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ABSTRACT

This thesis investigates the applicability of VRTs

to the simulation of stochastic combat models. Ways of

measuring the efficiency of a VRT are explored.

Antithetic variates and stratified sampling are applied

to the simulation of a trivariate Markovian combat

model. Means of programming the antithetic variates and

stratified sampling to reduce the inherent variability

of uncertainty in the output data of the model are

illustrated. Response surface regression models are

used to characterize the performance of the antithetic

variates and stratified sampling in the Markovian

combat model

.
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I . INTRODUCTION

A . GENERAL

War policies and plans for military operations made

during peacetime are significant for the mission

accomplishments of combat operations conducted during

wartime. Since experimentation with real combat is

infeasible, military analysts use stochastic combat

simulation models to study the effects of policy making

on combat operations. The analysts' inferences drawn

from the results of these models are important to the

decision maker since he has to use them to make the

same decisions about military operations as he would if

he could experiment with real combat itself. The output

data from these models are realizations of random

variables distributed around the values of the

parameters of interest, or the models' true

characteristics, so the analysts can only estimate

these parameters with error. The magnitude of error

for each estimate can be measured in terms of precision

or the variance of the estimate: if the estimate is

unbiased then the smaller the variance, the greater the

precision, and the smaller the error. Since the

decision maker wishes to make decisions that are based

on estimate(s) with a quantifiable error bound, the



analysts may find it possible, to apply specific

statistical techniques to measure and control the

variance of the estimate(s) to obtain a prescribed or

at least quantifiable level of precision.

The analyst's capability of estimating a parameter

of interest with high precision depends on the extent

to which he is able to control the sample variance.

When the analyst uses the mean value of the sample

output data as the estimate of a parameter of interest

and when individual samples are independent, the

coefficient of the variance of the estimator is reduced

by a factor of 1 /n where n is the sample size of the

output data. A large sample size yields an estimate

with a small variance and high precision. Multiple

replications to obtain a large sample size in complex

stochastic models can be prohibitively expensive in

terms of resources like money, internal computer time,

computer storage space, etc. This is especially true

for large-scale, complex stochastic combat simulation

models, which often require hours rather than minutes

for a single computed replication. Since available

computer time is a compelling constraint on military

studies competing for scarce resources, the analyst is

usually given an allocated amount of time to simulate

his model. This specified amount of time may affect a

desired level of precision of the estimate(s) that the



analyst wishes to obtain from the simulation. Since

the analyst can only execute a fixed number of

replications within this block of time, the sample size

(number of replications) may not be large enough to

achieve a variance small enough to give the analyst an

acceptable precision for the estimate(s). Hence, the

analyst must either accept the particular level of

precision and error associated with such variance or

apply other specific statistical techniques which are

more likely to produce a smaller variance, and hence a

level of precision with which he can feel more

comfortable

.

An economizing scheme in simulation to reduce the

variance of the estimator is to intentionally distort,

control, and modify the random properties of the input

variables in the simulation model. The output data

resulting from the manipulation of these random numbers

are random variables which are designed to be much

closer together and more closely distributed around the

true value of the model's parameter of interest than is

the case with simple random sampling. A sample

distribution resulting from such a variance-reducing

scheme has the same mean value but a potentially

smaller variance than the distribution of the sample

without the usage of this scheme. The different

techniques for doing this scheme are called Variance

8



Reduction Techniques (VRTs). The effects of certain of

these, when applied to a combat model, are the subject

of this thesis.

B. BACKGROUND

VRTs were initially used to evaluate multi-

dimensional integrals. They have since been applied to

small Monte Carlo simulation problems but have not been

extensively utilized in large complex stochastic

simulation models. The utilization of these variance-

reducing techniques in real-world combat simulation

models is even less common. Consequently, limited

examples of applications of VRTs in these simulation

models are found in the literature. The major reason

for this is because the performance of the VRTs is

suspected to be uncertain and unpredictable. The

analyst has no guarantee that the usage of VRTs will

work all the time. Futhermore, he has no way to know

beforehand how much variance reduction he will get from

the application of VRTs whenever they are effective.

However, VRTs, in our opinion, promise to be powerful

and effective tools in simulation if the issues of

their performance in specific simulations are

understood. In this section we will describe the effect

that they can have on simulation studies. In Chapter V



we illustrate their effectiveness for a particular

combat model

.

The effectiveness of a VRT may be measured by the

relative efficiency of the simulation in obtaining

estimate(s) with the utilization of this scheme, to

the efficiency of a simulation under the same

conditions without the VRT. Efficiency as Handscomb

(1969, p. 253) defines it is

Efficiency = 1 / (Variance * Work). (1)

Here "Work" generally refers to computing time.

According to Handscomb, variance reduction succeeds if

the VRT increases efficiency. From Equation 1 , we see

that a decrease in variance and/or work will increase

efficiency. Hence, variance reduction in simulation is

more than solely a decrease in the variance of the mean

of the estimators. Handscomb( 1 969 ,p . 253) calls a

technique variance-reducing if it "reduces the

variance proportionately more than it increases the

work involved" or "does not reduce the variance at all

in the usual sense, provided that it saves work." The

work involved in attaining estimates by simulation has

many attributes. Hammersley and Handscomb( 1 964 ,p . 22)

suggest that the number of simulation runs epitomizes

this work. However, we can easily measure this same

10



work in terms of computing cost or/and simulation time.

For it is the availability of these factors that

ultimately determine the precision of the estimators.

Hence, an effective VRT may not only produce more

precise estimates but also economize the time and costs

associated with the simulation to obtain the level of

precision for those estimates. The efficiency of VRTs

will be discussed more fully in Chapter III.

This potential saving in computer time has

stimulated the interest of the United States Army

Concept Analysis Agency ( CAA ) in the utilization of

VRTs. CAA has studied the effectiveness of a VRT in two

of its larger and more complex simulation models. The

results of these studies were mixed (Johnson, Bates,

and Graham, 1985). CAA therefore recommended the

continuation of the studies to investigate the

applicability of VRTs to reduce the inherent

variability in large, complex, stochastic combat

simulation models.

C. PURPOSEAND OBJECTIVE

The purpose of this thesis is to provide additional

insight into the applicability of VRTs to stochastic

combat models, and to provide a base for future studies

in the application of VRTs to large-scale, real world,

stochastic combat simulations. The objectives of this

1 1



thesis are plainly to identify those VRTs that are

applicable, and then to exhibit their performance in

the applications to a class of stochastic combat

simulation models. The question to be answered is: "Can

VRTs be identified that are consistently effective for

reducing simulation time and cost?"

D. PROBLEM

The problem for this thesis is to increase the

efficiency of a stochastic combat simulation model

utilizing VRTs in terms of (1) increased precision of

the model's estimates for an allocated amount of

simulation time, and (2) reduced computer time for a

predetermined level of precision.

E. APPROACH

In his doctoral dissertation, Andreasson (1972)

showed that variance reduction in queuing systems is

influenced by (i) the transformation of random numbers,

(ii) the structure and parameters of the simulation

model, and (iii) the choice of the model response

quantity. Condition (i) is an attribute of the VRTs.

Conditions (ii) and (iii) are characteristics of the

model. To solve the problem stated above, we

investigate the effects of the parameters of a

stochastic combat model, described in Chapter IV of

12



this thesis, on variance reduction. We then use those

results to formulate our approach to increase the

efficiency of this model in terms stated in the problem

above

.

F. ORGANIZATION OF THIS THESIS

This thesis is organized into 6 chapters. Chapter I

is the Introduction chapter. Chapter II reviews the

literature of VRTs in simulation. Chapter III discusses

ways of measuring the efficiency of a VRT and explores

the tradeoffs of measuring for increased precision of

estimation and reduced computer time. Chapter IV is

concerned with the simulation of a stochastic combat

model and the programming for variance reduction in the

simulation model. Chapter V deals with the

applicability and performance of VRTs in the simulation

model. In Chapter VI, we make conclusions about the

applicability of VRTs in stochastic combat models and

provide recommendations about their use in larger and

more complex, stochastic models that are used to study

real-world combat systems.

13



II . REVIEW OF LITERATURE

A. INTRODUCTION

The VRTs that we use to solve the problem stated

in Chapter I of this thesis are antithetic variates and

stratified sampling . But first we review the literature

of variance reduction in simulation. This chapter

concentrates on the practical applications of VRTs in

simulation models. We present a brief summary of works

of scholars and experts on this subject. We then

describe the basic concepts of two VRTs that we feel

are applicable to large-scale, complex, stochastic

combat simulation models. It is these two VRTs whose

performances we later exhibit in the combat model in

this thesis.

B. SUMMARYOF PREVIOUS WORKS

In the last 15 years interest in VRTs in simulation

has stimulated much activity on this topic in the

Operations Research community. This section does not

comprehensively review all works that have been written

in the literature, but it presents a brief overview of

the utilization of VRTs in simulation. The purpose of

this section is to summarize some of the studies of the

general applicability of VRTs in simulation.

14



Hammersley and Handscomb (-1964) reviewed many of

the simplest ideas of variance reduction in simple

Monte Carlo problems as they can be applied in the

fields of Mathematics and Physics. Their most easily

understood examples and outstanding successes were the

evaluations of integrals and applications to particle

physics. Handscomb (1969, p. 252-262) later suggested

that VRTs be adapted to simulation. He acknowledged

difficulties in predicting the effectiveness of the

techniques in particular situations, but he did

propose, in practice, "... to proceed by more or less

inspired trial and error, learning by experience which

tools serve one best [or which techniques are

effective]." He also stated that it may be much harder

to tell how much variance reduction may occur in large

and complicated simulation problems. These issues

remain major concerns for one using VRTs in large,

complex, stochastic simulation models.

Moy (1969, pp. 263-288) adapted several VRTs to

simulation and investigated their applicability to

queuing systems. He concluded that VRTs were indeed

capable of working in the simulation of queuing

systems. Kleijnen (1974, Ch . Ill), who has written

probably the most comprehensive and most referenced

documentation on the subject of VRTs in simulation,

discussed the relevant differences between sampling in

15



Monte Carlo problems and sampling in stochastic

simulation models. He showed that VRTs may be adapted

to accommodate these differences. Kleijnen also

presented a detailed description and critical appraisal

of six techniques so devised for utilization in the

simulation of large complex systems. These VRTs are

stratified sampling , importance sampling , selective

samp_l_i_n£, control variates , antithetic variates , and

common random numbers . These six sampling techniques

have become the most well-known and popular VRTs in the

literature

.

Other less-known VRTs, however, have been applied

to simulation. McGraft and Irving (1974) survey some 18

different techniques for implementation in large scale

simulation problems. McGraft and Irving include a

comprehensive listing of the characteristics,

advantages and disadvantages, and criteria for

applicability to large simulation models, and

demonstrate the effectiveness of several of these

techniques with a military simulation application.

Many other articles and papers have been written on

the subject of VRTs. There are too many of them to list

in this thesis, but the survey ranges from specific

techniques to more general methods in simulation

experimentation. Some of the most recent papers written

about the general applicability of VRTs in simulation

16



are Nelson (1985) and Cheng (1986). Textbooks that

illustrate the applications with simple but excellent

examples of variance reduction in simulation are Gaver

and Thompson (1973, Ch . 12), Fishman (1978, Ch . 3), Law

and Kelton (1982, Ch . 11), Morgan (1984, Ch . 7), and

Br at ley, Fox, and Schrage (1987, Ch . 2).

C. DESCRIPTION OF VRTs USED IN THIS THESIS

Moy (1969, p. 263-288) experimented with antithetic

variates and stratified sampling and showed that they

are indeed capable of significantly decreasing

variability in the simulation of simple queuing

problems. Likewise, we wish to achieve similar results

when we apply them to the simulation of our stochastic

combat model. We do this in Chapter V. In this section,

we discuss the underlying conditions and fundamental

concepts in the applicability of antithetic variates

and stratified sampling in simulation.

1 . Antithetic Variates

The method of antithetic variates is relatively

well-known in the literature of variance reduction in

simulation (Kleijnen, 1974). It is one of the most

useful VRTs because of its simplicity and general

applicability. When the method of antithetic variates

is used, the sampling process is modified by the

manipulation of random numbers. A simulation run

17



produces a response from the. original sequence of

random numbers (r>; then, a second simulation run

produces an antithetic response from the sequence of

the complementary random numbers { 1 -r > . The average of

the two responses is an observation on the sample

output data of the stochastic simulation model . The

mean value of this sample is estimated as the parameter

of interest.

The variance of this estimate is reduced if the

responses of the first and antithetic runs of each

replication are negatively correlated. Besides the

interchanging of the random numbers in each run, two

other conditions must occur to produce negative

correlation between the runs. First, each response must

be a monotonic function of its respective random number

stream; that is, large values in each stream of random

numbers should have an opposite effect on the response

than the small values, and vice versa . The second

condition is that the responses to the events in the

first run must be synchronized with the responses to

the events in the antithetic run. Synchronization,

defined by Kleijnen (1974, p. 193), occurs

...if the i ' th random number r-^ generates [in the
stream of the first run] a particular event (e.g.,
arrival of customer j) then in the antithetic run
(1 - r-^) should generate the same event (i.e., not
the arrival of customer j ' where j ' ^ j and not a
service time )

.

18



If the antithetic variate-s methodology, coupled

with required conditions, is designed into the

simulation, then the average of the two negatively

correlated responses will tend to produce an estimate

with a high degree of precision. That is, if by chance

(r) yields a response above the value of the true

parameter of interest, then { 1 -r } should yield a

response below the value of the true parameter . When

these responses are averaged, the deviations between

the responses and the true parameter approximately

offset each other resulting in relatively small net

variability in the output data. This idea can be shown

mathematically. Let X-| be the response of the first

run; X 2 , the response of the antithetic run; and Y, the

average of X-| and X2.

