
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1987

Design and implementation of a debugger for
an abstract machine.

Victrum, Stanley.

https://hdl.handle.net/10945/22234

Downloaded from NPS Archive: Calhoun

5£

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
DESIGN AND IMPLEMENTATION OF A

DEBUGGER FOR AN ABSTRACT MACHINE

by

Stanley Victrum

June 19 87

Thesis Advisor: Daniel L. Davis

Approved for public release; distribution is unlimited

T 233691

UNCLASSIFIED
ECuft'TY Classification Of t H iS ?a.Gc

REPORT DOCUMENTATION PAGE
j REPORT SECURITY CLASSIFICATION

Unclassified
16 RESTRICTIVE MARKINGS

h security Classification authority 3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
Distribution is unlimited

1 DECLASSIFICATION /OOwnGRAOinG SCHEDULE

j
PERFORMING ORGANIZATION REPORT NUMflER(S) S MONITORING ORGANIZATION REPORT NUM8£R(S)

NAME OF PERFORMING ORGANIZATION

Javal Postgraduate Schoo.

6b OFFICE SYMBOL
(if aopixable)

. Code 52

7a NAME OF MONiTORiNG ORGANIZATION

Naval Postgraduate School

ADDRESS (Gry. Stiff and ZIP Code)

lonterey, California 939^3-5000

:b AOORESS(Gry, State, and UP Codes

Monterey, California 939^3-5000

NAME OF mjNOING/ SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If jooiic tote:

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

AOORESS(Gry State, and ZIP Cod*) 10 SOURCE OF fijNOiNG NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TAS<
NO

WORK JNl
ACCESSION NO

TiTLE \inclua* Security Claudication)

DESIGN AND IMPLEMENTATION OF A DEBUGGER FOR AN ABSTRACT MACHINE (u)

4'P£RSONA L AuThOR(S)

jlctrum, Stanley
f ji 3b T'ME COVERED

thesis 1
from t(

f type OF REPOR

taster's Th
14 DATE OF REPORT (Yetr Month Day)

19 87 June
15 PAGE COuNT
138

8>L.PPlEMENTARY NOTATION

COSATi COOES
t ElO GROUP SUBGROUP

18 SuSjECT TERMS (Continue on reverie if neceuary and identify by block number)

Interactive debugger; Software portability;
Resource abstraction; Formal specifications;
Abstract machine; Representation independence;

9 -BSTRACT (Continue on reverie if neceuary and identify by bloxk number)

Conventional computer architectures do not allow us to unambiguo
Express our intent in a computer program. The combination of arti
ata types and resource models force ambiguity and data structure o

hading. For example, the semantics of a stack combine those of a
Itructure and a last-in-first-out queue, while the entire : st
Is implemented in computer memory as a group :

' 'ixed ien;; -
.^ ;ells

pd other machine-data type dependencies can markedly namper softw
brtability. To overcome these obstacles, a means of formally spe

|
computing machine's physical resources in an implementation inde

jay has been proposed. Creating an abstraction of the computer's
111 resources in this manner lets the implementor of the specifica
Learly determine the intent of programs written for it. This abs
Hon has come to be known as the Abstract Machine or AM.

usly
ficial
ver-
n array

are
cifying
pendent
physi-
tions
trac-

S'R'3UTiON /AVAILABILITY OF ABSTRACT
QjNCLASSiFiEOAJNLiMlTED Q SAME AS RPT QDTiC USERS
aliAME OF RESPONSIBLE iNOiViOUAL

liniel Davis

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
22b TELEPHONE (Include Area Code)

(408) 646-3091
22c OFFICE SYMBOL
Code 52Dv

)RM "!473.30mar 33 APR edition rn.iv o« uied until e«n«uited

All otner edition) tie obiol«t«
,ECURity kSSlUf.ATiON)F "-"S J4(,;

UNCLASSIFIED

r"KT/Tf 3 JT —I
*1 > *>

. / _i H ^j w '
- '

SECURITY CLASSIFICATION OF THIS PAGE (Whmt Dmtm Enfr»<Q

3 SUBJECT TERMS (continued)

Functional interfaces

.

IT [continued)

le implementation Df these resource specifications has
already been accomplished. Several programming tools , such as
a programming language compiler and a visual display device, have
also been created (in software) for use with this AM's implemen-

;ion. :/: present, however, -here ire no means for interact
lisplaying and alterin = --onge resources ; le Abstract

Machine for debugging purposes. For ;he curre.. M implementa-
n, the bulk of the automated debugging tools consist of

assembler code cracing and listing options that can be chosen at
run bime. = ^oai Df this thesis is co build -in inter

;ger for the Abstract Machine near uhe assembler code level.
This should expedite the process of producing relatively error-
free, executable programs while using a smaller amount of time
and effort. The debugger will serve as another building block
in the creation of a complete programming environment for the
Abstract Machine. This in turn will assist in the general study
of minimizing the software portability problems that arise be-
cause of machine-software dependencies.

601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS RAGE(TTh«n Dmlm Bnfrmd)

Approved for public release, distribution is unlimited

Design and Implementation of a

Debugger for an Abstract Machine

by

Stanley Victrum
First Lieutenant, United States Marine Corps

B.A., The Citadel, 1982

Submitted in partiai fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June !937

ABSTRACT

Conventional computer architectures do not allow us to unambiguously

express our intent in a computer program. The comDination of artificial data

types and resource models force ambiguity and data structure overloading.

For example, the semantics of a stack combine those of an array structure

and a last-in-first-out Queue, while the entire stack structure is

implemented in computer memory as a group of fixed length cells. This and

other machine-data type dependencies can markedly hamper software

DortaDiiity. To overcome these obstacles, a means of formally specifying a

computing macnme's physical resources in an implementation indepenaent

way ias oeen proposed. Creating an abstraction of the computer's physical

resources in this manner lets the implementor of the specifications clearly

determine the intent of programs written for it. This abstraction has come

to be known as the Abstract Machine or AM.

One implementation of these resource specifications has already been

accomplished. Several programming tools, such as a programming language

compiler and a visual display device, have also been created (in software) for

use with this AM's implementation. At present, however, there are no means

for interactively displaying and altering the storage resources of the

Abstract Machine for debugging purposes. For the current AM

mpiementaticn. 'he bulk of 'he automated lepugging tools zonsist rr"

assembler code tracing and listing options that can be chosen at run time.

The goal of this thesis is to build an interactive debugger for the Abstract

Machine near the assembler code level. This should expedite the process of

producing relatively error-free, executable programs while using a smaller

amount of time and effort. The debugger will serve as another building block

in the creation of a compiete programming environment for the Abstract

Machine. This in turn will assist in the general study of minimizing the

software portability problems that arise because of machine-software

dependencies.

TABLE OF CONTENTS

I. INTRODUCTION 9

II. BACKGROUND 11

A. THE PRGBLEM 1

1

B. A FEASIBLE SOLUTION: AM 1

3

C. RELATED RESEARCH 1

4

III DESIGN 15

A. BASIC COMPUTER RESOURCE ORGANIZATION 1

5

1. Computer Resources 15

2. Computer Data Structures 17

3. Instructions to the Computer 19

B. DESIGN OF THE INTERACTIVE DEBUGGER 20

1. Phiiosopny 20

2. DeDugger interface to the Physical Resources 23

3. DeDuaaer interface to the User 24w w

IV. IMPLEMENTATION 26

A ASSUMPTIONS 26

B. DEBUGGER COMMAND SYNTAX SYMBOLS 26

C. INTERACTIVE DEBUGGER OPERATIONS 26

1. Display Operations 26

a. Display Memory 27

b. Display Register 27

c. Display Stacktop 28

d. Display Breakpoints 28

e. Display Program Counter 29

2. Set Operations 29

a. Set Memory 29

o. 5et Register 30

c. Set Stacktop 30

d. Set Breakpoint 31

e. Set Program Counter 32

3. Remove Breakpoint Operation 32

4. Trace Execution Operations 33

a. Trace On 33

b. 7rac2 Off 33

c. Trace n 34

5. Go Operations 34

a. Go Uncontrolled 34

b: Go n 35

6. Help Operation 35

D. DEBUGGER CONTROL OF MACHINE EXECUTION 35

!. Debugflag 36

2. DeDgtask 36

3. Left2do 36

4. Oebgcnt! 36

5. Brsakflg 38

5. Errorflg 33

7. Qbgtrace 38

E. ERROR HANDLiNG IN PROGRA.fi EXECUTION 33

F. MODIFICATIONS TO AH IMPLEMENTATION 39

V. CONCLUSIONS AND FUTURE WORK 40

APPENDIX A: SAMPLE SESSIONS 41

APPENDIX B: DEBUGGER COMMAND SYNTAX SYMBOLS 70

APPENDIX A: DEBUGGER PROGRAM FILES 71

LIST OF REFERENCES 135

INITIAL DISTRIBUTION LIST 1 36

LIST OF FIGURES

Figure 2.1

Figure 2.2

r iaure 2.3

Figure 3.1

Figure 3.2

r iaure 3.Z

Figure 3.4

-igure 3.5

Figure 4.1

The Semantic Gap 1

1

Data Type Dependency on Hardware Values 12

Narrowing the Semantic Gap 14

Computer Program in AM Implementation 17

Data Value Structures 18

Common Value Abstraction 19

Primary Resource Structures 20

Structure of instruction Value 21

CeDugger Control VariaDies 37

8

II INTRODUCTION

In the days when the assemoiy language programmer was king ana

higher-levei programming languages were still unimplemented concepts on

the "drawing board," crude were the tools the programmer could wieid in his

programming environment to quickly conquer coding problems. During this

period, CPU time was money, thus efficient programs were a must (as well as

a source of pride and means of security for the programmer). The

programmer was expected to massage the computing machine's stacks,

registers and memory to eke out as efficient a program as possible.

To write efficient programs, the programmer typically included <n his

program code assumptions about his computing machine's physical

resources. These assumptions, such as the number of registers available, the

machine's representation of data types, and the physical implementation of

the stacks, were "hardwired" into the programmer's code. Of course, errors

in the program required intimate knowledge of all these assumptions. Events

such as upgrading the machine or replacing it with one of a slightly different

architecture typically caused program nightmares with previously "bug-free"

programs going haywire because the resource assumptions had changed. This

situation, unfortunately caused even more assumptions to be incorporated

into the code, typically In the form of program "patches." This cycle, if

allowed to continue, can so disfigure the original intent of the program, it

soon becomes difficult, at best, to interpret it.

Conventional computer architectures do not allow us to unambiguously

express our intent in a computer program. The combination of artificial data

types and artificial resource models force ambiguity and data structure

overloading. For example, the semantics of a stack combine those of an

array structure and a last-in-first-out queue, while the entire stack

structure is implemented in comouter memory as a group of fixed iength

cells. This and other machine-data type dependencies can markedly hamper

software portability. To overcome these obstacles, a means of formally

specifying a computing machine's Dhusical resources in an imDlementation

independent way has been proposed (Davis[1984]). Creating an abstraction of

the comouter's physical resources in this manner lets the implementor of the

specifications clearly determine the intent of programs written r'or it. This

abstraction has come to be known as the Abstract Machine or AM.

One mDlementaticn of these resource specifications nas already been

accomplished (Yurchak(1984j). Several programming tools, such as a

programming language compiler (Ozisik[1986l) and a visual display device

(Hunter[1985l), have also been created (in software) for use with this AM's

implementation. At present, however, there are no means for interactively

displaying and altering the storage resources of the Abstract Machine for

debugging purposes. The current debugging tools consist of assembler code

tracing and listing options that can be chosen only at run time. This thesis'

goal is to build an interactive debugger for the Abstract Machine near the

assembler code level. This should expedite the process of producing

'atively 2rror-free, sxecutaDie urograms vmie using : smaller :mcunt ;t

time and effort. The debugger will serve as another building block in the

creation of a complete programming environment for the Abstract Machine.

This in turn will assist in the general study of minimizing the software

portability problems that arise because of machine-software dependencies.

10

H- BACXGRCUND

A. THEPflCBLEM

In his Masters thesis, Yurchak[1984] presented a formal specification for

an Abstract (computing) Machine which he called AM. This AM was to be used

to study and offer a way of minimizing the orcblem of porting software from

one computing machine to another.

Programming Tools
1*:!:!::!

;•;•:•;

h**- "Yt

:t
? r 3 a i a m Sol y i n g

P

fl b * r r a t (: i a n

X I X I i > i i • i TLi t jv
u±l

; t ip » T,•.••• ,i ;V
lINj -—-^

. \. ,
•

,

^ The Semantic Gap " 3

i « i i i

Physical Resource Abstraction
-^ •

• •

:

'

^|/
• •

: • ;

• •

•

(p
- • • •

• |jT|:j

Hardware
i i i i

Figure 2.1: The Semantic Gap

Yurchak[1984] noted that porting large programs between computing

macnmes is in expensive ordeal in rerms of programmer "ime ana effort.

This predicament is brought on because of the wide semantic gap (as shown

in Figure 2.1 above) between the programmer's problem solving abstraction

(i.e. programming languages, development tools, etc.) and the computing

machine's physical resources abstraction (i.e. addresses, registers, stacks,

11

etc). In his words, this gap between the two abstractions was,

simDlistically speaking, a "boundary" between the software used by the

programmer to form problem solutions and the hardware by which those

solutions are impiemenced.

»
' » » » » »

Character Strinq

(Programm i n g A bstract ion)
j

; i

T h

m — * * - -

S X

f\\- \r. r S

54 6S I 65 69 > \ 2E 74

_4^

78 74)0

Computer Memoru,
:(Hftrrtwf*rfi Ahstrar.tinrO

:

Figure 2.2: Data Type Dependency on Hardware Ualues

Generally, a computing machine has but a few primitive structures on

which the rest of the problem solving abstraction is based. Typically, there

exists a strong bond between the way data types are implemented and the

manner in which they are represented in hardware. For example, a character

string is typically represented as an array of memory cells, with each cell

containing the corresponding integer representation of the corresponding

character in the character string. Figure 2.2 above depicts this relationshiD.

If 'he fextuai "^presentation of "he values in comouter memory were to be

removed, the meaning of the values could not be determined. They could be

integers, memory addresses or numeric symbols for other artificial data

types. The context of the values must be determined before they can be given

meaning. This situation typically leads to overloading of the primitive data

12

types of the machine, allowing the programmer to treat one data type as

another, thus compromising the data structure typing. This compromise

typically causes extensive program changes in the data structure definitions

when porting the program from one architecture to another.

B. A FEASIBLE SOLUTION: AM

In proposing a solution to the software portability problem, Davis[1984l

formulated a methodology for formally specifying a computer's resources at

different levels of abstraction. His approach was to develop formal

specifications for the functional interfaces between the resources of the

computing machine. In this way, the user need only be concerned with the

functional interface to a particular aostraction level and not the actual

interface implementation, which could be done in hardware or software. To

ascertain the feasibility of this new methodology, Yurchak[1984] designed

and implemented a test version of the specifications for a computer

processor, which has become to be known as the Abstract Machine.

Davis[1984] and Yurchak[1984] decided to test the methodology at the

processor level of abstraction because, being the most difficult to formally

describe, it would give the most insight on the validity of the approach.

This abstract architecture treats each one of the machine's physical

resources as a black box and allows the Drogrammer to use the resources in

only the specified way. In other words, the specification details 2xact!u

what resources mean and how to use them, but does not specify how a

resource is to be implemented. With software tools being written for

implementation on one abstract machine, software portability is markedly

improved. The AM serves as a formal interface between the programming

13

Programming Tools

rfc ft
?rDdi?m*Soiuifig T

Rb% +

. faction
Ki

X
\

(V ^j\ ^T he Sem a n t ic Gap g _j^l
fc. W ^

\:

^Z 5

.;
: • ,: a4 b s t r & c t ?1 a- c n i ii z 5555 i ! S3rV-y

.

M^fHV:' .' i..,> ^^;^ ..i..
!

i... - ,..i,i. — r .ri~^~?

u

c
PhyaicaiBeapurce H b s traction (

$ ^ ^ i

Hardware
$-j. *̂

figure 2.3: .Narrowing ine semantic sap

:ools in the environment and the physical resources of :tie :omDuting

machine. The AM programming tools will work on any architecture as long as

the AM specifications are properly implemented on that architecture. Figure

2.3 above depicts the AM interface in the programming environment.

C. RELATED RESEARCH

Several programming tools have already been developed for the AM.

Hunter[1985] formally designed and specified a visual display device for the

AM. Ozisik[1986] designed and implemented a subset C compiler which

produces AM assembly 'anquage code. Zanq[i985l formally soecified and

resigned in 3Dstrac: aataoase using similar onncoies for specifying *he am.

Again, the goal of this thesis is to create another development tool for the

AM programming environment, namely, an interactive debugger near the

assembly code level.

