
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1988

An implementation of a data definition facility
for the Graphics language for Database.

Williamson, Michael L.
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/23051

Downloaded from NPS Archive: Calhoun

rA N. ..

'. F'CioTGi •
.

f ii SCHOOL

NAVAL POSTGRADUATE SCHOOL
Monterey, California

\[^b%(.p^

AN IMPLEMENTATION OF A DATA DEFINITION FACILITY
FOR THE GRAPHICS LANGUAGE FOR DATABASE

by

Michael L. Williamson

December 1988

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited

T242438

Jnclassified

Security Classification of this page

REPORT DOCUMENTATION PAGE
La Report Security Classification Unclassified 1 b Restrictive Markings

Za Security Classification Authority

2b Declassification/Downgrading Schedule

3 Distribution Availability of Report

Approved for public release; distribution is unlimited.

i Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

5a Name of Performing Organization

Naval Postgraduate School
6b Office Symbol

(If Applicable) 37
7a Name of Monitoring Organization

Naval Postgraduate School

5c Address (city, state, and ZIP code)

Monterey, CA 93943-5000
7 b Address (city, state, and TAP code)

Monterey, CA 93943-5000

?a Name of Funding/Sponsoring Organization

Naval Data Automation Command
8b Office Symbol

(// Applicable)

9 Procurement Instrument Identification Number

Ic Address (city, state, and TIP code)

Washington Navy Yard, Washington, DC 20374-1662

1 Source of Fimding Numbers

Prognm Element Number Project No Ttdt No Woik Unit Accession No

1 1 Tide (Include Security Classification) An Implementation of a Data Definition Facility for the Graphics Language for

Database

2 Personal Author(s) Williamson, Michael L.

I3a Type of Report

Master's Thesis
13b Time Covered

From To

14 Date of Report fyear, month,day)

December 1988
15 Pas ,e Count

!9

i 6 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official

jolicy or position of the Department of Defense or the U.S. Government.

7 Cosati Codes

ield Group Subgroup

1 8 Subject Terms (continue on reverse if necessary and identify by block number)

Database, Object-oriented, GLAD, DBMS, BASIS

9 Abstract (continue on reverse if necessary and identify by block number

This research is an implementation of the data definition facility for the Graphics Language for Database
CLAD). GLAD is a graphics-oriented database management system which is primarily concerned with ease of
earning and efficiency of use. The system uses an object-relationship approach to database design. Entities of
he database are represented graphically as objects. With this method, users can visualize the schema of the

iatabase and can quickly comprehend how the entities relate. Every effort has been made to design GLAD so that

I new user can quickly learn to create and manipulate a database without the need of a dedicated database
idministrator.

Distribution/Availability of Abstract

|X| unclassified/unlimiied I I same as rep>on I I DTIC usen

2a Name of Responsible Individual

C. T. Wu

2 1 Abstract Security Classification

Unclassified

22b Telephone (Include Area code)

(408)646-3391
22c Office SvmbolT.

52Wq
D FORM 1473. 84 MAR 83 APR edition may Ije used until exhausted security classification of this page

Approved for public release; distribution is unlimited

An Implementation of a Data Definition Facility for the Graphics Language for

Database i

by
;

i

Michael L. WilHamson
Lieutenant, United States Navy

;

B.S., United States Naval Academy, 1979
i

Submitted in partial fulfillment of the

requirements for the degree of

i

MASTER OF SCffiNCE IN COMPUTER SCIENCE i

from the
J

NAVAL POSTGRADUATE SCHOOL
December 1988 i

ABSTRACT

This research is an implementation of the data definition facility for the

Graphics language for Database (GLAD). GLAD is a graphics-oriented database

management system which is primarily concerned with ease of learning and

efficiency of use. The system uses an object-relationship approach to database

design. Entities of the database are represented graphically as objects. With this

method, users can visualize the schema of the database and can quickly comprehend

how the entities relate. Every effort has been made to design GLAD so that a new

user can quickly learn to create and manipulate a database without the need of a

dedicated database administrator.

Ill

777x2/0

TABLE OF CONTENTS

I. INTRODUCTION 1

II. BACKGROUND 3

A. GLAD REQUIREMENTS 3

B. fflSTORICAL RESEARCH 3

L Graphics Oriented Computer Interfaces 3

2. Human-Computer Interaction 6

C. MICROSOFT WINDOWS 7

L Advantages of Windows 7

2. Objects and Messages 8

D. ACTOR PROGRAMMING LANGUAGE 10

\. Object-Oriented Programming 11

2. Inheritance 12

III. GLAD DATABASE MODEL 14

A. USING GLAD 14

B. DATA MODEL 14

1. Aggregation 16

2. Generalization and Specialization 18

C. USING THE DML WINDOW 20

IV. DATA DEFINITION LANGUAGE 23

A. BACKGROUND 23

B. DATA DEFINITION FUNCTIONS 24

1. Defining Entities 26

2. Defining Attributes.... 26

3. Expand Function 29

4. Other Functions 30

5. Error Checking 31

IV

V. CONCLUSIONS 32

A. DISCUSSION OF THE RESEARCH 32

B. FUTURE PROGRAM IMPROVEMENTS 32

C. BENEFITS OF RESEARCH 33

APPENDIX A. SAMPLE USER SESSION 34

APPENDIX B. SOURCE CODE LISTING 45

LIST OF REFERENCES 80

BIBLIOGRAPHY...! 81

INITIAL DISTRIBUTION LIST 82

LIST OF FIGURES

Figure 1. Sample Microsoft Windows Screen 8

Figure 2. Actor Tree Structure 13

Figures. GLAD Top-Level Window 15

Figure 4. University Database 16

Figure 5. Attributes for University Entities 17

Figure 6. Entity Relationships 18

Figure 7. Expansion of EMPLOYEE Object 19

Figures. Expansion of STAFF Object 20

Figure 9. Views of the Database 22

Figure 10. Dialog Boxes for Create and Modify Functions 24

Figure 11. Data Definition Facility Window 25

Figure 12. Dialog Box for Defining Entities 26

Figure 13. Dialog Box for Defining Attributes 28

Figure 14. Type List Dialog Box 29

Figure 15. DDL Expansion Window 30

Figure A-1 BASIS DDL Window 37

Figure A-2 Define PERSON Entity 38

Figure A-3 BASIS Top-Level Window 39

Figure A-4 Create Expanded Objects for PERSON Object 40

Figure A-5 Expanded Objects for PERSON Object 41

Figure A-6 Define Attributes for PERSON Object 42

Figure A-7 Attributes for PERSON Object 43

Figure A-8 Attributes for Subclass OFHCER .44

VI

I. INTRODUCTION

The United States Federal Government is the largest single user of computers

in the world. In 1986, its investment in automated data processing (ADP)

equipment and services amounted to more than 15 billion dollars. This budget

included ADP for defense and national security, education, national energy

programs, social welfare, and tax programs. [Ref. 1 :p. 6] Of the different uses of

computers, one of the most important is database management.

The handling of large quantities of information requires a Database

Management System (DBMS) with a definition facility for creating the database

schema and a manipulation facility for reviewing and updating the information

[Ref. 2:p. 1]. In addition, it must be efficient and convenient to use. Modem

DBMS are producing efficient results but most require a dedicated database

administrator to handle definition of the database schema and the complex

transactions which are common in today's world. While this is not a problem at

large computer centers, the increasing use and sophistication of the microcomputer

for databases make the need for an easy to use system all the more important.

For these reasons, the Graphics Language for Database (GLAD) is being

developed. It is built on the principle that a DBMS must provide a good user

interface to make the system easy to learn and use for both experienced and novice

users. The best approach appears to be a visual representation of the database

schema. A brief description of GLAD is reproduced here.

GLAD utilizes a bit-mapped, high-resolution graphics display terminal. The
screen consists of two types of windows: schema and operation window. In

the schema window, GLAD provides an elegant visual representation of real

world abstraction concepts most semantic data models support: aggregation.

generalization, classification, and association. In the operation window,
GLAD describes objects, displays results, and allows users to specify queries.

Windows can be opened, closed, scaled, and moved at the user's will.

[Ref. 3:p. 4]

A more complete description is contained in Naval Postgraduate School Report

NPS52-87-030, GLAD: Graphics Languagefor Database.

This thesis discusses the design issues and the implementation of the data

definition facility for GLAD. Its purpose is to show that a user interface which can

be used by novice database users is possible for even the most complex database. To

demonstrate this point, a sample schema is constructed in Appendix A.

Chapter II provides background on Microsoft Windows operating

environment and ACTOR object-oriented programming language which are used

to implement GLAD. This includes a discussion of the human factors in the design

and development of the system. Chapter III discusses object-relationship data

models and how they are implemented in GLAD. The implementation of the data

definition facility, referred to as the Data Definition Language (DDL) is discussed

in Chapter IV. This discussion includes problems encountered and their solutions,

and benefits of using an object-oriented language for the development of the

system. Chapter V contains the conclusions of the research effort involved in the

development of the system. Appendix A shows the definition of the database

specified by the Bases and Stations Information System (BASIS) Administration

System, Navy Regional Data Automation Center (NARDAC) San Diego, Project

Number XlADOOl. Appendix B is a listing of the program for the data definition

facility.

11. BACKGROUND

A. GLAD REQUIREMENTS

GLAD is designed for use on a microcomputer running the DOS operating

system and can only be used in the environment provided by Microsoft Windows.

Windows requires a minimum of 512K bytes of RAM memory but recommends

640K bytes for multiple applications. [Ref. 4:p. xii] Although Windows does not

require it, GLAD requires the use of a mouse to receive inputs from the user

(future versions will be written for use without a mouse). GLAD is written in the

Actor programming language, but once compiled, can be run without Actor as a

stand alone application. GLAD has been tested on a variety of computers including

the Zenith Z-248, which is now being used at most U. S. Navy installations. All

hardware required to run GLAD is standard on the Z-248 except the mouse. This

means the GLAD system can be used at all installation with a minimum of

modification and cost.

In addition, the ease of use of the system means that little training will be

required for users to begin using the system effectively. This chapter will describe

the research behind the idea of graphics oriented interfaces andshow the benefits of

using Microsoft Windows and Actor which make GLAD an easy to learn and use

database system.

B. HISTORICAL RESEARCH

1. Graphics Oriented Computer Interfaces

The ideas behind graphics oriented computer interfaces first originated in

the early 1960's with a graduate student at the University of Utah, Alan Kay. He

was convinced at that time that the changes in technology would eventually make it

possible to put a room-sized, million-dollar computer into a package the size of a

notebook. With these technological advances, he felt it would be possible for every

person to own a personal computer. Kay proposed to Xerox Corporation his idea

of apersonal computer which he called the Dynabook. In 1971 the Xerox Palo Alto

Research Center began a project to develop the Dynabook. In 1973, a desk-sized

Dynabook became available for research.

The Dynabook used a system of windows to display different kinds of

information including output from programs, mail, documents, menus, diagrams,

and status information. Users focus their attention on a window by pointing at it

with their finger (the mouse was introduced at a later time). This allows users to

work on many different things at once since they can suspend their activity in one

window and resume a different activity in another window simply by moving the

pointing device. Initial tests were conducted using 250 children (6-15 years old)

and 50 adults. The tests showed that non-specialists can learn and use the computer

effectively when given a highly interactive, visual environment.

[Ref. 5:pp. 442-443]

Other research in graphics oriented interfaces being conducted at about the

same time led to a term "Direct Manipulation," originally coined by

B. Shneiderman in 1974. According to his definition, a direct manipulation

interface must display the following properties:

• Continuous representation of the object of interest.

