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ABSTRACT

The folded unipole antenna has recently appeared as a commercially

available alternative to conventional insulated-base monopoles in standard

broadcast applications. A folded unipole antenna has significant advantages

over both series fed vertical and top-loaded antennas. This thesis investigates

using a computer numerical model to obtain the input impedance of a 72 meter

folded unipole antenna, with three fold wires. The design of a multi-frequency

folded unipole antenna is demonstrated for 1.380 and 1.530 Mhz. Also

presented are designs for 60°, 90°, 135°, 180°, 225° folded unipole antennas for a

frequency of 1 Mhz, with an input resistance of 50 ohms. Finally, designs are

shown for 90° monopole and 90° unipole antennas at 1 Mhz.
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I. INTRODUCTION

A. THE FOLDED UNIPOLE
Today series-fed vertical antennas are commonly used in standard

broadcast (MF) service. Some stations use a shunt-fed antenna, but the majority

are series-fed. The folded unipole antenna could be called a modification of the

standard shunt-fed system. Instead of having a slant wire leaving the tower at

an angle of approximately 45°, the folded unipole antenna has wires attached to

the tower at a pre-determined height, supported by stand-off insulators, and run

parallel to the sides of the tower to its base. The tower is grounded at its base.

The folds are joined together at the base and driven at this point through an

impedance matching network. Depending upon the type of folded-unipole

antenna used, the wires may be connected to the tower at the top and/or at pre-

determined levels along the tower (shorting stubs). The folded unipole antenna

was introduced in the late 1950's for standard broadcast stations. They are now

widely used for both non-directional and directional antenna systems. There are

over 1,200 licensed stations using the folded unipole method of feed. Figure 1.1

illustrates a typical folded unipole antenna.

A Folded Unipole Antenna has significant advantages over both a series-

fed vertical or top-loaded vertical antenna. The more salient advantages are:

[Ref. 1: pp. 2,3].

• When compared to a series-fed antenna of the same height, the folded

unipole has greater radiation resistance.

• The overall system bandwidth is greater for a folded unipole than for a

series-fed monopole.

• The system does not require a base insulator, hence, the tower is at

ground potential for lightning protection. In addition, being at ground

potential eliminates the need for isolation between transmission lines and

the tower if VHF or UHF antennas are mounted on the tower. No

lighting chokes or transformers are required if tower lights are used.

• The base impedance can be varied for ease of coupling and control of

bandwidth, whereas the base impedance for a series-fed antenna cannot

be changed.
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Figure 1.1 Typical Folded Unipole Antenna.

• When a series-fed antenna is modified to a folded unipole system and the

station has a poor ground system, one will generally obtain a higher

unattenuated field intensity.

• A short folded unipole is more stable in inclement weather than a series

fed system.

B. ANTENNA PARAMETERS OF INTEREST

1. Input Impedance

The input impedance of an antenna is the impedance presented by the

antenna at its terminals. The input impedance is composed of real and

imaginary parts.

Z
in
=R

in
+

J
X

in

The input resistance, Rj
n , represents dissipation. Power can be

dissipated in two ways. There are heating losses on the antenna structure and

associated hardware. Any resistive element in an electrical receiving system is

also a source of noise. Thus ohmic losses on antennas are sources of noise
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reception. Also power that leaves the antenna and never returns (radiation) is a

form of dissipation. The input reactance, Xjn , is present because of reactive

power stored in the near field of the antenna. Antennas that are electrically

small have a large input reactance, in addition to a small radiation resistance.

Antenna impedance is important to the transfer of power from a transmitter to

an antenna or from an antenna to a receiver. To maximize the power

transferred from a receiving antenna the antenna impedance should be a

conjugate match (equal resistances, equal magnitude and opposite sign

reactances). Usually the receiver has a real impedance so it is necessary to "tune

out" the antenna reactance with a matching network of variable inductances

and capacitances adjusted to cancel antenna reactance.

2. Average Power Gain (G)

A common criterion applied to antenna computer models is to calculate

the average power gain (G). The average power gain is obtaining by integrating

the radiation power density to find the total radiated power, then compare that

to the total input power at the feed points. These should be equal for a valid

solution. The average power gain can provide a check on the accuracy of the

computed input impedance over a perfect ground where it should be equal to 2

or in free space where it should be equal to 1.

3. Bandwidth

Antenna bandwidth is the difference in frequency between two points at

which the power output of the transmitter has dropped to one half mid-range

value. The points are called half-power points. A half power point is equal to a

VSWR of 5.83:1, or it is the point where the voltage response has dropped to

0.7071 of the mid-range value.

C. SCOPE OF THE THESIS

This thesis will investigate the following practical design cases:

1. The input impedance of a 72 meter folded unipole antenna with three

fold wires . This antenna should have an input resistance of 50 ohms for

1.380 Mhzandfor 1.530 Mhz.

2. The design of a multi-frequency folded unipole antenna with six fold

wires. This antenna must operate simultaneously for a frequency of 1.380

Mhz and 1.530 Mhz and have an input resistance of 50 ohms.

11



3. For a frequency of 1 Mhz, 60°, 90°, 135°, 180°, 225° height folded

unipole antennas with three fold wires and an input resistance of 50

ohms.

4. For I Mhz a standard 90° monopole antenna with 24 radial wires and a

90° unipole antenna with 24 radial wires are compared.

5. A comparison of 60° unipole designs modeled using a simplified method

by J. Mullaney and the Numerical Electromagnetics Code.

12



II. DESCRIPTION OF NEC

The Numerical Electromagnetic Code (NEC), is a computer program

designed to aid in the solution of electromagnetic radiation problems. It

computes a numerical solution to integral equations that describe the currents

induced on a structure by voltage or current generators and/or incident fields.

NEC is a user-oriented code which was developed by Lawrence Livermore

National Laboratories, under the joint sponsorship of the Naval Ocean Systems

Center and the Air Force Weapons Laboratory.

A. FEATURES OF THE CODE
The program is based on the numerical solution of integral equations (IE)

for the currents induced on a structure from voltage sources or an incident plane

wave with either linear or elliptical polarization (in Appendix A there is a brief

description of I.E.). Output may include current and charge density, power gain

or directive gain, near or far-zone electric or magnetic fields, impedance or

admitance, and total radiation power or input power.

NEC utilizes the Gauss- Doolittle method for solving the matrix equation

generated by the method of moments when solving the integral equations. It also

allows for use of rotational or plane symetry to reduce computational time.

