1 i"b_rrk seKldt taMe.ch table(2).seg nurrber data);
def_off := 0;
def^size := radar_input 'size /SJ

move_bytes
(get_ss (

)

,pass_rad 'ADDRESS

,

def _seg ,def_of f , def _ si ze)

;

end ~PASS_TO_COKPUTE ;

procedure RECFIVF._FM_COMPUTF is

begin
def_seg:=lib_mk_sel(lxdt_table,

ch~txable(2) . segx number data)x;

def off := ?\
def'size := chaf f_out 'si ze /8»
move_bytesCdef_seg,def _off ,ge t_ss() , pass_chaf 'ADDRESS

, def_size) ;

end RICIIVE_FM_CO^PUTE ;

procedure ?ASS_TO_CFAEE is

begin
def_seg :=

lib_rrk_sel (ldt_table,ch_table(3).seg_nurrber_data);
def off := «]
def_size := chaff out'size /85
rrove_bytes'get_ssD ,pass_chaf 'ADDRESS,

def_seg,def_off,def_size);

end FASS_T0_CHAEE;

Drocedure RUN is

62

begin

pass_rad . flag_z := false?

outer : loop
inner : for i in 1..3 loop

advance(ch_table(i) .seg_number_s tack, sue cess)
read_ev c (sy nchr_s eg, evc_ value, success)
await (synctar seg.evc value+1 , success)

5

if i = 1 then
receive_fm_radar?
if pass_rad . flag_z then

exit outer?"
end if?
pass_to compute?

elsif i = 2 then
receive_fm_compute ?

pass_to_chaf f

?

end if?
end loop inner?

end loop outer?

end" RUN ?

procedure SELF_DELETION is

begin
for i in 1. .7 loop

advance(ch_table(i) .seg_n urn be r_stack, success)?
read_evc(synchr_seg,evc value .success)

?

aw ait (synch r_seg,evn_v a Iue+1, success)?
end loop?

end SFLF_rFLFTION?

procedure DELETE_F?OCESS_SEG^FNT is

begin
for i in 1 . .7 loop

child_delete(i-1 , success)?
t erminate_se gm ent(ch_table(i).s eg _n urn ber_stack, success)?
terrrinate'segrrent (ch_table(i) .seg~numterjiata, success; ;

terninate_segrent(ch_table(i).seg_number_code, success)?
delete_segrrent (ch_ table (i) .mentor_stack,i,success) ?

delete~segme nt(ch_table(i) . me ntor_data,i +4 .success) ?

delete~segment (ch'tat-le (i) .men tor_c ode ,i +6, success) ?

end loop?

end DELETE_FROCESS_SIGMENT?

63

procedure DELETE_MENTO?._SYNC is

"begin
delete_segment (ini t .i ni tial_seg(2) t 6, success);
terminate_segment (51, success);
delet e_segrrent Unit .ini tial_seg (2) , 5, success);
terminate_segment (31 .success);

end DELETE _MENTOR_SYNC ;

procedure DI'LFTION_ALL is

begin
self _deleti on?

delete_process_segment ;

delete^ment or_sync;

end DELETIQN_ALL ;

procedure FRIVINT_T T5.AP is

begin
success : = V'
while success = loop

success := 0;
end loop;

end PREVINT_TRAP ;

— ############# MAIN PROGRAM ##############

begin
init := get_rl_def ()

;

lib_set_b racket (l,l t l,init.resources.min_class);
initializat ion;
stack_and_sync_creation;
prccess_creation;
loop

menu (choice)

;

case choice is
when 1 => alter ;

when 2 => EXIT;
when 3 => run;

end case;
end loop;
deletion_al 15

prevent trap;
end THEMAIN f

64

— This package simulates the sampling of a tracker
radar', as an input to a tactical system

with arl, manag, gemio, strlib, agate , tables , alib,
alibj;
package "body RADAR is
use arl, manag, gemio, strlib, agate , tables , alib,
alibj;

— constants

STDIO W

stt?io"r
I0_FCRT
INIT_DIST
I NIT BEAR
CR— variables

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

integer :
:

integer :
:

integer :

integer
integer

CONSTANT integer

1;

0;
6;
= 10000;
= 090;
= 13;

ini t

w_class
miss_rec
success
evc_ch_val

def seg
def'off
def "size

rl_process_def ;

access_class ;

radar_irput

;

integer;
integer;

integer;
integer?
integer?

procedure GET_TRACK is

— simulate tracking of a missile— constants

begin
mi
if

en
pu
pu
pu
pu
pu
if

en

ss_rec
miss_

mis
d if;
t_str(
t"dec(
t~str(
t"dec(
t~str(
miss_

mis
d if;

.radarl := miss_rec .radarl - 50;
rec .radarl < 2000 then
s_rec.radar2 := mi ss_rec ,radar2 - 1)

STDIO_W,w_class, "RANGE ");

STD I0_W,w_cl as s , mi ss_rec .radarl)

;

STDIO_W,w_class ," BEARING ")
',

STDI0_W ,w_class ,miss_rec .radar2)

;

STDI0_to ,w_class,char_to_str(character'val(CR)))

5

rec. radarl < 600 then
s_rec.flag_z := true;

65

end GIT_TRACKJ

procedure PASS_TO_FARENT is

"begin

def_seg := lit mk sel(ldt table, ini t

.

initial seg(3))i
def_off := 0;

def size := radar input'size /8J
move_tytes(get_ss[) , miss_rec 'AEDRESS ,def_seg,def_off,def_siz!

end PASS_TO_FARINT ;

— MAIN PROGRAM

tegin
init := get_rl_def ()

;

— attach terminal to write

attach_tew'I0_FORT,STDIO_V) J

w_class := ini t .resources. min_class 5

— attach terminal to read

attach_ter(IO_PORT ,STP IC_R)

;

put_ln(STDIO_W,w_class ," RADAR ")

5

— Advance the eventcount of the synchronization segment— path 5,6 , pi sn 51 , passed to child as ch_seg_lis t (2)

.

— Will te recognized in child as ini t

.

initial_seg(2) .

ad vance(ini t

.

ini tial_seg(2) .success) ; — this will
permi t~creati on of processes to go on

read_evc(init.initial_seg(0) ,evc_ch_val, success) » --

stack to sync
awa;t(init. initial _seg(0

)

,evc_ch_val+l, sue cess)

;

control sent tack to creation of processes.

miss_rec .f lag_z := false;
miss_rer .radarl := INIT DIST;
miss_rec.rader2 := INIT^BIARJ

loop
get_trackj — get track information
pass_t o_parent;
ad vance(init. initial seg(2) .success);
read_evc(init.initiaI_seg(0) ,evc_ch_val .success)

;

await (in it. init ial_seg^C),evc_ch_val + l, success);
if miss_rec .f lag_z~then

66

miss_rec .radarl := I N IT CIST;
miss_rec.radar2 := INIT~BEAR;

end if;

end loop;

advance Cinit.initial_seg(2) .success) 5

— detach and deletion

detach_device(STDIO_R, success)

;

detach devi r.e(STDI0_W, success)

;

self_delete(init.initial_seg(2) .success)

»

end RADAR;

67

This package performs the actual computations

with arl, manag, gerrio, strlib, agate, tables, ali"b, alibj;
package tody COMPUTE is
use arl, manag, gemio, strlib, agate, tables, alit, alibj;

— constants

STDIO W : CONSTANT integer
STDIO~R : CONSTANT integer
10 PORT : CONSTANT integer
CR~ : CONSTANT integer— variables

= 1;

= 0;
= 3;
= 13;

init
w_class
rad_in
cha_out
ship_rec
def _.seg
def_off
def _size
success
eve ch val

rl _process_def

;

access_class;
radar_input »

chaf f~out;
ship_param;
ir teger?
integer?
in teger?
integer?
integer?

procedure RECEIVE_FM_PARENT is

begin
def seg := lib_mk_sel (Id t_table , init .initial seg(3))

J

def_off := 0?
def_size := radar_input 'si ze /8J
move_bytes(def_seg,def_off,

get_ss(),rad_in 'ADDRESS

,

def _si ze) j

end RICIIVE_ir_PARENT?

procedure PASS_TO_PARENT is

begin
def_seg := lib_mk_sel(ldt_table , ini t

.

initial_seg(3)) ;

def off := 05

def~size := chaff out'size /8J
move l;ytes(get ssO.che out'ADDRESS,

def _seg,def_off ,def_size) ;

end PASS_TO_PARINT 5

procedure CALCULATION is

68

"begin
put str(STI)IO_W\w class ," Commuting ... ");

put_str(STDIO_W,w_class
, char t b str

(

character 'val (CR)))

;

cha_out . chaff 1 :
=

((rad_in .radarl/1000) ::: ship_rec.paraml)+7 5;
cha_out .chaff2 := (rad_in . radar2/10) + 30;

end CALCULATION ;

-- MAIN FROGRAM

tegin
ship_rec .paraml := 2;
init := get_rl_def ();

— attach terminal to write

attach_tew (I0_P0RT .STDIOJO;
w_class := init .resources. min_class;

—attach terminal to read

attach_ter(I0_P0RT , STD 10 _R)

5

put_ln(STPIO_W,w_class," COMPUTE ");

— advance event count of synchro segment path 5,6 plsn 51— passed to child as rh_seg_list(2)

.

