
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1987-03

Dynamic analysis of the flexible boom in the
N-ROSS Satellite.

Kang, Choong Soon

https://hdl.handle.net/10945/22756

Copyright is reserved by the copyright owner

Downloaded from NPS Archive: Calhoun





DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 9?943-6002







NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
DYNAMIC ANALYSIS OF THE FLEXIBLE

IN THE N-ROSS SATELLITE
BOOM

by

Kang, Choong Soon

March 1987

Thesis Advisor Young S. Shin
Co-Advisor Kilsoo Kim

Approved for public release; distribution is unlimited.

T 233110





iufilf/ CLASSlfk'AfiON O* 'H's =AG?

REPORT DOCUMENTATION PAGE
P£PO«T SECURITY CLASSlflCATiON

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

SEC'jBiTv Classification authority

DECLASSif ICATION / DOWNGRADING SCHEDULE

3 OlSTRiaUTlON' AVAILABILITY OF REPORT

Approved for public release; distribution
is unlimited

I'ERFORMING ORGANIZATION REPORT NUM8ER(S) 5 MONITORING ORGANIZATION REPORT NUMaER(S)

.NAME OP PERFORMING ORGANIZATION

Naval Postgraduate School
6b OFFICE SYMBOL

(If ipplicable)

Code 69

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

ADDRESS (City, Statt. and ZlPCoOe)

Monterey, California 93943-5000

7b ADDRESS (C/fy. State, and ^IP Code)

Monterey, California 93943-5000

NAME OF FUNDING- SPONSORING
ORGANIZATION
ace & Naval Warfare
.qfPTn.c; CnTnTn;:ir)ri

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT lOEN TiFiCATION rjuMSER

t ADDRESS (Cry, State, and ZIP Code)

>.shington, D.C. 20363-5100

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK JNir
ACCESSION NO

I TITLE [include Security Clarification)

Dynamic Analysis of the Flexible Boom in the N-ROSS Satellite

!?E0SONAl AUThOR(S)

Kang , Choong Soon
I
ryp; OP SEPORT Masters

1 Engineer's Thesis
3b 'Mi COVERED
=BOM 'O

Id DATE OF (REPORT [Year \1ontn Oay) 1S ^AGE COuNT

1987. March
.

I 148
iSoP^LEMENTARY NOTATION

COSATI CODES

ElO GROUP SUB-GROUP

18 SUflJECT TERMS i^Contmue on reverie if neceaary and identity ay olock numoer)

Spacecraft, Flexible body, Dynamics

'-9STRACT (Continue on reverie it neceaary and identity oy block numoen

I curate ocean data is essential for successful fleet operation. The N-ROSS Satellite,
i ich is being developed for this mission, will carry a Low Frequency Microwave
idiometer (LFMR) . The LFMR consists of large flexible reflector and boom and spins at
. r.p.m. The effects of the flexibility of the boom, the spin-up procedure and the
;ructural damping on the pointing error of the LFMR are investigated by performing the
:namic simulation using the Dynamic Simulation Language. Two cases of boom material,
luminum Alloy and the Graphite epoxy composite material, are analyzed and the results
:e compared. The simulation and analysis results are presented in graphical forms.

ID S"R!3UTiON/ AVAILABILITY OF ABSTRACT
IcNCLASSlFlEP/UNL'MlTED Q SAME AS RPT Q OTiC USERS
NAME OF RESPONSIBLE INDIVIDUAL

oung S. Shin and Kilsoo Kim

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22b TELEPHONE f/nc/ud« Area Code)

(408^) 646-2568/2:;^M.

22c OFFICE SYMBOL

69SR/69Ki
=ORM 1473, 84 WAR 83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF ThiS PAGE

UNCLASSIFIED



Approved for public release; (Jistribution is unlimited.

Dvnamic Analvsis of The Flexible Boom
In Tiic \-ROSS Satellite

bv

Kang, Choong Soon
Major, Republic of Korea Air Force
B.S., Korea Airforce Acadeniv. 1978

Submitted in partial fuHillment of the

requirements for the degrees ot'

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
and

MECHANICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
March 1987



ABSTRACT

Accurate ocean data is essential for successful fleet operation. The N-ROSS

Satellite, which is being developed for this mission, will carry a Low Frequency

Microwave Radiometer ( LFMR ). The LFMR consists of large flexible retlector and

boom and spins at 15 r.p.m. The effects of the flexibility of the boom, the spin-up

procedure and the structural damping on the pointing error of the LFMR are

investigated by performing the dynamic simulation usmg the Dynamic Simulation

Language. Two cases of boom material. Aluminum Alloy and the Graphite, epoxy

composite material, are analyzed and the results are compared. The simulation and

analysis results are presented in graphical forms.
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I. INTRODUCTION

A. BACKGROUND
Accurate ocean weather prediction is essential for successful fleet operations. The

NANY needs superior data collection capability to obtain the data density and

reliability necessary to produce consistently accurate forecasts and oceanographic data.

However present prediction models are limited by the quality and quantity of input

data which come mainly from ships. The obvious approach to satisfy these purpose

can be derived from satellite observations. Therefore, the NAVY planned the

construction of the Navy Remote Ocean Sensing System ( N - ROSS ). [Ref 1] This

system consists of satellites which scan the earth surface and provide the lleet with

timely worldwide knowledge of ocean data such as seasurface wind speed, wind

direction, seasurface temperature, ice edge detection, ocean wave height and ocean

photograpy. [Ref 2] To satisfy the mission requirements the N - ROSS Satellite will

carry several sensors. Among these sensors the Low Frequency Vlicrowave Radiometer

( LFMR ) IS the most important and the most interesting from the dynamics of the

spacecraft point of view. The function of the LFMR is scanning the earth surface and

measure the seasurface temperature. To increijse the scanning area the deplorable

reflector spins at 15 r.p.m. The sizes of this LFMR reflector and boom are relatively

large compared to the N - ROSS Satellite itself So the weight of this boom should be

light, which makes the boom flexible. By this reason, there exist certain extent of

detlection at the tip of the LFMR boom and this boom vibrates when this boom is

spinning. Deflection and vibration due to this elastic deformation induce pointing

error of the reflector in elevation and azimuth angle. However there is strict pointing

error requirement of the LFMR. [Ref 2] Therefore analysis of the flexible LFVIR

boom which supports the sensor payload is imperative for this research.

B. STATEMENT OF PROBLEM
The traditional approach to dynamic:> of a boom system is based on the

assumption that the systems are composed of rigid bodies. Until recently, only a rigid

body motion was assumed for the analysis. However, the flexible system includes a

small elastic deformation as well as a large motion. These small elastic deformations

include bending, twisting and axial extension. Development of a dynamic model

11



including flexibility demands more accuracy for the system responses. Without

considering these small motion of a boom, we cannot expect a certain accuracy to

maintain a spacecraft attitude and pointing control. [Ref 3] Recently, efforts have

been made to control maneuvers of mechanical systems which can not be adequately

modeled using a rigid body assumption for all or some of the system components,

especially in the fields of satellites, [Ref 4: pp. 257-264]

Therefore, the development of a good dynamic model of a flexible system, an

efficient dynamic equations formulation method and a good dynamic simulation schem

are essential for the analysis of and identification of potential problems in the flexible

LFMR system.

C. THESIS OUTLINE

In Chapter II, the development of an analytic model for the Lower Frequency

Microwave Radiometer ( LFMR ) refiector boom in 3-dimensional motion is described.

The large motion due to rotation is described by an equivalent rigid boom motion and

elastic deflection of a flexible boom relative to the equivalent rigid boom motion is

expressed using the mode superposition technique. The dynamical equations for this

model are formulated using the Lagrange's method.

In Chapter III, The computer implementations for the solution of the obtained

equations are explained. For the modal analysis of the system. NAsa STRuctural

ANalysis ( NASTR.A.N ) computer program was used and Dynamic Simulation

Language ( DSL ) was applied to solve the simultaneous, nonlinear, ordinary

differential equations. The LINPACK subroutines DGEFA and DGESL are also used

in the dynamic simulation.

In Chapter IV, simulation results are presented to investigate the deflection and

pointing error of the LFMR. Compansons are made by changing the torque input

condition. The problems considered are 1) the effects of spin-up procedure on the

pointing error of the LFMR reflector; 2) the effect of damping on the settling time of

pointing error; 3) the equilibrium configuration of LFMR booms due to constant

rotating speeds For the comparison purpose, two kinds oi material, aluminum alloy

and composite material, were assumed as the LFMR boom materials.

In chapter V. Conclusions are made from the research and some

recommendations for future work in the area of the dynamic analysis of the flexible

LFMR reflector boom svstem are 2iven.

12



II. FORMULATIONS OF DYNAMIC EQUATIONS

A. INTRODUCTION

In this Chapter, the dynamical equations of motion for the LFMR system which

rotates in three dimensional space is developed. The 2-dimensional planar motion of

the same boom was also studies and are presented in Appendix A. A simple dynamic

model of the LFMR system is developed for this analysis. The Lagrangian approach

and the mode superposition technique are used for the formulation of the dynamic

equations of the flexible LFMR system.

B. DESCRIPTIONS OF THE iMODEL

The LFMR shown in Fig. 2.1 consists of four structures: a reflector, an upper

reflector boom, a lower reflector boom and an electronics box. The reflector is attached

to the top of the upper reflector boom. The upper reflector boom and the lower

reflector boom is connected by a boom hinge. The electronics box is attached to the

bottom end of the lower boom.

For our analysis, the deployable reflector is modeled as a concentrated mass at

the tip of the upper reflector. We assume the boom hinge which connects the two

booms is stiff and firm and there is no relative motion between the booms after the

deployment of the LFMR boom. Therefore we consider the whole system ( reflector,

booms, boom hinge ) as a one body system.

The LFMR system is connected to the Vlain Bus of the N - ROSS Satellite by a

Spacecraft Boom. The attitude of the N - ROSS Satellite is controlled by a .Attitude

Determination And Control System ( ADACS ) ver\' accurately. [Ref 5] Therefore, it

is assumed that the spin axis and the base is remain fixed in the reference f^ame fixed

to the N - ROSS Satellite. The N - ROSS Spacecraft moves on a circular orbit with

the spin axis always pointing the earth center. Hence, the gravitational force is in

equilibnum with the centrifugal force in the orbit plane: the LFMR system is in zero-g

environment. Therefore, in the dynamic model of the present studies, the reference

frame fixed to the N - ROSS Spacecraft is assumed the Newtonian ( inertial ) reference

frame and the LFMR system is in zero-g environment.

From the above assumptions the dynamic model of the LFMR svstem is defined

as shown in Figure 2.2. The global coordinates X, Y, Z is fixed in the inertial reference

13



Irame and a moving coordinate x, y, z ( local coordinates ), which is a body fixed

coordinate system, is defined as shown in Figure 2.2. The body fixed coordinate

system ( local coordinates ) is attached to the base O. The local z-axes and the global

Z-axes are the common axis of rotation. The local x, y-axes and the global X, Y-axes

are in the same plane with angle difference 0.

C. LAGRANGE'S EQUATION

For any system there must be same numbers of independent coordinates as the degrees

of the freedom of the system to completely describe the motion of the system. The

choice of coordinates is important in dynamic analysis. Such independent coordinates

are called generalized coordinates and are denoted by the letter q . For a system with a

set of n independent generalized coordinates q^. { r = 1, 2, 3, , n ), Lagrange's

equations are expressed as [Ref &7]

d ^T ^T ^U
=

Qk (eqn2.1)
dt ^qj^ di\^ c;qj.

(k = 1,2,3, ,n)

where T is the kinetic energy, U is the potential energy and Qj^ is the generalized forces

which IS defined as follows

^ 5R.

Qi
= If. -r^ (eqn 2.2)

The dot over a variable means derivative with respect to time. F. is the force acting on

particle j and R: is the instantaneous position of particle j and may be expressed in

terms of generalized coordinates

Pv. = R. ( q^, q^, (\y , q„ ) (eqn 2.3)

and 5R- is the virtual displacement of the particle.

To describe the motion of the LFMR boom system which composed of a large

slow motion due to rotation and a small fast motion due to elastic vibration, two kinds

%of generalized coordinates are defined. One is 9 for rotation of boom and others are

14



Figure 2.1 N-ROSS Baseline Conriguration.
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Figure 2.2 Modeling of LFVIR boom system.

( h = 1, 2, 3 , n ) for h-ih mode generalized displacement, where n is number of

modes.

Now Lagrange's equation 2. 1 is rewritten as

d ^T (3T (3U
\—j-\ - + = O

dt ^0 c^ t'G ^^
(eqn 2.4)

16



and

d oT 31 dU
[ ^^ ]

- -^ +^ = Qh (eqn 2.5)

dt ^q^ dq^ dq^

(h = 1,2,3, ,n)

The external force acting on the LFMR system is assumed the torque T by a

torque motor at the root of the boom. The contribution of this torque to the

generalized forces is Qj. = t and this torque does not contribute to Q|^. Damping

forces are assumed equal to the modal damping value in this analysis. Since the modal

damping values can be measured easily. Therefore the contribution of damping forces

to the generalized forces Q^ can be obtained using a dissipation function,

D = -^ I 2 ^ (0- M- qp: t) (eqn 2.6)

^ i

dD
with Qh=- -TT-

^%

2 ^^ 03|^ M^ q^

where

(^^ : modal damping ratio of /i-r/i mode

0)^ : the natural frequency o{ h-ih mode

iVI|^ : the modal mass oi h-ih mode

Then equation 2.4 and 2.5 finally written as

d ^T dJ di:

dt <30 (39 dQ

and

= T (eqn 2.7)

d ^T dJ ^U-—
[ -TT- ]

- —r- ^ -— = - 2 ^u (Or^Mu qu (eqn 2.8)
dt dq^ Oq^ (3q^

h h h ^h

17



( h = 1,2,3 n)

D. POSITION AND VELOCITY

During the rotational motion of the LFMR system, the boom deforms. The

deformed positions of a generic point in the system can be expressed the vector sum of

a vector Rq(x) from the origin to the undeformed position of the point and a vector

W(x.t) which is deflection, as shown in Figure 2.3. The notations show in the Figure

2.3 represent the following parameters:

M : tip mass

n'L. : mass of electronics box

6j : length of lower boom

C-, : length of upper boom

p : angle between two links

T : applied torque • •

0{t) : angular displacement

9(t) : angular velocity

Rq(x) : position vector of the point on the boom in the local x-direction

R(x.t) : position vector of the point on the boom after deformation

W{x,t) : deformation vector of boom

i: unit vector of local x-direction

j : unit vector of local y-direction

k: unit vector of local z-direction

Iq : unit vector of global X-direction

Jq : unit vector of global Y-direction

ICq : unit vector of global Z-direction

Then the position vector R(x.t) is expressed as

R(x,t) = Rq(x) h- W(x,t) (eqn 2.9)

The undeformed position RQ(x)is represented by its components,

Rq(x) = R^(x) + R^(x) (eqn 2.10)

= R,^{x) i + R^(x) k

18



Figure 2.3 Parameters of the boom system.

The elastic dcOection W(x,t) is expressed as the modal sum as follows:

W(x,t) = X [ (p.-'ix) i + (p>-(x) j + (p/(x) k
]
q.(t) (eqn 2.11)

where

19



<p/(x,) i is i-'.h mode shape function in extension

<p.y(x) j is i-ih mode shape function in translation

From the equation 2.10 and equation 2.11, equation 2.9 can be rewritten in the fonn of

R(x,t) = R^(x) i + R^(x) k (eqn 2.12)

+ X [ (P;-'(x) i + (pj>"(x) j ^ (p/(x) k
]
qj(t)

i

=
[ R^(x) + (p-^(x) qj(t) ] i +

[ I (p>'{x) qj(t)
] j

i

+ [ R,{x) + I (Pi^(x) q.(t)
] k

i

The velocity of the point in the Newtonian reference frame is obtained by taking the

time derivative of equation 2.12 and applying the relation between the time derivative

of unit vector i and j,

i = e k X
i = e

j

j
= 9 k X

j
= -

i

k=9kxk=(J

the velocity is

R(x.t) =
[
- 9 X <Pr{x) qi(t) + V <p.^{x) q.{i) ] i (eqn 2.13)

1 i

+
[ 9 R^(x)4- 9 V ip.-^{x) qj(t) + V (p.y(x) q.(t) ] j

1 i

+ [ y 9i'(x) qi(t) ] k

E. KINETIC ENERGY

The kinetic energy of the system can be expressed by the summation of three

different kinetic energies. One is the kinetic energy of the boom itself, another is the

kinetic energy of the tip mass and the other is the kinetic energy of the R.F electronic

box attached to the origin of the boom.

20



The kinetic enerev of the bcom itself is

1 £•

1 i •

= —^ J
R(x,t) • R(x,t) pdx

where

dm : differential mass of the boom

dx : differential length of the boom

p : mass per unit length

i : total length of the boom

R(x,t) : absolute velocity' of the points on the boom

The kinetic energy oi the tip mass is

1 • •

T^ = M R{e,t) • R(e,t) (eqn 2.15)

where

M : tip mass

R(£,t') : the absolute velocity at the tip position

The kinetic energy of the R.F electronic box is

I
•

T.= L e^ (eqn 2.16)

where

I_ : mass moment of inertia for the electronic box
.'zz
G : time derivative of angular displacement

Thus the total kinetic enersv of the svstem is

21



T = T. +T + T, (eqn2.17)

1 J.
J

R(x,t) • R(x,t) dm
2 •'0

1

+ M R(£.t) • R{£,t)

2 hz

F. POTENTIAL ENERGY

The potential energy U of the flexible boom system can be composed of the

gravitational potential energy L'^ due to rotation of the system and the strain energy

(or elastic energy) L' of the boom due to deformation. But in our model analysis, we

exclude gravitational acceleration and only consider the stram energy. The potential

energy was determined by the work, done by the static weight in the deflection. This

work is. of course . stored in the tlexible flexible boom system as strain energy.