• Physical actions or labeled button presses instead of complex syntax.

• Rapid incremental reversible operations whose impact on the object of

interest is immediately visible. [Ref. 6:p. 91]

These properties give a direct manipulation screen a great deal of power.

The continuous representation of an object of interest ensures the user is always

aware of what is happening. The use of physical actions instead of complex syntax

gives the user a feeling of control and makes the system much easier to leam and to

use. Both of these ideas were already implemented by Xerox on the Dynabook.

Shneiderman's research simply gave these ideas a more theoretical foundation on

which to stand. The third item, rapid operations whose impact is immediately

visible, was not possible at this early date. It was not until faster processors were

available that the true value of this property was realized.

Shneiderman suggested that a system with these properties would have the

following virtues:

Novices can learn basic functionality quickly, usually through a

demonstration by a more experienced user.

Experts can work extremely rapid to carry out a wide range of tasks.

Knowledgeable intermittent users can retain operational concepts.

Error messages are rarely needed.

Users can see immediately if their actions are furthering their goals, and if

not, they can simply change the direction of their activity.

Users have reduced anxiety because the system is comprehensible and
because actions are so easily reversible. [Ref. 6:p. 91]

Although the tests using the Xerox Dynabook proved the validity of these

virtues, the Apple Macintosh was the first successful commercial computer to

prove that these concepts were supportable in the real world environment of

computer science. Microsoft has taken these ideas and developed an environment

based on this research which displays many of the benefits discussed. These will be

discussed in Section B of this chapter.

2. Human-Computer Interaction

Ricky Savage and James Habinek conducted a study on Human-Computer

Interaction in 1984. Their purpose was to

...design and evaluate a user interface that would satisfy a broad spectrum of

users, from competent system programmers to complete novices. The goal

was to produce an interface that would easily guide the first-time user through

a series of menus to the desired procedure, but at the same time provide the

experienced user with the flexibility to take time and effort-saving short-cuts.

[Ref. 7:p. 166]

Their primary concern was to provide easy access to the entire system

without constant reference to manuals. To do this they designed a system of multi-

level, hierarchical menus. They determined that this configuration gave the novice

user the necessary step-by-step interface to lead them to the required system

functions. For experienced users, abbreviated forms or shortcut commands were

needed so that skilled users were not penalized by the slower manipulation of the

hierarchy of menus.

The results of this research suggest that the hierarchical design of the

interface is compatible with user expectations of the system. The fact that humans

are accustomed to the presentation of information in a hierarchical form makes it

easier for them to understand and form a cognitive model of the system in their

minds. This is especially true when consistency is designed into the various parts of

the menu system. A second conclusion indicated that users preferred shorter menus

with more levels rather than fewer, long menus. These results suggest that it is

easier to follow a hierarchical path than to search through long menus for the

proper function. [Ref. 7:pp. 184-185]

6

C. MICROSOFT WINDOWS

1. Advantages of Windows

Microsoft Windows was chosen as the environment inwhich to implement

GLAD because it effectively uses the research techniques discussed to provide a

user friendly, graphical-based windowing environment. In Windows, all

programs run in a window. Although a single program can create many windows,

usually the program has a single main, or top-level window. Since all windows

look and work the same regardless of the application, the appearance and interface

with the user is the same. This results in the same type of easy to use interface

which was first researched using the Dynabook computer. In addition, Windows

also provides a multitasking capability which allows more than one program to be

running at the same time. In a database system, this is especially desirable since it

allows the user to work with more than one database or be looking at two different

portions of the same database concurrently. A sample Windows screen running

multiple applications is shown in Figure 1

.

Each program is identified by a caption bar at the top of its main window,

and most functions are initiated through the program's menus located just below

the caption bar. This gives Windows a consistent appearance and command

structure across many different applications which make the system easier to learn

and to use. A special type of window, called a dialog box, is generated by a main or

active window and can never stand alone. It is used to request data and command

inputs, or to issue warnings or error messages to the user. Basically, a dialog box is

used whenever communication between the user and the computer is necessary to

continue the program.

/y.-^v..^.-s.-.|.-^,.-:..-/.-.-:-j.v.-..-..-.v..-.-.:-x-—./..»y....... .-.-^^.-^..-.s ././....v.-
Uii.l.l.i,.il.i..WJ.I •^

^li^MJJiliilitfihtM^'iiMdilfci^lilili^ilJil^

nS-DOS Executive

File View Special

II BRIDGE
BUD6ET
DBASE
DOS
FORtriT

>•<

B C: \

•..,-...7^.-^.-....

CHRIS, PIP
CLIPBRD.EXE PORK.f
CLIPFILE.EXE PCPftI

?

CLOCK.EXE PICTOi
C0MMAND.COM PIPED

NP5. C ^piii^^ii^ ^i^i^:^;^^

Notepad - (unt

File Edit Search

Uindows text editor.
....v.. //.. /.•iV.'. ,

.•.-.•>..•.-..•.-.•.. ...•..•-. ["^"'"^YVi
"'^1'^ •...Vf;i'.y.i'.'.'..v.'.'.>Vi'. . ..•,.-.-.•..•.•.....•..'.>. ./. ,-.-.•.•,•. .-,

;

Calendar - (untitled)

File Edit View Show Alarn Options

10: 11 PM 4-

8:00 AM
9:00

10:00
11:00
12:00 PM
1:00
2:00
3:00
4:00

Monday, November 14, 1988

Figure 1. Sample Microsoft Windows Screen

2. Objects and Messages

Everything in Windows is an object; a group of items that when associated

together can be referred to as a whole. The object then is a cohesive unit with a

unique name, called a handle. An application window is an object used to display

information to the user. The parts of the window include the menu items, the

scroll bars, and any item related to controlling the window. The window itself can

be treated as a whole by calling its handle or an individual part of the window can

be manipulated by calling its handle. Handles in Windows are all 16-bit names

which are unique to the particular object.

8

Each time an application is started, an instance of that application is

created. Since Windows is a multi-tasking environment, there can be more than

one instance of an individual application running at any one time. Each instance of

the application is referenced by a different handle.

The only method Windows has of sending or receiving information to or

from an application is through the use of messages and events. The information

transmitted in a message includes the handle of the target window, the message

number, the parameters, the time at which the message was sent, and the mouse

position. An event is anything that happens that affects something else. An event

can be caused by such things as moving the mouse or pressing a mouse button.

MS-Windows then sees this event and sends a message to the application which

controls the window in which the mouse was cUcked. For each action or event that

affects a window, there is an appropriately named message to inform the

application. As an example, WM-LBUTTONDOWN is a message that would be

sent by Windows to the handle of an application to signal that the left mouse button

has been pressed while the cursor was in its window. Messages can also be

generated by the clock, keyboard, or by other tasks running within Windows. This

procedure can be summarized by the statement, "an event is tied to a message, a

message is tied to a handle, and a handle is tied to an object." [Ref. 8: p.71]

Windows performs message-routing and scheduling operations in a

nonpreemptive fashion. All applications must abide by the message-passing rules

so that no process gets an unfair share of processor cycles. Once an application

receives a message, however, it maintains control of the CPU until the message has

been processed. Windows can be thought of as a large switchboard, routing

messages to their destinations and queuing them until they can be processed.

D. ACTOR PROGRAMMING LANGUAGE

The C language has traditionally been used for programming windows. In

1987, a new language called Actor was introduced. It is based on the principles of

object-oriented programming first introduced in the early 1970's in the language,

Smalltalk. Object-oriented languages are radically different from procedural

languages with which most software developers and microcomputer users are

familiar. Programming is accomplished solely by sending messages to objects.

[Ref. 9:p. 148] While this design satisfies both the regularity and the simplicity

principles, [Ref. 5:p. 464] it tends to unsettle many new users and has contributed

to the slow acceptance of object-oriented programming. Actor offers some help

not available from other object-oriented languages in that its syntax is similar to

Pascal and C. This does not make object-oriented programming easier to learn, but

it helps to ease the transition.

Another aspect of Actor which helps to ease the transition is the close

interaction between the language and the Microsoft Windows environment. Actor

is a Windows application and can only be used in that environment. Actor provides

a full set of interface functions to Microsoft Windows. Windows, menus, dialog

boxes, accelerator keys, and icons can be defined for use in application programs.

Like everything in Actor each window is an object and commands are sent in

the same way that all objects receive commands; through message sent to it. Clearly

an understanding of Windows aids in understanding Actor, and vice versa. A more

complete description of object-oriented programming principles is presented here

to show how these features are exploited in GLAD.

10

1. Object-Oriented Programming

All object-oriented languages employ a data or object-centered approach

to programming. Instead of passing data to procedures, you ask objects to perform

operations on themselves. Objects can be numbers, strings, graphics, and anything

else which can be represented in the computer. These elements are not passive like

data in procedural programming languages and each has characteristics of both data

and programs. Each object has a corresponding list of functions, called methods,

which can be performed on the object. When a message is received by an object, it

checks its list of methods for a match. If one is found, then that method is carried

out on the object. [Ref. 9:p. 148] So each object is similar to a module in

procedural programming languages and each method is similar to a procedure or

function. The programmer only needs to know what objects are available and their

corresponding methods. He does not need to know the details of how the method is

implemented.

In general, each object acts as an autonomous entity that is only responsible

for its own behavior. All of the information relevant to the individual behavior of

an object is contained in that object. This might appear to be a waste of memory

because if each object had to contain its own print method, for example, there

would be a great deal of redundancy. Consider each integer containing its own copy

of the method print. Object-oriented programming languages handle this problem

with the use of classes and inheritance between classes.

The class provides all the information necessary to construct and use

objects of a particular kind, called its instances. Each instance has one class while a

class may have multiple instances. Each class also provides storage for methods.

The methods reside in the class since all instances of a class have an identical set of

11

methods. Methods may allocate temporary variables for use during the execution

of the method. These temporary variables are like the local variables in a Pascal

procedure.

Each class can be stored in a library for use with many different

applications. Actor comes with more than 90 predefined object classes and

hundreds of methods. [Ref. 8:p. 407-534] The classes which are used to

implement the Data Definition Language of GLAD are included in Appendix B.

2. Inheritance

Inheritance enables programmers to create new classes of objects by

specifying the differences between a new class and an existing class instead of

starting from scratch each time. This is exactly what Actor has done with the Int

and Real classes. By grouping them under a superclass called Number, many of the

methods which are used by both types of data can be written only once and these

methods are then inherited by the subclasses. This forms a hierarchical tree type

structure where the root of the tree is a class called 'object'. [Ref. 5:p. 455] A

portion of the Actor tree structure is shown in Figure 2. Note that inheritance in

Actor is not limited to one level. When a message is sent to an object, if there is no

method in that object which matches the message, the superclass of the object is

checked for a match. This search process continues until the Object class at the root

is reached. If a matching method is not found, an error message is sent. So

inheritance allows a large amount of code to be reused, thus saving precious

memory space and shortening development time.

12

Object

Magnitude

Ctiar Number

Int Long Real

Figure 2. Actor Tree Structure

13

III. GLAD DATABASE MODEL

A. USING GLAD

The GLAD system consists of a top level window which allows access to other

windows and controls functions that relate to the database as a whole. These include

creating, modifying, opening, and removing databases. The top-level window is

shown in Figure 3. Creation or modification of a database schema are managed

through the use of a data definition language. In general, only a dedicated database

administrator (DBA) will have access to this facility, as well as, to the database

removal facility. Opening of a database for regular use should be available to all

persons who have access to the system. Although access controls are not currently

implemented, they can easily be handled in GLAD by requiring the user to enter a

user code and password in order to use the DDL or the Remove function.