— Will he called in child as init . init ial_seg(2)

advance (init. initialises (2) , success)

;

re ad _ ev c(init. initial _s eg (0), eve _ch_ val, success);
await (init. initial_seg(0) t evc_ch~val+l , success)

5

cha_out .f lag_z := false;

loop
receive _fm_pa rent;
calculation;
if rad in.radarl < 1500 then

put_ln(STDIO_W,w class,"");
put_str(STBIO_W,w class," FIRE ")',

end if;
pass_to parent;
advanceTinit .initial_seg(2),success);
read_evc(init.initial_seg(0),evc_ch val, sue cess)

;

await(init. init ial_seg(0),evc_ch_var+l , success)

;

end loop;

69

ad van ce(init.initial_seg(2), success);

— dettach and delete

detach_device(STDIO_R, success);
detach devi ce(STDIO_W, success) ;

self_delete(init.initial_seg(2) t success);

end COMPUTE ;

70

— This package simulates the driving of a weapon device —

with arl, maneg, gemio, agate ,strlit, tatles, alifc, alitj ;

package tody CHAFF is
use arl, manag, gemio, agate ,strlit, tatles, alit, alitj ;

—constants

STDIO W

STDIO~R
10 'PORT
CR~

CONSTANT integer
CONSTANT integer
CONSTANT integer
CONSTANT integer

= 1
=

= 5
- 1 •* •

— varieties

init
w_class
cha_con t

def "seg
def_off
def ~ size
success
eve ch val

rl_process_def ;

access_class ;

chaf f_out;
integer?
integer?
integer »

integer?
integer;

procedure RECEIVE_FM_PARENT is

tegin
def seg := lit mk sel(Id t_tetle , init .initial seg(3));
def'off := 05

def'size := chaf f_out' size /8J
move tytes(def seg ,def _of f ,

get ss(),
cha_cont 'ADDRESS, def _si ze)

;

end RFCEIVE_FM_PARENT ;

— MAIN PROGRAM

tegin
init := get_rl_def ()

;

— attach terminal to write

attach_tew(IC_PORT,STCIO_V/);
w_class := init .resources. min_class;

— attach terminal to read

attach ter(IO_PORT ,STD 10 R);
put_lnrSTDIO_W,w_class ," CHAFF");

71

advance eventcount of sync segment path 5,6 plsn 51
passed to child as ch seg list(2).
Will te called in child ai ir it . ir it ial_seg(2)

advance (in it . initial_seg(2) .success)

»

read_evc(init .initial_seg(0) ,evc_ch_val .success)

;

await(init.initial_seg(0) , evc_ch_val+l .success)

;

cha_cont . f lag_z := false?

loop

put_str

rece
put_
put_
put"
put_
(STD
adva
read
awai
if c

end
end loop?

ive_fm parent

;

str(STDIO_W,v_class," BEARING ")?

dec(STDIO_W,v_class,cha c on t .chaff 1)

;

str(STDI0 W,v_class," FIIVATION ");

dec(STDIO~V,v_class,cha_cont.chaf f2)

;

IO_V;,w
T
class,char_to str(character 'val(CR)))',

nce(ini t

.

initial_segl2) , success);
_evc(init. ini tial_seg(0),evc_ch_val, svc cess);
t(init.initial_seg(0),evc_ch_val+l, success);
ha cont .f lag_z~then
put_ln(STDIO W,w_class ,"")

;

put_ln(STDI0lw,w_class," PARKED ");
cha~cont .f lag_z := false;

if;

put ln(STDI0 W f w class,"");
put_ln(STDIO_V,v~class," PARKED "

)

5

advance(init.initial_seg(2) .success)

;

— dettach and delete

detach_device(STD 10 _R, success)

;

detach_device(STDIO_V, success)

5

self_delete (init.initial_seg(2) .success)

end CHAFE ;

72

APPENDIX B

LIBRARY PROGRAMS LISTING

These packages were built in order to concentrate all

common procedures used for the application program developed

in this research. They are far from complete, although tney

establish the organization necessary to develop secure

applications programs. Some of the procedures included in

this library were taken from the demonstration program

supplied by the manufacturers of the Gemini computer.

73

— Specification for the MANAG package
Contains procedures to handle segments

with agate, agatej, arl , utilS
package MANAG is

use agate, agatej, arl, utii;

procedure CR_SEGMFNT (init
ment or

entrx
size
class

: in rl_process_def ;

: in integer;
: in integer;
: in integer;
: in access class;

success: out integer);

procedure MK_SEG^ENT (init : in rl_pr ocess_def ;

mentor: in integer;
entrx : in integer;
number : in integer;
mode : in seg_access_type ;

success : out integer);

procedure ATTACK_TSV(IO_PORT : in integer;
LDEV : in integer);

— attach to write; IO_FCRT is physical device ;

LDEV is logical device

procedure ATTACH TER (IO_PORT : in integer;
LDEV : in integer) ;

— attach to read; I0_P0RT is physical device
LDEV is logical device

procedure t24_ERM_INTEGER (ir_val : in integer;
t24_val : out b24_type);

end MANAG;

74

This package has procedures to handle segments
and terminals

with agate, agatej, arl, utilj
package tody MANAG is
use agate, agatej, arl, util;

— Constants for device slots.

STDI0_W : CONSTANT integer := 15
STEIO R : CONSTANT integer := 0;

10 FORT : CONSTANT integer := ?

;

— port zero for mair.

pr ocess

in rl_prccess_def ;

in integer;
in integer?
in integer?
in access_class ;

out integer) is

procedure CR_SEGMENT(init
men tor
entrx
size
class
success

Create segment call

cr_seg_str : rreate_seg_s truct ;

begin
cr_seg_str .ment or := mentor;
cr_seg_str .entryx := entnJ
cr_seg_st r .1 imi t := size;
cr_seg_str .class := class;

create_segment (cr_seg_str, success);

end CR SIGMINTJ

procedure "IK_SEGMENT (init
ment or
entrx
numt er
mode
success

— Makekncwn segment call

seg_rec : mk_kn_s true t

;

in rl_process_def ;

in integer;
in integer;
in integer;
: in seg_access_type ;

out integer) Is

75

seg_ret_rer : mk_kn_return>

begin
seg_rec .mentor := mentor?
seg~rec. entry* := entrx;
seg_rec . seg_number := number;
seg_rec . seg_mode := mode;
seg_rec .prot_level := byte(1); — ring 1

protection
seg_rec .ga te_number := NULL_INEEX; —no gate
seg^rec .gate'prot := byte*")5

makekr. own_segmert (seg_rec, seg_ret_rec, success)>

end MK SEGMENT;

proredure ATTACH_TIW (I0_P0RT : in integer ;

LDEV : in integer) is

attach serial port writing

mode : at tach_st rue t

;

success : integer;

begin
mode.dev_name := slow;
mode .siow_rec .dev_num := io_port; --physical device
mode .siow_rec .dev~type := io; —device itself to be

used
mode .

