
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1987

Vertical wind shear as a predictor of tropical
cyclone motion.

Meanor, Denis H.

https://hdl.handle.net/10945/22846

Downloaded from NPS Archive: Calhoun





DUDLEY KNOX LXBRABY

^I^AL POS^^OTy^Or/ATE SCHOOL

MOiJTEBii-^ U.-^IFORW^i^ 9.594o 5002







NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
V i_l4.^nCAL wI^ro SHEAR AS A PREDICTOR

OF t:ROPICAL CYCLONE MOT

I

ON

by

Deni s K. Meaner

March 1987

Thesis Advi sor R. L. Elsberry

Approved for public release; distribution is unlimited.

T





UNCLASSIFIED
:u«''''' ciAs^ifiCATiON OF thi? page

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSifiCATlON

^CLASSIFIED
ID RESTRICTIVE MARKINGS

SECUR'TV CLASSifiCATlON Authority

OECLASS'f'CATiON . DOWNGRADING SCHEDULE

3 DISTRIBUTION/ AVAILABILITY Of «EPORT

Approved for public release;

distribution unlimited
PERfOR.MiNG ORGANIZATION REPORT NoMB£R(S) S MONiTOMiNG ORGANISATION REPORT NuV8t«(S;

NAME Of PERfORMiNG ORGANiZAT.ON

aval Postgraduate School

60 Of'.CE SYMBOL
(It sppiictbit)

63

,'a NAME Of MONITORING ORGANISATION

Naval Postgraduate School

ADDRESS >C;ry Stat 4rx3 JiPQoat)

Dnterey, California 93943-5000

'b ADDRESS (C/fy. Sfjfe trvj /iPCoae)

Monterey, California 93943-5000

NAVt O' f'^NOiNG. SPONSORING
ORGAM2AT.ON

80 Off'Ct SYMBOL
(If tppitcibtt)

9 PROCUREMENT INSTRUMENT lOEN 'if CATlON MEMBER

OD^ESSiCiry Snte ir>c Zip Coat) '1 SOUHC? Of fuNDiNG \-.;MafRS

PROGRAM
ELEMENT NO

PRO, EC:
NO

TAS"'

NO ACCtSSG*. N>)

ERTICAL WIND SHEAR AS A PREDICTOR OF TROPICAL CYCLONE MOTION

'fasCNA. a„Th0R(S(

eanor, Denis H.

J
' '-"- :- sf poa-

a-rer '5 Thesis
Vt COvfRED i DATf Of OfPORT mr Month Oiy,

19S7 March
\ PAGc 'O.

-7;

St f-.E VFNTARY NO'A''.ON

COSAT CCJES

GROUP SuB-GROuP

'8 SuBiEC ''ESMS Conrmue on rrvtnt it ntcfinry *na laentit^ ay O'oc* numatrt

Tropical cyclone forecasting, wind snear, tropical cvclone
motion, OTCM, aecision tree, typnoons, forecast error.
emDirical ortno2onal function analvsi?

iisi'RAC iConfmu* on r^f^rif it o^ceu^ry tna la^ntify oy OKXk nutnotri

The effecrs of vertical wind shear in the environment on
cyclone
cases.

trooicai
motion are investigated for 1357 western ^Jortn Pacific Ocean
An empirical orthogonal function analysis is used to represent

tne
7C0

vertical shear zonal and meridional comoonents between the
400 and 250 m±> levels. Com.oosite wind-shear fields are aeveloped

for five past-m.otion storm categories and analyzed to determ.me tneir
statistical differences. The significant differences between these
categories represents differing synoptic forcing by the wind shear that
affeccs storm motion. Within the category of storms moving northwest:,
significant differences occur between right- and left-turning cyclones.
This demonstrates that the vertical shears derived from operationally
analyzed wind fields contain synopric forcing information rhar is
revelant to tropical cyclone motion. A regression analysis is used to

L'i'= 3 J 'ON AVAILABILITY Of ABS'RAC^

C .'.C.ASSif ED-ijNL MiTED CD SAME AS RP^ OO'^'C .SfoS

2". ABSTRACT SECURITY ClASSiE iCA ' lON

Unclassified
» '.iVE Cjf- BESPONS18LE '.D'v OuAl
Russell L. Elsberr-.-

223 TELEPHONE fnc/uoe Arn Code)

40^-o4n-2373
.2c GffiC

53Es
SYV90.

IFORM 1473. 84 MAR 93 APR eat on -ray oe useo omi em^usted
All other editions «re ooioiete

SECU"l'>' CLASSif'CATlON Of •^HiS PACt

UNCLASSIFIED



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE fWh«n Dmtm Bnfndl)

Block 1 9 (continued)

identify potential predictors from among the wind-shear EOF
coefficients. These predictors are included in the regression
equations to post-preocess the 24-, 48- and 72-h OTCM forecasts
for 1982-1983. The modified OTCM tracks utilizing this scheme
have an average error of 419 km at 72 h, which is an improvement
of 174 and 212 km over the unmodified OTCM and official JTWC
72-h forecast errors, respectively. Wind-shear EOF coefficients
included in a decision tree to select the best objective fore-
cast aid only nominally increased the accuracy of the "optimum"
forecasts .

S N 0102- LF- 014- 6601
2 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEr*'!*" Dmtm Bntmtmd)



Approved for public release; distribution is unlimited.

Vertical Wind Shear as a Predictor

of Tropical Cyclone Motion

by

Denis H. Meanor
Lieutenant Commander, United States Navy

B.A., Miami University, 1976

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY AND OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL
March 1987



ABSTRACT

The effects of vertical wind shear in the environment on tropical cyclone motion

are investigated for 1357 western North Pacific Ocean cases. An empirical orthogonal

function analysis is used to represent the vertical shear of the zonal and meridional

components between the 700, 400 and 250 mb levels. Composite wind-shear fields are

developed for five past-motion storm categories and analyzed to determine their

statistical differences. The significant differences between these categories represents

differing synoptic forcing by the wind shear that affects storm motion. Within the

category of storms moving northwest, significant differences occur between right- and

left-turning cyclones. This demonstrates that the vertical shears derived from

operationally analyzed wind fields contain synoptic forcing information that is revelant

to tropical cyclone motion. A regression analysis is used to identify potential

predictors from among the wind-shear EOF coefficients. These predictors are included

in regression equations' to post-process the 24-, 48- and 72-h OTCM forecasts for

1982-1983. The modified OTCM tracks utilizing this scheme have an average error of

419 km at 72 h, which is an improvement of 174 and 212 km over the unmodified

OTCM and official JTWC 72-h forecast errors, respectively. Wind-shear EOF

coefficients included in a decision tree to select the best objective forecast aid only

nominally increase the accuracy of the "optimum" forecasts.



TABLE OF CONTENTS

I. INTRODUCTION 10

A. BACKGROUND 10

B. OBJECTIVES 13

II. DATA DESCRIPTION AND STUDY METHODS 14

A. DATA ACQUISITION AND FIELD DEFINITION 14

B. MEAN AND STANDARD DEVIATION FIELDS 15

C. EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS 23

D. RESULTANT EMPIRICAL ORTHOGONAL
FUNCTIONS 26

in. DATA ANALYSIS 33

A. PAST-MOTION CATEGORIES : 33

B. CATEGORY NW TERCILE COMPOSITE PATTERNS 42

IV. REGRESSION ANALYSIS 49

A. POTENTIAL PREDICTORS 50

B. REGRESSION EQUATIONS 54

C. POST-PROCESSING THE OTCM 56

V. DECISION TREE APPROACH 60

A. DECISION TREE DESCRIPTION 61

B. VERIFICATION OF THE DECISION TREE : 63

C. DISCUSSION 67

VI. SUMMARY AND CONCLUSIONS 68

LIST OF REFERENCES 70

INITIAL DISTRIBUTION LIST 74



LIST OF FIGURES

2.1 (a) Mean and (b) standard deviations of the U-component shear (m/s
per 100 mb) for the 400-700 layer 15

2.2 As in Fig. 2.1, except for V-component 15

2.3 As in Fig. 2. 1, except for 250-400 mb layer 16

2.4 As in Fig. 2.3, except for V-component 17

2.5 As in Fig. 2.1, except for 250-700 mb shear layer 18

2.6 As in Fig. 2.5, except for V-component 19

2.7 Eigenvalues for the 400-700 mb zonal shear (triangles) and the Monte
Carlo eigenvalues plus two sigma (circles) 24

2.8 (a) Mode 1 and (b) mode 2 for the 250-700 mb zonal shear
(normalized fields multiplied by 100) 26

2.9 As Fig. 2.8 except for meridional shear modes 26

2.10 Orisinal 400-700 mb (a) zonal and (b) meridional shear from
Typlioon Hope on 00 GMT 30 July 1979 29

2.11 Reconstruction of the 400-700 mb zonal shear of Typhoon Hope
using (a) only 5 and (b) only 25 eigenvectors . .^ .

.' 30

2.12 As in Fie. 2.11, except for meridional shear using (a) only 5 and (b)
35 eigenvectors

"".

31

3.1 Schematic of the five past-motion categories based on the prior 12-h
speed and direction 34

3.2 Composite 250-700 mb wind shear (m/s per 100 mb) fields for (a)
Category NW and (b) Category' NE storms 35

3.3 Difference in 250-700 mb wind shear (m/s per 100 mb) for Category
NE minus Category NW storms 35

3.4 As in Fig. 3.2, except for Category SO storms 38

3.5 As in Fig. 3.3, except for Category SO minus Category NW storms 39

3.6 As in Fig. 3.2, except for (a) Category SLOW and (b) Category
FAST storms .' 40

3.7 As in Fig. 3.3, except for Category FAST minus Category SLOW 41

3.8 As in Fig. 3.2, except for the 400-700 mb shears in the composite (a)
left and fb) right terciles 44

3.9 As in Fig. 3.3, except for shear differences in the 400-700 mb layer
between the right minus left terciles 45

3.10 As in Fig. 3.9, except for fast minus slow terciles of Category' NW
storms 46



4.1 OTCM forecast positions at +24, +48, and +72 h (dots) with
backward extrapolation positions M12 and M24 52

5.1 Decision tree developed for selecting the minimum 72-h forecast error 61



ACKNOWLEDGEMENTS

The completion of this study was made possible by the generous assistance of

many individuals. I wish to thank. Dr. Russell Elsberry who directed this research

effort. His interest in this topic has motivated me to keep pressing on. The guidance

he gave throughout this time was invaluable and taught me that large problems are

best overcome one step at a time. I am grateful to Mr. Jim Peak for the continuous

assistance he provided in tackling the computer problems associated with this work.