The top level window and the data manipulation language of GLAD have been

developed by previous thesis students and by Prof. C. Thomas Wu of the Naval

Postgraduate School. The next section will give a brief introduction into how the

database system is organized and how it was implemented.

B. DATA MODEL

A data model is "a collection of conceptual tools for describing data, data

relationships, data semantics, and consistency constraints." Most databases

currently in use are based on one of the classic data models; they are either

relational, E-R, semantic, or infological. The GLAD interface is based on a

concept called object-relationship model. In this model, the user is given a visual

representation of the collection of basic objects called entities, and the relationships

14

among them. An entity is an "object that exists and is distinguishable from other

objects. A relationship is an association among several entities." The distinction

between entities is accomplished by associating attributes with each

entity. [Ref. 2:p. 6] An entity in GLAD is represented by its name inside a

rectangular box.

i

immYiiii ^ .\ . . . ^. .>. . A .v. ..>... ^.'. /^. .w^^^^^^^^^^^^^^rr^^^^^ .-... .s /. . . .\ . .s ^. ../...... . iiiiuiiiin|;>
'4

I ^ <Mg

I

s

Create Modify Open ^^nove Help Quit

GLAD Uersion 0. 01

Naval Postgraduate Sch ool

Dept of CoMputer s cience

c OK _J
I

I

I

Figure 3. GLAD Top-Level Window

Figure 4 shows a sample database for a fictitious university. In it, the objects

DEFT, EMPLOYEE, and EQUIPMENT are entities. Figure 5 shows the attributes

associated with each entity. The attribute list includes its the name of the attribute

and the data type which it represents. Although not shown, each of the objects is of

a different color when displayed on a color monitor. Each attribute window has a

border of the same color as the object which it describes.

15

G L ^D DHL
Describe Expand Listtlenbers Change Query

ShovfConnection Help Quit

!

DEPT EMPLOYEE EQUIPMENT

;^;;^iiv:::v,v\r•Yiv^;vi^^^^i^iivi^i^i^^,^vi^^v.'vi^i'^^^^^^^MV.^.^^'..^v..v.v•i^i'^•.^^^^Vl^lVl^|^^^.Vr'MVnV^l'.^^^^^^ i".'i-."i-i-riVi'..'.'.'.i'.Vii'.ViiVr-i"iVi'Vi'.'

I

'v.v.\'.".'."'.71
""',","".'.'.'

riVii'i'rhVi'ii'i'iiViV'ri'rvrri

Figure 4. University Database

1. Aggregation

The attributes can be of a system-defined type or a user-defined type. At

this stage in the development of GLAD, system-defined types are atomic; that is,

they consist of exactly one system defined base object (i.e., integer, string, real,

date, money, or boolean). Future versions will include set types for recursive

objects. User-defined types refer to other entities within the database. They can be

atomic or non-atomic. Non-atomic objects are a collection or aggregation of more

than one sub-object (i.e., WorksFor and Belongs are of type DEPT, which is an

aggregation of Name and Chair). User-defined types will be shown in reverse

video with background color the same as the color of the entity object it represents.

16

GLAD D N L

I
Describe Expand ListNenbers Change Query

^ ShowConnection Help Quit

Figure 5. Attributes for University Entities

Figure 6 shows the relationship between the objects of the database. Note

that since EMPLOYEE and EQUIPMENT contain attributes of type DEPT, they

are shown as being related to DEPT.

17

GLAD DM L

I
Describe Expand ListMenbers Change Query

' ShowConnection Help Quit

I

pwjj:^«ajjj!ai!jjj)jjji!j^^

i;
SHOW CONNECTION

Quit

i

rAv.'.wx'tjyf.").'.". v.
,..A<.-.'.v..:.g-.*.t......-^

;J

I

DEPT

s..

EMPLOYEE EQUIPMENT

fe:%^yx<-x-:'tYa¥:<a':::«;g;<-:a>ft<<^>^^^

!T

i

I

Figure 6. Entity Relationships

2. Generalization and Specialization

Two other relationship types which can be represented in GLAD are

generalization and specialization. These terms are defined in Database Systems

Concepts as follows:

• Generalization is the result of taking the union of two or more (lower level)

entity sets to produce a higher-level entity set.

• Specialization is the result of taking a subset of a higher-level entity set to

form a lower-level entity set. [Ref. 2:pp. 37-38]

These are easily represented in the object-relationship model through the

use of nested objects. Figure 7 shows an expansion of the EMPLOYEE object.

From this figure, it is easy to visualize that EMPLOYEE is actually made up of its

18

attributes and two other non-atomic entities, FACULTY and STAFF. So

EMPLOYEE is a generalization of FACULTY and STAFF, while FACULTY and

STAFF are specializations of EMPLOYEE. Referring again to Figure 4, note that

the EMPLOYEE object has a double rectangle. This is how GLAD represents an

object which is a generalization of lower-level objects. Specialization can continue

to any number of levels. In this case, STAFF is in turn a generalization of TYPIST

and TECH as shown in Figure 8.

KM^j\Nw:y/.»;<^-«c^>»::M«M«M.M«(<>Kwc«»XK^^

GLAD M L 'i

I
Describe Expand ListMenbers Change Query

I ShowConnection Help Quit

EQUIPMENT

I Describe Expand ListMenbers

n Change Query Help Quit

Figure 7. Expansion of EMPLOYEE Object

This section was intended to give the reader an idea of the power and

elegance of the GLAD Data Model. The next section will discuss the

implementation of the GLAD system in more detail.

19

mmi?. :
!Mjj^>!ra^^Vj:^JJjaM^!:»^A!M!;^^^^^

GLAD DHL
I
Describe Expand ListMenbers Change Query

I Sho«fCannectxon Help Quit

J

EQUIPMENT

hlVi"^'/tijliii'/Wy^
'

^^

Subclasses of: EHPLOVEE

Describe Expand ListMenbers

Change Query Help Quit

*jia»*ia>»ia*aMHMliMgifPiaMr taajia«*Baa* MfJttf*iMa Ilia *» **— *TMiaMma*B

1

1
TYPIST TECH

Figure 8. Expansion of STAFF Object

C. USING THE DML WINDOW

It is clear that the graphic-interface offered by Microsoft Windows is an

excellent means of displaying the attributes of the object-relationship model. Since

each entity is represented by an object, Windows object centered design is ideal for

handling interaction with the database, and Actors object-oriented language means

programming of the interface can be easily conceptualized. In addition, the ability

to call different windows, overlay them, and destroy them offers a great deal of

flexibility over which the user has complete control.

Figure 4 showed a sample database schema as displayed in the data

manipulation window of GLAD. The window is identified by the title "GLAD

20

DML" where DML is Data Manipulation Language. This is the primary window

interface for database users.

As discussed in Chapter II, the menu is the means by which the user interfaces

with the system. The research indicated that short, hierarchical menus are better

for the novice user but that short cut methods should be available for more

experienced users. In GLAD, the menus have been limited to a maximum of eight

menu items. In addition they are, for the most part, only one level. By keeping the

menus short, novice users can quickly learn and manipulate the available functions.

By using only one level for most functions, short-cuts for experienced users are not

necessary.

In order to view the attributes of any object, the arrow, which is controlled by

the mouse, can be moved to any object and the left mouse button clicked. This

results in the selection of the object, indicated by a green background color and a

wider than normal rectangular border on the selected object. Once the object is

selected, the user simply selects Describe from the DML menu. The describe

window with the list of attributes is automatically displayed.

The Expand menu item is used to display the nested objects within a generalized

entity. Selecting EMPLOYEE and then selecting Expand will result in the

subclasses of EMPLOYEE being displayed as shown in Figure 7.

Of course, the primary purpose of a database is for the user to retrieve

information from the system. GLAD offers two methods of retrieving and viewing

data. ListMembers allows the user to view the database either one entry at a time or

all at once. These options are shown in Figure 9. Query will offer a full range of

query functions which will allow the user to sort the database on individual field

21

characteristics or combinations of characteristics. Work is still underway in this

area to develop a powerful, yet easy to use query language interface.

¥yg?^agggfl^<<<5g;y^wg<iy'''^^?»»x<' ^g>X!>ysaygg«:a>>!g«g^^

i Mode

I

EHPLOVEE: Read Mode

Change Prev Next GoTo All Help Quit

Nane

Age

Pay

Address

IJohn Smith

10,000

123 Maple t^ve. Apt 5,
Monterey, Ca 93904

Wn^WffTnfi»!T»Ti»Tr»i»iiT»wiin»fni?iMiriMrTH')iTninrr?in.iiiiiu»ii iiiMiiHiiiuiiiiiuiiiiiiiiiiiMPiniuiiMiiiiiiii'Miiiiiiiiini»iiiiiinnnTTTTi'V'''V''»''»*'"""''V*''^Tff^^?mniin»ii
..^.y/,-.\i^.-.vyy.v,%'^\yy.\-^.\.y.-,'.-r..-.-.-,r.'.y'.-yy-yf.-:.-f.'y.'Xs^'.%'j.-^........s.../^..../..?/.......-. ..^/.. A...A........*. AW..,/... ^......./T...V^..?yi)..|jj-|jjj^ ..^...^./i-.....^.. /..^....i-.-n-».............f...V.../^.i....Jr./..i......

EMPLOYEE
More Modify Help Quit

IJohn Smith
2Abe Lincoln
3Joe Doe Jr

23
14

^ C^CiJ^^J='='

10,000 123 Naole Ave. A
23,000 6588 Ist Street,...
23,000 8900 Coker Rd, S...

f:

Figure 9. Views of the Database

Change allows the user to update the data in the database. The user can add,

delete or modify any record. ShowConnection gives a visual display of the

relations within the database as shown in Figure 6. Help offers on-line help

routines and Quit causes the system to exit the DML routine.

22

IV. DATA DEFINITION LANGUAGE

A. BACKGROUND

The data definition language is used to define new or modify existing database

schema. Included in this facility are provisions to add new objects, delete objects,

define attributes, define speciaUzation of objects and save these in a way that can be

used by the system.

DDL is invoked by selecting either the Create or Modify menu item from the

top-level GLAD window. If Create is selected, the user is asked for the name of the

new database using a dialog box as shown in Figure lOA. If Modify is selected, the

dialog box shown in Figure lOB is displayed. This dialog displays all of the

database schema currently in the system and allows the user to select the desired

schema. Like everything in the Windows environment, more than one instance of

any database can be called from the top-level window allowing a user to modify

more than one database schema at the same time.

The remainder of this chapter discusses some of the design considerations that

went into the development of the DDL facihty. Appendix B shows the actual classes

and methods that are used. Note that each of the windows and dialog boxes

described are controlled by a separate class. For example, the main DDL window

is controlled by the DDWindow Class while the AttribDialog Class controls the

dialog for entering attributes for each entity. These classes will be discussed along

with the interface which the user sees when defining a new or modifying an existing

database.

23

A. Create Database

Enter new Database nane

c Ok (cancel
j

B. GLAD Databases

BASIS t (OPEN)Leisure Planning
NPS Lab Equipnent
Pine Ualley Furniture Co.
Test Connection DB
University Database

(ABOUT)

(" HELP J

r CANCEL ')

Figure 10. Dialog Boxes for Create and Modify Functions

B. DATA DEFINITION FUNCTIONS

The initial design of the DDL facility included a child window of the main DDL

window to handle the definition of entities and their attributes. The window had a

separate menu and a separate control system. After initial tests with this facility, it

was determined that the extra level in the hierarchy of windows made the system

more complex and would probably be harder for a novice user to initially

comprehend. Upon reevaluation, it was decided that all of the definition functions

could be included in the main DDL menu. This reduces the number of levels of the

hierarchy while keeping the length of the menu to a maximum of eight items. The

final version is shown in Figure 11.