s

iow_rec . dev_id := LDEV; —logical device
mode .si cw_rec .mrl := byte(15#04D#); —device

conf igurati on
mode.siow_rec.mr2 := byte(16#03E#);

mode .s iow_rec . i o_mode := asrt_rtsJ
a ttach_device(mode, success);

end ATTACH TEW;

procedure ATTACH_TER(I0_P0RT : in integer;
LDEV : in integer) is

attach serial port for reading.

mode_r : at tach_s truct ;

success : integer;

begin
mode_r .dev_name := sior;
mode_r . si or_rec .dev_num := io_port;

76

mode_r . sior_rec .dev_type : = ioi
mode_r .si or_rec .dev_id := LDEV5
mcde_r . si or_rec .mrl := "byte(15#04D#);

mode_r.sior3rec.mr2 := byte(16#03E#);

mode_r . si cr_rec . io_mode := asrt_dtr;
mode_r

.

sior_rec.delim_ac tive := FALSE;
mode_r . sior~r.ec .delimiter := tyte(13);

mode_r . sior_rec. maximum := 1> — only reads one
character at a time.

attach_device(mode_r, success)»

end ATTACH_TIR;

procedure o24_ERM_INTEGER (in_val : integer;
b24_val . : cut c24_type) is

— to convert an integer into a t24_type variable (3 tytes)

begin
b24 val.ryte2 := byte(£)

J

b24_val.tytel := hi(in val);

b-24_val .byte0 := lo(in'val);

end~b24_,TRK - INTFGIHi

end MANAG5

77

with agate, agatej, strlib ;

package GEMIO is
use agate, agatej, strlib ;

procedure PUT_LN (ldev
w class

str

in integer?
in access_class;
in string")

;

procedure SET_STR (ldev
r class

str

in integer?
out access_class;
out string);

procedure PUT_STR (ldev
w class

str

procedure PUT_DEC (ldev
w_class

dval

procedure PUT_SUCC(in_str
dec~val
w class

in integer;
in access_class J

in string)J

in integer?
in access_class ;

in integer) ;

in string;
in integer;
in access class)

;

procedure Ti FI_ANi _OY _TO_CONTINUE (w_class : in
access_class) ;

procedure 3LK_SCR (ldev : in integer;
w class : in access class);

end GEMIO;

78

This package contains procedure to handle I/O

with agate, agatej, strlit;
package tody GEMIO is
use agate, agatej, strlit;

STDIO W : CONSTANT integer := 1?
STDIO~R : CONSTANT integer := 0?

procedure ?UT_LN (ldev
w clas s

str

in integer?
in access_class »

in string) is

put a string on device ldev with cr and If

cut_tuf : 5tring(32);

success : integer?
wt_sio : wt_seq_struct ;

size.-str : integer;
CR : "CONSTANT integer := 135
LJ : CONSTANT integer := 10;

tegin
out
siz
out
out
wt
wt~
wt"
wt"
wt"
wri

_tuf :

e_str
Duf :

~tuf :

sio.de
sio .da
sio .da
sio .co
sio .cl
te_seq

= str
:= le
= out
= out
vice
ta_of
ta_se
unt :

ass :

uen ti

ngth(str);

_tuf & char_to
t-uf S, char to

7= ldev;
f := out_buf 'ADDRESS +

g := get_ss();
= size_str + 2 J

= w_class ;

al(wt sio, success);

str(character 'val

(

s tr (character 'val

(

i;

CR

LF
));

));

end PUT LN

;

procedure GIT_STR (ldev : in integer;
class : out acress_class;

str : out string") is

get a string fror device ldev

in_tuf : string(62);

success : integer;
rd_sio.: rd_seq_struct ;

rd_ret : rd_seq_return

5

size str : integer;

79

BIG IN
rd_sio .data_off := ln.buf 'ADDRESS + 15
rd~sio .device := IdevT
rd~sic .data_seg := get_ss();
read_sequential (rd_sio t rd ret, success)»

in_buf() := charac ter 'val(rd_ret. count);

str := in_buf;
r_class := rd_ret .class ;

end GET STRJ

procedure PUT_STR (ldev : in integer!
w_class : in access_class ;

str : in string) i s

put a string on device ldev.

out_tuf : string?
success : integer?
wt_sio : w t_seq_s truct ;

size-_str : integer;

begin
out_tuf := str;
size_str := ler.gth(str);

wt_sio .device := ldev;
wt_sio .data_off := out_buf ADDRESS + 1J

vt_sio .data_seg := get_ss();
wt_sio. count := size_str;
wt_sio. class := w_class;
wri te_sequen tial (wt_sio, success);

end PUT STR;

procedure PUT_DEC(ldev : in integer;
w_class : in access_class ;

dval : in integer) is

put the string equivalent of a integer on the terminal
screen.

out_buf : string(10);

begin
out_buf := Int_to_str(dval);
put_str(ldev ,~w_class , out_buf);

end PUT DIC ',

80

procedure PUT_SUCC(in_str
dec_val
w class

in string;
in integer;
in access class) is

print a string and an integer on device attached in
slot STDIO_W

(should he a serial terminal).

hegin
put_str(STDI0_W, w_class, in_str);

T)ut_dec(STDI0~W, v_class, dec val);

put_ln(STDIO_V, w class,
""

\

end FUT_SUCC;

procedure TYFE_ANY_KEY_TO_CONTINUE(v_class :

access_class) is

rd_str : string;
rd_class : access_class;

hegin

put_str (STDIO Y.',w class, tj-pe any key to continue");
get's tr (5TDI0~R,rd_class ,rd_str) ;

put~ln (STDI0_£, v_class,rd_str) ;

end TYPE ANY KEY TO CONTINUE 'J

1 n

procedure ELX_SCR (ldev : in integer;
w_class: in access_class) is

— clear screen and home cursor

out_huf : string;
success :i^teger;
wt sio : wt seq_struct;
ESC : CONSTANT integer
E : CONSTANT integer

= 27;
= 45;

"begin
out_tuf :=ch'ar_to_str(character'val(ESC));
out_tuf :=out_buf & char_to_str (character 'val (F))

;

wt sio. device := ldev;
vt~sic .data_off :=out_tuf 'ADDRESS + 1?

wt~sio .data_seg:=get_ss () J

w t sio .count :=25

81

wt_sio. class :-w_class;
write_sequer; t'ial(wt_sio , success)

»

end BLK SCR;

end GEMIO;

82

— This package contains declarations for the
application programs

with agate, ari;
package TABLES is
use agate, arli

fAX PROC
max'levels
TOP~SECRET
SECRET
CONFIDENTIAL
UNCLASSIFIED

type R1_PARAMETERS
entry_stack
mentor_stack
seg_nufr'ber_ stack
en try_c ode
mentor_code
seg_numher_code
entry_data
mentor_data
seg_number_data
evn_count
evn_count_dat

a

end record;

type R1_FARAM is array (1 . . MAX_F?.OC) of rl_paramet er s ;

type LEVEL RECORD is record
nin "

: access_class J

max : access_class J

end record;

type USER_LEVEL is array (0 . . PAX_LEVELS) of level_rec ord ;

type SHIP_?ARAM is record
paraml : integer;
param2 : integer;
param3 : integer;
flag_z : tooleanJ

end record;

type RADAR_ INPUT is record

: CONSTANT integer := 45

: CONSTANT in teger := 4;
CONSTANT integer := I?