His patience and willingness to take time to help me in each step has been much

appreciated. I would like to thank Dr. C.-P. Chang, my second reader, for his

insightful comments which contributed to a better thesis.

I would like to thank Dr. Ted Tsui, Naval Environmental Prediction Research

Facility, for preparing the comprehensive data sets used in this study. Lt. William

Wilson and Capt. Thomas Schott accomplished the initial wind EOF analysis that was

the foundation on which this work was built. The facilities and personnel at the W. R.

Church computer center provided the computing and consulting resources for this

study.

Finally, I thank my wife, Elizabeth, for her unending love, support and

encouragement these two years while my thoughts were often on my graduate studies.

This thesis has been completed as a result of her efforts in ways too numerous to

count.



I. INTRODUCTION

A. BACKGROUND
The western North Pacific Ocean is the most active tropical cyclone basin in the

world. During the 25-year period ending in 1984, an annual average of 31 tropical

cyclones occurred (NAVOCEANCOMCEN/JTWC. 1984). The need for accurate

storm forecasts is of utmost importance to the civilian and military communities. The

loss of both life and property from these storms can be considerable. To minimize the

amount of damage caused by these severe storms and to provide more accurate

warnings to ships and shore facilities, the Commander U. S. Seventh Fleet has set the

maximum forecast error requirement for tropical cyclones to be 50, 100 and 150 n mi

for the 24-. 48- and 72-h forecasts, respectively. Responsibility for forecasting tropical

cyclones in this region lies with the Joint Typhoon Warning Center (JTWC) in Guam.

The Annual Tropical Cyclone Report {NAVOCEANCOMCEN/JTWC, 1984) lists the

mean annual errors for these times since 1971 as 117, 233 and 363 n mi at 24, 48 and

72 h, respectively. To meet the above goal, forecast errors must be decreased by over

50 percent.

Development of tropical cyclone track prediction models has been underway for

many years. These models generally fall into one of six categories under either the

statistical or dynamical model headings (Neumann, 1985). The simplest statistical

model is the analog approach, which relies on the repetitiveness of large-scale patterns

and previous cyclone tracks. A historical search of the records is made to find similar

storm tracks to use as guidance for the current storm. The HURRicane ANalog

(HURRAN) developed by Hope and Neumann (1970) is still in use at the National

Hurricane Center (NHC) in Coral Gables, PL. The first analog model used in the

western North Pacific area was TYFOON (Hodge and McKay, 1970). TYAN is the

current analog model used by JTWC.

Statistical regression models were developed due to the inability of the analog

models to deal with anomalous storm tracks. The stepwise screening regression

approach utilizes predictors that represent the climatology, persistence and the

surrounding environmental fiow (steering of the cyclone). The CLImatology and

PERsistence (CLIPER) model for the western North Pacific area (Xu and Neumann,



1985) utilizes the present storm position and intensity, date and the present and past

motion to predict the storm track to 72 h. The accuracy of the position of the storm

at a warning time is critical. The CLIPER model is normally used as a benchmark to

indicate the skill of other objective aids.

One of the weaknesses of the CLIPER model is that it does not consider the

effect of the environmental flow on storm movement. The statistical-synoptic models

include this information as predictors. The first objective technique utilizing synoptic

forcing at the 500 mb level was developed by Riehl et al. (1956). Studies of the

relationship between the tropical cyclone track and the environmental steering flow

responsible for a cyclone track have been pursued by many authors (e.g. Renard, 1968;

George and Gray, 1976; Chan and Gray, 1982; Dong and Neumann, 1986).

The environmental information regarding adjacent synoptic features has been

represented in two ways. Geopotential height data on a grid positioned relative to the

tropical cyclone has been used in the development of NHC67 and NHC72 synoptic

models (Neumann and Pelissier, 1981). Another approach has been to represent the

height data with empirical orthogonal function (EOF) coefficients (Shaffer and

Elsberry, 1982; Shapiro and Neumann, 1984). A problem with using objectively-

analyzed height fields in the tropics is that temperature gradients are weak and may

not provide an accurate estimate of the height gradients (geostrophic or gradient

winds). Chan (1985) used objectively-analyzed wind fields to demonstrate that the

steering flow patterns based on these winds were similar to those based on composites

of rawinsonde data. EOF representations of those wind fields and the associated

synoptic forcing of tropical cyclone motion was the basis of the research by Wilson

(1984) and Schott (1985).

The statistical-dynamic model uses the same predictors as in the statistical-

synoptic models, as well as additional predictors of forecast fields that are provided by

the numerical models. The NHC73 model is an example of this type of model and has

proven to have the best performance in a comparison with five other objective aids in

the Atlantic Ocean basin (Neumann and LawTence, 1975). The Modified HATRACK
model (Renard et al., 1973) uses heavily smoothed isobaric height prognoses to obtain

the steering field for the tropical cyclone.

There are two categories of dynamic (numerical) models: barotropic and

baroclinic. Theoretically, these models should provide a better prediction of

anomalous tracks since they more accurately describe dynamical processes resulting

10



from the interaction of the vortex with the environment. Barotropic models rely on

vorticity advection as the primary mechanism for motion (Renard, 1968). The

SANBAR model (Sanders and Burpee, 1968) is a barotropic model that predicts a

cyclone track, based on the location of the minimum stream function or maximum

vorticity. Steering is provided by a deep-layer, pressure-weighted mean wind field.

Estimates of this mean wind field are provided by using the 850, 500 and 250 mb level

winds (Sanders et al.. 1980). However, these models lack both a unique steering level

and adequate treatment of the vortex-environmental interaction (Ley and Elsberry,

1976).

Baroclinic models are generally primitive equation models that predict motion

based on the mesoscale horizontal interaction of the cyclone and its environment. The

National Meteorological Center (NMC) Moveable Fine Mesh (MFM) model has a 60

km grid spacing and predicts storm motion based on the surface vorticity maximum

(Hovermale et al., 1975). The Nav\' Nested Tropical Cyclone Model (NTCM), which

was developed by Harrison (1973; 1981), is run to 72 h twice daily for Northern

Hemisphere typhoons. In a test conducted by Harrison and Fiorino (1982), the

NTCM was found to have considerable skill in path prediction beyond 36 h. The One-

way Tropical Cyclone Model (OTCM) is a three-layer, primitive equation model

(Hodur and Burk, 1978) that is currently in use at JTWC. It has proven to be one of

the best of the eleven objective aids evaluated by Tsui (1984) and "has been used as the

primar\' guidance for storm forecasts (Fiorino, 1985;- Elsberry and Peak, 1986).

The absence of upper-air wind observation stations in the Pacific Ocean area is

the most serious hindrance to accurate initialization of the present numerical models.

With the advent of jet aircraft, there has been an increase of data at the upper

tropospheric levels and a loss of information at the most important steering levels in

the mid troposphere (Sanders et al., 1980; Pike, 1985). Satellites have improved the

accuracy of detecting and positioning a storm, and have increased the amount of wind

information at the highest and lowest levels of the troposphere. However, there is still

a long way to go to approach the required maximum forecast error goals.

No single objective aid has been found to be superior for all forecast situations

(Jarrell et al., 1978; Tsui, 1984). To assist the Typhoon Duty Officer at JTWC in

evaluating the multiple objective aids, a Combined Confidence Rating System (CCRS)

has been developed by Tsui and Truschke (1985) that combines all the guidance

methods based on the historical accuracy of the 72-h forecasts. However, this system

11



currently does not account for the consistency of a particular model output. Another

method to aid the forecaster is the "decision-tree" approach of evaluating objective aids

(Peak and Elsberry, 1985; 1987). In this method, selection of an optimum aid for a

particular situation is through a series of yes/no decisions ("branches") based on past

and present characteristics of a cyclone.

B. OBJECTIVES

Vertical wind shear has not previously been investigated as a predictor of tropical

cyclone motion. The subject study will focus on this aspect of the storm environment.

The data set of Wilson (1984) and Schott (1985) will be used in this study of western

North Pacific Ocean tropical cyclones. In Chapter II, the mean zonal and meridional

wind-shear fields for three shear layers will be analyzed and described. Empirical

orthogonal functions (EOF) will be used to represent the synoptic forcing in these

wind-shear fields, since this technique results in a substantial savings of computer

storage space. In Chapter III, the storms will be divided into five categories based on

the past 12-h speed and direction of motion. Composite mean wind-shear fields will be

generated for each category and the statistical difference between the categories will be

investigated. The objective is to demonstrate the differences in the synoptic forcing

among the categories that determine the future storm track. Those storms that move

to the northwest will be further subdivided into three, categories and differences in the

synoptic forcing will be compared among these categories.

A second objective of this study is to utilize the synoptic forcing information

contained in the EOF coefficients to adjust the OTCM track similar to the approach of

Schott (1985) and Schott et al. (1987). In Chapter IV, a stepwise regression analysis

scheme based on storm-related EOF predictors will be applied in a "post-processing"

scheme to reduce systematic errors in the OTCM forecasts. The third objective

involves including the wind-shear EOF coefficients in a decision-tree algorithm (Peak

and Elsberry, 1987) that selects objective aids based on synoptic and storm-related

parameters. Chapter V will present the results of this method of improving forecast

errors. Recommendations for future research in this area are included in Chapter VI.

12



II. DATA DESCRIPTION AND STUDY METHODS

A. DATA ACQUISITION AND FIELD DEFINITION

The wind fields in this study are the same sets used by Wilson (1984) and Schott

(1985). The wind information for the western North Pacific area has been obtained

from the Global Band Analysis (GBA) operationally generated at the U.S. Nav\-'s Fleet

Numerical Oceanography Center (FNOC). The GBA fields are plotted on a M creator

grid from 4rS to 59.8°N. The grid has a spacing of 2.5° longitude by 2.5° latitude at

22.5° N and S. The zonal and meridional wind fields are available from 00 GMT and

12 GMT at the surface, 700, 400. 250 and 200 mb. Surface data are from land

observations and ship reports while upper-air data are based on rawinsonde

observations, aircraft reports and satellite-derived cloud motion vectors. Temperature

analyses at the intermediate levels are used to couple the winds at different vertical

levels via the thermal wind relationship. The 12-h old analysis plus 5 % climatology is

used as the first-guess field for the current analysis. If no observations are available in

a region, the final analysis becomes the previous analysis adjusted towards climatology.