14

III. DESIGN

Before presenting the design ana implementation of the AM interactive

debugger, it is important to make clear the salient points behind the

specification of the AM. The AN is an abstraction of the physical resources

of a machine and, as Davis[1984] points out, the methodology used to

formally specify that abstraction is representation independent. The best

example of this representation independence notion Is abstract data types.

The type Integer' not only implies a set of values, but a set of operations

upon those values. This "notion" can be implemented in many different

contexts, but its intuitive properties transcend implementations or physical

representations. This is the essence of and the true power behind the

Abstract Machine concept.

The actual AM implementation around which the interactive debugger was

built is another physical representation of this representation independence

notion. Therefore, although one implementation is presented in this thesis,

the formal specifications for the resource abstraction is adhered to (via the

programmer interface to the debugger).

A. BASIC COMPUTER RESOURCE ORGANIZATION

!. Computer Resources

The AM incorporates the basic principles of a von Neumann computing

machine. It has a memory for program storage and instruction execution,

sets of registers and stacks for temporary storage of data values, and, of

course, a set of data values. Yurchak's[l984l AM implementation, being an

15

abstraction of a computing machine's physical resources, can be easily

"reconfigured" by changing the basic definitions of the resources available.

The implementation storage resources used in developing the debugger were

as follows:

• Two memory segments, each with 1024 storage cells;

• One register segment with thirty-two storage cells;

• One stack segment with 512 storage cells;

• 1022 heap segments, each with 1024 storage cells.

The memory, registers, stacks and heap storage cells, as in any computing

machine, all hold defined data values. The definition of Ad data values,

however, differs slightly than the manner in which they are defined in other

computing systems. The All's data values are typed while a reguiar von

Neumann machine's is not. In other words, one can determine what the value

is inside a storage location since the value's type is stored along with it.

Figure 3.1 on page 17 shows an example of a computer program in this AM

implementation with its machine code and assembly language

statements. At memory location '00000000,' '0190' is the AM

implementation's machine code for INSTRUCTION-TYPE. It is followed in the

memory address by the instruction opcode and the operands for the opcode.

Notice that each operand value is also linked to a type. '0160' is machine

code for MEMORY-ADDRE55-TYPE and '0170' for REGISTER-ADDRESS-TYPE.

The ah onusicai ^sources 3Dstrac:icn. oemg mDiemented in

software, is built upon data structures. The data structures used by

Yurchak[l984] were studied in depth so that the computer's functional

capabilities could be extended and, thus, are presented in the next section.

16

Memory Machine Assembly Language

Location Code Statements

0190 18F0

00000000 0190

0160

0170

3331

00000003

00000000

move (addr, data}, r (0:0)

00000001 0190

0130

0170

3S2E

00000064

00000000

move {int, 100], r(0:C)@

00000002 0190 1880 stop

00000003 0190 I8F4 data ds 10

0160 0OOOOOOD

0190 18F1

Figure 3.1: Computer Program in HM implementation

2. Computer Data Structures

In order to design a debugger that will interact unobtrusively with

the AM's basic operations, one must understand the data structures upon

which it was implemented. These structures represent the AM's data values,

memory, registers, and stacks. All the data structures used in this

implementation were written in the 'C programming language.

Figure 3.2 on page 18 shows the type declaration structures in

Yurchak's[1984] implementation for BOOLEAN, INTEGER and NATURAL data

values. They are representative of ail the AM's Sasic data value structures.

Yurchak[l984] notes that the AM storage resources are designed to hold any

properly defined value. In typical computing, this poses little or no problem

since all the values are based upon the overworked and overloaded bit vector.

To be able to store and operate upon a myriad of value types in the

17

typedef cnar oooi;

typedef unsigned int nat;

typedef struct {

short type;

bool val; } BOOL;

typedef struct {

short type;

long val; } (NT;

typedef struct {

short type;

nat vai;) NAT;

Figure 3.2: Data Ualue Structures

AM's "physical resources" required the introduction of another "common"

level of abstraction, a union of all the basic value types. This abstraction

was implemented using the structure shown in Figure 3.3 on page 19.

With the structures of the data values now presented, it is now time

to examine the structures that represent this implementation's primary

physical resource abstraction for the memory, registers and stacks. The

u

upe declarations for 'he structures are shewn in c igur? 3.4 on :>aqe 20.

9ourc2 is primarily a structure containing an 3r r ay which :an store

any value defined in this AM implementation. The computer's memory,

registers and stacks are actually arrays of these resource structures. Each

of these arrays equates to a storage "segment."

18

typedef union value {

short type;

opcode opcdval;

BOOL boolval;

INT intval;

NAT natvai;

CHAR charval;

CSTR cstrval;

NAD madval;

RAD radval;

SAD sadvai;

F1L fileval;

INSTR instrval;

hop mopval;

OOP dopva!;

ROP ropval;

BOP bopval; }VAL;

Figure 3.3: Common UflLUE Abstraction

3. Instructions to the Computer

Perhaps the most important of the computer values is the

INSTRUCTION. INSTRUCTION values, as in any other computing machine, drive

the computer program's execution. Its type definition and logical structure

in Yurchak's(l984] imDiementation ar2 snown ;n Figure 3.5 on page 21. As

snown in the figure, the instruction is implemented as a structure containing

its value type and an array of operand values. The first element of this array

is the instruction opcode. Subsequent elements in the array are the operands

19

typedef struct {

int size;

VAL **val; } memseg;

typedef struct {

int num;

VAL **val; } regseg;

cypedef struct {

int size;

long sp;

VAL **vai;) stkseg;

Figure 3.4: Primary Resource Structures

(AM data vaiues) for the instructions. Yurchak[1984] implemented the

instruction value so that the first digit of the opcode indicated the number

of operands the instruction required. By his design, the opcode was also

considered as one of the operands. It is important to note that the

instruction type definition (Figure 3.5) and the common-value type

definition (Figure 3.3) are recursively defined in terms of each other. This

facilitates converting from a basic instruction value, stored in memory, to

an executable instruction at the programming level of abstraction.

3. DESIGN OF THE INTERACTIVE DEBUGGER

I. Fhilosopny

As stated in Chapter I, the computer's current debugging facility

consists of a trace option that can be specified at computer "startup." This

20

typedef struct {

short type;

union value *val; } IN5TR;

.................... „ „„_,„.„.

Type

.......v. v.v..i -t*w . t i. ..V.iV.
•.i. .

i
i.. mV .

Opcode m

Operand \m 1

^^J?«^^m<^»5S?^^SJ««»;

Operand

p//'-vA-(f^^fZ:O : 'vv ' y//V£z~.yyy'VyA

":vXv

Operand n

Oi&g&a&ttgm .<>:•''!•:•::«>«':«

*m&ffi^tiM^&X;:ttid

figure 3.5: Structure of Instruction Ualue

trace facility was, however, designed more for providing debugging

diagnostics about the computer's internal functioning than for debugging the

user's program. The trace could only be turned on at the beginning of

program execution and could only be turned off by program termination. This

facility alone clearly does not provide the AM computer programmer with an

adequate program debugging environment.

Wray[1984] notes that 3 microcomputer debugging environment

should have the foi lowing baste functions:

• Single-step program execution;

• Breakpoints in program execution;

• Register Display/Modification;

21

t Memory Display/Modificatioa

This basic suite of debugging facilities gives the programmer the capability

to "disassemble" and examine his program and the machine state in discrete,

veil defined steps. This gives the programmer a means of quickiy identifying

and correcting program logic errors with a minimum of time and effort. The

interactive debuaaer for the AM was desianed to provide all of the above

facilities. To give the programmer an added degree of freedom in the

debugging environment, the following capabilities were also incorporated

into ^he design of the AM debugger:

9 Program Execution Trace;

• ~"cgram Counter Display/Modificatioa

The program execution trace, unlike the oid trace facility, snows just the

instruction about to be executed. Allowing the programmer to see and

change the program counter allows the testing of different program

execution paths without having to terminate program execution, changing its

textual representation, and recompiling the program for execution. This is in

accord with the philosophy of providing a debugging environment that

facilitates quick detection and correction of coding (logic) errors.

Yurchak's[1984l AM implementation is designed to be easily

reconfigurable by changing the basic array definitions of the resources

available. The essence of this design objective was carried over into the

resign of "he deougger. A reconfiguration of 'he computer' 2 resources in <he

AH is acknowledged by the debugger while performing its operations. The

basic definitions for the debugger may also be easily reconfigured for, say,

allowing more program breakpoints or increasing the maximum integer the

debugger assumes.

22

2. Debugger Interface to the Phusical Resources

In order to implement the debugger facilities, an interface to the

computer's physical resources had to be designed. This interface would be

primarily concerned with the retrieval and storage of data values in the

machine's physical resources. A study of the computer's data retrieval and

storage modules revealed that the following functions were currently

available for these tasks:

• FETCHflQ - retrieves a value from memory;

• 5TCREMQ - stores a value into memory;

• FETCHRO - retrieves a value from a register;

• STORER() - stores a vaiue into a register;

• TOP5TK() - retrieves a value at top of a stack.

These functions provide a well-defined interface to the data structures upon

which the resource abstraction is built. Interfacing to these functions to

perform the debugger operations resulted in a reduction in the amount of

code needed to implement the debugger.

As is typical in any computing machine, however, some data retrieval

and storage operations generate errors which in turn force abnormal

termination of program execution. Three such operations are as follows:

• Retrieving a value form an uninitialized storage location;

• Retrieving a value form a non-existing storage location;

• Storing a vaiue at a non-existing storage location.

Clearly if the debugger is to use the implementation's existing AM data

retrieval and storage functions to perform its operations, a means of

properly handling these types of errors had to be developed. To display

uninitialized storage locations while in the debugging mode, the retrieval

23

functions were modified to return a NULL value for displaying to the user. If

the computer is not in the debug mode, a regular execution error is

generated. The means for preventing the latter two types of errors while in

the dedug mode were designed into the user interface to the deougger.

3. Debugger Interface to the User

The interface was designed to permit, of course, the caoability to

perform the ooerations listed in section III.B.I. It was also tailored to keeo

the user from specifying debugger commands that would cause preventable

errors in the debugger interface to the physical resources abstraction and in

program execution. Since the debugger has access to available computer

resources, the user can be kept from trying to access a non-existing storage

segment or offset address, from setting the program counter to a memory

location that does not contain an instruction value, or setting a breakpoint

at a memory location that does not contain an instruction value. This type

of interface traps potential errors at the earliest possible stage. It does

not, however, prevent the user from setting a storage location with a value

that may cause an error during program execution. This particular kind of

error correction was considered beyond the scope of this thesis and,

therefore, was not entertained.

The debugger was designed to prompt the user for each piece of

command input (prompted commands) instead of the user entering the entire

:eDuqger command on one or two iines line commands;, ^romored >nDut

allows for "layered" error checking of the debugger command, allowing the

user to reenter input at that layer instead of having to reenter the entire

debugger command. This also permits new users, familiar only with this AM

implementation's value representation and instruction opcodes, to quickly

24

iearn and use the debugger without learning debugger command- line formats.

The debugger interface to the user is shown in Appendix A, 5ample Sessions.

25

IV. IMPLEMENTATION

A. ASSUMPTIONS

In building any software tool, some of the many variables in a

programming environment must be made fixed due to implementation

considerations and a need for establishing a point of reference. These

"constant" variables take the form of assumptions about the programming

environment. The following ones have been made about the AM programming

environment:

• The user knows how to assemble files using the environment's

assembler for execution on the computer;

• The user is familiar with the instruction opcodes used in this

implementation of the AM;

• There are no more than six (6) operands per instruction;

• A character string is less than 81 characters in length;

• Integer values range from - 2147483647 to 2147483647;

B. DEBUGGER COMMAND SYNTAX SYMBOLS

The debugger command syntax symbols are in Appendix B, Debugger

Command Syntax Symbols. The user is prompted for each piece of the

:cmmana, therefore; 'he actual command format is relatively unimocrrant.

C. INTERACTIVE DEBUGGER OPERATIONS

I. Display Operations

The user can use the debugger to display all the computer's memory,

26

registers, the top of any stack segment, all the program breakpoints and the

current value of the program counter. SamDie demonstrations of the display

operations can be found in Appendix A, Sample Sessions. The following

subsections present the functional details for each type of display operation.

a. Display Memory

All of the computer's memory cells can be disDlayed with the

'disDlay memory' operation. The command has the following syntax:

'd' 'm' ['*'
|

segmentoffset} span

The operation retrieves a value from a specified memory ceil and JisDiays I

to the user. It uses the computer function TetchmO' to perform the retrieve

and 'showmemO' to display the value at tt\2 memory ; ocaticn. Normally,

during regular program execution, a retrieval from an uninitialized memory

location causes an execution-terminating error in the computer. For

debugging purposes, however, a means was developed to interject a null value

into the retrieve if, in fact, no value is contained at the specified memory

cell. A control variable was used to tell the computer whether to return a

null value (implying the machine was performing a debugger task) or generate

an error (machine under program execution). Control variables are covered in

section IV.D.

b. Display Register

All of the computer's registers can ue viewed with the disolay

register' operation. It has the following command syntax:

'd' Y segment:offset span

Like the 'display memory' operation, this operation causes similar retrieval

27

and display operations to be performed, but using the AM's register segments

instead of the memory segments. This operation uses 'fetchrO' to retrieve

the value from the register cell and 'showmemO' to display the value to the

user. As in displaying memory, similar provisions are made for [he

interjection of a null value if the register cell contains no value.

c. Display Stacktop

The top of any stack segment can be displayed using the 'display

stack' operation, its command syntax is as follows:

'd' 's' seament

The mechanics of the 'display stack' operation are similar to that of 'display

memory' and 'display register'. It, nowever, uses topstkQ' to retrieve the

value stored at the top of a stack segment. One might wonder why the user

is given a free hand in viewing any memory or register cell, but is restricted

to seeing only the top cell in a stack segment. This, in part, is in keeping

with the notion that the resources are a "black box." For a particular state

of the computer, the values stored in the memory and registers 'exist' and

are all accessible by the user, typically via a computer program. Values in

stack cells below the top cell conceptually do not exist for a particular

state of the machine. The interactive debugger adheres to this principle.

d. Display Breakpoints

'riis operation aisolays 3ll :he entries n 'he oreaKpomt -aoie.

The command syntax is as follows:

'd' 'b'

The table has three items per entry: the break number, the memory location

28

where the breakpoint is set, and the opcode of the regular instruction. The

table is updated by the 'set breakpoint' and 'remove breaKpoint' commands,

e. Display Program Counter

This debugger operation displays what segment the program

counter is currently in and at what offset in the segment it is currently

pointing. Its command syntax is as follows:

ij» <*»

2. Set Operations

The set operations are perhaps the most important of ai! the other

debugger operations since they permit the user to actually change the state

of the computer. The operations give the use the capability to alter the

state of the computer's memory, registers, stacktops and the program

counter. The set operations also include the capability to set breakpoints at

specified memory locations. Demonstrations of the set commands can be

found in Appendix A, Sample Sessions. The functional description of each of

the set operation now follows.

a. Set Memory

The debugger operation 'set memory' gives the user the capability

to store any of the AM's defined values at any memory location, uninitialized

or not. This allows the user to "patch" faulty instructions so that program

testing can proceed upon a user-desired path. Its command syntax ;

s as

follows:

's' 'm' segment:offset value

This operation uses the computer function 'storemO' to place the desired AM

29

value into a specified memory location. This operation can indirectly affect

the behavior of another debugger operation, 'remove breakpoint' (which is

covered in detail later). Breakpoints are implemented by substituting

breakpoint opcodes for the actual instruction opcode in the instruction

value. Setting a memory location which contains a breakpoint opcodewould,

in effect, remove the breakpoint opcode, but leave its breakpoint entry in the

break table. For this reason, the set memory' operation first retrieves the

vaiue using TetchmQ' and checks to see if a breakpoint exists at the

location. If there is, the user is given the option of aborting the operation

or confirming it. if the operation is confirmed, the SreakDcmi is removed

from the table and the new value stored into memory. This technique helps

to ensure closure in the debugger operations and to maintain a significant

degree of operation independence between the debugger commands.

b. Set Register

This operation allows the user to set any register location to

any one of the regularly defined values. Its command syntax is as follows:

's' 'r' segment:offset value

It uses the function 'storerO' to store 'value' into the indicated register.

c. Set Stacktop

This operation lets the user store any regularly defined value at

v

he top of any stack segment. Its command syntax ; s as follows:

s' s' segmentoffset value

This AM implementation contained no function for actually changing the

value at the stacktop without modifying the stack pointer. In other words,

30

the value at the stacktop can normally be changed only by pushing values onto

or popping values off of the stack:, thus changing the stack pointer. To give

the user the freedom to actually alter the value at the stacktop without

modifying (in ail but one case) the stack pointer, a new function was added

to the computer cailed 'storestk().' The function uses the stack segment

stack pointer to actually store the value at the stacktop. It does change the

stack pointer when the stack is empty since the stack pointer must be

initialized before the vaiue can be stored,

d. Set Breakpoint

This operation gives the user the capability to temporarily halt

program execution to examine and possibiy alter the state of the AM. Its

command syntax is as follows:

's' 'b' segment:offset

Breakpoints can be set in any memory location that contains an instruction

value. The operation will self-abort if a non- instruction value is stored at

the memory address (and the user is so informed). The operation also

self-aborts if a breakpoint is currently set at the memory location.