• CONSTANT integer := 2;

CONSTANT in teger := 3;

CONSTANT in teger := 4;

is record
: integer;
: integer;

: integer;
: integer'
: integer
: integer
: integer"
: integer"
: integer'
: integer'
: integer

83

end

radarl
radar2
radar3
flag_z

record ;

integer;
integer;
integer;
boolean »

type CHAJF_OUT is record

end

chaffl
chaff2
chaff?
flag_z

record ;

in teger;
integer;
integer;
"boolean ;

type TFST_MISSAGI is record
reel : integer;
rec2 : integer;
result : integer;
flag : boolean;

end record;

proc-edure L0AD_PARAK_T0_4_CHLD
rl_process_def

;

ch_para

init : in

out rl_par am)

;

procedure LOAD_ACCESS_CLASS (init : in rl_process_def ;

usr access : out user level);

end TABLIS;

84

This package loads the parameters for the segments
Also loads security parameters

with agate, arl 5

package tody TAPLIS is
use agate, arl ;

procedure LOAD_PARAM_TO_4_CHLD (init : in rl_process_def i

ch_para : out rl_param) is

— load the segments specifications

INITIAL : CONSTANT integer := 31

J

NE~T_NUMBER_EREE : CONSTANT integer := 40;

prep : rl_parameters

>

"begin
.for i in 1 . . 4 1 oop

prep .entry_s tack := i»

prep. mentor stack := INITIAL;
prep .seg_number_stack := INITIAL + i»

prep.seg_numter~code := INITIAL + i + 4;

prep.en try_code := i +6;
prep.ment or_code := init .initial_seg (2)

>

prep .entry_data := i + 4;

prep. mentor data := INITIAL;
prep.seg_number_data := NEXT_NUMEER_EREE + i - 1J

ch_para (i) : = prep;
end loop;

end LOAD PARAM TO 4 CHLD ;

procedure LOAD_ACCESS_CLASS (init : in rl_process_def ;

usr access : out user level) is

load user security levels

usr_level : level_record

;

BEGIN
usr_level.min.compromise.intf
usr_level. mi n. compromise. in tl
usr~level.min.integrity.int0
usr~level.min.integrity.intl
usr_level.max. compromise . in t0

=

=
=
= 21504;
= 6;

85

usr_level . rra 7. compromise . intl
usr_level.max.integrity.int0
usr_level.max.integrity.intl

= 05
= 05
= 21504;

usr access(TOF SECRET) := usr level;

usr_level .min.compromise.int?
usr~level . mi n. compromise .intl
usr_level.min.integrity.int0
usr_level .min. integrity. intl
usr_ level .max .compromise .into
usr "level .max .c ompromise .intl
usr_level.max.integrity.int0
usr level .max .in tegri ty . intl

0;
0?
0;
21504;
4;
05

0;
21504;

usr access(SECRET) := usr level;

usr_level.min.compromise.int0
usr_level .min. com promise, intl
usr_level.min.integrity.int0
,usr_level. min. integrity, intl
"usr "lev el .max .compromise .int0
usr_level .max .compromise .intl
usr_ level. max.integrity.int0
usr_level.max.integrity.intl

0;

0;

0;
21504;
2;

0;
0;

21504J

usr access(CONFIDENTIAL) := usr level;

usr_level . mi n. compromise .int0
usr~level.min. compromise .intl
usr_level.min.integrity.int0
usr_level .min. integrity, intl
usr_level.max.compromise.int0
usr_level. max. compromise. intl
usr_level.max.integrity.int0
us r_ level. ma x.integrity. intl

0;

0;

0;

21504;
0;
0;

0;

21504;

usr_access(UNCLASSIFIED) := usr_levei;

end LOAD ACCESS CLASS?

end TAPLES;

86

Specification for the Create Process Package

with agate, agatej, arl, alib, alibj, rranag, gemio, tables;
package CRPROCE is
use agate, agatej, arl, alio, alibj, manag, gemio, tables;

procedure FILL_INIT(init : in rl_process_def ;

ch_init : out rl_process_def ;

ch_access : in level_record).

;

procedure TO_CRZATI_PROCISS(init : in rl_process_d ef

;

ch_para : in rl_parameters ;

ch_access : in 1 evel_rec ord

;

prcces : in integer?
synchr_seg : in integer;

success : out integer);

end CRPROCE;

87

This package contains the procedure to create
processes

with agate, agatej, arl, alib, alibj, gerr.io, manag, tables;
package body CRFROCE is
use agate, agatej, arl, alit, alibj, gemio, manag, tables?

— Constants for device slots.

5TDIC W : CONSTANT integer := 15

3T2IO~R : CONSTANT integer := 0;
IO_PORT : CONSTANT integer := 0; — port zero for main
process

procedure FILL_INIT(init : in rl_proces s_def

;

ch_init : out rl_process_def ;

ch_access : level_record) is

fill in the initial process record of a child
process .— - called by t o_create_prccess

begin
ch_init.cpu := init.cpu;
ch_init .num_cpu := init . num_cpuj
ch_ini t .nurr_kst := init . num_>st

;

ch_ini t .root_access := in it . root_access ;

ch_ini t .s_seg : - 3 5

ch_ini t .resources. pri ori ty := ini t

.

resources .priority ;— same as parent .

b24_f rm_integer(60, ch_init .resources .memory);

ch_init .resources .processes := 2J
ch_ini t .resources . segmn ts := 103?

this will be modified with the specific access class of
each process

ch_ini t .resources .min_class := ch_access .mini
ch_ini t .resources. max^class := ch^access .max

;

ch_init.rirg num := byte(1);

ch_ini t.sp2 7= 0;

end FILL INITJ

procedure T0_CREATF_PR0CZS3 (init : in rl_process_def ;

ch_par : in rl_paramet er s

;

ch access : in level record;

88

proces : in integer?
synchr_seg : in integer!

success : out integer) is

process creation

chld_seg : rl_seg_struct J — rl_addr_array for child's
segment

rh_init : rl_process_def ! — rl_process_def for child
seg_rec : create_seg~struct ! — used to criate stack segment
segl_mkn : mk_kn_struct ! — used to make known stack

segment
segl_ret : mk_kn_return

!

crt_rec : rl_cp_struct ; — create process structure
ch_seg_list : seg_array;
w_clasl : access_class !

evc_value : integer!
stack_size : integer!
seg_mgr_"by tes : integer!
def~off~: integer!
def_seg : integer!
rl_def_size : integer!

— constants for determining stack size

rl stack size : CONSTANT integer := 15#FFF#!
vect_size : CONSTANT integer := 4!

3ESIN
w_class i- ch_access .min

!

segl_mkn .men tor := ch_par .ment or_code !

segl'mkn .entryx := ch_par .entry_code !

segl_mkn. seg_number := ch_par . sig_numter_code

!

segl_mkn . seg_mode := r_e

!

segl~mkn.prot_level := byte(1 }!

segl_mkn.gate~numDer := NULL_INDrX! — no gate

makeknown_segment (segl_mkn, segl_ret, success)!

if success /= then
put_succ

(

"success value is ", success ,w_class)

!

put _ln(STDIO_W,w_c lass,"";

!

end if?

address spec for child's stack

chld_seg. seg_numter := ch_par . seg_numter_stack!
cnld^seg. seg_mode := r_w!
rhld"seg. swapin := TRUE!

89

chld_seg. protect :.= byte(1);

crt_rec.rl_addr_array (8) := chld_seg;

address spec for child's code

chld_seg. seg_number := ch_par. seg_number_code;
chid seg.seg mode := r e;

chld'seg. swapin := TRUE;
chld_seg.pro tec t := byte(1)»

crt_rec .rl_addr_array (1) := chld_segj

address spec for child's mentor

chld_seg . seg_number := syr.chr_seg;
chld~seg. seg]V,ode := n_a;
chld"seg. swapin := TRUE;
chld'seg. protect := byte(1);

crt_rec . rl_addr_array (2) := chld_segJ

address spec for trap handler segment

chld_seg. seg_number := init . in itial_seg(4) ;

chid seg.seg mode := r_e;
chld~seg. swapin := TRUE;
chld_seg. protect := byte(1);

crt _rec ,rl_addr_array (4) := chld_seg;

address spec for child's data

chld_seg. seg_number := ch_par . seg_number_1 a ta

;

chld_seg. seg_mode := r_w

;

chld^seg. swapin := TRUE;
chld'seg.pro tect := byte(1);

crt_rec .rl_addr_array (2) := chld_segj

fill the order in which the segments will "be passed

ch_seg_list (0)
ch_seg list(l)
ch~seg~list(2)
ch_seg~list(2)
ch_seg_list (4)

= ch_par . seg_number_s tack

;

= ch_par . seg_number_code

;

= synchr_segJ
= ch_par . seg_number_d ata;
= ini t

.

initial_seg(4)