Y = (Xt + X 2 ) / 2

VARy = 1/4 * { VARX1 + VARX2 + 2 * C0VX1>X2 >

= 1/2 * ( 1 + C0RRx -| )X2 ) * VARX1

Clearly, a negative C0RRX1 X2 reduces VARy If

C0RRX1 X2 equals, or is close to, -1 , then the VARy is

mathematically zero or very close to it. Hence, the

antithetic sampling is designed in simulation models so

that the correlation between the pair of responses is

as close to -1 as possible.

19



Monotonicity and synahronizat ion must be

designed into a simulation program for a particular

model . Kleijnen (1974), Law and Kelton (1982), and

Bratley, Fox, and Schrage (1987) are excellent

references that discuss ways to do this. We discuss our

design to achieve these two conditions for antithetic

variates in our model in Chapter IV. As stated before,

the method of antithetic variates is simple to

implement and requires little to no extra computer

time. Because of simplicity of this VRT , examples of

its applications are illustrated in nearly every

textbook that considers the subject of VRTs.

2 . Stratified Sampling

The stratified sampling technique, discussed in

this section and applied to the simulation model in

chapter V of this thesis, is a different version of the

stratified sampling that Moy , Kleijnen and other

experts on VRTs have adapted to simulation. Handscomb (

1969, p. 261) calls this particular version of

stratified sampling another form of antithetic

sampling. Andrsasson (1972, p. 6) refers to it as an

antithetic transformation. Gaver and Thompson (1973,

pp. 585-586) name it stratification extending an

antithetic idea. It is indeed stratification in that

the sampling process is modified so that the range of

random numbers is divided into two or more strata from

20



which the simulation runs produce- responses. It has the

antithetic flavor in that the responses in all strata

are averaged together to get an observation which is

part of the sample output data. This technique is also

similar to antithetic variates in that its estimator is

an average of correlated responses (Gaver and Thompson

1973, p. 586). Likewise, this estimator tends to have a

smaller variance.

In our review of this technique, we saw no

necessary conditions, like those for the antithetic

variates, for this technique to be successful in

simulation. The design of stratified sampling into our

simulation model in Chapter IV is similar to that one

given in Gaver and Thompson (1973, p . 586 )

.

D . SUMMARY

An abundant amount of material has been written on

the subject of variance reduction. Techniques used to

reduce the variance in Monte Carlo problems have been

adjusted to do the same in simulation models. The

applications of VRTs in simulation have been

illustrated in queuing systems and simple textbook

problems but successful applications to larger, more

complex, real-world stochastic simulation models have

not been so amply reported. There is no guarantee that

VRTs will work spectacularly for every situation in the

21



simulation, and when they do work it is necessary to

estimate the magnitude of the variance reduction. Pilot

tests are encouraged to help resolve these issues.

Antithetic variates and modified versions of stratified

sampling are two of the more simple and easily employed

VRTs and will be applied to a stochastic combat model

in Chapter V.

22



Ill . EFFICIENCY OF VARIANCE REDUCTION

A. INTRODUCTION

In the last chapter we reviewed some studies that

involved VRTs. In this chapter we discuss the problem

of measuring the efficiency of a VRT . Comparing

variances of a parameter of interest obtained from the

simulations with and without the use of a VRT

respectively, on an ordinal scale, may reveal if the

VRT works, but it provides little information about how

well the VRT works. Clearly, a quantitative measure is

more desirable. Therefore, the manner or scale on which

the efficiency of a VRT is measured should provide as

much information as possible on the performance of a

VRT. In particular, it should provide at least some

base to answering the following questions:

(i) "Does the VRT work?"

(ii) "If so, how great is the variance reduction in
terms of increased precision for estimating
the parameter of interest?"

(iii) "How great is the variance reduction in terms
of simulation time saved for estimating the
parameter of interest?"

(iv) "What are the tradeoffs, if any, between the
potential increase in precision and the economy
of simulation time when applying VRTs?"

In the next section we examine two methods that are

usually used in the literature to measure the

23



efficiency of a VRT . We evaluate them in terms of how

well they answer the questions above. In the third

section, we offer a third alternative which is a hybrid

of the two previous methods for measuring the

efficiency of a VRT. This third method, we think,

answers all four questions above and is used to measure

the efficiencies of the antithetic variates and the

stratified sampling techniques whose performance is

exhibited in this thesis. In the fourth section of this

chapter we show how to use the third method of

measuring the efficiency of a VRT to obtain the

tradeoffs between increased precision and reduced

simulation. The last section is a summary of this

chapter

.

B. ASSESSMENTOF VARIANCE REDUCTION

In the literature the efficiency of a VRT is

usually measured by (1) a decrease in the variance

(Method #1 ) or (2) the relative efficiency of a

simulation to obtain an estimate using a VRT to the

efficiency of the simulation using no VRT (Method #2).

Henceforth, we refer to a simulation without the use of

a VRT as crude simulation .

Method #1 is well defined in Kleijnen (1974, pp.

106-107). Kleijnen uses this method by defining the

efficiency of a VRT as a percentage of reduction in varianc
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Method #1 = (Var - Var
} ) / Var ) * \Q>®% (2)

where Var and Var -| are variances obtained in the same

amount of simulation time for crude simulation and

simulation applying a VRT respectively. The measure of

efficiency of a VRT which Kleijnen introduces may be

interpreted as that portion of the variance which is

not achieved by crude simulation but is obtainable in

the same amount of simulation using a VRT. The sign of

this portion determines whether the VRT increases or

decreases the precision; a positive sign reveals an

increase and a negative sign, a decrease. The magnitude

of the portion indicates how much of the precision is

increased or decreased respectively. With this method

we can also see that the VRT has an identical effect on

reducing simulation time for a prescribed level of

precision as it does on increasing precision. Method #1

provides answers to three of the questions stated in

the last section, but it does not resolve the question

of tradeoffs for increased precision and reduced time

in a simulation using VRT.

McGrath and Irving (1974, p. 295) use Method #2 to

measure the efficiency of a VRT. They initially used

this method, shown as Equation (3), to equate the
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relative advantage gained in simulation time by using a

VRT.

Method #2 =

Varg/Var-] * (Simulation Timeg )/( Simulation Time-]) (3)

where subscripts and 1 represent crude simulation and

simulation applying a VRT respectively. The relative

efficiency that McGrath and Irving used to measure the

efficiency of a VRT results in a factor by which the

efficiency of a simulation is increased or decreased by

using a VRT. If the value of this factor is greater

than one, then the VRT works; otherwise, it does not.

The magnitude of this reduction is the actual value of

the factor. For example, if the value of the factor is

5, then the simulation applying the VRT can obtain an

estimate in 1 /5 the simulation time required by the

crude simulation for the same precision level. Method

#2 may be viewed either as the reduction in simulation

time when both simulations are to achieve the same

variance, or as an increase in precision when both

simulations are run for the same amount of time. This

method, like Method #1 , answers only the first three

questions proposed in the first section of this

chapter

.
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C. THE HYBRID METHOD

Methods #1 and #2 measure increased precision at a

fixed simulation time, or a reduced simulation time at

a fixed level of precision. They do not, on the other

hand, measure increased precision at a level of reduced

simulation time, or vice versa; nor do they provide a

means to explore such a possibility. In Chapter I we

emphasize that variance reduction may increase

precision and reduce simulation time. The efficiency of

a VRT , in our opinion, should reflect both effects so

that we can explore the tradeoff of any combination of

precision and simulation time. Method #3 offers such

possibility and answers all four questions in the

introduction section of this chapter. It is a mixture

of Methods #1 and #2. Method #3 has Kleijnen's idea of

reduction in variance and McGrath and Irving' s use of

relative efficiency. We define the efficiency of a VRT

as a relative efficiency (RE), as shown in Equation 4,

and later define it in terms of increased precision

(IP) and reduced time ( RT )

.

Method #3 =

Efficiency-! / Efficiency (4)

where Efficiencyg and Efficiency-) are the efficiencies

of the crude simulation and simulation applying a VRT
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respectively. The definition of the efficiency of a

simulation, identified by Equation 1, is the inverse of

the product of the sampling variance of the parameter

estimate and the work. Henceforth, we equate work to

simulation time, which is the total time of the

simulation model to obtain a parameter of interest and

a specified variance. Such time may be computed as n

replications times T (average) simulation time per run.

If k runs are in a replication, then simulation time

equals the product of kn runs and T (average)

simulation time per run. When these variables are

substituted in Equation 1 , the efficiency equation

becomes Equation 5:

EFFICIENCY = 1 / ( Var * k * n * T) (5)

If we are to increase the efficiency of a

simulation using a VRT , then we must attempt to

decrease one of the parameters in Equation 2. The

variable k runs per replication is a constant of the

VRT. Specifically, the antithetic variates constant k

is two; stratified sampling constant k is three in our

study (it can be more); and for no VRT, the constant

value of k is one. The variable T is model dependent;

that is, its value depends on the input parameters of

the model. Attempts to decrease this variable may be
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futile; futhermore Bratley, Fox, and Schrage (1987, p.

48) point out that relatively little can be done to

decrease it. We discussed the relationship between the

variance (Var) and replications (n) in Chapter I. They

are , in essence, the variables we wish to decrease.

Throughout this thesis we interchange the phrases

decrease in variance with increased precision and

reduction in replications with reduced time

(simulation). If we substitute Equation 5 into Equation

4, we get Equation 6. Note since T (average) simulation

time per run is the same for both simulations, it is

left out of the equation.

RE = Varg/Var! * kg,/!^ * n /n
1 (6)

If the RE value in this equation is greater than

one, then the VRT successfully increases the efficiency

of the simulation and is said to be strong; otherwise,

it is said to be weak. A strong VRT decreases the

variance so that precision is increased and simulation

time is reduced. A weak VRT, on the other hand, does

not decrease the variance as well as a strong VRT; in

fact, a very weak (or subversive) VRT may increase the

variance, which causes a reduction in precision and

necessitates an increase in simulation time. In most

simulation models a VRT may be strong for certain
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conditions and weak for other, conditions. In this

thesis, we look for such characterizations of the

antithetic variates and the stratified sampling in the

stochastic combat model we describe in the next

chapter. In the next section, we define Equation(6) in

terms of increased precision and reduced simulation

time .

D. TRADEOFFSOF GAINING PRECISION AND SAVING TIME

Let us define IP as a decrease in variance,

IP - (Var - Var t ) / Var (7)

and RT as a reduction in simulation time

Then

and

RT =- (n k - n-^) / n k . (8)

Var-L - (1.0 - IP) * Var (9)

n-^ - (1.0 - RT) x n k (10)

If we substitute Equations (9) and (10) into

Equation (6), we get Equation( 11 )

.

RE = 1/(1.0 - IP) - 1/(1.0 - RT) (11)

30



Equation 1 1 defines the relative efficiency which

we defines as Method #3 of measuring the efficiency of

a VRT , in terms of increased precision and reduced

time. This equation resolved the unanswered question

identified as (iv) in the introduction section of this

chapter. With this equation, we can examine any

combination of IP and RT . For example, suppose we

measure the efficiency of a VRT to have a RE value of 6

for the same amount of simulation time (Hint: RT=0).

Substituting these values into Equation (11), we get IP

= 5/6 or 83 .3% increased precision.

Suppose we only need to increase the precision to

75% instead of 83.3%, then we can substitute the values

for lP=3/4 and RE=6 (RE should not change) into

Equation 11. We now get RT=1/3 (Note, we increase the

precision 75% and reduce the simulation time 33.3%).

Likewise, with RE=6 for the efficiency of the VRT,

examples of other combinations are ( IP=2/3 , RT= 1 /2 )

;

( IP=1 /2,RT=2/3) ; and ( IP=0 ,RT=5/6 ) . In fact, we may get

any combination of (IP,RT) between and 5/6. Note,

however, if we want to increase the precision beyond

83.3% or 5/6, we will get an increase in simulation

time. That is the tradeoff in terms of more increased

precision. For example, we will have to increase the

simulation time to 2/3 or 66.7% to accommodate an IP of

90% for a RE value of 6. In short, the information
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obtained from method #3 is that we can make an estimate

more precise and save simulation time simultaneously.

E . SUMMARY

In the literature, there are generally two methods

of measuring the efficiency of a VRT . Method #1 is a

decrease in the variance; Method #2 is the relative

efficiency of a simulation using VRT to crude

simulation. Both methods may determine if VRT works in

a simulation model. They also may indicate the

magnitude of the variance reduction in terms of either

increased precision for a fixed simulation time or

reduced simulation time at a fixed level of precision.

In this chapter, we introduced a third method of

measuring the efficiency of a VRT. It is a hybrid

between Method #1 and Method #2. Method #3 offers

exploration into the tradeoffs of increasing precision

and saving simulation time for any efficiency value of

a VRT.
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IV. SIMULATION OF A STOCHASTIC COMBATMODEL

A. INTRODUCTION

In the last chapter we discussed how to measure the

efficiency of a VRT to determine how much we may save

in simulation time or/and how much we may increase the

precision of a parameter obtained by crude simulation.

In this chapter we show how we may apply VRTs to the

simulation of a combat system. The combat model which

we have chosen to simulate and to apply the VRTs is the

BCD Markovian model developed in the doctoral

dissertation of Abdul-Latif Rashid Al-Zayani (1986). A

modified version of this model, formulated by

Professor Donald P. Gaver , is in Appendix A. This

stochastic model may seem very simple, but its

simulation provides invaluable insights into the

applicability of VRTs to stochastic combat model.