In this thesis, we apply mide summation method to expand the deflection in terms of

the normal modes of the system. The deflection of a boom without any external forces,

satisfies the lollowing equation of motion. [Ref 7]

[ EIW"(x,t) ]" + pW(x,t) = (eqn 2.18)

where

p : mass per unit length

EI : flexural rigidity

and ' represent the derivative with respect to x. The normal modes (p-lx) of the boom

must satisfy the equation

[ EI(p-"(x) ]" - CO-- p (p-{x) = (eqn 2.19)

22



and its boundan' conditions. The normal modes (p-{x) also satisfy the orthogonality

relation

t

j (p-(x) (p:(x) dm = (for j*i) (eqn 2.20)

= M- (for j = i )

where M- is the generalized modal mass of the i-rh mode.

As expressed in Appendix A, the deflection of the boom in the equation A.4 for

the general form is

W(x,t)= S(Pi{x)qi(t) (eqn 2.21)

i

and the generalized coordinate q-(t) can be determined by applymg Lagrange's

equation after setting up the kinetic and potential energies.

Now the potential energy can be expressed as

U =
J

EIW"^(x,t) dx (eqn 2.22)

I C

= -T-I Z % qj L EI<Pi"(x) (pj"(x) dx
z •

j

Multiplying the both sides of equation 2.19 by {p:(x) and after integration for the whole

boom, equation 2.19 becomes

A
J (p:{x) [ EI

(pf
(X) ] dx (eqn 2.23)

= (0--
j (p-(x) (pj(x) dm

After integration by parts and using the boundary conditions, equation 2.23 becomes

A
J^EI[(p-"(x)(Pj"(x)Jdx (eqn 2.24)
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-..2-f
=

«i J ^<Pi(x) (pj(x) dm

From the orthogonality condition, the equation 2.20 and from equation 2.24, the strain

energy in equation 2.22 becomes

U = —- V 0)-- M: q^ltj- (eqn 2.25)

i

G. DERIVATIONS OF EQUATIONS OF MOTION
From the equation 2.13. the dot product of R(x,t) is

. R(x.t).R(x,t) = [
- e j; (Pi>-(x) q.{t) + V (p.x(^)

-.(t) ]2 (eqn 2.26)

i i

• + [ 9 R^(x)+ 9 y (pj^(x) qj(t) + y (pj>'(x) q./t) j^

i
"

i

i

= 0^
[ X (Pi-'(x) qi(t) j2 +

[ X (p/^(x) qj(t) ]2

i i

- 2 9 X <Pi(x) qi(t) y (p.-^(x) qi(t)

1 1

4- R^{x)- 9^ + 9-
[ X (p;^(x) q.(t) 1^ + [ V i^.^ix) qj(t) ]^

L i

+ 2 R^(x) 92 q.(t) + 2 9 y (p.^(x) q.(t) V (p.V(^)
'^(t)

i

+ 2 R^(x) 9 y (p.>'{x) qi{t) +
[ y (p;^(x) qj(t) j^

i i

= e^
[ (
V (p.y(x) q.(t) )2 + { y (p.-^(x) qj(t) }- + ( S (p/(x) q.(t) }2

]

i i i

+
[ ^ y (Pi"(x) q-ft) }2 + (

V (p.y(x) q(t) }2 + { y (p.^(x) q;(t) |-
]

i i i
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- 2 e V (p.y{x) qj(t) V i^.^ix) q,(t) + \\x) Q^

i i

+ 2 R^(x) e2 V (p.X(x) qj(l) + 2 e X (p^^lx) qj(t) V (p.y(x) q.(t)

i i i

+ 2 R^(x) e S (Pi>(x) qi(t)
- e2 { X (p.^(x) qj(t) }2

i i

Substituting equation 2.26 into the equation 2.17 and apply orthogonal relationship

J^[ (p/^(x) i?.^{x) + (pj>'(x) <Pj>'(x) + (pj^(x) (p/(x) } dm (eqn 2.27)

+ M { <p/^(C) (p.-^(£) +(p.^(£) (p.>'(£) + (pj^{£) (p.^{C) } = (for 1 X
j )

= M. (for i =
j )

then the kinetic energy is

T = -— e^ V q.2(t) M; + —- V 5.(t^2 ^i, ^^q^ 228)

i

- e V y q.(t) q.(t) [ I (Pi^(x) i?.^{x) dm + M (p.-^(C) (p.-^(f)
]

i j

+ 0^
[ f R ^(x) dm + M R (£)

*
E

+ 6 I S qi(^)
qj(t)

[ I <Pi'(x) 9j-(x) dm + M (Pi'^CC) (Pj>(E) ]

i
j

'^ • . £

+ e V qj(t)
[ J R^(x) q)i>'(x) dm + M R^(£) (pj-^(£)

]

i

+ L 0-
2 ^zz
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By applying the kinetic energ\' and potential energy expressions ( sun 2.25 ) and ( eqn

2.2S ). to the Lagrange's equations 2.7 and 2.S then equations of motion will be

reduced as follows. The detailed derivation process can be formed in Appendix B.

6 [ y qi^(t) Mj +
J R^x) dm + M \\t) (eqn 2.29)

+ 2 E qi(t) ( Jq R,(x) (9-^{V dm + M R^(£) (?r{t) }

- 2 { j ( y (p/(x) qj(t) )2 + M ( X %'a) qi(t) )^ + Ij. ]

4- 2 e X qi(t) [ qjlt) \l +
j^

R,(x) (p/^(x) dm + M R^^(£) (p/^C) }

- 2 X qj(t)
( J q)/(x) (p/(x) dm - M (p.^(£) q)/(£) ) ]

J

I qi(t) [ I qj(t) I J (P;^(x) (Pj>-(x) dm ^ M (P;\E) (p.-^(C)

j (Pi>'(x) (p.-^x) dm - M (pj>(£) (p.^(£) }iQ'l — -J — M > ]

-
J

R,(x) (pi-'Cx) dm - M R^(£) (Pj>'{£) ]
= r

q^(t) Mj^ + e [
V q;(t) ( f (p.^(x) (Pj^-^{x) dm + M

(Pi^(£) (p/(£) (eqn 2.30)

i

£
-

J (p;>'fx) (Pj^'Vx^ dm - M (p.yf£) (pj^'^ff) }

+ 2 V qj(t)
[ f cp.^(x) (p^>-(x) dm 4- M (pj^(£) (pj^>'(£)

i

e
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e
- 0-

[
qj(t) M. - J^R^(x) (Pi^x) dm - MR^iO (p.^(C)

^ 2 V q.(t) { J ^(p.^{x) (pj^^(x) dm + M (Pj^(f) (Pj^^(£) }]

+ Co\ M, q,(t) =

( h = 1, 2, 3 , n )

Now let's define the following quantities:

i

+ 2 S qi(t) { J^ R^(x) (p/''(x) dm + M \{t) i?.^{t) }

- 2 [ J ( I (Pi^(x) qj(t) )2 + M ( I (p/(E) qj{t) )2 + I

Mgq^ = 2
[
qj(t) M; +

J^ R^ix) (?.^{x) dm + M R^{t) (p/(£) }

- 2 Z qj(t)
( J^(Pi^(x) (p/{x) dm - M (p/(e) (p.^(£) } ]

e

^q. = -
[ I qj(0 ( J^^i'ix) (p/(x) dm -f- M (pj-'^io (p.-^(e)

- j^(pj>'{x) (p.-^(x) dm - M (p.^fE) (p.-^{£) }

- J^R^(x) (pjy(x) dm - M R^(£) <^.y{i)
]

^eh =
t S ^i(^) < L'^-^^''^ V^^' dm + M (Pj'^lE) (pj^>'(C)'

i

+
f

R^(x) (p^>'(x) dm + M R_^(£) (p^>'(£)
]
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Me^^ = 2
[ J ^<p.^(x) (p^y{x) dm + M ip.^H) 9/(6)

-
J^^i^'^^) V^^) dm - M (p.y(£) (p/(e)

]

F^^ = e-
[
qj(t) M; - j^^R^(x) (pj^(x) dm - MR^{e) i^.^H)

+ 2 X q.(t) ( J^(p/(x) (pj^-^{x) dm + M (p.=(£) (p/{£) )]

\ = >I %' %(^^

Then equation 2.29 becomes

^^9*9 ^ '^leq. ^ I ^i(t) + ^lq.Vi(t) = t {eqn 2.31)

and quation 2.30 becomes

• •

^^Gh ^ ^ ^^eq, 9 I qjit) ^ M^ qjit) - F,^ + F,^ = (eqn 2.32)

(h = 1,2, 3, n)

28



III. COMPUTER IMPLEMENTATION

A. INTRODUCTION

To solve the equations of motion, two computer program, Dynamic Simulation

Language ( DSL ) and NAsa STRuctural ANalysis ( NASTRAN ) program are used.

NASTR.A.N is a general purpose digital computer program for the analysis of large

complex structures. [Ref. 8] This fmite element computer program was used in the

modal analysis which determine the mode shapes, generalized modal mass, generalized

stiffness, natural frequency of the LFMR model. Then these properties directly

inputed to the DSL program to get a set of solutions.

DSL is an IBM/VS FORTRAN-based simulation language for digital simulation of

continuous system. [Ref 9J It is one of the most effective for the solution of

continuous modeling and simulation problem with computational power (automatic

double precision and accurate timing), whether the problem is time based or not.

For the integration method to solve simultaneous nonlinear second order coupled

ordinar}' differential equations. Runge-Kutta method was chosen. Runge-Kutta fifth

order integration method { RK5 ) is self-starting, stable and automatically determine

the step-size but this needs excessive computer time.

Two different cases are analyzed. One is the LFMR boom made of Aluminum

Alloy and the other is the LFMR boom made of Isotropic Graphite Epoxy composite

material ( T300/5028 { 0/90 45/ -45)^ ). The mass distribution of the two cases are the

same. Therefore the boom model of graphite epoxy composite material was stiffer since

the mass density was linear.

B. MODAL ANALYSIS

As previously mentioned, we consider our model as a one body system and we

don't need any compatibility conditions which is necessan.' in multibody dynamics. For

the modal analysis we equally aiviac rhe whole boom with fourteen grid points. Figure

3.1 shows Finite element model of LFMR boom. As the number of grid points

increases we can get more accurate results. But Degrees of Freedom ( DOF ) of the

system also increases. Fourteen grid point is sufficient for our our analysis.

In the modal analysis of the boom . Modified Given's method ( MGIV ) was

applied and for the purpose oC simplifying the equation of motion we normalized the
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mode shape such that the generalized medal mass equal to unity. From the

relationship of the generalized stiflhess, generalized m.cdal mass and natural frequency,

the generalized stiflhess K- is

and reduces to

Ki =
«i- M;

K; = <»-

Only the first 2 modes were needed in the 3-dimensional dynamic analysis with

sufficient accuracy.

XASTR.AN program is shown in Appendix C and some outputs are tabulated in

Table 1 and 2 for 3-dimensionai motion. Figures 3.2 and 3.3 show the first and the

second mode shapes for three dimensional motion. In Figures 3.2 and 3.3, the left side

figure is the projection to x-z plane and right side figure is projection to y-z plane.

The first mode shape shows there is no in-plane vibration and the second mode

shape shows there is no out-of-plane vibration.

TABLE 1

REAL EIGENVALUES OF ALUMINUM ALLOY {3D)

mode
no.

radians

«i

cvcles

03^

generalized
mass^M.)

seneralized
stiirness{ Kj)

I 3.3S4515E^00 5.386623E-01 l.OOOOOOE + 00 I.145494E + 01

f 3.56SS21E + 00 5.679954E-01 l.OOOOoOE + 00 1.273648E + 01

C. DSL PROGRAMING
DSL was implemented for the solution of a set of simultaneous, nonlinear,

second order, ordinarv' difierential equations. DSL offers a new simulation tool that

speeds problem analysis and solution for a wide variety of application. It is adopted for

simulation because it requires less skillful time for problem analysis and provides

quicker, more comprehensive plotting through GRAFAEL and sophiscated line or

print plot. These advantages can translate directly into higher productivity and cost

savings.
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TABLE 2

REAL EIGENVALUES OF COMPOSITE MATERIAL (3D)

mode
no.

radians cvcles generalized
mass{M.)

generalized
stifTness(Kj)

1 4.287485E + 00 6.S23744E-01 l.OOOOOOE + 00 LS38253E + 01

4.461334E + 00 7.100433E-01 I.OOOOOOE + 00 1.990350E + 01

DSL is a high-level continuous simulation language which incorporates VS

FORTRAN as a subset. Because of its tremendous tlexibility, DSL facilitates the

solution of nearly all prlblems involving time-dependent dilTerential equations. Thus

DSL readily assists in the dynamic analysis of transient behavior of dynamic systems.

Also DSL is easily learned and applied to many problems in science, engineering,

mathematics and management. Coding is simple, execution is rapid and results can be

displayed graphically. For any one involved in simulation modeling DSL otfers

increased power for faster problem solving and the user choice of nine integration

method ( fixed-step, variable-step, vanable-step & variable-order method ).

In our model analysis, Runge-Kutta fifth order method ( RK5 ) was used because

it is self-starting, stable and provides good accuracy. To code the equations of motion,

the equation 2.31 and 2.32 have to be rewritten as follows:

Mq e + M q*(t) = r - Mq e X q.{t)

^i i

and equation 2.30 becomes

^0h 9 + ^^h "i(^)
= ^c, - Fe, - ^^9% ^ I ^i(t)

( h = 1. 2, 3, , n )

(eqn 3.1)

(eqn 3.2)

Two ways solving these systems of equations are shown. One uses matrix algebra and

utilizes subroutines from the library- LINPACK, the other uses subroutine REGULR.A.

provided by DSL. For our system analysis we select matrix algebra because it is easy

to use for iarse numbers of variables.
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Fisure 3.1 Finite element model of LFMR boom.
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N

Figure 3.2 First mode shape.
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A

Figure 3.3 Second mode shape.
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Using matrix notation, the equations 3.1 and 3.2 may be rewTitten as

IMKX} = {f}

where the matrices M, X, and f are defined as follows:

[M] =

f f \ =
I ' I

Me Mq^ . . . . M

^ei ^'i
.

Mfi, VL 0. . .

^'9„ M

- 9 ^

• •

^2

< >

rx - MQq;

F - F M^q^ 9 q,

< >

F - F^ - Meq^ 9 q^
n n J

Then
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{ X } =
[ M ] M f

)

and by successive integration of { X }, the solution vector may be obtained. Since the

elements of the [ M ] and ( f } matrices are time dependent, the { X } vector must be

computed at each integration step. A matrix decomposition subroutine ( DGEFA )

using Gaussian elimination and a subroutine which uses this decomposition to solve a

matrix equation ( DGESL ) are called directly from the LINPACK library. Because
• •

DGESL returns the solution vector ( X } in the right-hand-side vector f, the vector

name { X } does not appear explicitly in the program.

The coefficients of [ M ] and { f } matrices are calculated in each time step. 9, q^

( i = 1. 2, 3 , n ), deflection and slope at the tip position in each direction were

calculated at each time interval of interest. The graphs of these variables vs. time were

also obtained. The computer program for dynamic analysis is coded in .Appendix D.
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IV. RESULTS AND DISCUSSIONS

Computer simulation was done in four areas for double link boom system in

three dimensional motion to investigate the equilibrium configuration and the vibration

amplitude of the tip position. The effects of the spin up procedure on the pomtmg

error of the reflector is studied; the first analysis was the comparison of the three

different torque histories by maintaining magnitude of torque until rotating speed of

boom reaches to 15 r.p.m. Secondly the magnitude of appUied torque was changed in

three cases for one of three torque applying methods above. The effects of structural

damping of the boom on the settling time is also studied by changing the modal

damping values. The magnitude of the deflection and slope at the equilibrium

configuration at three different rotating speeds are investigated by simulating free

motions of the system with the three different initial rotating speed and undeformed

configuration. Also some comparisons were made for double link flexible boom system

in planar motion m Appendix B.

A. MATERIAL PROPERTIES AND PARAMETERS

For the comparison of the computer simulation results, two kinds of material were

chosen. One is Aluminum alloy 6061-T6 (99% Al-I°o Mg) and the other .is an

Isotropic Graphite- Epoxy Composite material (T300/5208 (0/90,'45;-45)5). [Ref 10]

Same mass, same length of each link, same outer diameter was used for these two

materials. Size of the electronic box is 1 ft. cube. The properties of the materials and

some geometric parameters are given in Table 3 and Table 4 respectivly.

B. EFFECTS OF TORQUE APPLYING PROCEDURE
Three cases of torque applying method were chosen without damping for

comparison. To maintain 15 r.p.m of rotating speed, we select the maximum magnitude

of torque is 10 Ibs-in. This value may be appropriate to maintain 15 r.p.m in 20 to 30

seconds.

In the first case, 10 Ibs-in torque was abruptly applied from the begining. This

method is unlikely in the real situation but we chose this case for comparison purpose.

In the second case, torque was parabolically applied until reaching 15 r.p.m then cut

off abruptly to 0. Finally torque was applied same manner as case two but linearly

decreased to 0. Figure 4. 1 shows three different spin-up schemes.

