
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V �������7�K�H�V�L�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q���&�R�O�O�H�F�W�L�R�Q�����D�O�O���L�W�H�P�V

��������

�$���F�R�Q�F�H�S�W�X�D�O���O�H�Y�H�O���G�H�V�L�J�Q���I�R�U���D���V�W�D�W�L�F

�V�F�K�H�G�X�O�H�U���I�R�U���K�D�U�G���U�H�D�O���W�L�P�H���V�\�V�W�H�P�V

�2�
�+�H�U�Q�����-�R�D�Q�Q�H���7��

�0�R�Q�W�H�U�H�\�����&�D�O�L�I�R�U�Q�L�D�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

NAVALPOSTGRADUATESCHOOL

Monterey , California

THESIS

A CONCEPTUALLEVEL DESIGN EORA STATIC
SCHEDULER

EORHARDREAL-TIME SYSTEMS

bv

Joanne T. O Hern

March 1988

Thesis Advisor Luqi

Approved for public release; distribution is unlimited.

T239112

Lnclassified

security classification of this page

REPORTDOCUMENTATIONPAGE
la Report Security Classification Lnclassified lb Restrictive Markings

2a Security Classification Authority

lb Declassification Downgrading Schedule

3 Distribution Availability of Report

Approved for public release; distribution is unlimited

-i Performing Organization Report N'umber(s) 5 Monitoring Organization Report Numbens)

oa Name of Performing Organization

Naval Postgraduate School
6b Office Symbol

i if applicable) 62
7a Name of Monitoring Organization

Naval PostaraJuate School

6c Address (dry, state, and ZIP code)

Monterev. CA 93943-5000
"b Address (city, state, and ZIP code)

Monterev. CA 93943-5000

8a Name of Funding Sponsoring Organization Sb Office Symbol
i if applicable)

9 Procurement Instrument Identification Number

Sc Address (city, stale, and ZIP code) 10 Source of Funding Numbers

Program Element No P r oject No Task No Work Unit Accession No

ii Title (include security classification) A CONCEPTUALLEVEL DESIGN FORA STATIC SCHEDULERFORHARD
REAL-TIME SYSTEMS

2 Personal Author(s) Joanne T. O Hern
13 a Type of Report

Master's Thesis
13b Time Covered
From To

14 Date of Report (year, month, day)

March 1988
15 Page Count

72

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-

sition of the Department of Defense or the U.S. Government.
17 Cosati Codes

Field Group Subgroup

18 Subject Terms [continue on reverse if necessary and identify by block number)

static scheduler, PSDL, computer aided rapid prototyping

19 Abstract (continue en reverse if necessary and identify by block number)

This thesis builds upon work previously done in the development of the Computer Aided Prototyping System (CAPS)
and the Prototype System Description Language (PSDL) and presents a conceptual design for the pioneer prototype of the

static scheduler which is part of the CAPSexecution support system. The design of hard real-time systems is gaining a great

deal of attention in the software engineering field as more and more real-world processes are becoming automated. This in-

crease in automation identified a need for the advancement of software design technology to meet the design requirements for

these hard real-time systems. The CAPSand PSDL are tools being developed to aid the software designer in the rapid pro-

totyping of hard real-time systems. PSDL, as an executable design language, is supported by an execution support system
consisting of a static scheduler, dynamic scheduler, and translator. The static scheduler design includes the scheduling algo-

rithms required to schedule time critical operators contained in a PSDL prototype in such a way that all operator tuning

constraints and precedence relationships are met to produce a feasible static schedule if one is possible. Implementation of

the conceptual design will be the basis for further work in this area.

20 Distribution Availability of Abstract

S unclassified unlimited Q same as report D DTIC users

21 Abstract Security Classification

Unclassified

22a Name of Responsible Individual

Luqi
22b Telephone I include Area code)

(408) 646-2735
22c Office Symbol

52Lq

DDFORM1473,84 MAR 83 APRedition may be used until exhausted
All other editions are obsolete

security classification of this page

Unclassified

Approved for public release; distribution is unlimited.

A Conceptual Level Design for a Static Scheduler

for Hard Real-Time Systems

by

Joanne T. Q'Hern
Lieutenant, United States Navy

B.S., State University of New York at Albany, 1981

Submitted in partial fulfillment of the

requirements for the degree of

MASTEROF SCIENCE IN TELECOMMUNICATIONSSYSTEMS
MANAGEMENT

from the

NAVALPOSTGRADUATESCHOOL
March 1988

ABSTRACT

This thesis builds upon work previously done in the development of the Computer

Aided Prototyping System (CAPS) and the Prototype System Description Language

(PSDL) and presents a conceptual design for the pioneer prototype of the static sched-

uler which is part of the CAPSexecution support system. The design of hard real-time

systems is gaining a great deal of attention in the software engineering field as more and

more real-world processes are becoming automated. This increase in automation iden-

tified a need for the advancement of software design technology to meet the design re-

quirements for these hard real-time systems. The CAPS and PSDL are tools being

developed to aid the software designer in the rapid prototyping of hard real-time sys-

tems. PSDL, as an executable design language, is supported by an execution support

system consisting of a static scheduler, dynamic scheduler, and translator. The static

scheduler design includes the scheduling algorithms required to schedule time critical

operators contained in a PSDL prototype in such a way that all operator timing con-

straints and precedence relationships are met to produce a feasible static schedule if one

is possible. Implementation of the conceptual design will be the basis for further work

in this area.

111

TABLE OF CONTENTS

I. INTRODUCTION 1

A. SOFTWAREENGINEERINGANDDESIGN METHODOLOGIES 2

1. Traditional Software Life Cycle 2

2. Rapid Prototyping 2

B. OBJECTIVES 4

C. ORGANIZATION 5

II. PREVIOUSRESEARCHANDSURVEYOF SCHEDULINGALGORITHMS6

A. PREVIOUSRESEARCH 6

1. CAPS 6

B. SURVEYOF SCHEDULINGALGORITHMS 10

1. System Decomposition and Static Scheduling Algorithms 12

2. Software Safety 19

3. Execution Monitoring 20

C. SUMMARY 21

III. CONCEPTUALDESIGN FORTHE STATIC SCHEDULER 22

A. READ_PSDL 23

B. TEXT_FILE_PREPROCESSOR 29

1. Separate_critical_operators 29

2. Simple_validity_checks 30

C. TOPOLOGICAL_SORT 31

1. Find_first_operator 31

2. Build_sequence 32

3. Remove_operator_from_set 32

D. BUILD_HARMONIC_BLOCKS 34

1. Find_equivalent_period 35

2. Sort_by_period 36

3. Assign_operators_to_blocks 36

4. Find_block_length 40

E. SCHEDULEOPERATORS 42

IV

±J'J

MO.

1. Schedule_next_operator 42

2. Find_next_Firing_interval 43

IV. CONCLUSIONSANDRECOMMENDATIONS 48

A. SUMMARY 48

B. FURTHERRESEARCH 48

1. Implementation of the Static Scheduler 49

2. Handling Simple Validity Checks 49

3. Implementation of the Execution Support System Interfaces 49

4. Handling Feasibility Tests 50

5. Scheduling Operators in a Multiprocessor Environment 50

C APPLICATIONS TO DODTELECOMMUNICATIONSSOFTWARE
DESIGN 50

D. CONCLUSIONS 52

APPENDIX A. PSDL GRAMMAR 53

APPENDIX B. PSDL HYPERTHERMIAEXAMPLE 56

LIST OF REFERENCES 61

INITIAL DISTRIBUTION LIST 64

LIST OF FIGURES

Figure 1. The Traditional Software Life Cycle Methodology 3

Figure 2. The Rapid Prototyping Methodology 5

Figure 3. The Computer Aided Prototyping System Methodology 7

Figure 4. The Computer Aided Prototyping System Architecture 8

Figure 5. The Execution Support System 11

Figure 6. Example of an Instance of the Graph Model 14

Figure 7. Static Scheduler, 1st Level Data Flow Diagram 23

Figure 8. Example of Acyclic and Cyclic Digraphs 25

Figure 9. Example of an Operator Specification 26

Figure 10. Link Statements Associated With a Directed Graph 27

Figure 11. Text_file_preprocessor, 2nd Level Data Flow Diagram 30

Figure 12. Topological_sort, 2nd Level Data Flow Diagram 32

Figure 13. Build_harmonic_blocks, 2nd Level Data Flow Diagram 34

Figure 14. Schedule_operators, 2nd Level Data Flow Diagram 43

Figure 15. Operator Timing Constraints 45

Figure 16. Example of Scheduling a Harmonic Block 46

Figure 17. Example Static Schedule 47

VI

I. INTRODUCTION

Rapid advances in computer hardware technology have made computer systems

more available to perform everyday tasks. Over the past twenty years, hardware costs

as a percentage of total system costs have decreased from 85% to about 15%

[Ref. 1: p. 9]. Because computer hardware is becoming faster as well as cheaper, the

demand for increasingly sophisticated computer applications is on the rise. In the De-

partment of Defense (DoD), computers are being used to guide weapons systems, con-

trol satellites, and run communications networks. These applications are examples of

embedded computer systems, they are only one part of larger overall systems. Although

embedded systems have different applications, they do have several characteristics in

common. They tend to be very large, require parallel processing, are subject to real-time

constraints, and above all, must be highly reliable [Ref. 1: p. 3). Such systems are also

referred to as hard real-time systems. Hard real-time systems are characterized by timing

constraints that absolutely must be met.

Computer technology is an integral part of today's telecommunications systems.

Embedded computers control message processing, routing, and switching subject to hard

real-time or near hard real-time constraints in such systems as the Naval Communi-

cations Processing and Routing System (NAVCOMPARS), Naval Modular Automated

Communications Subsystem (NAVMACS), the CommonUser Digital Information Ex-

change Subsystem (CUDIXS), The Automated Digital Network (AUTODIN), the De-

fense Data Network (DDN), the Defense Switched Network (DSN), and MILSTAR.

The development of software for these large systems is very time consuming and

costly. On the average, one software programmer produces ten lines of code per day.

Embedded software systems typically range from thousands to millions of lines of code

[Ref. 1: p. 15]. This labor intensive software development now accounts for approxi-

mately 90% of the cost of a computer system [Ref. 1: p. 9]. Currently, there are no

existing computer aided systems available to assist the designer in the critical earlier

stages of development of large software systems with hard real-time constraints.

The remainder of this chapter is an introduction to software engineering, describing

software design methodologies and a set of proposed software tools for aiding designers

with the early stages of developing hard real-time systems.

A. SOFTWAREENGINEERINGANDDESIGN METHODOLOGIES
Software engineering is the application of scientific and mathematical principles to

the problem of making computers useful to people by means of software. It indicates

the development of software that is modifiable, efficient, reliable, and understandable.

The traditional software life cycle and rapid prototyping are two of the more com-

mon design methodologies used to maintain a scientific approach to software engineer-

ing.

1. Traditional Software Life Cycle

This methodology, also known as the traditional waterfall, is shown in

Figure 1 on page 3. The traditional lifecycle consists of seven phases in the development

of software products. These phases are outlined briefly below [Ref. 2J:

1. Requirements Analysis - this phase establishes the purpose of the proposed soft-

ware system.

2. Functional Specifications - a model of the proposed system is constructed. This
model only contains those aspects of the system that are visible to the users.

3. Architectural Design - a model of the implementation is constructed. The software
modules and their interfaces that will be used to realize the system are identified.

4. Module Design - during this phase of development, the algorithms and data struc-

tures that will be used to realize the behavior specified in the architectural design
will be chosen.

5. Implementation - executable programs are produced, usually in a high level pro-

gramming language.

6. Testing - in this phase, faults will be detected by running programs with selected

input data.

7. Evolution and Repair - new features/capabilities are added onto the system and
necessary design changes are made to repair faults.

A major problem associated with using this methodology in the design of large

real-time systems is that there is no guarantee that the resulting product will be reliable

or even meet user specifications. The requirements of large systems are generally very

difficult to describe. Often a user will only be able to indicate the true requirements by

observing the execution of the system. The traditional software life cycle yields an exe-

cutable program, especially in the case of large systems, only after too much time and

money are spent.

2. Rapid Prototyping

An alternative methodology called rapid prototyping is proving to be much

more efficient in the design of large real-time systems. The rapid prototyping

Requirements
Analysis

1
Functional
Specitications

1
Architectural
Design

1
Module
Design

1

Implementation

1

Testing

1
Evaluation
and
Repair

Figure 1. The Traditional Software Life Cycle Methodology

methodology is made up of two phases. 1) rapid prototyping and 2) automatic program

generation. A prototype is an executable model of the intended system and is the

product of the rapid prototyping phase. In general, the prototype is only a partial

representation of the intended system and includes only the system's most critical as-

pects. The prototype must satisfy its requirements, be easy to modify, and be easy to

read and analyze. In the rapid prototyping methodology, system requirements are de-

termined and a prototype is constructed. The prototype will then be demonstrated to

the user for requirement clarification and feasibility determination. Adjustments are

made as needed and the modified prototype is demonstrated. This iterative process is

shown in Figure 2 on page 5 and continues until both the user and designer are satisfied

that the system performs to user specifications. The rapid prototyping methodology

generates an executable model faster and at less cost than the traditional software life

cycle. In addition, the problems associated with a user being unable to accurately

communicate his requirements to the designer are alleviated [Ref. 3: p. 3]. The final

software product developed by using the rapid prototyping method should be more re-

liable, more in line with user needs, less expensive, and more timely than software de-

veloped using the traditional life cycle approach.