Beside being stochastic, the BCD Markovian model is

also discrete and dynamic in nature; hence, it is a

discrete-event simulation model. We refer those readers

who want to know about the nature of discrete-event

simulations to simulation textbook such as

Morgan( 1 984 ) , Law and Kelton( 1 982 ) , or Bratley, Fox,

and Schrage( 1 987 ) . In this thesis, we describe the

simulation of the BCD model in terms of discrete
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events. We describe, in detail, the crude simulation of

the BCD model in the next section. In Section C, we

show how we applied antithetic variates and stratified

sampling to this simulation. We summarize the chapter

in the last section.

B. CRUDE SIMULATION OF THE BCD MARKOVIANMODEL

We discuss the crude simulation of the BCD model in

four parts. First, we describe the combat scenario;

second, we define the characteristics of the model;

third, we explain the simulation of the combat process

in the model; and finally, we discuss a FORTRAN

simulation program written for the model.

1 . The Combat Scenario

As part of an air defense command, a wing of

aircraft defenders is responsible for defending an area

against a hostile air attack from a group of bombers.

When detection of an incoming threat occurs a flight of

D defenders is launched to engage B bombers making the

attack. When the two groups are within aerial combat

range the defenders seek a one-to-one combat engagement

with the bombers at a rate i. Only one free defender

can engage a free bomber in combat; a bomber will

generally attempt to avoid any engagement with a

defender. A combat engagement lasts until either the

bomber is killed or the defender is killed. A defender
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kills a bomber at a rate a, and a bomber kills a

defender at a rate 9. Hence, at any instant during the

combat process, a defender is either free and searching

to fight a bomber, fighting a bomber, or killed. A

bomber is, likewise, either free and eschewing

engagement with a defender, engaging in combat with a

defender, or killed. The combat process is continued

until either force is completely killed off or the

duration of the combat period is terminated after T

units of time.

2 . The Characteristics of the BCD Model

Hartman (1985, p. 2-18) characterizes the

structure of a combat simulation model as combat

entities , attributes , and events . We use these

characteristics to simulate the combat process of the

BCD model in the next subsection. Combat entities in

the BCD model are free bombers, free defenders, and

combat engagements. Each entity has attributes that

describe a combat scenario. For the bombers, the

attributes are the number of bombers and the rate a

bomber shoots down a defender; for the defenders, the

number of defenders and the rate a defender shoots down

a bomber; and for the combats, the number of combat

engagements and the rate that a bomber and a defender

engage in combat.

35



Law and Kelton (1982, p . . 4 ) define an event in

a discrete-event simulation as an occurrence which

changes the state of the system. The BCD model has five

events. The first event is the initialization of the

air battle. The initialization event governs the

initial battle conditions. The next three events, are

the interim events in the combat process. These events

are (1 ) a combat between a bomber and a defender, (2) a

defender killing a bomber, and (3) a bomber killing a

defender. The occurrence of an interim event changes

the state of the combat process at time t. The state of

the combat process of the BCD model is represented by

the tr ivar iate-Markov process { B( t ) , C( t ) , D( t ) ; t >0 >

;

where, B(t) is the number of free bombers at time t,

C(t) is the number of combat engagements at time t, and

D(t) is the number of free defenders at time t . As a

Markov process, the combat process moves from state to

state according to one-step transit probabilities that

depend only on the current state. The fifth and last

event in the combat process is the termination of the

air battle. The termination event manifests the "end of

the battle" conditions. The values of the state of the

system at the occurrence of the termination event

reflects the battle outcome. These values are the

numbers of bombers and defenders that are alive at the

end of this air battle. We will consider these values
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as the parameters of interest in_ the simulation of the

BCD model

.

3 . Simulation of the Combat Process

We simulated the combat process by maintaining

a "bookkeeping account" of the changes in the state of

the combat process as the events occur. The process

begins in the initial state { B( t ) , C( t ) , D( t ) ; t =0 } with

the initialization event being the commencement of the

air battle. Henceforth, we let a value of B(t) equal b,

a value of C(t) be c, and of D(t) be d. The interim

events change the value of the state of the combat

process as following:

EVENT STATE

New combat b-1 ,c+1 ,d-1

Bomber kills Defender b,c-1 ,d+1

Defender kills Bomber b + 1 ,c-1 ,d

The combat process spends X(b,c,d) units of

sojourn time in state (b,c,d) until another event

occurs. The sojourn time X(b,c,d) is a random variable

distributed exponentially with mean

P(b,c,d) = 1/(iBD + (a + 9 )C)
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for the time to the next event in- the combat process of

the air battle, given that at time t the state was

(b,c,d). Equation 12 is this sojourn time. To derive

this expression, we use the inverse transform method to

obtain unit-mean exponential random variables, where V-j

is the j th random number in the sequence of a stream of

uniform random numbers. The inverse transform method is

discussed in the simulation textbooks listed in the

reference section of this thesis.

X(b,c,d) = - P(b,c,d) * ln(V-j) (12)

We use the value of Equation 12 to advance the

simulated time of the air battle as indicated by-

Equation 1 3 .

t = t + X(b,c,d) (13)

The combat process moves to another state when

another event occurs. The probability of a specific

interim event occurring is governed by an embedded

Markov chain whose transition probabilities are as

follows

:
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EVENT . PROBABILITY

New Combat *BD * P(b,c,d)

Defender kills Bomber aC * P(b,c,d)

Bomber kills Defender e C * P(b,c,d)

We again use the inverse transform method to

obtain the conditions for an interim event to occur and

to induce the change in the state of the combat

process. V-j is the j th random number in the sequence of

a different stream of random numbers. These conditions,

events, and changes in the state of the combat process

are listed below.

CONDITION EVENT STATE

VjiiBD*P(b,c ,d) New Combat b-1,c + 1,d+1

V-j >iBD*P(b ,c ,d) Defender kills Bomber b,c-1,d+1
and
Vj <(iBD+aC)*P(b,c,d)

otherwise Bomber kills Defender b+1 ,c-1 ,d

Thus, we (i) generate a uniform random number

to choose which interim event has occurred, (ii) update

the state of the combat process, (iii) generate another

uniform random number and transform it to an

exponential random variable to determine the unit of

time until the occurrence of the next event and to

advance the simulated time of the combat process. We
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repeat this procedure until the occurrence of the

termination event. The termination event occurs when

(1) all the bombers are killed (B(t) + C(t) = 0) or all

the defenders are killed (D(t) + C(t) = 0) or (2) the

time duration of the air battle has expired (t >T

units of time). At the end of the aerial battle, the

combat process is in state (b,c,d) from which we can

compute the number of live bombers B (B(t) + C(t)) and

the number of live defenders D (D(t) + C(t)). These are

values of random variables for one possible battle

outcome

.

4 . The FORTRANSimulation Program

We coded the crude simulation of the BCD model

in FORTRAN. This FORTRANprogram, consisting of a main

program and four subroutines, is in Appendix B. The

main program begins in an interactive mode. The program

reads the values for the attributes of a combat

scenario from the terminal and sends them to the BATTLE

subroutine. BATTLE runs N replications of the combat

process and returns the summary statistics of the

outcome of N battles to the main program. The main

program sends them to the STAT subroutine. STAT

analyzes these battle statistics in terms of parameter

estimates and returns the values of these parameter

estimates to the main program. The main program then
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sends these values of parameter estimates to a

formatted output file.

The BATTLE subroutine calls two subroutines

UNIFOR and EXPON for the generation of U(0,1) random

numbers. These two subroutines implement the

congruential pseudo-random number generator

u i+1 = 168071^ mod (2**31 - 1) (14)

discussed and tested by Lewis and Orav (1985, Ch . V).

UNIFOR generates a sequence of uniform random numbers

for the selection of the occurrence of an interim

event. EXPON generates a sequence of uniform random

numbers for the computation of the unit of sojourn time

in a state.

The STAT subroutine performs statistical output

analysis for the simulation. It computes the means and

variances of the sample distributions of live bombers

and defenders. The sample means for bombers and

defenders

B = SUM B t / N (15)

D = SUM D-l / N (16)

are unbiased (point) estimators of E[B(t)] and E[D(t)]

respectively. Similarly, the variances
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VARg = SUM ( B ±
- B)**2 / N * (N-1) (17)

VARf = SUM ( B ± - D)**2 / N x (N-1) (18)

are unbiased estimators of VAR[E[B(t)]] and

VAR[E[D(t)]] respectively (Larson, 1982).

C. PROGRAMMINGFOR VARIANCE REDUCTION

In Chapter I, we noted that VRTs modify the

sampling of random numbers. In this section, we discuss

these modifications for the antithetic variates and

stratified sampling in the simulation of the combat

process. We describe the changes we made to the crude

FORTRANsimulation program for the simulations using

antithetic variates in Section 1 and stratified

sampling in Section 2 respectively.

1 . Antithetic Variates

We make changes to the subroutines BATTLE,

UNIFOR, and EXPON of the crude simulation program to

use the antithetic variates. The FORTRAN program for

the BCD simulation model applying antithetic variates

is in Appendix C. The BATTLE subroutine computes the

values of the parameters for one replication as the

average values of the battle outcomes from a pair of

runs of the combat process. We obtain the values of the

battle outcome from the first run by using a stream of
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uniform random numbers (U) and those of the second run

by using a stream of complementary random numbers { 1
-

U). Since we are attempting to decrease the variance of

the estimates by inducing negative correlation between

these two runs, we want to minimize this negative

correlation. We, first, induce a negative correlation

between the two runs by creating monotonicity between

the random numbers and the values of the battle outcome

within each run. We then minimize this negative

correlation by synchronizing the sequences of random

numbers {U> and the complement (1-U) (Bratley, Fox,

Schrage 1987, p. 47). Kleijnen (1974, p . 1 87 ) shows that

a random variable generated by the inverse transform

approach is monotonic. Hence we have monotonicity in

the simulation since we used the inverse transform

method to generate the uniform random variables in the

simulation of the BCD model.

Law and Kelton (1982, p. 352) indicate that the

inverse transform approach also facilitates the

maintenance of synchronization . With this method, we

use only one uniform random number per sequence to

obtain the desired random variable for each event in

the combat process; as contrasted with other methods,

like the rejection method, where we may use many random

numbers to produce a single value for the desired

random variable of the same events. Thus we initiate
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synchronization in the model when we use the inverse

transform method; nevertheless, we must still preserve

it.

We risk losing this synchronization in the BCD

model because the number of interim events occurring in

the combat process per run is a random variable. Hence

the number of events occurring in the combat process in

the first run may not be the same as the number of

events occurring in the combat process in the

antithetic run. Consequently, the number of random

numbers needed in the antithetic run generally differs

from that required in the first run. This phenomenon

leads to the random number (Uj) in the first run not

being synchronized with the random number { 1 -U-j } of the

antithetic run (Kleijnen 1974, p. 193). In other

words, the complement of the j th uniform random number

{ 1 -U-j } is not used for the jth event in the combat

process in the antithetic run. We are not able to

control the random number of interim events in the

combat process, but we can manage the way in which

UNIFOR and EXPON generate uniform random numbers so

that synchronization is maintained between the pair of

runs per replication.

We used the suggestions of Law and Kelton

(1982, p. 352) and Bratley, Fox, and Schrage (1987,

p. 47) to maintain the synchronization that the inverse
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transform method has initiated in the BCD simulation

model. We modify subroutines UNIFOR AND EXPON to

generate separate streams of random numbers (U) and

complements { 1 -U > before simulating a pair of runs of

the combat process. When the subroutine BATTLE calls

UNIFOR and EXPON, it receives from each a two-

dimensional array of random numbers, where the first

column contains the stream (U) and the second column

contains the stream (1-U). Hence, we use the first

column for the first run and the second column for the

antithetic run. This approach guarantees that if the

jth event in the first run uses (U-j), then the j th

event in the antithetic run will use { 1 -U-s } . We do

waste some of the random numbers in the arrays, but we

do it judiciously. Since the number of random numbers

used in the combat process is a random variable, we use

only those random numbers that we need in each column

and throw away the remaining so that no overlap is

possible for the next pair of runs. As a result, we

maintain synchronization.

The last change we make to the crude simulation

for the utilization of the antithetic variates is in

the subroutine BATTLE. The subroutine BATTLE computes

the values of parameters for each replication as

follows

:
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Bi = (B 1

i + B2
i) / 2 (19)

where

B'i = the number of live bombers from the first run1

B2
-^ = the number of live bombers from the second run

and

D± = (D 1

i + D2
i) / 2 (20)

where

D 1

j_
= the number of live defenders from the first run

D2
^ = the number of live defenders from the second run

2 . Stratified Sampling

As we stated in Chapter II, stratified sampling

resembles the antithetic variates procedures, and so do

the changes to the crude simulation. Hence we make

changes similar to those in the simulation using

antithetic variates for the simulation using stratified

sampling. The FORTRAN program for the BCD simulation

model using stratified sampling is in Appendix D. We

modify subroutines UNIFOR and EXPON, where each

generates a three-dimensional array of uniform random

numbers from the three strata

St = (0,1/3), S2 = (1/3,2/3), S3 = (2/3,1)

before simulating three runs of the combat process per

replication. Note this does not need to be limited to

3; we could have done more.
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Gaver and Thompson (1973, p . 586 ) describe this

approach. First, a U(0,1) random number u-| -j is

generated and placed in the first row and first column

of the three-dimensional array. Next, 1/3 is added to

the value of u-| -j with a subtraction of one if needed to

get u-|2 within the range of and "•
• U12 is placed in

the first row and second column of the array. Next, 1/3

is added to the value of u-|2» and if necessary

subtracted by one, to get u-13. u-13 is placed in the

first row of the third column of the array. If

subroutine BATTLE calls for k random numbers, then k

U(0,1) random numbers are generated, and the procedure

obtains a value for each of the kx3 cells. BATTLE uses

the first column of random numbers in the array for the

first run, the second column for the second run, and

the third column for the third run of the combat

process

.