37



TABLE 3

BOOM PROPERTIES
..... ,.,.

PROPERTY ALUMINUM ALLOY COMPOSITE

specific weight
( y ) 0.09S0lb in^ 0.05SS lb in^

modulus of elasticity ( E ) IO.IE + 06 psi 10. IE + 06 psi

modulus of rieidity ( G ) 3.7E + 06 psi 4.1E + 06 psi

poisson's ratio ( v
) 0.360 0.250

outer diameter ( rj ) 3.0 in 3.0 in

inner diameter ( r-i ) 2.7312 m
•

2.5362 in

thickness ( t )
0.1344 m 0.2319 in

cross area ( A ) L2101- 2.0 16S in-

mass per unit length
( p ) 3.0690E-04 lb in 3.0690E-04 Ib.in

area moment of inertia ( I ) 1.2447 in"^ 1.9451 m"'

polar moment of inertia ( J ) 2.4S94 in-^ 3.S902 in-^

In these three cases angular displacement 9 was changed parabolically as shown

in Figure 4.2 while torque is applied, then linearly increased as torque was cut otT The

cases B and C are almost indentical and overlapped in the Figure 4.2. .Angular

displacement was equally increased with time for aluminum alloy and composite
•

material because total system mass is same. As shown in Figure 4.3, angular velocity 9

varied linearly with some oscillation in the begining for the lirst case because torque

was suddenly applied, then it gradually decreased until reaching 15 r.p.m. After cutting

ofT applied torque, oscillates periodically because the boom deflects to the positive x-

direction and the concentrated mass center moves to the rotating axes, this means

radius of rotation decreased and moment of inertia also decreased. From the

conservation of angular momentum,

Hq = m r G = constant

38



TABLE 4

GEOMETRIC PARAMETERS

PARAMETER VALUE

C| ; length of lower boom 16S in

C2 ; lengrh of upper boom 144 in

a ; angle between Ci and x-axes 70"

P ; angle between C| and f-> 126"

M ; tip mass 37.5 lbs

m^ ; mass of R.F electronic box 50 lbs

So as the tip position changes, G varies with reciprocal ot r". Therefore angular

velocity oscillates periodically.

In case two and three. G increased smoothly without oscillation until reaching 15

r.p.m then it had relatively small oscillation as soon as torque was removed gradually.

Figure 4.5 shows the angular velocity of the Aluminum .-Mloy boom m magnified scale.

For the composite material as shown in Figure 4.4, magnitude of oscillation was much

smaller than that of aluminum alloy so it looks no oscillation. But magnilkd angular

velocity of constant part shows obvious oscillation in Figure 4.(). 1\ >ircs 4.7 - 4.10

show the variations of the generalized coordinates q. and q.. respectively.

During rotation deflection in x-direction was dominated and deflection center

reaches to its equilibrium position in x, z-direction then oscillates harmonically as

shown in Figures 4.11 and 4.12 but displacement in y-direction was rapidly increased at

the begming then decreased gradually to and as soon as applied torque was removed

it oscillates harmonically as shown m Figures 4.13 and Figure 4.14.

Characteristics of displacement and slope at the tip position is very similar to its

generalized coordinates, and the generalized coordinates q^ in Figures 4.4 and 4.10 was

dominated tor the system deflection. Displacement in z-direction was shown in Figure

4.15 and 16 for two material booms. Displacement and slope change as shown in

Figures 4.17 - 4.22 was apparently diflerent from case A and case B but after cutting
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off the torque its characteristics of deformation was not much different. For the case

three deflection and slope increases smoothly while torque is applying then as torque

was removed it reaches its equilibrium position and oscillates w\ih small fluctuation

error.

Figures 4.11 -4.24 show displacement and slope at the tip position in each

direction for aluminum alloy boom and composite material boom.

As we mentioned previously, we are mainly interested in the pointing error at the

tip position in both elevation and azimiUth. For the composite material boom, all 3

cases were satisfied the pointing error requirement ( elevation and azimuth angle error :

0.0328° ). But for the Aluminum Alloy boom, torque applying case A and case B were

not satisfied the elevation angle error requirement. Figures 4.19-4.22 show the

charactenstics of elevation and azimuth angle variation, and in Figures 4.23 and 4.24,

the elTects of torque applying procedure are compared. From these results, pointing

error at the equilibrium position depends on torque removing procedure. As we see in

Figures 4.23 and 4.24. pointing error in case .A. and case B is almost same but it is ver\'

different in case C and pointing error varies more sensitively with flexible material as

torque removing procedure varies. Consequently, if we apply the torque more gently

and remove slowly with sufficient time, the pointing error both deflection and the slope

can be reduced to much smaller values.

C. EFFECTS OF CHANGING MAGNITUDE OF TORQUE
In this section we investigate the eflects of the maximum magnitude of applied

torque. For the simple comparison, we select second case of torque applying method

used in previous section. Vlagnitudes of torque chosen are 10 Ibs-in, 20 Ibs-in and 40

Ibs-in as shown in Figure 4.25. .As the magnitude of applied torque increases 4 times,

applying time was reduced to almost one third. .AH characteristics are same as the

second case of previous section ibr 3 cases shown in Figures 4.26-4.36 but magnitude

of pointing error increased linearly as the maximum torque increases as shown in

Figures 4.37 and 4.38. Figures 4.26-4.43 show angular displacement, angular velocity,

generalized coordinates, displacement and pointing error for the boom made of

Aluminum Alloy.

D. EFFECTS OF DAMPING COEFFICIENT

In this section, we will ins-estigate the damping eflects for settling down the

vibration of the boom. As we mentioned before, m the 3 cases of torque applying
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procedure, the second case did not satisfy the pointing error requirement in elevation

angle. We will not mention about the first case because it is unlikely to be used in real

situations. For the comparison purpose, we arbitrary choose 3 modal damping

coefficient such as 0.2 %, 0.5 % and 1.0 %. To see the results more clearly, we

simulate the model in 200 seconds. Figure 4.39 shows the spin-up procedure used in

this analysis. Figure 4.40 shows vibration settling down ratio during the first 200

seconds. In this Figure, it is hard to recognize the effects of ail 3 cases but in Figure

4.41, we can clearly see the vibration settling down for each case.

Two trials were made for investigation. Firstly, we tried to find how much

vibration was settled down in 200 seconds for each damping coefficient. Secondly, we

found how much time was required to meet the pointing error requirement for each

case. Figure 4.42 shows elevation angle pointing error decreasing ratio in 200 seconds.

Each value stands for magnitude of pointing error ratio to its initial value which is the

magnitude oC pointing error without damping. As shown in Figure 4.42 pointing error

decreased exponentially as damping coefficient increases linearly. Figure 4.43 shows

desired time to meet pointing error requirement for each damping coefficient. As

damping coefficient increases linearly, desired time decreased exponentially.

E. THE EQUILIBRIUM CONFIGURATION AT DIFFERENT ROTATING
SPEEDS

Initial conditions were given for 3 cases such as 5 r.p.m. 10 r.p.m and 15 r.p.m

with damping coefficient of 2 %. From this result, we could investigate the magnitude

of deflection in each direction and slope at the tip position. Figure 4.45 shows angular

velocity ( rotating speed ) variation wiih time. As the initial rotating speed increases,

magnitude of oscillation was also increased and the rotating speed at the equilibrium

state also increased. As we mentioned in section B, angular momentum is constant in

the system since no external torque is applying. Therefore as the boom deflects to the

positive x-direction, radius of rotation decreases so angular velocity increases

consequently. Figure 4.45 shows elevation angle change and its magnitude of

fluctuation change. As the magnitude of initial speed increases linearly, elevation angle

change and magnitude of fluctuation increases exponentially. This result is shown in

Figure 4.47. Magnitude of deflection in x-direction and z-direction was also increased

as the rotating speed increased as shown in Figures 4.47 and 4.48 respectively. This

effects was more sensitive for the flexible material boom. The oscillation of azimuth

anele centered at 0.
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Figure 4.1 Applied torque vs. time.
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Figure 4.2 Angular displacement vs. time.
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Figure 4.3 Angular velocity vs. ume [ .AL. ).
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Figure 4.4 Angular velocity vs. time ( COM. ).
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Figure 4.5 Magnified anguiar vel ocity vs. time
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Figure 4.6 Magnified angular velocity vs. time ( COM. ).
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Figure 4.7 First mode generalized displacement vs. time ( .AL. ).
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Figure 4.8 First mode generalized displacement vs. tmie ( COM. ).
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Figure 4.9 Second mode generalized displacement vs. time ( AL. ).
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Figure 4.10 Second mode generalized displacement vs. tmie ( CO.VI. ).
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Figure 4. II Displacement in x-Uirection vs. time ( AL. ).
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Figure 4.12 Displacement in x-direciion vs. time ( COM. ).

53



=; ai a;

tn o lo

UJ

( 330 J 39NyH3 21SHti N0liyA313

Figure 4.13 Displacement in y-direction vs. time ( .AL. ).
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Figure 4.14 Displacement m y-direction vs. time ( COM. ).
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Figure 4.15 Displacement in z-direction vs. time ( AL. ).
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Figure 4.16 Displacement in z-direction vs. time ( COM. ).
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Figure 4.17 Magnitude of deflection at tip position vs. time ( .AL. ).
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Figure 4. IS Magnitude of delkciion a: tip position vs. time ( COM. ).
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Figure 4.19 Elevation angle change vs. time ( AL. ).
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Figure 4.20 Elevation angle change vs. time { COM. ).
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Figure 4.:i Azimuth angle change vs. time [ AL. ).
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Figure 4.22 Azimuth angle change vs. time { COM.
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Figure 4.23 Pointing error in elevation angle vs. torque applying procedure.
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Figure 4.24 Pointing error in azimuth angle vs. torque applying procedure.
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Figure 4.25 Applied torque with changing magnitude vs. time ( AL. ).
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Figure 4.26 Angular displacement vs. time ( AL. ).
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Figure 4.27 Angular velocity vs. time ( AL. ).

68



(33s/aw) uiooijA aymsNy a3idiNsyw

Figure 4.2S Magnified angular velocity vs. lime ( AL. ).
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Figure 4.29 First mode generalized displacement vs. lime ( .AL. ).
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Figure 4.30 Second mode generalized displacement vs. tmie ( AL. ).
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Figure 4.31 Displacement m x-direciion vs. time [ AL. ).
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Figure 4.32 Displacement in y-direction vs. time ( AL. ).
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Figure 4.33 Displacement in z-direction vs. time ( AL. ).
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Figure 4.34 Magnitude of deflection at tip position vs. time { AL. ).
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Figure 4.35 Elevation angle change vs. time ( AL. ).
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Figure 4.36 Azimuth angle change vs. time ( AL. ).
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Figure 4.37 Pomung error change in elevation angle vs. magnitude of torque ( .AL. ).
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Figure 4.38 Pointing error change in azimuth angle vs. magnitude oi' torque ( AL. ).
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Figure 4.39 Applied torque vs. time with damping ( AL. ).
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Figure 4.40 Elevation angle change vs. lime with damping ( AL. }.
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Figure 4.-11 MagnifieU eicvanon angle vs. time wuh damping \ AL. ).
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Figure 4.42 Elevation angle error decreasing ratio in 200 sec. vs. damping coefficient.
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Figure 4.43 Desired time to meet elevation angle error requirement vs. damping coelTicient.
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Figure 4.44 Initial angular velocities vs. time with damping ( AL. ).
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Figure 4.45 Elevation angle change with damping ( ^ = 2 ''/o ) vs. rotating speed ( AL. ).
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Figure 4.46 Elevation angle change at the equilibnum position vs. rotating speed ( AL. ).
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Figure 4.47 Deilecnon in x-direction vs. rotaiing speed ( AL. ).
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Figure 4.4S Deflection in z-direction vs. rotating speed ( AL. ).
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The purposes of this research are to investigate the the effects of the flexibility of

the LFMR boom on pointing error of the reflector in elevation and azimuth angle and

to identify the parameters which are important in pointing error. In this study, the

effectiveness of the application of Lagrange's method and mode superposition

techniques, computer simulation techniques are also investigated.

The results indicated that the Lagrange's method and mode superposition

technique was ver\' eiTective for this double link boom model analysis. The effects of

flexibility of boom was sufficiently expressed with few mode and the boom flexibility

was ven.' affective in pointing error. As the material becomes stiffer with light weight,

its pointing error becomes smaller. The torque applying and removing procedure is

ven.' important to the magnitude of pointing error. If we apply the torque gradually

until reaching desired rotating speed and remove slowly with suflicient time, we can

reduce the pointing error to much smaller values within requirement. The vibration

settling time decreases exponentially as modal damping coefficient increases and the

pointing error is linearly dependent on the magnitude of applied torque. The deflection

in each direction and elevation angle change in equilibrium condition increase

exponentially as the rotating speed increases. Sensitivity of deflection depends on

flexibility of the boom.

B. RECOMMENDATIONS
In this research, we regarded the deployable reflector as a concentrated tip mass.

In this case, we don't need consideration of the flexibility of the reflector but in actual

model the flexibility of the reflector will affect the accuracy of the pointing error,

therefore flexibility of the deployable reflector has to be considered for the future work.

As we have seen in the comparison of two material boom, the flexibility of boom

was very affective in the pointing error. Stiffer material with light weight will play

important role in the reduction of pointing error of the flexible boom.
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APPENDIX A

DERIVATIONS OF THE EQUATIONS OF MOTION

In this Appendix, we develop simplified dynamic equations of motion for 2 cases

of the boom system with tip mass.

The large motion caused by rotation and the small motion created by elastic

deformation will be expressed by generalized coordinates then apply Lagrange s

equations to develop the equations of motion. In these analysis, the local rotan.'

inertia and shear deformation of booms are neglected.

From the equations 2.7 and 2.8 Lagrange's equations are

d ^T dJ di:

[-tTt] - -^ + -^ = ^ (eqnA.l)
dt 75" dQ dQ

and

d ^T dT dV
[ -TT- ]

- -T- + ^- = (eqn A.2)

(h = 1.2, 3, n)

where

: the generalized coordinates of the large motion

q^^
: the generalized coordinates of the small motion

T : applied torque to the system

n : number of modes (or number of degrees of freedom)

1. SINGLE LINK BOOM SYSTEM IN PLANAR MOTION
a. Geometrv' of the s} stem

In model analysis, since the extension deformation is negligible, only the

bending deformation is considered in the analysis.

91



Fisure A. 1 Parameters of the sinele link boom svstem.

M :

£:

T :

e(t):

e(t) :

R^(x) ;

W(\,t)

R(x.t)

i :

tip mass

mass of electronics box

length of the link

applied torque

angular displacement

angular velocity

position vector in local x-direction

deformation vector of boom

position vector of the point on the boom after deformation

unit vector oC local x-direction

unit vector of local v-direction
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k: unit vector of local z-direction - -

L : unit vector of global X-direction

jg : unit vector of global Y-direction

kg : unit vector of global Z-direction

b. Position and velocity

During rotation the boom deforms and the positions of any point m the

system can be expressed the vector sum of a vector R. (x) from the origin to x and a

vector W(x,t) caused by deformation. Then the position vector R(x,t) is expressed as

R(x,t) = R^{x) + W(x,t) (eqn A.3)

where R^(x) is only x dependent variable

so

R^(x) = R^(x) i

and W(x,t) is dei^ormation obtained from modal summation method

then

W(x,t) = X (Pi(x) qi(t) (eqn 2.21)

i

where

(p.(x) is i-th mode shape function

q.(t) is i-th mode generalized coordinates

If we consider the deformation of the boom consists of translation and extension, then

equation 2.21 becomes

W(x,t) = X [ <Pi-'(xj qjlt) i + (pj>'(x) qi{t) j ]
(eqn A.4)

where
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<p.^(x) i is i-ih mode shape function in extension

(p.^'(x) ] is i-rh mode shape function in translation

From equation 2.21 and A.4 the position of the point on the boom is

R(x.t) = R^(x) i + ;^ [
(p.x(x)

i
4- (p.>(x) j ]

q.(t) (eqn A.5)

i

Now the velocities of the point on the boom is necessan.' to formulate the

kinetic energy to apply Lagrange's equation. The velocity is obtained by simply

difTerentiatmg the equation A.5

then

R(x,t) = R^{x) i ^ I [ (pi(x) i + (pj>'(x)
j ] qjit) (eqn A.6)

i

+ X[9i'(x>i ^ (Pi>'{x) n qj{t)

i

1 i

+ ^[(pj-^(x)q^(t)i +<Pi>(x)qj(t)j ]

i

But time derivative of unit vector i and j are

• •

i
= e k X

i
= 9

j

j
= Gk X

j
= - 9 i

k=ekxk=0

substitute these quantities to the equation A.6 and simplify

then

R(.x,t) =
[ R , + I (p.'^lx) qj(t) j e j

- X 9i-'(x) qjlt) i (eqn A.7)

i i

+ I q>,'(x) q^lt) i + l(Pi>(x) q.{t) j

i i

=
[ I (Pi'(x) qi(t) -ex q>.''(x) qi(t) ] i

i i
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i i

c. kinetic energy and potential energy

Recall the equation A. 7 and drop the all terms concerning (p\x) and express

(p.^{x) simply (p.(x)

then equation A. 7 reduces to

• •

R(x,t) = R^ j
- 8 X %{^) qi(t) i + I <Pi-'(x) q'ilt) ] j

(eqn A.8)

i i

= - ^ (Pi(x)q.(t) i + [ R_^(x) + X %(^) Qilt) ] j

i i

From the equation 2. 17, the kinetic energy of the whole system is

T = \m + T^ - T^, (eqn A.9)