The Annual Tropical Cyclone reports published by the Joint Typhoon Warning

Center (JTWC) from 1975-1983 were used to select the cases. Warning positions, best

track information and intensity estimates are included at six-hour intervals. In

addition, the 24-, 48- and 72-h official forecasts are given. The following restrictions

apply to the selection of cases: 1) tropical storms must be located in the eastern

hemisphere east of 100°E with a warning position less than 34.6°N; 2) storm intensity

must be at least 18 m/s (35 kt); and 3) zonal and meridional wind components must

.have been available at the 700, 400 and 250 mb levels. A total of 1357 cases meet

these requirements. By random selection, this set is reduced to 682 cases for

computing the EOF coefficients due to the computer's central core limit.

The geographically- oriented grid of 527 points is the same as in Wilson (1984).

These points are equidistant at 277.8 km. There are 31 east-west points and 17 north-

south points. Thus, the domain is 8334 km by 4445 km. The grid center (row 9,

column 16) is coincident with the tropical cyclone center in each case. The zonal and

meridional component winds at the three levels were extracted by Wilson (1984) from

the GBA and transferred to the grid by means of a bilinear interpolation scheme.

13



B. MEAN AND STANDARD DEVIATION FIELDS

The vertical wind shear fields are computed for the 682 cases by subtracting the

wind component at the larger pressure (lower level) firom the wind component at the

smaller pressure (upper level). Thus, three shear fields (mid- and upper-tropospheric

and deep layer) are created for the zonal and meridional components. Six

combinations of upper minus lower level shear combinations are possible to produce

the positive and negative shears of each gridpoint value (Table 1).

TABLE 1

Shear combinations that are possible to produce the

shear values at each gridpoint.

Positive (Westerly or Southerly) Shear

1. Large Upper (W or S) - Small Lower (W or S)

2. Large Upper (W or S) - Small Lower (E or N)

3. Small Upper (E or N) - Large Lower (E or N)

Negative (Easterly or Northerly) Shear

4. Small Upper (W or S) - Large Lower (W or S)

5. Large Upper (E or N) - Small Lower (E or N)

5. Large Upper (E or N) - Small Lower (W or S)

The shear fields are normalized to 100 mb to eliminate biasing the shear values

by variable depths of the layers. The patterns remain the same as before

normalization, as only the magnitude of the shear changed (Figs. 2.1, 2.2). For both

zonal and meridional components, the largest mean shear appears in the 250-400 mb

layer, with values about 50% greater than in the deep layer and 75% greater than in

the 400-700 mb layer. The largest variance is also in the upper layer rather than in the

deep or lower layers.

Each of the zonal shear patterns in Figs. 2. la, 2.3a and 2.5a has positive

(westerly) shear to the north where the upper-level westerlies are stronger than the low-

level westerlies. Shear is negative (easterly) to the south in regions with upper-level

easterlies over low-level equatorial westerlies where the monsoonal trough is displaced

away from the equator. The line that runs through the cyclone center (dot) is

14
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indicative of no vertical zonal wind shear over the center, which is expected for tropical

cyclone formation (Gray, 1979). In each case, the zero shear line trails off to the

southeast behind the storm, which could be associated with the equatorward

displacement of the inter-tropical convergence zone (ITCZ) farther east. The similarity

of the zonal shear patterns in these layers reflects a similarity in the mean north-south

temperature gradient at all levels. However, this similarity may not exist for individual

cases. The largest mean vertical shear is in the upper layer (250-400 mb; Fig 2.3a),

with the next largest shear in the deep layer (Fig. 2.5a). The smaller vertical shear in

the lower troposphere is consistent with the fact that the lower troposphere in the

tropics is conditionally unstable and does not support large baroclinicity. The standard

deviation fields for the zonal components (Figs. 2.1b, 2.3b and 2.5b) all have increasing

variability in the shear to the north of the cyclone, with the largest variability in the

upper layer. It is interesting that the standard deviations are greater than the mean

shear at nearly all points, so a large number of negative values can be expected in

individual cases even though the overall mean value is positive.

In the mean meridional shear patterns (Figs. 2.2a, 2.4a and 2.6a), the shear is

negative (northerly) to the east and south of the cyclone center and positive (southerly)

to the north and west. The deep-layer shear is only half as large as that of the upper

layer and is slightly larger than" the lower-layer shear. These mean meridional shears

are smaller and the patterns are more complex than for the mean zonal shears.

Therefore, these shear fields are more dilTicult to tie to the synoptic pattern. The

primarv' zero line separating the major positive and negative shears is generally oriented

northeast to southwest across each field and lies over the storm center, as expected.

Again, the highest temperatures (minimum east-west temperature gradients) are aligned

with the zero vertical wind shear line that passes through the storm center. The

negative shear to the east is associated with weak upper-level southerlies (or

northerlies) over stronger lower-level southerlies in the tropical cyclone. Farther to the

east, a strong northerly wind overlies a weak, northerly wind. To the west, the positive

shear is due to weak southerlies overlying even smaller southerlies or northerlies. The

standard deviation fields are shown in Figs. 2.2b, 2.4b and 2.6b. When normalized, the

upper-layer variability is the largest of the three layers. Maximum meridional shear

variability is to the north for these cases, although a nearly homogeneous distribution

of variability occurs in the upper layer. Here, the standard deviations are much greater

than the means. The high variability of positive and negative values is indicative of

warm ridges and cold troughs moving by a point on the grid.
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C. EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS

The application of empirical orthogonal function analysis to geophysical fields

was first made by Lorenz (1956). It has been regularly used since to explain the large

variation in atmospheric fields based on a minimum number of eigenvectors.

The application of the EOF method in this study will follow that by Wilson

(1984) and Schott (1985). From 682 cases of 527 gridpoints, a matrix (A) is created

with the scalar (zonal and meridional) wind shear fields for each of the three layers. A

normalized matrix (Z) is formed by subtracting the mean (B) and dividing by the

standard deviation (S).

Z(i,j) = ( A(i,j) - B(i,j) ) / S(i)
, (2.1)

where z(i,j) and a(i,j) are the elements of matrices Z and A respectively, and b and s are

the mean and standard deviation of row i in matrix A. A symmetric correlation matrix

(R) is formed as

R = Z'Z'/ ri , (2.2)

where Z' is the transpose of matrix Z and n is the number of cases (682). A particular

vector e in m dimensions is defined and normalized to length 1 so that e'e = 1. The

scalar quantity v, which is the correlation between vector e and matrix Z, then is

defined by '
•

V = e'Re. (2.3)

In matrix form, V = E'RE. Here, E is a 527x527 matrix of eigenvectors and V is a

matrix of eigenvalues (v) found when

I
R - VI

I

=
, (2.4)

where I is the identity matrix and is the null vector. The empirical orthogonal

functions are the eigenvectors in E computed from the correlation matrix R. Each

eigenvector e is associated with an eigenvalue v- that accounts for a certain percentage

of the variance in the field. The first eigenvector v^ explains the largest percentage of
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the total variance. Summing all the eigenvalues would account for 100% of the

variance.

Any case in the normalized matrix Z can be reproduced once the EOF

coefficients are knowti by computing

C = E'Z
, (2.5)

where C is a 527 x 682 orthogonal matrix of coefficients. Each column of C is a vector

that corresponds to a particular case in Z and is reconstructed by

Z = CE. (2.6)

The jth case of Z is approximated by a linear summation of eigenvectors and

orthogonal coefficients

z(i,j) = I e(i) c(i,j)
i
= 1,2,...,527. (2.7)

By using the EOF method, a large percentage of the variance in a data field can be

described with a relatively few eigenvectors. This is advantageous in the reduction of

computer storage when the synoptic fields are represented on many gridpoints.

The eigenvectors in E are ranked in order of decreasing variance. Various

approaches may be used to select a small set of vectors that must be retained to best

describe the signal in the field. These methods have been reviewed in Shaffer and

Elsberry (1982) and Wilson (1984). The Monte Carlo approach described by

Preisendorfer and Barnett (1977) will be used to distinguish between vectors with signal

and those with noise. The method involves generating 100 random data fields of

standard normal deviates, which are then placed in a Z matrix. These represent purely

random processes. The means and standard deviations are determined and the

eigenvalues are calculated as described above for the shear values. Finally, the

eigenvalues for the true physical data are compared with those from the random fields.

The eigenvalues of the physical fields that differ from the means of the random field by

more than two standard deviations are considered true signals that are significant at

the 95 % confidence level. Those within two standard deviations of the means of the

random field are considered to be noise and are not kept. A plot of the eigenvalues for
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the 400-700 mb zonal shear fields vector versus the number of modes is shown in Fig.

2.7. As a result of this Monte Carlo selection process for each field, the largest number

of modes selected to represent signal is 25 eigenvalue*? for the zonal fields and 35

eigenvalues for the meridional fields. A summar\' of the percentage of variance

explained by retaining this number of modes appears in Table 2. Up to 88 % of the

actual field is contained in only 25 zonal modes. In ever>' case, the zonal shear field

may be represented by at least ten fewer modes even though greater explained variance

is achieved. Additionally, the deep layer is best represented, since a larger total

percentage of the actual field can be reproduced even when the smallest number of

modes are retained.
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LAYER ZONAL

400 - 700 mb 85.

250 - 400 mb 79. 6

250 - 700 mb 88. 4

TABLE 2

The percent of variance explained by retaining 25 zonal

and 35 meridional modes.

MERIDIONAL

79.9

79.2

84.

Another interpretation of the values in Table 2 is that the amount of noise

present as unexplained variance is as great as 21 % for the meridional and 20 % for

the zonal shear components. Some of this noise may arise from erroneous

observations. However, a large fraction is due to the sparse data distribution and the

way in which the objective analysis method extrapolates into the data gap regions.

D. RESULTANT EMPIRICAL ORTHOGONAL FUNCTIONS

The 250-700 mb zonal shear eigenvectors 1 and 2 are plotted in Fig. 2.8a and

2.8b. In mode 1, which accounts for 27 % of the variance, the entire field is dominated

by negative (easterly) shear that increases just to the north and west of the cyclone

center. The opposite (westerly) shear can be represented by multiplying the

eigenvalues by negative 1. The second mode explains 16 % and has negative (positive)

shear to the north (south) of the mean location of the subtropical ridge in the original

mean zonal wind fields of Wilson (1984). The eigenvectors for the other two layers are

very similar in magnitude and pattern to these eigenvectors, which is also true for the

third and fourth modes.

Mode 1 of the meridional pattern for the 250-700 mb layer (Fig. 2.9a) is also

dominated by negative (northerly) shear over the field, except in the northwest corner

and eastern central region. Only 1 1 % of the variance is explained by this mode.