To date, rapid prototyping has been done manually without the aid of software

tools. Each step in the rapid prototyping methodology, though faster than the tradi-

tional life cycle approach as discussed above, still requires a good deal of time and effort.

In an attempt to make rapid prototyping more in line with its name, software tools are

being developed to automate the rapid prototyping process. An automated rapid pro-

totyping environment will enable the system designer to possibly retrieve software com-

ponents from a software library and review previous designs at the touch of a button in

addition to execution of the prototype.

At the present time, software methods are inadequate to handle the rapidly

growing demand for large systems. "A significant improvement in software technology-

is needed to improve programming productivity and the reliability of software products"

[Ref. 4: p. 66]. The Computer Aided Prototyping System (CAPS) is being developed

to improve software technology, and will aid the software designer in the requirements

analysis of large real-time systems by using specifications and reusable software com-

ponents to automate the rapid prototyping process [Ref. 4: p. 66].

The Prototype System Description Language (PSDL) is an executable high level

specification language that directly supports CAPS. PSDL is made executable by the

execution support system element of CAPS. CAPS and PSDL will be described in

greater detail in Chapter II.

B. OBJECTIVES

The objective of this thesis is the development of a conceptual level design for the

design of the static scheduler for the prototyping language PSDL of the CAPSexecution

support system. The static scheduler design will be the basis for further research and

implementation of the static scheduler.

Determine

Requirements

Requirements
fc

Construct

Prototype

Requi

Modifica

red

tions
N

Executable

Prototype

<Va[Ji
3r x Performance Demonstrate

Prototype

Validated

Requirements

Y

f

System
Implementation

Figure 2. The Rapid Prototyping Methodology

C. ORGANIZATION

A survey of the state-of-the-art research into static scheduler designs and consider-

ations will be presented in Chapter 11. PSDL constructs and the conceptual level design

for the static scheduler will be discussed in Chapter III. Conclusions and applications

to telecommunications software development will be presented in Chapter IV.

II. PREVIOUSRESEARCHANDSURVEYOF SCHEDULING
ALGORITHMS

A. PREVIOUSRESEARCH

The static scheduler for the Prototype System Description Language (PSDL) is one

element of the Computer Aided Prototyping System (CAPS) tool. CAPS is presented

here in greater detail to provide an overall framework for the PSDL static scheduler.

1. CAPS

Chapter I introduced CAPS as a tool that is being designed to aid software de-

signers in the rapid prototyping of large software systems. CAPSmakes use of specifi-

cations and reusable software components to automate the rapid prototyping

methodology [Ref. 4: p. 66].

A base of reusable software components is searched based on module specifi-

cations entered by the designer. If a match is found, the component is retrieved from

the component base for use in the prototype. If no match is found and the specification

cannot be decomposed further, the designer must hand code the component. If further

decomposition is possible the decomposed specifications are entered into the system and

the library is searched once again. This process continues until all components have

been retrieved or hand coded and is shown graphically in Figure 3 on page 7. Provided

that it is in fact more efficient to accomplish the component search than to hand code

each module, this tool should significantly increase software productivity.

The CAPSarchitecture contains the following elements:

1. User Interface

2. Prototyping System Description Language

3. Rewrite Subsystem

4. Software Design Management System

5. Prototype Data Base and Software Base

6. Execution Support System

These components will be discussed briefly below and are shown graphically in

Figure 4 on page 8.

SpccMica

f

ttoro

i

Rewrite
Specification

<r

Formulate
Query

U

Search Software
Database

/\
Decompose

Yes yS ^^ None yS X.
1

X. s^ X,. Matches'^

1 ' r No ir Many

- Specify
Components Hand Code

Resolve
Choices

Decompo
Relations

sition
hips i r U

Combine
Components

Retrieve
Component

In
P

1

iplementi
rotolype

f

Uion of

Figure 3. The Computer Aided Prototyping System Methodology

a. User Interface

The user interface consists of a syntax directed editor for PSDL and a

graphics tool for constructing and displaying data How diagrams [Ref. 5: p. 27]. The

editor will automatically supply key words and provide legal syntactic alternatives for the

designer to select at each step in the design.

b. Prototyping System Description Language (PSDL)

PSDL is designed specifically for use with the CAPS. It is intended to be

used at the specification and design levels and supports functional, data, and control

User Interface

u

Prototype System

Description Language

r

u

Rewrite Subsystem

i r <

Software Design

Management System

Execution Support

System

i p

fe-

Prototype

Database

Software Base

Figure 4. The Computer Aided Prototyping System Architecture

abstractions. The resulting PSDL prototypes are hierarchical decompositions based on

both data flow and control flow.

PSDL is based on a computational model containing Operators that com-

municate via Data Streams. Operators may be either periodic or sporadic, functions or

state machines, and atomic or composite. Data Streams are communications links

connecting exactly two Operators and may be dataflow or sampled streams

[Ref. 6: pp. S-10J. PSDL does not contain any global or mutable data types, all data

must be passed to Operators via Data Streams. Those features of PSDL pertinent to the

static scheduler will be discussed in more detail in Chapter III.

c. Rewrite Subsystem

The components contained in the software base are retrieved by searching

the software base for matching specifications. Software designers can choose from se-

veral specifications but the software base is searched with one normalized specification.

The function of the rewrite subsystem is to translate equivalent specifications (aliases)

into the normalized specification (term). [Ref 4: p. 69]

d. Software Base Management System

The software base management system is responsible for organizing, re-

trieving, and instantiating reusable software components from the software base.

[Ref. 4: p. 69]

e. Prototype Data Base and Software Base

The prototype data base maintains copies of prototype structures and de-

sign information. The software base contains the reusable software components. The

reusable components that make up the software base must be interpretable and portable.

The component base itself will be easily extensible to allow the addition of new reusable

components. It will also be possible for the designer to browse the component base to

enable him to select and retrieve appropriate components. [Ref. 4: p. 70]

/. Execution Support System

The execution support system is necessary for the construction and updat-

ing of a prototype as well as prototype execution. The execution support system is made

up of three components, a translator, a static scheduler, and a dynamic scheduler

[Ref. 7: p. 7]. The translator translates the statements in the PSDL prototype into

statements in an underlying programming language. The underlying programming lan-

guage for the CAPS is Ada®.l The development of the translator is presented in Moffitt

[Ref. 8]. The static scheduler attempts to find a static schedule for the operators in the

PSDL prototype with real-time constraints. An implementation guide for the static

scheduler can be found in Janson [Ref. 9]. The dynamic scheduler is a run time execu-

tive which controls the execution of the prototype, schedules operators that do not have

real-time constraints, and provides facilities for debugging and gathering statistics. A

design for the dynamic scheduler is contained in Eaton [Ref. 10].

1 Ada® is a registered trademark of the United States Government, Ada Joint Program Office.

The interfaces between these components are shown in Figure 5 on page

1 1. The designer interacts with the user interface to create PSDL source code. The dy-

namic scheduler initiates the actions of the translator and static scheduler and the PSDL

source code is read directly by both. The translator translates the PSDL code into Ada

source code and the static scheduler extracts operator timing information from the

PSDL source code and creates a static schedule in Ada source code. The static scheduler

provides the dynamic scheduler with the static schedule and the non-time critical oper-

ators. The Ada source code from the translator and the static scheduler is compiled,

linked, and exported and the resulting executable Ada code is passed to the dynamic

scheduler. In its debugging mode, the dynamic scheduler interfaces with the designer

through the user interface.

B. SURVEYOF SCHEDULINGALGORITHMS
Research in the area of scheduling algorithms is becoming increasingly important

as more and more real world processes are being performed by computers in embedded

systems. The role of the static scheduler in the CAPSexecution support system is very

important to the execution of the prototype since a valid static schedule is a necessary

(though not sufficient) condition for a successful prototype in terms of meeting its timing

constraints. A task (or PSDL operator) is a software module that performs a particular

function. In hard real-time systems, tasks or operators must be scheduled to meet crit-

ical timing constraints and failure to do so results in a failed system. The scheduling of

tasks or operators can be divided into two separate scheduling problems:

1. Static scheduling which requires knowledge of all timing properties of tasks before

scheduling begins, and

2. Dynamic scheduling which schedules tasks as they become known and does not

know beforehand a task's timing properties.

In addition to the above distinction, static schedules tend to be inflexible and do not

adapt well to an environment whose behavior is not completely predictable, though

typically they have low run-time costs. In contrast, dynamic schedules are flexible and

adapt easily to changes in the environment but tend to have higher run-time costs. The

static scheduler being designed for PSDL will be able to handle unpredictable environ-

ments by creating equivalent periods for unpredictable (sporadic) operators. The oper-

ators are scheduled based on these equivalent periods so that whenever they do occur,

there will be a time slot available within an acceptable time frame.

10

ir \r

CAPS
P ser

<
Interface

(Ul)

u <r

Translator Scheduler

Scheduler

Compiler
Linker
Exporter

(CLE)

Figure 5. The Execution Support System

Both static and dynamic schedules can be built for single or multiprocessor systems.

A multiprocessor system can be centralized (each processor shares a common memory)

or distributed (each processor has an independent memory).

This section briefly describes some of the research elTorts that are being directed

toward static scheduling algorithms for both single and multiprocessor systems. In

addition to the work being done on CAPS and PSDL, researchers are looking at

additional ways to automate the software design environment for real-time systems.

Static scheduling algorithms are but one important aspect of this automation clTbrt.

11

This chapter is divided into three sections. In the first section, several system

decomposition and static scheduling algorithms currently being designed are presented.

The second section looks at aids in determining software safety. The third section

presents work on monitoring the execution of real-time systems.

1. System Decomposition and Static Scheduling Algorithms

One of the most important aspects in real-time system development is express-

ing the critical timing constraints of a hard real-time system and decomposing systems

into models that facilitate the scheduling of the time critical tasks.

Dasarathy. [Ref. 11], explores constructs for expressing real-time timing con-

straints for systems modeled as finite_state machines. Performance constraints and be-

havioral constraints are identified as two categories of timing constraints in hard

real-time systems. Performance constraints set limits on the response time of the system

while behavioral constraints set limits on a user's stimuli to the system. To completely

model a real-time system, both of these types of constraints must be included. Three

types of temporal constraints are maximum, minimum, and durational. Maximum tim-

ing constraints stipulate an upper bound between the occurrence of two events. Con-

versely, minimum timing constraints stipulate a lower bound between the occurence of

two events. Durational timing constraints require that an event must occur for a speci-

fied amount of time.

Both maximum and minimum timing requirements include four types of

constraints:

1. Stimulus - Stimulus

2. Stimulus - Response

3. Response - Stimulus

4. Response - Response

Cases 1 and 3 are constraints posed on the users of a system and can be expressed in a

design language by using timers. Cases 2 and 4 are constraints on the system's per-

formance. In a maximum time situation, these constraints can be expressed by using a

latency statement and in a minimum time situation, a delay statement is appropriate.

Latency specifies the maximum amount of time that can pass between the two events

and delay specifies the minimum amount of time between two events.

Constructs for expressing durational timing constraints typically include a du-

ration attribute specifying the length of the duration of the stimulus or response. If this

12

attribute is not specified, the event is considered to be instantaneous, requiring virtually

no time.

The Prototype System Description Language contains constructs for expressing

all of these types of constraints. Both human and hardware properties can be simulated

when demonstrating the prototype to indicate the feasibility of the constraints imposed

on the behavior of users and equipment.

In addition to expressing the system's timing constraints, a real world system

needs to be decomposed into both its time critical and non-time critical tasks. The order

of execution of the tasks then must be controlled, usually by one of two types of control

commonly found in hard real-time systems; data (low and control flow. Data flow

systems can be modeled as directed graphs where nodes represent operators and arcs

show the data dependencies among operators. An operator is fired when all incoming

data arrives on its input arcs. The operator consumes these values and then produces

an output value which is an input for another operator. Computation continues to

proceed in this data-driven manner. Control flow systems rely on a centralized control

such as a program counter or main module that determines when an operator should

fire.

Trior to developing static scheduling algorithms to schedule the time critical

tasks or operators of a hard real-time system, the timing constraints and relationships

among tasks must be specified such that these constraints and relationships can be ad-

hered to. Mok and Sutanthavibul present a graph model for describing real-time sys-

tems and their timing constraints and relationships where execution is governed by the

availability of data (dataflow) [Ref. 12]. The authors study those real-time systems

where input data arrive at fixed rates (periodic systems) but otherwise there are no ex-

plicit timing constraints.