1 J.
=— j^R{x,t)»R(x,t)dm

1

+ M R(e.t) • R(£,t)

+ L 02
2 hz

but

R{x,t}«R{x.t) =
[
- 1 (pi(x) q;(t) ]- +

[ R,^{x) + ^ (p(x) qj(t) ]- (eqn A. 10)

i

= 0M I <Pi(x) qi(t) ]- +
[ R^{X) 0]

i

i

and
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[
V (p/x) q.(i) ]- = V (p.2(^) q.2(t) + 2 J] (Pj(x) (p.(x) 05(1)0.(1)

i i i'j

[ I <Pi(x) qi(t) ]^ = I (Pi^(x) qi^(t) + 2 V (p.(x) (p.(x) qi(t)q.(t)

i i i-j

(for i * j
;s )

Substituting into equation A. 10

then

R(x,t)«R(x.t) = e-
[ X (Pj-(X) q;-(t) + 2 ^ (Pj(x) (p.(x) q^lt) qj(t) (eqn A.ll)

1 !•]

+ R/{x) e- ]
+ 2 R_^(x) 9 X 9i(x) qi(t)

1

+ 1 <Pi^(x) qf(t} + 2 X (Pi(x) q)j(x) qjlt) q.(t)

•
i • - i'j

(for i*j)

Now equation A. 9 can be rewritten as

1 ^ p

T = e^ X qj-(t)
[ j (pj-(x) dm + M (p.-(£)

]
(eqn A. 12)

+ e- V qj(t) q.(t)
[ J (Pi(x) (p.(x) dm + M (p.(C) (p-lO ]

i'j

1 t

+ -T" I q^-^) [ f (Pi^(x) dm + M (p.2(E)
]

"
1

^

• •

+ I qi(t) q/t) [ f (Pi(x) (p.(x) dm + M <?.{t) (p.(E)

;

i'j

+— e'
[

j^^
R^-(x) dm + M R^-(£)

]

96



4. -L-i q2
( for i ^

j )

2 'zz

From orthogonality relationship

e

J (p.(x) <p.{x) dm + M (pj(x) (p.{E) = {for i *
j ) (eqn A. 13)

= \i (for i =
j )

where M. is the i-th mode generalized mass, then the kinetic energy of the system can

be simplified as follows

T = —5- 9- ^ qj^t) Mj + -:;— X Vlt) Mj (eqn A. 14)"1 ^
i

+— L e^

+^ e^
[ J^ R^(x) dm + M R^\t)

]

t

From the equation 2.25, potential energy is

1 ^ -,

U = -— y coj- M. qj-(t) (eqn A. 15)

i

d. Lagrange's equations

Substitute equations A. 14 and A. 15 into equations 2.19 and 2.20 to apply

Lagangie's equation,

then

=
^0
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-T^ = e I qi^(t) Mi + ^ [
1^
R^x) dm ^ M R^^(C)

]

+ X q.(t)
[ f^ R^(x) (pj(x) dm + M R^(£) (Pj(E) ]

+ L
'zz

C ^
=

[ X qi'(t) Mj + j^R/(x) dm + M R,^(£) + I^^^
]

+ I \i^) [ L \i^) <Pi(x) <ini + M R,(£) %{i)

i

+ 2 9 X qi(t) qi(t) M;

+ I qi(t) [ J ^^iV 9i(x) dm 4- M R^(£)
(Pi(£) ]

1

^U ^U d dU

)0 ^0 dt "^5"
=

1;
= «' %''• ^.

= qj^(t) Mj^ + [
J

R^(x) (pj(x) dm ^ M R^(£) (p(C)
]

i;a
'•h

^0

—
[
4-

]
= q'hlt) Mj^ + [ f R^{x) (pj(x) dm + M R^{£) (?;(£)

at oq, () -^ '
.VI
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au

1^ = "'h ^^h %(0

From all these quantities, equation A. 1 becomes

[
'^ q.nt) M- + J R,-(x)dm + M R/(C) + L ] (eqn A.16)

+ 2 e V qi(t) q,(t) Mj + X *q*(t)
[ J R,(x) (Pj(x) dm + M \{t) (p(C) ]

= T

i i

and equation A. 2 becomes

E

[ J^ R_^(x) (p^(x) dm + M R^(£) (pj^(e) ] + q^lt) Mj^ (eqn A. 17)

(h = 1,2, 3. n)

In the equation A.16 and A. 17, if we select n numbers degree of freedom of

the system, that is, if we select n numbers of mode shape, we could have n+ I numbers

of equations.

99



DOUBLE LINK BOOM SYSTEM IN PLANAR MOTION
a. Geometn" of the svstem

M :

Figure A. 2 Parameters of the double link boom system in planar motion.

: tip mass

mass of electronics box

length of lower boom

: length of upper boom

P : angle between two Imks

T : applied torque

G(t) : angular displacement
•

0{t) : angular velocity

Rq(x) : position vector of the point on the boom in the local x-direction
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R(x,t) : position vector cf the point on the boom after deformation

W(x,t)

:

deformation vector of boom

i: unit vector of local x-direction

j; unit vector of local y-direction

k : unit vector of local z-direction

Iq : unit vector of global X-direction

L : unit vector of global Y-direction

kg : unit vector of global Z-direction

b. position and velocity

In this double link system, we have to consider the extension deformation as

well as the bending deformation.

The position vector of a point on the boom was expressed as a sum of R^ix)

and W(x,t).

Then

R(x,t) = Rg(x) + W(x,t) (eqn 2.9)

where

Ro(x) = R^(x) + Ry(x) (eqn A. 18)

= R^(x) i + R^.(x)
j

From equation A.4 and A. 18 the position vector of the point on the boom is

R(x,t) = R^(x) i + R^.(x) j + I [ cPi(x) i+ (p.>'(x)
j ]

q.(t) (eqn A.19)

i

Now by differentiating the equation A.19, we obtain the velocity of the point on the

boom.

R(x,t) = R^(x) i + R^.(x) j + I [
%{x) i+ (pj>(x)

j ] qi(t) (eqn A.20)

1

+ ^[(p/^(x)i + (P;>(x)j]qj(t)

i
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Subsniute the ume derivative of unit vector to the equation A. 20 and simplify

then

R(x,t) =
[
- e{ Ry(x) + V (p.y(x) q.(t) ) + V (p.X(^)

^.(f, ] j (eqn A.21)

i i

+
[ R^(x) 8 + V(p,^(x) q^(t> + V (p,v(x) '.(t)

I I

c. Kinetic energy and potential energy

From the equation A.21

R{x,t) =
[
-

', R^.(x) + ^ (P;>(x) q.(t) ) + X ^i-'lx:' \i^^ ] i (eqn A.22)

i i

+
[ R^^(x) + 01 (p^^'(x) qj(t) + V (p.y(x) 5.(t)

] ]

The dot product of R(x,t) is

R{x.t) • R(x,t) =
[
- 0{ R^.(x) + X (Pi-'(x) qi(t) } (eqn A.23)

i

+ y <Pi'(x) qi(t) ]2 +
[ R^^(x) + I(p/(x) qj(t) + V (p.y(x) q.(t) ]2

i i i

= 0^ I [ R^,-{x) + 2 R^.(x) V (p.v(x) q.(t) + [
V ^p.y^^) q.(t) }2

]

i
'

i. i

- 2 [ [ R^,(x) ^ I (Pi>'{x:) qj(t) }
V (p.x(x) q.(t) ] + [

V (p.x^^)
q.(t) ]2

1 i i

+ 02
[ K^'ix) + 2 R^^(x) X 9i'(x) qi(t) +

{ ^ (Pi''(x) qj(t) j^
]

i i

+ 2 [ [ R^^(x) + ^ (p.-^(x) qj(t) )•
V (p.(x) q.(t) 1

+
[ I] q>i-{x) qjit) ]-

i i i

= 0-
[
[R^-(x) + Ry'{x) ) + 2 V q.(t) { R^^(x) (p.^{x) + R^.{x) q),>{x) }

i

+ ( I <Pi'(xj qjlt) r ^
i I (Pi"(xj q.(tj j-

]

i i
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+ 2 e X q.{X) q.{t)
[ { Rfi) + (p/^(x) } (p,>\x) -

[ R..(x) + q)T(x) } (Pj^(x) ]

i

i i

From the geometn.' of the system

R,^(x) + Ry-{x) = Rq-(x) (eqnA.24)

R^-(C) ^ R^.'(C) = Ro-(£)

Substituting equation A. 24 into equation A. 23 and apply the equation A.

9

then kinetic enersv is

1 • P £

+
( S (Pi>'(x) qi(t) )2 } dm + M

( ( y(Pj^(e) q;(t) )2

i i

+ ( y q)r'{0 qi(t) )2

}

i

+ 2 X qj(t)
{ J^( R^(x) (p.-^(x) + R^.(x) (Pi>'(x) ) dm

+ M( R^(C)(p/(£) ^ R^.(£)(pj>-(t))]

+ ^- [
J" J ( I q>i'(x) q-Si) )2 + { I (Pi''(x) q.(t) r } dm

1 i

+ M { ( I (Pi'(n qi(t) )^ + ( I (Pi>{£) qi(t) )-)]]
i i

+ 6 I qi(t) I Jq 1
R;,(x) (Pi-'(x)

- Ry(x) (p.^(x) } dm

+ M [ R^(C)(Pi>(£) - R^.(£)(Pi'(C)}

^ 1 qj<f> i f ( <Pj'(x) (pj-'(x) - (p.'(\) (p."(£) dm
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M(<Pj"{C)(p.>'(C) - q).>(C)(Pi^{C))}]

1 %^

2
'
zz

Now let's apply the orthogonality relationship

£

J ( <Pi'(x) (pj^'lx) + <Pj>'(x) <pj>'(x) } dm (eqn A. 26)

+ M ( (p/(C) (p/^(C)+
(Pi>(£) (Pj>-(£) ) = ( for i X

j )

= Mj (for 1 =
i )

to the equation A.26 then

1 P

T = -^ 0M J'^
Rq-(x) dm + M Rq-(£) + ^ qj-lt) Mj (eqn A.27)

£

+ 2 y qi(t) ( j"^( R^(x) (p/^(x) + R^.(x) (Pi^'(x) ) dm

- 2 M ( R^(£) (p/^(£) - \.a) (Pi>(C) ) } + I^^^
]

+ ^ q.-(t) M.

1

c
+ 91 qi(t) [ J^[ R^(x) (Pi>'(x)

- Ry(x) (pj^(x) } dm

+ M {R^(£)(Pi>(C) - Ry(£)(Pi^(E))

£

j

+ M((p.-^(£)(p^>(£) - (p.>(£)(p.-^(£))}]

From the equation 2.25, potential energy is
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U = -:^ X (O.^ M. qj^(t) (eqn A. 15)

d. Lagrange's equation

Apply Lagrange's equations A.l and A.

2

then

^T
=

dQ

dT •

=
p

-^g- = e
[
1^

Ro-(x) dm + M Rq-IC) + V q.2(t) ^.

t

+ 2 X qj{t)
{ J^{ R^(x) (p/^(x) + Ry(x) (Pj>-{x) ) dm

+ 2 M ( RJC) (p.VC) + R_^.{e) (Pi>'{C) ) ) + Ir^J

• -0 '

+ M [R^(C)(Pj>'(E) - R_^.(C) (p.'^(C) }

t

+ S qj(0 ( J^( <Pj-'{x) <p/(x) - (p/{x) (pj^(£) ,) dm

4- M ( (p.'\C) (Pj-^(£)
- (p.>'(C) (P;-^(C) ) } ]

£
+ 2 T qi(t) { f ( R^(x) (p/{x) + R^{x) (Pi^Cx) ) dm

1

+ 2 M { R^(C) (p.-^(() + R^.(e) (Pi>-(C) ) } + If ]

+ 2 e j; qj(t) q.(t) Mj

i

+ 2 e X qi( J ( R^(x) (Pi'lx) + R^,(x) (p.>'(x) ) dm
i
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^ 1 '^1(0 [ i^ { \(x) <Pi-(x) - Ry(x) ip.^ix) } dm

+ M { R^(«)
9i-(£)

- Ry(C)<Pi'(C)}

+ I ^j(0 ( J^( (Pj'(x) (pj''(x) - (p/'(x)
(Pi^(£) ) dm

+ M((p.-^{C)(pj>{C) - (p.>(£) (Pi\£) ) ) ]

au

"^e"

cV di:

c0 dt cB
=

0-
[
qj^(t) Mj^ +

[ J^
( R^(x) (p.^ix) + Ry{x) (Pj>-(x) ) dm

+ M [ R^(C) (Pi'(e) + R..(C)<Pi''{e))} + I,
]

zz

£

-r M ( (p^^-^(£) (Pi>-(£)
- (p/(£) (Pi^(£) } ]

dT * A

+ M( R^(£)(p^>'{£)-R^,(£)(Ph'(£))

+ I qi(t) 1 L( Vi'(^) V^'^) " ^j'(-^) V^^) d"^
xj^ ' ^ JQ- -J

+ M {
(p.-^(£)

(Pi-'{£)
- q>j-'(C)

(Pi-^(£) } ]
+ %{i) Mh

—
[ ^;- ]

= e [ f [ R^(x) (p/(x) + R^,(x) (p^'^(x) ) dm
dt C'q. '0 X n > n

4- Mi R^^(£)(p^>(£)-R(£)(Ph''(£)}
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-TT-] =
oq^ at (7q^

Plug these quantities in the equation A.l

then

i
*e

[ J Rq^{x) dm + M Rq-(£) + Y q^^t) M. (eqn A.2S)

C

+ 2 V qj(t)
{ y R^(x) (p.-^(x) 4- R^,(x) (P;>'(x) ) dm

y^
- -zz

+ 2 M ( R^(e) (p.-^(E) 4- R^{£) (p.y(£) ) ) + I^__
]

+ 2 X q.lt) qj{t) Mj
1

£
-^ 2 e V q.(t) .

J ( Rjx) (Pi"{x) + Ry{x) (?.y{x) ) dm
1

+ 2 M ( R^(£)
(Pi-^(£)

+ R (£) (p.>'(£) ) } + I^ 6^
]

£

+ I ",(0 { J ( q)j'(x) q)j>(x) - (p.>'(x) (p.^(£) } dm
J

+ M((p/^(£)(p,y{£) - (p/(e)(pi'{£)] = T
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and ihe equation A.. 2 becomes

e
[ J^ ( R^{x) (pj/(x) + Ry(x) (pj^-^(x) ) dm (eqn A.29)

i

4- M [ (p.-^(e) (pj>'{£) -
(Pj>-{C) i^.^{i) } ] + q;(t) Mj^

- 0-
[
qj^(t) Mj^ +

{ J { R^(x) (pj;^(x) + Ry(x) (Pj^>'(x) ) dm

+ M [
K^{i) is?^\i) + R^.(£)<Ph-'(f))}]

+ 2 9 X qj(t) [ J^ ( (pj'(x) (Pj^>'{x) - (Pj>(x) <pj^-\x) ) dm

+ M [ (p.^(C) (pj^-^(£) - (p.>{£) (pj^-^{£) } ] + (o-h M^ qh(t) = - 2 C (O^^ Mj^ \{i)

( h = I, 2, 3, n )

e. Results

Table 5 and 6 show the eigenvalues of Aluminum Alloy and Composite

material boom from NASTR-AN simulation results and Figure A. 3 shows first two

mode shape of the double link boom in planar motion. As shown in Figure A. 4,

applied torque to maintain 15 r.p.m of rotating speed increased to one hundred times

of the torque that applied to the same boom in 3-dimensional motion because its mass

center is far away from rotating center. Angular displacement change with time was

almost same as 3-dimensional case. Displacement in x and y-direction was much bigger

than that o^^ 3-dimensional motion because tip position is far away from the rotating

center and concentrated mass attached to the tip.

While rotating speed increases, boom dellects negative y-direction and positive

x-direction until reaching its equilibrium position. After cutting off torque, boom

remains equilibrium position and oscillates with some amplitude. Magnitude of
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deflection at equilibrium position was about 6.2 inchs and slope at the tip position was

2.3 ". These values are much bigger than that of 3-dimensional motion but it is quite

natural because of its big radius of rotation.

Figures A. 5 - A. 12 show angular displacement, angular velocity, generalized

displacement, deflection in each direction, magnitude of deflection and slope at the tip

position respectively.

TABLE 5

REAL EIGENVALUES OF ALUMINUM ALLOY (20)

mode
no.

radians
CO-

cvcles generalized
""mass\M.)

seneralized
stiirness(K.)

1 3.56SS16E^00 5.679947E-01 l.OOOOOOE + 00 1.273645E-01

2
^

1.796733E + 01 2.S595S9E + 00 l.OOOOOOE^OO 3.22824SE + 02

TABLE 6

REAL EIGENVALUES OF COMPOSITE MATERIAL (2D)

mode
no.

radians cvL.:es eeneraiized
mass(M.)

generalized
stiflnessiK.)

1 4.461328E^00 7.100423E-01 l.OOOOOOE + 00 1.990344E + 01

2.246115E4-01 3.574804E^00 l.OOOOOOE + 00 5.045035E + 02
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Figure A. 3 First and second mode shape.
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Figure A.4 Applied torque vs. time.
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Figure A.f Angular displacement vs. time.
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Figure A.6 Angular velocity vs. time.
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Figure A. 7 First mode generalized displacement vs. time.
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Figure A.S Second mode generalized dispiaccmem vs. time.
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Figure A. 9 Displacement in x-Uirection vs. ume.
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Figure A. 10 Displacement in y-direction vs. time.
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Figure A.l 1 Magnitude of deflection at tip position vs. time.