Although the upper-layer pattern is very similar to this deep-layer mean pattern, the

first mode of the lower-layer shear is quite different and alternates between positive and

negative shear regions oriented north-south. Eigenvector 2 patterns for all three layers

are ver\' similar to the deep-layer mode (Fig. 2.9b) and account for six to eight percent

of the variance. Such a pattern could represent the vertical shears associated with

alternating cold troughs and warm ridges to the north of the tropical cyclone.
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Interpretation of the modes as observable atmospheric patterns is difficult

because there are numerous shear combinations possible (Table 1). This is especially

true for higher order eigenvectors in which the spatial patterns are more complex than

modes 1 and 2. Large regions may contain a variety of signals that can be described

by a particular eigenvector even though those signals may actually be a result of

different processes.

Verification that the small number of modes retained does actually represent

much of the original data field demonstrates the validity of using the EOF method. If

all 527 eigenvectors are used, the field would be completely restored, but no savings in

computer storage would be realized. Reducing the data to 25 zonal and 35 meridional

modes realizes 95 % and 93 % savings in storage, respectively. The case chosen for

validation is Typhoon Hope on 00 GMT 30 July 1979 (Fig. 2.10). The 400-700 mb

zonal shear fields reconstituted by summing only 5 or 25 eigenvectors are shown in Fig.

2.11a and Fig. 2.11b, and represent 53 % and 85 % of the variance, respectively.

Figures 2.12a and 2.12b are the corresponding 400-700 mb meridional shear fields using

5 and 35 eigenvectors and represent 30 % and 79 % of the variance respectively.

These illustrations demonstrate that even a few modes can approximate the gross

features of the shear pattern. Many of the smaller scale features in Fig. 2.10 may

actually represent noise or unrepresentative values in the wind analyses of the data-

sparse tropics.
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from Typhoon Hope on 00 GMT 30 July 1979.
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III. DATA ANALYSIS

The usefulness of describing wind shear around the environment of tropical

cv'clones by EOF analysis was demonstrated in the last chapter. To further investigate

the influence of wind shear on storm motion, the cases used in this study will be

stratified to determine if the synoptic forcing is important. Recent studies of tropical

track motion have been based on composites of the total wind field to represent the

mean synoptic features in the environment. George and Gray (1976) used 13

stratification criteria in an attempt to best define the steering flows responsible for

c\'clone behavior. Chan et al. (1980) found that distinct large-scale flow patterns

surrounding a storm are associated with its turning motion. Chan and Gray (1982)

performed a comprehensive study of tropical cyclone motion in the western North

Pacific, west Atlantic, and Australian and South Pacific regions that included up to 21

stratifications. Using U. S. Navv- Global Band Analysis (GBA) wind fields. Chan

(1985) classified western North Pacific Ocean storms according to westward, northward

and northeastward motion, and found results that were consistent with previous

composite studies based on rawinsonde data. Additional studies, each with different

stratifications, have been performed by Neumann (1979), Brand et al. (1981) and

Dong and Neumann (1986).

Vertical wihd shear has not been previously investigated as a significant synoptic

forcing phenomena. This is the objective of the subject study. Composites of vertical

shear fields will be based on the total wind fields rather than the fields reconstructed by

summing a subset of EOF coefficients as in the previous chapter. Since the composites

wind fields derived from the GBA contain fiow patterns associated with difierent storm

tracks (Chan, 1985), it is expected that vertical wind-shear fields will also indicate

differences in the synoptic forcing on tropical cyclones.

A. PAST-MOTION CATEGORIES

The five past-motion categories used in this study (Fig. 3.1) were proposed by

Elsberry and Peak (1986). Table 3 lists the basic features of each category-. Categories

SLOW and FAST describe the translation speed of the storms within the past 12 h

regardless of direction. Categories SO, NW and NE contain storms that moved south.

northwest or northeast, respectively, between 2.5 m/s and 8 m/s. Using discriminant
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analysis, Elsberr>' and Peak found that the speed and direction of a storm within the

past 12 h could be used as predictors of future tropical cyclone motion. This

stratification was also used by Schott (1985), who demonstrated that different synoptic

forcing (at single levels) is responsible for whether a storm moves slow, fast, right or

left.

Only 1202 of the original 1357 cases are available since 155 cases afe missing a

past 12-h warning position. The majority of the storms (497) moved northwest at a

mean direction of 301°. Schott (1985, his Table 2) summarized the mean and standard

deviations of the storms in each categor>' according to speed, direction, intensity and

initial latitude and longitude. The storms within Category NW will be further stratified

in a later section.

The composite technique is to construct a mean and standard deviation of the

zonal and meridional shear values at each of the 527 gridpoints for each of the five

past-motion categories. The resultant vertical shear fields also have been normalized to

100 mb for ease of comparison. Differences in the synoptic forcing induced by wind

shear then can be studied among the five categories. Composite vector wind shear

fields are derived from the square root of the sum of the squares of the individual u

and v-shear fields at each level.

Storms in Categories SLOW, FAST, SO, NW and NE will be compared with

those in the northwest past-motion category (NW), which is the typical track,

orientation. Furthermore, this category contains the largest number of cases (Table 3).

The composite vector wind shear fields for the deep layer (250-700 mb) for Categories

NW and NE are shown in Figs. 3.2a and 3.2b. The 250-700 mb field is selected

because this layer incorporates" aspects of both the lower- and upper-layer shears. The

environment for Category NW storms consists of westerly shear over the entire

northern half of the domain. In comparing the fields, it is apparent that storms

moving northeast (Category NE) have a much larger directional deviation in the

environmental shear than those moving northwest (Category NW). Generally, stronger

westerly shear (baroclinicity) is found to the west-northwest and directly north of the

storm, as expected for recur\'ing storms. Stronger easterly shear appears to the south

in Category' NW storms. The thermal ridge line separating westerly/easterly shear

regions to the west of the storms is farther north for the Category NW storms. Thus,

the northwest motion of these storms is enhanced bv the warmer reeion of air.
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Fieure 3.1 Schematic of the five past-motion catesories based on the prior 12-h speed
an~3 direction classification by Elsberrv' and Peak {DS6).

TABLE 3

Characteristics and sample sizes for the five past-motion
categories based on past 12-h motion of the storm.

Category

SLOW
FAST
SO
NW
NE

Total

Characteristic

<2. 5 m/s
>8. m/s
091-270°
271-340O
341-090O

Sample Size

169
174
124
497
237

1202
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Figure 3.3 DifTerence in the 250-700 mb wind shear (m/s per 100 mb) for Cate2or\' NE
minus Categor>- XW wjth symbols as m Fig. 3.2. " '

Subtracting these composite vector wind fields in Fig. 3.2 emphasizes the

differences in the shear features. Subtracting Category' NW from the other categories

is akin to removing the typical storm environment, with positive (negative) deviations

at a gridpoint indicating more positive (negative) shears. The Students t-test is used to

determine if either the zonal or meridional components at each gridpoint are

significantly different. The null hypothesis is that there is no difierence. For a 95 %
confidence of statistical difference, the t-value at a gridpoint must be greater than 1.96.

If this occurs for either the u or v component, the total wind vector at that gridpoint is

considered to be different. Table 4 lists the number of significant points between each

of the five categories for the u, v and vector fields between the various levels. For

example. 466 of the 527 gridpoints between Categories NE and N\V are statistically

different at the 95 % confidence level. Thus 87 Vc, of the gridpoints are different,

which is strong evidence that the overall synoptic forcing between these storm-motion

categories is different. The difference in shear vectors for Categor>- NE minus NW
(Fig. 3.3) illustrates the shear forcing present for northeast-moving storms relative to

those moving to the northwest. The basic pattern is for more westerly shear in the
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Categories Shear Layer U-field V-field

SLOW - NW 400-700
250-400
250-700

mb
mb
mb

94
27
61

134
171
179

FAST - NW 400-700
250-400
250-700

mb
mb
mb

345
301
356

162
168
226

SO - NW 400-700
250-400
250-700

mb
mb
mb

308
197
310

183
294
289

NE - NW • 400-700
250-400
250-700

mb
mb
mb

439
349
428

143
200
197

FAST - SLOW 400-700
250-400
250-700

mb
mb
mb

265
270
311

201
156
205

TABLE 4

The number of gridpoints with statistically different u, v
and vector shear values within each shear layer and between
the categories based on the Student's t-test using a 95 %
confidence level statistical difference.

Vector-field

206
191
210 .

406
366
431

370
380
425

450
42 7
466

373
345
395

Categon' NE storm relative to that in Category NW storms, especially west of the

storm center. This is consistent with more eastward track components in Category NE

relative to Category NW. Northerly shear is clearly present to the east of the storm

center. A weak (cold) thermal trough is found to the northwest of the tropical cyclone

in all three shear layers. Viewed with respect to Category' NW, the Categor>^ NE

storms are colder over and to the north of the tropical cyclone, which corresponds

geostrophically to increasingly westerly winds aloft in Fig. 3.3.

Storms that are moving to the south in Category SO (Fig. 3.4), have stronger

westerly shear to the north (7 m/s per 100 mb) compared to those moving to the

northwest (Category' NW). Notice a regular pattern of anticyclonic shear is over and

directly to the west of the cyclone. Thus, these cases that have an unusual southward

motion appear to be still located in the warm tropical air. The number of gridpoints

with significantly different mean shear values between these storm categories is not as

great as between Categories NW and NE (Table 4). There are 425 significantly

different points in the 250-700 mb layer with an approximate balance between the

number of differing u and v components. The largest Category SO minus NW shear

differences are to the north of the tropical cyclone, which suggests a more intense
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westerlv trough in that region for the southward moving (Categor>- SO) storms. It is

rather surprising that Category SO storms have southeasterly shear to the east and

southwesterly shear to the west of the cyclone center (Fig. 3.5). The forcing that

results in these storms moving to the south is not clearly evident, although the region

with minimal shear differences (warm ridge) immediately to the west o[ the storm

center may have some role in distinguishing storm motion difTerences. A warm ridge

also appears to east of the storm.
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Figure 3.4 As in Fig. 3.2, except for Category SO storms.