When the impedance matrix is too large to be contained in core, NEC has the

option of solving out-of-core. It allows the 'self interaction matrix' for a

structure to be computed, factored for solution, and stored on a tape or file. A
solution for a new antenna that enters this environment requires only the

evaluation of the 'self-interaction matrix' for the antenna, the mutual antenna to

environment interactions, and matrix manipulations for a particular matrix

solution.

B. ZONING CONSIDERATION
NEC is a discrete sampling code where a complex structure must be

dissected into a number of simple elements (wires or plates) to which the

Electrical Field Integral Equation (EFIE) or Magnetic Field Integral Equation

(MFIE) is applied. The smaller the geometric elements, the closer the model

13



comes to physical reality. However, the smaller the elements, the larger the

number of elements, which means large matrix equations and hence, a more

costly solution. The choice of proper zoning thus is gained by experience.

Guidelines for choosing segments and patches are given below.

1. Wires

A wire segment is defined from two parameters: the coordinates of the

two end points and its radius. Figure 2.1 illustrates wire segment parameters.

Oi

Figure 2.1 Wire Segment Parameters.

Generally, segment lengths(A) should be less than .IX; short segments

(0.05a,) or less may be needed at critical regions (junctions or curves). Segments

smaller than 10"- X should be avoided.

The kernel used in the integral equation depends on the radius of the

wire (a) relative to X . Two options exist: the thin wire kernel and the extended

thin wire kernel. Both kernels incorporate the thin-wire approximations and

both require 27ra X > 1. The thin wire kernel requires a A u>8. The extended

kernel requires A a>2, for errors less than 1%. The extended kernel is used at

free wire ends and between parallel segments. The thin-wire kernel is always

used at bends and radii changes.

2. Segmentation Guidelines

Segments (or patches; may not overlap.

A large radius change between connected segments may decrease

accuracy, particular with small A a .

A segment is required at each point where a network connection or

voltage source is located.

14



• The two segments on each side of a charge density discontinuity voltage

source should be parallel and have the same length and radius.

• When wires are parallel and very close together, the segments should be

aligned to avoid incorrect current perturbations from offset match points

and segment junctions.

3. The Ground Plane

For a perfectly conducting ground, the code generates a reflected image.

Structures may be close to, or contact the ground. For a horizontal wire,

vV + a
2">10- 6 X

where:

a = wire radius.

h = height of wire axis above the ground plane.

The height should be at least several times the radius for the thin wire

approximation to be valid. This method doubles the time to fill the interaction

matrix.

C. METHOD OF MOMENTS
The method of moments is a technique whereby an integral equation is

reduced to a system of linear algebraic equations which are easily handled by

high speed digital computers. [Ref. 2: pp. 8,9, 10].

1 . Mathematical Concept

The method applies to an inhomogeneous linear operator of the form:

Lf = e (eqn 2.1)

where :

L is a linear operator having a domain D^ containing the vector

represent by f, which is an unknown response to an excitation e, which is given

and found in the range of L, and it is viewed as a source or driving vector which

is known from physical considerations.

The unknown function f is expressed in terms of known functions using

undetermined parameters as:

15



n

f— £ajfj (eqn 2.2)

j-l

Substituting equation (2.2) into equation (2.1) and taking the inner product with

a set of linearly independent weighted functions [wj ] defined in the range L and

spanning sub-space sw , results in a set of equations for the coefficients, a: , of

equation (2.2). This set of equations.

n

£a. <wj, Lf:> = <wj, e>, i=l,2 n (eqn 2.3)

j
= l

can be written in matrix form as

[G][A] = [E] (eqn 2.4)

where Gj: = <Wj , Lf: >, A-
{

= a: and Ej <wj , e >.

Hence, if a solution to equation (2.4) exists and is unique then the

inverse operator, G"* , also exists such that:

[A] = [G" 1
][E] (eqn 2.5)

which is a solution to equation (2.3).

The efficiency of computations and accuracy of solution is largely

dependent on the choice of the Basis Function. Factors, which should guide this

choice are:

• Accuracy of desired solution.

• Ease of evalution of matrix elements.

• Matrix sizes that can be successfully inverted.

• Realization of a "well-conditioned" matrix.

There are two types of basis functions, entire domain and sub-domain. The sub-

domain has fewer elements, and its execution time is usually less.

16



III. UNIPOLE ANTENNAS

A. FOLDED DIPOLE ANTENNA
The folded dipole antenna consists of two parallel dipoles connected at the

ends forming a narrow wire loop, as shown in Fig.(3.1), with dimension d much

smaller than L and much smaller than a wavelength. The feed point is at the

center of the side.

Figure 3.1 The Folded Dipole Antenna.

The folded dipole operates basically as an unbalanced tranmission line and

can be analyzed by assuming that its current is decomposed into distinct modes:

a transmission line mode (Fig. 3.2 a) and an antenna mode (Fig. 3.2 b).

r^\ r~\

\J
(a) <b)

Figure 3.2 The Current Modes on a Folded Dipole Antenna.
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The input impedance for the transmission line mode is given by the equation

(3.1) for a transmission line with a short circuit load.

v_ jZ
n
tanPL

(eqn 3.1)

Where:

Z
Q

is the characteristic impedance of the transmission line.

\}
= 2k ). , where X is the wavelength.

For the antenna mode the charges go around the corner at the end, instead

of being reflected back toward the input as in an ordinary dipole, which leads to

a doubling of the input current for resonant lengths. Suppose a voltage V is

applied across the input terminals: Superposition of the transmission line mode

and the antenna mode gives the complete folded dipole model. Figure (3.3)

illustrates the mode excitation and current for a voltage V applied to the

terminals of the folded dipole.

r^\

h t\
" h

r@ ©*

(a)

r\
2

n I.

fG <$>*

tb)

Figure 3.3 Mode Excitation and Current for a Folded Dipole Antenna.

The transmission line mode current is:

V
1

2Z.
(eqn 3.2)

For the antenna mode the antenna current is:

18



V
I = (eqn 3.3)
a 2Z,

where

Z
d

is the input impedance for an ordinary dipole of the same wire size.

[Ref. 3: pp.206,207]

The total current on the left is I
t

= I /2 and the total voltage is V, so the

input impedance of the folded dipole is:

V
Z in

= (eqn 3.4)m
I +0.51

M
t a

Substituting (eqn 3.2) and (eqn 3.3) in (eqn 3.4) we get:

Z in
= *—4- (eqn 3.5)

in Z +2Z,

which is the input impedance of the folded dipole.