118



Figure A. 12 Slope at tip position vs. time.
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APPENDIX B

DETAILED DERIVATION OF LAGRANGE'S EQUATIONS FOR THREE
DIMENSIONAL MOTION.

Apply Lagrange's equations 2.7 and 2.8 into equations 2.28 and 2.25

then

^T
=

oQ

^T • ^ -> A ^

Tg- = e [ y qj2(t) M; +
J^ r/(x) dm + M R^(e)

£

+ 2 V q.(t)
{ J R^(x) (p.^(x) dm + M Rj£) (p/^(C) }

i
^

..

U •

• zz

+ S I qi(t) qj(t)
( J q>i'(x) (p/(x) dm + M ^,.^{1) 9.^(0 }

1 j

[—r-
]
= e [

^ q.-(t) M. + R -(x) dm + M R -(E)
dt (30

L-^.
^

1
Jq X ^

^
.X

e

+ 2 V q:(t)
[ j R^(x) (p.x(x) dm + M R^(C) (p.;\£) }

i

- -iUl 9i'(x) q.,(t) )2 + M ( X (p/(e) q.(t) )2 + I ]

• ' ' • ' ^ ^zz

+ 2 e V q.(t)
[
q.(t) M. +

j^
R^(x) (p-^lx) dm -^ M R^(C) (Pi^(n }

e
- 2 y qj{t)

{ J^9i'(x) (Pj^(x) dm - M (?.^{i) (p/{£) } ]

- I q-(t) [ I qj(t)
{ J^ q)i'^(x) (Pj''(x) dm + M

(Pi-^(£) (Pj-'(£)
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-
J,<Pi'(x) ^-'{x) dm - M (p.>{C) ipMt) }

J^R^(x)(Pj>{x)dm - M R^(n(Pi>(C)]

dT
= e-

[
q.[l) M. 4-

J R^(x) (p.-'^Cx) dm - MR,,(C) (p/^(C)

- 2 I qi{t) 1 I^q>i'(x) (Ph'(x') dm + M (p/(£) <p,,'(C) }]

• • C

+ e I 4;(t)
[ j (Ph'(x) (p.-^(x) dm + M (Pi;^(C) (p >•(£)

'J ^
^''

t
-

J.
(p;>'(x) (p/^(x) dm - M (p;>(D (p.-'{£)

]

^h(^^ ^h

£

• £

+ e
[ J^ R^{x) (pj^>(x) dm 4- M R^{£) (?^U)

]

d

"dT

+ 6 [ I qi(^) ( J /PiHx) (Ph-(x) dm + M (p;-^(£) (p/(£)

£
- j^3^i-(x) V(x) dm - M (p.>(£) (pj;^(£)

}
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-
J^(pi>(x) (p^-^(x) dm - M (P;>(C) (p,;N C)

]

7e 15 ~ c^ ~

(3U -.

cq.

dlJ- d <3U—
]
=

Now plug all these quantities m equations 2.7 and 2.8
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APPENDIX C

NASTRAN PROGRAM FOR DYNAMIC ( MODAL ) ANALYSIS

1. DYNAMIC ANALYSIS IN PLANAR MOTION

S
S Double link flexible boom for dvnamic analvsis( 14 erid points

)

S in 2 dimension space with tip mass (37.5 15. ) linkni4 ft,iink2:12 ft

S Materiahalummum allov
S
? * * * * * « * * * * * * * * * * * * * * * * * * * * * -s * * * *

S
S EXECUTIVE CONTROL DECK
S
C * * * * * * * * * * * * * * * Ms * * * * * « « « * * * * * * « *

s
id kang.dynamics SN-ROSS

3

time 10
diaa 8,13
cen~d
S
c * * * * * * * * * * * * * -I-. * * * * * * * * « * * * * * * ft ft *

s
S CASE CONTROL DECK
S
C ft * ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft * ft ft ft ft ft ft ft * « *

s
title = Modal analysis of double link flexible
title = boom m planar motion(Aluminum allov)
echo = both
method = 120
spc= 101
disp = all

output(plot)
plotter nastran
axes z.x.v
cscale= 1.8

view 0..0.,0.

paper size 14.0 by 10.0
set 1 = all

find scale, orisin l.set 1

plot modal deTormation 0,set 1, origin 1,shape
maximum deformation 5
beein bulk
S

"

C ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft * * ft ft ft .ft

S
S BULK DATA DECK
S
C ft * ft ft .ft ft ft ft ft ft ft .ft ft ft * ft * ft ft ft * ft ft ft ft ft ft ft ft ft ft ft

s
S Define new coordinate system for convinience
S
Scord2c,l 0.,0.,0.,0.,l., + 23
S + 23,l.,0.,.0
S -

S srid(node) data

grid,l,,0.,0..0.
= ,*(iX = r(24.),= =
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= 6
gr:d,9..182.1068.19.4164X).
= .:( 1 j, = .*( i4. 1068),n^.4164, =
= 4
S
S element data
"s

cbar,21.l02.L2.0..0.,l.
= ,*^1 }.= .*( 0/11),= =

S Change these boom properties when material
S changes AL. to COMPOSITE
S

S — DATA FOR ALUMINUM ALLOY —
S
pbar.102. 103, 1.2101. 1.2447,1.2447.2.4894
mat 1.103. 1.01 + 7.3. ' + 6„2.5362-4
conm2.103.14.,9.7176-2
spcl,lll.l234i6.1
spcl.ll2.345.2.thru.l4
spcadd.101.111,112
ei2r.l20.m2iv.,,,7
Sparam.autospc.yes

S — DATA FOR COMPOSITE —
S
pbar.102. 103.2.0168. 1.9451.1.9451,3.8902
matl.l()3.1.0l + 7...25.2.5362-4
conm2. 103. 14..9. "176-2
spcl.l 11.12345(^.1
spcl.ll2.345.2.thru.l4
spcadd.10l.il 1.1 12
ei2r.l20.meiv..„7
SparanLamospcyes
enddata
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2. DYNAMIC ANALYSIS IN 3 DIMENSION SPACE

S
S Double link flexible boom for dynamic analysis( 14 grid pomis )

S in 3 dimension space with tip mass (37.5 lb' )

S Iinkl:14ft,link2:l2ft
S ansle between LI and x-axes is 70,LI and L2 is 126 degree
S Material: Aluminum alloy
S
C :*• A ;'! ;'s rt i[x f,i :i; :J; ^'fi i[x rjs ;|; :{; ?|t f,t ^t ?I: rj; y^ ^i ^t ftt :!; i^' ^t :J; ;;: :^ ;^ >;: i}; 7{i :J; :t»

S
S EXECUTIVE CONTROL DECK
S
C * ** * * y.i * * * * * * * * * * ** * « « :'^ ^: * ***********

s
id kang,dynamics Snross
sol 3

time 10
dia2 8.13
cen~d
c * * .-;: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

s
S CASE CONTROL DECK
S
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

s .

title = 2 link flexible boom in 3 dimension(Al,COM)
echo= both
method = 120
spc= 101
disp = all

output(plot)
plotter nastran
cscale= 1.8

view 0..0.,0.

paper size 14.0 by lO.O
set 1 = all

find scale, origin I. set 1

maximum delormation 10
axes mv.x.z
plot modal deformation 0,set 1, origin 1,shape
axes x.v.z
plot modal deformation 0.set 1, origin 1.shape
begin bulk
C •'• ^ •'» ?'• ^« -"* •'* >'i

'"' ^ ^' ^' ^1 y' ?'' ?'; ^ ^' ^- A ^ A Jfc ^1 ^t ^! A Ai ^i r'i ;*; A

S
S BULK DATA DECK
S
c * * * * * * * * * * * « * * .* * * * * * * * * * * * * * * .* * *

s
S Define new coordinate svstem for convinience
S
Scord2c.l.,0.,0.,0..0..0..1.. + 23
S+23..5.0...S66'7
S
S

S grid(node) data
S--"
s
grid.l, ,0.,0..0.
= .:^=(1).= , -(8.2085), = ,*22.5526

grid.9. ,44.0388,0.. 177.7653
= .-(l), = ,

•^(-13.4206), = ,-19.8969
— 4
S

s
S element data
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5

cbar.21.102,1.2.0.,0.,1.

v

S Chance foUowiiig datas when the material
S changes from AC. to COM.

S — DATA FOR ALUMINUM ALLOY —
S

pbar.l02.103.L210LL2447.L2447.2.4894
matl.l05.L0l + 7.3.7 4- 6,.2.5362-4
conm2. 103. 14.,9. 7176-2
spc 1.10 1.1 234^6.1
Sspcl,112.345.2,thru,13
Sspcadd.i01,111.112
ei2r,120,m2iv,„.7
Sparam.autospc.yes

S --- DATA FOR COMPOSITE —
S

pbar.102. 103. 1.2101. 1.2447.1. 2447.2.4894
matl.l03.1.0l + 7.3.7-6.,2.5362-4
conm2. 103. 14.,9. 7176-2
spcl.l01.1234J6.1
•Sspcl.l 12.345.2. thru.13 --

S,spcadd.l0l.lll.ll2
ei2r.l20.m2iv.,..7
Sparam.auiospc.yes
enddata
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APPENDIX D
DSL PROGRAM SOLVING THE D\TVAMIC EQUATIONS OF MOTION

L PROGRAM OF DOUBLE LINK FLEXIBLE BOOM IN PLANAR MOTION

* This program solves the dynamics of a dobule link flexible boom system

* in planar motion. The applied torque ( t ) was changed to see the effects

* of the torque and also damping coefficient ( C, ) was varied 0.0 to 0.5 %.

* This program automatically calculates the slope and deflection of the tip

* position in each direction ( local x, y, z ) from simulation results.

* THE FOLLOWING PAR.AMETERS ARE DEFINED

N ; number of discritized boom element

FLl ; length of lower boom

FL2 ; length of uppper boom

TM ; tip mass

RHO ; mass per unit length

DX ; differential length between each grid point

RX ; local x distance from origin

TAO ; applied torque

OMGl ; 1st mode natural frequency

0MG2 ; 2nd mode natural frequency

PXl ; 1st mode shape-displacement in local x direction

PYl ; 1st mode shape-displacement in local y direction

PZl : 1st mode shape-displacement m local z direction

PX2 ; 2nd mode shape-displacement in local x direction

PY2 ; 2nd mode shape-displacement in local y direction

PZ2 ; 2nd mode shape-displacement in local z direction

ALP ; angle between upper boom and local x-axes

RXIL ; 1st mode shape-rotation at the tip position w.r.t x-axes
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RZIL ; 1st mode shape-rotation at the tip position w.r.t z-axes

RY2L ; 2nd mode shape-rotation at the tip position w.r.t y-axes

RZ2L ; 2nd mode shape-rotation at the tip position

TH ; angular displacement

THD ; angular velocity

Ql ; 1st mode generalized coordinatest

QID ; time derivative of 1st mode generalized coordinates

Q2 ; 2nd mode generalized coordinates

Q2D ; time derivative of 2nd mode generalized coordinates

ZETA ; damping coefficient

* RIRZZ ;mass moment of inertia for R.F electronic box

* RIBZZ ;mass moment of inertia for boom and tip n mass

* CI ; starting up time coefficient

* C2 ; magnitude of applied torque

* C3 ; required time to reach required R.P.M

* SIMULATIOMS OF DOUBLE LINK FLEXIBLE BOOM IN PLANAR MOTION
:'fi :i: * * ?:t .t. nt * -1: * * * * * * * * :'.' :'A Ki :{< rit * .S: ^'S -St -S< ^,i f.t rf: r'fi * * .-J; * .i; rit * y,t :i? * .-i? :fc :'.i :{i :ft * -it ?;-, -i: :ft .-is ;i: .S; * .-ft * * * * :fc H'. * * * * * * * -'a y,t * ^; ^? -I: * * * :i: *

TITLE SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS
TITLE FOR DOUBLE LINK FLEXIBLE BOOM IN PLANAR MOTION

FIXED lER, IPVT. N. I

CONST FL1=168..FL2=144.,RHO=3.0690E-04,N=13,DELT=.04
PAR.'XM CI = 40. .C2= 1000. .C3= 19.65

INITIAL

TM = 9.7176E-02
ALP = 54.
RIRZZ =31.0559
RZ1L= 1.527773E-02
RZ2L = -3.1494S2E-02

BY CHANGING THE ZETA VALUE THE DAMPING FORCE
WILL BE CHANGED

*

ZETA = 0.

ZETA = 0.002
ZETA = 0.005

* DIMENSION SIZE SHOULD BE EXPRESSED BY NUMBER
* INSTEAD OF CHATL-XCTER

D DI.MENSION RX(13),RY(13),PX1(13),PX2(13),PY1( 13),PY2(13).A(3,3)
ARRAY IPVT(3),B(3)
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*

*"rEMOv'e THEASTRICKS IN DATA STATEMENT FOR
EXECUTION OF EACH MATERIAL

^......„^„.„.„„.. „„..™

D #224428,238.535,202.642

*

«

D DATA RY/7*0.0,19.4164,38.8328,58.2492,77.6656,97.082,116.498/
•ft

*= = = = = DATA FOR ALUMINUM ALLOY = = = = = =
*

D DATA PXl/ -4.922269E-06,
D # -9.844536E-06,
D # -1.476680E-05.
D # -1.968907E-05
D #
D U

-2.461 132E-05,
.2.95335SE-05,

D U -3.445583E-05,
D # -2.457687E-01,
D d -5.087S06E-01,
D # -7.853463E-01.
D S -L071851E + 00,-I.364817E + 0a-I.660928E + 00/
D DATA PYl/ 2.800838^-02,
D U 1.089855E-01,
D f? . 2.383627E-01,
D n 4.115835E-01,
D S 6.2411 70E-0 1.

D S 8.714750E-01,
D ?f 1.149234E^00,
D # 1.327774E + 00,
D ;? 1.518872E + 00,
D ii 1.719815E + 00,
D # 1.927978E + 00.2. 140836E + 00,2.355983E + 00/

D DATA PX2/ 1.657409E-04.
D U 3.314810E-04,
D « 4.972196E-04,
D # 6.629559E-04,
D ^ 8.286890E-04,
D » 9.9441 83E-04,
D # 1.160I43E-03.
D ^ 4.385572E-02.
D # 2.710247E-01,
D d 6.487206E-01.
D # 1.140457E + 00,1.708I80E + 00,2.313523E + 00/

D DATAPY2/ 1.425431E-01,
D U 5.101371E-01.
D # 1.013169E + O0,
D 4 1.563418E + 00,
D d 2.075334E + 00,
D ^ 2.467438E + 00,
D 4 2.663624E + 00,
D # 2.632837E + 00,
D U 2.46S005E + 00,
D # 2.193798E + 00
D # 1.836722E + 00,1.424425E + 00,9.847735E-01,

D DATA OMG1/3.568816E + 00/,OMG2 1.796733E4-01/

= = = DATA FOR COMPOSITE MATERIAL = = = = =

DATA PXl/ -4.615325E-06,
# -9.23065 lE-06,
tf -1.384597E-05,
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* a -1.846129E-05,
* ^ -2.307661E-05,

69193E-05,
* # -3.250723E-05,
* # -2.45:'675E-01.
* # -5.087805E-01,
* # -7.853472E-01.
* i -1.071853E + 00,-1.364820E + 00,-1.660932E + 00/

*
DATA PYl/ 2.S00845E-02
# 1.089857E-01

' ^ 2.383633E-01
* S 4.115S47E-01
* # 6.241 1S7E-01
* ;? 8.714775E-01
* =; 1.149238E + 00
* ;? 1.327778E + 00
* # 1.518877E + 00
* ^ 1.719820E + 00
* d 1.927984E + 00,2.140842E + 00,2.355990E + 00/

* DATA PX2/ 1.554086E-04,
* # 3.10S165E-04.
* d 4.662230E-04.
* ^* M.

*

6.215275E-04,
.770293 E-04,7.

* • 3 .9.324276E-04;
* # 1.087822E-03,
* S 4.377S49E-02,
* d 2.7095()4E-01.
* S 6.48656 lE-01.
* ^ 1.140408E + 00,1.708149E + 00,2.313514E + 00/

* DATA PY2/ 1.425488E-01
* # 5.101575E-01

1.013209E + 00
1.5634S0E + 00

* S 2.0754 16E + 00
* S 2.467535E + 00
* d 2.66372SE + 00
* d 2.632930E + 00
* ?f 2.468082E + 00
* d 2.193S55E + 00
* # 1.836756E + 00.1.424434E + 00.9.847565E-01/

D DATA OMG1/4.46132SE + 00/,OMG2,'2.246115E + 01/

*"ThESE CAlTTfATE\'rENTs"CALC'^^^^^^^
* AND COEFFICIENT INVOLVED IN THIS PROGIIAM.
*

CALL FIBZZ(RH0.FL1.FL2.ALP.TM.RIBZZ)
CALL ONE(RHO.RX,RY,PXl.PYl,DX.N.STn
CALL TWO( RHO.RX.RV.PX2.PY2.DX.N.ST2)
CALLTHREE(N.RX.RY,PX1.PYI.PX2,PY2,TM.ST3,ST4,ST7,ST8,ST1L ...