24

iM*AM*««M UiMM«***M**MiM«*«*A*AA«*M*

Save Def^xne At-trrlbutre Expand Deleire

Mode Help Quit:

Figure 11. Data Definition Facility Window

The class which controls the DDL window is the DDWindow Class. The

second line of the DDWindow Class is the inherit command which identifies the

class from which the current class is inherited and all of its instance variable. The

inherit command for the DDWindow class is reproduced below with the

comments omitted; comments are enclosed by a slash and an asterisk in the class

definition.

inherit(DBWindow, #DDWindow, #(name newObj nest newNest
tmpObj dMWin idx attrDialog attrList), 2, nil)!!

The first parameter in parenthesis is the class from which this class is inherited;

in this case, the DBWindow class. DBWindow class is also shown in Appendix B.

It contains all of the methods for painting of the window and for selecting and

moving object rectangles on the screen. Since both the DDL and the DML windows

use these functionss, their corresponding methods are combined into a separate

higher level class. Both the DDWindow and the DMWindow class inherit the

methods from the DBWindow class. In this way the same code is used for both

facilities of the database, saving code, memory, and programming time. This is

where the true value of Actor becomes evident.

25

1. Defining Entities

The Define menu item in the DDL menu allows the user to define entity

objects. Figure 12 shows the dialog box which this function invokes. This dialog

box is controlled by the ObjectDialog Class shown in Appendix B. In this dialog the

user is asked to specify the name of the entity and whether it will be a generalization

of other entities (nested) or an atomic entity. The design is such that, if no object is

selected prior to selecting Define, the dialog box will be initialized with no name

and with the Atomic nesting level selected. Once the Accept button is selected, the

object is displayed in the center of the DDL window. The object can then be moved

to the desired location using the mouse. If an object is selected (it has been

highlighted with the mouse), then the dialog box is initialized with the parameters

for the selected object. Any changes made to the selected object will be

immediately visible in the DDL window.

OBJECT DEFINITION
Entreir Object: Name =

eveX ~

O 1

NestTJLng L

® Atonic Nested

CAccept J Cancel)

Figure 12. Dialog Box for Defining Entities

2. Defining Attributes

Initially, the GLAD design called for attributes to be defined at the same

time as the entity itself. The problem with this method was that user-defined

26

attribute types were defined before the entity to which it related was defined. This

caused problems with type checking and resulted in some attributes having an

attribute type which were undefined. The final version of the system separates the

definition of the entities from the defmition of their attributes. It requires an entity

be defined before it can be used as a user-defined attribute type. The implication is

that all entities should be defined prior to defining any attributes. This method

results in fewer errors by allowing the system to conduct on the spot type checking.

If a user tries to define an attibute that has not been defined, GLAD will issue an

error message and allow the user to reenter a new attribute type.

Defining the attributes of an entity requires the user to select an object and

then select the Attribute menu item. This action causes a message to be sent to the

AttribDialog Class which controls the dialog box as shown in Figure 13. This

dialog box is for the EMPLOYEE object of the university database. All of the

previously defined attributes are displayed in the listbox at the bottom left of the

dialog box. New attributes can be added by positioning the cursor to each of the

input fields above the list box, entering the desired data, and selecting the Add

pushbutton. Attributes can easily be deleted by selecting the attribute from the

listbox and selecting Delete.

Shneiderman [Ref: 6:p. 91] suggested that error messages should rarely

be needed in a good direct manipulation interface. To help the user avoid mistakes

and keep error messages to a minimum, the Type List feature is included. Selecting

Type List results in the display of the dialog box of Figure 14. This dialog box is

controlled by the TypeDialog Class and lists all of the possible attribute types which

can be used, including system-defined and user-defined types. Selecting an

attribute type results in the removal of the dialog box and the insertion of the

27

attribute type in the Attribute Type field of the attribute dialog box. The user is not

required to remember any of the available types and by being able to have the type

automatically entered reduces the possibility of errors. This is especially true

considering the fact the Actor is case sensitive, so Int is not equivalent to INT.

Attributes for object EMPLOYEE

Attribute Name:

Attribute Type:

Length of field;

Nane
Age
Pay
Address
WorksFor

String[i6]
Int[8]
Int[8]
Strin9[35]
DEPT[20]

f Add

(Delete)

[Type List
I

i
Quit j

Figure 13. Dialog Box for Defining Attributes

28

Int : S t
Money : S

String :: S

DEPT i: U
nn

EHPLOVEE :: U 1'

EQUIPMENT :: U

*

I Accept
)

(Cancel
» 9 m I

Figure 14. Type List Dialog Box

3. Expand Function

The Expand function allows the definition of specialization entities for a

nested object. The expand window is the same as the main DDL window with the

exception that Save and Mode are not included in the menu. This is shown in

Figure 15. Since all of the remaining menu items cause the same actions as in the

DDL main window menu, the Expand window is nothing more than an instance of

the DDWindow Class with a shortened menu. No new code is needed for this

window as all the methods needed to run the window are in the DDWindow Class.

Again the power and flexibility of Actor is fully exploited.

29

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ rT^rrrTrrrmrrrrr, •:-ww:-w-;v:w.wwwv.w»:.:ww.:ww'

GLAD DDL
Save DeFine Atr^ribute
Help Quit:

Unxversxtry Datrabase
Expand DeJ.et-e Node

DEPT EQUIPMENT

Subclasses oF: EMPLOYEE
Define Atrt-rlbut-e Expand Deletre

Help Quit:

FACULTY STAFF

"'*' '"' iirfcmmi*L*»*yiijiA***ii»...........»..-..*..

fciitiiii'i'fcllAiiliiiliiilifcfcfc

Figure 15. DDL Expansion Window

4. Other Functions

The remaining functions are fairly self-explanatory and their controlling

methods are all contained in the DDWindow Class. The Save function simply saves

the schema to a disk file for later use. The Delete function is used to delete entities

which are no longer needed. Deleting a nested entity results in all specialized

objects of that entity also being deleted.

The Mode function was primarily included as a debugging tool. The

function causes the database schema currendy displayed in the DML window to be

displayed in the DML window, thus allowing testing of a newly created or modified

database schema. This feature is especially important when modifying an existing

30

database schema. The user can evaluate the new design prior to saving it and

overwriting the existing schema.

5. Error Checking

Finally, GLAD offers a full range of error checking functions. Included

in these functions are checks for duplicate database and object names, type checking

for attribute types, checks to ensure that changes to the database schema are saved

prior to exiting, and checks to ensure all required inputs are completed prior to

accepting a new entity or attributes. These errors result in a dialog box with a

warning and a description of the error. These features aid in the learning process

and help make the user feel comfortable to know that errors will not go undetected,

nor will they result in any kind of catastrophic loss to the system.

31

V. CONCLUSIONS

A. DISCUSSION OF THE RESEARCH

This thesis has shown that it is possible to create a user-friendly database

management system which combines the best of graphics-oriented interfaces with a

data model which offers an enormous amount of flexibility over that available in

popular relational models. In addition, the research has shown that this interface

offers ease of use to novice users while not penalizing experienced users in the

process. The virtue of this conclusion has been carried over into the realm of the

data definition language. Although this function has been traditionally handled by

database administrators, the GLAD system is easy enough to use that even novice

users have the ability to define or modify databases. The use of Windows and Actor

are instrumental in providing the facilities that make this possible by reducing the

development time, as well as, the leaming time of end users.

B. FUTURE PROGRAM IMPROVEMENTS

GLAD has many areas in which research still needs to be conducted. Among

them are extended capabilities of current window classes, addition of full querying

facility, addition of an on-line, context sensitive help screen system, system defined

set type for attributes, and linking of the system to commercially available database

management systems. Additionally, a means of providing secure access control to

individual parts of the database must be researched before GLAD can be considered

viable for Department of Defense applications. Long range goals include

development of data-oriented visual programming and a unified GLAD interface to

32

multiple, heterogeneous databases. This must include a method of providing

mutual exclusion to database elements in multitasking, networking environment.

C. BENEFITS OF RESEARCH

This research demonstrates the ease of use and the power and flexibility which

can be obtained in a database management system. As the microcomputer continues

to gain in popularity and number, ease of use for the end user will become

increasingly important. An additional benefit can be derived from the lessons

learned about object-oriented programming in Actor. The power of reusable class

definitions and inheritance between classes can be exploited for many applications

besides databases. Object-oriented programming is now being investigated for use

in all areas of computer science. Whether the research is viewed from a

programmers standpoint or an end users standpoint, the use of these systems will

inevitably save time and, therefore, money.

33

APPENDIX A. SAMPLE USER SESSION

This sample user session is based on the database model developed for the Bases

and Stations Information System (BASIS) by the Naval Data Automation Command

(NAVDAC) for the Chief of Naval Operations. The top-level entity objects

correspond to the database records specified by this system. Nested objects have

been added where appropriate so that objects do not contain mutually exclusive

attributes. For example, PERSON contains information which applies solely to

officers or solely to enlisted personnel. Since one record cannot contain both types

of information, these attributes are mutually exclusive and are, therefore, put into

expanded objects OFFICER and ENLISTED. This is also done for FITNESS,

MANPWR, and CORRES entities. FITNESS is expanded to include objects MALE

and FEMALE, MANPWR is expanded to OFFICER and ENLISTED, and

CORRES is broken down into LETTERS and MESSAGES.

The following is a step by step procedure for setting up the database. The term

'Select' is used to mean the cursor is placed on the selected item using the mouse and

the left mouse button clicked once. This action either highlights the item or causes

the menu or button function to be executed.

I. Creation of the Database (Figure A-1)

A. Select Create from the GLAD top-level menu

B. Type 'BASIS' into the Create Database dialog box

C. Select 'Ok'

Results: GLAD DDL ** BASIS window is displayed

II. Creation of top-level entity objects (Figure A-2)

A. Select Define from the DDL menu

B. Type 'PERSON' into the OBJECT DEHNITION dialog box

34

C. Select Nested in the Nesting Level control box of the dialog box

D. Select Accept

E. Set location of Object by pointing at object, pressing and holding the

left mouse button, and moving object to desired location. Object will

move as the mouse is moved.

F. Repeat steps H. A-E for the following objects:

1

.

FITNESS (Physical Readiness Test data). Nested

2. CAREER (Career Counseling data), Atomic

3. TAD (Temporary Additional Duty), Atomic

4. LOCATOR (Postal Locator), Atomic

5. UA (Unauthorized Absences), Atomic

6. UIC (Unit Identification Code), Atomic

7. MANPWR (Manpower Authorization), Nested

8. DEPT (Department Table data), Atomic

9. DIV (Division Table data), Atomic

10. MUSTER (Muster Reporting), Atomic

1 1

.