The graph model is a triple (G, f, h) where G = (V, E) is a directed acyclic

graph. An example of an instance of the graph model is shown in Figure 6 on page

14. V is the set of nodes and E is the set of directed edges. Nodes represent cither input

elements or computation elements. Input elements have no incoming edges, they only

represent the source of periodic data. The second element of the triple is a function

mapping each node into a list of integer parameters. Computation nodes are mapped

onto a non-negative integer which is its computation time and input nodes are mapped

onto a pair of intcgeis, the time when the node can first be implemented (lag) and the

length of the time interval between two successive requests for the input node (period).

13

Tigure 6. Example of an Instance of the Graph Model

The third clement in the mode!, h. maps each edge onto a non-negative integer

denoting the size of the data item passing between two nodes. In the single processor

case, communication times are assumed to be negligible and can be ignored.

The scheduling problem is dependent on whether non-preemptive 01 preemptive

scheduling is to be used. In non-preemptive scheduling, a task is uninterruptible and

must run to completion once it is started. In preemptive scheduling, tasks max be in-

terrupted prior to completion. It was found that preemptive scheduling tends to yield

a greater number of valid schedules than does non-preemptive scheduling. Despite this

finding, the PSDL static scheduler to be presented in Chapter III utilizes non-preemptive

scheduling.

14

Mok and Sutanthavibul then describe their strategy for transforming the nodes

in the graph model into a set of independent processes in a process model. This strategy

results in an efficient on-line scheduler when preemption is allowed.

An instance of the process model consists of a set of processes each of which

can be scheduled independently. This implies that there are no precedence constraints

or other contraints on the execution of the processes. This differs from the PSDL static

scheduler concept in that the processes (known as operators in PSDL) are constrained

by precedence relations which must be taken into account in building the schedule.

A necessary and sufficient condition for the existence of a valid schedule derived

from the transformation to an instance of the process model is given as a utilization

factor. The utilization factor is the computation time for each process divided by its

period summed over all the processes. The necessary and sufficient condition for the

existence of a valid schedule in single processor systems is a utilization factor that is less

than or equal to one.

Once the elements of the graph are transformed into elements of the process

model, an earliest deadline first algorithm or earliest deadline - predecessor priority al-

gorithm can be used to build the schedule. The paper concludes with the theorem that

a valid schedule for a graph model exists only if there is a valid schedule for the process

model.

Work is also being done in the scheduling of dataflow systems by Bic [Ref. 13].

He describes a model for efficient execution of data flow. Mis goal is to reduce run time

overhead inefficiencies by breaking a data flow program into sequences of instructions

that must be executed sequentially due to their data dependencies. The expected benefit

of the algorithm is the high degree of parallelism during execution. This work is not

directly applicable to the static scheduler design since the static scheduler for PSDL is

being designed to combine both data flow and control flow elements.

Mok presents a methodology to automate the synthesis of code for time critical

applications which takes into account resource (hardware) requirements [Ref 14]. The

general strategy involves representing hard real-time design specifications as instances

of a formal graph-based computational model. Resource allocation analysis is per-

formed on each problem instance to arrive at an implementation which meets the spec-

ified critical timing constraints.

The graph based model is an ordered pair (G,T) made up of a communication

graph (G) and a set of timing constraints (T). The communication graph is a directed

15

graph made up of nodes and edges. The set of timing constraints consists of a task

graph (C), period (p), and deadline (d). The task graph is an acyclic directed graph

which defines the precedence relation of the computational events that must occur in

order to satisfy a timing constraint. Timing constraints can either be periodic or asyn-

chronous.

Implementing an instance of this model is done by mapping each

periodic/asynchronous timing constraint into a periodic, asynchronous process. The

process is any topological sort of the operations in the task graph. The static schedule

resulting from this model is a finite string of functional elements and idle times. This

idea describes the PSDL static schedule which is, at each level of decomposition, a string

of operators and idle times.

Mok describes three algorithms for decomposing the computational require-

ments of real-time systems into a set of processes with critical timing constraints

[Ref. 15]. This is a typical first step in automating the synthesis of real-time systems and

the algorithms are:

1. Decomposition by Critical Timing Constraints (CTC)

2. Decomposition by Centralizing Concurrency Control (CCC)

3. Decomposition by Distributing Concurrency Control (DCC)

a. Decomposition by Critical Timing Constraints

In decomposition by critical timing constraints, a process composed of a

sequence of function calls to programs implementing functional elements of a timing

constraint is created to perform the computation associated with a timing constraint.

A special process called a monitor is created to enforce mutual exclusion on the exe-

cution of a function called by two or more processes. While this decomposition is the

most straightforward way to decompose the design, it is not the most efficient since some

computations may be duplicated in two or more processes.

b. Decomposition by Centralizing Concurrency Control

In decomposition by centralizing concurrency control, periodic timing con-

straints that are compatible with one another are grouped together into an equivalence

class. Two timing constraints are defined to be compatible if period 1 divides evenly into

period 2 or period 2 divides evenly into period 1 (one deadline is an exact multiple of the

other), deadline 1 equals deadline 2, and task graphs 1 and 2 have some nodes in com-

mon. A periodic process is then created for each equivalence class. In this way, re-

dundant computation is avoided and since concurrency control is centralized, processes

16

tend to be independent of each other. One drawback to this algorithm, however, is that

it may not yield the shortest program possible. This type of decomposition is useful in

developing the harmonic block concept for the PSDL static scheduler.

c. Decomposition by Distributing Concurrency Control

In decomposition by distributing concurrency control, a periodic process

will be created for each functional clement in the communication graph. Since a func-

tional element can occur in two or more task graphs, the periodic process which is cre-

ated will have a period equal to the smallest period among the periodic timing

constraints in which the functional element occurs. In this way, the computation is de-

composed into as many processes as possible and results in increased parallelism in the

design. However, the resulting designs tend to be more difTicult to understand and

modify if necessary.

Once a real-time system is decomposed into processes, these processes must

be scheduled. Mok examines the real-time scheduling problems of three process models

and discusses the implication of his results on the design of real-time programming lan-

guages [Ref. 16].

Real-time scheduling deals with the problem of continuously meeting spo-

radic and periodic timing constraints. The three models discussed are:

1. The Independent Processes Model

2. The Deterministic Rendezvous Model

3. The Kernelized Monitor Model.

All of these models deal with the single processor case.

o- The Independent Processes Model

The independent processes model assumes that processes are preemptible

and in that situation, the earliest deadline first scheduling algorithm is optimal. How-

ever, when preemption is not allowed, which is the case in the PSDL static scheduler,

earliest deadline first is no longer optimal.

b. The Deterministic Rendezvous Model

In the deterministic rendezvous model, a rendezvous primitive is used for

synchronizing two processes and establishing precedence constraints. For scheduling

purposes, the rendezvous is assumed to take zero time. The earliest dealine first algo-

rithm which is modified to run the ready process with the nearest deadline and which is

not blocked by a rendezvous primitive is not optimal. This problem is easily fixed by

17

adopting a technique for revising deadlines to eliminate precedence constraints which

then allows the use of the earliest deadline first algorithm.

The technique used to revise the deadlines first sorts the scheduling blocks

contained in each process in reverse topological order. Then the deadline of a scheduling

block is moved up if it must precede another scheduling block which has a nearer dead-

line but is not yet ready to run. The revised deadlines are used to update the current

deadlines at run-time.

The feasibility of the process model is not affected by dynamically updating

the process deadlines as described above if all of the processes in the model are periodic.

c. The Kernelized Monitor Model

The third model is the kernelized monitor model. The operating system

enforces mutual exclusion by allocating processor time only in uninterruptible quanta

of any size which is chosen to be bigger than the largest monitor. A monitor is a special

type of process that performs some service for ordinary processes on demand. The only

difference between this model and the deterministic rendezvous model for scheduling

purposes is that a process may be interrupted only after it has been allocated an integral

number of quanta.

The implications of this work on the design of real-time languages were

evaluated against the criterion of a language construct's impact on software automation.

By this criterion, the use of semaphores is undesirable, there is substantial benefit in

making the enforcement of interprocess synchronization and mutual exclusion syntac-

tically distinct, and there may not be any easy way to deduce whether a control construct

is being used to enforce a synchronization or a mutual exclusion constraint.

A scheduling algorithm that guarantees the response times for a fixed set

of tasks run on a single dedicated processor in a hard real-time environment is described

by Leinbaugh in [Refi 17J. A task's guaranteed response time is defined as the maxi-

mumtime from the successful start of the task to it's completion. Leinbaugh's model

allows for input, output requirements and competition among tasks for the same devices

or data in addition to central processor requirements for each task. A task is defined

as a scries of segments which are run one at a time in order. Guaranteed response times

are computed from knowing the maximum processor time needed for each segment, the

maximum operating time of each device, the symbolic resources needed by each segment

and the placement of device requests within each segment and the placement of segments

18

within each task. Resource segments have priority over other segments and requests for

devices are run on a first-come-first-served basis.

Curtis Abbot presents an intervention scheduling model for programming

real-time systems to run on single processor and shared memory multiprocessor systems

[Ref. 18). Intervention schedules are characterized by a sequence of events. Events are

enabled when triggers fire and once processing of an event starts, it runs to completion

(nonpreemptive processing). In Abbot's model, an intervention schedule can be thought

of as a list of expressions with wait conditions interspersed among them. Each wait

condition names a trigger. Intervention schedules, therefore, are ordinarily in a waiting

state as opposed to processes that are ordinarily running and occassionally waiting to

synchronize with cooperating processes.

Intervention schedules organize programs such that timing is separated

from computation. This separation is accomplished partly by the fact that no data ac-

companies a trigger. For this reason, this research is of little help in the design of the

static scheduler for PSDL implementation where data can be the trigger.

Each of the above scheduling algorithms have tried to capture timing con-

straints in a temporal sense. Peter Ladkin discusses how time dependencies may be more

appropriately specified using the interval calculus rather than temporal logic [Ref. 19].

He contends that without considerable training in logic, it is difficult for many pro-

grammers to write correct specifications in using temporal logic and that temporal logic

is only suitable for sequencing and concurrency control. By contrast, Ladkin argues that

the interval calculus is a more natural means of specifying concurrent systems behavior

and is more suitable for specification of real-time systems. The high level interval cal-

culus formulation is then refined by an automatic process into a lower level specification.

Despite this contention, timing constraints in PSDL will be handled temporally.

2. Software Safety

When designing hard real-time systems, it is important to determine whether

timing constraints are being satisfied since the failure to meet one deadline could result

in catastrophic loss. Safety assertions, which can be thought of as additional constraints

on the system, can be used to perform a safety analysis. Formalizing the safety analysis

of timing properties in real-time systems is the objective of Jahanian and Mok

[Ref. 20]. The properties of real-time systems are described in an event-action model

which is then translated into in Real-Time Logic (RTL) formulas. Safety assertions are

treated as additional constraints on the svstem and are also translated into RTL. RTL

19

formulas are translated into predicates of Presburger Arithmetic and existing functions

can then be used to determine if a given safety assertion is a theorem derivable from the

system's specification. The ultimate goal is the creation of a practical tool for software

engineers to use in analyzing real-time systems.

For a system to be considered safe, the safety assertion must be a theorem which

is derivable from the system specification. The system is considered inherently unsafe if

the safety assertion is unsatisfiable with respect to the specification. Finally, if the ne-

gation of the safety assertion is satisfiable under certain conditions, additional con-

straints must be imposed on the system to ensure its safety. Jahanian and Mok,

[Ref. 21], describe a three-part graph-theoretic procedure for safety analysis for certain

timing properties that are expressible in a subset of Real Time Logic formulas. The first

part of the approach constructs a graph that represents the system specification and the

negation of the safety assertion. The second part of the analysis uses a node removal

procedure to detect positive cycles in the graph. The third part determines the consist-

ency of the safety assertion with respect to the system specification. The safety assertion

is considered consistent with the specification if an RTL formula consisting of the spec-

ification in conjunction with the negation of the safety assertion is unsatisfiable. This

version of the safety analyzer is being implemented as part of a design environment for

real-time software known as SARTOR.

The initial conceptual design presented in this thesis is for a prototype of the

PSDL static scheduler. Therefore, while the importance of safety analysis is recognized,

it is not dealt with in any detail in this design.

3. Execution Monitoring

It is not enough in most cases to simply build a valid static schedule, execute the

prototype, and decide whether the system works or fails. Since a valid static schedule

is a necessary but not sufficient condition for successful execution, prototype execution

needs to be monitored to determine where problems in timing may occur and to collect

run-time data. Bernhard Plattner, [Ref. 22], proposes an execution monitoring process

that is conducted in real-time and on a symbolic level, where the monitor and operator

communicate in terms of the source code that the monitored or target process is written

in. The operator describes what is to be monitored in a monitoring statement which

consists of a predicate and an action. The action is executed only when the predicate

equates to a boolean value of true. In this way, information about a process can be

20

recorded. To prevent the monitoring system from affecting the run-time execution of the

target process, the monitor and the target process do not share the same processor.

In the PSDL execution support system, the task of collecting run-time data is

delegated to the dynamic scheduler and so will not be discussed in this thesis.