The values of the parameters for each

replication are the average values of the battle

outcomes from the three runs. The subroutine BATTLE

computes the values of these parameters as follows:

B± = (B 1

i + B2
i + b5 ± ) / 3 (21 )

where

B 1
j_

= the number of live bombers from the first run
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B2
i = the number of live bombers from the second run

B^ = the number of live bombers from the third run

and

D t = (D 1

i + D2
i + D^) / 3 (22)

where

D 1
-j_

= the number of live defenders from the first run

D2
-^ = the number of live defenders from the second run

D^ = the number of live defenders from the third run

D . SUMMARY

The simulation of the BCD model is a discrete-event

simulation. It begins with the initialization event and

ends with termination event. The simulation of the

combat process involves generating a sequence of U(0,1)

random numbers to select interim event occurrences with

changes in the state of the process and generating

another sequence of U(0,1) random numbers to determine

the unit of time until the next event occurs and to

advance the simulated time of the combat process.

The programming of the antithetic variates and

stratified sampling modifies crude simulation.

Monotonicity and synchronization are required in

generating the uniform numbers for the simulation using

these VRTs . Generating random numbers by the inverse

transform method guarantees monotonicity. Generating

sufficient random numbers by the inverse transform

48



method and in multi-dimensional arrays initiates and

maintains synchronization.
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V. APPLICATIONS OF THE ANTITHETIC VARIATES AND
STRATIFIED SAMPLING

A. INTRODUCTION

We are now prepared to demonstrate the application

of the variance reducing techniques to the simulation

of a combat stochastic model. In this chapter we

illustrate the performance of the antithetic variates

(AV) and stratified sampling ( SS ) in the simulation of

the BCD model . In Chapter IV we stated that the mean

and variance of the parameters of interest estimated

from simulation are used to analyze the output data of

the model. Usually the estimated mean is of primary

interest to decision makers, and the estimation of the

variance is secondary. Since we use the variance of the

parameters estimated from the simulation of the BCD

model to exhibit variance reduction, we will,

henceforth, focus on the variance.

We examine the applicability of AV and SS in the

BCD model by simulating many scenarios of the air

battle and recording increases in simulation

efficiency. We investigate AV and SS performance by

mapping a response surface that characterizes the

efficiency of variance reduction in the model. In the

next section we specify the scenarios and discuss the
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application of using AV and SS in the simulation of

these scenarios. We then build response models that

describe the performance of the AV and SS for these

scenarios and discuss their experimental results in

Section C. We present a brief summary of the chapter in

the final section.

B. APPLICABILITY OF ANTITHETIC VARIATES AND STRATIFIED
SAMPLING TO THE BCD SIMULATION MODEL

In Section B of the previous chapter we described

the general scenario of the BCD model. In this section

we specify various combat scenarios to observe how AV

and SS are applicable to the simulation of the BCD

model. Recall that seven attributes characterize a BCD

scenario. Since a change of the values of one of these

attribute will produce a different scenario, we chose

to change the values for three attributes. We simulated

10, 30 and 50 defenders against 10, 30, and 50 bombers

at "end of battle" times of 25, 75, and 125. We

maintain the a rate for a defender killing a bomber at

.05, the e rate for a bomber killing a defender at .05,

and the i rate for a bomber and a defender entering a

combat engagement at .005. We also initialize every

simulation with zero combat engagements. Thus, we

observe the responses of the simulations at 3 "end of

battle" times in 9 different scenarios. This
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arrangement comprises a set of 27 independent

simulations

.

We run this arrangement for crude simulation,

simulation using AV , and simulation using SS. As a

result, we perform a total of 81 different simulation

experiments. In order to make a fair assessment of the

applicability of AV and SS , we examine the variance

obtained from the same amount of simulation or the same

numbers of simulated battle runs for every simulation.

We run 90 battles: this equates to 90 replications in

crude simulation, 45 replications in simulation using

AV , and 30 replications in simulation using SS . Table

E.1 of Appendix E contains the statistical output for

crude simulation; similarly, data in Tables E.2 and E.4

are from simulations using AV and SS respectively. We

use Equations 6 and 7 to measure the efficiency of the

variance reduction (RE) and the increase in precision

of the parameters from the simulation (IP) and place

the AV results in Table E.3 and SS results in Table

E.5.

The values in Tables E.3 and E.5 show that AV and

SS respectively are applicable in the BCD simulation

model. A RE value greater than unity indicates that the

VRT is effective in increasing simulation efficiency. A

positive IP value exhibits their effectiveness to

increase precision of the desired parameter. With these
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two values, we may also find the tradeoff of saving

simulation time or gaining precision. We acknowledge

that these values are all values of, or realizations

of, random variables, but we believe that the tables

show that the variance reduction adheres to a

stochastic pattern. That is, the random variables

obtained under certain scenarios will tend to have the

same relationship to the random variables obtained

under other scenarios. For example, the data in the

tables suggest that high RE and IP values correspond

to the scenarios that start combat with same numbers of

bombers and defenders. The RE and IP values obtained

under these scenarios appear consistently higher than

the values under all other scenarios. Hence, the

variance reduction measured by these RE and IP values

are stochastically greater than the variance reduction

obtained from any other scenario. Since such even

combats (i.e. equal combat power) are inherently more

variable in outcome, the fact that variance reduction

is greatest there is certainly welcome. In the next

section we attempt to conduct a more thorough

investigation of these phenomena so that we may

understand how the AV and SS perform in the simulation

of the BCD model

.
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C. PERFORMANCEOF ANTITHETIC VARIATES AND STRATIFIED
SAMPLING IN THE BCD SIMULATION MODEL

In the previous section we saw that AV and SS are

applicable to the simulation of the BCD model. In this

section we examine the variability of uncertainty in

the model and then evaluate the applicability of AV and

SS to reduce this uncertainty. We explore the changes

in the AV and SS performance and examine the

relationships of factors that affect these changes.

Results of this analysis reveal the characterization of

the AV and SS performance in the BCD model.

1 . Experimental Design

We use the data we generated in Appendix E to

fit response surfaces that describe the uncertainty in

the values of parameters in the BCD model and

characterize the performance of AV and SS over the

prescribed range of values in the three factors:

initial numbers of Bombers and Defenders and "end of

battle" Time. We code the three factors as

x-| = (Time - 75) / 50,

x 2 = (Defender - 30) / 20,

X3 = (Bomber - 30) / 20.

Each factor has 3 levels. Thus, we may use a 3^
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factorial design to fit the data with the response

surface equation

E(y)= eg + e-|X-| + p 2 x 2 + 3 x 3 + e-|1 x 1** 2

+ P22 x 2** 2 + 033X3**2 + e-|2 x 1* x 2

+ a-l^x^x^ + B23 x 2* x 3 (20)

where

E(y)= expected response

00= intercept

p^= linear coefficient for factor i

p ii = Quadratic coefficient for factor i

0ji= interaction coefficient for the

interaction of factors i and j

x^= level of factor i.

We seek to obtain the maximum information from

every observation; therefore, we chose a 3^ Fractional

factorial design. This design is the cuboctahedron plus

three center points (John, 1971). The three center

points provide an unbiased estimate of error and

repeated observations which permit us to test for Lack

of Fit of the response surface equation we obtained. We

use the cuboctahedron design to fit data for three

response surfaces: (1) variability of uncertainty

inherent in the battle outcomes, (2) efficiency of AV

,

and (3) efficiency of SS . This design, with its three
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center points, and the data to which it is used to fit

are shown in Tables 5.1, 5.2, and 5.3. The variances

data in Table 5.1 is the variability of uncertainty

inherent in the battle outcome. We obtain this data

from the variance of the estimate tabulated in the

crude simulation table in Appendix E. The RE values

data in Table 5.2 is the efficiency of AV for the

estimation of the defender and bomber parameters. We

took this data from the RE values in Table E.3. In

Table 5.3 is the RE values data for the efficiency of

SS . This data is obtained from the RE values in Table

E.5.

TABLE 5.1 DESIGN AND VARIANCES FOR A 3 x 3 EXPERIMENT
ON THE VARIABILITY OF UNCERTAINTY INHERENT IN THE
BATTLE OUTCOME

DECODEDLEVELS CODEDLEVELS VARIANCES

Time Defen ier Bomber x1 x2 x3 Defender Bomber

25 1 30 —1 -1 .0328 .0541
125 10 30 -1 .0036 . 1725

25 50 30 -

1

1 . 1687 .0826
125 50 30 1 .3339 .0359

25 30 10 -

1

-

1

.0458 .0350
125 30 10 -1 .2247 .0045

25 30 50 -

1

.0628 . 1 1 04
125 30 50 .0362 .3479

75 10 10 -1 -

1

.0387 .0358
75 50 10 1 -

1

. 1427 .0063
75 10 50 -1 .0064 . 1654
75 50 50 1 .2717 .2865
75 30 30 .1618 . 1895
75 30 30 .0925 .0966
75 30 30 . 1693 . 1589
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TABLE 5.2 DESIGN AND RE VALUES FOR A3 x 3 EXPERIMENT
ON THE EFFICIENCY OF THE ANTITHETIC VARIATES IN THE BCD
MODEL

DECODEDLEVELS

Time Defender Bomber

CODEDLEVELS

x1 x2 x3

RE VALUES

Defender Bomber

25 1

125 1

25 50
125 50

25 30
125 30

25 30
125 30

75 1

75 50
75 10
75 50
75 30
75 30
75 30

30
30
30
30
10
10
50
50
10
10
50
50
30
30
30

-1
-1

1

1

-1
1

-1
1

2
1

6
7
3
4
2
1

1

1

6
13

5
5

2
9

8
8

8. 1

3.5
1

1

4
5

5.4
3.9
2 .2
1 .4
3.0

1

4
9

10.9
6.0

1 0.8

7.0
7.0
9.2

TABLE 5.3 DESIGN AND RE VALUES FOR A3 x 3 EXPERIMENT
ON THE EFFICIENCY OF STRATIFIED SAMPLING IN THE BCD
MODEL

DECODEDLEVELS

Time Defender Bomber

CODEDLEVELS RE VALUES

x1 x2 x3

—1 -1
-1

-

1

1

1

-

1

-

1

-

1

- 1

-1 -

1

1 -

1

-1
1

Defender Bomber

25 10
125 1

25 50
125 50

25 30
125 30

25 30
125 30

75 1

75 50
75 1

75 50
75 30
75 30
75 30

30
30
30
30
10
10
50
50
10
10
50
50
30
30
30

3
2
2
2
2
1

1

1

2
3
3
2
2

6
9

2

6
9
7
6
6

7
9
5

2
2
1

1

2
1

1

2
1

1

1

3
2
3
1

1

2
9
2
8
7
4
6
5
2
5
3
7

5
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2 . Experimental Analysis

To perform the statistical analysis, we use the

Response Surface Regression (RSREG) procedure in the

Statistical Analysis System ( SAS ) computer software

package on the IBM 370 mainframe. With this procedure

we were able to obtain a second order response-surface

equation by least-square regression, check for model

adequacy, test for lack-of-fit, and identify critical

surface values which were useful in helping to describe

the shape of the surface.

We fitted Equation 20 to the data in the

respective design tables in the previous section and

obtained multiple response surface equations and

multiple analysis of variance (ANOVA) tables for

corresponding responses. We assess the adequacy of each

equation and test for fit from its corresponding ANOVA

table. From each response surface equation, we

generated additional data to obtain contour plots. We

plotted contours of variability of uncertainty for the

initial numbers of bombers and defenders at various

Times. Similarly, we plotted contours of the

efficiencies of AV and SS for initial numbers of

bombers and defenders. From these plot we were able to

see how the initial numbers of bombers and defenders in
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combat affect the variability of uncertainty in the

battle outcomes and the AV and SS performance.

a. Variability of uncertainty of the battle
outcomes

Equation 21 provides an adequate

description of the response surface that characterizes

the variability of uncertain in the expected numbers of

live defenders at the end of the battle in the BCD

model . The response ^Defender ^ s the expected amount of

uncertainty in the defender estimate.

v Defender = -14-12 + .<Z)J>6x<\ + . 1 04x 2 - .009x 5 - .014x
1

**2

+ .049x-,x 2 + .008x 2 **2 - .051x1X3

+ .040x 2 x 5 - .034x3**2 (21)

TABLE 5.4 ANOVA FOR THE EXPECTED AMOUNTOF UNCERTAINTY
IN THE DEFENDERESTIMATE

SOURCE d.f SS MS F-RATIO

Fitted Surface 9 . 1302 .0145 8.06
Lack of Fit 3 .01 02 .0034 1 .90
Pure Error 2 .0036 .0018
Total 14 . 1440

R-Square= . 9043 Mean Var iance= . 1 1 94 Std. Dev.=.0525

We see from ANOVA Table 5.4 that the

variation in the variance of live defenders is

insignificant at the 95% level (its F-Ratio of 8.06 is

less than F g^ . g 2 = 19.38). The Lack of fit is also
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insignificant (F-Ratio= 1.90 < F-g^.-j 2 = 19.16). The

R-Square value is .9043 which indicates that about 90%

of the variation in the variance of the expected number

of live defenders is accounted for by Equation 21

.