The operation first uses TetchmO' to retrieve the value stored at

the specified location, Then the aforementioned tests are performed. If the

value in memory is an instruction and no breakpoint is set at the location, a

new breaKDcmt opcode is computed, fhe regular opcode and the memory

address are stored in the tabie, the new oreaKpoint opcode is stored in the

instruction, and then the instruction is stored back into the memory location

using the computer function 'storemQ.'

31

The breakpoint opcode is formed by taking the debug breakpoint

code, which in this implementation is '0812', and adding the break number to

the front of the code. For example, if the next open entry in the break table

is at position 4, the break opcode computed wcuid be '4812'. (Currently, up

to eight (8) breakpoints may be set at any one time during the debug session.)

e. 5et Program Counter

This operation gives the user the aoility to set the program

counter to any location in memory that contains an instruction value.

Restricting the target memory location this way prevents a program

execution error du the computer. Sn other words, trying to execute a

non-instruction vaiue causes the computer to generate an

execution-terminating error. The command syntax is as follows:

a' '*' segmennoffset

It the user enters a memory location that does not contain an instruction,

the operation self-aborts and the program counter remains unchanged.

3. Remove Breakpoint Operation

This operation undoes the 'set breakpoint' operation. Its command

syntax is as follows:

Y brknum

?mcves breakpoints by 'heir entry numDer in 'he jreak -:aDie. It irst

cnecKS io see u" the entry is in the tapie. If it is not, the operation

self-aborts (and informs the user). If it is, the operation uses 'fetchmO'

(with the break table entry memory address as a parameter) to retrieve the

instruction value, inserts the regular opcode from the break table into the

32

instruction value, deletes the break table entry and stores the value back into

memory using
;

storem().' A sampie demonstration of this operation can be

found in Appendix A, 5ampie Sessions.

4. Trace Execution Operations

These operations are used to turn on and off the debug trace flag.

They can also be used to trace a certain number of instructions and return

control to the debugger. After the operation is set, it's is activated by

issuing the 'go execute' command. Sampie demonstrations can oe found in

Appendix A, Sample Sessions. The following subparagraphs present the

functional details for each of the trace operations.

a. Trace On

This operation turns on the debug trace flag. When the flag is on,

each instruction is displayed before it is executed. The command syntax is

as follows:

T '!'

The operation can be disabled at the debugger level by the 'trace off

command. The operation is also aborted during program execution by

program termination or a breakpoint being encountered. This operation

partially disables the 'trace n' operation and completely disables the 'trace

off operation.

b. Trace Off

This operation turns off the deDug ;race flag. When the flag is

off, the instruction about to be executed is not displayed to the user. Its

command syntax is as follows:

T 'z'

33

This operation also disables the 'trace on' and 'trace n ' commands at the

debugger level. It can be disabled by the 'trace on' and 'trace n' commands at

the debugger level,

c. Trace n

This operation causes execution to be traced for n instructions

ana then control to be transferred back to the deDugger. its command syntax

is as follows:

't' span

While at the debugger command level, it can completely disable the 'trace

off operation. After the specified number of instructions are executed, the

debug trace is again turned off. While at the debugger command level, this

operation can be partially disabled by the 'trace on' command and totally

disabled by the 'trace off command. During program execution, the

operation is disabled by program termination or a breakpoint being

encountered. The number of instructions to be traced can also be overriden

by the 'go execute n' command.

5. Go Operations

These commands are used to transfer control from the debugger back

to the computer. Demonstrations of the operations can be found in Appendix

\ 5amDie Sessions.
x
he functional retails of each of the go oDerations are

presented in the fol lowing suoparagrapns.

a. Go Uncontrolled

This operation transfers control back to the computer so that it

can proceed with program execution. The operation proceeds until a

34

breakpoint is encountered, a trace n' ooeration is complete or the program

terminates. Its command syntax is as follows:

• r-> ' I
'

b. Go n

Like the 'go uncontrolled' operation, this operation causes

control to be transferred from the aeougger oack to tne computer for

program execution. However, after n instructions are executed, control is

transferred back to the debugger. Its command syntax is as follows:

g
J

span

The operation is disabled in program execution by a breakpoint being

encountered, program termination or the completion of the specified number

of instructions. This operation has an indirect effect upon the 'trace n '

operation. Changing the number of instructions to be executed in the 'go n'

command also overrides the number to be traced.

6. Help Operation

This operation lists the available debugger operations and their

command formats. Its has the following command syntax:

A demonstration of the operation is shown in Aooendix A. Sample Sessions.

D. DEBUGGER CONTROL OF MACHINE EXECUTION

For the debugger to control the execution of the computer requires that

certain "toggles" be added to the machine. Implementing these "toggles"

35

translates into defining control variables that the debugger sets and the

computer reads to alter machine execution and flow of control. Figure 4.1

on page 37 is a list of the control variables added to this An

implementation. A mere detailed description of the function of each of the

control variables is presented in the following subparagraph.

1. Debuqflaq

This control vanaDie directs the computer to activate and transfer

control to the interactive debugger, it is set on two occasions, the user

specifying the '-d' option at computer "startup" and the program terminating,

normally or abnormally. It is reset when control is massed from "he

debugger back to the computer.

2. Deogtasic

This control variable keeps the retrieve operations from generating

an error if the debugger attempts to retrieve a value from an uninitialized

storage location. If the storage location is uninitialized, the retrieve

function generates a null value and returns it to the debugger. The

termination of each debugger operation zeroes the variable.

3. Left2do

This variable controls the number of instructions to be executed for

a 'go n' or a 'trace n' debugger operation. This control variable is zeroed if

an execution error occurs or a breakpoint is encountered. It also works in

:ndem with the 'debqcntl' :ontrol variable.

4. Depqcntl

This control variable tells the computer that a 'go n' or a 'trace n'

operation is being performed in tandem with program execution. If 'debgcntl'

36

int debugf lag = 0;

/* When== 1, calls the interactive debugger. */
.

int debgtask = 0;

/* When ==
1, tells AM that debugger is directly using AM functions for

debugger operations. */

int !eft2do = 0;

/* When ==
I, tells AM how many instructions to do before forking back

to the debugger. Set by 'go n' and 'trace n' debug ops. */

int debgcntl = 0;

/* When ==
I, tells AM that its execution is under control of a 'go n

1

or

'trace n' debug operation. */

int breakflg = 0;

/* When== 1, tells AM that breakpoint encountered in its execution and

conversionof an instruction must be made. */

int errorf Ig = I;

/* When== 0, tells error() that ICSTOP instruction has occurred and not

to print certain error messages. */

int dbgtrace = 0;

/* When ==
1, sends value at the _pc.val to standard output device, thus

performing a program execution trace. */

Figure 4.1: Debugger Control Mailables

is set, then the control variable 'left2do' is checked for equality with zero.

This variable is zeroed when the number of instructions has been executed, a

breakpoint occurs, or the program terminates.

37

5. Break!" lq

Breakpoint opcodes are substituted for the regular instruction

opcodes, with the regular opcode being stored in the break table. The

'breakflg' "toggle" is set when an instruction containing a breaK opccGe is

encountered. The variable signals the debugger that the instruction must be

restored to an executable form by reinserting its regular opcode from the

break table. 'Breakflg' is zeroed after the instruction is modified. When the

debugger transfers control back to the computer, the modified instruction is

then interpreted and executed.

6. Error I" lq

In the AM's current implementation, normal as well as abnormal

program termination calls ;he error handler to halt execution. This flag is

set by the JCSTOP instruction so that certain error messages are not printed.

7. Dbgtrace

This "toggle" causes the computer to display the instruction to the

user prior to its execution. It is set by the 'trace n ' and 'trace on

operations. It is zeroed by a breakpoint being encountered, by the

completion of the 'trace n ' operation, by the 'trace off operation, or

program terminatioa

E. ERROR HANDLING IN PROGRAM EXECUTION

"he control variables added to "his AM moiementaticn. :cuDied with the

error Handler modification, give me deDugger the means for 'trapping''

control of program execution. Calling the error handling module now causes

the debugging control variables to be zeroed, the appropriate messages to be

displayed to the user, and a return to the debugger command level so that the

38

user can examine or alter the machine state and, if desired, rerun the

program.

F. MODIFICATIONS TO AM IMPLEMENTATION

The main debugger program files added to this implementation of the AM

are contained in Appendix C, Debugger Program Files. Some modifications

were also made to the actual implementation of the AM. These changes were

necessary to estaoiisn an interface between the debugger and the Arts

physical resources. The more significant changes are briefly listed below:

• Debugger control vanaDles were added to the AM implementation to

provide proper transfer of control between the computer and the

debugger;

• The memory, register and stack retrieve operations were modified to

return a null value to the debugger if the storage location was

uninitialized;

• A breakpoint opcodewas added to the computer opcodedefinitions;

• A function for storing a value at a stacktop was added to the value

retrieve and store module;

• The original copy-value function was duplicated and renamed for use

in the AM assembler. This was done so as to hide the separate

debugging process from program assembly process;

• The display-vaiue function was modified to suppress dispiaymq mis

AM's implementation details to the user;

• The error handler function was modified to call the debugger upon

program termination, normal or abnormal.

39

V. CONCLUSIONS AND FUTURE WORK

Designing [he interactive debugger to make use of [he AM

implementation's existing functions again demonstrates the advantage of

formally specifying functional interfaces for computer resources. Because

the interfaces were well defined and built as conceptual "black boxes."

linking them to the debugger was relatively straightforward. Having the

interfaces being built as "black boxes" also helped to prevent the

modification Yippie effect" upon the behavior of existing functions. It is

exDected that the addition of an interactive debugger to the AM programming

environment will significantly aid future developers of AM resource ^cois.

Although the interactive debugger significantly enhances the AM

programmers ability to interact with the other elements in the AM

programming environment, its interface to the user can be improved. In light

of this, the following areas for continuing research are suggested:

• Implement an in-line assembler for the debugger. This would permit

the user to set storage resources by entering the actual assembler

language statements. This provides a debugger interface at the level

of the assembly language programming abstraction;

• Implement an in-line disassembler for displaying instruction values

in memory;

• Implement a graphical user interface to the debugger.

40

APPENDIX A: SAMPLE SESSIONS

>am -d

* THE DEBUGGER *

HELP OPERATION

Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)

r (emove break)
s(et)
t (race)

q (uit& halt exec)

>?
Deouqqer CommandsJ98

!

44
'd'(ispiay) m(emory), {'*'

I segiotfset}, span
'r'(egister), segroffset, span
s (tack - top only), seg
'b'(reaks - all)

'•(program counter)
•g-(o) {T |n <instrs>}

TOist available debug commands)
's'(et) 'm'(emory), seg:offset, val_type, val

'r'(egister), seg.offset, val_type, val

's'(tacktop, seg, val_type val

'b*(reek), seg.offset
•'(program counter), seg.offset

T(race) T(on) < TRACE
'z'(off) STARTED
for n instrs BY 'G0'>

'q'Cuit debug and halt execution)
Legend: I

- or, (] - optional, <> - comment, {} - Must choose an item.

Enter non-blank char to continue.

>q

DISPLAY OPERATIONS

Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)

Display Memory

41

r (emove break)
S(8t)
t (race)

q (uit & halt exec)

>d

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

>m

Enter one of following:

Y - addr value prompt
'*' - for current PC value
**' - to abort the oDeration:

>*

* OPERATION SPAN *

Enter decimal number between 1 and 20
or

'#' to abort the operation:

>16

Nemaddr Contents

00000000 (V.INSTR) ISPSHI_
(V_FILE) 2
(V_SAD) (0:0)

00000001 (VUNSTR) ISPSH1_
(V_MAD) (1:0)
(V_SAD) (0:0)

00000002 (V_INSTR) IFWRITE
(V_SAD) (0:0)

00000003 (V_INSTR) ISPSHI_
(V_FILE) 2
(V_SAD) (0:0)

00000004 (VUNSTR) ISPSHI_
(V_MAD) (1:1)
(V_SAD) (0 : 0)

00000005 (V_;n'S7R) IFWRITE
v_5A0) '0:0)

00000006 (V.INSTR) ISPSHI_
(V_FILE) 2
(V_SAD) (0:0)

00000007 (V_INSTR) ISPSHI_
(V_MAD) (1:0)
(V_SAD) (0:0)

00000008 (V_INSTR) IFWRITE

42

(V_SAD) (0:0)
00000009 (V.JNSTR) ISPSHL

(V-FILE) 2
(V_SAD) (0:0)

0000000A (V_iNSTR) ISPSHI_
(V_MAD) (1:1)
(V_SAD) (0:0)

OOOOOOOB (V_1NSTR) IFWRITE
(V_5AD) (0:0)

OOOOOOOC (V_INSTR) ICSTOP
OOOOOOOD (V_NULL)
OOOOOOOE (VJIULL)
OOOOOOOF (V_flULL)

Display Register
Enter letter of operation:

d (isplay)

q (o execute)
7 (list debug oos)

r (emove break)
s(et)
t (race)

q (uit & halt exec)
>d

Enter one of choices below:

m (emory)
r (egister)

s (tack top)
b (reak)
* (program counter)

>r

Enter one of following:

V - addr value prompt
'©' - to abort the operation:

>v

Enter decimal segment * between and
or

'#' to abort the ooeration:
>0

Enter decimal offset between and 31
or

"e* to abort the operation:
>0

* OPERATION SPAN *

43

Enter decimal number between 1 and 20
or

*e' to abort the operation:

>5

Regnum Contents

00000000 (V_NULL)
00000001 (V_MJLL)0
00000002 (V_NULL)
00000003 (V_NULL)
00000004 (V_NULL)

Enter letter of operation:

Pisolau Stecktop

d (isplay)

q (o execute)
? (list debug ops)

r (emove dreak)

s(et)
t (race)

q (uit & halt exec)
>d

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

>s

Enter one of following:
V - segment value prompt
'£' - to abort the operation:

>v

Enter decimal segment * between and
or

'@" to abort the operation:
>0

p of Stack:
000001FF(V_NULL)0

Enter letter of operation:

d (isplay)

g (o execute)

Display Breakpoints

44

? (list debug ops)
r (smove break)

s (et)

t (race)

q (uit & hail exec)
>d

Enter one of choices oelow:

m (emory)
r(egister)
s (tack too)

b (reak)
* (program counter)

>b

Enter '!' to continue
or

'#' to abort the operation:
>!

* 3REAKPQINTS *

BRKNUM MEMADDR OPCODE

1

2
3
4
5
6
7

Display Program Counter
Enter letter of operation:

d (isplay)

q (o execute)
? (list debug ops)
r (smove oreak)
s (et)

t (race)

q (uit & halt exec)
>d

Enter one of choices below:

m (emory)

45

r (egister)

s (tack top)

b (reek)
* (program counter)

Enter one of following:

T to confirm display pc
'€>' to abort the operation

>!

PRGM COUNTER in segment at offset 0.