C. SUMMARY
This brieflook at the ongoing research efforts in hard real-time system development

underscores two important facts. First, the design of hard real-time systems and their

associated scheduling considerations are receiving a great deal of attention. The impor-

tance of this again is reduction of time, effort, and money in the software design process

of systems whose error-free performance is not only desirable but mandatory and the

unique design problems for real-time systems are being acknowledged and dealt with.

Second, this survey highlights the fact that though many research efforts are in progress,

the Computer Aided Prototyping System and Prototype System Description Language

are not being duplicated by other research efforts. As a result, much of the information

presented in this survey chapter, though informative, is not directly applicable to the

design of the PSDL static scheduler. The conceptual design for the PSDL static sched-

uler is presented in Chapter III.

III. CONCEPTUALDESIGN FORTHE STATIC SCHEDULER

As discussed briefly in Chapter II, the static scheduler is responsible for scheduling

time critical operators in such a way that all timing constraints as well as precedence

relations are met. Figure 7 on page 23 is the first level data flow diagram for the static

scheduler as conceptualized by this author. A PSDL source file, generated by the system

designer, contains the PSDL operator specifications and implementations for the proto-

type. In Read_PSDL, the static scheduler reads this file and collects operator names and

timing information. The resulting file is then run through a Text_file_preprocessor

where operators are separated into time critical and non-time critical files. The non-time

critical operators are sent to the dynamic scheduler. The static scheduler retains the time

critical operators for itself. There are several conditions between the timing constraints

that must be true in order for the prototype to run properly. Before any operators will

be scheduled, a series of simple validity checks will be conducted to ensure that the

proper relationships hold between the time critical operators.

In order to maintain the precedence relationships among operators in the final static

schedule, the operators must be sorted topologically. This is done in Topological_sort.

Next in the data flow diagram is Build_harmonic_blocks. A harmonic block is a set

of operators such that each operator in the set has a period that is an exact multiple of

the base period and at least one of the operators has a period equal to the base period

[Ref. 7: p. 7]. The last requirement may be relaxed in the single processor case since

there is only one harmonic block. Sporadic operators will be given an equivalent period

prior to constructing the harmonic block(s). It makes no difference whether the opera-

tors are first sorted in topological order or organized into harmonic blocks since both

activities yield separate schedules.

Finally, Schedule_operators combines the separate harmonic block and topological

schedules into one static schedule that meets both timing constraints and precedence

relationships. In the multiprocessor case, each harmonic block is a separate scheduling

problem handled by separate processors. In the single processor case, only one har-

monic block is constructed. The final static schedule will be a finite string of operators

meeting worst case execution times and occasionally separated by idle time slots result-

ing from operator periodicity constraints. This will become clearer in Section E. The

dynamic scheduler will schedule non-time critical operators into these idle time slots as

22

1 Build
harmonic

\ biocK« / Op name, timing info
Op name \ /v grouped into blocks

Timing_inlo jJ^ /

PSDL ,
^~^s

\ / X^^
Source / \ / \
File / \ \

J Read_PSOC
J

1 Text_flle_
J Schedule

\ operators
\ /Text III* \ /
V y f \ / / Staticv S Schedule

yf**' ""^""X^LInl^rile

Sequence of Operator
Non-time-crltlcal / *
Operators to /

V name* in precedence
l oraer

Dynamic Scheduler Topological
I sort

Figure 7. Static Scheduler, 1st Level Data Flow Diagram

well as any time remaining if a time critical operator completes execution prior to its

worst case execution time.

The remainder of this Chapter is organized into sections corresponding to each of

the bubbles in Figure 7. Where applicable, the algorithm for each module of the static-

scheduler is presented followed by an example of its execution.

A. READ_PSDL

As it is being designed, the static scheduler will obtain PSDL operator timing and

precedence information directly from the PSDL prototype source file. Specifically, the

static scheduler is looking for an operator's maximum execution time, minimum calling

period, maximum response time, and period. The maximum execution time (MET) is

an upper bound on the length of time between the instant when a module begins exe-

cution and the instant when it completes (Ref. 6: p. 23]. The MET applies to both

periodic and sporadic operators. The maximum response time (MRT) for a sporadic

operator is an upper bound on the time between the arrival of a new data value and the

time when the last value is put into the output streams of the operator in response to

23

the arrival of the new data value. The MRTfor a periodic operator is an upper bound

on the time between the beginning of a period and the time when the last value is put

into the output streams of that operator during that period. [Ref. 6: pp. 23-24] The

minimum calling period (MCP) is a constraint on the environment of a sporadic opera-

tor consisting of a lower bound between the arrival of one set of inputs and the arrival

of the next set (Ref. 6: p. 24].

There are three common definitions of a period. The first is that an operator is

scheduled to fire at exact time intervals equal to the period. For a period of 10, this

means that exactly every 10 time units the operator would fire. The second definition

of a period is that the operator must be scheduled to fire within the stated time interval.

Again, for a period of 10. the operator must fire sometime between time t = and 10,

10 and 20, 20 and 30, and so forth. The third definition is that an operator must fire and

complete execution within the specified time interval. This third definition is the one

used in designing the static scheduler.

In addition to the timing constraints, the static scheduler must also obtain the pre-

cedence relationships between the operators. Precedence relationships are shown in

PSDL as directed graphs. A directed graph is a set of nodes and edges with arrows in-

dicating the direction of dataflow on the edges. For purposes of the topological sort, the

static scheduler will have to differentiate between operators that are functions and those

that are state machines. When a function fires, outputs depend only on the set of cur-

rent input values. Functions are represented as acyclic digraphs. When a state machine

fires, its outputs depend on the set of input values and a finite number of internal state

variables. State machines are shown as cyclic digraphs. Figure 8 on page 25 shows this

distinction graphically. As discussed in Section C, the topological sort algorithm applies

to acyclic digraphs only.

Now that we know what information we are looking for, we must determine where

it can be found within the PSDL source file. Appendix A contains the PSDL grammar.

As defined in the grammar, PSDL operators have two major parts, specification and

implementation. The MET, MCP, and MRTcan be found in the specification part.

These timing constraints are either stated explicitly or, in the case of the MCP, are in-

herited from a higher level operator. In addition to the timing characteristics, the oper-

ator specification contains attributes describing the form of the interface and formal and

informal descriptions of the observable behavior of the operator. The "States" attribute

24

a) Acyclic

b) Cyclic

Figure 8. Example of Acyclic and Cyclic Digraphs

identifies an operator as a state machine and is one of the attributes found in the spec-

ification part. Figure 9 on page 26 shows an example of an operator specification.

The precedence relationships and the period arc found in the operator implementa-

tion part. A composite operator (one that can be realized as lower level operators)

contains a graph depicting the relationships among the lower level operators. While the

user sees a directed graph on the terminal, the system designer has used PSDL state-

ments called link statements to indicate the direction of data flow. An aevclic directed

25

OPERATORB

SPECIFICATION

INPUT b : integer

OUTPUT c : integer

MAXIMUMEXECUTION TIME 2 ms

DESCRIPTION

{ Operator B takes as input data stream b and outputs

a response on data stream c. Operator B has a maximum

of 2 ms to do this.

END

Figure 9. Example of an Operator Specification

graph with its corresponding link statements is shown in Figure 10 on page 27. The

times specified in the link statements are the

maximum execution times of the operators.

The first link statement (a. EXT -> A) and the last link statement (d.C:2ms -* EXT)

both contain a pseudo-operator named EXT. EXT (for external). This is a convention

used by this author to identify those operators in the graph that have data coming from

or going to some operator external to a particular decomposition. Even though EXT is

not found in the PSDL grammar, it is required by the static scheduler in order to execute

the topological sort algorithm. Whenever EXT is seen in a link statement, it can be in-

terpreted to mean that the operator is either the first or the last in the graph. For the

first operator in the graph this means that it has no incoming edges. This will be sig-

nificant when executing the topological sort algorithm. For the last operator in the

graph, whether or not it has an outgoing edge is immaterial.

A link statement describes the relationship between two operators by indicating the

direction of dataflow between them. A link statement is to be read as

data_stream.from_operator -+ to_operator. The first link statement in Figure 10 on

page 27 is therefore read as data_stream "a" connects an "external operator" to operator

26

M A

a.EXT A

b.A:l B

c.B:2 C

d.C:2 EXT

Figure 10. Link Statements Associated With a Directed Graph

A. In other words, operator A is the first operator in the graph and has no incoming

edges. The second link statement links operators A and B with data_stream b. The or-

der of the operators in a link statement is always in the direction of dataflow.

A periodic operator's period is found in the implementation section under "control

constraints." If a period is not explicitly stated, it is inherited from a higher level oper-

ator. If the maximum response time was not explicitly stated in the operator specifica-

tion part, it may be found in the implementation part as "finish_within."

The static scheduler will process the PSDL source file using an attribute grammar

(AG) based tool. This tool allows the user to define what attributes of the PSDL file

are important. All undefined attributes are ignored by the processor. The PSDL attri-

butes that will be defined for use by the static scheduler are "operator," id, operator

"specification," "states," 'maximum execution time," "minimum calling period," "maxi-

mumresponse time," time, unit, operator "implementation," "graph," link statements.

27

control_constraints, "period," "finish_vvithin," psdljmpl, constraint, opjd, and attri-

bute. The operator names and corresponding timing and precedence information will

be stored in a text file.

It is assumed by this author that the PSDL source file will be written hierarchically

starting at the highest level of abstraction. The static scheduler will read the file from

beginning to end and should, therefore, collect data from the top down as opposed to

bottom up. In other words, Operator A's timing information will be recorded before

Operators Al, A2, and A3.

An example of a prototype written in PSDL is contained in Appendix B. This is a

prototype for a real-time system for the treatment of brain tumors. Hyperthermia in-

duced microwaves are applied directly to the tumors, effectively killing them. A com-

puterized control system is used to adjust power output automatically to maintain the

proper therapeutic temperature.

As is typical with real-time systems, computer software controls the operation of the

whole system which is made up of four subsystems, a computer system, an operator

panel, a microwave generator, and a temperature sensor. The PSDL example in Ap-

pendix B is the prototype for the computer software subsystem. The remaining three

subsystems will be simulated in order to demonstrate the prototype.

The first operator in the prototype is brain_tumor_treatment_system. It is a state

machine with the states variable being temperature which is initially 37°. This operator

is a composite operator and is decomposed into operator hyperthermia_system and

operator simulated_patient. Each of these operators is periodic with a period of 200.

Although additional information is contained in the PSDL specification and

implementation, it is not pertinent to the operation of the static scheduler.

At the second level in the prototype hierarchy, operator hyperthermia_system is

described in more detail. It has a maximum execution time of 100 ms and a maximum

response time of 300 ms. It is also a composite operator and can be decomposed into

operators start_up, maintain, and safety_control. These last three operators are atomic

and are implemented in Ada rather than decomposed further. Each of these operators

has a maximum execution time which the static scheduler will obtain from their specifi-

cation parts.

This is a typical application of PSDL in building a prototype. The objective is to

build a bare bones prototype of the critical subsystems of a larger system in order to

demonstrate its feasibility. In the hyperthermia system, as in most embedded control

28

systems, it would be too costly and dangerous to build the complete system and dem-

onstrate it in its real world environment.

B. TEXT_FILE_PREPROCESSOR

The second level data flow diagram for the te\t_file_preprocessor, shown in

Figure 1 1 on page 30, indicates two basic activities, locating time critical operators and

performing simple validity checks on timing information.

1. Separate_critical_operators

The text file created by reading a PSDL source file contains the names of all of

the operators in the prototype as well as any timing properties that may be associated

with them. The static scheduler must separate out the time critical operators from the

non-time critical operators in order to pass the non-time critical operators to the dy-

namic scheduler. This is done by reading the text file and flagging or otherwise identi-

fying the operators that do not have any timing properties. The static scheduler assumes

that an operator is time critical if it has associated with it at least one of the following:

Maximum execution time,

Minimum calling period,

Maximum response time, and
Period.

A separate text file is created which contains only the non-time critical operators and

they are deleted from the original text file. This results in the creation of two text files,

one containing non-time critical operators and the other containing the time critical

operators. The static scheduler does no further processing of the non-time critical op-

erators. The remainder of this chapter assumes all operators are time critical.

The Text_file_preprocessor will also separate the link statements associated with

each operator into another separate file. In addition, Link statements associated with

a state_machine will be deleted from the file to prevent the occurrence of cyclic digraphs.

This is accomplished by identifying the states variable(s) for each operator. States vari-

ables always appear in the graph as data_streams. Because data_streams always come

first in the link statement, it is a simple matter to compare the states variable with the

first position in each link statement and delete those that match. The resulting file

should consist of a set of link statements which produce an acyclic directed graph. This

is the file that will be sorted topologically to create a schedule showing the precedence

relationships between the operators.

29

Links file

Text file Operator_file Operator_file

Non-critical-operator
file

Figure 11. Text_file_preprocessor, 2nd Level Data Flow Diagram

2. Simple_validity_checks

There are certain relationships which must hold between some of the timing

constraints in order for the prototype to function properly. First, the maximum exe-

cution time for an operator must be greater than or equal to its actual execution time.

Since the static schedule is built on worst case execution times, it follows that if actual

execution time is greater than the scheduled execution time the system will fail.