Further analysis reveals that the response surface is

shaped like a rising ridge. The plots of contours at

Figure 5.1 illustrate the nature of this Response

surface. These pictures show that initial numbers of

bombers and defenders affect the variance of defenders

at Time 25. At Times 75 and 125 the initial numbers of

bombers have little influence. Here the variance of the

expected number of live defenders is affected solely by

the increase in the number of initial defenders. Hence,

as the number of defenders increases, the variability

of uncertainty in the estimate of the expected number

of live defenders at the end of the battle increases.

Equation 22 provides an adequate

description of the response surface that characterizes

the variability of uncertainty in the expected numbers

of live bombers at the end of the battle in the BCD

model. VBomb er is the expected amount of uncertainty in

the Bomber estimate.

v Bomber= • 1 483 + -035x-| - .002x 2 + . 1 04x 3 - .031x
1

**2

- .041x
1
x 2 + .032x 2 **2 - .067x-|X3

+ .038x 2 x 3 - .007x 3
**2 (22)
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TABLE 5.5 ANOVA FOR THE EXPECTED AMOUNTOF UNCERTAINTY
IN THE BOMBERESTIMATE

SOURCE d.f

.

SS MS F-RATIO

Fitted Surface
Lack of Fit
Pure Error
Total

9 . 1331 .0149 6 .77
3 .0073 .0024 1 .08
2 .0045 .0022
4 . 1408

R-Square= . 9188 Mean Var iance= . 1 1 88 Std. Dev.=.0485

ANOVA Table 5.5 shows that the variation in

the variance of live bombers is insignificant at the

95% level (its F-Ratio of 6.77 is less than F
# g 5 .g 2 =

19.38). The Lack of fit is also insignificant (F-Ratio=

1.08 < F
. 95 «3,2 = 1 9.16). The R-Square value indicates

that about 92% of the variation in the variance of live

bombers is accounted for by Equation 22. Further

analysis reveals that this response surface is also

shaped like a rising ridge. The plots of contours at

Figure 5.2 illustrate the nature of this response

surface. These figures show that the variance of the

expected number of live bombers generally increase as

the initial number of bombers increases,

b. Antithetic Variates.

Equation 23 provides an adequate

description of an AV response surface in the estimation

of the expected numbers of live defenders.
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ADefender = 1 0-20 - .09x-j + 1.70x 2
- .46x 3 - 4.25x

1
**2

+ .55x-|X 2 - 1.68x 2 **2 - .28x^3

+ 3.40x 2 x 5 - 2.85x3**2 (23)

We see from ANOVA Table 5.6 that the variation in the

efficiency of AV is insignificant at the 95% level (its

F-Ratio of 1.46 is less than F
# 95 ; g >2 = 19.38). The

Lack of fit is also insignificant (F-Ratio=.46 <

F .95;3,2 = 19.16). The R-Square value is .8497 which

indicates that about 85% of the variation in the

Defender RE values is accounted for by Equation 23.

Here, defender is the expected simulation efficiency

of AV generated to reduce the uncertainty in the

Defender estimate.

TABLE 5.6 ANOVA FOR THE EXPECTED EFFICIENCY OF AV (RE
VALUE) GENERATED TO REDUCE THE UNCERTAINTY IN THE
DEFENDERESTIMATE

SOURCE d.f. SS MS F-RATIO

1 .46
.47

Fitted Surface 9 168.31 18.70
Lack of Fit 3 4.08 1 .36
Pure Error 2 25.69 1 2.84
Total 14 198.08

R-Square= .8497 Mean RE Value=5.54 Std. Dev.=2.44

Further analysis reveals that the response

surface is shaped like a hill with a gentle slope on

one side and a fairly steep slope on the other side.

The maximum value of this surface occurs in the BCD
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scenario that begins combat with 50 defenders and 40

bombers and ends the battle at time 75. The plots of

contours at Figure 5.3 illustrate the nature of this AV

response surface. These pictures clearly show how AV

performs in different scenarios for times of 25, 75,

and 125. Beside having its best performance in a

scenario that ends at time 75, AV appears to be strong

in scenarios that initiate the air battle with at least

30 defenders and 30 bombers. Its weakest performance

seems to occur in those scenarios that commence combat

with no more than 30 defenders and 30 bombers. The

plots of contours show that the efficiency of AV is

subversive in those scenarios whose simulation

initializes the air battle with 30 or less defenders

and 40 or more bombers. For these scenarios, simulation

efficiency of AV may often increase, instead of

decrease, the uncertainty in the Defender estimate. We

will discuss why this is so in the Experimental Result

Section. Similar analysis of the AV performance is made

for the Bomber RE values. An adequate description of

the AV response surface in the estimation of the

bombers is characterized by

YBomber= 7.73 + .44x-, - .69x 2 + 2.05x 3 - 2. 45x-|**2

+ .18x-|X 2 - 2.05x 2 **2 + 2.20x-|X3

+ 2.50x 2 x 3 - .53x3**2 (24)
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Figure 5.3 Contours Plots of the Responses Surface for
the Expected Efficiency of AV Generated to Reduce the
Uncertainty in the Defender Estimate
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YBomber is "the expected simulation efficiency of AV to

reduce the uncertainty in the Bomber estimate. The

ANOVA Table 5.7 indicates that the proportion of the

total variation in the Bomber RE values accounted for

in Equation 24 is over 87%. Furthermore, this variation

is insignificant at the 95% level (F-ratio value of

8.19); lack of fit is also insignificant (F-Ratio=

1.61).

TABLE 5.7 ANOVA FOR THE EXPECTED EFFICIENCY OF AV (RE
VALUE) GENERATED TO REDUCE THE UNCERTAINTY IN THE
BOMBERESTIMATE

SOURCE d.f

.

SS MS F-RATIO

Fitted Surface 9 1 18.74 13.19 8.19
Lack of Fit 3 14.17 4.72 1 .61
Pure Error 2 3.23 1 .61
Total 14 136. 14

R-Square= .8722 Mean RE Value=5.05 Std. Dev . = 1 . 87

Examining this response surface further we

find that the shape of the surface changes over time.

The plots of contours depicted in Figure 5.4 show that

the shape of the surface looks like a saddle at Time

25, a gentle slope at Time 75, and a uniformly rising

ridge at Time 125. The critical values for this surface

also change as its shape changes. Most notable are the

values for maximum efficiency. At Time 25, maximum
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efficiency occurs in scenarios that begin fighting with

less than 20 defenders and bomber. By Time 125, maximum

efficiency has shifted to the scenarios that start

with at least 40 defenders and bombers. The least

amount of AV reduction occurs, at any Time, in those

scenarios that initialize the combat simulation with

more than 30 defenders and less than 10 bombers.

Here is a summary of what is revealed by

the above analysis. AV , in general, seems to be the

strongest and most consistent, and equally-distributed

between closely-matched pairs of bombers and defenders .

Furthermore, the larger the evenly-matched contest the

greater the variance reduction. When the defenders and

bombers are not evenly matched, AV is not as consistent

and does not provide equal variance reduction in the

estimation of the pair of parameters. It is strong in

the estimation of the larger combatants and weak in the

estimation of the smaller ones,

c. Stratified Sampling.

We analyze the efficiency of SS in the

simulation of the BCD model in a similar manner as we

analyzed the efficiency of AV . If we analyze

Equations 25 and 26 in terms of ANOVA Tables 5.8 and

5.9 respectively, we will get results similar to those

we obtained in the last section. Therefore, we will

forego this particular analysis. Note that ^j)efender is
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the expected simulation efficiency of SS to reduce the

uncertainty in the Defender estimate, and YBomber is

the expected simulation efficiency of SS to decrease

the uncertainty in the Bomber estimate.

YDefender= 5. 03 - -39 X1 + .49x 2 + .08x3 - .15x
1

»*2

+ .22x-|X 2 - .70x 2 **2 - . 45x^3 + . 55x 2 x 5

- .58x3**2 (25)

TABLE 5.8 ANOVA FOR THE EXPECTED EFFICIENCY OF SS (RE
VALUE) GENERATED TO REDUCE THE UNCERTAINTY IN THE
DEFENDERESTIMATE

SOURCE d.f SS MS F-RATIO

Fitted Surface 9 8.24 .92 2.49
Lack of Fit 3 .53 . 18 .47
Pure Error 2 .75 .37
Total 14 9.52

R-Square= .86661 Mean RE Value=2.27 Std. Dev.=.51

YBomber= 2 • 90 - .06^ - -03x 2 + .21x 3 - .41x^*2

- .20x-|X 2 - .64x 2 **2 + .58x-,X3 + . 50x 2 x 5

- .36x3**2 (26)
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TABLE 5-9 ANOVA FOR THE EXPECTED EFFICIENCY OF SS (RE
VALUE) GENERATED TO REDUCE THE UNCERTAINTY IN THE
BOMBERESTIMATE

SOURCE d.f . SS MS F-RATIO

Fitted Surface 9
Lack of Fit 3
Pure Error 2
Total 14

5.18 .58 19.33
1 .82 .61 20.33

.06 .03
7.06

R-Square= .7340 Mean RE Value=2.15 Std. Dev.=.61

The contour plots at Figures 5.5 and 5.6 appear to

have similar features. They show a relatively flat

surface except at the corners. The corner with 50

Bombers and 50 Defenders has the highest response and

the other corners have low response. These plots

suggest that the SS performance is generally consistent

in all but a few scenarios in the BCD model. Maximum

efficiency of SS occurs in those scenarios that

initialize simulation with equally large numbers of

bombers and defenders. It is very weak in those

scenarios that begin combat with either less than 10

defenders and more than 40 bombers or more than 40

defenders and less than 10 bombers.

3 • Experimental Results

The experimental results can be summarized in

Tables 5.10 and 5.11. Table 5.10 shows the

relationships between the AV performance and the

uncertainty in the Defender estimate and the SS
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performance and the uncertainty in the Defender

estimate. Similarly, Table 5.11 shows the relationships

between the AV performance and the uncertainty in the

Bomber estimate and the SS performance and the

uncertainty in the Bomber estimate.

We further examine this relationship by

analyzing the data that measure the uncertainty (crude

variance) and appropriate variance reduction (RE

Values) in Appendix E. After we applied a logarithmic

transformation to the data, we regress the RE values

on the crude variance data and observe a strong

logarithmic linear relationship between uncertainty and

variance reduction.

TABLE 5.10 RELATIONSHIP BETWEENUNCERTAINTY AND THE
EFFICIENCY OF VARIANCE REDUCTION IN THE DEFENDER
ESTIMATE

INITIAL UNCERTAINTY VARIANCE REDUCTION

Defenders Bombers Variance AV SS

10 10 medium strong fair
10 30 medium fair fair
10 50 small weak weak
30 10 large strong fair
30 30 large strong strong
30 50 medium fair fair
50 10 large strong weak
50 30 large strong fair
50 50 large strong fair
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TABLE 5.11 RELATIONSHIP BETWEENUNCERTAINTY AND THE
EFFICIENCY OF VARIANCE REDUCTION IN THE BOMBERESTIMATE

INITIAL UNCERTAINTY VARIANCE REDUCTION

Defenders B ombers Variance AV SS

10 10 medium strong fair
10 30 large strong fair
10 50 large strong fair
30 10 smal 1 fair fair
30 30 large strong fair
30 50 large strong fair
50 10 smal 1 weak weak
50 30 medium fair fair
50 50 large strong fair

This relationship is manifested in the

multiplicative equation shown in Table 5.12. VAR is the

value of uncertainty or variance of the corresponding

estimate obtained from crude simulation, and Y is the

simulation efficiency of the variance reduction or RE

value for the corresponding estimate.

TABLE 5.12 ANALYSIS OF THE RELATIONSHIP BETWEEN
UNCERTAINTY AND EFFICIENCY OF VARIANCE REDUCTION IN
PARAMETERESTIMATES

CORRELATION SET
VRT ESTIMATE RELATIONSHIP COEFFICIENT POINT

AV Defender Y= 10.43 * VAR**. 362
AV Bomber Y= 9.73 * VAR**. 362
SS Defender Y= 3.18 * VAR**. 144
SS Bomber Y= 2.99 * VAR**. 147

.8609 .00154

.8217 .00186

.5601 . 00032

.6054 . 00058
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The correlation coefficient reveals the

strength of the logarithmic linear relationships

between uncertainty and the efficiencies of AV and SS

.

With the values of the exponent in the equations being

less than one and the values of the correlation

coefficient being positive, the efficiencies of AV and

SS are observed to increase, at a decreasing rate, as

the uncertainty (variance) increases. We obtained the

Set Point by setting Y=1 in the corresponding equation

and solving for VAR . At this value, simulation

efficiency nether increases nor decreases. Now if we

observe a value of uncertainty, or variance obtained

from crude simulation, above this set point, then we

expected to get an efficiency of a VRT to increase the

simulation efficiency. On the other hand, if the value

is below the set point, then we expect the efficiency

of the VRT to decrease the simulation efficiency.

Here is the bottom line on AV and SS

performance in the BCD model ;

1 . If we apply antithetic variates to the simulation
of the BCD model

,

a. We may expect the variability of uncertainty
in the defender estimate

( 1 ) to decrease if the variance of the
estimate obtained from crude simulation
is at least .00154, and
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(2) to decrease, at a decreasing rate, with
an increase in the variance of the
estimate obtained from the crude
simulation

.

b. We may expect the variability of uncertainty
in the bomber estimate

( 1

)

to decrease if the variance of the
estimate obtained from the crude
simulation is at least .00186, and

(2) to decrease, at a decreasing rate, with
an increase in the variance of the
estimate obtained from the crude
simulation

.