SET OPERATIONS

Set Memory
Enter letter of operation:

d (isplay)

q (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)
>s

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

>m

Enter one of following:

V - memaddr value prompt
'e' - to abort the operation:

>v

Enter decimal segment * between and 1

or
s> .0 abort the operation:
>0

Enter decimal offset between and 1023
or

'e' to abort the operation:
>13

46

3-• INT 4- CHAR
7- RAD 8- SAD
i 1 -MOP 12 -OOP
#-- abort op

**** Entering Value to be Stored ****

Enter number besides type desired:

1 - BOOL 2 - NAT
5 - CSTR 6 - MAD
9 -FILE 10-iNSTR
13-ROP 14-80P

>10

Enter HEX opcode
or

*e' to abort the operation:
>383i

*** Entering Operand *1 ***
**** Entering value to be Stored ****

Enter number besides type desired:

1 - 800L 2 - NAT 3 - INT 4 - CHAR
5 -CSTR 6 -MAD 7 - RAD 3 - SAO
9 -FILE 11 -MOP 12 -OOP 13-ROP
1 4 - SOP # - abort op

>3

Enter decimal number between

-2147483647 & 2147483647 (no \J.
or

'€>' to abort the operation:
>500

*** Entering Operand *2 ***
**** Entering Value to be Stored ****

Enter number besides type desired:

1 - BOOL 2 -NAT 3 -INT 4 - CHAR
5 -CSTR 6 -MAD 7 -RAD 8 -SAD
9 - FILE 1 1 - MOP 12-DOP 13-ROP
14 -SOP e - abort op

>7

Enter one of following:
'v* - regaddr value prompt
*@' - to abort the operation:

>v

Enter decimal segment * between and
or

47

'#' to abort the operation:

>0

Enter decimal offset between and 31

or
"@" to abort the operation:

>31

Enter letter of operation:

d (isplay)

g (o execute)
? (list aebug ops)

r (emove break)
s(et)
t (race)

q (uit & halt exec)
>d

Enter ane of choices below:

m (emory)
r (egister)

s (tack top)

b (reek)
* (program counter)

>m

Enter one of following:
V - addr value prompt
'*' - for current PC value
'&' - to abort the operation:

>v

Enter decimal segment * between and 1

or
'@' to abort the operation.
>0

Enter decimal offset between and 1023
or

@' to abort the operation:

>13

* OPERATION SPAN +

Enter decimal number between 1 and 20
or

"£' to abort the operation:
>2

Memaddr Contents

46

OOOOOOOD (V_!NSTR) IMJ_R_
(V_1NT) 500
(V_RAD) (0:31)

OOOOOOOE (V_flULL)

Set Register
Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)
>s

Enter one of choices beiow:

m (emory)
r (egister)

s (tack lop)

o (reak)
* (program counter)

>r

Enter one of following:

V - regaddr value prompt
*e' - to abort the operation:

>v

Enter decimal segment * between and
or

'& to abort the operation:
>0

Enter decimal offset between and 31
or

'e* to abort the operation:
>13

**** Entering Value to be Stored ****

Enter numoer besides type desired:

1 - BOOL 2 -NAT 3 - INT 4 - CHAR
5 - CSTR 6 -MAD 7 - RAD 8 - SAD
9 - FILE 10-INSTR 11 -MOP 12-DOP
13-ROP 14 -BOP © - abort op

>8

49

Enter one of following:

V - stkaddr value prompt
e' - to abort the operation:

>v

Enter decimal segment * between and
or

'£' to abort the operation:

>0

Enter decimal offset between and 51

1

or
'*=' to abort the operation:

>56

Enter letter of operation:

d (isplay)

g (o execute)
? (list debug oos)

r (emove break)
s (et)

t (race)

a (uit & halt exec)

>d

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

>r

Enter one of following:
'v* - addr value prompt
'@* - to abort the operation:

>v

Enter decimal segment * between and
or

'#' to abort the operation:

Enier decimal offset between and 31
or

'£" to abort the operation:
>13

•OPERATION SPAN*

50

Enter decimal number between 1 and 20
or

'&' to abort the operation:

>2

Regnum Contents

00000000 (V_SAD) (0:56)
0000000E (V_NULL)

Set Stacktop
Enter letter of operation:

d (isplay)

a (o execute)
? (list debug ops)

r (emove break)
s(et)
t (race)

q (uit & halt axec)

>s

Enter one of choices below:

m (emory)
r (egister)

s (tack lop)

b (reak)
* (program counter)

>s

Enter one of following:
'v* - regaddr value prompt
'e' - to abort the operation:

>v

Enter decimal segment * between and
or

'&' to abort the operation:
>0

**** Entering Value to be Stored ****

Enter number besides type desired:

1 - BOOL 2 - NAT 3 - INT 4 - CHAR
5-CSTR 6 -MAD 7 - RAD 8 - SAD
9 -FILE 10-INSTR 11 - MOP 12-DOP
13-ROP 14 -BOP ©-abort op

>4

Enter character

51

or
'3' to abort the operation:

>!

Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)
>d

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

>s

Enter one of following:
v' - segment value prompt
'£' - to abort the operation:

>v

Enter decimal segment * between and
or

'£' to abort the operation:

>0

Top of Stack:
000001FF(V_CHAR)!

Enter letter of operation:

d (isplay)

g (o execute)
? (list, debug ops)
r 'emove dreak)

Eet)

t (race)

q (uit & halt exec)
>s

Enter one of choices below:

m (emory)

Set Breakpoints

52

r (egister)

s (tack top)

& (reak)
* (program counter)

>d

Enter one of following:
'v* - memaodr value prompt
e - to abort the operation:

>v

Enter decimal segment * between and 1

or
"e

J

to abort the operation:

>0

Enter decimal offset between and 1023
or

'& to abort the ooeration:
>2

Enter letter of operation:

d (ispiay)
*

q (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)
>s

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b freak)
* (program counter)

>b

Enter one of following:
V - memaddr value prompt
'£' - to abort the operation:

>v

Enter decimal segment * between and 1

or
'e' to abort the operation:
>0

Enter decimal offset between and 1023

53

or
'#* to abort the operation:

Enter letter of operation:

d (isolay)

q (o execute)
? (list debug ops)

r (emove break)
s(et)
t (race)

q (uit & halt exec)
>s

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

>b

Enter one of following:

v - memaddr value prompt
'•' - to abort the operation:

>v

Enter decimal segment * between and 1

or
'e' to abort the operation:
>0

Enter decimal offset between and 1023
or

'€>' to abort the operation:

>9
Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)
r (emove break)

ei)

race)

q (uit& halt exec)
>s

Enter one of choices below:

m (emory)
r (egister)

54

s (tack top)

b (reak)
* (program counter)

>b

Enter one of following:

V - memaddr value prompt
'&' - to abort the operation:

>v

Enter decimal segment * between and 1

or
'#' to abort the operation:

>0

Enter decimal offset between and 1023
or

'#' to abort the operation:
>n

Enter letter of operation:

d (isplay)

q (o execute)
y (list debug ops)
r (emove break)
s(et)
t (race)

q(uit& halt exec)
>s

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

>b

Enter one of following:
'v* - memaddr value prompt
'£' - to abort the operation:

>v

Enter decimal segment * between and 1

or
'e' to abort the operation:
>0

Enter decimal offset between and 1023
or

55

<a' to abort the operation:

>13

Enter letter of operation:

d (isplay)

q (o execute)
? (list debug ops)

r (emove break)
s(et)
t (race)

q (uit & halt exec)
>s

Enter one of cnoices below:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

>b

Enter one of following:

V - memaddr value prompt
'@' - to abort the operation:

>v

Enter decimal segment * between and 1

or
*@" to abort the operation:
>0

Enter decimal offset between and 1023
or

'@" to abort the operation:

>12

Enter letter of operation:

d (isplay)

g (o execute)
? (list debug oos)
r (emove break;

3 (et)

t (race)

q (uit & holt exec)
>d

Enter one of choices below:

m (emory)

56

r (egister)

s (tack too)

b (reak)
* (program counter)

>b

Enter T to continue
or

'#' to abort the operation:
>!

* BREAKPOINTS *
* *

BRKNUM MEMADDR OPCODE

2 OOOOOOOC JCSTOP
3 OOOOOCOO IMLLR-
4 OOOOOOOB IFWR1TE
5 00000009 ISPSHI_
6 00000004 ISPSH1_
7 00000002 IFWRITE

Set Program Counter
Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)
>s

Enter one of choices below:

m (emory)
r (egister)

s (tack too)

o (reak)
* (program counter)

Enter one of following:
V - prog cntr value prompt
*e' - to abort the operation:

>v

57

Enter decimal segment * between and 1

or
"«' to abort the operation:

>0

Enter decimal offset between and 1023
or

e* to abort the operation:

>16

Sorry, non-instr at memaddr.
Program counter unchanged.

enter letter of operation:

d (isplay)

q (o execute)
? (list deoug ops)
r (emove break)

s (et)

t (race)

q (uit& halt exec)
>s

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b (reek)
* (program counter)

Enter one of following:
V - prog cntr value prompt
"e" - to abort the operation:

>v

Enter decimal segment * between and 1

or
'@' to abort the operation:
>0

£nter jecimai offset oetween ind 1023
or

e" to abort the operation:
>2

Enter letter of operation:

d (isplay)

58

g (o execute)
? (list debug ops)

r (emove break)
s (et)

t (race)

q (uit & halt exec)
>d

Enter one of choices below:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

Enter one of following:

T to confirm display pc
'$' to abort the operation

>!

PRGM COUNTER in segment at offset 2.

Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)
>s

Enter one of choices below:

m (emory)
r (egister)

s (tack top)
b (reak)
* (program counter)

Enter one of following:
V - prog cntr value prompt
'e' - to abort the operation:

>v

Enter decimal segment * between and 1

or

59

'£' to abort the operation:

>0

Enter decimal offset between and 1023
or

'e' to abort the operation:

>0

TRACE / GO OPERATIONS

Trace On with Go Uncontrolled
Enter letter of operation:

d (i sol ay)

g (o execute)
? (list debug ops)

r (emove break)
s(et)
t (race)

q (uit & halt axec)

>t

Enter one of following:
Decimal number between 1 and 20
T for trace on'

'z* for 'trace off
'•' to abort the operation:

>!

Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)

>9

Enter one of choices below:
Decimal range btwn 1 and 20
T - uncontrolled go
'•' - to ibort the ooeration

•

00000000 (V_INSTR) ISPSHI_
(V_FILE) 2
(V_SAD) (0:0)

00000001 (V_INSTR) ISPSHI_
(V_MAD) (1:0)
(V_SAD) (0:0)

60

** BREAKPOINT ENCOUNTERED **

\y \v \/ v v v y v v y ^ -^ y -^ y v y y v v y v v y v y v Y

* THE DEBUGGER *
*****mx^x******************

Trace Off with Go Uncontrolled
Enter letter of operation:

d (isplay)

q (o execute)
y (list debug ops)
r (emove break)
s(et)
t (race)

q (uit 8c halt exec)
>t

Enter one of following:
Decimal number between 1 and 20
T for 'trace on'
'2' for 'trace off
"@' to abort the operation:

>z

Enter letter of operation:

d (isplay)

q (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)

>g

Enter one of choices below:
Decimal range btwn 1 and 20
T - uncontrolled go
'@" - to abort the operation

>!

** BREAKPOINT ENCOUNTERED **

W '# v w w v ~y '^ w *^ u u .^ y *w w y; ~w w '»j •w ~w w w w w w ->^

* THE DEBUGGER *
s r\ r\ r\ r\ *\ r\ K X K X wTminnHnnrKKn

Enter letter of operation:

61

d (isplay)

q (o execute)
v (list debug ops)

r (emove break)
s(et)
t (race)

a (uit & halt exec)

>d

Enter one of choices below:

m (emory)
r (egister)

s (tack too)

b (reaio
* (program counter)

>*

Enter one of following:

T to confirm display pc
"@" to abort the operation

>!

PRGM COUNTER in segment at offset 4.

Go n Instructions
Enter letter of operation:

d (isplay)

g (o execute)
7 (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)

>9

Enter one of choices below:
Decimal range btwn 1 and 20
T - uncontrolled go
'@' - to abort the operation

indicated numoer of insirs done.
******X***X***XXX~K-X**-*-X-X-*-*-K-X

* THE DEBUGGER *

Enter letter of operation:

62

d (i splay)

g (o execute)
? (list debug ops)

r (emove break)
s(et)
t (race)

q (uit & halt exec)
>d

Enter one of choices below:

m (emory)
r (egister)

s (tacx top)

b (reak)
* (program counter)

Enter one of following:

T to confirm display pc
'&' to abort the operation

>!

PRGM COUNTER in segment at offset 6.

Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)
>d

Enter one of choices below:

m (emory)
r (egister)

s (tack Iod)

b (reak)
* (program counter)

>b

Enter T to continue
or

'©' to abort the operation:
>!

63

* *

* BREAKPOINTS *
* *

BRKNUM MEjIADDR OPCODE

1

2 OOOOOOOC ICSTOP
3 OOOOOOOD !M_!_R_
4 00000006 IFWR1TE
5 00000009 ISPSHI_
6 00000004 iSPSHI_
7 00000002 IFWRITE

Remove Breakpoints
Enter letter of operation:

d (ispiay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q(uit& halt exec)
>r

Enter decimal break number between and 7
or

@* to abort the operation:

>0

Breakpoint not in Table.

Enter letter of operation:

d (ispiay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q iuit * nalt exec;
>r

Enter decimal break number between and 7
or

'#' to abort the operation:
>7

Enter letter of operation:

64

d (isplay)

g (o execute)
? flist debug ops)

r (emove break)
s(et)
t (race)

q (uit & hail exec)

Enter one of choices below:

m (emory)
r(egister)
s (tack top)

b (reak)
* (program counter)

>b

Enter T to continue
or

'e' to abort the operation:

* *
* BREAKPOINTS *
* *

BRKNUM MEMADDR OPCODE

1

2 OOOOOOOC ICSTOP
3 OOOOOOOD lrt_l_R_
4 OOOOOOOB IFWRITE
5 00000009 ISPSHI_
6 00000004 ISPSHI_
7

Stepping Through Program Execution
Enter letter of operation:

>9

d (isplay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)

65

Enter one of choices below:
Decimal range btwn 1 and 20
T - uncontrolled go
"e" - to abort the operation

>i

** BREAKPOINT ENCOUNTERED **

* THE DEBUGGER *

Enter letter of operation:

d (isplay)

g (o execute)
? (list debuq ops)
r (emove break)
s (et)

t (race)

q (uit & halt exec)
>d

Enter one of choices oelow:

m (emory)
r (egister)

s (tack top)

b (reak)
* (program counter)

Enter one of following:

T to confirm display pc
@" to abort the operation

>!

PRGM COUNTER in segment at offset 9.

Enter letter of operation:

isplay)
: a execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)
>r

66

Enter decimal break number between and 7
or

'e' to abort the operation:

>4

Enter letter of operation:

d (isplay)

q (o execute)
? (list debug ops)

r (emove break)
s(et)
t (race)

q (uit & halt exec)

>9

Enter one of choices below:
Decimal ranoe btwn 1 and 20
T - uncontrolled go
'•* - to abort the QDeration

>!

** BREAKPOINT ENCOUNTERED **

* THE DEBUGGER *

Enter letter of operation:

d (isplay)

g (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)
>d

Enter one of choices below:

m (emoru)
r (egister)

3 (tack top)

b (reak)
* (program counter)

Enter one of following:

T to confirm display pc
"@" to abort the operation

67

>!

PRGM COUNTER in segment at offset 12.

Enter letter of operation:

d (ispiay)

q (o execute)
? (list debug ops)

r (emove break)
s(et)
t (race)

q (uit & halt exec)

Enter one of choices below:
Decimal range btwn 1 and 20
T - uncontrolled go
'€>' - to abort the operation

><

4M: End of execution 32
_pc=0000000C

* THE DEBUGGER *

Enter letter of operation:

>q

d (ispiay)

g (o execute)
7 (list debug ops)
r (emove break)
s(et)
t (race)

q (uit &. halt exec)

Enter one of following:

T to END DEBUG AND EXECUTION
"** to abort ooeration:

*

Enter letter of operation:

d (ispiay)

g (o execute)
r (list debug ops)
r (emove break)
s(et)

68

t (race)

q (uit & halt exec)

>9

Enter one of choices below:
Decimal range btwn 1 and 20
T - uncontrolled go
'#' - to aDort the operation

Enter letter of operation:

d (isolay)

a (o execute)
? (list debug ops)
r (emove break)
s(et)
t (race)

q (uit & halt exec)

>q

Enter one of following:

T to END 0E5UG AND EXECUTION
'£' to aoort operation:

>!

Exiting Debugger, Halting Execution.

69

APPENDIX B: DEBUGGER COMMAND SYNTAX SYMBOLS

The following symbols are used to describe the general syntax of all the

debugger comands:

'd'
- DISPLAY

•s'
- SET or STACK (depending on context)

'g' - GO AND EXECUTE

'?' - LIST AVAILABLE DEBUG COMMANDS

'r'
- REMOVE BREAKPOINT

r
- TRACE EXECUTION

'm'
- MEMORY

r - REGISTER

•*> - PROGRAM COUNTER

segment - RESOURCE SEGMENT NUMBER

offset - SEGMENT OFFSET ADDRESS

span - NUMBER OF OPERATIONS TO BE PERFORMED

- ONE ITEM IN BRACES MUST BE CHOSEN

1

- OR

T - ON or OK (depending on context)

'z'
- OFF

brknum - BREAKPOINT NUMBER

value - }ATA VALUE

val_tupe - DATA TYPE

70

APPENDIX C: DEBUGGER PROGRAM FILES

Debugger Header File

/* OEBUG.H : Basic typedefs, defines, and gicbals for the AMdeougger.

-AM version 1.0 - Z100
-This file is included in all the debugger modules.