;

calculate required stack size.
(in the future will calculate based on data in "CMD'

90

file header
"but now just use constant.)

seg mgr "bytes := (stack header 'SIZE/8)
x

(init.num_kst * (kst_en try 'S IZI/8))
+

(kst_header'SIZE/6)

;

stack_size := rl_stack_si ze + vect_size + seg_mgr_tytes
+

(rl_process_def SIZE/8)J

create ani make known child's stack segment

seg_rec .mentor := ch_par .mentor_stack ;

seg_rec

.

entryx := ch_par .entry _stack;
seg_rec.lini t := stack_size - 1J
seg_rec .class := ch_access .min I

create_segment (seg_rec, success)J

if success /= then
put_succ("success value chsta is " .success ,w_class)

;

put ln(STEIO W,w_class,"") ;

end if!

segl_mkn .men t or := ch_pa

r

.ment or_stack;
segl_mkn .entryx := ch_par .entry_stack;
segljnkn . seg_numcer := ch_par . seg_num"ber_st ack;
segl^mkn. seg~mode := r_w;
segl mkn .prot_level := tyte(1);

segl~mkn.gate_r.umner := NULL INDEX;
segl_mkn .gate_prot := tyte();

makekn own_segment (segl_mkn, segl_ret, success)>

if success /= then
put succ("success value mksta is ", success ,w_cla ss)

;

put~ln(STDIO W,w_class,"") ;

end if;

swapin_segment (ch_par. seg_number_stack , success);

if success /= then
put_succ("success value swapsta

(<
is

"

,

success , w class) I

put ln(STLIO_W,w class,"");
end if T

create and make known child's date segment

seg_rec .ment cr := ch_pa

r

.men t cr_data ;

91

seg_rec .entry* := ch_par . entry _data>
seg_rec .limit := test_message'si ze/8;
seg_rec .class := ch_access .mi 1-

;

create_segment (seg_rec, success)»

if success /= then
put succ("success value chdat is ", success, w class);
put"ln(STDIO W,w class,"");

end ifT

segl_mkn. mentor := ch_par .ment or_da ta;
segljT'kn .ertryx := ch~par .entry_data;
segl_mkn. seg_num"ber := ch_par. seg_numter_da ta

;

segl_mkn . seg_mode := r_w?
segl'mkn .prot_level := cyte(1);

segl~mkn.gate_numter := NULL_INDFX;
segl_mkn .gste_prot := byteT);

makeknown_segment (segl_mkn, segl_ret, success);

if success /= then
put_succ("success value mkdat is ", success ,w_class) 5

put~ln(STDIO_W,w class,"");
end if;

swapir_segment (ch_par. seg_!uimber_data , success);

if success /- 7i then
put _succ("success value swadat is ", success, w class);
put~ln(STT IO_W,w_c lass ,""

)

;

er.d if;

fill in childs rl_process_def

fill_init(init, ch_init, ch_access)t

determine segment and offset of rl_process_def initial
record

def_seg := lib_mk_sel(ldt_table,
ch par . seg_numcer_stack);

def off := stack size - (vect size + seg mgr bytes +

rl_process_def 'SIZE/S);

move ch_init into proper place in child's stack segment

rl_def_size := (rl process_def 'SIZE)/S;
move_bytes(get_ss(J, ch_init 'address , def seg, def_off,

rl def size);

92

— fill in remainder of create_pr ocess_structure

crt rec.ip := 128? — skip command
file header* (82 hex)

crt_rec.spx := def_off? — set childs stack
pointer

crt rec.spl := stack size - (vect size + seg mgr tytes
" '

)?

crt_rec.sp2 := 0? — no ring 2 stack
crt_rec .vec_seg := 0? — rl address array

element 2

crt_rec.vec off := stack_size - vect_size?
crt^rec ,child_num := proces-1?-
crt_rec .priority := ch_init .resources. priority?
crt_rec .memory := ch_init .resources .memory?
crt_rec .processes := ch_init .resources .processes ?

crt~rec . segmnt s := ch_ir.it .resources . segmnt s?

crt_rec .min_class := ch_init .resources .min_class ?

crt~rec .max_class := ch~init .resources .max_class ?

read event count so we prepare for synchronization

f ~~read_evc(synchr_seg,evc_value , success)?

create the process

. create_process(crt rec, success)?

if success /=
>t
THEN

put_succ(create process success = ", success,
w class)?

end if?

await (synchr_seg, evc_value+l , success)? — blocks and
await

goto process create:

end TC_CREATI_FROCESS ?

end CRPROCE?

93

APPENDIX C

TEST PROGRAM LISTING

This program was developed following the general format

of the application program in Appendix A. The preparation

of this program to execute in the secure environment 'is done

in the same way as the application program.

94

This package controls the operation of the test— progr=~

with arl, alio, alicj, agate, strlit, mar.ag, tatles, gemio,
crproce ;

package tody T3TI M 3 is
use arl, alit, alitj , agate, strlit, ma nag, tatles, gerio,
crproce I

constants

STDIOJJ

10 PORT

CONSTANT integer
CONSTANT integer
CONSTANT integer
CONSTANT integer

=
5
i;

= 0;
= 0; — 2 nort for main
= 7:

— variatles

init
calls
ch_tatle
ch~level
5eg mode
ch_tat
ch'lev
w_cla ss

class
rd class
in_choice
test_rec
mentor
entryx
ief seg
ief_off
def _si ze

size
success
seg_numter
synchr_seg
:: :ice
eve value

rl_process def » —necessary for all kernel

rl_param

J

user_level

;

seg_access_typel
rl_paramet ers 5

level_record J

access_class ;

access_class I

access_class '

string:
test_m ess age;
int eger '

i d t e ge r

i"te=rer
integer
integer
irt eger
integer
integer
i nt eger
integer
integer

procedure INITIALIZATION is

cegm

— attach serial port for writing

attach_tew (I0_?ORT, STDIOJf)!

— attach serial port for reading

95

attach_ter (IO_FORT f
STDIO_R);

— load parameters to create up to 4 children

load_param_to_4_chld (init, ch_tatle);

—load access classes for Top-Secret, Secret, Confidential
and Unclassified .

load_access_class (init, ch_level);

— prepare class for accessing main terminal

w_class := init .resources. min_class»

end INITIALIZATION?

procedure STACK_ANP_SYNC_CRIATION is

begin

— creating segment for s tackfparent) .Will be unclassified— so as to obey compatibility property : segment compromise— must dominate mentor compromise.

mentor := i ni t . ini tial_seg(2)

;

entry* := 55

class := in it

.

resources .min class?
size := 128;

cr_segment (init ,ment or , entryx, size, class, sue cess)

»

if success /= then
put_succ

(

"success stack parent ", success ,w_class)

;

put In (STDIO W,w class, '")

J

end if?

— makeknown this segment

seg_mode := r_w;
seg_number := 31;

mk_ segment (init, mentor, entryx ,seg_number ,seg_mode .success) ;

if success /= then

put_succ("success makekenovn stack
parent" ^success , w_classj;

put In (STDIO_V,w_class,"')

5

end if;

96

— creating synchronization segment .

mentor := ini t .ini tial_seg(2)

;

entry* := 6;

class := init .resources .min_class»

cr_segmen t

(

init, ment or, entryx, size, class, success);

if success /= then
put succ("success sync is" , success ,w_class)

;

put~ln(STDIO V,w class,"")

»

end if;

— makeknown this segment

seg_mcde := r_w;
seg_numter := 51?

mk_ segment (init ,men tor, entryx, seg_numter , seg_mode .success)

;

if success /= then
put_succ("success mkknown sync", success, w_c lass)

J

put~ln(STDIO_V,v_class,"");

end if;

synchr_seg := seg_number»

— swapin this segment

swapin_segment (seg_number, success) ;

if success /= then
put_succ("success swapin sync"

,

success ,w_c las s)

;

put'ln(STriO_W,w_class,"")

;

end if;

end stack_and_sync_creation;

procedure PROCESS_CKFATION is

begin
put_ln(STCIO_V,w_class ."Begin Process Creation");
type_any_key_to_continue(w_class)

;