2. If we apply stratified sampling to the simulation
of the BCD model

,

a. We may expect the variability of uncertainty
in the defender estimate

(1 ) to decrease if the variance of the
estimate obtained from crude simulation
is at least .00032, and

(2) to decrease, at a decreasing rate, with
an increase in the variance of the
estimate obtained from the crude
simulation

.

b. We may expect the variability of uncertainty
in the bomber estimate

(1

)

to decrease if the variance of the
estimate obtained from the crude
simulation is at least .00058, and

(2) to decrease, at a decreasing rate, with
an increase in the variance of the
estimate obtained from the crude
simulation

.

E . SUMMARY

We illustrated the performance of the antithetic

variates and stratified sampling in the simulation of

the BCD model. The manifestation of their pair
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performance was characterized by response surface

equations and plots of contour lines. Both VRTs were

shown to be effective in increasing simulation

efficiency, but they perform differently in the BCD

model. AV provides the largest amount of variance

reduction but is more volatile. AV increases the

simulation efficiency on the average of 5 times the

crude simulation; it is strong in the BCD scenarios

where there is large amount of uncertainty in the

battle outcomes for live bombers and defenders, and

weak in those scenarios where there is little amount of

uncertainty in the battle outcomes. SS , on the hand,

has a more consistent performance. SS increases the

simulation efficiency at a mean of 2 times the crude

simulation. It performs nearly the same in every

scenario except where the uncertainty is large.
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VI . CONCLUSIONSAND RECOMMENDATIONS

A. CONCLUSIONS

The objective of this pilot study has been to

investigate the applicability of VRTs to reduce the

inherent variability in stochastic combat models. We

examined the effects of applying AV and SS to the

simulation of a simple stochastic combat model. We have

now shown that AV and SS are applicable to this

stochastic combat model. We can infer that these VRTs

are indeed capable of working in stochastic combat

models, and their prospects in larger and more complex

stochastic combat models are even more promising. The

conditions of monotonicity and synchronization are

essential parts of the design of the simulation program

for these models. Hence, we feel that sizable increase

in simulation efficiency is possible if these

requirements are met in the simulation.

The experimental results of applying VRTs to the

BCD simulation model show that the strength of AV and

SS is influenced by uncertainty. A strong variance

reduction results from a large variance of the estimate

obtained from crude simulation. A weak variance

reduction is caused from a small variance of the

estimate obtained from crude simulation. Hence, sizable
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and consistent variance reduction depends on large

variability of the simulated output from the stochastic

combat model. Therefore, the variability of the output

from larger and more complex stochastic models must

also be large enough to obtain the size and consistency

of simulation efficiency and variance reduction one

desires from the applications of these VRTs to such

models

.

B . RECOMMENDATIONS

The pilot study presented in this thesis provides

a base for further studies in the applications of AV

and SS to large-scale, real world, stochastic combat

simulation models. Usually complex simulation models

have many subroutines or modules. The variability of

uncertainty in the output data from these modules may

vary from low to high. We recommend that a study of

this matter focus on the degree of variability of

uncertainty in the output data from each module. The

interest of the study should be concerned with the

relationship between the performance of the VRT and the

variability of the output data from each module. The

results should indicate where and how the VRT may be

used in the model in order to maximize the simulation

efficiency of the model. For example, if the study

shows that a VRT performs strongly in a particular
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module whose variability of output data is large and it

performs poorly in another module whose variability of

output is small, then the study should recommend that

the VRT be used in the module in which it performs best

and not be used in that module for which it performs

poorly. Using VRTs in the module with small variability

would most likely decrease simulation efficiency for

that model and, at worst, suboptimize the overall

performance of the VRT in the complex combat model

.
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APPENDIX A -

FORMULATIONOF THE BCD MARKOVIANMODEL

by

Professor Donald P. Gaver
Naval Postgraduate School

Monterey, California

B bombers are approaching a group of D defenders.

When the two groups approach within range each defender

searches for a bomber; after he finds one they engage

In combat. Either bomber or defender may win the

combat; the survivor becomes "free", and is a candidate

for the next combat. In general, bombers attempt to

avoid combat, defenders seek it out.

This situation becomes a tri-variate Markov chain

if the following state is defined: { B( t ) , C( t ) , D( t ) }

.

Here t is conveniently measured from the time bombers

and defenders are close enough to permit combat at all,

B(t) is the number of free bombers at time t

thereafter; ditto for D(t), the number of free

defenders; C(t) is the number of one-on-one combats.

Here are a set of transition rates:

(1) Combats begin . If B(t)=b, C(t)=c, D(t)=d and if f

is the rate at which free bombers are found by

free defenders then with probability
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((e- jt
)
b

)
d = 1 - fbdt -+ o(t)

no defender finds a bomber in time t. Hence the

probability that a defender does find a bomber is

ibdt + o(t). This is the rate at which free

bombers and defenders get converted to combats:

the state

(b, c, d) -> (b-1 , c + 1 , d-1) with prob ibdt.

(2) Defenders win . Same initial conditions. If a

bomber is in combat with a defender the

probability that a defender shoots down the

bomber in time t (combat duration) if the latter

doesn't hit the defender is

P(Combat duration i t ! bomber doesn't hit)

= 1 - e _at
.

Likewise, the probability that the bomber shoots

down the defender is

P{ Combat duration i t ! defender doesn't shoot)

= 1 - e- 0t
.
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Now suppose they both shoot » doing so

independently. Model the probability that both

survive to t as

P<Combat duration > t) = ( e~ at
) ( e" Bt

) .

Now the probability that combat lasts until t and

is terminated by a defender shooting down the

bomber is

P{Combat ends is ( dt ) , Defender wins}

= (e _at adt)e" et

= ( e -(« + n)t( + ,))(„/(„+,).

This shows that a single combat duration is

exp(a + 9) and the event of a defender's winning

is independently a/(a + e). Likewise, the combat

duration is exp(a + e ) and a bomber's win is,

independently, e/( + e). If there are c combats

going on then the first combat to ends does so

in time exp(c(a + 0)).

Hence

(b, c, d) * (b, c-1 , d+1 ) with prob acdt

(b, c, d) * (b+1 ,c-1 , d) with prob cdt.
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(3) Simulation and Sojourn . The above shows that we

may simulate the combat as follows.

(i) You are in state (b, c, d ) . Obtain a
sojourn time in that state that is

exp($bd + (a + e)c)

i.e. Sbcd = 1 / (ibd + (a + r>)c).

The system stays in state (b,c,d) for
time [0,S bcd ).

(ii) With probability

ibd / (ibd + (a + b)c) (b-1 , c + 1 , d-1)

(NEW COMBAT) at time Sbcd .

(iii) With probability

aC / (ibd + (a + e)c) * (b, C-1, d+1 )

(DEFENDER SHOOTSDOWNBOMBER) at
time Sbcd .

(iv) With probability

ec / (ibd + (a + p)c) * (b + 1,c-1,d)

(BOMBER SHOOTSDOWNDEFENDER) at
time Sbcd .
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APPENDIX B

FORTRAN PROGRAMLISTING FOR THE CRUDE SIMULATION
OF THE BCD MODEL

DIMENSION BX( 101 ) ,DX( 101 ) ,SEED(2) ,B0X(2) ,D0X(2)
INTEGER I,N,BB,DD,R
REAL*4 X,Y,Z,BX,DX,TXT,BOX,DOX
DOUBLE PRECISION SEED
DATA SEED / 1 234 . 0D0 , 567890 1 23 . 0D0/
R= 2
N=1 00

C
C RECEIVE INPUT DATA FROM TERMINAL
C

WRITE( * ,3)
3 FORMAT( 1 X, 'ENTER THE NUMBEROF BOMBERS')

READ ' ( 12) '
, BB

WRITE( * ,4)
4 FORMAT( 1X, 'ENTER THE RATE WHICH A BOMBERSHOOTS

DOWNA DEFENDER'

)

READ ' (F5.3) ' , Y
WRITE( * ,5)

5 FORMAT( 1X, 'ENTER THE NUMBEROF DEFENDERS')
READ ' ( 12) '

, DD
WRITE( * ,6)

6 FORMAT( 1X, 'ENTER THE RATE WHICH A DEFENDER'
& 'SHOOTS DOWNA BOMBER')

READ ' (F5.3) '
, X

WRITE( * ,7) 'ENTER THE RATE WHICH FREE DEFENDERS'
& 'FIND FREE BOMBERS'

7 FORMAT(1X, A)
READ ' ( F5 . 3 ) '

, Z
WRITE( * ,8) 'ENTER THE TIME DURATION OF THE

& 'BATTLE'
8 FORMAT(1X, A)

READ ' (F5.3) '
, TXT

C
C RUN REPLICATIONS OF N BATTLES AND OBTAIN SUMMARYOF
C N BATTLES
C

CALL BATTLE( N , R , SEED, X , Y , Z , BB , DD , TXT , BX , DX

)

C
C COMPUTESTATISTICAL OUTPUT ANALYSIS OBTAIN PARAMETER
c ESTIMATES
C

CALL STAT(N,R,BX,DX,BOX,DOX)
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C FORMATAND PRINT OUTPUT OF PARAMETERESTIMATES
C

WRITE(3,279) N
279 FORMAT(15X, 'SAMPLE SIZE ' , 16 , / 15X , 6 (

' -
' ) , IX ,

& 4( '-' ))
WRITE(3,280) BB,DD

280 FORMAT(//1X.I4 ,2X, 'BOMBERS' , 6X , 'VERSUS' , 6X

,

& 14 ,2X, 'DEFENDERS' ,/lX,13( '-'
) , 18X,14( '-'

) )

290 WRITE (3,300)TXT
30 FORMAT( //18X, 'TIME' ,F6.1,/,47('-'))

WRITE(3,310

)

310 FORMAT(19X, 'BOMBER' , 2X , 'DEFENDER' ,/18X,
& 7( ' = ' ),2X,8( ' = ' ))

WRITE(3,320) BOX( 1 ) , DOX( 1

)

320 FORMAT(IX, 'AVERAGE' ,7X,2F10.4

)

WRITE(3,330) BOX( 2 ) , DOX( 2

)

330 FORMAT( IX, 'VARIANCE' ,6X,2F10.4

)

STOP
END

C
C
C SUBROUTINE BATTLE
C

SUBROUTINE
& BATTLE( N , R , SEED, X , Y , Z , BB , DD , TXT , BX , DX

)

INTEGER BB,DD,I ,K,N,R
REAL X ( N+l ) , DX ( N+l ) , GA , SO

J

,X,Y,Z,B,C,D,NC,
& BW,DW, INF, T, TIME, TXT

DOUBLE PRECISION SEED(R)
C
C INITIALIZE STATISTICAL COUNTERS
C

BX(N+1)= 0.0
DX(N+1)= 0.0

C
C RUN N REPLICATIONS
C

DO 200 I-1,N
C
C INITIALIZE START-TO-BATTLE VALUES
C

T-0.0
C-0.0
B=REAL(BB)
D=REAL(DD)
BW= 0.0
DW= 0.0
NC= 1.0

C
C OBSERVEOCCURRENCEOF AN EVENT
C
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100 CALL UNIFOR(SEED( \ ) , GA , 1

)

C
C DETERMINE NEXT INTERIM EVENT AND UPDATE THE STATE
C (B,C,D)
C

IF(GA .LE. BW) THEN
B=B +1.0
C=C -1.0
D= D

ELSE IF (GA .LE. ( BW+NC) ) THEN
B=B -1.0
C= C +1.0
D=D -1.0

ELSE
B = B
C=C -1.0
D=D +1.0

END IF
C
C COMPUTEMEAN TIME IN STATE (B,C,D)
C

IF ((B .EQ. 0.0 .OR. D .EQ. 0.0) .AND. C
& .EQ. 0.0) THEN

INF= 1000000.0
ELSE

INF= 1.0/(Z*D*B + (X + Y)*C)
END IF

C
C GENERATESOJOURNTIME IN STATE (B,C,D)
C

CALL EXP0N(SEED(2) , SOJ , 1

)

TIME= -INF * ALOG(SOJ)
C
C ADVANCETHE SIMULATED TIME OF THE AIR BATTLE
C

T= T + TIME
C
C COMPUTEPROBABILITY OF NEXT INTERIM EVENTS OCCURRING

BW= Y*C*INF
DW= X*C*INF
NC= Z*B*D*INF

C
C CHECK CONDITIONS FOR OCCURRENCEOF TERMINATION EVENT

IF (T .LT. TXT) GOTO 100
C
C ACCUMULATESUMMARYOF N BATTLE OUTCOMES
C
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BX( I)= B + C
DX( I)= D + C
BX(N+1 )= BX(N+1 ) + BX(I)
DX(N+1 )= DX(N+1 ) + DX( I)

200 CONTINUE
RETURN
END

C
C
C SUBROUTINE EXPON
C

SUBROUTINE EXPON(SEED2 , A2 , K

)

INTEGER I,K
REAL STIM.A2, INF
DOUBLE PRECISION EFF,SEED2
EFF= 21 47483647. 0D0
SEED2=DMOD(1 6807.0D0 * SEED2,EFF)
A2= SEED2/EFF
RETURN
END

C
C
C SUBROUTINE UNIFOR
C

SUBROUTINE UNIFOR( SEED1 , A1 , K

)

INTEGER I,K
REAL A1
DOUBLE PRECISION EFF,SEED1
EFF= 2147483647. 0D0
SEED1=DMOD( 1 6807.0D0 * SEED1,EFF)
A1= SEED1/EFF
RETURN
END

C
C
C SUBROUTINE STAT
C

SUBROUTINE STAT ( N , R , BX , DX , BOX , DOX

)