Second, the maximum execution time for an operator must be less than its

maximum response time. Since the maximum response time is defined as the upper

bound on when an operator puts it last value into an output stream, it is obvious that

the execution time must be sufficiently less than the response time to accomplish proc-

essing prior to the time when the output is required.

Third, an operator's. period must be greater than its maximum execution time.

If the period were less than the maximum execution time, an operator would be sched-

uled to fire again before it had completed execution from its previous firing. This would

cause the next firing to be delayed, thereby delaying the remainder of the static schedule.

This in all probability, will cause the system to fail.

30

These first three timing relationships apply to an individual operator. There is

an additional relationship that must hold betweeen the operators. The sum of the

maximum execution times of atomic or lower level operators must be equal to or less

than the maximum execution time of the composite operators at the next higher level in

the hierarchy. For example, assume that composite operator X has a maximum exe-

cution time of 100 milliseconds. If operator X is decomposed into operators XI, X2,

and X3, the sum of the maximum execution times of these three operators cannot exceed

100 milliseconds.

This is not a complete listing of all the validity checks that are possible but these

should be sufficient for this prototype to weed out the obvious errors. In the ideal sit-

uation, the static scheduler would be smart enough to make appropriate corrections or

substitutions to maintain these ielationships without causing the program to cease exe-

cution. For this prototype, however, if an inconsistency is discovered during the exe-

cution of the validity checks, an exception will be raised notifying the software designer

of the problem and execution will cease.

C. TOPOLOGICAL_SORT
The second level data flow diagram for Topological_sort is shown in Figure 12 on

page 32. As shown, there are three general sections to this algorithm. It is a simple al-

gorithm that essentially finds that operator which must precede all others in a set, con-

catenates that operator to a sequence of operators, and then deletes that operator and

all its edges from the set. This cycle is repeated until all operators have been deleted

from the set and it is empty. The final sequence should contain all operator names, in

order, by precedence.

1. Find_First_operator

The operator that must precede all others in the set can be identified easily from

the set of link statements because that operator will not have any incoming edges. It

will have either the word EXT on the left hand side of the arrow in the link statement

or it will be an operator that only appears on the left hand side of the arrow. Since the

link statements are always written in from-to form, an operator that is named on both

the left and right hand sides of an arrow in two or more link statements always has at

least one incoming edge.

In situations where more than one operator is identified as being first, the static

scheduler will arbitrarily choose one. It should not make a difference in the final

schedule since operators so identified have no precedence relation between them.

31

Link file

Operator

Operator

Sequence of
Operators

Figure 12. Topological_sort, 2nd Level Data FIo>\ Diagram

2. Build_sequence

Next, the operator that has been identified as the first operator is concatenated

to a sequence. Initially, the sequence is empty. Eventually it will contain the names of

all operators in the decomposition. If more than one operator is identified as having no

incoming edges, each operator is concatenated to the sequence arbitrarily.

3. Reinove_operator_froi«_set

Finally, all the link statements associated with the opcrator(s) just concatenated

to the sequence will be deleted from the set. This efTectively removes the operator and

32

all of its edges. The algorithm will repeat these steps, searching the new, smaller set for

that operator which has no incoming edges. Execution of this algorithm continues until

the set of link statements is empty.

The complete algorithm is listed below:

1. Create the sequence. Initially it will be empty.

2. While the set of link statements is not empty, search the set for operators that do
not have any incoming edges. (EXT to the left of the arrow or operator name that

appears to the left of an arrow, never on the right).

3. If more than one operator has no incoming edges, arbitrarily select the operator
that was located first.

4. Concatenate the operator name to the sequence.

5. Delete all the link statements in the set that contain the operator name either to

the left or the right of the arrow.

6. Repeat steps 2 through 6 until the set is empty.

The directed graph shown in Figure 10 on page 27 will be used to proved a

simple example of the topological sort algorithm. This graph is an acyclic graph.

However, had it been a state machine represented as a cyclic graph, link statements

containing the state variable will aready have been deleted prior to the execution of the

sort algorithm. The example is outlined below:

Step 1. Precedence_list : sequence. Initially it is empty ([]).

Step 2. Statements : set.

Initially it looks like { a.EXT -> A, b.A:l -+ B, c.B:2 - C. d.C:2 -* EXT } . Since

Statements is not empty, search for operators that do not have any incoming edges
(either EXT to the left of the arrow or an operator to the left of the arrow but not on
the right).

Since operator A had data coming from EXT, it qualifies under this rule. Operators
B and C do not qualify since both appear on either side of the arrow.

Step 3. Not applicable.

Step 4. Concatenate A to Precedencejist. Precedencejist looks like [A] .

Step 5. Delete all link statements in Statements that contain A. Statements looks like

{ c.B:2 -> C, d.C:2 - EXT } .

Step 6. Repeat steps 2 - 6.

Step 2. Statements is not empty. B is the only operator that does not appear on both
sides of a link statement arrow.

Step 3. Not applicable.

Step 4. Concatenate B to Precedencejist. Precedencejist looks like [A. B] .

33

Step 5. Delete all link statements in Statements that contain B. Statements looks like

{ d.C:2 -* EXT } .

Step 6. Repeat Steps 2 - 6.

Step 2. Statements is not empty, operator C is the only remaining operator.

Step 3. Not applicable.

Step 4. Concatenate C to Precedence_list. Precedence_list looks like [A, B, C] .

Step 5. Delete all link statments containing C from Statements. Statements looks like

{}•

Step 6. Repeat Steps 2 - 6.

Step 2. Statements is empty, execution is finished.

The final precedence list is [A, B, C] .

D. BUILD_HARMONlC_BLOCKS
The second level data flow diagram for Build_harmonic_blocks is shown in

Figure 13. All of the operators in a harmonic block are required to have periods that

are exact multiples of the base period. Therefore, a sporadic operator must be assigned

a period which is known as its equivalent period. Once equivalent periods are assigned,

all operators are treated as periodic operators. To simplify the Build_harmonic_block

algorithm, the operators are sorted by period in ascending order. Once this is accom-

plished, individual operators can be separated into the appropriate harmonic block based

on the definition given at the beginning of this chapter. Finally the block length is cal-

culated.

op name, i

timing_info / Find]

eauivalent_ J
^.period J

(Sortby)—W period j—
1 Assign 1M operators J—\ tO PIOCKS /

[
Find

—¥\ Piock"
V length

op_name.
. timlng_inlo
\ grouped

\ into DIocks

figure 13. Build_harmonic_hlocks, 2nd Level Data Flow Diagram

34

1. Find_equivalent_period

A sporadic operator's equivalent period is determined by the formula

P = MIN(MCP, MRT- MET).

An equivalent period derived in this way has a deadline equal to the MET. As a result,

these operators must be scheduled to start at the beginning of the period. Since

period - deadline = slack time, P - MET> for the sporadic operator. A constant

phase shift is allowable, however. In addition, the period must be greater than or equal

to the execution time of the operator so that it can meet its timing constraints.

[Ref. 7: p. 8].

There is some debate over whether the equivalent period must be greater than,

equal to, or less than the minimum calling period (MCP). The MCPspecifies a mini-

mumamount of time that must pass between the arrival of two successive inputs. This

prevents the operator from being continuously called on to perform its function. If the

period is less than the MCP, the operator will be scheduled to fire before new data values

are allowed on the input stream. Depending on the type of data stream employed by the

operator, this may cause the prototype to fail. Also, the prototype could fail because,

as stated above, the operator must be scheduled to fire at the beginning of a period in

order to meet its deadline. However, both of these conditions do not preclude a valid

static schedule from being constructed so there is no reason to require that P be greater

than the MCPfor this type of static scheduler.

The algorithm for determining the equivalent period for a sporadic operator is

for each sporadic operator in the Text_file do:

1. Compute the equivalent period P using the formula P = MIN(MCP, MRT -

MET).

2. Compare P and MET. P must be > MET. If it is not, make it equal to MET.

For example, if operator X has an MCPof 2, an MRTof 10, and an METof 5, fol-

lowing Step 1 above, P = MIN(2, 5) or P = 2. Since this is less than the METof 5, P

will have to be changed to 5.

At this point, a test can be done on the operator periods to assess the feasibility

of building a valid static schedule. Specifically, an operator's maximum execution time

divided by its period summed over all operators must be less than or equal to the number

of processors available in order for a valid schedule to be possible. This is represented

mathematicallv as

35

L MET(i), Period(i) < number of processors.

If this relationship does not hold, an exception will be generated and the designer will

be advised of the nature of the problem. As with the previous simple validity checks,

execution of the static scheduler wiil be suspended until the appropriate corrections are

made.

2. Sort_by_period

This requires a simple sort procedure. The operators will be sorted by period

from smallest to largest. The specified or inherited period will be used for periodic op-

erators and the equivalent period will be used for sporadic operators. From now on, all

operators are treated as periodic. The operators are sorted by period to make the de-

termination of harmonic block base periods easier.

3. Assign_operators_to_blocks

Finally, the operators are ready to be assigned to harmonic blocks. The algo-

rithm is different for single and multiprocessor environments. Each will be described

separately.

a. Single processor

In the case where there is only one processor, N = 1, all operators will be-

long to one harmonic block. The requirement that one of the operator periods in the

block be equal to base period is relaxed. Instead, the base period is the greatest common

divisor (GCD) of all the operators in the set. Z is defined as the GCD(X.Y) if and only

if X Mod Z = and Y Mod Z = and (X Mod W= and Y Mod W= 0) implies

W< Z. Mod refers to the modulo division operation that returns the integer remainder

of a quotient. Zero indicates that there is no remainder and the two values are evenly

divisible.

To find the GCD, start with the smallest operator in the set and divide it

into all other operators in the set until a non-integer value is returned (the result ¥= 0).

This is easily accomplished using the modulo division operator. If there are more oper-

ators remaining in the set when this occurs, subtract one from the initial divisor and

perform the division using the new divisor until a value not equal to is returned or the

end of the set is reached. Continue decrementing the value of the divisor by 1 (if not

at the end of the set) until all operators are evenly divisible by the divisor or it equals

1. The first value of a divisor that evenly divides all operators in the set is the GCD.

The algorithm can be stated as follows:

36

1. Operators : set. Initially it contains all operators.

2. N := 1.

3. Blocks : set. Initially it is empty.

4. GCD: integer.

5. GCD:= smallest period in Operators.

6. Divide GCDinto each operator period in Operators until period(operator) Mod
GCD^0 or the end of the set is reached.

7. If the end of the set was not reached, GCD:= GCD- 1.

8. If all remainders = 0, GCDis the greatest common divisor.

9. If necessary, repeat Steps 6 - 8 until GCD= 1.

10. Blocks := Blocks \J Operators.

11. Base_period := GCD.

An example of this algorithm will now be presented using the operators in-

troduced in Figure 10 on page 27. For purposes of this example, assume that Operator

A has a period of 3, B has a period of 6, and C has a period of 10. These periods may

not be consistent with any sort of application but are sufficient to demonstrate the al-

gorithm. The example is presented below:

Step 1. Operators := { A. 3, B.6. CIO } . Recall that the operators were previously

sorted by period in ascending order.

Step 2. N:= 1.

Step 3. Blocks :=
{ } .

Step 4. GCD:= 0.

Step 5. GCD:= 3. (smallest period in Operators)

Step 6. 3 Mod 3 = 0, 6 Mod 3 = 0, 10 Mod 3=1. Both "quit" conditions are

reached since 10 Mod 3^0 and CIO is the last operator in the set.

Step 7. GCD:= 3 - 1, (GCD := 2).

Step 8. Not applicable.

Step 9. Repeat Steps 6 - 8 until GCD= 1 or end of set is reached.

Step 6. 3 Mod 2=1, since 1 =£ 0, we skip to Step 7.

Step 7. GCD:= 2 - 1 (GCD := 1). Since GCD= 1, skip back to Step 10.

Step 10. Blocks :=
{ } U { 3, 6, 10 } . (Blocks = { 3, 6, 10 } and has a base period

equal to 1)

Step 11. Base_period :
= 1.

37

b. Multiple processors

When working in a multiprocessor environment, more than one harmonic

block can be constructed. There may be as many harmonic blocks as there are

processors. The number of processors available will be known beforehand to the static

scheduler so that it does not try to construct more blocks than there are processors.

Referring to the definition of a harmonic block given earlier in this chapter, it is easy to

identify which operators belong together in a single harmonic block. The base period

for any harmonic block is the greatest common divisor of all the operators and in this

case, will equal the smallest period of all the operators in the block.

The Build_harmonic_blocks algorithm basically takes the operator with the

smallest period from the set of all operators and makes it the base period of the har-

monic block. The periods of the remaining operators in the set are then divided by this

base period. If the division produces an integer result (no remainder), the operator has

a period that is an exact multiple of the base period and is assigned to the harmonic

block. As each operator is assigned to the block, it is deleted from the set of all opera-

tors. When all operators in the set have been tested, the algorithm repeats and selects

the operator with the smallest period to be the base period for the next harmonic block.