Changes:

*/

ifndef DEBUG_H
define DE5UG_H

/* display defines */

"define DISPLMEM
define DISPLREG
define DISPLSTK
define DISPLBRK
define OISPLPC

000
010
020
030
040

/* go define */

define GOEXEC 100

/* help define */

define HELP 200

/* remove breakpoint define */

define RENOVBRK 300

/* set defines */

define SETMEMR
define SETREGR
-define SETSTK
define 5ET3RK
define SET_PC

400
410
420
430
440

/* trace defines */

define TRACEOP 500

/* quit defines */

71

^define QUITDEBG

/* atomic types and defines */

^define
^define
^define
^define
*/

*define

^define
*/

^define

^define
input

^define

UNDEFND
TRUE
FALSE
riAXERKS

MAXEXECS

MAXLINES

MXDECSTR

MXHEXSTR

MXINPSTR

^define

^define

typedef

typedef
int

long
I one-

-XL

BOOLN 3DortoD:
] :F T iCN;

typedef struct
address memaddr;
short opcdval;

} BREAKS;

*endif

600

-1

I

3

20

/* Max * of breaks allowed

/* Max * instrs to execute
before returning to debug */

20 /* Max items ondebua screen

12 /* Max chars in DECIMAL input

string; 10 for chars in !NT

string, I for null string

terminator and ! for sign */

5 /* Max chars in HEXIDECIMAl

string; 4 for chars in INT

string and I for null string

terminator. */

2 /* Max chars in PROMPT input

string; 1 for char in prompt
string and 1 for null string

terminator. */

TRACEON

TRACEOFF

-1 /* Couldn't
conflict.**/

use 1 due to span

int BOOLN; /* So named to prevent AM def conflict */

struct
oprtn;

rngebegn
rngespan
*val;

{

i

VALtupeaef n amtupe.n
*

72

Debugger Driver File

/* DEBUG.C : Driver module for the AM debugger.

-AM version 1.0 - Z100
Changes:

*/

^include "amdef.h"
^include "3mtype.h"
^include "amextemh"
^include <setimD.h>
^include 'deoug.rT

/* EXTERNAL REFERENCES */

extern jmpJDuf *_context;

extern char *stnpblk();

extern short getopndQ;

extern short gtopcdexQ;
displmemQ;extern

extern displregO;
extern dispIstkQ;

extern displbrkQ;
extern displ_pc();

extern goexec();
help();extern

extern removbrk();
extern setmemrO;
extern setregrO;
extern setstkQ;
extern setbrkQ;
extern set_pc();
extern traceopQ;

quitdebgO;extern

/* GLOBAL VARIABLES */

OPTION debg_opt;

/* defined in mainQ/am.c */

/* fromdebugutl.c */

/* from aminstr.c */

/* all from debugopr.c */

/*GETRESRC()
function:

-This function prompts the user for the resource to be
operated upon and returns the key character for the
resource indicated.

interface:

73

called by:

getoprO

calls:

stripblkQ/debugutl.c

errors:

»/

char
getresrcO

{ char *strptr;

char inpstr[MXINPSTRl; /« MX1NPSTR = 2 */

dc{
fprintf(stdout,"Enter one of cnoices below:\n\n");
fprintf(stdout,"\t\tm (emory)\n\t\tr (eqister)\n

M

);

fprintffstdout/\t\ts (tack top)\n\t\tb Cre3K)\n");

fprmtf(stdout/\t\t* (program counter)\n\n");

fscanf(stdin,"&ls",inpstr);

strptr = stripblk(inpstr);

if (strlen(strptr) == 0) {

fpnntf(stdout,"No choice enteredAn");
fprintf(stdout,"One MUST be specif iedAn\n");

}

else

switch(strptr[0]) {

case 'm'-. return('m');

case 'r': return('r');

case 's': return('s');

case 'b': return('b');

case
' H

': returnO*');

default:

f printf(stdout.lnval id responseAn");

}

while (TRUE);

74

}

/*GETOPR()
function:

-This function maps the ascii user operation request
into an debugger operation code and returns the code.

interface:

called by.

debugO

calls:

stripoikQ/debugutl.c
getresrcQ

errors:

i«

/

int

getcprQ

{ char *sirptr;

char inpstrlMXINPSTRl; /* MXINPSTR = 2 */

do{
fprintf(stdout,"\nEnter letter of operationAnVf);
fprintf(stdout,"\t\td (isplau)\n\t\tg (o execute)\n");

fprintf(stdout,"\t\t? (list debug ops)\n");
fprintf(stdout

f
"\t\tr (emove break)\n\t\ts (et)\n");

fprintf(stdout,"\t\tt (race)\n\t\tq (uit & halt exec)\n\n");
fscanf(stdin,"^ls",inpstr);

strptr = stripblk(inpstr);

if (strlen(strptr) == 0) {

fprmtf(stdout,"No operation enteredAn");
fprintf(stdout,"One MUST be specif iedAn\n");

else

switch(strptrfOl) {

case d':

:ase 's': switcn(getr2src()) (

case 'm': if (strptr[0J = 'd')

return(DISPLMErl);
return(SETMEMR);

case Y': if (strptr[0] = 'd')

return(DISPLREG);
return(SETREGR);

75

c<

case's': if (strptr[Ol == 'd')

returnCDISPLSTK);
return(SETSTK);

case 'b': if (strptrfO] == 'd')

return(D!SPL3RK);
return(SETBRK);

case *': if (strptr[0] == 'd')

return(D!SPI_PC);
return(SET_PC);

}

case 'g': return(GOEXEC);

case'?': return(HELP);

case r- return(REnOVBRK);

case T: return(TRACEOP);

case 'q': return(QUITDEBG);

default: fprintffstdout, "Invalid operationAn");

while (TRUE);

}

/*DEBUG()
function:

-This is the driver function for the interactive debug-
ger.

interface:

[x) breakflg/am.h

p) i instruction oointer

,p] Ti program counter value

,g; deDg_opt vanaDle for deDuager ^Deration

called by:

main()/am.c

calls:

getopnd()/aminstr.c
gtopcdex()/debugopr.c
getopr()/

76

dispimem()/debugopr.c
displregO/debugopr.c
dispistkQ/debugopr.c
dispibrkQ/debugopr.c
dispi_pcO/debugopr.c
goexec()/debugopr.c
help()/debugopr.c
removbrkQ/debugopr.c
setmemr()/debugopr.c
setregr()/debugopr.c
setstkQ/debugopr.c
setbrkQ/debugopr.c
3et_pc()/deougopr.c
traceopQ/debugopr.c
guitdebgQ/debugopr.c

2rrors:

*/

debug(i,m)

INSTR *i;

MAO *m;

{ short brknum;
OPTION *opt;

BOOLN diff_pc = FALSE;

fDrintf(stdout "\t\t****************************\n"y
fprintf(stdout/'\t\t* THE DEBUGGER '

*\n");

forintfCstdout "\t\t****************************\n\n")"

/* Exchange the debug opcodefor the regular opcode**/

if (breakflg) {

brknum = getopnd(i->val[0].opcdval);
i->val[0].opcdval = gtopcdex(brknum);
breakflg = 0;

opt = &debg_opt;

do{
opt->oprtn = UNDEFND;
opt->rngebegn = UNDEFND;
opt->rngespan = UNDEFND;
opt->val= NULL;
opt->abortop= FALSE;

switch(getoprQ) {

77

case DISPLMEM: dispimem(opt);
break;

i

aseOISPLREG: displreg(opt);

break;
'

case OISPLSTK: dispistk(opt);

break;

case DISPLBRK: displbrk(opt);

break;

case 01SP! PC dispLpc(opt);
break;

case GOEXEC:

case HELP:

goexec(opt);
break;

heip(opt);

break;

case REMCVBRK: removDrk(opt);
break;

case 5ETMEMR: setmemr(opt);
break:

case SETREGR: setregr(opt);

break;

case SETSTK:

case SETBRK:

case SET_PC:

setstk(opt);

break;

setbrk(opt);

break;

set_pc(opt);
break;

case TRACEOP: traceop(opt);
break;

:ase QUITDE2G: :uitdebg(opt);

if ((!(opt->abortop)) && (opt->oprtn — GOEXEC)) (

if (dif f_pc) (

debugflag = 0; /* Keeps debugger from
being called after setjmpO
in mainQ/am.c */

78

longjmp(_context,!);

return;

}

if ((!(opt->abortopj) && (opt->oortn == SET_PC))
diff_pc = TRUE;

while (TRUE);

79

Debugger Operations File

/* DEBUGOPR.C: This module contains the SET initialization functions
for the AM debugger.

-AM version 1.0 - Z100

Changes:

*/

* include "amdef.h"
* include "amtype.h"
* include "amexterah"
^include "debug.h"

/* EXTERNAL FUNCTION

charextern
extern
extern
extern

extern
extern

extern
extern
extern
extern
extern
extern
extern

extern
in

*stripbik();

str2hexQ;
str2deci);

address cnv2addr();

/* both from debugutl.c */

short
short

char

VAL
STATE
VAL
STATE
VAL

getcpcodeQ:
getopndO;

*pmalloc();
fmallocQ;
"fetchmQ;
storemQ;
"fetchrO;
storer();

*topstk();

storestk();

/* both from aminstr.c */

/* all from amstate.c */

extern char *amdefs();

N .CCALGLOBALVAR1ABLES*'

/* an EXCLUSIVE debugger function

in amstate.c */

/* from amcutl.c */

3CCLN

long_seqnum;
long _off set;

;nst_gei - FALSE;/ * When irue, used to <eep getvaiueu irom
allowing recursive calls to get_inst() */

static

static

static

BREAKS brktable[MAXBRKS];
short mt_slots[MAXBRKSl;
short topslot;

80

static BOOLN mt_in.it = FALSE;
/* Teils if mt_slots(] Initialized. Note the

initialization is done once! (ref 'C manual)*/

/*GTOPCDEX()
function:

-returns the opcode stored in the brktable at slot 'brknum'

interface:

(p) brknum
(g) brktablef]

called by:

deougO/deoug.c
copyval()/amcutl.c
showmem()/amcutl.c

calls:

errors:

*/

gtopcdex(brknum)
snort brknum;

if (brktable[brknum].opcdval == UNDEFND)
return(O);

return(brktable[brknum].opcdval);

/*GETRANGE()
function:

-This function prompts the user for range value.

interface:

(p) opt
(p) maxnum

cailed by:

jipsimemQ
displregO
str2decQ/debugutl.c

calls:

errors:

81

*/

aetranqe(opt,maxnum)
OPTION *opt:
int maxnum;

(char *strptr;

char inpstrlMXDECSTR];
lonq number;
BOOLNvalidnum;

do{
fprintf(stdout,"\t\t* OPERATIONSPAN *\n\n");
fprintf(stdout."H.nter decimal number between 1 ");

fprintustdout," and &d\n\t\tor\n",maxnum);
fprintf(stdout,'"@' to abort the operation: \n");

fscanf(stdin 1

H
£10s",inDstr);

strptr = stripblk(inpstr);

if (strptrtOl == '©*)
{

opt->abortoD = TRUE:
return:

}

str2d2c(strptr,&validnum,&number);
if (Ivalidnum) {

fprintf(stdout, "Invalid number enteredAn");
continue;

}

}

while (TRUE);

if ((number < 0)
|

(number > maxnum)) {

fprintf(stdout,"Number out of rangeAn");
continue;

opt->rngespan = number;
return;

*GET_SEGM0
function:

-This function prompts the user for segment value.

interface:

(p) mxsegnum
(p) abortop

called by:

82

;

calls:

dipslmemO
displreaO
displstkO
setmemrO
setreqrQ
setstkQ
setbrkQ

get_radQ
get_sadQ
get_mad()

stripblkQ/debugutl.c
str2aecU/deDugutI.c

errors:

*/

long
qet_3eqm(abortop, mxsegnum)
SCCLN^aDortop;
int mxsegnum;

(char *strptn
char inpstrftlXDECSTR];
lona number;
BOOLNvalidnum;

do{
fprintf(stdout,"Enter decimal segment * between ");

fprintustdout," and £d\n\t\tor\n",mxsegnum);
fprintfistdout,"'©' to abort the operation: \n");

fscanf(stdin,"£10s",inpstr);

strptr = stripblk(inpstr);

if (strptrlO] == '©')
{

*abortOD = TRUE;
return(O);

str2dec(strptr,&validnum,&numtfer);
if (ivaiidnum) (

fprintf(stdout,"Inval id number enteredAn");
continue;

}

if ((number >= 0) && (number <= mxsegnum)) {

return(number);

83

fpr intf(s tdout, "Segment * out of rangeAn");
continue;

while (TRUE);

}

/*GET_OFST()
function:

-This function prompts the user for offset vaiue.

interface:

Jp)
mxoffset

,p) abortop

cailed by:

aipslmem()
dispiregQ
setmemrQ
setregrQ
setbrkQ
set_pc()

get_sadQ
get_mad()

calls:

stripblkQ/debugutl.c
str2dec0/debugutl.c

errors:

long
get_ofst(abortop, mxoffset)
BOOLN*abortop;
long mxoffset;

{ char *strptr;

char inpstrfMXDECSTRl;
ona numDer:
aOCLNvaiidnum;

do{
fprintf(stdout, "Enter decimal offset between ");

fprintfCstdout," and *d\n\t\tor\n",mxoffset);
fprintf(stdout/"@' to abort the operation: \n");

fscanf(stdin,"^10s
N
,inpstr);

84

)

while (TRUE);

strptr - stripblk(inpstr);

if (strptrtOl == '@')
{

*3bortoo = TRUE;
reium(Q);

3tr2dec(strptr,&validmm,&number);
if (Ivalidnum) {

fprintf(stdout,"Invalid number enteredAn");

continue;

}

if ((number < 0)
|

(number > mxoffset)) {

fprmtif(stdout
f
"Offset out of range. \n");

continue;

return!number);

}

/*DISPLMEM()
function:

-This function performs the display memory' operation.

interface:

M opt
,x) _numusrseg/am.h
.x) _pc/am.h
,x) _mem[]/am.h

>g) _segnum
g) -offset
x) debgtask/am.h

called by:

debugO/debug.c

calls:

getrange()
ietchm()/amstate.c
showmemO/amcutl.c
cnv2addrQ/debugutl.c
stripblk()/debugutl.c

get_segm()
get_ofst()

errors:

* /

85

displmem(opt)
OPTION *cpt;

{ char *strptr;

char inpstrlMXINPSTRl;
long i;

long number:
long totalmem = 0;

BOOLNvalidnum;
MAD tmpaddr;

opt->oprtn = DISPLMEM;

do{
fprintf(stdout,"Enter one of fol lowingAn");
fprintf(stdout,

M
\t\t'v' - addr value promptV);

fprintustdout."\t\t'**' - for current PC vaiuevn");

Fprintf(stdout,"\t\t'@' - to abort the operation: \n");

fscanf(stdin, "^is".inpstr);

strpir = stripblk(inpstr);

if 'strptrtO] == '©')
{

opt->3donop= TRUE;
return;

}

if (strptr[0] == '*')
{

-segnum = (_pc.val & X_SEGMSK) » X_SEGSFT;
.offset = _pc.val & X_ADRMSK;
getrange(opt,MAXLINES);
break;

}

if (strptrlO] == V) {

_segnum = get_segm(&opt->abortop, _numusrseg - I);

if (opt->abortop)
return;

.offset = aet_ofst(&oDt->abortOD.
_,-nem(_3eqnumi.size - I);

if ^opt->aDonop>
return;

getrange(opt.MAXLINES);

break;

86

fprintf(3tdout,"!ncorr8Ct responseAn");

}

While (TRUE);

if (opt->abortop)
return;

debgtask = 1;

fprintf(stdout,T1emaddr Contents\n\n
w

);

if (cpr->rngespan == UNDEFND) (

tmDaddr.val = cnv2addn_seanum_offset);
showmem(&tmpaddrf

fetchm(&tmpaddr,Q));

else {

}

debgtask = 0;

i
= 0;

wniie((i < opt->rnaesDan) && useqnum < -numusrseg)) {

tmpaddr.vai = cnv2addr(_seanuml_offset);
showmem(&tmpaddr,fetchm(&impaddr,Q));
i
++

;

_offset++;
if (-Offset = _mem(_5egnumj.size) {

_offset = 0;

_segnum++;

}

/*D!SPLREG()
function:

-This function performs the 'display register' operation.

interface:

(p) opt
U) _numregsea/am.h
ix J _reg[]/ am.rf

(g) -segnum
(q) -Offset
(xj debgtask/am.h

called by:

debug()/debug.c

calls:

87

getrangeO
fetcftrO/amstate.c
showmemQ/amcutl.c
cnv2addr0/debuqutl.c
stripblkQ/debugutl.c
get_segm()
get_ofst()

errors:

»/

displreq(opt)
QPT!ONl*CDt:

{ char *strptr;

char inpstr[MXDECSTR];
long i:

long number;
lonq numreqs - 0;

BOOLNvalidnum;
RAD tmpreg;

opt->oprtn = DISPLREG;

do{

-0;

fpnntf(stdout,"Enter one of foliowingAn");
fprintf(stdout,"\t\tV - addr value prompt\n");
fprintrfstdout •\t\f©' - to abort the operation: \n

H

);

fscanf(stdin,"^1s",inpstr);

strptr = stripblk(inpstr);

if (strptr[01 == '©')
{

opt->abortop= TRUE;
return;

if (strptr[0] == V) I

_segnum = get_segm(&opt->abortop, _numregseg - 1);

if (opt->abortop)
-pturn;

.Offset r get_ofsi(&op[->aDor;cp,-_reg[_3egnumj.num

if (opt->abortop)
return;

getrange(opt.riAXLINES);

88

}

break;