— start creating processes in the system— process 1 == > Store and Display— process 2 == > Calcl -> one field passed— process 3 == > Calc2 -> field passed every loop

97

for i in 1..3 loop

ch_tac '= ch_table(i) ;

ch~lev := ch~level(4);

to_create_process(init,ch_tab,
ch_lev ,i ,syncbr_seg, success)

;

end loop?

end PROCESS_CREATIOM ;

procedure MENU (selection : out integer) is

— Fresent option to execute each timing program

begin
put ln(STEI0 V,w cla ss

,

"Execute with no GEMSOS calls");
put"ln(STDIO_W,w"class ,

" 12 mult/div 32000 times");
put~ln(STII0_V,v3class,

f

"
=> < 1 >");

put_ln (STDIO_W ,v class , "Exerute passing data 4 times");
-put~ln(STDlO_V,w~class , "12 mult/div t 30000 times");
'put~ln(STDIO_V,v~class ," => < 2 >");

put ln(STDIO_W,w cla ss

,

"Execute passing data p/ loop");
put"ln(STDIO~V,w~class ,

"12 mult/div , 300 times*');
put_ln(STDIO_W,w class," => < 3 >");

put~ln(STDIO_W,v~class, "Exit => < 4 >");

get_str(STPIO_P. ,rd_class,in_choice);
if in_choice = "l" then

selection. := 1

;

elsif in_choice = "2" then
selection := 2;

elsif in_choice = "3" then
selection := 3;

elsif in choice = "4" then
selection := 4;

el se
selection := 5;

end if;

end MENU?

procedure START is

begin
put_ln(STPIO_W,w_class ," Prep to time ... ");

type_any key_to continue (w class);
end START?

procedure FINISH is

98

begin
put str(STDIO_W ,v_class ,

char_to_str (character 'val (3 EL)))

I

put_ln(STDIO_V,w_class,"S TO?");
type any key_to continue (v_class)t

end FINISH;

procedure RICriVI_FM_STO is

begin
def seg :=

lib miC_sel (ldt tat le ,cn_table(1) . seg_r.umber_data) I

def_off := 0J
.def^size := tes t_message 'si ze /SJ
rove_bytes(def seg.def _of f

,
ge t ss(),

test rec'ADDRESS,def size);

end RICEIVE_IM_STC ;

procedure PASS_TC_CALC1 is

begin
def_seg :=

lib_mk sel(ldt table.ch table (2) .seg number lata);
def_off := 0;
def'size := test_message 'size /B »

move_bytes
(get_ss() , test_rec 'ADDRESS , def _seg , def_off , def _ size)

;

end PASS_TO_CALCl 5

procedure RICEIVI_EM_CALC1 is

begin
def _seg:=lib_mk_sel(Id t_ table ,

ch_table(2) . seg nurrber data);
def_cff := ?;
def_size := test_message 'si ze /8»
move_bytes(def_seg t def_off,get_ss()

,

tes t_rec' ADDRESS, def _size) I

end RECEIVE_FM_CALC1 ;

procedure PASS_T0_CALC2 is

begin
def_seg :=

lib mk_sel(ldt table , ch_table(3) . seg_number_dat a)

;

def off := 0;

99

def_size := test_message 'si ze /8J
move_bytes

r get_ss()

,

test_rec'ADDRESS,def_seg f def_of f ,def_size) ;

end PASS_T0_CAIC2 ;

procedure RECEIVF_FM_CALC2 is

"begin
def _seg:=lib_mk_sel (Id t,_ table ,

ch ta"ble(3).seg number data);
def_off := 0;

"

def_size := tes t_mes sage 'si ze /S;
move_"bytes(def_seg f def_off,get ss() ,

test_rec 'ADDRESS, def _si ze)

;

end RECEIVE_FM_CALC? ;

procedure FASS_TO_STO is

tegin
.def_seg :=

li"b_mk_sel(ldt_ta"ble,ch_table(l).seg_numter_data);
def_off := 0;
def^size := tes t_message 'si ze /8;
movi tytes(get_ss() , test _rec 'ADDRESS

,

def_seg,def_of f ,ief _si ze) ;

end PASS TO STO ;

procedure CALC_NO_CALLS is

FIRST : CONSTANT integer := 10000;
SECOND: CONSTANT integer := 500;

"begin
start
for i

end 1

finis
put_.1

twice") ;

,.Put - 1

tirre);

start »

in 1. .70000 loop
test_rec .result := ({

test_rec . result := (

(

test_rec . result := ((

test_rec . result := ((

oop;
h;
n(STDIO_W,v_class , "now

10000 / 500)

10000 / 500)

1^000 / 500)

10000 / 500)

300
300
300
300

) / 100;
100;
100;
120;

do the same operation

n(STDIO_V,w_class /'calculate the loop control

100

for i in 1. .30000 loop
test rec. result

end

test
test
test
test'
test'
test'
test,

loop ;

rec
'rec
.rec

rec
'rec

_rer
rec

result
result
result
result
result
resul

t

result

((10 00 / 500)
;

'
: 300 / 1C0;

((10000 / 500 : 300) / 100;
((10000 / 500 :

rj« 300-
) / 100;

((10000 / 500
'

I

300) / 100;
((10000 / 500)

Jg
300)

i / 100;
((10000 / 500)

'i* 300) / 100;
((10000 / 500

]

* 300) / 100;
((10000 / 500 j

f 300) / 100;

finish;

end CALC_NO_CALLS;

procedure CALC_ONE_PASS is

begin
start 5

advance (ch_ tab led) . seg_number_ stack, success)

;

read_evc (syncbr_s eg, evc_ value

,

success)

;

await (synchr_seg, evc_value+l f success)

»

receive_fm_sto

;

-*'pass_to_calcl?
advanceTch_table(2) . seg_number_ stack

,

success)

;

re ad_evc (synch r_seg, eve _ value , success)

?

await (synchr_seg,evc_value+l .success);

receive_fm_calci;
pass to_sto;
finish;
ad v an ce(ch_ tabled"1

. seg_numter_s tack, success)

;

re ad _evc(synchr_seg, eve" value, success);
await(synchr_seg,evc_value+l,success);

end CALC ONI PASS?

procedure CALC_FASS_ALL is

begin
st

fo
art J

r i

a

r
a

r

P
a

r

a

r

P

in 1. .300 loop
dvance(ch_table(1) . seg_num be r_ stack , success) i

ead_evc(sync hr_seg,evc_value, success);
wait(synchr_seg,evc_value+l,success N

;

eceive_f m_sto;
ass_to calc?;
dvanceTch_table(3) .seg_numter_stack, success)

;

e^d_evc(synchr_seg,evc_value,success ,|

;

wa it(synch r_seg, eve _value-u l, success);
eceive_frT, _calc2;
ass to sto;

101

end loop;

finish;

end CALC_FASS_ALL ;

procedure SILF_DELFTION is

begin
test _rec .flag := true;
for i in 1 . .? loop

def_seg :=

lib mk sel (ldt table, ch tabled) .seg number data) 5

def_off := 0;~

def~size := tes t_message 'si ze /S»
move_bytes (def_seg,def_off,get_ss(),

test_rec 'ADDRESS, def_size) ;

advance^ ch_table(i) . seg_numter_s tack, success)

;

read_evc(synchr_seg,evc_value,success);
a wait(synch r_seg,evc_value+l, success);
put_succf "self deleted " , i

,

w_class) ;

"end loop;

end SELF_DILITION:

procedure DELETE_PROCESS_SE^ENT is

begin
for i in 1 . .3 loop
child_delete(i-l, success);

terminate_ segment (ch_ table (i) . seg_number_stack, success)

t er rrin a te_ segment (ch_table(i).seg_nurrber_data, success);
termir. ate_segmer. t(ch_table(i) . seg_number_c ode .success) ;

delete_ segment (ch_table(i). men tor_stacV:,i, sue cess);
delete'segme nt(ch~ table (i) .mentor~data,i +4, success)

5

delete_seg
<

ment (ch_table (i).mentcr_code,i +6, success) ;

put_succ(
'

deleted " ,i ,w_class)