There appear to be several similarities between slow storms (Categor\' SLOW)

and northwest-moving storms (Category NW). Fast storms (Categorv' F.AST) and

northeast-moving storms (Category NE) also seem to be similar in pattern. Thus, the

differences between slow and fast storms are similar to the Categon.' NE minus

Category NW results. The obvious difference between fast-moving (Categon,- FAST)

and slow-moving (Categor\' SLOW) storms (Fig. 3.6) is a larger areal extent to their

influence of the environment, as is the case for the northeast-moving (Categon,' NE)

cyclones. As recurvature occurs and the cyclone enters the region of prevailing

westerlies, the storms generally undergo an increase in speed. Thus, some of the fast-
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Figure 3.5 As in Fie. 3.3, except for Gateeor>' SO
minus Cafegor>' N\V storms.

moving storms are probably recurvers, which would fit into the Category* XE
directional stratification. These patterns are not exactly the same because Categories

SLOW and FAST contain storms that move in any direction at slow and fast

translation speeds, respectively. The number of significant points between Categories

SLOW and NW, and between FAST and NE. is less than between Categories SO and

NW and between NE and NW, which indicates less statistical difference exists between

the former categories. The slower storms have larger westerly shear to the north and

northwest, and larger easterly shear to the south than the fast storms (Fig. 3.6). The

wind vector difference (Fig. 3.7) shows a thermal (cold) trough to the northwest and far

to the northeast for fast relative to slow storms. The strong northeasterly shear just to

the west of the cyclone may account for more rapid translation speeds in Categon.'

FAST relative to Category SLOW storms.

Low-level shear differences between the categories in Table 4 generally have a

greater number of significantly different points than the upper-layer shear fields.

Whereas the number of U-shear differences between Categories NW and NE and

between Categories SLOW and FAST are ianicr than the number of V-shear
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Figure 3.7 As in Fig. 3.3. except for Category- FAST minus Categon' SLOW.

differences in all three layers, the V-shear differences are larger between Categories NW
and SO. -

B. CATEGORY NW TERCILE COMPOSITE PATTERNS

Neumann arid Pelissier (I9S1) introduced the concept of measuring track, error in

terms of cross-track (CT) and along-track. (AT) displacements relative to the best track

orientation at the time of the forecast. Elsberr>' and Peak (19S6) defined the CT, AT

components based on the past 12-h warning positions of the cyclone, which effectively

normalizes the forecasts relative to a persistence forecast. Warning positions were

used, because best track information is not available at the forecast time. In this

study, these CT/AT components are referenced to the western North Pacific area

version of the CLImatoIogy and PERsistence (CLIPER) forecast of Xu and Neumann

(1985). This scheme does not incorporate any dynamic or synoptic forcing and is

considered a no-skill forecast. CT/AT components are computed ever>" 24 h relative to

the CLIPER forecast track to remove the contributions of persistence and climatology

to the 24-, 48- and 72-h forecasts. The CT component refers to the turning motion of

the storm relative to a CLIPER forecast. Similarly, the AT component is a measure of
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the storm speed relative to the CLIPER track. A positive (negative) CT or AT

component indicates motion to the right (left) or fast (slow), respectively. However,

any directional change (CT) in the storm motion results in a non-zero AT component

even if the actual displacements are equal (Neumann and Pelissier, 1981).

Each storm in a past-motion category is placed into one of three intervals

(terciles) regarding its cross-track or along-track motion relative to the CLIPER track.

For example, the 72-h positions are chosen to evenly divide the northwest (Category

NW) storms into left, center and right CT terciles, or slow, center and fast AT terciles.

Based on the sample of storms in each tercile, a mean composite vector wind field is

constructed as described in the previous section. For a summary of the statistical

properties of each tercile, see Schott (1985).

Table 5 lists the number of points for which significant differences are found in

the composite mean U-shear, V-shear and vector shear fields. A Student's t-test is

again applied to determine the statistical significance at the 95 % confidence level. The

largest shear differences occur between the left and right terciles, as expected. For the

cross-track terciles, the largest number of significant points occurs in the U-shear fields

in the lower layer. By contrast, there are relatively few points with statistically

different meridional shear components between the fields. This implies that the lower-

layer shear, especially in the zonal components, is responsible for forcing cross-track

motion relative to the CLIPER track.

The differences between left and right terciles within Category NW for the

250-700' mb wind shear are shown in Fig. 3.8. The left CT wind shear field has larger

westerly shear to the north, while the right tercile field indicates a weak trough to the

northwest of the storm center. The 400-700 mb right minus left composite wind

difference field (Fig. 3.9) shows comparatively weak northerly shear dominating the

regions to the south and west of the storm. Based on the geostrophic thermal wind,

the right-turning storms within Category- NW have a weak (cold) thermal trough to the

northwest. A study of Table 5 shows little difference in the upper- and deep-layer

center minus right, and center minus left, CT terciles.

Generally fewer significant points are found between the AT (speed) terciles.

(Table 5). Ver>' few points with significant differences exist between the slow minus

center and center minus fast AT terciles. More significantly different shears occur in

the lower layers than in the upper layers. However, this occurs to a much lesser extent

than for the CT comparisons, in which the lower-layer shear fields are ver>' dominant.
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Less than half of the points are statistically different between the fast minus slow

tercile in the deep layer. Fig. 3.10 is a plot of the differences between these composite

wind fields. In addition to the stronger shear from east-to-west for the fast storms

relative to slow storms, there is a southward (rather than the expected northward)

shear to the northwest of these Category NW storms.
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TABLE 5

The number of Category NW gridpoints with statistically
different cross-track (right, center and left) and along-track
( slow, center and fast) values in the shear levels indicated.
Numbers of the U-component, V-component and vector differences
indicated separately. Significant difference is based on
the Student's t-test using 95 % confidence level.

Vector-field

421 .

217
230

390
39
36

142
^ 117

139

114
89
89

102
87
82

210
151
204

Terci.le Shear Layer U-field V-field

Right-Left 400-700
250-400
250-700

mb
mb
mb

403
99

110

58
123
128

Center-Right 400-700
250-400
250-700

mb
mb
mb

385
21
32

13
16
14

Center-Left 400-700
250-400
250-700

mb
mb
mb

119
57
73

26
63
70

Slow-Center 400-700
250-400.
250-700

mb
mb
mb

91
72
63

40
22
38

Center-Fast 400-700
250-400
250-700

mb
mb
mb

22
35
10

84
56
72

Fast-Slow 400-700
250-400
250-700

mb
mb
mb

124
89

122

129
69

104
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IV. REGRESSION ANALYSIS

The JTWC employs a variety of objective aids to forecast the motion of tropical

cyclones. There are eleven aids available to the forecaster at a tropical cyclone

warning time, but no single aid has proven to be effective under all circumstances.

Jarrell et al. (1978) has shown that from 1966-1975 forecasting errors decreased to

some extent at 72 h while little improvement was seen at 24 h. The gain was due to

improvements in objective guidance and availability of satellite images, but this has

been partially offset by a reduction of ship reports and aircraft reconnaissance.

A study of objective aids by Tsui (1984) has shown that the One-way Tropical

Cyclone Model (OTCM) is better at speed and timing forecasts than the official JTWC

forecast but is less accurate in track errors. Elsberry and Peak (1956) found the

OTCM was the most skillful at 72 h of the nine objective aids studied in terms of

cross-track and along-track components. A similar study by Jones (1986) of four

western North Pacific area forecasting aids found the OTCM to be the best overall

objective aid, especially for mid- and long-range forecasts. The OTCM forecast error

for the sample of storms during 1982-1983 was decreased by over 210 km at 72 h in a

•post-processing technique developed by Schott (1985). Some of the key predictors in

the statistical equations for adjusting the OTCM tracks were the EOF coefficients

representing the synoptic forcing at each level. One of the objectives of this work is to

determine the predictive skill of the EOF coefficients representing the vertical wind-

shear fields. The UCLA Biomedical computer program (BMDP2R) is used to generate

the predictors for the regression model to improve the OTCM forecast errors (Dixon

and Brown, 1981).

The same set of OTCM forecasts is used in this regression analysis as was used

by Schott (1985). The OTCM uses the 12-h old prediction fields to initialize the model

for the 00 and 12 GMT forecasts. Currently, the OTCM uses the 00 and 12 GMT
analyzed GBA wind fields to initialize the 06 and 18 GMT forecasts, respectively.

Although the wind fields used in computing the EOF coefficients for this study

encompassed cases from 1979 to 1983, the 06 and 18 GMT OTCM forecasts were not

archived from 1979 to 1981 and therefore are not available for use in developing the

regression analysis scheme. Thus, the sample selected for testing is drawn entirely from
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1982 and 1983 OTCM forecasts, which limits the sample size for 24-, 48- and 72-h

forecasts to 267, 212 and 161 cases, respectively. The wind-shear coefficients are added

as predictors for this set.

A. POTENTIAL PREDICTORS

As studied by Wilson (1984) and Schott (1985), potential predictors for use in the

regression equations include the following five factors on storm motion: (1) Julian date;

(2) initial warning position; (3) storm intensity; (4) past storm motion; and (5) external

physical forcing represented by the EOF coefficients. The analysis provided potential

predictors for the 24, 48 and 72 h forecasts for post-processing the cross-track (CTP)

and along-track (ATP) corrections to the OTCM forecast track, where the CTP and

ATP components are defined as the OTCM CT/AT components minus the best-track

CT;AT components. Hence, the CTP and ATP components adjust the OTC.VI

forecast positions to coincide with the observed position of the tropical cyclone.

Wilson (1984) had used a total of 83 predictors which included wind-based EOF

coefFicients. Schott (1985) added additional wind-based EOF coefficients as predictors

for a total of 187 potential predictors. Since there is a maximum of 161 cases at 72 h.

this number of predictors is considered excessive. After adding the wind-shear EOF

coefficients derived in Chapter II, the total number of potential predictors is 337 (see

Table 6). However, a screening process (to be described later) reduces the predictors to'

only 99 that will be used to derive the equations.

The first four potential predictors (1-4) are derived from observations -of the

tropical cyclone at the base time. These are the Julian date, JTWC warning latitude

and longitude, and maximum sustained wind (intensity). Since relatively few storms

have anomalous tracks, persistence of motion has always provided a sound basis for

short-term forecasting. The next nine predictors (5-13) describe the storm motion

within the past 24 h by means of the zonal and meridional velocity and total vector

displacement.