B. INPUT IMPEDANCE OF THE FOLDED UNIPOLE
As mentioned earlier, the folded unipole antenna is one-half of a

corresponding folded dipole. The total antenna current is divided between two

conductors which are paralleled at their currents nodes (at the top), and power

is fed into one leg only, as shown in Figure 4.4

The input impedance of the folded unipole antenna is half the input

impedance of the corresponding folded dipole, whose input impedance is given

by eq(3.5), when the two conductors are equal.

When the two conductors are not equal the base resistance is given by:

R =-^- (eqn 3.5)

Where:

19
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Figure 3.4 Folded Unipole for Shunt-feeding Vertical Radiators.

Rj is the input resistance of the folded unipole and the M will differ with

the relative radii of the conductors and will be 0.5 when the two conductors are

identical. [Ref. 4: p. 109]

However, when one conductor is a grounded quarter-wave tower and the

other is a wire, the great disparity in radii will produce a value of M very much

less than 0.5. If the tower and drop wire were both continuous uniform-section

cylindrical conductors, the value of M could be obtained from the relation.

M = •

1 +

1

(eqn 3.6)

loc
10

P
1

log
10

u

P ->

Where:

Pj : is the radius of the large conductor.

Pt : is the radius of the smaller conductor.

a : is the axial separation between the two conductors.

20



C. A USEFUL EQUIVALENCE FOR TRIANGULAR TOWER-BASED
3-WIRE UNIPOLE ANTENNAS.

Most broadcast unipole antennas are constructed from standard triangular

cross-section towers and are equipped with three fold wires. A useful

equivalence has been developed for numerical modeling usage which eliminates

the huge radii differences between the monopole (tower) and the fold wires.

Consider three one-fold unipole antennas of the same height, located on the

apexes of an equilateral triangle. Replace the central monopoles (tower) with an

equivalent monopole located at the center of the triangle having the same height

and an appropriate radius. The three feed points and fold wires for the antennas

remain at the same height and the equivalent model is compatible with NEC
guidelines.

For example, assume that we have three unipoles with radius 3.175 cm

and height 72 meters, located on the apexes of an equilateral triangle with side

length 0.533 meters.These three one-fold unipoles are equivalent to one 72 meter

three-fold unipole with 0.27 meter radius.

Table 1 lists the calculated input resistance, input reactance, magnitude

and the phase for the three-wire tower unipole antenna in the range of 0.5 Mhz

to 1.6 Mhz. Table 2 lists the calculated input resistance, input reactance,

magnitude and the phase for the equivalent one-wire monopole based unipole in

the range of 0.5 Mhz to 1.6 Mhz. Figures 3.5 and 3.6 illustrate the input

resistance and input reactance vs. frequency for the two antennas. As can be

seen from the graphs there is very good correlation for the input resistance and

reactance for the two antennas.

21



TABLE 1

THREE- WIRE TOWER UNIPOLE ANTENNA IMPEDANCE

Freq. Resistance Reactance Magnitude Phase

Mhz ohms ohms ohms degrees

0.500 006.49 -313.79 313.86 -88.81

0.600 009.80 -226.64 226.85 -87.52

0.700 014.13 -157.45 158.09 -84.87

0.800 019.76 -098.70 100.66 -78.68

0.900 027.11 -045.96 053.36 -59.47

1.000 036.78 003.66 036.96 05.69

1.100 049.69 052.36 072.19 46.50

1.200 067.29 101.96 122.17 56.58

1.300 091.88 154.13 179.44 59.20

1.400 127.40 210.35 245.92 58.80

1.500 180.71 271.35 326.02 56.34

1.600 264.14 334.86 426.50 51.73
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TABLE 2

EQUIVALENT ONE-WIRE MONOPOLE UNIPOLE ANTENNA
IMPEDANCE

Freq. Resistance Reactance Magnitude Phase

Mhz ohms ohms ohms degrees

0.500 006.53 -296.43 296.50 -88.74

0.600 009.87 -213.68 213.91 -87.35

0.700 014.25 -147.94 148.62 -84.50

0.800 019.95 -092.05 094.19 -77.77

0.900 027.40 -041.85 005.00 -56.78

1.000 037.24 -005.42 037.63 08.28

1.100 050.40 051.80 072.27 45.78

1.200 068.37 098.97 120.29 55.36

1.300 093.53 148.40 175.42 57.78

1.400 129.88 201.22 239.50 57.16

1.500 184.34 257.48 316.66 54.40

1.600 268.91 313.44 412.99 49.37
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IV. COMPUTER MODELS

The basic model used in this thesis is a unipole collinear with the Z axis

and mounted perpendicular to a perfectly reflecting ground plane. Figure 4.1

illustrates this unipole antenna.

Figure 4.1 Folded Unipole Antenna Model.

The equivalent tower radius is 0.3 meters and consists of a cage of six

wires with a radius of 3 mm. The height of the tower is 71 meters with the 6

wire spoke at 71 meters. A single wire 1 meter long is extended out of the top of

the tower. Three fold wires of radius 0.3 cm are spaced around the tower at an
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angle of 120° from each other. The distance of folds from the center of the tower

is 1.2 meters and the height of the folds is 72 meters. A bracket is used to

connect the fold wires to the top of the tower. The feed point of the fold wires is

4.5 meters above the ground. The goal of this design is to operate at 1.380 Mhz

and 1.530 Mhz. Appendix C shows a typical data set used in this design for

calculating the average power gain and input impedance.

The input impedance of the antenna varies with stub height. For a stub

height of 30 meters and 1.530 Mhz, the input impedance. Z-m , equals 51 +j290

ohms (optimum antenna design for 1.530 Mhz). As frequency increases, the

input impedance also increases. Table 3 lists the variation of average power

gain, input resistance and input reactance for 1.3 Mhz to 1.6 Mhz. Figures 4.2

and 4.3 illustrate the variation of input resistance and input reactance for the

same configuration.

TABLE 3

ANTENNA MODEL WITH STUB HEIGHT
30 METERS

Freq. Aver.Pow.gain Resistance Reactance

Mhz ohms ohms

1.300 2.08 35 190

1.380 2.07 37 214

1.455 2.07 42 247

1.530 2.06 51 290

1.600 2.06 65 343

With a stub height of 34 meters, and frequency of 1.380 Mhz, input

impedance Z-m equals 51 +J250 ohms (optimum antenna design for 1.380

Mhz). Table 4 lists the variation of average power gain, input resistance and

input reactance for the same frequency range. Figures 4.4 and 4.5 illustrate the

variation of input resistance and input reactance for this configuration.
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With stub height of 32 meters the variation of average power gain, input

resistance and input reactance are listed in Table 5 over the same frequency

range. Figures 4.6 and 4.7 illustrate the variation of input resistance and input

reactance for the 32 meter stub height configuration.