This new base period is divided into the remaining periods and operators are assigned

to the block and deleted from the set as above. This iterative process continues until

all operators have been assigned or there have been N - 1 harmonic blocks created where

N is the total number of processors available. The last harmonic block will be con-

structed as in the single processor case described in the previous section with the base

period being equal to the GCDof the remaining operators.

Once all the blocks have been constructed, there must be one more pass

over them to ensure that an operator that meets the criteria for more than one harmonic

block is assigned to the block with the largest base period. It is believed that this will

help make the scheduling problem easier. Essentially what can be done is the base pe-

riod of each harmonic block beginning with the block having the second smallest base

period is divided into each operator period in all other harmonic blocks having a smaller

base period. If the result of the division is an integer value (remainder of 0), the operator

is moved to the harmonic block with the larger base period.

The algorithm can be stated as follows:

1. Operators : set. Initially it contains all operators.

2. Blocks : set. Initially it is empty.

38

3. N:= number of processors.

4. Base_period : integer, initialized to 0.

5. New_block : set. Initially it is empty.

6. While Operators is not emptv or the number of elements in blocks is < N - 1, do
Steps 7 - 9.

7. Base_period :
= first operator period in Operators.

8. Each remaining operator in Operators is divided by Base_period using the Mod
operation. If period(operator) Mod Base_period = 0, delete operator from Oper-
ators and add it to New_block.

9. Blocks :
= Blocks U New_block.

10. Repeat Steps 6 - 9 until Operators is empty or the number of elements in Blocks
= N- 1.

11. GCD:= greatest common divisor of the remaining operators in Operators if Op-
erators is not empty, (use the greatest common divisor algorithm for the single

processor case)

12. Base_period := GCD.

13. Divide operators in Operator by Base_period and assign to New_block as in Step
8.

14. Blocks := Blocks \J New_block.

15. Operators should now be empty.

16. Beginning with the element in Blocks having the second smallest base_period, di-

vide this base period into each operator period in all other elements in Blocks
having a smaller base period.

17. If period(operator) Mod base_period = 0, subtract that operator from the har-

monic block and add it to the harmonic block with the larger base period.

18. Repeat until all base periods have been processed.

Using the same three operators, A, B, and C, the Build_harmonic_blocks

algorithm will be demonstrated for the multiprocessor case. Again, this is an oversim-

plified example but it should illustrate the algorithm adequately. The example is pre-

sented below:

Step 1. Operators := { A.3, B.6, CIO } .

Step 2. Blocks :=
{ } .

Step 3. N:= 2. (assumed for this example)

Step 4. Base_period := 0.

Step 5. New_block :
=

{ } .

39

Step 6. Operators is not empty and there are elements in blocks (0 < 1), so we go
to Step 7.

Step 7. Base_period :
= 3.

Step 8. 6 Mod 3 = 0, 10 Mod 3 = 1, Nevv_block := { A.3, B.6 } , Operators :
=

{10}.

Step 9. Blocks :=
{ { A.3, B.6 } } .

Step 10. The number of elements in Blocks =1. 1 = 1 so we go to step 1 1.

Step 11. Operators is not emptv so the GCDis determined using the single processor
algorithm. The GCDfor f 10 }

= 10. (10 Mod 10 = 0).

Step 12. Base_period :
= 10.

Step 13. 10 Mod 10 = 0, New_block := { CIO } , and Operators =
{ } .

Step 14. Blocks :=
{ { A.3, B.6 } } U { CIO } =

{ { A.3, B.6 } , { CIO } } .

Step 15. Operators =
{ } .

Steps 16-18. The element in Blocks having the second largest base period is { 10 } with
a base period o[10. Since there is only one other element in Blocks, this step is fairly

simple. 3 Mod 10 =£ and 6 Mod 10 ^ so all operators will remain in their respective

harmonic blocks.

4. Find_block_length

The final requirement in building the harmonic blocks is to determine their

length in units of time. This is important for two reasons. First, once the length is

known, another test can be performed to ensure that all operators in the block can be

scheduled as dictated by their timing constraints. This is done by multiplying each op-

erator's maximum execution time (MET) by the number of times it is supposed to be

scheduled within the block (block length -r- operator period). The sum over all the op-

erators must be less than the block length. This can be represented mathematically as

I MET(i) * (block length/period(i)) < block length.

This is a necessary though not sufficient condition to ensure that a valid schedule can

be constructed.

Second, each harmonic block is itself periodic. The block length determines how

often the block will repeat.

The length of a harmonic block is simply the least common multiple (LCM) of

all the operators in the block. Z is defined as the LCMof (X,Y) if and only if Z Mod

X = and Z Mod Y = and (W Mod X = and WMod Y = 0) implies W> Z.

The LCM is computed by taking two periods at a time, multiplying them together, and

then dividing this result by the greatest common divisor of the two periods. This result

40

is then multiplied together with the next period and divided by their GCDuntil all op-

erators in the set have been processed. The result of this operation on the last pair in

the set is the least common multiple of all operators in the set. The algorithm is pre-

sented below :

1. GCD, A, B, C, D : integer. All are initialized to zero.

2. A :
= 1st period.

3. B := 2nd period.

-4. C: = A * B.

5. GCD:
= greatest common divisor of A and B (using the GCDalgorithm of section

3).

6. D := C -GCD.
7. A := D.

8. B :
= next period.

9. Continue until there are no more operators in the set. The LCMequals the result

from the final pair of operator periods.

To continue with our example, the block length of the harmonic block con-

taining Operators A, B, and C ({ 3, 6, 10 }) in the single processor case will be com-

puted following the algorithm outlined above. The LCM is shown in the following

example:

Step 1. GCD, A, B, C, D := 0.

Step 2. A := 3.

Step 3. B := 6.

Step 4. C := 18.

Step 5. GCD:= 3.

Step 6 D := 18 -r 3, (D := 6).

Step 7 A:= 6.

Step 8 B :
= 10.

Step 4 C:= 60.

Step 5 GCD:= 2.

Step 6 D := 30.

Step 7 A:= 30.

Step 8 There are no more operators

Step 9 LCM = 30.

41

E. SCHEDULE_OPERATORS
The 2nd level data flow diagram for Schedule_operators is shown in Figure 14 on

page 43. The operators within each harmonic block are scheduled according to their

precedence and period constraints. As each operator is scheduled, a Next_firing_interval

is calculated. The lower bound of the Next_firing_interval represents the earliest time

at which the operator can be scheduled. The upper bound of the interval is the latest

time at which the operator can be scheduled and still meet an end of period deadline.

1. Sehedule_ne\t_operator

Schedule_next_operator is where the topologically sorted schedule is combined

with the harmonic block schedule. Essentially, the next operator to be scheduled is de-

termined by the value of an actual time, t. As each operator is scheduled, it is given a

start time, stop time, and \ext_firing_interval. This discussion of scheduling operators

will be focused on the single processor case. The primary difference between scheduling

operators for single and multiprocessor systems is at what time the first operator within

each harmonic block can be scheduled. In the multiprocessor case, instead of automat-

ically being scheduled at time t = 0, the block may have to be shifted in time to allow

for precedence relationships between operators in the different blocks.

In the single processor case the first operator is taken from the top of the pre-

cedence list and is scheduled to start at time t = 0. Its start time is and the stop time

is equal to its MET. The actual time t equals the METof the first operator. The second

operator is then selected from the precedence list. Its start time is equal to the stop time

of the previous operator and its stop time is equal to its start time + MET. The actual

time is made equal to the stop time. Before scheduling the third and subsequent opera-

tors, it is necessary to compare actual time t with the Next_firing_intervals that are cal-

culated when each operator is scheduled. Three cases could exist. First, the actual time

may be less than the lower bound of every interval. In this case, the next operator is

selected from the precedence list to start at the actual time. A new actual time is com-

puted which is equal to the stop time for this operator (start time + MET). If all of the

operators in the precedence list have been scheduled at least once, the next operator to

be scheduled is the one with the smallest lower bound. The start time for an operator

so scheduled will equal this lower bound creating a gap in the schedule. The actual time

t is then computed as before.

The second case is where the actual time t falls within one or more

Next_firing_intervals. If it falls within a single interval, that operator is scheduled to

42

Precedence
schedule

Static Schedule

Harmonic
Block
Schedule

Figure 14. Schedule_operators, 2nd Level Data Flow Diagram

start at actual time t. If the actual time falls within two or more intervals, the operator

with the smallest upper bound is chosen to be scheduled next (earliest deadline first).

The third possibility is that the actual time t may be greater than the upper

bound of one or more \ext_firing_intervals. If this situation occurs, a valid schedule

cannot be built since periodic timing constraints within the harmonic block cannot be

met.

2. Find_next_firing_interval

As can be gathered from the above discussion, the Next_firing_intcrval is an

important component of Schedule_operators. The formula for calculating the

Next_firing_interval can be stated as follows

Next_firing_interval =

[(Start time + period), (Start time + 2period - MET)] .

The lower bound is found by simply adding an operator's period to the time when it is

scheduled to start. This ensures that at least the length of one period will pass before

the operator is scheduled to lire again. The upper bound on the interval ensures that

an operator is scheduled early enough so that it can finish execution prior to the end of

43

its period. It is calculated by adding twice the period to the start time and subtracting

off the MET. If an operator is scheduled to start at a time greater than this upper

bound, there is no guarantee that it will finish execution prior to its deadline. This

causes the whole static schedule to be invalid.

The entire Schedule_operators algorithm for the single processor case is pre-

sented below:

1. Start at time t = 0.

2. Select first operator from the topologically sorted list. Schedule it to start at t =
and stop at t = + MET. Actual time t = + MET.

3. Calculate Next_firing_interval based on the formula.

4. Select next operator from the topologically sorted list. Schedule it to start at actual
time t and stop at start time +- MET.

5. Calculate Next_firing_intcrval.

6. Compare actual time t with Next_firing_intervals. If lower bound <, actual time t

<; upper bound, schedule that operator. If actual time t falls in two or more
Next_firing_intervals. choose the one with the smaller upper bound to meet the

earliest deadline first.

7. Calculate Next_firing_interval and replace the old Next_firing_interval with the
new one.

8. If actual time t < lower bound of all intervals, select the next unscheduled operator
from the topologically sorted list. Schedule it to start and stop as in Step 4 and
compute its Next_finng_interval. If all operators have been scheduled at least

once, select the next operator to be scheduled as that which has a

Ncxt_firing_interval with the lowest bound. (A gap may be created in the schedule)

9. If actual time t > upper bound of any interval, a valid schedule cannot be con-
structed. Raise an exception and cease execution.

10. Continue scheduling operators until actual time t is greater than the harmonic
block length or all operators' \ext_firing_intervals have lower bounds greater than
the b'ock length.

To continue with our single processor example. Operators A, B, and C have

been topologically sorted and must be scheduled in that order. From Figure 10 on page

2 7
. the METs were given as 1,2, and 2 respectively. R.ecall that the base period for the

harmonic block { 3, 6, 10 } is 1 and the block length (LCM) is 30. Figure 15 on page

45 summarizes the pertinent operator timing constraints and the results of the two ad-

ditional tests mentioned in Sections D and E. 26 out of 30 time slots will be filled by

operators A, B, and C leaving four unused for the dynamic scheduler. The sum of the

METs -r periods equals .86. This is less than 1 which is the single processor limit. Both

of these results indicate the feasibilitv of a valid static schedule.

44

Operator

A

MET

1

Period ICM/Period MET * (ICM/Period)

10

MET/Period

3 10 .33

B 2 6 5 10 .33

C 2 10 3 6 .2

26 < 30 .86 < 1

Figure 15. Operator Timing Constraints

Figure 16 on page 46 shows how the steps of the Schedule_operators algorithm

were applied to these operators. Operator A was scheduled first since it was at the top

of the precedence list. It is scheduled to start at time t = and stop at actual time t

= 1. Its \ext_firing_ interval was calculated to be [3. 5,] . Operator B is scheduled

next based on precedence. It will start at time t = 1 and stop at actual time t = 3. The

Next_firing_interval is calculated to be [7, 1 1] . The actual time t = 3 is compared

with the Next_firing_ intervals and matches the lower bound of A's interval. A is

therefore scheduled next to start at time t = 3 and stop at time t = 4. The

Next_firing_interval is [6. 8] . This actual time t = 4 is compared with the

Ne\t_iiring_intervals and since it is less than all lower bounds, operator C is selected

from the precedence list. C is scheduled to start at time t = 4 and stop at time t = 6.

Its \ext_firing_interval is [14, 22] . Since there arc no additional operators in the

precedence list, the remaining schedule is based on the Ne\t_firing_intcrvals. After each

operator is scheduled, actual time t is compared to the Next_firing_intervals only. Fol-

lowing the algorithm, the operator that is selected to be scheduled next is the one that

has the earlier deadline. When all operators have Ncxt_firing_intervals with lower

bounds that are greater than or equal to the harmonic block, length, the scheduling is

complete. In the example, this occurs for operator C at stop time t = 25, for operator

A at stop time t = 28, and for operator C at stop time t = 30.