ST12.ST16.ST1S)
CALL FOL'R(N.RHO.DX.RX.RY.PXl.PYl.PX2.PY2.ST5.ST9)
CALL FIVE(N.RHO.DX.RX.RY.PX1.PY1.PX2.PY2.ST6.ST10L
CALLSIXlN,RHO,DX,TM,RX,RY,PXl,PVl,PX2,PY2,ST19,ST20,ST21.ST22)

DERIVATIVE
NOSORT

TI = 5.

TA01 = C1 *TIME**2
TA02=C2=^11.- STEP(C3 ))

TAO= SWITCH(TIME.LE.Tr.TA0LTA02)
A(l,I)=RIBZZ4^RIRZZ+X2**2-rX3**2 + (STl + ST3)*X2 + (ST2+ST4)*X3
•A(1,2)=ST5 + ST7 + (ST6 + ST8)*X3
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A(l,3)= ST9 + STll + (ST10 + ST12)*X2
A 2 1)= ST5 + ST7 4- {$16 ^-STSrXl
A^2,2)= l.O

A(2.3) = 0.0
A 3,1)=ST9 + ST11 + (ST10 + ST12)*X2
A3;2| = 0.0

8(0'= fAb-X1D*(X2D*(2.*X2 + STl + ST3) + X3D*(2.*X3 - ST2 + ST4})
B(2) = X1D**2*(X2 + ST20 + ST16)-2.*X1D-{X3D*{ST19 + STS))-OMGP*2*X2..

.2.-ZETA*OMGl*X2D
B{3) = X1D**2*(X3 + ST22 + ST18)-2.*X1D*(X2D*(ST21 + ST12))-0MG2**2*X3

-2.-ZETA-OMG2-X3D
CALL DGEFA (A. 3. 3. IPVT, lER)
IF ( lER-NE.O) GO TO 112
CALL DGESL (A, 3. 3. IPVT, B. 0)
X1D=INTGRL(0..B(1))
X2D=INTGRL{O..B{2 )

X3D=INTGRL0..Bh))
X1 = INTGRL(0.,X1D)
X2=INTGRL0.,X2D)
X3=INTGRLO.,X3D)
TH = X1
THD = X1D

'1 = X2
'ID = X2D
)2 = X3
52D = X3D
\VX= PX1(N)*Q1 + PX2(N)*Q2
WY= PYKNPQl 4- PY2(N)*Q2
WXY = WX--2 + WY--2
W=SQRT(WXY)
SLOP = (R2lL*QH-RZ2L*02)*57.2957

* WRITE(6.120)RIBZZ.ST1.ST2.STj.ST4.ST7.ST8,ST11,ST12,ST16,ST18, ...

* ST5.ST9.ST10.ST19.ST20,ST21.ST22
*120 FORMAT(2X,18(F12.5.2X))

RETURN
112 WRITE(6.114)TIME.IER
114 FOR.MAT(2X.'0 lER = .17)

* CALL ENDJOB
* WRITE(6.116)(Q(]F1).IF1= l.N)
*116 FOR.VfAT(2X.^F8.3.2X)
PRINT TFLTHD. Ql,Q2,\VX.WY,W,SLOP
CONTRL F^INTI\r=40..DELPRt=.20
SAVE 0.025.TH,THD.Q1,Q2,WX,WY,\V,SLOP,TAO
END
PAR.\MC1 = S0. ,C2= 2000. .C3= 11.50
END
PAR.'XM CI = 160. .C2 = 4000. .C3 = 7.4
GRAPH (GIONI = 7.L0 = -S0O..DE = TEK618.SC= 800.) TIME(NT = 5,LE = 10.,UN =

'SEC').TA0(L'N=LBS-1N".RU= l.LI= 1) ...

.TAO(PO = O..AX = OMIT.RU = 2.LI = 2]

.TAO{PO = 0. .AX = OM IL R L' = 3 . L I = 3

GRAPH(Gl.NI = 7.LO = 0..DE = tEK61S.SC = 8
,TH(L'N= R.AD'.RU= l.LI = 1] ..."^^ . ... = 2.LI = 2

) TIME(NI = 5,LE= 10.,UN= 'SEC')

,TH(PO=0.,AX = OMIT.RU
,TH{PO = 0..AX = OVIIT,RU = 3.LI = 3)

GRAPH ( G2,NI = ^.L0 = O..DE = TEK61S.SC = .3 ) TIME(NT = 5,LE = 10.,UN = SEC)
.THD(UN=RAD'SEC'.RU= 1,LI=1) ...

,THD(PO = o.,AX = OMIT.RU=2.LI = 2) ...

.THD(PO = O..AX = OMIT,RU = 3,LI = 31
GRAPH(G3.NI = 8.LO = -8.0 .SC=1.0^ DE = TEK618) ...

TIME(NI = 5.LE= 10..UN= 'SE(^').Q1(UN= 'IN'.RU= l.LI = 1),

Ql(PO=0.,AX=O.VIIT.RU = 2.Lr=2), ...

01 PO = 0..AX = O.VI IT.RU = 3.LI = 3)
GRAPH rG4.NI = S,L0= 0.0 ,SC = .075 .DE = TEK618) ...

TIME(NI = .5.LE= 10..L'N= 'SEC').Q2(UN= IN.RL^ l.LI=l),
Q2(PO = 0.,AX=OVIIT.RU=2.Lr=2), ...

Q2CPO = 0.,AX = O.MIT,RU = 3, LI = 3)
*GRAPH(G4,NT = 8,LO = -1.2E-3,SC=3.0E.04, DE = TEK618) ...
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* TIMEiNl = 9,UN= 'SEC').Q3(UN= IN' »

GRAPH {G5,DE = TEK61S,LO = -0.0,SC= 1.5 ,M = S ) TIME(NI = 5,UN= 'SEC
.LE= IO.),WX(UN= 'IN.RL = l.LI= 1^ ...

;WX( PO = O..AX"= OMiY.RU = 2,LI = 2)'

,.\\^(PO = O..AX = OMIT,RU = 3,LI = 3\
GRAPH {G6,DE = TEK618,LO = -16.^SC = 2.0 AI = 8 ) TIME(NI = 5,UN = 'SEC

,LE=10.),WY(UN='IN\RL = 1.LI=1)... . .

,WY(PO = 0.,AX = OMlt,RU = 2.LI = 2)...
,WYLpO = 0:,AX = OMIT,RU=3,LI = 3)

*GRAPrt (G7,DE = TEK618,L0=-.5,SC=.13 ) TIME(M = 5,UN= 'SEC,LE= 10.)
* UN= IN SEC NI = 8)

/ \ ' ' /

GR.APH (G8.bE = TEK6 18.L0 = O.O.SC = 2.5.NI = 8 )TIME(NI = 5,UN = 'SEC ...

,LE= 10.).\V<L'N=IN'.RU= I.LI= I) ...

W(PO = 0..AX=O.\IIT.RU = 2.LI = 2) ...

,wtPO = O..AX = OMIT.RU = 3.LI = 3)
GR.APH (G9.DE = TEK618.LO= -6.4.SC = .S.NI = 8 ) TIME(NI = 5,UN= 'SEC ...

,LE = 10. ).S LOP(UN = 'DEG'.RU = l.LI = 1) ...

.SLOP(PO = i)..AX = OMIT,RL = 2.LI = 2) ...

;SLOP(PO = ()..AX = OMIT.RU = 3. LI = 3)
LABEL (GIO) APPLIED TORQUE
LABEL (Gl) ANGULAR DISPLACEMENT
LABEL (G2i ANGULAR VELOCITY
LABEL (G3 GENER.ALIZED DISPLACEMENT Ql
LABEL lG4 GENE REALIZED DISPLACEMENT 02
LABEL (G5) DISPLACEMENT IN EXTENSION
LABEL (G6) DISPLACEMENT IN TR.ANSLATION
•••LABEL (G7) TIME DERIVATIVE OF 03
LABEL (G8) MAGNITUDE OF DEFLECTION AT TIP POSITION
LABEL (G9) SLOPE AT THE TIP POSITION
END
STOP
FORTRAN
C
/'~* :'; ^'j A :': rh :'' Ai ?*; r's r't A ft Jit Ai rf; rf; ft A ;*; f' f' ft A f' rf; ft i{' f' fi ft ft ft ft ft ft ft f' ft ft ft f' ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ftfti^ '

SUBROUTINE FIBZZfRHO.FLl.FL2.ALP.TM.RIBZZ)
/-• * .-fc

.-:: * .-It ..fc .-;: * -S: .-S * * .-;:
--i". .-i: * M: .-!•. * * * * .-;-. * M". .-:: ::i * .-;: .-;: -•;: .;! « fS * .1: M: .1; * .-!; .S: •-;-. * ."S .* -is * .1: * :;-- M: * -;: * 'f * * * * * ^f ='. :.- *

c
IMPLICIT REAL-S(A-H,0-Z)

PI = ARCOS(-l.m
ANG = ALP-PI 180.
DlSQ = (FLl + (FL2'2.i*COS(ANG})**2 + ((FL2/2.)*SIN(ANG))**2
D2SQ= FLl + FL2*COS(ANG))**i + (FL2^=SIN(ANG)r*2
BMl = RHO*FLl
BM2=RHO-FL2
RIBZZ=BMl*FLl-*2/3. + BM2*FL2**2/12. + BM2*DlSQ + TM*D2SQ
WRITE(6,iir)RIBZZ

111 F0RMAT(2X.'RIBZZ= .F12.5)
pO r \^T * - .-;< if .* «* ,•;: .S: m .^ ,-;; i'f .-;: .i: « .* * -i-. :'f .*>:: .+. .* .is * * .Ss .-fc -is * .*« .-6 * .* .-!! .* .* -;-. * .« .* .* .* .* .* .!! -;-. .-is -is .-is * .-is -is .-is * .Is .-is

'

RETURN
END

C
(^*.s«*«*«*««**..**«***.s.s**.s*.s****«***.s***=.*«*,s***.s******.s****^

........... SUBROUTINE ONEfR^^^

C
IMPLICIT REAL-8{A-H,0-Z)
DIMENSION RX(N),RY(N),PX1(N),PY1(N)
SONE1=0.0
SONE2 = 0.0
DO 10 1= l.N-1

ONEl = RX(IV=PXl(I)
0NE2=RYnV'-PYirn
SONEl = SONEl+ONEl
SONE2 = SONE2 + ONE2

10 CONTINUE
TU =

( SONEl + RX(N)*PX1(N)/2.)*DX-RHO*2.0
T12 = (•SONE2+ RY(N)-"PY1(N)/2.)*DX^^=RHO-^=2.0
ST1 = T11 + T12
WRITE(6,112)ST1
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112 FORMAT(2X,STl = ',F12.5)pn JNJTHi' '*.V****S!***.*************«************* ********* *******.:ss:!*

RETURN
END

Cp******** ********************************************************
SUBROUTINE TWO(RHO.RX,RY.PX2,PY2,DX,N.ST2)

r'*** * «* * * .-;-. * * * * * * * ** * * «* * * * * * * * * «* * * * * * * * * * * * * * * * * * * * * * « * * * ** * * * * *

c
IMPLICIT REAL*8{A-H,0-Z)
DIMENSION RX(N),RY(N),PX2(N).PY2(N)
STWOl = 0.0
STW02 = 0.0
DO20I=l,N-l

TW01 = RX{I)*PX2(I)
T\V02=RY{Ij'-PY2ri)
STWO 1 = STWO 1 + TWO I

STW02 = STW02 + TW02
20 CONTINUE

T21 = (STWOl + RX(N)*PX2(N)/2.)*DX*RHO*2.0
T22 = ( STW02 + RY(N -••PY2(N)/2.)*DX*RHO-2.0
ST7 = T21 + T22
WRITE(6.113)ST2

113 FORMAT{2X.ST2=',F12.5}
PRINT-.'-*************-******************************************'
RETURN
END

C
/^ ** «* * * * * * * * * * * * * * * * * * * * .i: * * * * * * * * * * * * * * * * * * « * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE THREE(N.RX.RY.PX1,PYI,PX2,PY2.TM.ST3.ST4,ST7,
..,.^,...1,. ............ ..,...SISAIii^SJl?^SJJ;§/.ST

C
IMPLICIT REAL*8fA-H,0-Z)
DIMENSION PXl(N),PYlCNi,PX2(N\PY2(N).RX{N),RY(N)
ST3 = (RX(N)*PX1 NKRY{Nj*PYl(N)}*TM*2.
ST4 = mX(Nl*PX2^N)+ RY^N)*PY2fN"){*TM =

ST7 = ( RXfNV*PY 1(N )- RY(N)*PX 1 (NV)*TM
STS = (PX2(N)*PYt(N>PY2(N)*PXl(N))*TM
STl 1 = ( RX(N)*PY2(Ni-RY{N)*PX2(Nn*TM
ST12 = (PXr(N)*PY2(N)-PYl(N)*PX2{N))*TM
ST16= RX{N)-PX1(N)+RYN)*PYI N))*TM
ST18 =JRXfN)*PX2Ki + RYLN)*PY2fNi)*TM
WRITE(6.114]ST3.ST4.ST7.ST8.ST11.STI2.ST16

114 FORMATr2X.'ST3 = '.F12.5.2X.'ST4= .F12.5.2X.'ST7='.F12.5,2X.'ST8=',
1F12.5.2X.ST11 = .F12J.2X,'ST12= ',F12.i,2X.'ST16= '.F12.i^,2X)
WRITE(6.118)ST18

118 F0RMAT(2X/S:T18=',F12.5)
PRINT-;*********************************************************'
RETURN
END

C
Q * « * * « * « .-:: * « * * * * * * * * * * ** * * * * * * * * * ** * * * * * * * * * * * « * * * * * * * * * * * * * « * * * * * « « * * * * * * « * * *

SUBROUT INE FQU R(N,RHO .DX .RX .RY ,PX I ,PY 1
^
PX 2,PY 2,ST5 .ST9X.

C
IMPLICIT REAL*8(A-H.0-Z}
DIMENSION RX(Nj,RY(N),PXl(N),PYl(N),PX2(N),PY2(N)

SFOU 1 = 0.0
SFOU2 = 0.0
SFOU3 = 0.0
SFOU4 = 0.0
DO 30 1= l,N-l

F0U1 = RX(I)*PY1(I)
FOU2=R\YI)*PXlh)
SFOUl = SFOUl4-f-OUl
SFOU2=SFOU2+FOU2
FOU3=RX(I)*PY2(I)
FOU4=RY(I)*PX2(I)
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SFOU3 = SFOU3 + FOU3
SFOU4=SFOU4+FOU4

30 CONTINUE
T41 = (SFOUl + RX(N)*PY1(N)/2.>*DX*RH0
T42 = (SFOU2+RY(N *PX1 N)/2.)*DX*RHO
T43 = {SF0U3 + RX{N)*PY2 N)/2.*5*DX*RHO
T44 = (SF0U4 + RY(N)*PX2 N);2.)*DX*RHO
515 = 141-142
ST9 = T43-T44
WRITE(6.1i5}ST5.ST9

115 FORMAT(2X.'ST5 = '.FI2.5.2X/ST9='F12.5}
Pn T X"T :-. ' :'/.* .-;:«* * * * « *** * * * * * * * * ****«***« * * * * * * * * * * * * * * * * ;:; «****** * * * *

'

RETURN
END

c
/-^ * * * * * * * * * * * * * * * * « * * * * * * * * * * * * * * * * * * * * « * * * * * * * * * ************************* * * * *

c
SUBROUTINE FIVE(N.RHO,DX,RX,RY,PX1.PY1,PX2,PY2.ST6,ST10)

: * * * * * r;: * * * * * * * * * * * * * * * * * * .-:> *** * * * ** * * * .i: * * * * *** * * * * * * * ?^ * * * * * * * * * * * ^* * * * * * * ^

IMPLICIT REAL*8{A-H,0-Z)
DIMENSION RX{N),RY(N),PX2(N),PY2{N),PX1(N),PY1(N)

SFIV1 = 0.0
SFIV2 = 0.0
SFIV3 = 0.0
SFIV4 = 0.0
DO40I=l,N-l

FIVll = PX2(I)*PYl(r
FIV12=PY2n)*PXl(r
FIV21 = PXl(r)*PY2fr
Fiv22 = PYiri)-Px:(r
SFIVl = SFIVI + FlVri
SFIV2=SFIV2+FIV12
SFIV3 = SFIV3 + FIV21
SFIV4=SFIV4+FIV22

40 CONTINUE
T51 = (SFIVl4-PX2(N)*PYl(N)/2.)*DX*RHO
T52 = (SFIV2+PY2(NV'=PXUNV2.)*DX-RHO
T53 = ( SFIV3 + PX1(N')-PY2 N);2>'=DX-RHO
T54 = (SFIV4 4- PY1(N)*PX2 N)/2.)*DX*RH0
ST6=T51-T52
ST10=T53-T54
\VRITE(6,116}ST6.ST10

116 FORMAT(2X;ST6='.F12.5.2X/ST10=\F12.5)
p n T <• -r * -

.-:; * * :/.* * * * * .;-. * * * .-;-. * * * * * * * :•,: * * * * * .*; * * * * r» * * * * * * * * * * * * * * * * * * * * * * * *

'

RETURN
END

C
/^ * * * * * * * * * « * * * * * * * * * * * * * * * * * * >i * * * * * * * * * * * * * * * * * * « * * * * * * * * * * * * * * * * * * * * * * * * * .-

SUBROUTINE SIX(N.RHO.DX,TM,RX,RY,PXl.PYl,PX2,PY2,STl9,
1 ST20.ST2I.ST22)

(^*************************************************************************.