With three stub heights, one at 30 meters, the second at 32 meters and the

third at 34 meters the variation of average power gain, input resistance and

input reactance for three stub heights is shown in Table 6. Figures 4.8 and 4.9

illustrate the variation of input resistance and input reactance. As can be seen

from Tables 5 and 6, the input impedance and the average power gain of the

antenna with three different stub heights are the same as for the antenna with

the stub height of 32 meters.
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TABLE 4

ANTENNA MODEL WITH STUB HEIGHT
34 METERS

Freq. Av-er. Pow. Gain Resistance Reactance

Mhz ohms ohms

1.300 2.08 45 210

1.380 2.07 51 246

1.455 2.07 61 296

1.530 2.06 79 357

1.600 2.06 110 438
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TABLE 5

ANTENNA MODEL WITH STUB HEIGHT
32 METERS

Freq. Aver. pow. Gain Resistance Reactance

Mhz ohms ohms

1.300 2.08 40 196

1.380 2.07 44 231

1.455 2.07 51 271

1.530 2.06 64 321

1.600 2.06 84 387
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TABLE 6

ANTENNA MODEL WITH THREE DIFFERENT
STUB HEIGHTS

Freq. Aver. Pow. Gain Resistance Reactance

Mhz ohms ohms

1.300 2.07 39 195

1.380 2.07 44 231

1.455 2.06 51 270

1.530 2.06 64 321

1.600 2.06 85 387
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V. ADDITIONAL FOLDED UNIPOLE ANTENNA DESIGNS

A. MULTIFREQUENCY FOLDED UNIPOLE ANTENNA
Another approach for designing the folded unipole antenna to operate at

two frequencies (1.380 Mhz and 1.530 Mhz) and to have an input resistance

close to 50 ohms is to combine the design for frequency 1.380 Mhz (antenna

with stub height 34 meters) and the design for frequency 1.530 Mhz (antenna

with stub height 30 meters). Figure 5.1 illustrates this unipole antenna.

Figure 5.1 Multi-Frequency Unipole Antenna.

39



This antenna has exactly the same tower as described before. It has six

fold wires (two pairs) spaced at an angle of 60° from each other. Each pair has

its folds spaced at an angle of 120° from each other. One pair has a stub height

of 30 meters (designed for 1.530 Mhz). The other pair has a stub height of 34

meters (designed for 1.380 Mhz). A bracket is used to connect the fold wires to

the top of the tower. Appendix D shows a typical data set used, in this design,

for calculating average power gain and input impedance. The feed points of the

fold wires are 4.5 meters above the ground. Table 7 lists the calculated average

power gain, input resistance and input reactance for 1.380 and 1.530 Mhz when

the fold wires are excited which have 34 meter high stubs. Table 8 lists the

calculated average power gain, input resistance and input reactance for 1.380

and 1.530 Mhz for excitation of fold wires which have a stub height of 30

meters. As can be seen from Tables 7 and 8 this multi-frequency folded unipole

design provides input impedance of 48 + j333 ohms for frequency 1.380 Mhz

and 60 + j430 ohms for 1.530 Mhz and favorable input impedance at rejection

frequencies.

TABLE 7

COMBINED UNIPOLE ANTENNA, FOLD
EXCITED WITH STUB AT 30 M

Freq Aver.Pow. Gain Resistance Reactance

Mhz ohms ohms

1.380 2.03 30 269

1.530 2.03 60 430

B. 60°, 90°, 135°, 180°, AND 225° FOLDED UNIPOLE ANTENNAS
The following designs are exactly the same as the design described in the

model description, except for difference in height. All these designs are over a

perfect ground plane. The feed points of the fold wires are 4.5 meters above the

ground.
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TABLE 8

COMBINED UNIPOLE ANTENNA, FOLD EXCITED
WITH STUB AT 34 M

Freq. Aver. Pow. Gain Resistance Reactance

Mhz ohms ohms

1.380 2.03 48 333

1.530 2.03 124 612

For frequency 1 Mhz, a 60° height folded unipole antenna (50 meters

height) has an imput impedance of 52 + j448 ohms with stub height of 41

meters. The average power gain of this design is 2.24. Figure 5.2 illustrates the

E field vertical radiation pattern at a distance 1KM when the input power of

the antenna is 1KW.

The 90° height folded unipole antenna (75 meters) has an input impedance

of 50 +j90 ohms with a stub height of 30 meters. The average power gain is

2.03. Figure 5.3 illustrates the E field vertical radiation pattern of the 90° folded

unipole antenna at 1 KM and 1 KW input power.

The 135° height folded unipole antenna (112 meters height) has an input

impedance of 51 + j312 ohms, with a stub high of 44 meters. The average

power gain is 2.10. Figure 5.4 illustrates the E field vertical radiation pattern of

the 135° unipole antenna at 1 KM and 1 KW input power.

Another interesting design is the 180° folded unipole antenna. For 1 Mhz

over a perfect ground, the height of the antenna is 150 meters. Table 9 lists the

average power gain, input resistance and input reactance as frequency varies

from 0.8 to 1.2 Mhz, for stub height of 51 meters. As can be seen from Table 9,

the results are very unusual from 0.8 to 1.2 Mhz. Also the NEC calculations fail

for 1 Mhz, where the average gain is -13.2. This anomaly might be caused by a

half-wave resonance condition. Appendix E shows a typical data set used, in

this design, for calculating average power gain and input impedance.
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TABLE 9

150 M HEIGHT FOLDED UNIPOLE ANTENNA

Freq. Aver. Pow Gain Resistance Reactance

Mhz ohms ohms

0.80 2.15 44 328

0.90 2.15 671 1,250

0.95 2.07 6 133

1.00 - 13.2 -0.001 -3

1.05 2.07 5 133

1.10 2.11 7 233

1.20 2.14 1 498

The 225° folded unipole antenna (188 meters height) has an input

impedance of 51 + j352 ohms with a stub height of 46 meters. The average

power gain is 2.18. Figure 5.5 illustrates the E field vertical radiation pattern at

1 KM and 1 KW input power.
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FOLDED UN1POLE ANTENNA / 60 PEG. (50M) HIGH / PEPF.GND.
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Figure 5.2 E Field Radiation Pattern. 60° Folded Unipole at 1 KM.