45

Operator Start Stop Next_firing_interval

A 1 [3, 5]

B 1 3 [7, 11]

A 3 4 [6, 8]

C 4 6 [14, 22]

A 6 7 [9. 11]

B 7 9 [13, 17]

A 9 10 [12, 14]

A 12 13 [15, 17]

B 13 15 [19. 23]

A 15 16 [18, 20]

C 16 18 [26, 34]

A 18 19 [21, 23]

B 19 21 [25, 29]

A 21 22 [24, 26]

A 24 25 [27, 29]

B 25 27 [31, 35]

A 27 28 [30, 28]

C 28 30 [38, 46]

Figure 16. Example of Scheduling a Harmonic Clock

The final static schedule is depicted graphically in Figure 17 on page 47. Note

that there are in fact four unused time slots and these occur at times 10-12 and 22 -

24.

This concludes the initial design for the static scheduler. To summarize briefly,

this static scheduler extracts the timing information necessary to construct a schedule

directly from the PSDL prototype source file. Non-time critical operators are separated

and sent to the dynamic scheduler for run-time scheduling. The remaining time critical

operators are sorted topologically to build a schedule based on operator precedence. In

46

rrr |

c rr rrn .
r |

C rr r r^T
t

*

i

*

i

c

i

1 3 4 6 7 9 10 12 13 15 18 18 18 21 22 24 25 27 28 30

Figure 17. Example Static Schedule

addition, a separate schedule based on timing constraints is constructed. Finally, the

two schedules are merged together to form one static schedule that will meet both pre-

cedence and timing constraints.

The PSDL static scheduler is designed to be "generic" in that it should be able

to schedule operators in a PSDL prototype for any type of hard real-time system. Rec-

ommendations for further research on the static scheduler are contained in Chapter IV.

47

IV. CONCLUSIONSANDRECOMMENDATIONS

A. SUMMARY
This thesis has provided an introduction to two software engineering methodologies,

the traditional life cycle and rapid prototyping. In particular, the rapid prototyping

methodology was discussed as a promising approach to the development of software

more efficiently and at less cost. The Computer Aided Prototyping System (CAPS) was

introduced as a software engineering tool that is currently being designed. This tool will

enable software designers to exploit rapid prototyping to its fullest by automating the

construction of executable prototypes. The execution support system is the component

within the CAPS that makes the prototype, written in the Prototype System Description

Language (PSDL), executable. The major contribution of CAPS to the advancement

of software engineering technology lies in the fact that the executable prototypes can

be automatically generated by the use of specifications and reusable software compo-

nents.

A review of the current literature has underscored not only the need for this type

of software engineering tool but also that efforts in this area are not being duplicated.

Most of the research in the design of hard real-time systems focuses on the hardware

aspects of timing constraints or the simulation of the timing specifications by logic pro-

gramming. CAPS, via PSDL, simulates the hardware aspects of hard real-time systems

(such as sensors and probes) thereby modeling a system architecture as well as executing

the prototype with practical computation times.

The contribution of this thesis to CAPS research was the development of a concep-

tual design for the static scheduler, one of the components in the CAPS Execution

Support System. The design is the pioneer prototype design for the static scheduler.

This design should allow operators from any type of software system, even those with

control based on data flow, to be scheduled in a way that meets all critical timing con-

straints.

B. FURTHERRESEARCH
Because this is a pioneer design, further research is required for implementation and

identification of possible weaknesses. Without an executable version of the static

scheduler, it is difficult to identify all possible software design contingencies. In addition

48

to these unknown problems, this author recommends continued work in the following

areas:

Implementation of the Static Scheduler,

Handling Simple Validity Checks.

Implementation of the Execution Support System Interfaces,

Handling Feasibility Tests, and

Scheduling Operators in a Multiprocessor Environment.

1. Implementation of the Static Scheduler

As conceptualized, the implementation will be in Ada. A guide for accom-

plishing the implementation is contained in [Ref. 9].

2. Handling Simple Validity Checks

As it is currently designed, the static scheduler performs some validity checks

on the timing information that is provided by the system designer and notifies the de-

signer if any information is invalid. Execution of the prototype cannot continue without

the designer altering the timing information as necessary and running the program again.

It may be possible for the static scheduler not only to identify the problem, but also to

correct it. The scheduler would have to pick a feasible value for whatever attribute is in

question based on worst case criteria. The designer would still have to be notified of the

situation; the difference is that execution would not be suspended.

The prototype design presented in this thesis has assumed that all timing con-

straints for an operator have been supplied by the designer. A more sophisticated design

could handle those instances where some required information is missing. Again, the

static scheduler could assign a value based on some worst case criterion.

3. Implementation of the Execution Support System Interfaces

Chapter I briefly touched on the relationship between the three components of

the Execution Support System. As was shown in Figure 5 on page 11, the static

scheduler interfaces with the dynamic scheduler. Since the algorithms for both schedul-

ers were designed independently, there may need to be some modifications made to en-

sure proper execution. For instance, when the static scheduler has finished extracting

operator information from the PSDL source file, it passes a separate text file to the dy-

namic scheduler containing information about the non-time critical operators in a pro-

totype. Both schedulers will have to agree on a format for the file as well as what

information the file will specifically contain. The same formatting issue could apply to

the static schedule itself which is also passed to the dynamic scheduler. The dynamic

49

scheduler is also responsible for instantiating the static scheduler at run time. This is

an implementation problem rather than a design problem but it still must be addressed

to ensure proper interfacing.

4. Handling Feasibility Tests

Two tests were described in Chapter III which could be done to indicate the

feasibility of constructing a valid schedule once all operators had periods and were as-

signed to harmonic blocks. As with the simple validity checks, in the event it is deter-

mined that a valid static schedule in not feasible, program execution is discontinued. It

is also possible in this situation to modify some timing constraints for the purpose of

constructing the schedule rather than requiring the system designer to input all cor-

rections. An exception would still be raised to notify the designer of the problem and

what actions were taken to correct it. Only if attempts to modify timing information

prove too difficult should the program be allowed to cease execution prior to com-

pletion.

5. Scheduling Operators in a Multiprocessor Environment

The algorithm for scheduling operators within harmonic blocks that was pre-

sented in Chapter III is primarily for use in a single processor environment. It should

only require slight adjustments to this algorithm to make it suitable for use with multi-

processor systems. One of the adjustments that is necessary is in the algorithm for

scheduling the first operator in each harmonic block. Even though each harmonic block

is a separate scheduling problem, there will be precedence relationships between some

of the operators in separate blocks. For this reason, the first operator in every harmonic

block will not necessarily be able to be scheduled to start at time t = 0. The algorithm

needs to incorporate this possible situation.

C. APPLICATIONS TO DODTELECOMMUNICATIONSSOFTWAREDESIGN

It is virtually impossible with today's technology to separate telecommunications

from computers. Commandand Control requirements in the Navy and the DoD often

stipulate a need for real-time or very near real-time communications capabilities. To-

day's communications networks are very complex and cover extensive geographical

areas. The software necessary for the reliable operation of these networks is also very

complex, often requiring several thousands of lines of code and many years to imple-

ment.

In addition to size and development time, there are some additional challenges to

software design presented by telecommunications systems. First, many

50

telecommunications implementations must meet stringent real-time requirements. A

digitized or packetized voice system is an excellent example. Routing of the voice

packets must be done so that the receiver is provided with an intelligent signal. Packet

processing, therefore, is subject to hard real-time constraints. In a switched telephone

network, the switch is a real-time system in which the timing of events plays an impor-

tant role. For instance, a caller should receive a dial tone within a specified period of

time after picking up the receiver. A caller is often required to dial the first number

within a certain period of time after receiving the dial tone before a warning tone is

heard. A caller should receive a ringback tone no more than a specified time after the

receiving telephone rings. All of these are real-time constraints which must be adhered

to if the system is to function consistently and properly.

Second, communications protocol standards tend to be incomplete and sometimes

inconsistent. The Computer Aided Prototyping System can be used to prototype com-

munications protocols and validate them. Potential problems such as deadlock can be

determined early on before a great deal of time and money has been spent.

Third, communications software must be interoperable across a variety of incom-

patible hardware and software environments. This is primarily true for wide area net-

works such as the Defense Data Network (DDN) but it can also hold for local area

networks (LANs). Both types of networks can comprise equipment from multiple ven-

dors. Protocol compatibility is a very important problem. The software interfaces or

emulators can be designed using the CAPS methodology to identify incompatibility

problems early on by simulating the properties of the hardware components of a net-

work. This is an example of where the CAPS can be used in the design of any large

software system, not just those with hard real-time constraints. Interoperability prob-

lems may also result from equipment that is obsolete or that is poorly documented.

These can also be easily overcome by using a software design tool such as the CAPS.

Fourth, communications software must be updated as protocol ambiguities are

recognized and changes are made. For software designed using the CAPS tool this is

very easy to do. One of the advantages of using an automated prototyping tool is that

the modules of code used in the prototype can often be used "as is" in the final software

product. Another advantage is that CAPSand PSDL stress good modularity of software

components. Taken together, these result in changes or corrections to existing systems

to be very easy to implement. In addition, since the prototype design is maintained in

51

the prototype database, the effect of the updates on system performance can be

prototyped quickly and easily.

D. CONCLUSIONS
The automatic generation of hard real-time system prototypes is feasible. The work

done to date on the Computer Aided Prototyping System is beginning to gain attention

as a possible solution to today's software design crisis. CAPSwill be written in Ada and

its focus is on the design of large software systems (with or without real-time constraints)

written in Ada. Since the Department of Defense has indicated that all newly developed

systems should be implemented in Ada, this tool will be indispensible. The specification

language (PSDL) is much easier to learn and work with than Ada. Once the reusable

software base containing software components in Ada has matured, designers will be

required to hand code only a small fraction of their systems in Ada which will save a

great deal of time.

A recent Secretary of the Navy instruction requires software rapid prototyping to

be used in the acquisition of software-intensive Command and Control information

systems [Ref. 23]. The Computer Aided Prototyping System with its emphasis on the

rapid prototyping methodology will make it substantially easier for the Navy to conform

to this new software acquisition policy.

Finally, with today's emphasis in the DoD and DoN on cost control and budgetary-

awareness, CAPS can contribute significantly towards lowering communications soft-

ware development and maintenance costs.

52

APPENDIXA. PSDL GRAMMAR

This appendix contains the entire PSDL grammar. Optional

items are enclosed in [square brackets] and items that may

appear zero or more times appear in { braces } . Terminal

symbols appear in "Double quotes".

psdl = { component }

component = data_type
|

operator

data_type = "type" id type_spec type_impl

operator = "operator" id operator_spec operator_impl

type_spec = "specification" [type_decl]

{ ' operator id operator_spec
}

[functionality] "end"

operator_spec = "specification" interface
[functionality] "end"

interface =
{ attribute [reqmts_trace] }

attribute = generic_param
input
output
states
exceptions
timing_info

generic_param = "generic" type_decl

input = "input" type_decl

output = "output" type_decl

states = "states" type_decl "initially" expression_list

exceptions = "exceptions" id_list

id_list = id {
"," id }

timing_info = ["maximum execution time" time]

["minimum calling period" time]

["maximum response time" time]

time = integer [unit]

53

. .. . 11 11 I II II I II II I II . II I II. IIunit - raicrosec ms sec min hours

reqmts_trace = "by requirements" id_list

functionality = [keywords]

[informal_desc]

[formal_desc]

keywords = "keywords" id_list

£ 1 J 1' J i.i II II , II , It . IIinformal_desc = description { text }

/- ii . it it it , n it , iiformal_desc = axioms { text }

type_impl = "implementation" "Ada" id
| "implementation" type_name

{ "operator id operator_impl } "end"

operator_impl = "implementation" "Ada" id
"implementation" psdl_impl

psdl_impl = data_f low_diagrara
[streams]

[timers]

[control_constraints]

[informal_desc]

end

data_f low_diagram = "graph" { link }

link = id ". " op_id "->" id

op_id = id [": " time]

streams = "data stream" type_decl

type_decl = id_list ": " type_name {
"," id_list ": " type_name }

type_name = id
|

id "
[

" type_decl "
]

"

timers = "timer" id_list

control_constraints = "control constraints" { constraint }

constraint = "operator" id
[triggered" [trigger] ["if" predicate]

[reqmts_trace]]

["period" time [reqmts_trace]]

["finish within' time [reqmts_trace]]

{ "output" id_list "if" predicate
[reqmts_trace]]

{
' exception" id ['if" predicate]

[reqmts_trace] }

54

{ timer_op id [if predicate]

[reqrats_trace] }

timer_op = "reset timer" "start timer" "stop timer"

trigger = "by all" id_list
"by some" id_list

predicate = "not" predicate
|

predicate "and" predicate
predicate "or" predicate
expression

|
id ":" id.list

expression = constant
I

id
type_name . id (expression_list)

expression_list = [expression {
"," expression }]

55

APPENDIX B. PSDL HYPERTHERMIAEXAMPLE

The following is an example of a PSDL prototype for the computer

software subsystem of a real-time system for the treatment of brain

tumors. The prototype contains six operators, the specifications and

implementations of which are presented in hierarchical order, with

the highest level composite operators appearing before their

respective decompositions.