The external synoptic forcing on the tropical cyclone is included as the wind-

based EOF coeffiicients generated by Schott (1985). These represent the environmental

wind fields at 700, 400 and 250 mb. Although 35 zonal and meridional modes were

found to contain signal, only the first 25 modes at each level are included as potential

predictors (14-163). These predictors are identified in the form Clwnn, where C stands

for coeffiicient; I is the level (7 for 700, 4 for 400, and 2 for 250); w stands for the u or v

wind component; and nn is the coeffiicient number from 1-25.
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TABLE 6

Potential predictors provided for the regression analysis

Predictor
Number Name

1 JULDATE
2 LAT
3 LONG
4 SPD
5 VX0012

6 VY0012

7 V0012

8 VX1224

9 VY1224

10 V1224

11 VX0024

12 VY0024

13 V0024

14-38 C7U1-25

39-63 C7V1-25

64-88 C4U1-25

89-113 C4V1-25

114-138 C2U1-25

139-163 C2V1-25

164-166 E12
EY12
EX12 -

167-169 E24
EY24
EX24

170-172 D2400
DY2400
DX2400

173-175 D4800
DY4800
DX4800

176-178 D4824
DY4824
DX4824

179-181 D7200
DY7200
DX7200

182-184 D7248
DY7248
DX7248

185-187 D7224
DY7224
DX7224

Description

Julian date
Warning position latitude
Warning position longitude
Maximum sustained wind speed (kt)
Zonal cyclone speed from 00 to

-12 h (km/h)
Meridional cyclone speed from 00

to -12 h (km/h)
Total cyclone movement from 00 to

-12 h (km)
Zonal cyclone speed from 12 to

-24 h (km/h)
Meridional cyclone speed from 12

to -24 h (km/h)
Total cyclone movement from 12 to

-24 h (km)
Zonal cyclone speed from 00 to

-24 A (km/h)
Meridional cyclone speed from 00

to -24 h (km/h)
Total cyclone movement from 00 to

-24 h (km)
700 mb coefficients derived for zonal

modes 1 to 25
700 mb coefficients derived for

meridional modes 1 to 25
400 mb coefficients derived for zonal

modes 1 to 25
400 mb coefficients derived for

meridional modes 1 to 25
250 mb coefficients derived for zonal

modes 1 to 25
250 mb coefficients derived for

meridional modes 1 to 25
Dist. from 12-h backward extrapolation

pt. to -12 h warning position.
Meridional and Zonal dist. included

Dist. from 24-h backward extrapolation
pt. to -24 h warning position.
Meridional and Zonal dist. included

Dist. from 24-h OTCM position to 00 h
warning position. Meridional and
zonal distances included

Dist. from 48-h OTCM position to 00 h
warning position. Meridional and
zonal distances included

Dist. from 48-h OTCM position to 24 h
warning position. Meridional and
zonal distances included

Dist. from 72-h OTCM position to 00 h
warning position. Meridional and
zonal distances included

Dist. from 72-h OTCM position to 48 h
warning position. Meridional and
zonal distances included

Dist. from 72-h OTCM position to 24 h
warning position. Meridional and
zonal aistances included
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TABLE 6

(cont'd. )

188-212 S47U1-25 400 minus 700 mb shear coefficients
derived for zonal modes 1 to 25

213-237 S47V1-25 400 minus 700 mb shear coefficients
derived for meridional modes 1 to 25

238-262 S27U1-25 250 minus 700 mb shear coefficients
derived for zonal modes 1 to 25

263-287 S27V1-25 250 minus 700 mb shear coefficients
derived for meridional modes 1 to 25

288-312 S24U1-25 250 minus 400 mb shear coefficients
derived for zonal modes 1 to 25

313-337 S24V1-25 250 minus 400 mb shear coefficients
derived for meridional modes 1 to 25

The next set of predictors describes the backward extrapolation and forward

forecast track from the OTCM (Fig. 4.1). Predictors 164-169 describe the total,

meridional and zonal distances that the OTCM + 24 h OTCM position would be

displaced if extrapolated backward through the 00 h storm position to a -24 h position.

This backward extrapolation method was developed by Peak and Elsberr\' (1982) to

include any initial track orientation error as a predictor. Fpr example, the predictor

E24 is the adjustment to the + 24 OTCM forecast position that would be necessarv' to

rotate the OTCM forecast track along the persistence track over the past 24 h. The

-12 h position (E12) is extrapolated from a position one half the distance to the + 24 h

position since the + 12 h position is not available. Predictors 170 to 187 describe

combinations of the forward 24-, 48- and 72-h distances to account for variations in

the forecast track orientations. This can be used to give insight into the CTP

components that are necessary during recurvature. For example, DY7200 describes the

meridional distance the storm has travelled from the 00 warning position to the 72-h

OTCM position (Fig. 4.1).

The remaining predictors (188-337) are the wind-shear EOF coefficients generated

in Chapter II. These represent the synoptic forcing upon storm motion by differences

in the wind through three vertical layers in the storm environment. These potential

predictors are identified as SUwnn, where S stands for wind shear; 11 stands for the layer

(47 for 400 minus 700 mb, 27 for 250 minus 700 mb, and 24 for 250 minus 400 mb); w
is the u or V component; and nn is the coefficient number from 1 to 25.
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Figure 4.1 The OTCM forecast positions at +24. +48 and + 72 h (circled dots) and
backward extrapolation positions at M12 and M24 h that are used to define potential
predictors (Table 6) in the regression analysis.

«;")



B. REGRESSION EQUATIONS

To predict the CTP and ATP adjustments to the OTCM forecast track at 24, 48

and 72 h, a stepwise regression analysis is used. Since wind-shear EOF's have been

demonstrated to represent synoptic forcing on tropical cyclone motion in Chapter III,

the EOF coefficients can be used to explain a portion of the variance in CT and AT

components used to adjust the OTCM track. The coefficient of multiple regression (R^)

is a measure of the relationship between independent and dependent variables in the

regression model and represents the amount of total variance in the predictand that is

explained by these variables,

r2= SSR / SSTO = 1 - (SSE / SSTO) , (4.1)

where SSR is the regression sum of the squares, SSTO is the total sum of the squares

and SSE is the residual sum of the squares. At each step in the BMDP2R regression

analysis routine, that predictor from the remaining set is selected which has the highest

partial correlation with the predictand, given the previous selection of predictors. The

selection continues until the new predictor does not meet the minimum F-to-enter

value of 4.0. In this way, the predictand is the result of a sum of uncorrelated

independent variables (Dixon and Brown, 1979). As a further restriction on the

number of predictors in the equations, only those predictors that increase R' by 0.01

are retained.

Due to the large number of potential predictors available and the limited sample

of cases at 72 h, the list of predictors is screened twice to reduce its size. The set of

predictors in Table 6 is divided into four categories: (i) persistence predictors; (ii)

backward extrapolation and forward track predictors; (iii) wind-based EOF coefficients;

and (iv) wind-shear EOF coefficients. Those predictors within each categorv^ that

remain after a maximum 10-step regression analysis were used to develop regression

equations to post-process the OTCM using all but the wind-shear EOF predictors.

This was done to compare the results obtained by Schott (1985) against those obtained

by this screening method. A total of 96 predictors were found to be important in at

least one of the six equations (CTP and ATP at 24, 48 and 72 h). This is far less than

the 187 predictors used by Schott. The results (Table 7) show little difference until the

72-h forecast, where an increase of error of over 50 km occurs.
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A further screening is accomplished after adding the wind-shear predictors to the

set selected by the first screening process. In this screening, only those predictors that

occur in more than one of the six regression equations (CT or AT at 24, 48 or 72 h)

are selected. Although this process does reduce the explained variance in the

regression analysis, we can have confidence in the application of the regression

equations to an independent sample.

TABLE 7'

Comparison of forecast errors (km) obtained for 24, 48 and
72 h for the unmodified OTCM (OTCM), the modified OTCM
results obtained by Schott (1985) using all 187 predictors
(0TCM187) and the errors found after a screening process
reduced the number of predictors (excluding wind-shear EOF
coefficients) to 96 (OTCM96).

Forecast Errors (km)
24 h Mean

'

Std. Dev.

121
88
90

202
148
152

356
256
270

Tables 8 and 9 list the equations for the CTP and ATP predictands developed by

the regression analyses. A final total of 99 potential predictors were used to generate

these equations. Table 10 shows the R^ values for each equation.

A study of Tables 8 and 9 show that only four wind-shear EOF coefficients that

occur more than twice enter the equations compared to 18 wind-based EOF

coefficients. This may be due to the close relationships between the wind-based and

wind-shear synoptic forcings. After a wind-based predictor is selected, the wind-shear

predictors that are highly correlated with it will not be selected. However, the selection

of wind-shear predictors does indicate that independent information is contained in

these coefficients. However, no wind shear predictors occur in the ATP equations. It

is also interesting that there are no deep layer (250 minus 700 mb) EOF predictors
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OTCM
OTCM187
0TCM96

202
143
144

48 h

OTCM
0TCM187
0TCM96

386
286
289

72 h

OTCM
OTCM187
OTCM96

593
383
435



TABLE 8

Regression equation for the CTP adjustments (km) at 24. 48
and 72 h. The number in parenthesis is the order in which
the predictors were selected by the regression analysis.

Forecast Interval (h)
24 48 72

Y-Intercept 11. 7 -29.9 -222.0

Predictor
DayJul
C2V1

- — 1.0 (;
1

- 8. 9
([1] 33.3 ( 2

C7U7 7. 1 (4) 26. 1 3' 48.3 ( 3
EY12 0. 3 (6) 0. 7 I6J 1.0 < 4
D7200 - . 0. 6 ( 5
D7224 - - -1. 1 ( 6
C4V13 - -14. 7 <;2] —

C7U21 12. 6 (5) 37. 3 (

4' -

C7V7 - 12.5 1 5 —

S47U17 - -26.5
1 7 -

S47V4 3.8 (8) 7. 7 ( 8
S24U18 - -32.2

( 9 •

C2V17 7.5 ( 1) — —

C4U6 -7. 1 2 . -

C4U15 -11.2 3 -i -

EX24 0.3 7 t -

S24V12 -6. 7 (9 - -

chosen in the CTP equations. Of the wind-shear predictors, two low-level and two

upper-level coefTicients are selected. Table 1 1 summarizes the number of wind-based

and wind-shear EOF predictors chosen by the regression analysis for use in the

equations. Only a few (9) predictors occur in more than one equation. Of these, four

have an effect on all three forecast times. Among these is the EY12 predictor that

enters three times for the CTP equations and twice for the ATP equations. This is not

surprising since this predictor is a crucial part of the post-processing scheme of

Elsberr>' and Frill (1980) and Peak and Elsberry (1982). In addition, the latitude is

important in all three ATP equations.

C. POST-PROCESSING THE OTCM
To test the validity of this method in adjusting the OTCM forecast to reduce the

effect of systematic errors and inadequate representations of synoptic forcing, the CTP

and ATP adjustments based on the dependent sample are applied to the OTCVI track.