43



FOLDED UN1POLE ANTENNA / 90 PEG. (75M) HIGH / PERF.GND.

3 FOLD WIRES / STUB HEIGHT 30M / FREQ =1.MHZ
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Figure 5.3 E Field Radiation Pattern, 90° Folded Unipole at 1 KM.
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FOLDED UN1POLE ANTENNA / 135 PEG. (112M) HIGH / PERF.GND.

3 FOLD WIRES / STUB HEIGHT 44M / FREQ =1.MHZ
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Figure 5.4 E Field Radiation Pattern, 135° Folded Unipole at 1 KM.
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FOLDED UN1POLE ANTENNA / 225 PEG. (188M) H!GH / PERF.GND.

3 FOLD WIRES / STUB HEIGHT 46M / FREQ.=1.MHZ
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Figure 5.5 E Field Radiation Pattern, 225° Folded Unipole at 1 KM.
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VI. 90° MONOPOLE AND 90° UNIPOLE ANTENNAS

A. 90° MONOPOLE ANTENNA
The 90° monopole antenna is widely used in broadcast service. This model

consists of a monopole on the Z axis, mounted perpendicular to a finite ground

located in the X-Y plane. Figure 6.1 illustrates this monopole antenna.

Figure 6.1 90° Monopole Antenna.

The monopole has radius of 3 mm and a height of 75 meters. Twenty four

wires extend from the base of the monopole to a radius of 75 meters, arranged

as the spokes of the wheel. The wires are buried under the ground plane at a
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depth of 0.5 meters and are connected to the base by short wires slanting up at

a 45° slope (eight of the radial wires are illustrated in figure 6.1). The radius of

radial and slant wires is also 3 mm. Appendix F shows a typical data set used in

this design for calculating the average power gain and input impedance for 1

Mhz, relative dielectric constant of 15 and conductivity of 0.004 Mhos/Meter.

The average power gain is 0.78 and input impedance Z-m equals 45 + j288

ohms. Figure 6.2 illustrates the electric field strength pattern of this antenna at

a distance of 1 KM when the input power of the antenna is 1 KW.

B. 90° UNIPOLE ANTENNA
This antenna consists of a monopole (tower) on the Z axis, mounted

perpendicular to a finite ground plane. Figure 6.3 illustrates this unipole

antenna.

This unipole antenna is 75 meters high and its radius is 3 mm. Three fold

wires with a radius of 3 mm are arranged around the tower, spaced at an angle

of 120°. The fold wire distance from the monopole is 0.9 meters. The top

bracket is at height 75 meters and the bottom at 1 meter. Twenty-four wires of

radius 0.3 mm extend from the base of the monopole to a radius of 75 meters,

arranged like the spokes of a wheel. The wires are buried under the ground

plane at a depth of 0.5 meters and are connected to the base by short wires

slanting up at 45°. Appendix G shows a typical data set used, in this design for

calculating the average power gain and input impedance. For 1 Mhz, relative

dielectric constant of 15 and conductivity of 0.004 Mhos/Meter the average

power gain is 0.79, and the input impedance is Z-m = 836 + j859 ohms. Figure

6.4 illustrates the electric field strength of this unipole antenna at a distance of 1

KM when the input power of the antenna is 1 KW. As we can see from Figures

6.2 and 6.4 the E field radiations patterns of the 90° monopole and 90° unipole

antennas are exactly the same.
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MONOPOLE ANTENNA / 90 PEG. (75M) HIGH / FINITE GROUND
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Figure 6.2 E Field Radiation Pattern, 90° Monopole at 1 KM.
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Figure 6.3 90° Unipole Antenna.
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UNIPQLE ANTENNA / 90 PEG. (75M) HIGH / FINITE GROUND

24 RADIAL WIRES / 0.5M DEEP/90 DEG. LONG / FREQ =1.MHZ
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Figure 6.4 E Field Radiation Pattern, 90° Unipole at 1 KM.
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VII. FOLDED UNIPOLE ANTENNA DESIGNS BY MULLANEY, P.E.

Table 10 contains a tabulation for a 60° triangular tower with various

parameters for the folds located at the sides or near the apexes of the tower

[Ref. 1: p. 9]. According to Mullaney, for the purpose of calculation when the

folds are arranged near the apexes of the tower, a cylindrical tower with

diameter b= t/1.73, where t is the tower side width, may be substituted. When

the folds are arranged near the sides of the tower a cylindrical tower with

diameter b = t/4 may be used.

The tower is 165 feet tall (50 meters), the radius of the folds is 0.125 inches

(0.0032 meters) and the operating frequency is 1 Mhz. Table 10 lists the tower

width (inches), the fold separation from the tower (inches), the fold location, the

stub height from the top of tower, and the input impedance for six of these

designs.

TABLE 10

FOLDED UNIPOLE ANTENNA DESIGNS
BY MULLANEY, P.E.

Tower Spacing Location Stub Hei ght from Input

Width of Folds Top of Tower Impedance

(inches) (inches) (feet) (ohms)

36 36 side 30.27 50 + j505

36 36 apex 30.61 30 + J394

24 24 side 20.69 50 + J561

24 24 apex 21.54 21 + j358

18 18 side 14.54 50 + J561

18 18 apex 17.27 17 + j336
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Table 1 1 lists the average power gain and the input impedance of the same

designs calculated using NEC, with Mullaney's equivalent tower radii.

TABLE 11

FOLDED UNIPOLE ANTENNA DESIGNS
USING NEC

Tower Spacing Location Average Input

Width of Folds Power Impedance

(inches) (inches) Gain (ohms)

36 36 side 1.56 266 + j710

36 36 apex 1.37 1,425 + j 1 ,101

24 24 side 1.55 2,324 + j746

24 24 apex 1.36 302 + j818

18 18 side 1.64 2,473 + jl ,102

18 18 apex 1.00 51 + J391

As we can see from Table 11, the average power gain for these designs is

not 2 (or close to 2). Appendix H illustrates a typical data set used to calculate

the average power gain and the input impedance for a folded unipole antenna

design of 60° with 18 inch separation of folds from the side of an 18 inch wide

tower.