OPERATORbrain_tumor_treatraent_systera
SPECIFICATION

INPUT patient _chart: medical_history,
treatment_switch: boolean

OUTPUT treatment_f inished: boolean
STATES temperature: real

INITIALLY 37.0
DESCRIPTION
{ The brain tumor treatment system kills tumor cells

by means of hyperthermia induced by microwaves.

END

IMPLEMENTATION
GRAPH

TEMPERATURE

PATIENT_CHART

TREATMENTSWITCH

100

SIMULATED_PATIENT

TREATMENTPOWER

100

HYPERTHERMIA_SYSTEM
--TREATMENT FINISHED

DATA STREAM treatment_power: real
CONTROLCONSTRAINTS

OPERATORhyperthermia-system
PERIOD 200 BY REQUIREMENTSshutdown

OPERATORsimulated_patient
PERIOD 200

DESCRIPTION
(

paraphrased output } END

56

TYPE medical_history
SPECIFICATION

OPERATORget_tumor_diameter
SPECIFICATION

INPUTS patient_chart: medical_history

,

tumor_location: string
OUTPUTS diameter: real
EXCEPTIONS no_tumor
MAXIMUMEXECUTION TIME 5 ms
DESCRIPTION
{ Returns the diameter of the tumor at a given location,

produces an exception if no tumor at that location.

END

KEYWORDSpatient_charts , medical_records , treatment records,
lab records

DESCRIPTION
{ The medical history contains all of the disease and

treatment information for one patient. The operations
for adding and retrieving information not needed by
the hyperthermia system are not shown here.

END

IMPLEMENTATION
tuple [tumor_desc: map[from: string, to: real] ,

OPERATORget_tumor_diameter
IMPLEMENTATION
GRAPH

PATIENT CHART

TD

TUPLE.GET TUMORDESC

TUMORLOCATION
MAP.FETCH - DIAMETER

DATA STREAM td: tumor_description
CONTROLCONSTRAINTS

OPERATORmap. fetch
EXCEPTION no_tumor IF not(map. has(tumor_location , td))

END

57

END

OPERATORhyperthermia_system
SPECIFICATION

INPUT temperature: real, patient_chart: medical_history,
treatment_switch: boolean

OUTPUT treatment_power: real, treatment_f inished: boolean
MAXIMUMEXECUTION TIME 100 ms

BY REQUIREMENTStemperature.tolerance
MAXIMUMRESPONSETIME 300 ms

BY REQUIREMENTSshutdown
KEYWORDSmedical_equipraent , temperature_control

,

hyperthermia, brain_tumors
DESCRIPTION

{ After the doctor turns on the treatment switch, the
hyperthermia system reads the patient's medical record
and turns on the microwave generator to heat the tumor
in the patient's brain. The system controls the power
level to maintain the hyperthermia temperature of
42.5 degrees C. for 45 minutes to kill the tumor cells.
When the treatment is over, the system turns off the
power and notifies the doctor.

END

IMPLEMENTATION
GRAPH

90

TEMPERATURE MAINTAIN

90

PATIENT CHART START UP

ESTIMATED POWER

TREATMENTFINISHED

-TREATMENT FINISHED

TREATMENTSWITCH SAFETY CONTROL -^TREATMENT.
PONm

DATA STREAM estimated_power: real
TIMER treatment_time

CONTROLCONSTRAINTS
OPERATORstart_up

TRIGGERED IF temperature < 42. 4
BY REQUIREMENTSmaximum_temperature

STOP TIMER treatment time

58

RESET TIMER treatment_time IF temperature <=37.0

OPERATORmaintain
TRIGGERED IF temperature >=42.

4

BY REQUIREMENTSmaximum_temperature
START TIMER treatment_time

BY REQUIREMENTStreatment_time , temperature_tolerance
OUTPUT treatment_f inished IF treaLment_time >= 45 min

BY REQUIREMENTStreatment_time

END

OPERATORstart_up
SPECIFICATION

INPUT patient_chart: medical_history , temperature: real
OUTPUT estimated_power: real, treatment_f inished: boolean

BY REQUIREMENTSstartup_time
MAXIMUMEXECUTION TIME 90 ms

BY REQUIREMENTStemperature_tolerance
DESCRIPTION
{ Extracts the tumor diameter from the medical history and

uses it to calculate the maximum safe treatment power.
Estimated power is zero if no tumor is present. The
treatment finished is true only if no tumor is present.

END

IMPLEMENTATION Ada start_up
END

OPERATORmaintain
SPECIFICATION

INPUT temperature: real
OUPUT estimated_power: real, treatment_f inished: boolean
MAXIMUMEXECUTION TIME 90 ms

BY REQUIREMENTStemperature_tolerance
DESCRIPTION
{ The power is controlled to keep the power between 42.4

and 42. 6 degrees C.

END

IMPLEMENTATION Ada maintain
END

OPERATORsafety_control
SPECIFICATION

INPUT treatraent_switch, treatment_f inished: boolean
estimated_power: real

OUTPUT treatment_power: real
BY REQUIREMENTSshutdown

MAXIMUMEXECUTION TIME 10 ms
BY REQUIREMENTStemperature_tolerance

DESCRIPTION

59

{ The treatment power is equal to the estimated power
if the treatment switch is true and treatment finished
is false. Otherwise the treatment power is zero.

END

IMPLEMENTATION Ada start_up
END

WITH medical_history_package; USE medical_history_package;
PROCEDUREstart_up(patient_chart: IN medical_history;

temperature: IN real;
estimated_power: OUT real;
treatment_f inished: OUT boolean) IS

diameter: real;
k: constant real :=0.5;

BEGIN
diameter : =get_tumor_diameter(patient_chart , "brain_tumor");
estimated_power : =k * diameter**2
treatment_f inished : =f alse;

EXCEPTION
WHENno_tumor=>

estimated_power : =0.
treatment_f inished : =true;

60

LIST OF REFERENCES

1. Booch, G., Software Engineering with Ada®, 2nd ed., Benjamin, Cummings Publish-

ing Co., Inc., Menlo Park, CA 1987.

2. Berzins, V., and Luqi, Software Engineering with Abstractions: An Integrated Ap-

proach to Software Development using Ada®, Addison- Wesley Publishing Co., Inc.,

198S.

3. Luqi, Research Aspects of Rapid Prototyping, Tech. Rep. NPS52-87-006, Naval

Postgraduate School, Monterey, CA, 1987.

4. Luqi and Ketabchi. M., A Computer Aided Prototyping System, Tech. Rep.

NPS52-87-011, Naval Postgraduate School, Monterey, CA, 1987 and in IEEE

Software, pp. 66-72, March 1988.

5. Luqi and Berzins, V., Rapid Prototyping of Real-Time Systems, Tech. Rep.

NPS52-87-005, Naval Postgraduate School, Monterey, CA, 1987.

6. Luqi, Berzins, V., and Yeh, R., "A Prototyping Language for Real Time Software",

to appear in IEEE Trans on Software Engineering, 1988.

7. Luqi, Execution of Real-Time Prototypes, Tech. Rep. NPS52-87-012, Naval Post-

graduate School, Monterey, CA, 1987 and in ACMFirst International Workshop

on Computer- Aided Software Engineering, Cambridge, MA, vol. 2, pp. 870-884,

May 1987.

8. MofTitt, Charlie R., A Language Translator for a Computer Aided Prototyping Sys-

tem, M.S. Thesis, Naval Postgraduate School, Monterey, CA, March 1988.

9. Janson, Dorothy M., A Static Scheduler for the Computer Aided Prototyping System:

An Implementation Guide, M.S. Thesis, Naval Postgraduate School, Monterey, CA,

March 1988.

61

10. Eaton, Susan L., A Dynamic Scheduler for ihe Computer Aided Prototyping System

(CAPS), M.S. Thesis, Naval Postgraduate School, Monterey, CA, March 1988.

11. Dasarathy, B., "Timing Constraints of Real-Time Systems: Constructs for Ex-

pressing Them, Methods of Validating Them", IEEE Proc of the Real-Time Systems

Symposium, Los Angeles, CA, pp. 197-204, December 7-9, 19S2.

12. Mok, Aloysius K. and Sutanthavibul, S., "Modeling and Scheduling of Dataflow

Real-Time Systems", IEEE Proc of the Real-Time Systems Symposium, San Diego,

CA. pp. 178-187, December 3-6, 1985.

13. Bic, L., A Process-Oriented Model for Efficient Execution of Dataflow Programs,

Tech. Rep. 86-23, L'niv. of California, Irvine, CA, 1986.

14. Mok, Aloysius K., "A Graph-Based Computation Model for Real-Time Systems",

Proc of the IEEE International Conference on Parallel Processing, Pennsylvania

State Univ., PA, pp. 619-623, August 20-23, 1985.

15. Mok, Aloysius K., "The Decomposition of Real-Time System Requirements into

Process Models", IEEE Proc of the Real-Time Systems Symposium, Austin, TX, pp.

125-134, December 4-6, 1984.

16. Mok, Aloysius K., "The Design of Real-Time Programming Systems Based on

Process Models", IEEE Proc of the Real-Time Systems Symposium, Austin, TX, pp.

5-17, December 4-6, 1984.

17. Leinbaugh, Dennis W., "Guaranteed Response Times in a Hard- Real-Time Envi-

ronment", IEEE Trans on Software Engineering, vol. SE-6, no. 1, pp. 85-91, Janu-

ary 1980.

18. Abbot, C, "Intervention Schedules for Real-Time Programming", IEEE Trans on

Software Engineering, vol. SE-10, no. 3, pp. 268-274, May 1984.

62

19. Ladkin, P., "Specification of Time Dependencies and Synthesis of Concurrent

Processes", Proc of the 9th International Conference on Software Engineering.

Monterey, CA, pp. 106-115, March 30-April 2, 1987.

V 20. Jahanian. F., and Mok, Aloysius K., "Safety Analysis of Timing Properties in

Real-Time Systems". IEEE Trans on Software Engineering, vol. SE-12, no. 9, pp.

890-904, September 1986.

j, 21. Jahanian, P., and Mok, Aloysius K., "A Graph-Theoretic Approach for Timing

Analysis in Real Time Logic", IEEE Proc of the Real-Time Systems Symposium,

New Orleans. LA, pp. 98-108, December 2-4. 1986.

22. Plattner, B., "Real-Time Execution Monitoring", IEEE Trans on Software Engi-

neering, Vol. SE-10, No. 6, pp. 756-764, November 1984.

23. Department of the Navy, SECXAV INSTRUCTION 5200.37, Acquisition of

Software- Intensive C2 Information Systems, January 5, 1988.

63

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, CA 93943-5002

3. Office of the Chief of Naval Operations 1

Code OP-941
Washington, DC 20350-2000

4. Office of the Chief of Naval Operations 1

Code OP-945
Washington, DC 20350-2000

5. Commander, Naval Telecommunications Command 1

Naval Telecommunications CommandHeadquarters
4401 Massachusetts Avenue N. W.
Washington, DC 20394-5290

6. Naval Telecommunications System Integration Center 1

Naval Communications Unit. Washington
Washington, DC 20397-5340

7. Ada® Joint Program Office 1

OUSDRE(R&AT)
The Pentagon
Washington, DC 20301

8. Space and Naval Warfare Svstems Command 1

Attn: Dr. Knudsen, Code PD 50 TD
Washington, DC 20363-5100

9. Chief of Naval Research 1

Office of the Chief of Naval Research
Attn: CDRMichael Gehl, Code 1224
Arlington, VA 22217-5000

10. Professor Luqi, Code 52Lq 1

Naval Postgraduate School
Monterey, CA 93943

11. MAJ John B. Isett, L'SAF, Code 541s 1

Naval Postgraduate School
Monterey, CA 93943

64

12. Professor D. C. Boger, Code 54Bo
Naval Postgraduate School
Monterey, CA 93943

13. Commander, Naval Security Group Command
Attn: LT Joanne T. O Hern, Code G30
3801 Nebraska Avenue. N.W.
Washington. DC 20390

14. Defense Communications Agency
Attn: LT Susan L. Eaton, Code B531
Washington, DC 20305

15. LT Charlie R. Moffitt
Department Head Class ^104
SWOSCOLOM.Bldg. 446
Newport, RI 02841-5012

16. LT Dorothv M. Janson
I.SCINCEUR Headquarters
General Delivery
APONew York. NY 0912S-4209

17. Naval Sea Svstems Command
Attn: CAPTJoel Crandall
National Center #2, Suite 7N06
Washington, DC 22202

18. Office of the Secretary of Defense
Attn: CDRBarber
The Star Program
Washington,DC 20301

19. Navy Ocean System Center
Attn: Lindwood Sutton, Code 423
San Diego, CA 92152-5000

20. RADCCOES
Attn: LT Kevin Benner
Griffiss Air Force Base
New York, NY 13441-5700

21. MAJ Mike Dolezal
Director, Development Center
MCDEC
Quantico, VA 22134-5080

65

Thesis
03465
c.l

O'Hern
A conc^fcv^l level

desiiyv-'for a static
scheduler for hard real-
time systems.