The forecast error in the OTCM is defined as the great circle distance between the

best-track position of the tropical cyclone and the newly modified OTCM position.

Table 12 summarizes the forecast errors between the best-track position and the
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TABLE 9

As in Table 8, except for regression equations for ATP (km)

Forecast Interval (h)
24 48 72

Y-Intercept 176.4 288.7 588.9

Predictor
XLAT -12. 5 ( 1) -23. 5 ( 1
C2U5 -8. (3) -12. 3 (2
C4V24 - -25. 1 7
C7U12 -8.3 (5) -22.5 4
C7U14
C7V7
EY12 - -0.

9

E24 - -0. 4
DX7200
DX7224
C2V24 - 19.9 (3)
C4U15 - -19. 3 (5)
C4U16 -11. 5 (6) -28. 6 6J
DX4824 - 0. 8 l6)
VY1224 4,3 (2-
C2V24 12. 4 4
C7V7 -9. 6 (

7

E12 -0.5 8

TABLE 10

[1]

-43. 4 {;i
-17. 7 ( 2
24. 6 (

^3
50. 1.4
47.8 ( 5
30.3 ( 6
-1.0

( 7
-0.5

( 8
-1.0

( 5
2.2 ( 1

.">

Percentage of the explained variance (R") in the regression
equations for the CTP and ATP predictands.

Time
Number
of Cases

Number of
Predictors CTP

r2
ATP

24 267 CTP 9
ATP 8

0. 392
0.392

48 212 CTP 9
ATP 10

0.450
0. 474

72 161 CTP 6
ATP 10

0.418
0. 520

unmodified OTCM, the OTCM modified by the regression model and the official

JTWC forecast positions for 24, 48 and 72 h.

As indicated above, Schott used 187 potential predictors to derive 72-h regression

equations that contained only 161 cases. As a result, his 383 km forecast error at 72 h

(compared to 631 km for JTWC) based on the dependent sample may be overly

optimistic. When his set of predictors (excluding the wind-shear EOF predictors) v/as
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TABLE 11

The number of wind-based and wind-shear EOF coefficients
chosen by the regression scheme as predictors for CTP or ATP.

Level Field 24
CTP
48 72 24

ATP
48 72 Tot

700 u
V

2 2 1 1 1 2
1

9
1

400 u
V

2 1
1

2
.

3
1

8
2

250 u
V 1 1 1

1
1

1
1

1 3
5

Total 5 5 2 5 6 5 28

400-700 u
V 1

1
1

1
2

250-700 u
V

250-400 u
V 1

1 1
1

Total

screened as outlined above, the error at 72 h increased to 435 km. By including the

wind-shear EOF coefficients, this error is reduced to 419 km. This results in a 30 %
and 33 % error reduction over the unmodified OTCM and official JTWC forecast

errors for this set of dependent storms during 1982-1983. The standard deviations at

each forecast time are also significantly improved, which means the modified OTCM
forecasts are more consistent than the unmodified OTCM. Thus, use of these

equations to modify the OTCM forecast track has proven to be successful.

A caution is necessary' at this point. The regression equations have been derived

and tested on the same dependent set of cases. The model could have a bias toward

storm conditions similar to those during 1982-1983 from which the equations were

generated. This model should be tested against an independent data set to determine if

the EOF predictors chosen would accurately represent the synoptic forcing on other

storms with differing wind-shear environments. The model would not be expected to

perform as well when anomalous storms occur.
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TABLE 12

Mean and standard deviation of the forecast errors ( km)
for the unmodified OTCM forecast (OTCM), OTCM forecast
modified by the regression equations with 99 predictors
( 0TCM99 ) , and official JTWC forecast errors for 24, 48
and 72 h.

Time N Method ~'Mea.n~~ ~Stdr~Dev.

24

48

72

N Method
Forecast
Mean

Errors
Std. :

245
245
245

OTCM
JTWC
0TCM99

202
206
147

121
126
92

200
190
200

OTCM
JTWC
0TCM99

306
443
279

202
284
154

161
151
161

OTCM
JTWC
0TCM99

593
631
419

356
400
261
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V. DECISION TREE APPROACH

Another concern of the JTWC forecaster is selecting which objective aid A^ill

give the most accurate 72-h forecast. If the optimum objective aid could be selected in

each storm case, there would be a significant reduction in the mean forecast errors

(Tsui, 1984). For example, the mean forecast error at 72 h would be reduced by 56 %.

A classification tree algorithm developed by Breiman et al. (1984) has been adapted by

Peak and Elsberry (1987) to isolate the significant factors affecting the performance of

each aid. A feasibility study of this approach to select the best of three analog

forecasts at 72 h was conducted by Peak and Elsberry (1985). The subsequent study

by Peak and Elsberr>' (1987) included predictors such as the wind EOF coefficients and

found that the tree selected the best aid from a set of eight aids in 44 % of the cases in

the dependent sample.

The basic assumption is that storm-related parameters, such as cyclone size and

intensity, and synoptic forcing factors can be used to determine which aid will perform

best in a given situation. A data base of storm cases containing the following

parameters is constructed: (1) initial latitude and longitude; (2) zonal, meridional and

total displacements from 00 to -12 h, 00 to -24 h, and -12 to -24 h; (3) cyclone intensity

(maximum wind speed) and size (radius of 15 m/s winds); (4) intensity change between

00 and -12 h; (5) Julian date; (6) zonal and meridional wind EOF coefficients 1-10; (7)

zonal and meridional wind-shear EOF coefficients 1-10; and (8) zonal, meridional and

total displacement of the CLIPER forecast track from 00 to +24 h; +24 to +48 h;

and +48 to +72 h. The number of synoptic and storm-related parameters available to

choose from is verv' large (Table 6, above). In order to work with a manageable set of

parameters, only 10 each of the zonal and meridional EOF coefficients is used. The

classification tree algorithm will isolate the most significant factors that characterize

the performance of each of the eight objective aids. It is possible that a particular aid

may have given the best 72-h forecast by coincidence. If the decision tree is to be

successful, the selection of the best aid by the tree must be based on real, physically

understandable decisions that can be interpreted by the forecaster.
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A. DECISION TREE DESCRIPTION

The classification tree examines a set of measurements and assigns each case to a

particular class based on the values of the measured parameters. In particular, a class

would include all those cases in which a single objective aid is found to be superior at

72 h based on values of the storm-related and synoptic parameters in those cases.

Thus, all cases are repeatedly divided into subsets until similar cases are isolated in the

same subset, which is called a terminal node. A more complete description of the

decision tree algorithm approach is provided in Peak and Elsberry (1987).

A sample of 325 cases from 1981-1984 is selected for this study. A dependent

sample of 217 cases is used to develop the tree and 108 cases are set aside for testing.

Each case must have 72-h forecasts from the following objective aids: (1) TYphoon

ANalogs (TYAN) for recurving storms (RECR); (2) TYAN analogs from the total

analog base (TOTL); (3) climatology forecasts (GLIM); (4) extrapolated tracks from

the 00 to -12 h positions (XTRP); (5) average of the CLIM and XTRP tracks (HPAC);

(6) climatology and persistence forecasts (CLIP); (7) One-way influence Tropical

Cyclone Model (OTCM); and (8) Nested Tropical Cyclone Model (NTCM)._ The

Annual Tropical Cyclone Report (NAVOCEANCOMCEN/JTWC, 1984) contains a

description of these objective aids.

The decision tree approach is such that the tree can "learn" from past cases and

structure the decision process based on all relevant information. A yes/ no decision is

made for each node based on a particular measured parameter that splits the case

sample into subsets that "travel" down the right or left branches. When the inequality

used at each node is true, the progression continues down the left branch. Alternate

splitting parameters may be used if the primary set of parameters is missing.

Subsequent nodes are split and similar cases are progressively isolated until a terminal

node is encountered. The terminal node is assigned the objective aid of the class that

occurs most frequently in that node.

The decision tree created from the dependent sample is shown in Fig. 5.1. The

synoptic forcing is an extremely important factor to consider in selecting an objective

aid. The wind EOF coefficients clearly form the basis for separating the cases into

their respective classes. Of the eight splits, seven are based on wind EOF coefficients,

and of these, four involve the zonal 700 mb component. The dominance of the low-

level wind parameters was also found by Peak and Elsberry (1987), where seven of the

15 splitting nodes were based on the 700 mb EOF coefficients. The only non-synoptic
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OTCM

NTCM

XTRP RECR

OTC
3

Figure 5. T Decision tree developed for selectine the objective aid with the minimum
72-h forecast error. Splittme variables and values are listed under each circular node
{t n= I.S). Terminal (square) nodes named for aid of the majontv of cases in the
ncrde. Number of dependent sample cases indicated above each branch.
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primary splitting parameter is the meridional persistence component (DY1224) that

appears in the first node (t^. Alternate node-splitting parameters occur at node t^, in

which the 400-700 mb shear of the meridional component appears, and at node t^, in

which the initial storm longitude is used in place of an EOF coefficient.

An objective aid is selected within each terminal node according to the

predominant class assignments in each case. Table 13 identifies the first and second

most prominent aids found in each terminal node. For example, of the nine cases that

fell in terminal node A, CLIM was the most accurate forecast model at 72 h (four

cases) followed by TOTL (two cases). Therefore, CLIM is assigned the class name to

that terminal node. In practice the forecaster would select the CLIM forecast aid for

every storm with parameters that lead to that terminal node. The number of

assignments per class range from 57 (terminal node H) to seven (in terminal node F).

The NTCM is the most frequently selected forecast aid and is found in three terminal

nodes into which 37 % of the dependent sample cases fall. The OTCM is the second

most frequently selected terminal node with 24 "/o of the cases. CLIP. TOTL and

HPAC are never chosen for terminal nodes. Thus, the cases for which these models

actually provide the best 72-h forecast must be misclassified by the tree. The IND

column of Table 13 lists the number of cases from the independent sample that fell into

each terminal node. Since the independent sample has half the number of cases, the

entries in this column should be roughly 50 % of those in the second column. The

largest differences are in the node I, which has only two cases versus an expected 10 or

11, and in node D, which has 10 entries versus the expected 5-6. In the other nodes,

the variations from the expected number of assignments can probably be attributed to

the small sample size.

B. VERIFICATION OF THE DECISION TREE

A summary of the results of the decision tree for the dependent sample is listed in

Table 14. For the dependent sample, the tree selected the correct aid in 27 % of the

cases compared to 44 % by Peak and Elsberry (1987). The OTCM provides the lowest

72-h forecast error in the majority of cases (39) followed by the NTCM (37 cases).