}

fprintf(stdout,"!ncorrect responseAn");

while (TRUE);

if (opt->abortop)
return;

debgtask = I;

fprintf(stdout,"Regnum Contents\n\n");

if (opt->rngespan == UNDEFND) {

tmpreg.val = cnvZaddrC-seqnum^offset);
showmem(&tmpreg,fetchr(&tmpreg,Q));

i
i

2\SQ

}

}

debgtask = 0;

= 0;

vhile((i < opt->rnaesDan) && (_3egnum < _numreaseg)) {

tmoreaval - cnv2addr(_3eanum_offseiJ;
showmem(&tmpreg,fetchr(&tmpreg,Q));
i
++

;

_offset++;
if (_offset == _reg[_segnum].num) {

-offset = 0;

_segnum++;

/*DISPLSTK()
function:

-This function performs the 'display stack' operation.

interface:

(p) odi
ixj _numstks2g/am.h
,x) _stk[]/am.h

J _segnum
lv debgtask/am.h

called by:

debugQ/debug.c

89

calls:

cnv2addrQ/debuqutl.c
stripblkO/debugutl.c
get_segmO
get_ofst()

errors:

*/

displstk(opt)
OPTION *opt;

char *strptr;

char inpstrlMXDECSTRl;
long stksize = 0:

int 1;

SAO stktop;

opt->oprtn = D1SPLSTSC;

do{
fprintf(stdout, "Enter one or' fci lowing: \r");

fprintf(stdcut,"\t\t'v' - segment value prompt\n");
fprintf(stdcut,"\t\t'$' - to abort the operation: \n");

fscanf(stdin,"£ls",inpstr);

strptr = stripblk(inpstr);

if (strptr[0] == '@')
{

opt->abortop = TRUE;
return;

}

if (strptrlO] = V) {

_segnum = get_segm(&opt->abortop,
_numstkseg - 1);

break;

forintffstdout, "Incorrect response.Xn');

}

wnile (TRUE);

if (opt->abortop)
return;

debgtask -
I;

_offset = _stk[_segnum].size -
I;

90

stktop.val = cnv2addr(_segnum_off set);

fprintf(stdout,"Top of StackAn");
showmem(&stktop,topstk(&stktop,Q));

debgtask = 0;

/*D1SPLBRK()
function:

-This function performs the 'display breaks' operation.

interface:

(p) opt

:g) brktable[]

,g) mt_init

(g) mt_sIots(]

v g) toosiots

called by:

debug()/debug.c

calls:

stripblkQ/debugutl.c
amdefs()/amcutl.c

errors:

*/

displbrk(opt)
OPTION *opt;

{ char *strptr;

char inpstr[MXINPSTR];
short i;

opt->oprtn = DISPLBRK;

do{
fprintf(stdout,"Enter '!' to continue\n\t\tor\n");
fpnntf(stdout,'"@' to abort the operation: \n");

rscanf(stdin,"^1s",inpstr);

strptr = stripblk(inpstr);

if (strptr[0] == '@')
{

opt->abortop = TRUE;
return;

}

if (strptrlO] == '!')

91

break;

fprintf(stdout,"incorrect responseAn");

while (TRUE);

if (!mt_:nit) {

for (i = 0;i < MAXBRKS; i++) {

mt_slots(i] = i;

brktable[i].memaddr = 0;

brktable(i].opcdval = UNDEFND;

}

tooslot = MAXBRKS - I;

mUnit =TRUE;

r Drintf

^

ctdout "\t\t***********************\ n"V

fDnntf(stdout/'\t\t*
'

*\n");

fpnntf(stdout,"\t\t* 3REAKPQINTS *\n
w
);

fprintf(stdout/\t\t* *\n
M

);

forintfisidout "\t\t***********************\n\n"y

fprintf(stdouV'BRKNUM ilEMADDR QPCODENn"); '

f or(i = 0; i < MAXBRKS; I++) {

if (brktable[i].opcdval = UNDEFND)
fprintf(stdout,"^6d\n",i);

else {

fprintf(stdout
f
"*6d ", i);

fprintf(stdout,"*08lx ", brktable[i].memaddr);

fprintf(stdout,"3>s\n", amdefs(brktable[i].opcdval));

}

}

}

/*D1SPL_PC()
function:

-This function performs the 'display program counter'
operation.

interface:

p) opt
xj _jc/am.h
a j _seqnum
vg) _oftset

called by:

debug()/debug.c

calls:

stripblkQ/debugutl.c

92

errors:

*/

displ_pc(opt)
OPTION *opt;

{ char *strptr;

char inpstrlMXINPSTR];

opt->oprtn = DISPL_PC;

do{

}

whil2 (TRUE);

fprintf(stdout, "Enter one of foilowing:\n");

fprintf(stdout,"\t\t'!' to confirm display pc \n");

fprintf(stdout,"\t\t'@' to abort the operation \n");

fscanf(sldin,"&is",inpstr);

strptr = stripolk(inpstr);

if (strptrlO] == '@')
{

opt->abortop = TRUE;
return;

}

if (strptrlO] == T) {

_segnum = (_pc.val & X_SEGMSK) » X_SEGSFT;
.offset = _pc.val & X_ADRMSK;
fprintf(stdout,"\n\t\tPRGN COUNTER in segment %\6 ",

_seqnum);
fprintf(stdout,"at offset *ldAnV_offset);
return;

fprintf(stdout,"Incorrect responseAn");

/*GOEXEC()
function:

-This function initiates the rest of the prompts for th2

'go execution' operation.

interface:

ip) opt
xj left2do/am.h
,x) debgcntl/am.h

called by:

debugQ/debug.c

93

calls:

str2decQ/debugutl.c
stripblk()/d2bugut!.c

errors:

*/

goexec(opt)
OPTION "opt;

{ char inpstr[f1XDECSTR];
char *str;

BOOLNvaildnum;
long number;

opt->oprtn = GGEXEC;

do{
fprintf(stdout/'Enter one of choices belowAn");
fprintf(stdout,"\t\tDecimal ranae otwn i ana *d\n",MAXEXECS);
fprintf(stdout,"\t\f !' - uncontrolled qo\n");
fpnntf(stdout."\i\t'@' - to abort the operation\n\n");
fscanf(stdin,"£11s",inpstr);

str = stnpblk(inpstr);

if (str[0] == '@')
{

opt->abortop= TRUE;
return;

if (str[01 == '!')

return;

str2dec(str,&val idnum.&number);
if (Ivalidnum) {

fprintf(stdout/Invai id number enteredAn");
continue;

if ((numDer < 1) (number > MAXEXECS)) (

fpnntf(stdout,"'NumDer out d< rangeAn");
continue;

left2do = number;
debgcntl = I;

return;

94

whils(TRUE);

/*HELP()
function:

-This function displays the debugger commands available.

interface:

.
(p)opt

called by:

debugQ/debug.c

calls:

errors:

*/

heiD(oot)

OPTION *opt;

{ char str[MXINPSTRj;

opt->oprtn = HELP;
fprintf(stdout,"\t\t Debuaaer Commands \n"):

forintnstdout "\t\t********^***************\n")"
fprintf(stdouti"'d'(isplaLj)\t'm'(emory)

f
{'*'

|
seg:offset), span\n");

fprintfistdout," \t'r'(egister), seg:offset, span\n
H
);

fprintfistdout," \t's'(tack - top only), seg\n");

fprintttstdout," \t'b'(reaks -all)\n");

fprintfistdout," \t'* '(program counter)\n");
fprintf(stdout,"'q'(o) \t{T

f
n <instrs>}\n");

fprintfistdout/'Tilist available debug commands)\n");
fprintf(stdout,"'s

,

(et) \t'm'(emory), seg:offset, val_type, val\n");

fprintfistdout," \t'r'(egister), seg:offset, vaLtupe, val\n");

fprintfistdout," Nt's'ltacktop, seg, val_type, val\n");

fprintfistdout," \t'b'(reak), seg:oTfsetVr);
fprintfistdout," \t'*'(program counter), seg-.offset\n");

fprintf(stdout,"T(race) \t'l'(on) < TRACEXn");
fprintffstdout," \t'z'(off) STARTEDV);
fprintf(stdout," \t for n fnstrs BY 'GO'>\n") ;

fprintf(stdout,"'q'(uit deoug and halt 8xecution)\n";;
fpnntf(stdout, "Laaend: - or, []

- optional, <> - comment ");

!"printf(stdout,'' (J-Hust choosean item.\n\n");
fprintf(stdout,"Enter non-blank char to continueAn");
fscanf(stdin,"*1s",str);

95

/*REMOVBRK0
function:

-This function removes a breakpoint at a specified
memory location.

interface:

Cp) opt
ix5 debgtask/am.h

(g) mt_mit
g) brktablel]

fg} topslot

(q) mt_siots[]
(x) Q/am.h

called by:

debug()/debug.c

calls:

stripbikQ/tiebugutl.c

str2decQ/debugutl.c
fetchmQ/amstate.c
storemQ/amstate.c
cnv2aadr()/debugut!.c

errors:

*/

removbrk(opt)
OPTION *opt;

{ char *strptr;

char inpstririXDECSTR];
int i;

long number;
BOOLNvalidnum;
VAL*v;
MADm;
BREAKS *brkptr;

oot->oprtn = REMOVBRK;

do c

fprintf(stdout, "Enter decimal break number ");

fprintf(stdout,
M
between and *d\n\t\tor\n

M
,MAXBRKS-l);

fprintf(stdout,"'@' to abort the operation: \n");

fscanf(stdin,"^4s",inpstr);

strptr = stripblk(inpstr);

96

if (strptrtOl == W) {

opt->aoorTop = TRUE;
return;

}

str2dec(strptr,&validrujm,&number);

if fjvalidnum) {

fprintf(stdoui/'Invai id number enteredAn");

continue;

}

if ((number < 0) 1
1 (number > (MAXBRKS - 0)) (

fprintf(stdout,
;,

NumDer out of range.Xn");

continue:

}

opt->rngebegn = number;
break;

}

'*nile (TRUE);

if (ImUnit) {

for (i =0;i < MAXBRKS; i+«0 {

mt_sicts(i] = i;

brktabletij.memaddr = 0;

brktable[i].opcdval = UNDEFND:

topslot = MAXBRKS - 1;

mUnit =TRUE;

if (topslot > MAXBRKS - 2) {

fprintf(stdout,"Break Table empty\n");
return;

if (brktable[opt->rngebegn].opcdval == UNDEFND) {

fprintf(stdout,"Breakpoint not in TableAn");
return;

debgtask = 1;

Drkptr = lbrktaDie(opt->rngeDeanj;
m.vai r Drkptr- >memaaar;
v = fetchm(&m,Q);
v->instrval.val[0].opcdval = brkptr->opcdval;
storem(v,&m

fQ);

brkptr->memaddr = 0;

brkptr->opcdval = UNDEFND;
mt_slots[++topslot] = opt->rngebegn;

97

deDgtask = 0;

/*TRACEOP()
function:

-This function initiates the rest of the prompts for the

the 'traceop' operation.

interface:

M opt
>x) debqcntl/am.h
>x) left2do/am.h
,x) dbgtrace/am.h

called by:

debugQ/debug.c

calls:

stripblkQ/debugopr.c
str2dec0/debugopr.c

errors:

7

traceop(opt)
OPTION *opt;

{ char *strptn
char inpstr[MXDECSTR);
int i:

long number;
BOOLNvalidnum;

opt->oprtn = TRACEOP;

do{
fprintf(stdout,"Enter one of followingAn");
fprintf(stdout,"\t\tDecimal number between 1 and ");

fprintf(stdout,
H
*d\n",r1AXUNES);

fprintf(stdout,"\t\t'!' for 'trace on'\n");

fprintf(stdout,"\t\t'z' for 'trace off *\n");

fprintf(stdout,"\t\t'@' to abort the operationAn");
fsc3nf(stdin,"^10s",;nDStr

sirptr = stnpDlkv'inpsir);

if (strptr[0] == '@')
{

opt->abortop= TRUE;
return;

}

if (strptr[0] == '!')
{

98

opt->rnaesDan = TRACEON;
ddgtrace = i;

deDgcntl = 0;

return;

}

if (strptrfO] == '2')
{

opt->rngespan = TRACEOFF;
dbqtrace = 0;

deDgcntl = 0;

return;

}

str2dec(strptr,&validnum,&number);

if (Ivalidnum) {

fprintf(stdout,"Invalid number enteredAn");
continue:

}

if ((number < 1) |
I (number > MAXLJNES)) {

fprintf(stdout,"Number out of rangeAn");
continue;

}

left2do = number:
dbqtrace = 1;

debgcntl = 1;

return;

while (TRUE);

/*QUITDEBG()
function:

-Upon user confirmation, this function exits the debug-

ger and halts program execution.

interface:

(p) opt

called by:

debug()/debug.c

calls:

stripblk()/debugopr.c
exit()

errors:

*/

99

quitdebg(opt)
OPTION*opt;

{ char *strptr;

char inpstrlMXlNPSTR];

opt->oprtn = QU1TDEBG;

do{
fprintf(stdout,"Enter on2 of followingAn");
fprintf(stdout,-\t\tT to END DEBUG AND EXECUTION^");
fprintf(stdout,*\t\t'@' to abort operaticnAn");
fscanf(stdin,"^1s ".inpstr);

strptr = stripdlk(inpstr);

if (strptr[0l == '©')
{

opt->abortoo = TRUE;
return;

}

if (strptrlOl == '!')
(

fprintf(stdout,"Exitina Debugger, Halting ExecutionAn");
exit (0);

}

fprintf(stdout,"lncorrect responseAn");

while (TRUE);

/*GET_BOOL()
function:

-This function initializes the boolval structure, promp-
ting the user to enter the actual value part of the

structure.

interface:

(p)v
(p) abortop

called by:

getvaiueO

calls:

stripblk()/debugutl.c

errors:

100

qet_booi(v,abortop)
VAL*v;
BOOLN*abortop;

{ char *strptr;

char inpstrlMXINPSTRl;

v->booival.type = V_SOOL;

* do{
fprintf(stdout,"Enter letter of your choiceAn");
fprintf(stdout,"\t\tt(rue)\n\t\tfTalse)\n");

fprintf(stdout,"\t\t@(abort operation\n");
fscanf(stdin,"£ls",inpstr);

strptr = stripblk(inpstr);

switch(strDtr[0]) {

case 't': v->booival.vai = V;
return:

case V: v->boolvai.val = V;
return;

case @': *abortop = TRUE;
return;

default: fprintf(stdout/Bad responseAn");

while (TRUE);

}

/*GET_NAT()
function:

-This function initializes the natval structure, promp-
ting the user to enter the actual value part of the

structure.

interface:

(P)v
(p) abortop

called by:

getvaiueQ

calls:

stripblkQ/debugutl.c
str2dec()/debugutl.c

errors:

*/

101

get_nat(v,abortop)
VAL*v;
800LN*abortop;

{ long number;
BOOLNvalidnum;
char *strptr;

char inpstrfMXDECSTR);

v->natval.type = V_NAT;

do{
fprintf(stdout,"Enter decimal number between\n");
fprmtf(stdout,"\t\tO and 65535\nor\n");
fprintfCstdout,"\t\t'@' to abort the operationAn");
fscanf(stdin,"^10s",inpstr);

strptr = stripblk(inpstr);

if (strptr(O) == '<§>')
{

*abortoo = TRUE;
return;

}

str2dec(strptr,&validnum,&number);

if (Ivalidnum) {

fprintf(stdout,"Invalid number enteredAn");
continue;

if ((number < 0)
|

(number > 65535)) {

fprintf(stdout,"Number out of rangeAn");
continue;

v->natvai.vai = number;
return;

while (TRUE);

}

/*GETJNT()
function:

-This function initializes the intval structure, promp-
ting the user to enter the actual value part of the

structure.

interface:

(P)v
(p) abortop

102

called by:

getvalueO

calls:

stripblkQ/debugutl.c

str2decO/debugutl.c
errors:

»/

get_int(v,abortop)

VAL *v;

BOOLN*abortop;

{ long number;
BOOLNvalidnum;
char *strptn
char inpstriMXDECSTR];

v->intval.type = VJNT;

do{
fpnntffstdout, "Enter decimal number between\n\n");
fpnntf(stdout,"\t\t -2147483647 & 2147483647 (no 7>\n

w
);

forintf(stdout,"or\n\t\t'@' to abort the operationAn");
fscanf(stdin,"*11s",inpstr);

strptr = strlpblk(inpstr);

if (strptr[0l == *@')
{

"abortop = TRUE;
return;

str2dec(strptr,&validnum,&number);

if (Ivalidnum) {

fprintf(stdout,"Invalid number enteredAn");
continue;

v->intval.val = number;
return;

}

while (TRUE);

}

/*GET_CHAR()
function:

-This function initializes the charval structure, promp-
ting the user to enter the actual value part of the

103

structure.

interface:

(P)v
(p) abortop

called by:

getva!ue()

calls:

getchar()/ "system*
errors:

»/

get_char(v,abortop)
VAL *v;

BOOLN "abortop;

{ char ch;

v->charval.type = V_CHAR;

fprintrtstdout, "Enter character\n\t\tor\n");
fprintf(stdout,"'@' to abort the operation:\n");

ch = getchar(); /« MUST be done to CLEAR LAST NEWL1NE CHARACTER
user typed. */

ch = getchar();

if (ch =='©')
{

"abortop =TRUE;
return;

v->charval.val = ch;

return;

}

/*GET_CSTR()
function:

-This function initializes the cstrval structure, pronriD-

[ing the user to enter the actual value part oi the

structure.

interface:^
* v
abortop8

called by:

104

getvaiueO

calls:

pmalIoc()/amstate.c
getcharQ/ *system*
gets()/ *sustem*
strcpyO/ *system*

errors:

*/

get_cstr(v,abortcp)
VAL*v;
300LN*aDortop;

{ char str[81];

char *ptr;

char *qets();

char en;

v->cstrval.type = V_CSTR;

do{
fprintrtstdout/'Enter char string (max 80 chars)\n");
fprintf(stdout,"\t\tor\n'@' to aDort the operation-An");

ch = getcharO; /* MUST be done to CLEAR LAST NEWLINE
character user typed. */

ptr = gets(str);

if (ptr != NULL) {

if (str[01 == '@') {

*abortop = TRUE;
return;

}

v->cstrvai.val = pmalloc(strlen(str) +1);

strcpy(v->cstrval.val, str);

return;

fprintf(stdout,"Error in reading stnngAn");

while (TRUE);

}

/*GET_MAD()
function:

-This function initializes the madval structure, promp-
ting the user to enter the actual value part of the

105

structure.

interface:

(P)v
(p) abortop

called by:

getvalueQ

calls:

cnv2addrQ/debuqutl.c
striDblkO/debugutl.c
get_segm()
get_ofst()

errors:

*/

get_jnaa(v,abortop)
VAL *v;

BOOLN*abortop;

char "strptr;

char inpstr[MXINPSTR];
long _seqnum:
long _offset;

v->madval.type = V_MAD;

do{
fprintf(stdout/'Enter one of fol lowinqAn");
fprintf(stdout,"\t\tV - memaddr value prompt\n");
fprintf(stdout

I
"\t\t'@' - to abort the operation: \n");

fscanf(stdin,
M
^1s",inpstr);

strptr = stripblk(inpstr);

if (strptr[0) == '#')
{

"abortop = TRUE:
return;

if (strotrtOI == V) {

_segnum - get_segmi,aDortop_numusrseg - I);

if (*abortop)
return;

.offset = get_ofst(abortop,
_mem[_segnum].size -

1);

106

if (*abortop)
reiurn;

v->madval.val = cnv2addr(_segnum, .offset);

return;

}

fprintf(stdout,1ncorrect responseAn");

;

while (TRUE);

/*GETJWK)
function:

-This function initializes the radval structure, promo-
ting the user to enter the actual value part of the

structure.

interface:

topip) abort<

called by:

getvalue()

calls:

cnv2addrQ/debuqutl.c
stripblk()/debugutl.c

get_segm()
get_ofst()

errors:

7

get_rad(v,abortop)
VAL *v;

BOOLN*abortop;

{ char *strptr;

char inpstr(MXlNPSTRl;
long _secinum;
long _offset;

v->radval.type = V_RAD;

do{
fprintf(stdout,"Enter one of followingAn");
fprintf(stdout,"\t\tV - regaddr value prompt\n

w

);

fprintf(stdout,"\t\t'@' - to abort the operation: \n");

107

fscanf(stdin,"£1s
J

\inpstr);

strptr = stripblk(inpstr);

if (strptrfO] == '<§>') {

*abortop = TRUE;
return;

}

if (strptrlO] == V) {

_segnum = get_segm(abortop_numregseg - 1);

if (*abortop)
return;

_offset = get_ofst(abortop,_reg[_segnum].num -
1);

if (*abortop)
return;

v->radval.val = cnv2addr(_segnum, _offset);

return;

}

fprintf(stdout,"Incorrect responseAn");

}

while (TRUE);

/*GET_SAD()
function:

-This function initializes the sadval structure, promp-
ting the user to enter the actual value part of the

structure.

interface:

(P)v
(p) abortop

called by:

getvalueO

calls:

cnv2addrQ/debugutl.c
stripblk()/debugutl.c
get_segm()
get_ofst()

errors:

108

»/

qet_sad(v,abortop)
VAL*v;
600LN*aDortop;

{ char *strptn
char inpstriNXINPSTR];
long _seqnum;
long -offset;

v->sadval.type = V_SAD;

do{

}

fprintf(stdout, "Enter one of followingAn");
fprintf(stdout,"\t\t'v' - stkaddr value prompt\n");
fprintf(stdout,"\t\t'@' - to abort the operation: \n");

fscanf(stdin,"£1s",inpstr);

strptr = 5tripblk(inpstr);

if (strptrCO] = '©')
{

*abortop = TRUE;
return;

}

if (strptrCO] == V) {

_segnum = get_segm(abortop, _numstkseg - 1);

if (*abortop)
return;

-offset = get_ofst(abortop,_stk[_segnum].size - 1);

if (*abortop)
return;

v->sadval.val = cnv2addr(_segnum, -offset);

return;

fprintf(stdout,"Incorrect responseAn");

}

while (TRUE);

/HGET_FILE()
function:

-This function initializes the fileval structure, promp-
ting the user to enter the actual value part of the

109

structure.

interface:

,p) abortop

called by:

getvalue()

calls:

stripblkQ/debugutl.c
str2decQ/debugutl.c

errors:

7

aet_file(v,abortoo)

300lN*abortcp;

{ lonq number:
BOOlNvalidnum:
char *sirptn
char inpstr[MXDECSTR3;

v->f ileval.type = V_FILE;

do{
fprintf(stdout,"Enter decimal number ");

fprintf(stdout,"between and ^dNnXtNtorNnV-numf iles -
1);

fprintf(stdout,"'@' to abort the operatioaAn");
fscanf(stdin

)

M
&11s

,

\inpstr);

strptr = stripblk(inpstr);

if (strptr[0] == '@')
{

"abortop = TRUE;
return;

str2dec(strptr,&validnum.&number);

if (Ivalidnum) (

i"pnntf(staout, Invalid number enteredAn');
continue;

if ((number < 0)
|

(number > _numf iles - 1)) (

fprintf(s(dout,"Number out of rangeAn");
continue;

}

110

v->f ileval.val = number;
return;

}

while (TRUE);

}

/*GETJNST()
function:

-This function initializes the instrval structure, promp-
ting the user to enter the actual value part of the

structure. It resets glcoal file var 'inst_get' to FALSE
just before function termination.

interface:

(P)v
fp) abortop

(g) inst_get

called by:

getvalueO

calls:

getopndQ/ammstr.c
qetopcode()/aminstr.c
getvalueO /* Note that this is a recursive call */

pmallocQ/amstate.c
str2hexQ/debugutl.c
stripblkO/debugutl.c

errors:

f/

get_inst(v,abortop)
VAL *v;

BOOLN*abortop;

{ lonq number;
BOOLNvalidnum;
char *strptr;

char inpstrfMXHEXSTRl;
int i;

mt j;

VAL *p;

v->instrval.tupe = VJNSTR;
inst_get = TRUE;

do{
fprintf(stdout,"Enter HEX opcode\n\t\tor\n");

111

fprintf(stdout/"@' to abort the operaticnAn");
fscanf(stain, '&4s"jnpstr);

strptr = stripblk(inpstr);

if (strptrlO] == '©')
(

*abortop = TRUE;
inst_get = FALSE;
return;

}

str2hex(strptr,&validnum,&number);

if (Ivalidnum) {

fprintf(stdout/'Inval id number enteredAn");
continue;

}

if ((number < 0)
j

(number > Oxofff)) {

fprintf(stdout/'Inval id opcodeAn");
continue;

}

if (getopcode(number) == (LDBG) {

fprintf(staout/'Breakpoint opcodeenteredAn");
fprintf(stdout,"Opcode can't be enterBdAn\n");
continue;

}

j
= getopnd(number);

v->instrval.val = (VAL*) pma!loc(sizeof(VAL)* j);

v->instrval.val[0].opcdval = number;
p = v->instrval.val;

for (i = 1; i < j; i++) {

fprintf(stdout,"\t\t *** Entering Operand **d"
(
i);

fprintHstdout," *""\n
m
)\

getvalue(&p[i], abortop);

if (*abortop) {

inst_get = FALSE;
return;

inst_get = FALSE;
return;

}

while (TRUE);

112

/*GETJ10P()
function:

-This function initializes the mopvai structure, promp-
ting the user to enter the actual value part of the

structure.

interface:

(p)v
(pj abortop

called by:

getvalueQ

calls:

str2hexQ/debugutl.c
stripblkQ/debugutl.c

errors:

/

get_jncD(v,abcrtop)
VAL *v;

300LN*abortop;

{ long number;
BOOLNvalidnum;
char *strptr;

char inpstrftlXHEXSTR];

v->mopval.type = V_r10P;

do{
fprintf(stdout,"Enter HEX number ");

fprintf(stdout,"between and ffff\n\t\tor\n");

fprintf(stdout,"'@' to abort the operationAn");
fscanf(stdin,"£4s",inpstr);

strptr = stripblk(inpstr);

if (strptr[01 == '©*) {

*2bortOD z TRUE;
return;

}

str2hex(strptr,&validnum,&number);

if (Ivalidnum) {

fprintf(stdout,"Invalid number enteredAn");
continue;

}

113

if ((number < 0)
|

(number > 65535)) {

fprintf(stdout,"Number out of rangeAn");
continue;

}

v->mopval.val = .numDer
return;

while (TRUE);

)

/*GET_DCP()
function:

-This function initializes the dopval structure, promp-
ting the user to enter the actual value part of the

structure.

interface:

(P)v
(p) abortop

caiied by:

getvalueO

calls:

str2hexQ/debugutl.c
stripblkQ/debugutl.c

errors:

»/

get_dop(v,abortop)
VAL*V;
BOOLN*abortop;

{ long number;
BOOLNvalidnum;
char *strptr;

char IrpstrfMXHEXSTRl;

v->dODval.type = V_DOP;

do{
fprintf(stdout,"Enter HEX number ");

fprintfistdout,"between and ffff\n\t\tor\n");

fprintf(stdout,"'@' to abort the operationAn");
fscanf(stdin,"^4s",inpstr);

strptr = stripblk(inpstr);

114

}

whiie (TRUE);

if (strptrlOl == '©')
{

*abortcp = TRUE;
return;

}

str2hex(strptr,&validnumf&number);

if (ivaiidnum) {

fprintf(stdout,"Invaiid number enteredAn");
continue;

if ((number < 0)
J

(number > 65535)) {

fprintf(stdout, 'Number out of range. \n");

continue;

v->dopvai.va! = number;
return;

}

/*GET_ROP()
function:

-This function initializes the ropval structure, promp-
ting the user to enter the actual value part of the
structure.

interface:

(p)v
(p) abortop

called by:

getvalueO

calls:

str2hexQ/debugutl.c
stripblkQ/debugutl.c

errors:

7

qet_rop(v,abortop)
VAL*v;
BOOLN*abortop;

{ long number;
BOOLNvalidnum;

115

}

char *strptr;

char inpstrfMXHEXSTRl;

v->ropval.type = V_ROP;

do{
fprintf(stdout,"Enter HEX numoer ");

fprintf(stdout,"between and ffff\n\t\tor\n"):

fprintf(stdout,"'@' to abort the operationAn");
fscanf(stdin/*4s",inpstr);

strptr = stripblk(inpstr);

if (strptr[0l == '©')
(

"abortop = TRUE;
return;

str2hex(strptr,&validnum,&number);

if (Ivalidnum) {

fprintf(stdout,"!nvalid number enteredAn");
continue;

}

if ((number < 0)
J

(number > 55535)) {

fprintf(stdout,"Number out of rangeAn");
continue;

}

v->ropval.val r number;
return;

while (TRUE);

/*GET_BOP()
function:

-This function initializes the bopval structure, promp-
ting the user to enter the actual value part of the

structure.

interface:

abortopW
called by:

getvalue()

calls:

str2hex()/debugutl.c

1 16

stripblkO/debugutl.c

errors:

*/

qet_boD(v,abortop)
VAL *v;

BOOLN *abortop;

{ long number;
BOOLN validnum;
char *strptr;

char inpstrfMXHEXSTRl;

v->bopval.type = V_BOP;

do{

}

1

while (TRUE);

fprintf(stdout,"Enter HEX numDer ");

fprintrfstdout, "between and f fff\n\t\tor\n");

fprintustdout,'"@' to abort the operationAn");
fscanf(stdin,"£4s",inpstr);

strptr = stripblk(inpstr);

if (strotr[01 == '<§>') {

*abortop = TRUE;
return;

str2hex(strptr,&validnum,&number);

if (Ivalidnum) {

fprintf(stdout,"Invalid number enteredAn");
continue;

if ((number < 0) |
I (number > 65535)) {

fprintf(sidout,"Number out of rangeAn");
continue;

v->boDval.vai = number;
return;

/*GETVALUE()
function:

-This function prompts the user for value of type VAL

117

whicn can be placed into memory, a register or the

stack.

interface:

[p)v
pi abortop

vg) inst_get

cailed by:

setmemr()
setregrO
setstkQ
get_inst() /* Note — indirect recursive call!! */

calls:

str2decQ/debugutl.c
stripblkO/debugutl.c
getjooK)
get_nat()
get_;nt()

get_charQ
get_cstrg
get_madQ
get_mad(;
get_radf
get_sad(
get_file(

get_inst(

get_mop()
get_dop(
get_rop(
get_bop(

errors:

*/

getvalue(v.abortop)
VAL *v;

BOOLN*abortop;

{ char *strDtn
char rastrfrlXDECSTRl; /* ilXDECSTR = 12 */

nt numoer:
BOOLNvalldnum;

do{

fprintf(stdout,
M
\t\t ***** Entering Value to be Stored

NMMM\n\n");

fprintffstdout, "Enter number ");

fprintf(stdout, "besides type desired:\n\n");

118

fprintf(stdout,"\t 1
- BOOLXt 2 - NAT \t 3 - INT ");

fprintf(stdout,"\t 4 - CHAR\n\t 5 - CSTR \t 6 - MAD ");

fprintf(stdout,"\t 7 - RAD \t 3 - SAD\n\t 9 - FILE ");

if (!inst_get) {

fprintf(stdout,"\tlO - INSTRXtll - MOP \t!2 - DOP\n");
fprintf(stdout,'\t13 - ROP \t14 - BOP \t $ - abort oo\n

H

);

else {

fprintf(stdout,"\tll - MOP \t!2 - DOP \t!3 - ROP\n");
fprintf(stdout,"\t14 - BOP \t @ - abort op\rT);

}

fscanf(stdin,"3nis",inpstr);

strptr = stripblk(inpstr);

if (strptrfOl == '©')
{

*abortop = TRUE;
return;

}

str2dec(strptr,&validnum,&number);
if (Ivaiidnum) {

fprintf(stdcut,"lnvaiid number entered. \n");

continue;

}

switch(number) {

case I: get_bool(v
f
abortop);

return;

case 2: get_nat(v,abortop);
return;

case 3: get_int(v,abortop);

return;

case 4: get_char(v,abortop);
return;

case 5: get_cstr(v,abortop);
return;

case 6: get_mad(v,abortop);
return;

case 7: get_rad(v,abortop);
return;

case 3: get_sad(v,3boriop);
return;

case 9: get_file(v,abortop);

return;

case 10: if (!inst_get) {

get_inst(v,abortop);

return;

119

fprint: (stdout,"Incorrect numberAn");
break;

case 11: get_mop(v,aDortop);
return;

case 12: get_dop(v,abortop):
return:

case 13: get_rop(v,abortop);
return;

case 14: get_bop(v,abortop);
return;

default: i"printf(stdouOncorrect numberAn");

while (TRUE);

)

/*SETMEMR()
function:

-This function performs the 'set memory' operation.

interface:

[p) opt

>g) _segnum
g) -offset
x) debgtask/am.h

called by:

debugO/debug.c

calls:

stripblk()/debugutl.c

qetvalueO
fetchmO/amstate.c
storemO/amstate.c
pmallocQ/amstate.c
fmallocO/amstate.c
cnv2addr()/debugutl.c
getopcodeQ/ammstr.c

errors:

setmemr(opt)
OPTION -opt;

{ char "strptr;

char inpstr[MXINPSTR];

120

BOOLNop_abort = FALSE;
VAL*v:
MADm;
short brknum;

opt->oprtn = SETMEMR;

do{
x

fprintf(stdout,"Enter one of foilowinq:\n");

fprintf(stdout,"\t\tV - memaddr value prompt\n");
fprintf(stdout,"\t\t'@' - to abort the operation: \n");

fscannstdin/'^lsMnpstr);

strotr = stripblk(inpstr);

if (strptrfOJ == '@0 {

opt->abortop = TRUE;
return;