INTEGER J,R,N
REAL BX(N+1 ),DX(N+1 ) , BOX( R ) , DOX( R

)

B0X(2)= 0.0
DOX(2)= 0.0

C
C COMPUTETHE ESTIMATES OF THE SAMPLE MEAN AND
C VARIANCE
C

BOX( 1 ) = BX(N+1 )/N
DOX( 1 ) = DX(N+1 )/N
DO 260 1=1 ,N

B0X(2)= BOX(2) + (BX( I)-BOX( 1 )
)**2
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D0X(2)= D0X(2) + (DX(I)-DOX( 1 ))**2
260 CONTINUE

B0X(2)= B0X(2)/(N*(N-1 )

)

D0X(2)= DOX(2)/(N*(N-1 )

)

RETURN
END
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APPENDIX C
"

FORTRAN PROGRAMLISTING OF THE BCD SIMULATION
USING ANTITHETIC VARIATES

DIMENSION BX( 101 ) ,DX( 101 ) ,SEED(2) ,B0X(2) ,DOX(2)
INTEGER I,N,BB,DD,R
REAL*4 X,Y,Z,BX,DX,TXT,BOX ,DOX
DOUBLE PRECISION SEED
DATA SEED / 1 234 . 0D0 , 5678901 23 . 0D0/
R= 2
N= 50

C
C RECEIVE INPUT DATA FROM TERMINAL
C

WRITE( * ,3)
3 FORMAT( 1 X, 'ENTER THE NUMBEROF BOMBERS')

READ ' ( 12) '
, BB

WRITE( * ,4)
4 FORMAT( 1X, 'ENTER THE RATE WHICH A BOMBERSHOOTS'

& 'DOWN A DEFENDER')
READ ' (F5.3) '

, Y
WRITE( * ,5)

5 FORMAT( 1X, 'ENTER THE NUMBEROF DEFENDERS')
READ ' ( 12) '

, DD
WRITE( * ,6)

6 FORMAT( 1X, 'ENTER THE RATE WHICH A DEFENDER
& SHOOTSDOWNA BOMBER')

READ ' (F5.3) '
, X

WRITE( * ,7) 'ENTER THE RATE WHICH FREE DEFENDERS'
& 'FIND FREE BOMBERS'

7 FORMAT(1X, A)
READ ' (F5.3) ' , Z
WRITE( * ,8) 'ENTER THE TIME DURATION OF THE'

& 'BATTLE'
8 FORMAT(1X, A)

READ ' (F5.3) ' , TXT
C
C RUN REPLICATIONS OF N BATTLES AND OBTAIN SUMMARYOF
C N BATTLES
C

CALL BATTLE( N , R , SEED, X , Y , Z , BB , DD , TXT , BX , DX

)

C
C COMPUTESTATISTICAL OUTPUT ANALYSIS OBTAIN PARAMETER
C ESTIMATES
C

CALL STAT(N,R,BX,DX,BOX,DOX)
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C FORMATAND PRINT OUTPUT OF PARAMETERESTIMATES
C

WRITE(3,279) N
279 FORMAT( 1 5X, 'SAMPLE SIZE ' , 16 , / 1 5X , 6( ' -

' ) ,

& 1X,4( '-' ))
WRITE(3,280) BB,DD

280 FORMAT(//1X, 14, 2X, 'BOMBERS' , 6X , 'VERSUS'

,

& 6X, I4,2X, 'DEFENDERS' , /1X, 13( '-' ),18X,14( '-' ))
290 WRITE (3,300)TXT
300 FORMAT( //18X, 'TIME' , F6 . 1 , / , 47 (

' -
' ) )

WRITE(3,310)
31 FORMAT( 1 9X, 'BOMBER' , 2X, 'DEFENDER'

,

& /18X,7( ' = '
) ,2X,8( ' = '

) )

WRITE(3,320) BOX( 1 ) ,DOX( 1 )

320 FORMAT(1X, 'AVERAGE' ,7X,2F10.4)
WRITE(3,330) BOX(2) ,D0X(2)

330 FORMAT( 1 X, 'VARIANCE' ,6X,2F1 0.4)
STOP
END

C
C
C SUBROUTINE BATTLE
C

SUBROUTINE
& BATTLE( N , R , SEED,X,Y,Z,BB,DD, TXT , BX , DX

)

INTEGER BB,DD,H,I,J,W,K,N,R
REAL GA(2, 1 000) , S0J(2, 1 000) , BX(N+1 )

,

& DX(N+1 ) ,BAT(50,2) ,DAT(50,2)

,

& X,Y,Z,T, TXT, TIME, INF , NC , BW, DW, B , C ,

D

DOUBLE PRECISION SEED(R)
K= 1000

C
C INITIALIZE STATISTICAL COUNTERS
C

BX(N+1 )= 0.0
DX(N+1 )= 0.0

C
C RUN N REPLICATIONS
C

DO 200 1=1 ,N
CALL SOJOUR(SEED(1 ) ,SOJ,R,K)
CALL STATE(SEED(2) ,GA,R,K)
DO 175 J=1 ,R

C
C INITIALIZE START-TO-BATTLE VALUES
C

H=

T = .

C= 0.0
B=REAL(BB)
D=REAL(DD)
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BW= 0.0
DW= 0.0
NC= 1 .0

C
C OBSERVEOCCURRENCEOF NEXT EVENT
C

100 H= H+1
C
C DETERMINE NEXT INTERIM EVENT AND UPDATE THE STATE
C (B,C,D)
C

IF(GA(J,H) .LE. BW) THEN
B=B +1.0
C=C -1.0
D= D

ELSE IF (GA(J,H) . LE . ( BW+NC) ) THEN
B=B -1.0
C=C +1.0
D=D -1.0

ELSE
B = B
C=C -1.0
D=D +1.0

END IF
C
C COMPUTEMEAN TIME IN STATE (B,C,D)
C

IF ((B .EQ. 0.0 .OR. D .EQ. 0.0) .AND. C
& .EQ. 0.0) THEN

INF= 1000000.0
ELSE

INF= 1.0/(Z*D*B + (X + Y)*C)
END IF

C
C COMPUTESOJOURNTIME IN STATE (B,C,D)
C

TIME= -INF * ALOG(SOJ( J,H) )

C
C ADVANCETHE SIMULATED TIME OF THE AIR BATTLE
C

T= T + TIME
C
C COMPUTEPROBABILITY OF NEXT INTERIM EVENTS OCCURRING

BW= Y*C*INF
DW= X*C*INF
NC= Z*B*D*INF

C
C CHECK FOR OCCURRENCEOF TERMINATION EVENT
C
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IF (T .LT. TXT) GOTO 100
C
C RECORDRESULTS OF BATTLE
C

BAT( I, J)= B + C
DAT( I , J)= D + C

175 CONTINUE
C
C ACCUMULATESUMMARYOF N BATTLE OUTCOMES
C

BX( I ) = (BAT( I , 1 ) + BAT (1,2))*.

5

DX( I)=(DAT( I, 1 ) + DAT(1,2))*.

5

BX(N+1 )= BX(N+1) + BX(I,J)
DX(N+1 )= DX(N+1 ) + DX(I,J)

200 CONTINUE
RETURN
END

C
C
C SUBROUTINE SOJOUR
C

SUBROUTINE SOJOUR(SEED2 , A2 , W, K

)

INTEGER I,W,K
REAL A2(W,K)
DOUBLE PRECISION EFF , SEED2
EFF= 21 47483647. 0D0
DO 10 1 = 1 ,K

SEED2=DMOD(1 6807.0D0 * SEED2,EFF)
A2( 1 , I )= SEED2/EFF
A2(2, I)= 1.0 - A2( 1 , I)

10 CONTINUE
RETURN
END

C
C
C SUBROUTINE STATE
C

SUBROUTINE STATE( SEED1 , A1 , W, K

)

INTEGER I,K,W
REAL A1 (W,K)
DOUBLE PRECISION EFF.SEED1
EFF= 21 47483647. 0D0
DO 10 1 = 1 ,K

SEED1=DMOD( 1 6807.0D0 * SEED1.EFF)
A1 ( 1 ,I)= SEED1 /EFF
A1 (2,1)= 1.0 - A1 ( 1 ,1)

10 CONTINUE
RETURN
END

C
C
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C SUBROUTINE STAT
C

SUBROUTINE STAT ( N , R , BX , DX , BOX , DOX)

INTEGER J,R,N
REAL BX(N+1 ),DX(N+1 ) , BOX( R ) , DOX( R

)

BOX(2)= 0.0
DOX(2)= 0.0

C
C COMPUTETHE ESTIMATES OF THE SAMPLE MEAN AND
C VARIANCE
C

BOX( 1 ) = BX(N+1 , J)/N
DOX( 1 ) = DX(N+1 , J)/N
DO 260 1=1 ,N

B0X(2)= B0X(2) + (BX( I)-BOX( 1 ) )**2
DOX(2)= D0X(2) + (DX( I)-DOX( 1 ) )**2

260 CONTINUE
B0X(2)= BOX(2)/(N*(N-1 ))
D0X(2)= D0X(2)/(N*(N-1 ) )

RETURN
END
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APPENDIX D

FORTRAN PROGRAMLISTING OF THE BCD SIMULATION USING
STRATIFIED SAMPLING

DIMENSION BX( 101 ) ,DX( 101 ) ,SEED(2) ,B0X(2) ,DOX(2)
INTEGER I,N,BB,DD,R
REAL*4 X, Y,Z, BX.DX.TXT, BOX, DOX
DOUBLE PRECISION SEED
DATA SEED / 1 234 . 0D0 , 5678901 23 . 0D0/
R= 2
N=1 00

C
C RECEIVE INPUT DATA FROM TERMINAL
C

WRITE( * ,3)
3 FORMAT( 1X, 'ENTER THE NUMBEROF BOMBERS')

READ ' ( 12) '
, BB

WRITE( * ,4)
4 FORMAT( 1X, 'ENTER THE RATE WHICH A BOMBERSHOOTS'

& 'DOWN A DEFENDER')
READ ' (F5.3) ' , Y
WRITE( * ,5)

5 FORMAT( 1 X, 'ENTER THE NUMBEROF DEFENDERS')
READ ' ( 12) '

, DD
WRITE( * ,6)

6 FORMAT( 1X, 'ENTER THE RATE WHICH A DEFENDER'
& 'SHOOTS DOWNA BOMBER')

READ ' (F5.3) ' , X
WRITE( * ,7) 'ENTER THE RATE WHICH FREE DEFENDERS'

& 'FIND FREE BOMBERS'
7 FORMAT(1X, A)

READ ' (F5.3) ' , Z
WRITE( * ,8) 'ENTER THE TIME DURATION OF THE'

& 'BATTLE'
8 FORMAT(1X, A)

READ ' (F5.3) ' , TXT
C
C RUN REPLICATIONS OF N BATTLES AND OBTAIN SUMMARYOF
C N BATTLES
C

CALL BATTLE( N , R , SEED, X , Y , Z , BB , DD , TXT , BX , DX )

C
C COMPUTESTATISTICAL OUTPUT ANALYSIS OBTAIN PARAMETER
C ESTIMATES
C

CALL STAT(N,R,BX,DX,BOX,DOX)

96



c
C FORMAT AND PRINT OUTPUT OF PARAMETERESTIMATES
C

WRITE(3,279) N
279 FORMAT( 1 5X , 'SAMPLE SIZE ' , 16 , / 1 5X , 6 ( ' -

' )

,

& 1X,4( '-' ))
WRITE(3,280) BB,DD

280 & FORMAT(//1X, 14, 2X, 'BOMBERS' ,6X, 'VERSUS'

,

& 6X, 14, 2X, 'DEFENDERS'

,

& /1X, 13( '-' ), 18X, 14( '-'
)

)

290 WRITE (3,300)TXT
300 FORMAT( //18X, 'TIME' ,F6. 1 ,/ ,47( '-'

) )

WRITE(3,310)
3 1 FORMAT( 1 9X ,

' BOMBER' , 2X ,
' DEFENDER'

,

& /18X,7( ' = '
) ,2X,8( ' = '

)

)

WRITE(3,320) BOX( 1 ) ,DOX( 1 )

320 FORMAT(1X, 'AVERAGE' ,7X,2F10.4)
WRITE(3,330) B0X(2) ,DOX(2)

330 FORMAT(1X, 'VARIANCE' ,6X,2F10.4)
STOP
END

C
C
C SUBROUTINE BATTLE
C

SUBROUTINE
& BATTLE( N , R , SEED, X , Y , Z , BB , DD , TXT , BX , DX

)

INTEGER BB,DD,H,I,J,K,N,R,W
REAL GA(3, 1000) ,SOJ(3, 1000) ,BM(34,3)

,

& DF(34,3) , BX(N+1 ) ,DX(N+1 ) , X , Y , Z , T , TXT , TIME

,

& INF,NC,BW,DW,B,C,D,BM,DF
DOUBLE PRECISION SEED(R)
K= 1000
W= 3

C
C INITIALIZE STATISTICAL COUNTERS
C

BX(N+1 )= 0.0
DX(N+1 )= 0.0

C
C RUN N REPLICATIONS
C

DO 200 1=1 ,N
CALL SOJOUR(SEED(1 ) ,SOJ,W,K)
CALL STATE(SEED(2) ,GA,W,K)
DO 175 J=1 ,W

C
C INITIALIZE START-TO-BATTLE VALUES
C

H=

T = .
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C = 0.0
B=REAL(BB)
D=REAL(DD)
NC= 1 .