ADMIN (Admin Control Record), Atomic

12. CORRES (Correspondence and Messages), Nested

13. FORMS (Forms Control), Atomic

14. RECURR (Recurring Reports), Atomic

15. INST (Instructions and Notices), Atomic

16. CHANGE (Instruction Change Transmittal), Atomic

Results: Top-Level window of Figure A-3

III. Create Expanded Objects for PERSON Object (Figure A-4)

A. Select PERSON object

B. Select Expand from DDL menu.

C. Select Define in 'Subclasses of: PERSON' window

D. Type 'OFHCER' into OBJECT DEHNITION dialog box

E. Select Atomic in the Nesting Level control box of the dialog box

F. Select Accept

G. Repeat steps C-E for ENLISTED object

35

Results: Window as shown in Figure A-5

IV. Create Expanded Objects for remaining nested objects

A. Repeat steps HI. A-F above for HTNESS, MANPWR, and CORRES

V. Define Attributes for PERSON Object (Figure A-6)

A. Select PERSON object

B. Select Attribute from DDL window

C. Type 'SSN' into Attribute Name field

D. Select Attribute Type field

E. Type 'String' or Select Type List and select the desired attribute type

F. Select Length of Field

G. Type '9'

R Select Add

L Repeat Steps V. C-H for each of the attributes ofPERSON (for this

demonstration, only selected attributes were actually entered)

Results: Attributes as shown in Figure A-7. Select Quit to exit the

attribute definition mode

VL Define Attributes for Expanded Objects (Figure A-8)

A. Select Expand from DDL window

B. Select OFHCER object (See Figure A-5)

C. Select Attribute from 'Subclasses of: PERSON* window

D. Repeat V. C-I for all attributes of OFHCER

Results: Attributes entered as shown in Figure A-8. Select Quit to exit

Subclasses window

VII. Define Attributes for Remaining Objects

A. Repeat steps V. A-I for each remaining top-level object

B. Repeat steps VI. A-D for each expanded object

VIII Save and Exit the DDL routine

A. Select Save from DDL top-level menu

B. Select Quit

IX. Actual data can now be entered using the change function of the Data

Manipulation Language.

36

;::U:<S»?>W::«A?K¥a?«.Wr«^^^^

<}

Create Modify Open Renove Help Quit

Create Database

Enter new Database nane

BASIS

C^D (cancel
)

mmmmmmmmmiiiiimmmmmmmmmis^^^

I

FIGURE A-1 BASIS DDL Window

37

Quit

\

\

K:;<::«::»X:X::::«wfty:-*AW^^^^

GLAD DDL»* BASIS

Save Define Attribute Expand Delete Mode Help

OBJECT DEFINITION

Enter Object Nane:

PERSON

"Nesting Level

O Atonic % Nested

[Accept J [Cancel

a^aK«:«¥:¥gx«m^ai!^?a¥!^^

Figure A-2 Define PERSON Entity

38

;::W4%¥JfS»:<W*Wi»J«Siim«*S!fia^^ ^m
GLAD DDL«« BASIS

Save Define Attribute Expand Delete Mode Help

Quit

PERSON

CAREER

LOCATOR

FITNESS

TAD

UA

UIC

MANPWR

DEPT

DIU

MUSTER

ADMIN

FORMS

INST

CORRES

RECURR

CHANGE

» im.u i
.
iit'iiiiiin»iiij ii i ijin'im iiiiM iiiiiiiiiiiiiniii i

Figure A-3 BASIS Top-Level Window

39

m>mf& '^mmmm^iiiMmmmmmmmmiMMMM^

Save Define

Quit

GLflD DDL*K BASIS

f)ttribute Expand Delete Node Help

iinaMQS

I

FITNESS

CAREER TAD

ADMIN CORRES

FORMS

LOCATO

.VV/.V.-/.'..\.AV.\.,

RECURR

Subclasses of: PERSON

|-| .V. . A i. /..-.. .SV>^\ ..

.

Define Attribute Expand Delete

Help Quit

OBJECT DEFINITION

Enter Object Nanei

OFFICER

Nesting Level

% Atonic Nested

Accept
) [Cancel

'

CHANGE

PTT-TTTTTTTTTTTTTTTTfTTTTTTTTTTT.'l'

Figure A-4 Create Expanded Objects for PERSON Object

40

t^Ay<WiW.¥ m^mM^mmmimi^m^simmfiiifismmmmmffmm?^^

GLAD ODL«« BASIS

I
Save Define Att-ributre Expand Delete Mode Help

I Quit

I

FITNESS UIC ADMIN CORRES

CAREER TAD MANPWR FORMS

Subclasses of: PERSON

RECURR

LOCATO

rrnynfrrrrrrn

Define Attribute Expand Delete

Help Quit

tmmi<::ii<;!f/^/i«&<iiii<-:it

OFFICER ENLISTED

ilUSuluil^faM^ lulliMMMiuilMllMlwi^lrill*^^

t:

CHANGE

^W^^^^^HW**W^^»^W.'
.. w 1 I

Figure A-5 Expanded Objects for PERSON Object

41

Attributes for object

Attribute Nane:

t PERSON

SSN

Attribute Type:
(Add j

String
r Delete J

Length of field:

9 Type List
J

t

4

(Quit J

Figure A-6 Define Attributes for PERSON Object

42

Attributes for object PERSON

Attribute Nane:

ACCOUNT CA: Int[3
ACT_DUTV_S:
ACTUAL_DET:
DATE_RANK_:
NAME :

DEPT_CODE_:
DIU_CODE_A:
PAV_GRADE :

ACCESS_LEU:
SERUICE_BR:

Date[6]
Date[6]
Date[6]
String[27]
DEPT[6]
Diy[6]
String[4]
String[l]
String[ll

ACCOUNT_CAT_CODE

Attribute Tjtppe:

Int

Length of f.Leld:

3

Add

f Delete

1

[Type List
)

r Quit

Figure A-7 Attributes for PERSON Object

43

Attributes for object OFFICER

Attribute Nane:

Attribute Types
(Add J

(Delete J

Length of field:

[Type List
J

DESIGNATOR: Int[4]
LINEAL NUM: String[9]
RANK : String[5]

t

4r

{ Quit
]

Figure A-8 Attributes for Subclass OFFICER

44

APPENDIX B. SOURCE CODE LISTING

The following is a list of those classes which were created or modified

specifically for the implementation of the Data Definition Language. The classes

which were modified from previous versions of GLAD are indicated after the class

title.

1. AttribDialog Class

/* Dialog for entering entity object attributes */!

!

inherit(Dialog, #AttribDialog, #(attrList /* List of

attributes in the same format as selObj. attributes */

selAttr /* Attribute selected from listbox */

objName /*Name of the object for which these attributes

apply*/

typeList /* List of possible types of attributes including

system and user defined attributes */

typeDialog /* Type dialog box */

tempArray /* Temporary attribute array*/

obj /*Array of two elements for setting up tempArray */

),2,nil)!!

now(AttribDialogClass)!

!

/* Creates a new instance of the class AttribDialog */

Def new(self,selObj I theDlg)

{

theDlg := new(self:Behavior);

theDlg.objName := selObj.name;

theDlg.selAttr := new(String, 15);

if selObj. attributes

theDlg.attrList := selObj.attributes

else

theDlg.attrList := new(OrderedCollection, 15)

endif;

^theDlg

45

} !!

now(AttribDialog)!

!

/* Searches type list for valid type names */

Def isTypeDef(self, aColl, newName)

{

do(aColl,

{using(elem) if elem[0] = newName
Mem[l]
endif;});

^nil

} !!

/* Inserts a new attribute string into the list box of the

AttribDialog */

Def insertString(self,aStr I ans, insertLoc)

{

if selAttr

insertLoc := selAttr

else

insertLoc :=-l

endif;

ans := Call SendDlgItemMessage(hWnd, ATTR_LIST,
LB_INSERTSTRING,insertLoc,
IP(aStr));

freeHandle(aStr);

^ans

) !!

Def addString(self,aStr I ans)

{

ans := Call SendDlgItemMessage(hWnd, ATTR_LIST,
LB_ADDSTRING,0,lP(aStr));

freeHandle(aStr);

'^^ans

/* This method adds a new attribute to the selected objects

attribute list */

Def addAttr(selO

{ tempArray := new(Array, 4);

46

tempArray[0] := getItemText(self, ATTR_NAME);
tempArray[l] := getItemText(self, OBJ_ATTRIB);
tempArray[2] := getItemText(self, ATTR_LENGTH);
if (tempArray[0] = "" or tempAiTay[l] = "" or

tempArray[2] = "")

errorBoxC'ERROR!", "Fill in all attribute fields.")

else

if isTypeDef(self, attrList, tempArray[0])

errorBox("WARNING!", "Attribute already exists.")

else

if tempArray[3] := isTypeDef(self, typeList,

tempArray[l])

selAttr := insertString(self,

subString(tempArray[0] + "
", 0, 10)

+ ":
" + tempArray[l] + "[" + tempArray[2] +

"]");

insert(attrList, tempArray, selAttr);

setCurSel(self, selAttr);

initEditBox(self)

else

errorBox("WARNING!", "Invalid Attribute Type.")

endif

endif

endif

} !1

/* Clears the text edit boxes of the dialog. */

Def initEditBox(selO

{

setItemText(self, ATTR_NAME,"");
setItemText(self, OBJ_ATTRIB, "");

setItemText(self, ATTR_LENGTH, "");

selAttr := nil

} !!

/* This method deletes attributes from an object's

attribute list */

Def deleteAttr(self)

{

if selAttr

remove(attrList, selAttr);

Call SendDlgltemMessage (hWnd,ATTR_LIST,
LB_DELETESTRING,

47

selAttr,0);

initEditBox(self);

setCurSel(self, -1);

selAttr := nil

else

errorBoxC'WARNING!", "Select Attribute to delete.")

endif

} !!

/* Selects attribute in list box and initializes the

variables and edit boxes */

Def selltem(self)

{

selAttr := Call SendDlgltemMessage (hWnd,ATTR_LIST,
LB_GETCURSEL,0,0);

if (selAttr >= and selAttr < size(attrList))

setItemText(self, ATTR_NAME,attrList[selAttr] [0]);

setItemText(self, OBJ_ATTRIB, attrList[selAttr][l]);

setItemText(self, ATTR_LENGTH, attrList[selAttr][2])

else

initEditBox(self)

endif;

} !!

/*set the current selection to idx, Used for highlighting

the selected item in the Ust box. */

Def setCurSel(self, idx)

{

^aU
SendDlgItemMessage(hWnd,ATTR_LIST,LB_SETCURSEL,idx,0)

} !!

Def command(self, wP, IP)

{

select

case wP == IDCANCEL
is setAttrList(parent, attrList);

end(self, 0)

endCase

case wP == ATTR_DELETE
is deleteAttr(self)

48

endCase

case wP == ATTR.TYPE
is typeDialog := new(TypeDialog, typeList);

runModal(typeDialog, ATTRLIST, self)

endCase

case wP= IDOK
is addAttr(self);

setItemFocus(self, ATTR.NAME);
endCase

case wP == ATTR_LIST
is selltem(self)

endCase

endSelect

}
!f

/* Initialize the listbox; the method is the Actor

equivalent of WMJNITDIALOG */

Def initDialog(self, wP, IP)

{

selAttr := nil;

setItemText(self, OBJ_NAME, objName);

do(attrList,

{using(elem) insertString(self, subString(elem[0]

+
"

",0,10)+ ":"

+ elem[l] + "[" +
elem[2] + "]")});

typeList := new(OrderedCollection, 15);

add(typeList, tuple("Date", "S"));

add(typeList, tuple("Int", "S"));

add(typeList, tuple("Money", "S"));

add(typeList, tuple("String", "S"));

typeList := getDispObj(parent, typeList);

} !!

2. ColorTable Class (Modified)

/* collection of colors available for shading Glad objects

49

inherit(OrderedCollection, #ColorTable, nil, 2, 1)!!

now(ColorTableClass)!