;

end loop;

end DrLETI_PROCFSS_SEGMFNT;

procedure D2LETE_MENT0R_SYNC is

begin
delete_segmen t (init .i ni tial_seg(2) , 6, success);
terminate_segrrent (51, success);
delete_segment (i ni t .ini tial_seg(2) , 5, success);
terminate_segnent (31 ,success)»

102

end DELETS_MENTOR_SYNC ;

procedure DELETION_ALL is

begin
self_deletior;
delete_process_segment ;

delete~mentor_sync;
put_ln(STDIO_V,w_class ," O.K. ");

end DELETION_ALL ;

procedure PRFVENT_TRAP is

begin
success := 0;

while success = loop .

success := 0?
end loop;

end PREVENT_TRAP ;

— ######## MAIN PROGRAM ########*########

tegin
init := get_rl_def () J —must be the first statement
lit set_"bra eke t(l, 1,1, in it .resources .mi n_c lass)

»

ini tiali zat ion;
stack _ar.d__sync_creation;
process_creation ;

test_rec . flag := false;
loop

menu(chcice) ;

case choice is
when 1 => calc_no_calls;
when 2 => calc_one_pass;
when 3 => calc^pass.all

;

when 4 => exit;
when 5 => null;

end case;
end loop;
deletior_ali;
prevent_t rap

;

end TOTIME i

103

— This Package simulates the stcre process in the test— program

with arl, manag, gemio, agate, tables, alib, alibj;
package tody STODISF is
use arl, manag, gemio, agate, tables, alit, alitj;

-- constants

STDIC fc

STHIO'R
10 FORT

CONSTANT integer := 1J
CONSTANT integer := 0;
CONSTANT integer := 3;

— variables

init
w_cla ss
test_rec
def seg
def'off
def _size
sucr'e ss
eve ch val

rl_process_def ;

access_class;
test_rrissage;
integer?
in teger;
integer?
integer;
integer;

procedure RICIIVE_7M_PARINT is

begin
def seg := lib mk_se 1(Id t_table , init .initial seg(3))

5

def'off := 0;
def_size := test message 'size /8;
move_bytes'def seg, def _of f ,get s s(), test_rec 'ADDRESS ,

def _size);

end RECEIVE_FM_PARENT;

procedure PASS_T0_PAR2NT is

begin
def_seg := 1 ib_mk_sel(Id t_table , init. initial seg(3))»
def_off := 0;

def_size := tes t_message 'si ze /8

;

n-ove_bytes^get_ss() , test _rec 'ADDRESS , def _seg ,
def _ of f

,

def_size);

end PASS TO PARENT ;

104

— MA I N PROGRAM

begin
init := get_ri_def ()

;

— attach terminal to write

attach_tev (I0_P0RT ,STDI0_W);

v_clasi := init. resources .min_class;

—attach terminal to read

attach_ter(IO_PCRT,STDIO_R);

put_ln(STDIO_W,w_class," STORAGE AND DISPLAY RIADY ")
',

— advance eventccunt of synchro segment path 5,6 plsn 51— passed to child as ch seg_list(2).— Will he called in chiTd as init . initial_seg(2)

advance (init.initial_seg(2) , success)

J

,read_evc(init.initial_s eg (2'),evc_ch_val t su cress);
'a waitdnit. in itial_seg(2\evc_ch_val+l, success);

loop
pass_to parent;
adva re eTinit. init ial_s eg (2). success);
read_evc(init.initiaI_seg(0),evc_ch_val, success);
aweit'init.initial_seg(0),evc_ch_vaI+l,success);
receive _fm_pa rent;

"

advance (init .initial_seg(2) , success)

;

read_evc(init.initial_seg(0) , evc_ch_val

,

success)

;

await (init. initial_seg(0), eve _ch~v a 1 + 1, success);
receive_fm_parent;
if test_rec .

f

lag then
exit

;

end if;

end loop;

ad van ce(in it. initial _s eg (2) , success)

;

— dettach and delete

detach_device(STDI0_R, success)

;

detach_device(STDIO_W, success)

;

self_delete (init.initial_seg(2), success);

end STOTUSP ;

105

— This package performs one of the timing tests

with arl, manag, gemio, agate, tatles, alit, alitj;
package tody CALC1 is
use arl, manag, gemio, agate, tatles, alit, alitj;

— constants

STDIO_W : CONSTANT integer := 1!

STDIO'E : CONSTANT integer := 05
10 PORT : CONSTANT integer := 5J

— varieties

in it

w_class
test_rec
def seg
def'off
def _size
success
eve ch val

rl_process_def ;

access_classJ
test_message;
integer
integer
in teger
in teger
integer

procedure RECEIVE_FM_PARENT is

tegin
def_seg := lit mk_sel(Id t_tatle , init. initial seg(3))5
def_off := 0;

def_size := test_message 'si ze /&',

move_tytes (def _seg,def off, get ss(),
test_rec' ADDRESS, def _size) ;

end receive_fm_parent;

procedure FASS_T0_PARENT is

tegin
def_seg := lit_mk_sel(ld t_tatle , ini t

.

ini t

i

al_seg(3))

;

def'eff := 0;
def size := tes t_mes sage 's i ze /S

;

move_tytes(get_ss() ,test_rec 'ADDRESS,
def_seg,def_off,def_size);

end PASS TO PARENT ;

— MAIN PROGRAM

106

begin
in it := get_rl_def ()

;

— attach terminal to write

attcch_tew (10 PORT, STDIC_V.')

;

w_class := iniT .resources7min_class ;

— attach terminal to read

attach_ter(I0_P0RT ,STDI0_R) ;

put_ln(STDIO_W,w_class ,
" CALC ONI PASS READY ");

— advance evertcount cf synchro segrert path 5,5 plsn 51— passed to child as ch_seg_lis t (2)

.

— V.' ill he called in child as init.initial_seg(2)

advance (init.initjal_s eg (2), success);
read_evc (init . in itial_seg(0) , eve _ch_val

,

success);
await (in it . in i tial_seg(0) , evc_ch_val+l .success)

;

loop
receive _fn_p a rent;
if test_rec .f lag then

exit;
end if;

for i in 1 . .30000 loop
test_rec .result
test_rec . resul

t

te st_rec .result
test~rec . resul

t

end~locp;

=
(

(

10000 / 500)

= (

f

10000 / 500)

=
((10000 / 500)

=
(

(

10000 / 500)

300)

300)

300)

/ 100;
/ 100;
/ 120;

300) / 100;

pass_to parent;
advance Tin it .initial_seg(2) .success);
read_evc (init,initial_seg(0),evc_ch_val .success)

;

await(irit.initial_seg<'0) , evc_ch_val + l .success)

;

end 1 cop

;

ad va nee (init .initial_segf 2) , success);

— dettach and delete

detach_device(STDIO_R, success);
detach device f STDIO_W, success) ;

self_deletefinit.ini tial_seg(2) , success);

end CALC1 5

107

with arl, manag, gemio, agate , tables , alib, alibj?
package tody CALC2 is
use arl, manag, gerrio, agate , tables , alit, alibj?

— constants

STDIO V : CONSTANT integer := 1J
STDIO~R : CONSTANT integer := 0?
I0_?ORT : CONSTANT integer := 6?

— variables

init : ri_process_def

?

w_class : access_class *

tist_rec : test_message

?

success : integer?
evc_ch_val : integer?

def_seg : integer?
def_off : integer?
def size *

: integer?

procedure PASS_TO_PARENT is

begin
def_seg := lib mk_sel

(

ldt_table, init . initial seg(3))?
def_off := 0?

def size := test message'size /&',

move_bytes(get_ss()

,

test _rec 'ADDRESS

,

def_seg,def_off,def_size)?

end PASS_TO_PARENT ?

procedure RECEIVE_FM_PARINT is

begin
def seg := lib_mk_se 1(Id t_table , init. initial seg(3))?
def'off := 0?
def_size := test_message 'si ze /8?
rnove_bytes(def seg t def _of f ,get ss(),

test_rec 'ADDRESS, def_size) ?

end RECEIVE_1'M_PARENT?