C
IMPLICIT REAL*S(A-H.O-Z)
DIMENSION RX{N),RY(N),PX1{N),PY1(N).PX2{N),PY2(N)

SSIXI1 = 0.0
SSIX12 = 0.0
SSIX2 1 = 0.0
SSIX22 = 0.0
SSIX3 1 = 0.0
SSIX32 = 0.0
SSIX41=0.0
SSIX42 = 0.0
DO 50 1= l.N-1

SIX11 = PX2{I)*PY1(I)
SIX12=PY2(n*PXl(I)
SIX21 = RX(I)*PXI(I)
SIX22=RY(r)-PYlCI)

I)*PY2(I)
SIX32=PY1(I)*PX2 I)

SIX31 = PXI(I)*PY2
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SIX41 = RX{I)*PX2(n
SIX42=RYnV'PY2(Il
SSIX11 = SS1X11 + SIX11
SSIX12=SSIX12 + SIX12
SSIX21 = SSIX21 + S1X21
SSIX22 = SSIX22 + SIX22
SSIX3l = SSIX31^SIX31
SSIX32=SSIX32^SIX32
SSIX41 = SSIX4H-SIX41
SSIX42=SSIX42 + SIX42

50 CONTIN'UE
T61 = (SSIXl 1 + PX2(N)*PYl(N)/2.)*DX*RHO
T62 = {SSIX12+PY2fN)-PXl(NV2.)*DX-RHO
T63= SSIX21 + RX(N')-PXl(N);2.}*DX*RHO
T64= SSIX22+ RYfNrPYliN)'2.)*DX*RHO
T65= SSIX31 + PXI(N)*PY2(Ny 2.)-^-DX'RHO
T66= SSIX32+ PY1(NV-=PX2(n1 2.)-DX-RHO
T67= SSIX41 + RX(N)*PX2(N);'2.fDX*RHO
T68= SSIX42+ RY(N)*PY2(N)/2.)'-DX-RHO
ST19 = T61-T62
ST20 = T63 + T64
ST21 = T65-T66
ST22 = T67 + T68
WRITE(6.117)ST19^ST20.ST21.ST22

117 FORMAT(2X'ST19=',^12.5,2X.'ST20='.F12.5,2X,'ST21 = '.F12.5,
12X.ST22='.Fi2.5)pn I

X'T '.• ' * ** * * * * '• -:: * * * * * * * * * * * * * * * * * * * * * * * * * * ^-****** * * * * * * * * * * * * * * *

RETURN
END

PROGRAM OF DOUBLE LINK FLEXIBLE BOOM IN 3 DIMENSIONAL
MOTION WITH TWO MODES

******************* ***,i!***K5*******«*****

* SIMULATIOMS OF DOUBLE LINK FLEXIBLE BOOM .

* IN 3 DIMENSIONAL MOTION WITH 2 MODES
* * * * * * ******* .-i: * * * * * * * * * * :;; * * * * * * * * ;i; * * * * w * * * * * * * * :!-. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * :

*

TITLE SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS FOR
TITLE DOUBLE LINK FLEXIBLE BOOM IN 3 DIMENSIONAL MOTION
TITLE WITH TWO MODES
* THIS PROGR.AM USES 2 MODE SHAPES FOR 3D AL. AND COM.
*

FIXED lER. IPVT. N, I

CONST DX = 24.,DELT=.04 .RHO= 3.0690E-04.N= 13
PARAM C 1 = .4 .C2 = 10. ,C3 = 24.65
*INCONX0= 3.1416
*

INITIAL

TM = 9.7176E-02
RIBZZ= 145.39
RIRZZ= 7.764

*

*

*""THE"DAMPrNG'FORc¥wTLL
* BY VARYING THE DAMPING COEFFIENT ZETA
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ZETA = 0.0
* ZETA = 0.002
* ZETA = 0.005

* THIS VALUES ARE FOR ALUMINUM ALLOY
* .RX1L= 1.381823E-02
* RZIL = -6.144l72E-03
* RY2L=1.527773E-02

* THIS VALUES ARE FOR COMPOSITE MATERIAL

RXlL = -l.395893E-02
RZlL = -5.647S70E-03
RY2L=1.527779E-02

*

* DIVrfNflONlTzE"fHOl'LD'BE"ETpREsTf^^
* INSTEAD OF CHAR.ACTER
*

ARR.A\ IPVT{j>),B{-^)

ft

*"RE\[6vE'ASTRiCKYyN"DAT'\'s
* EXECUTION OF EACH MATERIAL
*

D DATA RX,'8.2085,I6.417,24.6255.32.834.4L0425.49.251.57.4595,
D ?? 44.0388,30.6182,17.1976,3.777,-9.6436,-23.0642/

* DATA RY'22.5526.45.IO52.67.6578.90.2104.1 12.764.135.316,157.869,
* # 177.7653, 197.6o2,:i7.559,237.456,257.353,277.25/

*= = = = = DATA FOR ALUMINUM ALLOY = = = = = =
*

* DATA OMG1/3.384515/.OMG2/3.568821/

* DATA PYl -2.320288E-02.
* # -8.960620E-02,
* a -1.944046E-01,
* ^ -3.32S017E-01,
* U -5.000 194E-01,
* ^ -6.913154E-01,
* U -9.019864E-0I,
*

?? -1.199010E + 00,
* ^ -1.516552E + 00,
* ^ -—

rF

1.850174E + 00,
•2. 195575E + 00,-2.548629,-2.905414/

* DATA PX2;2.632094E-O2 .

*
?? 1.024161E-01.

* # 2.239926E-01,
* =f 3.8676S6E-01,
* # 5.864863 E-01,
*

?? S.189327E-01,
* ^ 1.079948E + 00,
* tt 1.331760E + 00,
* # 1.601 282E + 00,
* # . 1.884697E + 00,
* ^ 2.178297E + 00,2.478518. 2.781967/

* DATA PZ2/ -9.574829E-03,
* U -3.726606E-02,
-

=? -8.15lll(^E-o2.
* ? -i.40151^E-()l,
* » -2.134380E-01,
* # -2.980351E-01,
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i

I

-3.930303E-01,
-2.231787E-01,
.4.1386()8E-02,
1.49'749E-0L

3.478057E-03,5.503027fe-01,7.549778E-01/

*= = = = = DATA FOR COMPOSITE MATERIAL
*

D
D
D
D
D
D
D
D
D
D
D
D

DATA OMGl/4.287485, .OMG2;4.461334/
DATA PYl/ 2.384356E-02,
# 9.20775 1 E-02.
u 1.997595E-01,
^ 3.419566E-01,
^ 5.I37555E-01,
4 7.102798E-01,
# 9.266955E-01,
# 1.218125E + 00,
^ 1.530611E + 00,

1.S59596E + 00,

rf 2.200665E + 00,2.549586,2.902334/

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

DATA PX2/

"data PZ2/

2.632090E-02
,

1.024162E-01.
2.239929E-01.
3.867693E-01,
5.864875E-0I.
8.189344E-01.
l.O79951E^0O,
1.33I764E + 00,
1.6012S6E^00,
1.S84702E + 00.
2.178303E + 00,2.478525.2.781976/

-9.575142E-03.
-3.726674E-02,
-8.151225E-02,
-1.407533E-01
-2.1 3440 lE-01
-2.980377E-01
-3.930335E-01
-2.23181 lE-01
-4.138775E-02,
1.49774 lE-01

3.478057E-01,5.503036E-01.7.549797E- 01/

CALL CONST {N.DX.RH0,TM.RX.PY1.PX2.PZ2,SST1,SST2.SST3,SST4,
SST5.SST6,SST7,SST8)

DERIVATIVE
NOSORT
* TAO=_10..-10.*STEP(6.85)

TAbr=Cl *TIME**2
TA02 = C2*(1.- STEP(C3 J)
TA0=S\VITCH(TIME.LE.T1,TA01,TA02)

* TAO = 0.
, , ;

A(1,1)=RIBZZ+RIRZZ + X2**2 + X3**2*(1.-2.*SST3-2.*SST4) ...

^2.-X3-(SSTl + SST2)
A{ 1,2) = SST7 + SST8 + ( SST5 + SST6)*X3
A 1,3) = -X2-1SST5 + SST6)
A2,l =A(1.2)
A(2.2)=l.()
A(2.3) = 0.0
A 3,1)=A(1,3)
Af3,2i = 0.0
A(3.3")= l.O

B(l) = TAO-2.*XlD*fX2D*X2 + X3D*(X3 + SSTl + SST2-2.-X3*(SST3
9*V7B(2)=X1D--2*X2-2.*X1D*X3D-^XSST5 + SST6)-0MG1*

-2.*ZETA*OMGl*X2D
=2*x:

SST4)))
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B( 5) = X 1D=""=2*(X3-SST1-SST: - 2.*X3*(SST3 + SST41-h 2.*X1D*X2D*(SST5
-^ SST6))-OMG2**2-X3-2.*ZETA • OMG2'^'X?D

CALL DGLFA (A. 3. 3. IPVT, lERj
IF(ILR.NE.0)GOTO 112
CALL DGESL (A, 3. 3. IPVT. B, 0)
XlD=INTGRL(>^O.fe(l))
X2D=INTGRLO..B{2)f
X3D=INTGRLO..Bl3)
X1 = INTGRL(0.,X1D]
X2=INTGRL 0.,X2D
X3=INTGRLO.,X3D
TH = X1
THD=X1D
a = x:
'1D = X2D
)2=X3
)2D=X3D
WX=PX:(N)*Q2
WY=PY1CNV'Q1
WZ=PZ2(N]-Q2

- WXYZ = \VX-^ + WY**2 + WZ**2
\V=SQRT(WXYZ)
XSLOP= RXlL-Ql-57.2957
YSLOP= RY2L*d2-57.2957
ZSLOP= RZIL^OI ••=57.2957

* WRITE(6.120)RIBZZST1.ST2.ST3.ST4.ST7_,ST8,ST1I,ST12,ST16,ST18, ...

* ST5.ST9.STl6.ST19.ST20,ST2LST2i
*120 FORMAT(2X,i8(F12.5.2X))

RETURN
112 WRITE! 6.1 14) TIME. lER
114 FOR.MAT(2X.-0 lER = .17)

* CALL ENDJOB
* WRITE(6.116|(Q(IF1).IF1=1.N)
*116 FORMAT! 2X.jFS.3;2X)
PRINT TH.THD. Q1.Q2.WX.WV WZ.W.XSLOP,YSLOP.ZSLOP,TAO
CONTRL FINTIM = 4D..DELPRt=.S0
SAVE 0.025.TH.THD.Q1,Q2.TAO,WX,WY,WZ,W.XSLOP.YSLOP,ZSLOP
•END
*PAR.AM CI = .8 ,C2=20. ,C3= 14.0
*END
*PAR.AM CI = 1.6 ,C2 = 40. .C3 = 8.7
GRAPH (GILNT = 7.LO= -8.00.DE = TEK618.SC = 8.0 ) TIME{NT = 5,LE= 10.,UN =

SEC ,TAO(rN='LBS-IX'. RU= 1.l1= I ) ...

.TAO(AX = OMIT,RU= 2.LI = 2).TAO(AX = OMIT,RU= 3, LI = 3)
GR.\PH (G12,NI = ^.LO = 6..DE = TEK618.SC = 8.0)TIME(ST = 5.LE=10..UN= ...

'SEC'lTH(UN='R.AD .RU= l.LI= I) ...

,TH(AX=OMIT.PO = 0. .RU = 2.LI = 2)...
,TH AX=OMIT.PO = 0. .RU = 3.LI = 3)

GR.\PH fGl.NI = '^.LO = O..DE = TEK61S.SC = ;3 ) TIMEfNI = 5.LE= 10.,UN= ...

SEC').THD(PO= .0. UN= 'R.-\D SEC'.RU= l.LI= I) ...

.THD(PO=.0.AX=OMIT .RU=2.LI = 2) ...

.THD(PO= .O.AX = O.VIIT .RL' = 3X1 = 3J
GR.'\PH(G2.NT = 8.LO = -.80 .SC=.20a bE = TEK618) ...

TIME(NI = 5.LE=10..UN='SE(^').Q1(UN='IN,RU=1,LI=1), ...

Q1(PO = 0.. AX = OMIT.RU = 2.LI = 2), ...

QUPO = 0.. AX = OMIT.RU = 3.LI = 3)
GR.-\PH (G3.NI = S.LO = 0.00 .SC = .500 ,DE = TEK618) ...

TIME(NT = 5,LE= 10.,UN= 'SEC').Q2(L'N= INiRU = 1, LI = 1) ...

,Q2(PO = 0., AX=OMIT.RU= 2. Lr= 2} ..

.Q2(PO = 0.. AX = O.MIT.RU = 3.LI = 3)
(G5.DE = TEK618.LO = .O.O.SC = .60 .NI =GR.APH (G5.DE = TEK618.LO = .O.O.SC = .60 .NI = 8 ) TIME(NT = 5.UN= 'SEC ..

.LE= 10.),WX(UN=IN' .RU=1.LI= 1) ...

.WX(PO = 0..AX = O\nT,RU=2.LI = 2) ...

.WX(PO = O..AX = OMIT.RU = 3,LI = 3}
GR.APHfG6.DE = TEK618.LO = -0.4.SC = . 10 . NT = 8 ) TIME(NT = 5.UN= 'SEC ..

.LE= 1().).WY(L'N=IN' .RL= l.LI= 0...

.WY(PO = O..AX = OM IT.RU = 2.LI = 2) ...

.WY PO = O..AX= OMIT,RU= 3,LI = 3}
GRAPH (G7;dE = TEK6I8,LO = ..0,SC = . 15 ) TIME(NT = 5,UN= 'SEC,LE= 10.)
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,WZ{I;N='I\'NI = 8,RU--=I.LI=1) ...

WZ PO = 0.,A^=O\llT,RU = 2,Lr=2) ...

\VZ PO = O..AX = OM1T,RU = 5,LI = 3.

GRAPH (GSDE=TEK618,LO = 6.0,SC=.55,M = S,1'IU=1,2)TIME.'NI = 5,UN= SEC
,LE= 10.kW(UN= 'IN'.RU= l.LI= f) ...

W(PO= 0.,AX = OMIT.RU = 2.LI = 2) ...

,W(PO = O..AX=OMIT,RU = 3,LI = 3)
GRAPH {G9,DE = TEK61S.LO = - .4^C^= .l.M = 8.RU= 1 ) TIME(NI = 5,UN= SEC

.L^= 10.).XSLOPaN= 'DtG'.RL = \.Lt= 1), ...

XSLOP(PO = 0.,AX=OMIT,RU = 2.LI = 2) ...

.XSLOP(PO = O..AX = OMlt.RU = 3. LI = i)

GR.APH(G4,DE = TEK618.LO = -l.:.SC = .3.NI = 8,RU=l ) TIME(NI = 5,UN= SEC
.L^= 10.).YSLOP(UN= •DEG'.RU= I.Lr= 1), ...

YSLOP(PO = 0.,AX = OMIT.RU = 2,LI = 2). ...

YSLOP(PO = O..AX=O.ViIT.RU=3.LI = 3I
GRAPH (GZ,DE = TEK618.LO = -.4(XSC = .l,NI = 8.kU=l ) TIME(NI = 5,UN= SEC

.LE=10.).ZSLOPfL"N='D^G'.RU= l.LI=l), ...

ZSLOP(PO= O..AX = OM IT.RU = 2.LI = 2), ...