!

now(ColorTable)!!

/*mitialize the table with

colors available in the system */

Def set(self I elem, colors)

{

/*first get the available colors*/

/*getColorTable() is in ACT dir*/

colors := getColorTable();

do(colors, {using(color)

if coloro and coloro WHITE_COLOR
/*dont add BLACK or WHITE*/
elem := new(Array,2);

elem[USED] := nil;

elem[COLOR]:= color;

add(self,elem)

endif})

}

I!

/*retums the next available color for shading*/

Def nextBrushColor(self)

{

do(self, {using(elem)

ifnot(elem[USED])

elem[USED] := true;

Mem[COLOR]
endif});

errorBoxC'E R R O R","No more available color");

^WHITE_COLOR
) !!

/*makes the unselected object's color available again*/

Def avail(self, color)

50

{

do(self, {using(elem)

if elem[COLOR] = color

elem[USED] := nil;

endif})

} !!

3. DBDialog Class (Modified)

/* This dialog list the databases currently available

under GLAD. The dialog uses either OPNDBLIST or

RMVDBLIST dialog template depending on the state.

Buttons HELP, OPEN, REMVOVE and CANCEL are self

explanatory. ABOUT describes the selected database. */!!

inherit(Dialog, #DBDialog, #(dbNames /* collection of

databases names used for listing purpose */

rmvDbNames/*collection of databases selected to be removed*/

state /*tells whether the dialog is in Open or Remove mode*/
selDb /* selected db to be opened */

),2,nil)!!

now(DBDialogClass)!!

Def new(self I theDlg, gladDbs, Hne)

{

theDlg := new(self:Behavior);

theDlg.dbNames := new(SortedCollection,15);

theDlg.rmvDbNames := new(SortedCollection,15);

theDlg.selDb := new(String,30);

gladDbs := new(TextFile);

setName(gladDbs, "glad.dbs");

open(gladDbs,0); /* means read-only */

loop while (line := readLine(gladDbs)) begin

add(theDlg.dbNames, line)

endLoop;

close(gladDbs);

51

^theDlg

} !!

now(DBDialog)!!

/* Adds a newly created DB name to the dbList */

Def addDb(self, db)

{

if not(find(dbNames, db))

add(dbNames, db)

endif;

} !!

/*gets the filename from the name listed in the Ustbox*/

Def fileNameOfSelDb(self I tmpStr)

{

tmpStr := new(String,30);

tmpStr := "";

do(selDb, {using(elem)

if elemo '

'

tmpStr := tmpStr + asString(elem)

endif });

^subString(tmpStr,0,7) + ".sch"

} !!

/* Return the selected database name to the calling method.
*/

Def getSelDb(self)

{

^elDb
)!!

/* if confirmed, then remove the selected db from

dbNames and temporarily save it in rmvDbNames */

Def rmvDbFrom(self ,text)

(

if questionBox("Are you sure?",

"Really remove"+CR_LF+text) == IDYES
add(rmvDbNames, text);

remove(dbNames, text)

endif

} !!

52

/*update the glad.dbs file if any db is removed*/

Def updateDbsFile(self I gladDbs)

{

if rmvDbNames /*some db is removed */

do(rmvDbNames,
{using(elem I result)

result :=

questionBoxC'W A R N I N G",

"ReaUy remove " + elem + "?");

if result == IDNO /* then restore it */

add(dbNames,elem)

endif

})
endif;

gladDbs := new(TextFile);

setName(gladDbs,"glad.dbs");

create(gladDbs);

do(dbNames, {using(elem) write(gladDbs,elem+CR_LF)});

close(gladDbs)

) !!

/*set the current selection to idx */

Def getSelldx(self)

{

^CallSendDlgItemMessage(hWnd,DB_LB,LB_GETCURSEL,0,0)

} !!

Def command(self,wP,lP)

{

select

case wP == IDCANCEL
is end(self,0)

endCase

case wP == ABOUT_DB
is

if (selDb := getLBText(self,DB_LB)) /*not nil*/

errorBox("ABOUT","brief description "+selDb)

else

errorBoxC'ERROR!?!",
"Database was not selected properly")

endif

53

endCase

case wP == HELP_LB
is errorBox("Help", "discuss other buttons");

endCase

/* selection was made and double-clicked

or DEFBUTTON (either Open or Remove)
was pressed */

case (wP == DB_LB and high(lP) = LBN_DBLCLK)
or (wP == DEFBUTTON)

is

if (selDb := getLBText(self,DB_LB)) /*not nil*/

if state= REMOVE_DB
imvDbFrom(self,selDb)

endif;

end(self,state)

else

errorBox("ERROR!?!",
"Database was not selected properly");

^1 ^--^ -^

endif

endCase

endSelect;

^1

) !!

/*set the current selection to idx */

Def setCurSel(self, idx)

{

^allSendDlgItemMessage(hWnd,DB_LB,LB_SETCURSEL,idx,0)

} !!

/* Adds a string to the DB listbox */

Def addString(self,aStr I ans)

{

ans := Call SendDlgItemMessage(hWnd, DB_LB,
LB_ADDSTRING,0,lP(aStr));

freeHandle(aStr);

^ans

} !!

/*initialize the listbox, the method is the Actor

54

equivalent of WM_INITDIALOG */

Def initDialog(self,wP,lP)

{

do (dbNames,

{ using(elem) addString(self,elem) });

setCurSel(self,0)

} !!

4. DBSchema Class (Modified)

/* file containing a database schema */!

!

inherit(TextFile, #DBSchemaFile, #(refNumber /* Number to

reference object within the ordered collection */

),2,nil)!!

now(DB SchemaFileClass) !

!

now(DBSchemaFile)!!

/* saves the attributes to the specified file. */

Def saveAttr(self, attr)

{

do (attr,

{using(elem)

write(self, elem[0] + "&" + elem[l] + "&" +
elem[2] + "&" + elem[3] + "&" +
CR_LF)});

write(self, "&&" + CR_LF);

} !1

/* Saves object and its attributes to a file. */

Def saveObj(self, object)

{

write(self, object.name + CR_LF);
write(self, asString(x(object.pt)) + "(5)" +

asString(y(object.pt)) + CR_LF);
saveAttr(self, object.attributes);

if object.memberFileo ""

write(self, object.memberFile + CR_LF)
else

55

write(self, subString(object.name + " ", 0, 7)
+ ".dat" + CR_LF)

endif;

if object.nesting

write(self, "G" + CR_LF);
saveDbSchema(self, object.nesting);

write(self, "@@" + CR_LF)
else

write(self, "N" + CR_LF)
endif;

} !!

/* Saves schema to file. */

Def saveDbSchema(self, aColl I idx)

{

idx := 0;

loop

while (idx < aColl.lastElement)

saveObj(self, aColl[idx]);

idx := idx + 1
^

endLoop;

} !!

/*get the attributes for the object*/

Def getAttr(self I aColl, anAttr, aStr)

{

aColl := new(OrderedCollecUon,10);

loop

while ((aStr := readLine(self))o "&&"

)

anAttr := new(Array,4);

do (over(NAME,USER_DEF+l),
{using(idx)

anAttr[idx] :=

subString(aStr,0,indexOf(aStr,'&',0));

aStr := delete(aStr,0,size(anAttr[idx])+l)));

add(aColl,anAttr)

endLoop;

^aColl

) !!

/*gets the schema info, stored them in an ordered

collection and return it*/

56

Def getSchema(self I schemaColl, aGladObj)

{

schemaColl := new(OrderedCollection,10);

loop

while (aGladObj := nextObj(self))

add(schemaColl,aGladObj);

endLoop;

^hemaColl

} !!

/*gets the next object from the schema file*/

Def nextObj(self I tmpObj)

{

tmpObj := new(GladObj);

if ((tmpObj.name := readLine(selO) <> "@@")
/*there's more*/
tmpObj.pt := asPoint(readLine(self));

tmpObj.attributes:= getAttr(self);

tmpObj.memberFile:= readLine(self);

if (at(readLine(self),0)=='G')

tmpObj .nesting := getSchema(self)

endif;

tmpObj.refCnt := 0;

tmpObj.color := WHITE_COLOR; /*unselected color*/

/*more fields later*/

^tmpObj

else

^nil

endif

) !!

5. DBWindow Class

/* GLAD Window for data manipulation interaction */!

!

inherit(Window, #DBWindow,
#(dbSchema /*meta data of opened db*/

prevObj /*previously selected object if any */

selObj /*currently selected object if any*/

colorTable /*available colors for shading*/

hDC /*display context*/

57

offset /*difference expressed as point between the origin

of box and mouse position*/

rbuttonDn /* state of right button*/

objMoved /*true if object is dragged*/

menuID /*ID of menu directory*/

),2,nil)!!

now(DBWindowClass)!

!

now(DBWindow)!!

/* Initializes dbSchema for a new database */

Def initSchema(self)

{

dbSchema := new(OrderedCollection, 10)

)!!

/*initialize the color table. This method
is called from the new method*/

Def init(self)

{ initMenuID(self); ^-

colorTable := new(ColorTable,10);

set(colorTable)

}

It

/*move the object*/

Def drag(self,wp,point I aLPt)

{

ifselObj

objMoved := true;

setup(self,hDC);

eraseRect(selObj ,hDC);

aLPt := logicalPt(self,point);

setNewOriginPt(selObj,aLPt,offset);

display(selObj,hDC)

endif

) !!

/* Handles Windows event right mouse button up */

Def WM_RBUTTONUP(self,wp,lp I tmpObj)

{

if not(rbuttonDn)

58

endif;

rbuttonDn := nil;

Call ReleaseCaptureO;

tmpObj := objSelected(self,logicalPt(self,asPoint(lp)));

if tmpObj /*an object is clicked with rbutton*/

if tmpObj o selObj

if tmpObj .color = WHITE_COLOR
errorBoxC'Wrong Button??",

"Use LEFT button to select an object")

else

errorBox("E R R O R",

"RIGHT button cUcked object is not"+CR_LF+

"the selected (bold-lined) object")

endif

else /* = selObj */

if selObj.aDscrbWin
Call DestroyWindow(handle(selObj .aDscrbWin))

endif;

if selObj.aLMWin
Call DestroyWindow(handle(selObj.aLMWin))

endif;

ifselObj.aOMWin

Call DestroyWindow(handle(selObj.aOMWin))
endif;

ifselObj.aNDMWin
CallDestroyWindow(handle(selObj.aNDMWin))

endif;

ifselObj.refCnt =
/*unshade it if not referenced by other objects*/

avail(colorTable,selObj .color);

selObj.color := WHITE_COLOR
endif;

/*now unselect it*/

selObj.thickBorder := nil;

setup(self,hDC);

display(selObj,hDC)

endif

endif;

selObj := nil;

releaseContext(self,hDC)

59

tl

/* Handles Windows event right mouse button down */

Def WM_RBUTTONDOWN(self,wp,lp)

{

if rbuttonDn

endif;

rbuttonDn := true;

Call SetCapture(hWnd);

hDC := getContext(self)

}!!

Def command(self,wp,lp)

{/*only interprets the menu choice now*/
if menuID[wp]
perform(self,menuID [wp]

)

else

endif

} !!
- - -

/*decribes other DML commands*/
Defhelp(self)

{

errorBoxC'H E L P","at your service")

)!!

/*setup the display context*/

Def setup(self, hdc I aRect. wd, ht)

{

Call SetMapMode(hdc,MM_ANISOTROPIC);
aRect := clientRect(self);

wd := width(aRect);

ht := height(aRect);

Call SetWindowExt(hdc,1024,512);

Call SetViewportExt(hdc,wd,ht)

} !!