The OTCM and NTCM are expected to provide better guidance by incorporating

dynamical processes in the model. However, it is important to understand when to

reject the guidance of these numerical models. This is a main advantage of using the

classification tree method. The NTCM has the highest percentage of correct
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TABLE 13

First (1) and second (2) most predominant classes of cases
in terminal nodes A- I (Fig. 5.1) for the dependent (DEP)
and independent ( IND) samples. Percentage of cases belonging
to each class are in parentheses.

Terminal Number
Node of cases 1

A 9 CLIM
B 33 OTCM
C 17 NTCM
D 11 XTRP
E 54 RECR
F 7 NTCM
G 8 RECR
H 57 NTCM
I 21 OTCM

DEP

44'
30
52
63
24
43
50
24'
31

TOTL
CLIP
CLIM
RECR
OTCM
OTCM
OTCM
XTRP
XTRP

22
18
17
18
19
14
25
19
19

TOTAL 217

IND

6
21
12
10
24
5
1

27
2

108

classifications (70 %) by the decision tree, and the second highest percentage (58 %) is

for the RECR. Cases may be misclassified due to statistical noise, sampling problems,

or the pruning process inherent in the decision tree algorithm (Breiman et al, 1984).

Of those cases misclassified, the NTCM model was selected 55 times and the OTCM
was selected 39 times. Thus, it appears the tree relied oh numerical guidance when

uncertainty existed in the classification of a case.

A comparison of the overall mean and standard deviation of the 72-h forecast

errors (Table 15) shows that if the best aid were selected in each case, a 318 km error

would occur. However, Peak and Elsberry (1987) demonstrated that this is not a true

measure of the skill of a selection technique because this includes many purely

coincidental selections. By using the tree, a 640 km error is achieved compared to the

721 km error for the official JTWC average forecasts.

The independent sample consisted of 108 storm cases. Table 16 lists the

classification results from the decision tree for the eight objective aids. The results are

disappointing since the tree only classified 19.4 % of the cases correctly. A random

selection among the aids would have yielded a 12.5 % correct classification. The

misclassifications of TOTL, HPAC and CLIP are expected since these aids do not

appear as terminal nodes in the decision tree. However, the scheme does not isolate a

significant (more than 12.5 %) number of cases for RECR, CLIM and XTRP in the

independent sample. Only the dynamical models continue to be properly selected by
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TABLE 14

Decision tree selection of objective aids for the dependent
sample cases. The main diagonal contains the number of
correct classifications by the tree.

TRUE CLASS

RECR TOTL CLIM XTRP HPAC CLIP OTCM NTCM

RECR 17 2 4
.

9 7 6 12 5

TOTL

p
R C
E L
D A
I S
C S
T
E
D

CLIM

XTRP

HPAC

CLIP

OTCM

1

2

6

2

1

5

4

, 2

7

7 5

1

1

8

1

15 6

NTCM 3 5 7 11 7 11 11 26

SUM 29 15 17 34 19 27 39 37

% CORRECT 58 23 21 38 70

TABLE 15

Overall mean and standard deviations of the 72-h forecast
errors (km) for the dependent sample as selected by the
decision tree (TREE), if the BEST and WORST objective aid
were always chosen , and the CLIP and JTWC forecasts. The
JTWC values are for 193 cases compared to 217 cases for the
others.

TREE BEST WORST CLIP JTWC

Mean 640 318 1224 703 721

Std. Dev. 484 249 634 480 474

the decision tree. However, the mean forecast error in the independent sample (Table

17) of 603 km is still an improvement relative to the 654 km error for JTWC. A

comparison between Table 17 and Table 15 shows that the cases randomly chosen for

inclusion in the independent sample appear to have been slightly easier to forecast than
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those in the dependent sample. Since the error characteristics of the two samples are

different, it is likely that the sample sizes are too small.

TABLE 16

Decision tree selection of objective aids for the
independent sample cases. The main diagonal contains
the number of correct classifications by the tree.

TRUE CLASS

RECR TOTL CLIM XTRP HPAC CLIP OTCM NTCM

RECR 1 3 3 6 2 4 4 2

TOTL

p CLIM 1 3 2
R C
E L XTRP 5 1 2 2
D A
I S HPAC
C S
T CLIP
E
D OTCM 4 2 2 1 3 1 7 3

NTCM 4 2 3 6 5 4 9 11

SUM 15 '7 9 15 10 14 20 18

% CORRECT 6 13 35 61

TABLE 17

Overall mean and standard deviations of the 72-h forecast
errors (km) for the independent sample as selected by the
decision tree (TREE), if the BEST and WORST objective aid
were always chosen , and the CLIP and JTWC forecasts. The
JTWC values are for 97 cases compared to 108 cases for the
others.

TREE BEST WORST CLIP JTWC

Mean 603 298 1190 635 654

Std. Dev. 382 196 692 457 380
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C. DISCUSSION

The decision tree method for selecting objective aids does have limited success in

choosing the correct objective aid. The OTCM and NTCM are the models most

frequently selected by the tree for both sample sets. These models should better handle

anomalous tracks from a dynamical vie-wpoint and the OTCM is generally accepted as

the overall best aid (Elsberry and Peak, 1986). Consequently, the inability to select the

best aid is not serious if the second best aid turns out to be almost as good. Thus, a

reduction in forecast errors by 11.2 % (7.2 %) for the dependent (independent) samples

was achieved over the official JTWC forecast errors.

The selection of the zonal 700 mb wind EOF coefficients as the most important

splitting parameters is indicative of the importance of the low-level winds in steering

the cyclone. It is surprising that vertical wind shear is not found to be as important a

parameter in choosing the optimum objective aid using the decision tree. In cases in

which the tropical cyclone encounters strong upper-level forcing that shears off the top

of the circulation, the vortex will continue to move with the low-level flow. These

cases may not be handled well by the models because of the practice of entering a

bogus vortex in the dynamical models (Fiorino, 1985) that extends through the entire

troposphere. It is reasonable that in these cases in which wind shear is important that

the wind EOF coefficients at lower levels play an increasingly dominant role as far as

the tree algorithm is considered. However, the synoptic forcing parameters describing

the vertical wind shear may not contribute to the decision tree because the dynamical

models are not likely to be the optimum aid in these cases, since an unrealistic deep

tropospheric bogus is inserted. In summary, the primary use of the vertical wind shear

information seems to be in adjusting the dynamical model forecast tracks by the post-

processing scheme described in Chapter IV.
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VI. SUMMARY AND CONCLUSIONS

Vertical wind shear in the environment of tropical cyclones is investigated to

determine the efTects of such shear on storm motion. Wind fields derived from the U.

S. Navy Global Band Analysis are used to compute the zonal and meridional

components of vertical wind shear for the 400-700 mb, 250-400 mb and 250-700 mb

levels on a 527 point grid around the tropical cyclone. Following Wilson (1984), these

vertical shear fields are represented using empirical orthogonal functions (EOF).

Schott (1985) demonstrated that EOF coefficients of zonal and meridional wind

components at single levels can be used to represent the synoptic forcing of the

surrounding wind fields on tropical cyclone motion. A dependent sample of 682 cases

is selected for an EOF analysis of the wind-shear fields. Using a Monte Carlo selection

technique, the number of eigenvectors chosen to represent true signals is 25 zonal and

35 meridional modes. Retaining this number of modes leads to explained variances

ranging from 79 to 88 %.

The storms are stratified into five past-motion categories as proposed by Peak

and Elsberry (1986). These categories are based on the storm's past speed and

direction of motion. Means and standard deviations of the zonal and meridional wind-

shear fields are constructed for each categor\'. Because the majority of cases (497) move

to the northwest (average direction of 301°), the other composites within the storm

motion categories are compared to this category. The Student's t-test is used to

indicate the statistical differences between the composite mean vertical wind shears at

the gridpoints. The number of statistically different gridpoints at the 95 % confidence

level range from 27 to 466 out of a possible 527 gridpoints. The largest (88) percentage

of gridpoints with statistically different means occur for the deep-layer shear fields

between the northwest and northeast past-motion categories. The northwest-moving

cases are further subdivided into cross-track and along-track terciles. Statistically

significant differences are found at up to 421 gridpoints for the left-turning minus right-

turning storms within the northwest moving cases. This demonstrates that the vertical

shears derived from operationally analyzed wind fields contain synoptic forcing

information that is relevant to tropical cyclone motion.
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A stepwise regression analysis is used to identify potential predictors to post-

process the OTCM forecast tracks for 1982-1983. The set of potential predictors

represent initial storm characteristics, forward and backward extrapolated tracks, and

synoptic forcing from wind and wind-shear EOF coefficients. After screening, this set

was reduced to 99 predictors. Only four wind-shear EOF predictors are selected

compared to 18 wind-based EOF predictors. The regression equations are applied to

the 24-, 48- and 72-h OTCM forecasts. For the dependent sample, the mean forecast

error at 72 h is only 419 km. This is compared to 593 km for the unmodified OTCM
and 631 km for the official JTWC forecasts. Thus, the vertical wind-shear EOF

coefficients represent important information about the environment surrounding a

tropical cyclone and, when used with other predictors in a regression analysis scheme,

can improve the forecasts of operational tropical cyclone models. However, the

scheme should be tested with independent data before operational implementation of

these regression equations. At 72 h, the dependent sample used to generate the

equations contained only 161 cases from 1982-1983. Predictors associated with

independent cases may be different from those chosen in this study.

The wind-shear EOF coefficients were included in a decision tree that selects the

optimum objective aid based on stofm-related and synoptic parameters (Peak and

Elsberr\', 1987). The decision tree correctly selected the aid that produced the best

, 72-h forecast in 27 % (19 %) of the dependent (independent) cases. The tree depended

almost entirely on the wind EOF coefficents at single levels as parameters to select

among the aids. The lack of vertical wind-shear predictors used by the tree is

disappointing but may be a result of the improper handling by all the models of cases

with large wind shear. Thus, wind-shear predictors appear to be more useful when

used in post-processing dynamic model forecast tracks.

In Wilson (1984), Schott (1985) and this study, a scalar EOF analysis was done.

A vector analysis of the total wind and wind-shear fields may give additional insight

into the synoptic forcing that results in anomalous storm tracks. With the preliminary

success of these regression equations to adjust the OTCM forecast, this technique

could be further developed for use with the NTCM. Additional synoptic parameters

should also be investigated. The 12 or 24-h intensity changes and the radius of 30-kt

winds are two such parameters that may play an important role in storm motion as a

result of the interaction of the vortex and its environment.
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