It is important to mention that Mullaney's approximations are very simple

and do not represent a structure which can be modeled numerically.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
This thesis has investigated the input impedance of a 72 meter folded

unipole antenna with three fold wires. The results indicate that the variation of

the input impedance is smaller than for the equivalent monopole antenna. Also

the design of a multi-frequency antenna was investigated for operation at 1.380

and 1.530 Mhz. The results indicate that this antenna can be used as a

multifrequency antenna and will reduce the multiplexer circuit complexity by

providing favorable input impedance at rejection frequencies. It is also shown

that the folded unipole antenna has all of radiation characteristics of the

monopole antenna (E-field radiation patterns are the same). An important

observation was the failure of NEC to calculate the input impedance of the half-

wave 180° folded unipole antenna.

It is apparent from this study that the determination of the input

impedance of the folded unipole antenna via numerical modeling techniques is

complex and various factors control its magnitude. Some of these factors are:

the complex tower-top geometry, the feed point height, the fold-wire radius, and

the fold-wire distance from the tower.

Two considerations not apparent in this study are structural and

environmental problems. The spacing of the folds from the tower can cause

wind loading problems, depending upon the size of the tower and its wind

loading capacity. Also, the accumulation of ice on the fold wires can cause the

VSWR to increase and detune the transmitter-antenna system as the base

impedance changes.

B. RECOMMENDATIONS
There are many aspects of this study, which warrant further investigation.

• Determination of the unipoles response for shorter electrical heights.

• Design of multi-frequency unipoles for frequency pairs more widely

spaced than those studied here.

• Design of multi-frequency unipoles for three frequencies.
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Investigation of the 180° (150M high) design to find the nature of the

NEC failure.

Model Mullaney's designs with the NEC model developed in this thesis to

see if this model agrees with Mullaney approximate method.

In the two frequency 6 fold-wire design, variation of stub height may

produce an input resistance of 50 ohms for both 1.380 and 1.530 Mhz.
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APPENDIX A

INTEGRAL EQUATIONS (IE)

The NEC code uses both an electric-field integral equation (EFIE) and a

magnetic-field integral equation (MFIE) to model the electromagnetic response

of general structures. The EFIE is well suited for thin wire structures of small or

vanishing conductor volume while the MIEF. is more attractive for large smooth

closed surfaces. For a structure containing both wires and surfaces the EIEF

and MIEF are coupled.

1. ELECTRIC FIELD INTEGRAL EQUATION
the EFIE for thin wires used in NEC is given by:

-i i d2

-^•E 1 (r)=
frrn I(s')(s«s'k

2
-—-—) g(f.r') ds' (eqn A.l)

4ttoj£
^ {l)

c
s
c
s

<

Where:

s = distance along the wire axis r.

s' = unit vector along the wire axis.

E'er) = incident electric field at r.

o) =2k f

c = permittivity.

I(s') = axial current.

k = OvTTe

\i = permeability.

F = source point.

7' = observation point.

g(f.F) = exp(-jkR) R =free space Green's function.

R = [f-F].
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2. MAGNETIC FIELD INTEGRAL EQUATION
The MFIE for closed conducting surfaces other than wires used in NEC is

eiven bv:

.A —\nr ... » A /

J
s

(r) = 2n x H inc
(r) + -— n x Js

J
s
(?) x V g ds re S (eqn A. 2)

Where:

J (?) = surface current density.

H inc
(r) = incident magnetic field at the observation point.

n = unit normal vector.

57



APPENDIX B

NEC INPUT CARD SUMMARY

1. COMMENT CARDS
CM: description of run.

CE: description of run.

2. STRUCTURE GEOMETRY CARDS.

GA: wire arc.

GE: end geometry data.

GF : use numerical Green's function.

GM : shift and duplicate structure.

GP : suppress geometry print.

GR : generate cylindrical structure.

GS : scale structure dimentions.

GW : specify wire.

GX : reflected structure.

SP : specify surface patch.

SM : generate multiple surfaces patches.

3. PROGRAM CONTROL CARDS.

a. Alter Matrix.

EK : extended thin wire kernel flag.

FR : frequency specification.

GN : ground parameter specification.

KH : interaction approximation range.

LD : structure impedance loading.

b. Alter Current.

EX : structure excitation card.

NT : two port network specification.

TL : transmission line specification.

c. Performance Selection.

CP : compute maximum coupling.

EN : end of data flag.
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GD : additional ground parameter specifications.

NE : near electric field.

NH : near magnetic field.

NX : next structure flag.

PQ : wire charge density print control.

PT : wire current print control.

PR : radiation pattern.

WG : write numerical Green's function file.

XQ : execute card.

The required cards used in every NEC model are CE, GE, EX, and EN.
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APPENDIX C

MODEL GEOMETRY DATA CARDS

CM Test for various radii for a unipole

CM Antenna good for 1.380 Mhz

CM Start with the real world:

CM
CM Equivalent tower rad = 0.3 meters.

CM Top bracket rad = 3 cm.

CM Fold wire rad = 3 mm.

CM
CM Vary radii of top bracket as the tower is made thinner

CM
CM May have to build a tower from a cage of wires with

CM Spokes at top and a single wire out the top to connect to the bracket

CE

GW 3,1,0.0.3,10,0,0,10,0.003 Cage tower, top horiz wire

GW 4,4.0.0.3.0,0,0.3,8,0.003

GW 4,1,0,0.3.8,0,0.3,9.0.003

GW 4,2,0,0.3,9,0,0.3,10.0.003

GM 0,0,0.0,0,0.0.61,003.004

GW 4,9,0,0.3,0,0,0.3,27,0.003 Make a 6 wire cage

GW 4,4,0,0.3,27,0,0.3,31,0.003

GW 4,4.0,0.3,31,0,0.3,37,0.003

GW 4,1.0,0.3,37,0,0.3,39.0.003

GW 4,11,0,0.3,39,0,0.3,61,0.003

GR4,6

GW 1,9,0,1.2,0,0,1.2,27,0.003

GW 1,4,0,1.2,27,0,1.2,31,0.003

GW 1,4,0,1.2,31,0,1.2,37,0.003

GW 1,1,0,1.2,37,0,1.2,39,0.003

GW 1,11,0,1.2,39,0,1.2,61,0.003

GW 2,4,0,1.2,0,0,1.2,8,0.003
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GW 2,1,0,1.2,8,0,1.2,9,0.003

GW 2,2,0,1.2,9,0,1.2,1 1,0.003

GW 2,2,0, 1 .2,1 1 ,0,0, 1 1 ,0.003 Top bracket

GM 4,2,0,0,120,0,0,0,001.002

GW 2,3,0,0,10,0,0,1 1,0.003

GM 0,0,0,0,0,0,0,61,002.002

GM 0,0,0,0,0,0,0,61,006.006

GM 0,0,0,0,0,0,0,61,010.010

GW 110,1,0,1.2,30,0,0.3,30,0.003 Stub

GM 1,2,0,0,120,0,0,0,110.110

GE 1

GN 1

FR 0,2,0,0,1.455,0.145

EX 0,1,2

EX 0,5,2

EX 0,9,2

RP 0,19,9,1512,0,0,5,15

EN
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APPENDIX D

GEOMETRY DATA CARDS: MULTI-FREQUENCY FOLDED UNIPOLE
ANTENNA

CM Test for various radii for a unipole

CM Start with the real world:

CM Equivalent tower rad = 0.3 meters

CM Top bracket rad = 3 cm.