60

/*left button is released*/

Def endE)rag(self,wp,pointl aLPt)

{

select

case selObj and not(objMoved)

/*an object is selected and was not moved*/
is if prevObj /*unbold the bolded border*/

if not(prevObj.aDscrbWin or prevObj.aLMWin
or prevObj.aOMWin or prevObj.aNDMWin)

and prevObj.refCnt=0

/*also unshade since it has no DWin,OMWinJ^MWin
and is not referenced by other objects*/

avail(colorTable,prevObj .color);

prevObj.color := WHITE_COLOR
endif;

prevObj.thickBorder:= nil;

display(prevObj,hDC)

endif;

if selObj.color = WHITE_COLOR
/*not referenced in another's describe window,
so assign it a color*/

selObj.color := nextBrushColor(colorTable)

endif;

selObj.thickBorder := true;

display(selObj,hDC)

endCase

case selObj and objMoved
/*an object is just moved, so unselect it*/

is

display(selObj,hDC);

selObj := prevObj

endCase

endSelect;

releaseContext(self,hDC);

repaint(self)

} !!

/*left button is pressed; check if the cursor is within

the object rectangle. If yes get ready to move or

select it*/

Def beginDrag(self,wp,point I aLPt)

{

61

aLPt := logicalPt(self,point);

objMoved := nil;

if selObj

/*remember it if some object is currently selected*/

prevObj := selObj

endif;

if (selObj := objSelected(self,aLPt))

offset := getOffset(selObj,aLPt)

endif;

hDC := getContext(self);

setup(self,hDC)

} !!

/converts the client coordinate pt to a logical pt*/

Def logicalPt(self,aClientPt I aLogiPt,aRect,wd,ht)

{

aRect := clientRect(self);

wd := width(aRect);

ht := height(aRect);

aLogiPt := new(Point);

aLogiPt.x := aClientPt.x * 1024 /wd;

aLogiPt.y := aClientPt.y * 512 /ht; ~^ '

^aLogiPt

} !!

/detects whether the cursor is in the object rect*/

/everything is in a logical coordinate*/

Def objSelected(self,cursorPt)

{

do (dbSchema,{using(obj)

if containedIn(obj,cursorPt)

^bj /*retum the selected obj*/

endif});

^nil

) !!

/draws the diagram*/

/*this paint method is called by the show method
via update method which sends WM_PAINT */

Def paint(self, hdc)

{

/*set the mode*/
setup(self,hdc);

62

/display objects*/

do (dbSchema, {using(obj) display(obj,hdc)})

} !!

/*gets the meta data of db to be opened

and initialize other instance variables*/

Def loadSchema(self, aSchemaFile I aFile)

{

aFile := new(DBSchemaFile);

setName(aFile,aSchemaFile);

open(aFile,0); /*read-only*/

dbSchema := getSchema(aFile);

close(aFile)

} !!

6. DDWindow Class

/* GLAD Window for data definition interaction */!

!

inherit(DBWindow, #DDWindow, #(name /* Contains name of new
object */

newObj /* Instance of new dialog box*/

nest /* nesting level of object */

newNest /*used to hold new nesting level if changed*/

tmpObj /* new Object */

dMWin /* Instance of DML Window */

idx /* Index reference within ordered collection */

attrDialog /*Instance of Attribute dialog box */

attrList /*List of possible attributes */

),2,nil)!!

now(DDWindowClass)!

!

now(DDWindow)!!

/* Ensures that changes are saved prior to closing

the DDL window. */

Def closeDD(self)

{

if (changed and expanded <= 0)

if new(ErrorBox, self, "Do you wish to save the

changes?", "Warning - Schema not saved".

63

MB_YESNO) == IDYES
saveObj(self)

endif

endif;

expanded := expanded - 1

;

close(self)

) !!

/* Enters all displayed objects into the list of objects,

called objList, which can be used as attribute types. */

Def getDispObj(self , objList)

{

do(dbSchema, {using(elem)

add(objList, tuple(elem.name,"U"));})

;

'^objList

) !!

/* Sets selected object attribute hst to new list from

changes made in the attribute dialog. */

Def setAttrList(self, attrList)

{

changed := true;

selObj.attributes := attrList;

} !!

/* Expands a nested object for definition or modification of

an objects nested entities. */

Def expandObj(self

)

{

if not(selObj)

eiTorBox("ERROR!","No object is selected")

else

if not(selObj.nesting)

errorBox("ERROR!","Selected object is not nested")

else

expanded := expanded + 1;

selObj.aNDMWin :=

new(NestDDWindow,self,"DdlNestMenu",

"Subclasses of: "+ selObj.name,nil);

start(selObj.aNDMWin,selObj,

colorTable)

endif

endif

64

} !!

/* Calls the attribute definition dialog box for defining

and changing the selected objects attributes. */

Def attrDef(self)

{

changed := true;

ifnot(selObj)

errorBoxC'WARNING!", "No Object Selected")

else

attrDialog := new(AttribDialog, selObj);

runModal(attrDialog, ATTRIB, self);

endif

} !!

/* Used for modification of an existing object */

Def nameObj(self)

{

if not(selObj) .

errorBox("No Object Selected",

"Select an object prior to menu selection.");

endif;

tmpObj := new(GladObj);

if selObj.nesting

nest := NESTED
else

nest := ATOMIC
endif;

newObj := new(ObjectDialog, selObj.name, nest);

if runModal(newObj, DEFOBJ, selO == IDOK
newNest := getNestLevel(newObj);

defineNewObject(tmpObj, getText(newObj),

newNest);

if isNameDefined(tmpObj, dbSchema) == nil or

nesto newNest

selObj.name := tmpObj.name;

selObj.nesting := tmpObj .nesting;

repaint(self)

else

errorBox("WARNING!", "Object " + tmpObj.name +

65

" already exists.");

tmpObj := nil

endif

endif;

} !!

Def initMenuID(self)

{

menuID :=%Dictionary (l->#saveObj

2->#defmeObj

3->#attrDef

4->#expandObj

5->#deleteObj

6->#changeMode
7->#help

8->#closeDD

)

) !!

/* Create DML Window to view database */

Def changeMode(selO

{

dMWin := new(DMWindow, self, "GladDmlMenu",
"GLAD DML",self.locRect);

dMWin.dbSchema := dbSchema;
dMWin.selObj := selObj;

show(dMWin,l)

} !!

/* Deletes the selected object */

Def deleteObj(self)

{

changed := true;

ifselObj

if new(EiTorBox, self, "Delete Object: " + selObj.name,

"WARNING!", MB_YESNO) == IDYES
remove(dbSchema, find(dbSchema, selObj));

avail(colorTable, selObj .color);

selObj := nil;

repaint(self)

endif

else

eiTorBox("No Object Selected", "Select an object to

66

delete")

endif

} !!

/* Save the database schema */

Def saveObj(self I aFile, fileName, dBName)

{

addNewDb(parent);

fileName := subString(Name,0,7) + ".sch";

aFile := new(DBSchemaFile);

setName(aFile, fileName);

if exists(File, fileName, 1)

open(aFile,l) /*write-only*/

else

create(aFile)

endif;

saveDbSchema(aFile, dbSchema);

write(aFile, "@@" + CR_LF);
changed := nil;

close(aFile)

) !!

/* Creates a new GLAD object or calls nameObj(self) for

modification of an existing object. Performs integrity

checking*/

DefdefineObj(self)

{

changed := true;

nest := ATOMIC;
tmpObj := new(GladObj);

ifselObj

nameObj(self)

else

newObj := new(ObjectDialog, "", nest);

if runModal(newObj, DEFOBJ, selO == IDOK
defineNewObject(tmpObj, getText(newObj),

getNestLevel(newObj));

if isNameDefined(tmpObj, dbSchema) == nil

add(dbSchema, tmpObj);

repaint(self)

else

errorBoxC'WARNING!", "Object " + tmpObj.name +
" already exists.");

67

tmpObj := nil

endijf

endif

endif;

} !!

7. GladObj Class (Modified)

/* for storing Glad objects. */

mherit(Object, #GladObj, #(name
pt /^origin point of the box */

color /*to fill the box when selected*/

nesting /*true if it is a generalized object*/

attributes /*collection of name, class, and type(U or S*/

hDC /* Display context for new object */

refCnt /*reference count*/

refNum /* reference number */

thickB order /*true if most recently selected object*/

memberFile /*contains tuple*/ —^^
aLMWin /*its HstMemWindow*/
aOMWin /*its oneMemWindow*/
aDscrbWin /*its describe Window*/
aNDMWin /*its nestedDMWindow*/
),2,nil)!!

now(GladObjClass)!!

now(GladObj)!!

/* Checks to see if object name is already defined. Return

'true' if the name is defined. Otherwise returns nil. */

Def isNameDefmed(self, aCoU)

{ do(aColl,

{using(chkObj)

if chkObj.name = name
'^true;

endif;));

'^nil

1 !!

68

/* Displays newly created object */

Def defineNewObject(self, newName, newNest)

{

name := newName;
if newNest == NESTED
nesting := new(OrderedCollection, 10)

endif;

pt := asPoint("400@250");

refCnt := 0;

color := WHITE.COLOR;
) !!

/*retums an inner box for a generalized object*/

Def nestedRect(self I aRect)

{

aRect := new(Rect);

aRect := rect(selO;

'^inflateCaRectrlO.-lO)

) !!

/*set the new origin point for the object rectangle

from the current mouse position plus offset

Since pt is first initialized to integer,

make sure it only gets integer value */

Def setNewOriginPt(self, mousePos, offset)

{

pt.x := asInt(mousePos.x - offset.x);

pt.y := asInt(mousePos.y - offset.y)

) !!

/*erase the region a little larger than object

rectangle in case it is displayed with a bolded

border*/

Def eraseRect(self,hdc I hBrush)

(

hBrush := Call CreateSolidBrush(WHITE_COLOR);
CallFillRect(hdc,inflate(rect(self),5,5),hBrush);

Call DeleteObject(hBrush)

} !!

/*check whether the point is contained in the rect*/

Def containedIn(self,point I aBox)

{

69

aBox := new(Rect);

aBox := rect(self);

if (left(aBox) <= point.x and point.x <= right(aBox)

and top(aBox) <= point.y and point.y <= bottom(aBox))

^true

else

^nil

endif

)!!

/computes the difference between the cursor point

contained in the rectangle and the origin point

of the object rectangle */

Def getOffset(self, point I tempPt)

{

tempPt := new(Point);

tempPt.x := point.x - pt.x;

tempPt.y := point.y - pt.y;

^tempPt

} !!

/returns the default rectanlge dimension for an object*/

Def rect(self I aRect)

{

aRect := new(Rect);

init(aRect,pt.x,pt.y,pt.x+140,pt.y+65);

^aRect

) !!

/* draws an object on the window using the hdc display

context */ Def display(self,hdc I aRect, hBrush, hPen,

hOldBrush, hOldPen)

{

eraseRect(self,hdc); /*first erase it*/

/*select the color brush for filling

used with Rectangle (via draw) */

hBrush := Call CreateSolidBrush(color);

/*set bkcolor for shading with DrawText*/

Call SetBkColor(hdc,WHITE_COLOR);
hOldBrush := Call SelectObject(hdc,hBrush);

aRect := rect(self);

if thickBorder

70

hPen := Call CreatePen(0,5,Call GetTextColor(hdc));

h01dPen:= CaU SelectObject(hdc,hPen);

draw(aRect,hdc);

Call SelectObject(hdc,h01dPen);/*restore the dc*/

Call DeleteObject(hPen)

else

draw(aRect,hdc) /*with a reg. border*/

endif;

if nesting /*draw the inner box*/

draw(nestedRect(self),hdc)

endif;

Call DrawText(hdc,lP(name),-l,aRect,

DT_CENTER bitOr DT_VCENTER
bitOr DT_SINGLELINE);

Call SelectObject(hdc,h01dBrush);

Call DeleteObject(hBrush);

freeHandle(name)

} !!