BW= 0.
DW=

C
C OBSERVEAN OCCURRENCEOF AN EVENT
C

100 H=H+1
C
C DETERMINE NEXT INTERIM EVENT AND UPDATE THE STATE
C (B,C,D)
C

IF(GA(

J

,H) .LE. BW) THEN
B = B + 1 .0
C= C - 1 .0
D= D

ELSE IF ( GA( J , H ) . LE . ( BW+NC) ) THEN
B = B -

1 .0
C = C + 1 .0
D= D -

1 .0
ELSE

B=B
C = C - 1 .0
D= D+ 1 .0

END IF
c
C COMPUTEMEAN TIME IN STATE (B,C,D)
C

IF((B .EQ. 0.0 .OR. D .EQ. . ) . AND. C
& .EQ. 0.0) THEN

INF= 1000000.0
ELSE

INF= 1.0/(Z*B*D + (X+Y)*C)
END IF

C
C COMPUTESOJOURNTIME OF STATE (B,C,D)
C

TIME= -INF * ALOG(SOJ( J,H)

)

C
C ADVANCESIMULATED TIME OF THE AIR BATTLE
C

T= T + TIME
C
C COMPUTEPROBABILITY OF NEXT INTERIM EVENTS OCCURRING

NC= Z*B*D*INF
BW= Y*C*INF
DW= X*C*INF
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c
C CHECK FOR OCCURRENCEOF TERMINATION EVENT
C

IF (T .LT. TXT(TI)) GOTO 100
C
C RECORDRESULTS OF BATTLE
C

BM( I, J)= B + C
DF( I, J)= D + C

175 CONTINUE
C
C ACCUMULATESUMMARYOF N BATTLE OUTCOMES
C

BX(I)= (BM(I,1) + BM(I,2) + BM(I,3)/3.0
DX(I)= (DF(I,1) + DF(I,2) + BM(I,3)/3.0
BX(N+1 )= BX(N+1 ) + BX(I)
DX(N+1 )= DX(N+1 ) + DX(I)

200 CONTINUE
RETURN
END

C
C
C SUBROUTINE SOJOUR
C

SUBROUTINE SOJOUR(SEED2 , B2 , W, K

)

INTEGER I,W,K,J
REAL B2(W,K),A2
DOUBLE PRECISION EFF , SEED2
EFF= 2147483647. 0D0
DO 10 1=1 ,K

SEED2=DM0D(1 6807.0D0 * SEED2 , EFF

)

A2= SEED2/EFF
DO 5 J-1 ,W

B2(J,I)= AM0D(A2 + ((J-1) * 1.0)/3.0,1
5 CONTINUE
10 CONTINUE

RETURN
END

C
C
C SUBROUTINE STATE
C

SUBROUTINE STATE( SEED1 , A1 , W, K

)

INTEGER I,K,W,J
REAL A1 (W,K) ,A2
DOUBLE PRECISION EFF,SEED1
EFF= 21 47483647. 0D0
DO 10 1=1 ,K

SEED1=DMOD( 1 6807.0D0 * SEED1,EFF)
A2= SEED1 /EFF
DO 5 J=1 ,W
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A1(J,I)= AM0D(A2 + ((-J-1) * 1 .0)/3.0, 1 .0)
5 CONTINUE

RETURN
END

C
C
C SUBROUTINE STAT
C

SUBROUTINE STAT( N , R , BX , DX , BOX , DOX

)

INTEGER R,N
REAL BX(N+1 ),DX(N+1 ) , BOX( R ) , DOX( R

)

B0X(2)= 0.0
D0X(2)= 0.0

C
C COMPUTETHE ESTIMATES OF THE SAMPLE MEAN AND
C VARIANCE
C

BOX( 1 ) = BX(N+1 )/N
DOX( 1 ) = DX(N+1 )/N
DO 260 1=1 ,N

BOX(2)= B0X(2) + (BX( I )-BOX( 1 )
)**2

D0X(2)= D0X(2) + (DX( I )-DOX( 1 )
)**2

260 CONTINUE
BOX(2)= B0X(2)/(N«(N-1 ))
D0X(2)= DOX(2)/(N*(N-1 )

)

RETURN
END
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APPENDIX E

STATISTICAL OUTPUT DATA FROM THE BCD SIMULATIONS

TABLE E.1 OUTPUT PARAMETERSOF THE BCD MODEL ESTIMATED
FROM CRUDE SIMULATION

SCENARIO DEFENDER BOMBER

SIMULATION DEFENDERBOMBERTIME MEAN VAR MEAN VAR

1 1 10 25 7.6 .01 91 7.5 .0250
2 10 10 75 4.4 .0387 4.5 .0358
3 1 10 125 2.8 .0375 3.4 . 041 7
4 1 30 25 5.3 .0328 25. 1 .0541
5 10 30 75 1 .3 .0157 21 .3 . 1 402
6 10 30 125 .3 .0036 20.8 . 1725
7 10 50 25 4.2 .0251 44.7 .0558
8 10 50 75 .6 .0064 40.8 . 1 654
9 10 50 125 . 1 .001 4 39.7 . 1874

10 30 10 25 25.1 .0458 5.4 .0350
1 1 30 10 75 21 . 1 . 1 407 1 .4 .0141
12 30 10 125 19.8 .2247 .4 .0045
13 30 30 25 18.7 .0933 18.5 .0842
14 30 30 75 8.2 .1618 8.4 . 1895
15 30 30 125 5.7 . 1984 4.7 . 1 341
16 30 50 25 14.4 .0628 34.5 . 1 1 04
17 30 50 75 3.4 .0362 22.9 .3479
18 30 50 125 .9 .0136 20. 1 .4881
19 50 10 25 44.4 .0651 4. 1 .0317
20 50 10 75 40.7 . 1427 .7 .0063
21 50 10 125 41 . 1 . 1666 . 1 .001 4
22 50 30 25 34.3 . 1687 14.0 .0826
23 50 30 75 23.5 .3339 3. 1 .0359
24 50 30 125 21 . 1 .5300 .8 .01 07
25 50 50 25 27.9 . 1590 26.4 . 1 501
26 50 50 75 9.5 .2717 11.5 .2865
27 50 50 125 5.2 .2126 7.9 .2986
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TABLE E.2 OUTPUT PARAMETERSOF THE BCD MODEL ESTIMATED
FROMTHE SIMULATION USING ANTITHETIC VARIATES

SCENARIO DEFENDER BOMBER

SIMULATION DEFENDERBOMBERTIME MEAN VAR MEAN VAR

1 10 10 25 7.6 .0067 7.5 .0105
2 10 10 75 4.5 .0048 4.4 .0060
3 10 10 125 3.2 .0079 3.3 .0057
4 10 30 25 5.1 .0129 25 . 1 . 0100
5 10 30 75 1 .2 .0071 21 .3 .0329
6 10 30 125 .3 . 0024 20.2 . 0446
7 10 50 25 4.4 .0123 44.4 .0146
8 10 50 75 .6 .0060 40.9 .0395
9 10 50 125 . 1 .0013 40. 1 .0683

10 30 10 25 25.4 .0116 5.0 .0116
11 30 10 75 21. 1 . 0271 1.2 .0056
12 30 10 125 20.2 .0558 .3 .0030
13 30 30 25 18.5 .0164 18.4 .0210
14 30 30 75 8.5 .0251 8.4 .0270
15 30 30 125 5. 1 .0307 5 . 1 .0352
16 30 50 25 14.6 .0223 34.6 . 0308
17 30 50 75 3.0 .0138 23.6 .0542
18 30 50 125 1.0 .0075 20.6 .0446
19 50 10 25 44.0 .0169 4.3 .0104
20 50 10 75 40.2 .0410 .6 .0059
21 50 10 125 40.6 .0451 . 1 .0015
22 50 30 25 34.3 .0279 14.4 . 0368
23 50 30 75 23.1 . 0375 3.1 . 0194
24 50 30 125 20.5 .0739 .9 .0077
25 50 50 25 27.3 .0266 27. 1 . 0357
26 50 50 75 10.5 .0269 10.7 .0309
27 50 50 125 6.4 .0458 6.4 .0472
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TABLE E.3 EFFICIENCY OF ANTITHETIC VARIATES IN THE BCD
MODEL

SCENARIO DEFENDER BOMBER

SIMULATION DEFENDERBOMBERTIME RE IP(*) RE IP(#)

1 10 10 25 2.9 65.0 2.4 58.
2 10 10 75 8. 1 87.6 6.0 83.2
3 10 10 125 4.7 78.9 7.3 86.3
4 10 30 25 2.5 60.7 5 .4 81 . 5

5 10 30 75 2.2 54 .8 4 .3 76. 5

6 10 30 125 1.5 33.3 3.9 74.1
7 10 50 25 2.0 51.0 3.8 73.8
8 10 50 75 1. 1 6.3 4.2 76.1
9 10 50 125 1.1 7.1 2.7 63.6

10 30 10 25 3.9 74.7 3.0 66.9
11 30 10 75 5.2 80.7 2.5 60.3
12 30 10 125 4.0 75.2 1.5 33.3
13 30 30 25 5.7 82.4 4.0 75.1
14 30 30 75 6.4 84.5 7.0 85.8
15 30 30 125 6.5 84.5 3.8 73.8
16 30 50 25 2.8 64.5 3.6 72. 1

17 30 50 75 2.6 61.9 6.4 84.4
18 30 50 125 1.8 44.9 10.9 90.9
19 50 10 25 3.9 74.0 3.0 67.2
20 50 10 75 3.5 71.2 1. 1 6.3
21 50 10 125 3.7 72.9 .9 7.1
22 50 30 25 6.0 83.4 2.2 55 .4
23 50 30 75 8.9 88.8 1.9 46.
24 50 30 125 7.2 86.1 1.4 28.0
25 50 50 25 6.0 83.3 4.2 76.2
26 50 50 75 10.1 90.1 9.3 89.2
27 50 50 125 4.6 78.5 6.3 84.2

103



TABLE E.4 OUTPUT PARAMETERSOF THE BCD MODEL ESTIMATED
FROM SIMULATION USING STRATIFIED SAMPLING

SCENARIO DEFENDER

MEAN VAR

BOMBE

MEAN

R

SIMULATION DEFENDERBOMBERTIME VAR

1 10 10 25 7.4 .0119 7.5 .0114
2 10 1 75 4.4 .0248 4.5 .0237
3 10 10 125 3.1 .01 60 3.2 .01 97
4 10 30 25 5.1 .0124 25.0 .0252
5 10 30 75 1 .2 .0076 21 .2 .071
6 10 30 125 .4 .0038 20.5 .0801
7 10 50 25 4.4 .01 26 44.0 .0375
8 10 50 75 .9 .0083 40.2 . 1 021
9 10 50 125 . 1 .0006 40 .0 .0930

1 30 10 25 25. 1 .0233 5.3 .0124
1 1 30 1 75 21 . 1 .0726 1 .3 .0118
1 2 30 10 125 20.3 .0877 .4 .0027
13 30 30 25 18.4 .0283 18.4 .0193
14 30 30 75 8.0 .0439 8.2 .0700
15 30 30 125 5.5 .0505 4.8 .0426
1 6 30 50 25 14.2 .0219 34.5 .0798
17 30 50 75 3.2 .021 1 23.3 . 1236
18 30 50 125 .8 .0081 20. 1 . 1880
19 50 10 25 44.6 .0339 4.3 .0163
20 50 10 75 41 .0 .0872 .7 .0053
21 50 10 125 40.4 . 1 089 . 1 .0012
22 50 30 25 34.6 .0571 14.3 .0439
23 50 30 75 22.6 . 1 187 3.3 .0197
24 50 30 125 20.9 .2402 1 .0 .0086
25 50 50 25 27.7 .0630 27.0 . 1 084
26 50 50 75 10.5 .0898 10.7 .0881
27 50 50 125 6.5 .091 1 6.4 . 1 084
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TABLE E.5 EFFICIENCY OF STRATIFIED SAMPLING IN THE BCD
MODEL

SCENARIO DEFENDER

RE IP(%)

BOM

RE

BER

SIMULATION DEFENDERBOMBERTIME IP(*)

1 10 1 25 1 .6 39.0 2 .2 54.4
2 10 10 75 1 .6 36.0 1 .5 33.8
3 10 10 125 2.3 57.3 2. 1 52.8
4 10 30 25 2.6 62.2 2. 1 53.4
5 10 30 75 2. 1 51 .6 2.0 49.4
6 10 30 125 .9 -5.5 2.2 53.6
7 10 50 25 2.0 49.8 1 .5 32 .8
8 10 50 75 .8 -29.7 1 .6 38.3
9 10 50 125 2.3 57. 1 2.0 50.4

1 30 10 25 2.0 49. 1 2.8 64.6
1 1 30 10 75 1 .9 48.4 1 .2 16.3
1 2 30 10 125 2.6 61 .0 1 .7 40.0
13 30 30 25 3.3 69.7 4.4 77. 1

14 30 30 75 3.7 72.9 2.7 63. 1

15 30 30 125 3.9 74.5 3.1 68.2
16 30 50 25 2.9 65. 1 1 .4 27.7
17 30 50 75 1 .7 41 .7 2.8 64.5
18 30 50 125 1 .7 40.7 2.6 61 .5
19 50 1 25 1 .9 47.9 1 .9 48.6
20 50 10 75 1 .6 39.0 1 .2 15.9
21 50 10 125 1 .5 34.6 1 .2 14.2
22 50 30 25 3.0 66.2 1 .9 46.9
23 50 30 75 2.8 64.5 1 .8 45. 1

24 50 30 125 2.2 54.7 1 .2 19.6
25 50 50 25 2.5 60.4 1 .4 27.8
26 50 50 75 3.0 66.9 3.3 69.2
27 50 50 125 2.3 57. 1 2.8 63.7
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