CM Fold wire rad = 3 mm
CM
CM Vary radii of top bracket as the tower is made thinner

CM
CM May have to build a tower from a cage of wires with

CM Spokes at top and a single wire out the top to connect to the bracket

CE
GW 3,1.0,0.3,10,0,0.10,0.003 Cage tower, top horizontal wire

GW 4,4,0,0.3,0,0,0.3,8,0.003

GW 4,1,0,0.3,8,0,0.3,9,0.003

GW 4,2,0,0.3,9,0,0.3,10,0.003

GM 0,0,0,0,0,0,0,61,003.004

GW 4,9,0,0.3,0,0,0.3,27,0.003 Make a 6 wire cage

GW 4,4,0,0.3,27.0,0.3,31,0.003

GW 4,6,0,0.3,31,0,0.3,37,0.003

GW 4,1,0,0.3,37,0,0.3,39,0.003

GW 4,1 1,0,0.3,39,0,0.3,61,0.003

GR4,6

GW 1,9,0,1.2,0,0,1.2,27,0.003

GW 1,4,0,1.2,27,0,1.2,31,0.003

GW 1,6,0,1.2,31,0,1.2,37,0.003

GW 1,1,0,1.2,37,0,1.2,39,0.003

GW 1,11,0,1.2,39,0,1.2,61,0.003

GW 2,4,0,1.2,0,0,1.2,8,0.003

GW 2,1,0,1.2,8,0,1.2,9,0.003

GW 2,2.0,1.2,9,0,1.2,1 1,0.003
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GW 2,2,0, 1 .2, 1 1 ,0,0, 1 1 ,0.003 Top bracket

GM 4,2,0,0,120,0,0,0,001.002

GW 2,3,0,0,10,0,0,11,0.003

GM 0,0,0,0,0,0,0,61,002.002

GM 0,0,0,0,0,0,0,61,006.006

GM 0,0,0,0,0,0,0,61,010.010

GW 110,1,0,1.2,34,0,0.3,34,0.003

GM 1,2,0,0,120,0,0,0,110.110

GW 5 1 ,9, 1 .0392305,0.6,0, 1 .0392305,0.6,27,0.003

GW 51,10,1.0392305,0.6,27,1.0392305,0.6,37,0.003

GW 5 1 , 1 , 1 .0392305.0.6,37, 1 .0392305,0.6,39,0.003

GW 51,1 1,1.0392305,0.6,39,1.0392305,0.6,61,0.003

GW 52,4,1.0392305,0.6,0,1.0392305,0.6,8,0.003

GW 52,3,1.0392305,0.6,8,1.0392305,0.6,11,0.003

GW 52,2, 1 .0392305,0.6, 1 1 ,0,0, 1 1 ,0.003

GM 4,2,0,0,120,0,0,0,051.052

GM 0,0,0,0,0,0,0,61,052.052

GM 0.0.0,0,0,0,0,61,056.056

GM 0,0,0,0,0,0,0,61,060.060

GW 2 1 0, 1 , 1 .0392305,0.6,30,0.25980762,0. 1 5,30,0.003

GM 1,2,0,0,120,0,0,0,210.210

GE 1

GN 1

FR 0,0,0,0,1.530

EX 0,1,2

EX 0,5,2

EX 0,9,2

RP 0,19,9,1512,0,0,5,15

EN
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APPENDIX E

180° FOLDED UNIPOLE ANTENNA DATA CARDS

CM Test for various radii for a unipole

CM
CM Start with the real world:

CM
CM Equivalent tower rad = 0.3 meters

CM Top bracket rad = 3 cm.

CM Fold wire rad = 3mm
CM
CM Vary radii of top bracket as the tower is made thinner

CM May have to build a tower from a cage of wires with

CM Spokes at top and a single wire out the top to connect to the bracket

CE

GW 3,1,0.0.3,10,0,0,10,0.003 Cage tower, top horizontal wire

GW 4,2,0,0.3,0.0,0.3,6,0.003 Cage tower, cage vertical wire

GW 4,1.0,0.3,6,0,0.3,8,0.003

GW 4,1,0.0.3,8,0,0.3.9,0.003

GW 4.2.0.0.3,9,0,0.3.10,0.003

GM 0.0,0,0,0,0.0,139,003.004

GW 4.2,0,0.3,0,0,0.3,6,0.003 Make a 6 wire cage

GW 4,7,0,0.3,6,0,0.3,45,0.003

GW 4,1,0,0.3,45,0,0.3,48,0.003

GW 4,1,0.0.3,48,0,0.3,50,0.003

GW 4,4.0,0.3,50,0,0.3,54,0.003

GW 4,1,0,0.3,54,0,0.3,56,0.003

GW 4,1,0,0.3,56,0,0.3,59,0.003

GW 4,14,0,0.3,59,0,0.3,139,0.003

GR4,6

GW 1,2,0,1.2,0,0,1.2,6,0.003

GW 1,7,0,1.2,6,0,1.2,45,0.003

GW 1,1,0,1.2,45,0,1.2,48,0.003
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GW 1,1,0,1.2,48,0,1.2,50,0.003