8. GladWindow Class (Modified)

/* display window for GLAD */!

!

inherit(Window, #GladWindow, #(dbList /* DBDialog */

dDWin /*window for data definition*/

dMWin /*window for data manipulation*/

),2,nil)!!

now(GladWindowClass)!

!

now(GladWindow)!

!

/* Adds new db name to dbs hst */

Def addNewDb(self)

{

addDb(dbList, Name);

}!!

/* Checks to see if new database name is already defined.

Returns true if it is defined, otherwise nil. */

71

Def isNameDefined(self, aColl)

{ do(aColl,

{ using(chkName)

if subString(chkName, 0, 7) = subString(Name, 0, 7)

^true;

endif;));

^nil

) !!

Def modifyDb(self

)

{

if not(dbList) /*not opened yet*/

dbList := new(DBDialog)
endif;

dbList.state := OPEN_DB;
if runModal(dbList,OPNDBLIST,self) == OPEN_DB

Name := getSelDb(dbList);

dDWin := new(DDWindow, self, "GladDdlMenu",

"GLAD DDL ** " + Name,
self.locRect);

loadSchema(dDWin, fileNameOfSelDb(dbList));

expanded := 0;

show(dDWin,l)
endif

} !!

/*create it as tiled window; need for stand-alone appl*/

Def create(self,par,wName,rect,style)

{

^create(self:Window,nil,wName,rect,WS_TILEDWINDOW)

}!!

Def removeDb(self)

{

if not(dbList) /* not opened yet */

dbList := new(DBDialog)
endif;

dbList.state := REMOVE_DB;
runModal(dbList,RMVDBLIST,selO

}

72

ff

Def openDb(self

)

{

if not(dbList) /*not opened yet*/

dbList := new(DBDialog)
endif;

dbList.state := OPEN.DB;
if runModal(dbList,OPNDBLIST,self) == OPEN.DB
dMWin := new(DMWindow, self, "GiadDmlMenu",

"GLAD DML",self.locRect);

loadSchema(dMWin,fileNameOfSelDb(dbList));

show(dMWin,l)
endif

) !!

Def makeNewDb(self)

{

if not (dbList)

dbList := new(DBDialog)
endif;

dBName := new(InputDialog, "Create Database",

"Enter new Database name ", "");

if runModal(dBName, INPUT_BOX, ThePort) == IDOK

Name := getText(dBName);

if isNameDefined(self, dbList.dbNames) == true

/* Database name already exists */

errorBox("WARNING!", "Database '" + Name + "' already

exists!")

else /* Database name does not exist */

dDWin := new(DDWindow,self,"GladDdlMenu",
"GLAD DDL ** " + Name,
self.locRect);

initSchema(dDWin);

expanded := 0;

show(dDWin,l)
endif

endif;

73

}
ft

Def command(self, wP, IP)

{

select
I

case IPo
i

is^
i

endCase i

case wP= MAKE_NEWDB
is makeNewDb(self)

endCase

case wP == MODIFY_DB
is modifyDb(self)

endCase

case wP == OPEN_DB
is openDb(self)

endCase ^~^

—

case wP == REMOVE_DB
is removeDb(self)

endCase

case wP= TOPHELP
is help(self)

endCase

case wP == QUIT_GLAD
is

if dbList /*something is loaded*/

updateDbsFile(dbList)

endif;

close(self)

endCase

endSelect;

74

9. NestDDWindow Class

/* A nested DD window for displaying nested objects. */!

!

inherit(DDWindow, #NestDDWindow, #(shadeColor/*for cRect

border*/

genObj /*generalized object of this window's nested

objects*/

),2,nil)!!

now(NestDDWindowClass)!

!

now(NestDDWindow)!

!

/* Destroys nested window */

Def WM_DESTROY(self,wp,lp)
{

genObj.aNDMWin := nil;

do(dbSchema, { using(obj)

if obj.color

avail(colorTable,obj .color);

obj.color := WHITE_COLOR
endif})

} !!

Def start(self,obj,aColorTbl I nullStr)

{

genObj :=obj;

dbSchema := obj.nesting;

shadeColor := obj.color;

colorTable := aColorTbl;

nullStr := "";

changeMenu(self,CONNECT_OBJ,lP(nullStr),0,MF_DELETE);
freeHandle(nullStr);

drawMenu(self);

show(self,l)

} !!

/*shade the outer region */

Def shadeOuterRegion(self,hdc I aRect, wd, ht, hBrush)

{

aRect := clientRect(self);

wd := width(aRect);

75

ht := height(aRect);

hBrush:= Call CreateSolidBrush(shadeColor);

imt(aRect,0,0,SHADE_BOR_WD,ht);

Call FillRect(hdc,aRect,hBrush);

init(aRect,0,0,wd,SHADE_BOR_HT);

Call FillRect(hdc,aRect,hBrush);

mit(aRect,0,ht-SHADE_BOR_HT,wd,ht);

Call FillRect(hdc,aRect,hBrush);

init(aRect,wd-SHADE_BOR_WD,0,wd,ht);

Call FillRect(hdc,aRect,hBrush);

Call DeleteObject(hBrush)

} !!

Def paint(self,hdc)

{

shadeOuterRegion(self,hdc);

paint(self:DBWindow,hdc)

} !!

10. ObjectDialog Class

/* Creates and controls object definition dialog box. */!!

inherit(Dialog, #ObjectDialog, #(dText /* Object name */

nestLevel /* Nesting Level of Object */

),2,nil)!!

now(ObjectDialogClass)!

!

/* Create an object definition dialog object. The dialog's

instance variables are all specified as arguments. */

Def new(self, txt, nesting I theDlg)

{ theDlg := new(self:Behavior);

theDlg.dText := txt;

theDlg.nestLevel := nesting;

^theDlg;

) !!

now(ObjectDialog)!

!

/* Returns the radio button selected in the new object

76

dialog box */

Def getNestLevel(self)

{

'^nestLevel

}!!

/* Initialize the dialog text and caption. */

Def initDiaIog(self, wp, Ip)

{

setItemText(self, FILE_EDIT, dText);

Call CheckRadioButton(hWnd, ATOMIC, NESTED, nestLevel);

} !!

/* Return the text that was typed in the edit box. */

Def getText(selO

{ ^leftJustify(dText)

} !!

/* Handle dialog events. */

Def command(self, wp, Ip)

{

select

case wp == ATOMIC or wp == NESTED
is Call CheckRadioButton(hWnd, ATOMIC, NESTED, wp);

nestLevel := wp;

endCase

case wp= IDOK
is dText := getItemText(self, FILE_EDIT);
end(self, IDOK);

endCase

case wp= IDCANCEL
is end(self, 0);

endCase

endSelect;

} !!

77

11. TypeDialog Class

/* Displays the possible attribute types which can be used

for each given object. */!

!

inherit(Dialog, #TypeDialog, #(typeList /* List of valid

types */

selType /* Index of the selected type */

),2,nil)!!

now(TypeDialogClass)!

!

/* Creates new instance of the TypeDialog Class */

Def new(self, Ust I theDlg)

{

theDlg := new(self:Behavior);

theDlg.typeList := list;

^theDlg

} !!

now(TypeDialog)!! ^^^_

/* Selects attribute in hst box and initiahzes the

'Attribute Type' edit box */

Def selltem(self)

{

selType := Call SendDlgltemMessage (hWnd,TYPE_LIST,
LB_GETCURSEL,0,0);

if (selType >= and selType < size(typeList))

setItemText(parent, OBJ_ATTRIB, typeList[selType][0])

endif;

} !!

Def command(self, wP, IP)

{

select

case wP == IDCANCEL
is end(self, 0)

endCase

case (wP == ATTR_OK or (wP = TYPE_LIST and high(lP)

= 2))

78

is selltem(self);

end(self, 0)

endCase

endSelect

} !!

/* Inserts a new attribute type into the type list dialog

box */

Def insertString(self,aStr I ans)

{

ans := Call SendDlgItemMessage(hWnd, TYPE_LIST,
LB_INSERTSTRING,-l,lP(aStr));

freeHandle(aStr);

'^ans

) !!

/* Initialize the listbox; the method is the Actor

equivalent of WMJNITDIALOG */

Def initDialog(self, wP, IP)

{

do(typeList,

{using(elem) insertString(self, subString(elem[0]

+ "
",0,10)+ ":"

+ elem[l])});

}

I!

79

LIST OF REFERENCES

1. U.S. Congress, House, Computer Security Act of 1987, H. R. 100-153, 100th

Cong., 1st sess., 1987.

2. Korth, H. F. and Silberschatz, A., Database System Concept, McGraw-Hill

Book Company, 1986.

3. Wu, C. T., GLAD: Graphics Languagefor Database, Naval Postgraduate

School Report NPS52-87-030, Monterey, California, 1987.

4. Microsoft Corporation, Microsoft Windows User's Guide, Microsoft Press,

1987.

5. MacLennan, B. J., Principles ofProgramming Languages, Holt, Rinehart, and

Winston, 1987.

6. Norman, D.A., and Draper, S. W., ed.. User Centered System Design,

Lawrence Erlbaum Associates, 1986.

7. Thomas, J. C, and Schneider, M. L., ed.. Human Factors in Computer
Systems, Ablex Publishing Corp., 1984.

8. Duff, C. and others, Actor Language Manual, Evanston, Illinois: The
Whitewater Group, 1987.

9. Kaehler, T., and Patterson, D., "A Small Taste of Smalltalk," BYTE, August,

1986.

80

BIBLIOGRAPHY

Cox, B., and Hunt, B., "Objects, Icons, and Software-ICS," BYTE, August 1986.

Davis, M., "SmalltalkA' Release 1.2," BYTE, June 1987.

Duff, C. B., "Designing an Efficient Language," BYTE, August 1986.

Monk, A.w, ed.. Fundamentals ofHuman-Computer Interaction, Academic Press,

1984.

Moskowitz, L., "Actor 1.0," BYTE, September 1987.

Pascoe, G. A., "Elements of Object-Oriented Programming," BYTE, August 1986.

Petzold, C, Programming Windows, Microsoft Press, 1988.

Sanders, M. S., and McCormick, Ernest J., Human Factors in Engineering and
Design, McGraw-Hill Book Company, 1987.

Tesler, L., "Programming Experiences," BYTE, August 1986.

81

INITIAL DISTRIBUTION LIST

Copies

1. Defense Technical Information Center 2
Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 01 42 2
Naval Postgraduate School

Monterey, California 93943-5002

3. Curriculum Officer 1

Code 37

Computer Technology
Navd Postgraduate School

Monterey, California 93943-5000

4. LT M. L. Williamson 2

427 Sigsbee Rd.,

Orange Park, Florida 32073

5. Associate Professor C. T. Wu 1

Code 52Wu
Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

6. Commander 1

Naval Data Automation Command
Washington Navy Yard
Washington, DC 20374-1662

82

T)irj-

f

Thesis
W6265
c.l

Williamson
An implementation of a

data definition facility
for the Graphics
language for Database.