ZSLOP(PO = O..AX = OMIT.RU = 3. LI = 3)
LABEL (GU) APPLIED TORQUE
LABEL G12) ANGULAR DISPL.ACEMENT
LABEL Gl) ANGULAR VELOCITY
LABEL (G2) GENERALIZED DISPLACEMENT Ql
LABEL (G3) GENER.-\LIZED DISPLACEMENT 02
*LABEU(G4) GENER.ALIZED DISPLACEMENT Q3
LABEL (G5) DISPLACEMENT IN X-DIRECRION
LABEL {G6) DISPLACEMENT IN Y-DIRECTION
LABEL (G7} DISPLACEMENT IN Z-DIRECTION
LABEL (G8) MAGNITUDE OF DEFLECTION AT TIP POSITION
LABEL (Cj9) X-SLOPE AT THE TIP POSITION
LABEL GO) Y-SLOPE AT THE TIP POSITION
LABEL ( GZ) Z-SLOPE AT THE TIP POSITION
END '

STOP
FORTRAN
C

SUBROUTINE CONST (N.DX.RH0.TM.RX.PY1,PX2.PZ2,SST1,SST2,
1 SST3.SST4.S'ST5.SST6.SST7.SSr8^

c
IMPLICIT REAL*8(A-H.O-Z)
DIMENSION RX(U),PY1(13),PX2(13),PZ2(13)
ST1 = 0.0
ST3 = 0.0
ST5 = 0.0
ST7 = 0.0
DO 10 I=LN-1

ti = r:^(iV'-px2(I)
T3 = PZ2(I)-*2
T5=PX2rn*PYKI)
T7=RX(TfPYl(I)
ST1 = ST1 + T1
ST3 = ST3 + T3
ST5=ST5 + T5
ST7=ST7 + T7

10 CONTINUE
PRINT =.ST1.ST3.ST5.ST7
SSTl = (STl + RX(NV'TX2(N)/2.0)-RHO*DX
SST3 = ST3 + PZ2(NV--^^2 2.0)-RHO^-DX
SST5= ST5 + PX2fN)-PYl(N) 2.0)*RHO'-DX
SST7 = <ST7-^ RX(N)-PY1(N);2.0)*RHO*DX
SST2 = TM*RX(N)*PX2(N)
SST4 = TM*PZ2{N)**2
SST6=TM-PX2fNV'PYl(N)
SST8 = TM - RX( N)^^-PY UN

)

WRITEi6.20)SSTl,SST2.SST3,SST4.SST5,SST6,SST7,SSTS
20 FORMAT(2X,S{F12.4,2X)j

returns'
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3. PROGRAM OF DOUBLE LINK FLEXIBLE BOOM IN 3 DIMENSIONAL
MOTION WITH THREE MODES

* * * * * * * * * * * * * * * * * * * rf * * * « * * * * * * « * * * * * * * .-s * # * * * * * * * * -1: * * * * * * * -Is * * * * * * * * « * * * * * * .-;: * * * ft * «
*

* SIMULATIOMS OF DOUBLE LINK FLEXIBLE BOOM
* IN 3 DIMENSIONAL MOTION WITH 3 MODES
*
;R * * ft * ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft * * * ft ft ft ft ft ft ft « ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft

ft

TITLE SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS FOR
TITLE DOUBLE LINK FLEXIBLE BOOM IN 3 DIMENSIONAL MOTION
TITLE WITH THREE MODES
*

* THIS PROGR.-\M USES 3 MODE SHAPES FOR 3D ALUMINUM ALLOY
ft

FIXED lER, IPVT. N. I

CONST DX= 24.,DELT= .04 .RHO= 3.0690E-04,N= 13
PAR.AM CI = .4 .C:= 10. ,C3= 24.65
nNCONX0= l.iTOS
ft

INITIAL
TM = 9.7176E-02
ZETA = 0.0

* ZETA = 0.002
* ZETA = 0.005

RIBZZ= 145.39
RIRZZ= 7.646
RX1L= 1.381823E-02
RZlL = -6.144172E-03
RY2L=1.527773E-02
RY3L = -3.149467E-02

«

* DIMENSION SIZE SHOULD BE EXPRESSED BY NUMBER INSTEAD OF CHAR.'XCT

D DIMENSION .\(4.4),RX(13\PY1(13),PX2{13),PZ2(13),PX3(13),PZ3(13)
ARR.A.Y IPVTi4),B(4)

D DATA OMG1/3.384515/.OMG2/3.568821;,OMG3/1.796723E + 01/

D DATA PYl -2.320288E-02,
D # -8.960620E-02.
D ti -1.944046E-01,
D # -3.32S017E-Oi,
D ^ -5.000 194E-0L
D U -6.913154E-01.
D ^ -9.019864E-01.
D U -1.199O10E + O0,
D ^ -1.516552E + 00,
D ?? -1.850174E4-O0.
D i^ -2. 195575E + 00,-2.548629,-2.905414

D DATA PX2 2.632094E-02
,

D U 1.024161E-01.
D # 2.239926E-t)l,
D ^ 3.867686E-01,
D U 5.864863E-01,
D ff 8.189327E-01,
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D # l.079948E-^00,
D # 1.331760E + 00,
D ^ 1.601282E + 00,
D % 1.884697E + 00,
D # 2.178297E + 00,2.478518,2.781967/

D DATA PZ2/ -9.574829E-03,
D U -3.726606E-02,
D p- -8.151116E-02,
D # -1.401517E-01,
D S -2.134380E-01,
D ^ -2.980351E-01.
D ±i -3.930303E-01,
D ^ -2.231787E-01,
D tt -4.138608E-02.
D § 1.497749E-01.
D 4 3.478057E-0I,5.503027E-01,7.549778E-01/

D DATA PX3/ 1.33S891E-01,
D U 4.792555E-01,
D p 9.518909E-01,
D # 1.468896E-01,
D • '^ 1.949881E-00.
D 3 2.318285E-00,
D # 2.5025S3E-00.
D U 2.459048 E-00,
D S • 2.226467E + 00,
D # 1.S3962IE + 00.
D n 1.33590IE + 00.7.543012.1.341246/

D DATA PZ3/ -4.8908 16E-02,
D 4 -I.747880E-01,
D # -3.46990 1 E-ni,
D 'fi -5.353417E-01,
D 3 -7.105826E-01,
D n -8.448452E-01,
D U -9.120993E-O1,
D # -9.414692E-01.
D p -1.098786E4-00,
D # -1.359918E + 00,
D ?f -1.699870E + 00,-2.092339.-2.510817/

D DATA RX'8. 2085. 16.417.24.6255. 32.834,41.0425.49. 251,57.4595,
D U 44.0388.30.6182.17.1976.3.777,-9,6436.-23.0642
* DATA RY 22.5526.45.1052.67.6578.90.2104.112.764.135.316,157.869,
*

?f 177.7653,197.662,217.559.237.456.257.353,277.25;

CALL CONST (N.DX.RHO.TM.RX,PYl,PX2,PZ2,PX3,PZ3, ...

SST1.SST11.SST2. ...

SST21.SST3.SST31.SST4.SST41.SST5.SST51.SST6.SST61
,SST7.SST8.SST9.SST10,SSTI2.SST13)

*

DERIVATIVE
NOSORT
* TAO=3-10.=^^STEP(6.85)

TAbi = Cl 'TIME- ^^=2

TA02 = 02=^11.- STEP(C3 J)
TA0=SWITCH(TIME.LE.T1,TA01,TA02)

* TAO = 0.

A(1,1)=RIBZZ+RIRZZ + X2**2 + X3**2 + X4**2 + 2.*X3*(SST1 + SST2).,
+ 2.*X4-fSSTll + SST21)-2.*X3**2-SST3-2.*X4*--2*SST31 ...

-4.-=X3-X4'SST9-2.'=(X3-*2*SST4+X4*-2-SST41) ...

-4-X3*X4-SST10
= SST7 + SST8 + ^SST5 + SST6)*X3 + (SST5H-SST61)*X4
= -X2-(SST5 + SST6)
= -X2^^=(SST51 + SST61)

'",2)
=^t[l
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A(2,3) = a(
A(2.4)=0.i

,?) = 0.0
.0

A(3,1) = A(1,3)
A(3,2 =0.0

A( 3.41 = 0.0
A 4,n= All,4)A 4,2 =0.
A4,3) = 0.

A4,4)=l
B(l) = TAO-2.*XlD'X2D*X2-2.*XlD*X3D*(X3 + SSTl + SST2-2.*(...

X3-fSST3+SST4)+X4-(SSTQ+SST10)))-2.•••XlD*X4D•••fX4+ ...

SST13 + SST12-2.-(X3-(SST9 + SST10) + X4*(SST3H- $ST4ni)
B{2) = XlD-^=*2*X2-2.^^XlD*X3DlSST,5 + SST6)-2.-XlD*X4D=^-(SSTil + SST61)

-OMGl**2*X2-2.-ZETA-OMGl*X2D
B(3)=X1D**2*(X3-SST1-SST2 + 2.*X3*(SST3 + SST4) + 2.*X4-(SST9 + SST10)

1+ 2. •=X1D-X2D*{SST5 + SST6)-OMG2**2-^=X3-2.-ZETA*OMG2-X3D
B(4)= XlD^---'-2*(X4-SSTl 1-SST21 + 2.*X3-\SST9 + SSfl())+ 2.*X4*(SST31 +

SST41))+2.-XlD-=X2D*(SST51 + SST61)-OMG3*-2-X4
-2.-^=ZEtA^=OMG3^^^X4D

CALL DGEFA (A. 4. 4. IPVT, lER)
IF(IER.NE.0}GOTO 112
CALL DGESL (A, 4. 4. IPVT, B, 0)
XlD=INTGRL(0..B(n)
X2D=INTGRL 0..B(2))
X3D=INTGRL 0..Bf3))
X4D=1NTGRL 0.,B(4)
X1 = INTGRL(0..X1D
X2=1NTGRL(0..X2D
X3=INTGRL(0..X3D
X4=INTGRL(0.,X4D)
TH = X1
THD = X1D

•l = X2
ilD = X2D
>2 = X3
>2D = X3D
>3 = X4
>3D = X4D
WX= PX2(N)*Q2 + PX3{N)*Q3
WY=PYICM-Q1
WZ = PZ2(N}-a> + PZ3(N)*Q3
WXYZ = WX*-^ + WY--*2 + WZ**2
W=SQRT(WXYZ)
XSLOP= RX1L*QI*57.2957
YSLOP = i RY2L^'-Q2^ RY3L*Q3)*57.2957
ZSLOP= RZlL-Or-57.2957

* \VRITE(6.120)RIBZZ.ST1,ST2^ST3.ST4,ST7.ST8,ST11,ST12,ST16,ST18, ...

* ST5.ST9.ST10,ST19.St20,ST21.ST22
*120 FORMAT(2X.18(F12.5.2X))

RETURn
112 WRITE(6.il4)TIME,IER
114 FORMAT! 2X.'0 lER ='. 17)

* CALL ENDJOB
* WRITE(6.116KQ(IF1).IF1 = 1,N)
-116 FORMAT! 2X.jF8.3.2X)
PRINT TH.THD. Q1.Q2.WX.WY.WZ.W.XSL0P,YSL0P.ZSL0P.TA0
CONTRL FINTIM = 40..DELPRT=.S0
SAVE 0.025,TH.THD,Q1,Q2.TAO,WX,\VY',WZ,W,XSLOP,YSLOP,ZSLOP

*PAR.AM CI = .8 .C2 = 20. ,C3=14.0

PAPLAM CI = 1.6 ,C2 = 40. .C3=8.7
GRAPH (Gl LM = 7.LO = -8.00,DE = TEK618.SC= 8.0 ) TIME(NI = 5,LE= 10.,UN

'SEC'lTAO(UN='LBS-IN'.RU=l.LI=l ) ...

.tao(ax = omit.rl = :.li = 2).ta0(ax= omit.ru= 3.li= 3)

graph!g12,m = ^.lo = u..de = tek61s.sc = 8.0}time(nt = 5,le=10.,un= ..

'Sec3.th(LN='r.ad;,ru=i,li=i)...
,TH(AX = OMIT,PO = d. ,RU = 2,LI = 2) ...
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,TH(AX = OMIT.PO = 0. .RU = 3,LI = 3)
GR.'\PH(Gl.Ni = 'LLO = 0.,DE = tEK6llSC=.3 ) TIME(NI = 5,LE= 10..1jN= ...

'SEC ^THl3(PO=.6, N= RAD/SEC.RU= i.LI=l) ...

,THD(PO= .O.AX = OMIT.RU = 2,Lr= 2) ...

thdcpo-.oax = omit;ru = 3xi = 3)

GRAPHJ'G2.NI = 8,LO = -.16 ,SC = .040. DE = TEK618) ...

TIME1NI = 5,LE=10..UN = 'SEC').QI(UN = '1X,RU=1,LI=1)...
,Q1(PO = 0., AX = OMIT,RU = 2,LI = 2)...
Q1(PO = 0., AX = OMIT.RU=3.LI = 3)

GRAPH K}1m = 8,L0 = 0.00 .SC = .200 ,DE = TEK618) ...

JI\iE(NI = 5.LE= 10..UN='SEC'),Q2fUN='IN'.RU= 1,LI= 1) ...

!Q2(PO = 0.. AX = OMIT.ru = 2.Li = 2) ...

,02(PO = 0.. AX=0MIT.RU=3.LI = 3)
GR.^PH iG5,DE = TEK618.LO = .0.0,SC = .60 .M = 8 ) TIME(NI = 5,UN= SEC ...

.LE = 10.).WX(UN = IN" .RU = 1 .LI = 1) ...

,\VX(PO = 0.,AX = OMIT,RU = 2.LI = 2) ...

.WX(PO = O..AX = OMIT.RU = 3.LI = 3}
GRAPH (G6.DE = TEK618.LO = -0.4.SC = .10 . NI = 8 ) TIME(NI = 5.UN= SEC ...

.LE=10.).WY{UN='IN' ,RU=1,LI=1)...

.WY(PO = O..AX=OMIT,RU = 2.LI = 2)...

.WY(PO = O..AX = OMIT.RU = 3.LI = 3)
GR.APH (G7.DE = TEK618.LO=-.0.SC=.l5 ) TIME(XI = 5,UN= SEC,LE= 10.) ...

,WZ(UN='IN'.M = 8.RU= 1.11=1) ...

.WZ(PO = 0.,AX = OMIT.RU = 2.LI '=
2) ...

.WZ(PO = 0..AX = OMIT.RU = 3. LI = 3i

GRAPH I G8.DE = TEK618.LO = O.O.SC = .55.NI = 8,RU = 1,2)TIME(NI = 5,UN = SEC
,LE=10.).W(UN= IN'.RU= 1X1=1)... • .

.W{PO=O..AX = OMIT.RU=2.LI = 2) ...

,W PO = 0..AX = OMIT.RU = 3.LI = 3y
GRAPH (G9.DE = TEK618.LO = - .4.SC = .l.NI = 8,RU= I ) TIME(NI = 5,UN= 'SEC-

.LE= 10.).XSLOP(UN = 'DEG'.RU= l.LI= 1), ...

XSLOPfPO = o..AX = OMIT.RU=2.LI = 2) ...

.XSLOP(PO = O..AX= OMIT.RU = 3.LI = 3)

GRAPH(G4.DE = TEK618.LO = -1.2.SC = .3.NI = 8.RU=l ) TIME(NI = 5.UN= SEC
.LE= 10.).YSLOPfUN=DEG'.RU= l.LI= D, ...

YSLOP(PO = 0.,AX = OM IT,RU = 2,LI = 2), ...

YSLOPfPO = 0..AX= OMIT.RU = 3.LI = 3)
GRAPH (GZ.DE = TEK618.LO = ..40.SC = T.NI = 8.RU= 1 ) TIME(NI = 5,UN= SEC

.LE= 10.(.ZSLOP(UN = 'DEG' RU= 1,LI= 1),

ZSLOP(PO = 0.,AX = OMIT,RL = 2,LI = 2;
ZSLOPfPO = O..AX = OMIT,RU = 3.LI = 3

LABEL (Gil) APPLIED TOROUE
LABEL G12) ANGULAR DISPL.ACEMENT
LABEL (Gl) ANGULAR VELOCITY
LABEL fG2) GENERALIZED DISPLACEMENT
LABEL (G3) GENER.\LIZED DISPLACEMENT Q
*LABEL(G4) GENER.ALIZED DISPLACEMENT^
LABEL (G5) DISPLACEMENT IN X-DIRECRION
LABEL (G6) DISPL.^CEMENT IN Y-DIRECTION
LABEL (G7) DISPLACEMENT IN Z-DIRECTION
LABEL (G8) MAGNITUDE OF DEFLECTION AT TIP POSITION
LABEL (G9 X-SLOPE AT THE TIP POSITION
LABEL G4} Y-SLOPE AT THE TIP POSITION
LABEL GZ) Z-SLOPE .AT THE TIP POSITION
END
STOP
rORTR^AN

SUBROUTINE CONST (N.DX,RHO.TM.RX,PYl,PX2,PZ2,PX3,PZ3,
1 SST1.SST11.SST2.
1 SST2I.SST3.SST3I.SST4.SST41.SST5,SST51,SST6.SST61,
I SST7,SST8.SST9.SST10.SST12,SST13)
IMPLICIT r£aL-S(A-H.O-Z)
DI\I_ENSION RX(13),PY1(13),PX2(13),PZ2(13),PX3(13),PZ3(13)
Oil ~~~ yJ . \J

STl 1 = 0.0
ST3 = 0.0
ST3 1 = 0.0
ST5 = 0.0
ST5 1 = 0.0
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ST7 = 0.0
doioi = in:-i

ti = r:^(I)*px2(I)
Tll = RXnV'=PX3(i)
T3 = PZ2n)**2
T31 = PZ3{I)*-=2
T5 = PX2(I)-PY1(I)
T51 = PX3(i)*PYl{i)
T7=RX(I)*PYl(n
T9=PZ2(I)*PZ3'(I)
T13=RX(I)
STl = STr+Tl
ST11 = ST11 + Tll
ST3 = ST3 + T3
ST31 = ST31 + T31
ST5=ST5^T5
ST51 = ST51 + T51
ST7=ST7 + T7
ST9=ST9 + T9
ST13 = ST13 + T13

10 CONTINUE
SSTl = (STl + RX(N)-PX2(N)/2.0)*RHO*DX
SSTl 1 = ( STl 1 ^ RX(N)''=PX3rN)'2.0)--RHO-DX
SST3 = ( ST3 + PZ2( N)-'"-''=2/2.U)-RHO-DX
SST31 = { ST31 + PZ3(N)-^"'=2;2.0)-RHO*DX
SST5 = (ST5 4-PX2(N)*PY1(N).2.0)-RHO-DX
SST51 = (ST51 + PX3(N)*PY1(N),'2.0)-RHO*DX
SST7 = ( ST7 -^ RX(N )'-PYl(N)'2.0)*RHO--DX
SST9 = /ST9 4- PZ2(N)*PZ3'(N )/2.0)-RHO*DX

/ SST13 = ( ST13 + RX(N)--PX3(N)/2.0)mHO-^=DX
SST2 = T\P^-RX(N}-'PX2fN)
SST21 = TMmX(N')--PX3(N)
SST4=TM-TZ2(N)-*2
SST41 = TM*PZ3(N)--2
SST6= TM*PX2(N)-PY1(N)
SST61 = TVP' PX3(N)*PY1(N)
SSTS = T\{ ' RX( N )-PY 1( N)

C WRITEl'6.20)SSTl.SST2.SST3.SST4.SST5,SST6,SST7,SST8
C 20 FORMAT('2X.S(F12.4.2X))

RETURN
END
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