}

if (strptriOj == V) {

_segnum = get_segm(&opt->abortop,
_numusrseg - 1);

if (opt->abcrtop)
return;

-offset = get_ofst(&opt->abortop,
_mem[_segnum].size -

1);

if (opt->abortop)
return;

opt->val = (VAL*) pmalloc(sizeof(VAL));
getvalue(opt->val,&op_abort);

break;

fprintf(stdout,"Incorrect responseAn");

while (TRUE);

if (opt->abortop = op_aoort) /* Assignment intended!! */

return;

debgtask = I;

m.val = cnv2addr(_segnum, -offset);
v = fetchm(&m,Q);

121

if (v->type == VJNSTR) {

if (getopcode(v->instrvai.vai(0).opcdval)== ILDBG) {

do{
fprintffstdout/Breakpoint at memaddrAn");
fprintf(stdout,"Enter '!' to confirm setW);
fprintf(stdout,"\t\tor\n*@' to abort opAn");
fscanf(stdin,"^>1s",inpstr);

strptr = stripblk(inpstr);

if (strptrlO] == '@')
{

opt->abortop = TRUE;
debgtask = 0;

return;

}

if (strotr[Ol == '!')
{

brknum=getoond(v->instrval.vai(Ol.opcdval);
storem(opt->val,&m,Q);
fmalIoc(opt->val);
brktablefbrknuml.memaddr = 0;

brktable(brknum].0DCdvai = UNDEFMD;
mt_siotsi+-»-topslot] = brknum;
debgtask = 0;

return;

}

fprintf(stdout,"Incorrect responseAn");

while (TRUE);

}

storem(opt->val,&m,Q);
fmalloc(opt->val);
debgtask = 0;

/"SETREGRO
function:

-This function performs the 'set register' operation.

interface:

W opt

,gj _seqnum
,g) -offset

called by:

debug()/debug.c

122

calls:

stripblk()/debugut!.c

getvaluey
pmailocQ/amstate.c
fmalloc()/amstate.c
cnv2addr()/debugutl.c

errors:

*/

setrear(oot)
OPTION *opt;

{ char ^strptr;

char inpstrCMXINPSTR];
BOOLNop_abort = FALSE;
RADr:

opt->oprtn = SETREGR;

dot
fprintf(stdout,"Enter one of foilowing:\n");

fprintf(stdcut,"\t\tv - regaddr value prompt\n");
fprintf(stdout,"\t\t'@' - to abort the operation: \n");

fscanf(stdin,'ftls",inpstr);

strptr = stripblk(inpstr);

if (strptr[0] == '<§>')
{

opt->abortop = TRUE;
return;

if (strptr[0] == 'V) { H
_segnum = get_segm(&opt->abortop,

_numregseg - 1);

if (opt->abortop)
return;

..offset = get_ofst(&opt->abortop,
_rea{_3eanuml.num - I);

if (opt->abortop)
return;

opt->val = (VAL*) pmalloc(sizeof(VAL));
getvalue(opt->val,&op_abort);

break;

123

}

fprintf(stdout, "Incorrect responseAn");

}

while (TRUE);

if (opt->abortop = op_abort) /* Assignment intended!! */

'return;

r.val = cnv2addr(_segnum, -Offset);
storer(opt->val,3j\Q;;
fmalloc(opt->vai);

}

/*SETSTK()
function:

-This function performs the set stack' operation.

interface:

(p) opt

(g) _segnum

called by:

debug()/debug.c

calls:

stripblkQ/debugutl.c
getvalueO
pmallocQ/amstate.c
fmallocO/amstate.c
cnv2addr()/debugutl.c

errors:

«/

setstk(opt)
OPTION ^opt;

{ char *strptr;

char -nostrfrlXINPSTRl;

iC0LMop_3t>ort - FALSE;
iADs;

opt->oprtn = SETSTK;

do{
fprintf(stdout, "Enter one of fol lowingAn");
fprintf(stdout,"\t\tV - regaddr value promptXr
fprintf(stdout,"\t\t'@' - to abort the operation

124

}

fscanf(stdin,
u
£1s"

(
lnpstr);

strptr = stripblk(inpstr);

if (strptrlO] == '&')
{

opt->abortop = TRUE;
return;

)

if (strptrlO] == V) {

_segnum = get_segm(&opt->abortop,
_numstkseg - 1);

*

if (opt->abortop)
return;

opt->val = (VAL*) pmalloc(sizeof(VAL));
getvalue(opt->vai,&oo_abori);

break;

}

fprintf(stdout,
J
Incorrect responseAn");

}

while (TRUE);

if (opt->abortop = op_abort) /* Assignment intended!! */

return;

_offset = _stk[_segnum].size -1;

s.val = cnv2addr(_segnum, _of fset);

storestk(opt->val,&sj;
fmalloc(opt->val);

/*SETBRK()
function:

-This function sets a breakpoint at an memaddr with an
instruction.

interface:

>P) °P.t

ix) deogtask/am.h

(g) mt_init

Cg) brktablell

fg) topslot
Cg) mt_slots[]
ig) _segnum
(g) -offset

125

called Dy:

debugQ/deoug.c

calls:

stripblk()/debugutl.c
getopcode()/aminstr.c
fetchmQ/amstate.c
stcremQ/amstatB.c
cnv2addr()/debugutl.c

errors:

V
setbrk(opt)
OPTION "opt;

{ char *strDtr;

cnar inpstriiiXlNPSTRj;
snort opcode:
VAL *v;

MAO m;
short i;

BREAKSbrk;

opt->oprtn = SETBRK;

do{
fprintustdout, "Enter one of followinqAn");
fprintf(stdout,"\t\t'v' - memaddr value prompt\n");
fprintustdout, "\t\t'®' - to abort the operation: \n");

fscanf(stdin,"£ls",inpstr);

strptr = stripblk(inpstr);

if (strptrlO] == '©')
{

opt->abortop = TRUE;
return;

if (strptrlO] == V) (

_segnum = geL_segm(&opt->abortcp,
_numusrseg - I);

if (,opt->aoortop)
return;

-Offset = get_ofst(&opt->abortop,
_jnem[_segnum].size - I);

if (opt->abortop)
return;

126

break;

}

fprintf(stdout,"Incorrect responseAn");

while (TRUE);

if (imUnit) {

for (i = 0;i < MAXBRKS; i++) {

mt_slots(i] = i;

brktable[i].memaddr - 0;

brktabieiiloDCdval = UNDEFND:
}

topslot = MAXBRKS - 1;

mUnit = TRUE;
}

if (topslot < 0) {

fprintf(stdout,"Break Table Full An");

return;

}

debgtask = I;

m.val = cnv2addr(_segnum, _offset);

v = fetchm(&m,Q);

if (v->type != VJNSTR) {

Tprintf(stdout, "Sorry, non-instr at memaddrAn");
debgtask = 0;

return;

if (getopcode(v->instrval.val[0].opcdval)== 1LDBG) {

fprintf(stdout,"Sorry, Breakpoint already at memaddrAn");
debgtask = 0;

return;

brk.oocdval = v->instrvai.vai(Oi.opcdval;
brk.memaddr - m.val;

opcode= ((mt_slots[topslot] « X_OPNDSF)
|
(ILDBG));

v->instrval.val[0].opcdval = opcode;
brktable[mt_slots[topslot]].memaddr = brk.memaddr;
brktable[mt_slots[topslot]|.opcdval = brk.opcdval;
topslot--;

storem(v,&m,Q);

127

debgtask = 0;

/*SET_PC()
function:

-This function performs the 'set proaram counter'
operation.

interface:

W opt
(x) _numusrseg/am.h
ix) _pc/am.hm _mem(]/am.h

Jg)
-segnum

j _offset
[x) debgtask/am.h

called bu:

deougQ/debug.c

calls:

stripblkQ/debugutl.c
fetchmQ/amsiate.c
cnv2addrQ/debugutl.c
get_segmQ
get_ofst()

errors:

set_pc(opt)
OPTION *opt;

{ char *strptr;

char inpstr[MXINPSTR];
VAL*v;
MADm;

opt->oprtn = 5ET_PC;

dot
fprmtfCstdout. 'Inter one of

r
ollowina:\n");

fprmtf(sidoui,"\t\tV - progcntr vai'ue prcmpt\n");
fpr int fcstdout

f
"\t\t '@ ' - to abort the operation: \n");

fscanf(stdlr\"xl3"(inpstr);

strptr = stripblk(inpstr);

if (strptrlO] == '•') 1

opt->abortop = TRUE;

128

return;

}

if (strptr[01 == V) {

_segnum = get_segm(&opt->abortop,
_numusrseg - 1);

if (opt->abortop)
return;

^offset = get_ofst(&opt->abortop,
_mem{_segnum].size -

1);

if (opt->abortop)
return;

break;

fprintf(stdout,"!ncorrect responseAn");

while (TRUE);

debgtask = I;

m.val = cnv2addr(_segnum, ..offset);

v = fetchm(&m,Q);

if (v->tupe != VJNSTR) {

Tprintf(stdout,"Sorry, non-instr at memaddrAn");
fprintf(stdout,"Program counter unchanged. \n");

opt->abortop = TRUE;
return;

_pc.val = m.val;

debgtask = 0;

129

Debugger Utility File

/*DEBUGUTLC : This file contains the utility programs for the AM
debugger.

-AM version 1.0 - ZI00

Changes:

»/

^include "amdef.h"
* include 'amtype.h"

^include "amexterah"
* include "debug.h"

/*CNV2ADDR()
function:

-This functions converts its parameters into a regular
segmented memory address.

interface:

(p) -seqnum
(p) .offset

called by:

aisplmemQ/debugopr.c
removbrkO/debugopr.c
setmemr()/debugopr.c
setbrkQ/debugopr.c
set_pc()/debugopr.c
get_madp/debugopr.c
displregQ/debugopr.c
setregrO/debugopr.c
get_radQ/debugopr.c
displstkQ/debugopr.c
setstk()/debugopr.c
get_sad()/debugopr.c

calls:

errors:

»/

address
cnv2addr(_segnum, -offset)
long -seqnum;
long -offset;

130

}

return((_segnum « X_SEGSFT)
j
.offset);

/*STR!PBLK()
function:

-This functions strips leading blank characters from a

character string.

interface:

(P) str

called bu:

oisp!memQ/debugopr.c
displregQ/debugopr.c
displbrkQ/debugopr.c
displstkQ/debugopr.c
displ_pc()/debugopr.c
getoprQ/debug.c
getresrcQ/debug.c
getva IueQ/debugopr.c
goexecQ/debugopr.c
removbrk()/aeDugopr.c
setmemr()/debugopr.c
setregrQ/debugopr.c
setstkQ/deougopr.c
setbrkQ/debugopr.c
set_pc()/debugopr.c
traceopQ/debugopr.c
quitdebgO/debugopr.c
get_maaQ/debugopr.c
get_radQ/debugopr.c
get_sadQ/debugopr.c
get_int()/debugopr.c
get_bool()/debugopr.c
get_f i 1e()/debugopr.c

get_mopQ/debugopr.c
get_bopQ/debugopr.c
get__ropQ/debugopr.c
get_dopQ/debugopr.c
get_inst()/debugopr.c
get_segm()/debugopr.c
get_ofstQ/debugopr.c
quitdebgO/debugcpr.c

calls:

errors:
strlen()/ "system*

*/

char

131

*stripbik(str)

char *stn
{

int index = 0;

int Ingth;

Ingth = str!en(str);

while ((index < Ingth) && (str[index] == ' '))

index++;

return(str + index);

}

/*STR2HEX()
function:

-Converts an unsigned hex character string into its

integer equivalent. !! Warning !! The function can and
does modify the pointer to the input string parameter!
The max string length the function assumes is four (4)
for conversion to regular hexidecimai integer.

'p) str

p) validnum

interface

L
(p) mtptr

called by:

get_instQ/debugopr.c
get_mopQ/debugopr.c
get_dopQ/debugopr.c
get_ropQ/debugopr.c
get_bop()/debugopr.c

calls:

errors:

-Initializes parameter 'validnum' with the results of
of the conversion.

»/

str2hex(str,val idnumjntptr)
char "sir;

3CCLN **vaiidnum;

long *intptr;

{ int index = 0;

int maxchars;

str = stripblk(str);

132

if (strlen(str) == 0) {

*validnum = FALSE;
return;

*intptr = 0;

maxchars = riXHEXSTR - I;

while ((((str{ index] >= '0') && (strlindex] <= '9'))
I I

((strlindex] >= 'a') && (strlindex] <= T))) &&
(index < maxchars)) {

if ((strlindex] >= '0') && (strlindex] <= '9'))

*intptr= 16 * (*intptr) str[index++j - 0';

else

*intptr= 16 * (*intptr) + (strlindexH - 'a') 10;

str = &str(index];

str = stripblk(str);

*validnum = (strien(str) == 0) ? TRUE : FALSE;

/*STR2DEC()
function:

-Converts an signed or unsigned character string into

its Jong integer equivalent, n Warning !! The function
can and does modify the pointer to the input string para-
meter! The max string length the function assumes is

eleven (11) for conversion to regular signed integer.

interface:

(p) str

p) validnum

[p) intptr

called by:

get_segm()/debugopr.c
get_ofstQ/debugopr.c
getrangeQ/debugopr.c
qoexecQ/debugopr.c
FraceopQ/debuqoDr.c
removbrlcO/debugopr.c
get_intQ/debugopr.c
get_natQ/debugopr.c
get f ileQ/debugopr.c

getvalueQ/debugopr.c

calls:

strlen()/ "system'

133

errors:

-Initializes parameter 'validnum' with the results of
of the conversion.

»/

str2dec(str,va!idnum,intptr)
char *str;

300LN *validnum;
long *intptr;

{ int index = 0;

int maxchars;
int strsize;

SCOLN negnum = FALSE;
long maxnum = 2147483647;

maxchars = MXDECSTR - 2;

if (strlen(str) == 0) {

*vaiidnum = FALSE;
return;

if (strtOJ == '-')
{

neanum = TRUE;
str = &str[ll;

if (strlen(str) == 0) {

"validnum = FALSE;
return;

}

"intptr = 0;

index = 0;

while (((str[index] >= '0') && (strlindex) <= '9'))

&& (index < maxchars) && ("intptr <= maxnum)) {

"intptr = 10 " ("intptr) (str[index++] - *0');

}

str = &str[indexl;

str = stripblk(str);

"validnum = (strlen(str) == 0) ? TRUE : FALSE;

if ("validnum) {

"intptr = negnum ? - "intptr : "intptr;

134

LIST OF REFERENCES

Hunter, J. E., The Formal Specification of a Visual Display Device: Design and

implementation , Master's Thesis, Naval Postgraduate School, Monterey, Ca.,

Jun 1985.

Ozisik, M. G., Design and implementation of a C Compiler for an Abstract

Machine. Master's Thesis, Naval Postgraduate School, Monterey, Ca., Jun

1986.

Wray, 3., Crawford, B., What Every Engineer Should Know About

Microcomputer Systems Design and Depugging. Marcei Dekker, Inc., New York,

N. Y., 1984, pp. 98 - 108.

Yurchak, J., The Formal Specification of an Abstract Machine. Design and

Implementation . Master's Thesis, Naval Postgraduate School, Monterey, Ca.,

Dec 1984.

Zang, K. H., The Formal Specification of an Abstract Database: Design and

Implementation . Master's Thesis, Naval Postgraduate School, Monterey, Ca.,

Dec 1985.

Naval Postgraduate School, Tech. Report NP552 84-022, A Formal Method for

Specifying Computer Resources in an Implementation Independent Manner, by

Davis, D. L, Monterey, Ca., Nov 1984.

135

INITIAL DISTRIBUTION LIST

ziruce J. MacLennan (Code 52;

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

No. Copies

1. Chief of Naval Operations 1

Director, information Systems (OP-945)

Navy Department

Washington, D. C. 20350-2000

2. Defense Technical information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

3. Superintendent I

Attn: Library (Code 0142)

Naval Postgraduate School

Monterey, California 93943-5002

4. Chairman (Code 52) I

Department of Computer Sciences

Naval Postgraduate School

Monterey, California 93943-5000

5. Computer Technology Programs (Code 37) I

Naval Postgraduate School

Monterey, California 93943-5000

6. Daniel L. Davis (Code 52) 5

Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

136

8. IstLt Stanley Victrum, USMC

c/o George Wilson 10

Rte 2, Box 116

Cross, South Carolina 29436

137

DUDLE" LIBRARY
NAVAL POF rE SCHOOL
MONTEREY, CA NIA 93943-6002

V65-2

c.l

Victrum
Design and implementa-

tion of a debugger for
an abstract machine.

Thesis

V652
c.l

Victrum
Design and implementa-

tion of a debugger for

an abstract machine.