GW 1,4,0,1.2,50,0,1.2.54,0.003

GW 1,1,0,1.2,54,0,1.2,56,0.003

GW 1,1,0,1.2,56,0,1.2,59,0.003

GW 1,14,0,1.2,59,0,1.2,139,0.003

GW 2,2,0,1.2,0,0,1.2,6,0.003

GW 2,1,0,1.2,6,0,1.2,8,0.003

GW 2,2,0,1.2,8,0,1.2,10,0.003

GW 2,2,0,1.2,10,0,1.2,1 1,0.003

GW 2,2,0, 1 .2, 1 1 ,0,0, 1 1 ,0.003 Top bracket

GM 4,2,0,0,120,0,0,0,001.002

GW 2,2,0,0,10,0,0,1 1,0.003

GM 0,0,0,0,0,0,0,139,002.002

GM 0,0,0,0,0,0,0,139,006.006

GM 0,0,0,0,0,0,0,139,010.010

GW 110,1,0,1.2,51,0,0.3,51,0.003

GM 1,2,0,0,120,0,0,0,110.110

GE 1

GN I

FR 0.0,0,0.1

EX 0,1,2,01

EX 0,5,2,01

EX 0,9,2,01

RP 0,19,9,1512,0,0,5,15

EN

65



APPENDIX F

90° MONOPOLE ANTENNA DATA CARDS

CM
CE

GW 1,1,0,0,0,0,0,1,0.003 Monople wire

GW 1,1.0,0.1,0.0.3.0.003

GW 1,1,0,0,3,0.0,6,0.003

GW 1,1.0.0,6,0,0,10,0.003

GW 1,7,0,0,10,0,0,75,0.003

GR0.24

GW 2,1.0,0,0,0.5,-0.5,-0.5,0.003 Slant wire

GW 3,1 .0.5,-0.5,-0.5,1 .5.-0.5,-0.5,0.003 Radial wire

GW 3,1.1.5,-0.5.-0.5,3,-0.5,-0.5.0.003

GW 3,1,3,-0.5,-0.5,5.-0.5,-0.5.0.003

GW 3,1,5,-0.5,-0.5,9,-0.5,-0.5,0.003

GW 3.10,9,-0.5,-0.5,75,-0.5,-0.5,0.003

GE-1

GN 2,0,0.0,15.0.004

FR 0.2.0,0,1.38,0.15

EX 0,1,3

PL 3,1,1

RP 0,19,9,1512,0,0,5,15

XQ
EN
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APPENDIX G

90° UNIPOLE ANTENNA DATA CARDS

CM
CE

GW 1,2,0,0,0,0,0,2,0.003 Monopole wire (tower)

GW 1

GW 1

GW 1

GW 1

GW 1

GW 1

GW 1

GW 1

GW 1

GW 1

GR0,

GW2
GW3
GW3
GW3
GW 3

GW3
GW3
GW3
GW3
GW3
GW3
GW3
GW4
GW5
GW6
GW6

2,0,0,2,0,0,6,0.003

1,0,0,6,0,0,10,0.003

1,0.0,10,0,0,18,0.003

1,0,0,18,0,0,33,0.003

1,0,0,33,0,0,53,0.003

1,0,0,53,0,0,63,0.003

1,0,0,63,0.0,68,0.003

1,0,0,68,0,0,71,0.003

1,0,0,71,0,0,73,0.003

2,0,0,73,0,0,75,0.003

3

1,0,0.9,75,0,0,75,0.003 Top bracket

1,0,0.9,1,0,0.9,2,0.003 Fold wire

2,0,0.9,2,0,0.9,6,0.003

1,0,0.9,6,0,0.9,10,0.003

1,0,0.9,10,0,0.9,18,0.003

1,0,0.9,18,0,0.9,33,0.003

1,0,0.9,33,0,0.9,53,0.003

1,0,0.9,53,0,0.9,63,0.003

1,0,0.9,63,0,0.9,68,0.003

1,0,0.9,68,0,0.9,71,0.003

1,0,0.9,71,0,0.9,73,0.003

1,0,0.9,73,0,0.9,75,0.003

1,0,0,1,0,0.9,1,0.003 Bottom bracket

1,0,0,0,0.5,-0.5,-0.5,0.003 Slant wire

1,0.5,-0.5,-0.5,1.5,-0.5,-0.5,0.003 Radial wire

1,1.5,-0.5,-0.5,3,-0.5,-0.5,0.003
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GW 6,1,3,-0.5,-0.5,5,-0.5,-0.5,0.003

GW 6,1,5,-0.5,-0.5,9,-0.5,-0.5,0.003

GW 6,1.9,-0.5,-0.5,17,-0.5,-0.5,0.003

GW 6,1,17,-0.5,-0.5,33,-0.5,-0.5,0.003

GW 6,1,33,-0.5,-0.5,49,-0.5,-0.5,0.003

GW 6,1,49,-0.5,-0.5,75,-0.5,-0.5,0.003

GM 0,7,0,0,15,0.0,0,005.006

GE-1

GN 2,0,0,0,15,0.004

FR 0,0,0,0,1

EX 0,1,3

PL 3,1,1

RP 0,181,1,1000,-90,0,1,0,1000

XQ
EN
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APPENDIX H

GEOMETRY DATA CARDS 60° FOLDED UNIPOLE ANTENNA,
MULLANEYS APPROXIMATIONS

CM Height 60°, freq. 1 Mhz

CM Fold wire radius 0.125 inches

CE

GW 1 , 1 3,0.404 1 ,0.404 1 ,0,0.404 1 ,0.404 1 ,39,0.0032 Fold wire

GW 1 , 1 ,0.404 1 ,0.404 1 ,39,0.404 1 ,0.404 1
,4 1 ,0.0032

GW 1 ,2,0.404 1 ,0.404 1 ,4 1 ,0.404 1 ,0.404 1 ,43,0.0032

GW 1 ,4,0.404 1 ,0.404 1 ,43,0.404 1 ,0.404 1 ,45.6,0.0032

GW 1 ,6,0.404 1 ,0.404 1 ,45.6,0.404 1 ,0.404 1 ,50,0.0032 Stub

GW 2,1,0.4041,0.4041,50,0,0,50,0.0032 Top bracket

GW 3,1 ,0.404 1 ,0.404 1 ,45.6,0,0,45.6,0.0032

GR 3,3

GE 1

GN 1

FR 0,0,0,0,1

WG
NX
CE

GF
GW 10,13,0,0,0,0,0,39,0.0572 Equivalent tower

GW 10,1,0,0,39,0,0,41,0.0572

GW 10,2,0,0,41,0,0,43,0.0572

GW 10,4,0,0,43,0,0,45.6,0.0572

GW 10,6,0,0,45.6,0,0,50,0.0572

GE 1

EX 0,1,1

EX 0,4,1

EX 0,7,1

RP 0,19,9,1512,0,0,5,15

XQ
EN
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