— MAIN PROGRAM

108

tegin
init := get_rl_def ()

;

— attach terminal to write

attach_tew(I0_P0RT , STDIOJf)

;

w_class := ini t

.

resources. min_class;

— attach terminal to read

attach_ter(IO_?ORT,STDIO_R);

put_ln(STCIO_W,w_class," CALC2 PASS EVERY LOOP READY");

— Advance the eventcount of the synchronization segment— path 5,6 ,
plsn 51 ,

passed to child as ch_seg_list (2)

.

— Will "be recognized in child as ini t . init ial_seg(2) .

advance (ini

t

.initial_seg(2) .success) ; — this will
permit creation of processesto go on

"r ead_e vc (init. initial_s eg (0), eve _ch_val, success);
stack to sync

await (init. iritial_s eg (0) , eve _ch_val+l , success)

;

control sent tack to creation of processes

loop
receive_fm_parent

;

if test_rec . f lag then
exit;

end if;
test rec. result := ({ 1000? / 500) * 300) / 100;
test'rec. result := ((10000 / 500) * 300) / 100;
test_rec .result := ((10000 / 500) * 300) / 100;
test_rec. result := ((10000 / 500)

* 300) / 100;
pass^to parent;
ad vanceTinit. initial _s eg (2), success);
read_evc(ini t.initial_seg(0) f evc_ch_val, success);
await(init. initial_seg(0),evc_ch_val+l, success);

end loop;

advance (init .initial_seg(2) .success);

detach and deletion

detach_device(STDIO_R, success) '.

detach_device(STDIO_W, success);
self _delete(irit. ini tial_s eg (2), success);

109

end CALC2J

110

APPENDIX D

SIMPLE ACCESS PROGRAM LISTING

This program presents a very simple program, with the

purpose to show the basic steps necessary to be able to

access the secure system. Different from non-secure

systems, the terminal is not automatically a part of the

system, and as shown in this program, a GEMSOS gate call is

necessary to include a terminal in the system.

Ill

Sample program to access the system

pragma rangecheck(off); pragma debug(off); pragma
arithcheck(off);

pragma enumtab(off)>

WITH agate, arl, alibj, util, manag ,gemio;
PACKAGE BODY alo IS
USI agate, arl, alibj, util, manag ,gemio ;

— Constants for device slots.

STDIO V : CONSTANT integer := 1J
STDI0~R : CONSTANT integer := 0;
IO_FORT : CONSTANT integer := 0J

process
— port zero for ma in

— Variables used by main program.
w_class : access_cl ass ; — AGATE
init : rl_procesi_def ; — AR1
mentor : integer »

entrx : integer ;

size : integer ;

success : integer?
class : access_class J

seg_mode : seg_access_type ; —AGATE
seg number : integer »— MAIN
3FGIN

init := get_rl_def () ; — AR1
lib_set_bracket (1, 1, 1, init .resources .min_clas s)5

attach serial port for writing.

attach_tew(I0_F0RT, STDI0_V)» —MANAG
w_class := ini t . resources .min_class ;

put_ln(stdio_w,w_class, HELLO COMPLICATED WORLD");

attach serial port for reading.

attach_ter(IO_FORT, stdio_r); — MANAG

put_ln(stdio_v/,w_class ,"now I will create a segment");
type_any_key_to_continue (w_ class) 5

112

— creating segment for STACK (parent)

mentor := init . initial_seg(2) ;

entrx :=5;
size :=10235
class := init .resources. min_class 5

cr_segment (init , mentor, entrx, size, class, success);

put_ln(stdi o_w,w_class ,"now I will
make the segment known ");

type_any_key_to_continue (w_class) 5

— makeknown segment created

seg_mode := r_w?
seg_numter .

: = 31

J

mk_segment

(

ini t , mentor, entrx ,seg_number ,seg_mode , success)

5

put_ln(stdio_w ,w_class
,

" Ate logo (good bye)");

— infinite loop to prevent trap.
success := 0»
while success = £ loop

success := 0»

end loop?

end aloJ

113

APPENDIX E

SUBMIT FILES LISTING

This appendix presents the submit files used for the

sysgening of the application program, the testing program

and the simple access program.

114

SU3MIT FILI FOR APPLICATION PROGRAM,

ts:ld3.crrd
ks :k0 .cmd
ks :kl .cmd
ks:k0h. cmd
ks :k2 .cmd
cs:vlloader .cmd; 2;
ds:vllogin .cmd J2 ,105
is:nv.ds;2,5;
ds:nv ,ds» 5;

ds:themair. .cmdI5,0»
ds: radar. cmd; 5,7;
ds: compute .cmd » 5 ,6;
ds:chaf f .cmd;5,9;
ds rrltrap. cmd ;6»
end

115

— SUBMIT FILI FOR TEST PROGRAM

Irs

lcs

ks
ks
ks
cs
ds
ds
ds
ds
ds
ds
ds
ds
end

Id 3 .cmd
k0 .cmd
kl .cmd
k0h. cmd
k2.cmd
vlloader cmd;2;
vllogin .cmd;2 ,1F;
nv .ds]2 ,5;
".v.dsJ5;
totime. cmd ;5,0;
stodisp .cmd ; 5 ,7;

calcl.cmd »5 t S»
calc2.cmd;5,9;
rltrap. cmd ; 6J

116

— SUBMIT IILI' FOR SAMPLE PROGRAM

ts :ld3.cmd
ks :k2 .cmd
ks :kl .cmd
ks :k0h. cmd
ks :k2 .cmd
cs. • vlloader .cmd;

2

•

ds svllogin cmd52 , 10;

ds :nv.ds;2, 5;
ds :nv .d s55;
ds ;al o. cmd

;

5,0;
is :rl trap. cmd J6?
end

117

LIST OF REFERENCES

1. Allworth, S. , Introduction to Real-Time Software Design ,

Springer-Verlag New York Inc., New York, 1981.

2. Department of Defense Computer Security Center, Ft.
Meade, Md . , Report CSC-STD-001-83 , POD TRUSTED COMPUTER
SYSTEM EVALUATION CRITERIA , 15 August 1985.

3. Ames, S. , Gasser , M. , Schell, R, "Security Kernel Design
and Implementation: An Introduction," Computer , v. 16, no.
7, July 1983.

4. Gemini Computers, Inc. , Carrael , Ca . , System Overview-
Gemini Trusted Multiple Microcomputer Base , 11 May 1984.

5. Gemini Computers, Inc. , Carmel , Ca . , GEMSOS Ring
User ' s Manual for the Janus/Ada Language , December 1985.

6. Boebert , E. , Kain, R. , Young, B. , "Trojan horse rolls up
to DP gate," Computerworld . 2 December 1985.

118

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943

3. Department Chairman, Code 52 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4

.

Dr . Uno R . Kodres , Code 52Kr 3
-'Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. Lt. Philip J. Corbett, USN 1

72 Pilgrim Rd

.

Concord, Massachusetts 01742

6. Daniel Green, Code 20F 1

Naval Surface Weapons Center
Dahlgren, Virginia 22449

7. Capt . J. Donegan , USN 1

PMS 400B5
Naval Sea Systems Command
Washington, D. C. 20362

8. RCA AEGIS Data Repository 1

RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, N. J. 08057

9. Library < Code E33-05) 1

Naval Surface Weapons Center
Dahlgren, Virginia 22449

119

10. Dr. M. J. Gralia 1

Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20707

11 Dana Small, Code 8242 1

NOSC
San Diego, California 92152

12. LCDR Claudio Bailly Cavalcanti , Brazilian Navy 2
Brazilian Naval Commission
4706 Wisconsin Ave. N. W.

Washington, D. C. 20016

13. CDR G.' S. Baker, Code 52Bj 1

Department of Computer Science
Naval Postgraduate School
Monterey, California 93944

120

DUDLEY
NAVAI :hool

MOKTBRE' I IA 95943-5002

:

^Thesis

: C33821

cc 1

1
1

15

< 371S

Cavalcanti
Modelling of a mul-

tilevel secure tacti-
cal combat computer
system.

DEC 87 3 2 2 6

3715
Thesis

C33821
c.l

Cavalcanti
Modelling of a mul-

tilevel secure tacti-

cal combat computer

system.

