

Calhoun: The NPS Institutional Archive DSpace Repository

Natural convection cooling of a 3 by 3 array of rectangular protrusions in an enclosure filled with dielectric liquid: effects of boundary conditions and component orientation.

Torres, Edgardo I.
Monterey, California. Naval Postgraduate School
https://hdl.handle.net/10945/23078

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

NATURAL CONVECTION COOLING OF A 3 BY 3 ARRAY OF RECTANGULAR PROTRUSIONS IN AN ENCLOSURE FILLED WITH DIELECTRIC LIQUID: EFFECTS OF BOUNDARY CONDITIONS AND COMPONENT ORIENTATION
by
Edgardo I. Torres
December 1988
Thesis Advisor:
Yogendra Joshi

Approved for public release; distribution is unlimited.

$$
T 242393
$$

REPORT DOCUMENTATION PAGE					
1a Report Security Classification Unclassified		16 Restrictive Markings			
2a Security Classification Authority		3 Distribution Availability of Report Approved for public release; distribution is unlimited.			
2b Declassification/Downgrading Schedule					
4 Performing Organization Report Number(s)		5 Monitoring Organization Report Number(s)			
6a Name of Performing Organization	6 b Office Symbol	7a Name of Monitoring Organization Naval Postgraduate School			
Naval Postgraduate School (If Applicable)					
Monterey, CA 93943-5000		7 t Address (city, state, and ZIP code)			
		Monterey, CA 93943-5000			
8a Name of Funding Sponsonng Organization	8b Office Symbol (If Applicable)	9 Procurement Instrument Idenufication Number			
8c Address (city, state, and ZIP code)		10 Source of Funding Numbers			
		Program Element Number	Project No	Task No	Work

11 Title (Include Security Classification) Natural Convection Cooling of a 3 by 3 Array of Rectangular Protrusions in an Enclosure Filled with Dielectric Liquid: Effects of Boundary Conditions and Component Orientation
12 Personal Author(s) Edgardo I. Torres

| 13a Type of Report |
| :--- | :--- | :--- | :--- | :--- |
| Master's Thesis |\quad| 13b Time Covered |
| :--- |
| From \quad To |\quad| Date of Report (year, month, day) |
| :--- |
| December 1988 |

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

Cosati Codes		
Field	Group	Subgroup

19 Abstract (continue on reverse if necessary and identify by block number
An experimental investigation of natural convection immersion cooling of two configurations of discrete heat sources in an enclosure filled with Fluorinert FC-75 has been conducted. A three by three array of rectangular protrusions was employed.
In the first study, using the same equipment set-up of Benedict [Ref. 13], the influence of changing the enclosure bottom surface boundary condition on flow patterns and heat transfer characteristics was examined. Both insulated and uniform temperature boundary conditions were considered.
In the second set of experiments, a new chamber with the protrusions oriented vertically was assembled and effects of component orientation on the heat transfer characteristics were examined. In addition, timewise variations of temperature in several locations were measured and interpreted at different power levels.

Approved for public release; distribution is unlimited.

Natural Convection Cooling of a 3 by 3 Array of Rectangular Protrusions in an Enclosure Filled with Dielectric Liquid: Effects of Boundary Conditions and Component Orientation

by

Edgardo I. Torres
LT, Columbian Navy
B.S., Columbian Naval Academy, 1986

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL
December 1988

Abstract

An experimental investigation of natural convection immersion cooling of two configurations of discrete heat sources in an enclosure filled with Fluorinert FC-75 has been conducted. A three by three array of rectangular protrusions was employed.

In the first study, using the same equipment set-up of Benedict [Ref. 13], the influence of changing the enclosure bottom surface boundary condition on flow patterns and heat transfer characteristics was examined. Both insulated and uniform temperature boundary conditions were considered.

In the second set of experiments, a new chamber with the protrusions oriented vertically was assembled and effects of component orientation on the heat transfer characteristics were examined. In addition, timewise variations of temperature in several locations were measured and interpreted at different power levels.

TABLE OF CONTENTS

I. INTRODUCTION 1
A. STATEMENT OF THE PROBLEM 1
B. IMMERSION COOLING: ANALYTICAL AND EXPERIMENTAL STUDIES 1
C. OBJECTIVES 6
II. EXPERIMENTAL SET-UP 8
A. GENERAL CONSIDERATIONS 8

1. Experimental Set-Up for the Horizontal Arrangement. 8
2. Experimental Set-Up for the Vertical Arrangement 12
III. RESULTS AND DISCUSSIONS 20
A. FLOW PATTERNS 20
3. Flow Patterns for the Bottom Boundary at $20^{\circ} \mathrm{C}$. 20
4. Flow Pattern With the Bottom Boundary Insulated 29
B. HEAT TRANSFER MEASUREMENTS 29
5. Heat Transfer Measurements With the Bottom Boundary at $20^{\circ} \mathrm{C}$ 30
6. Heat Transfer Measurements With the Bottom Boundary Insulated 33
IV. RESULTS AND DISCUSSIONS FOR VERTICAL ARRANGEMENT 37
A. FLOW VISUALIZATION 37
B. HEAT TRANSFER MEASUREMENTS. 37
7. Heat Transfer Measurements for $w=30 \mathrm{~mm}$ 37
8. Heat Transfer Measurements for $\mathbf{w}=9 \mathrm{~mm}$ 41
C. TEMPERATURE FLUCTUATIONS IN STEADY STATE 42
9. Surface Temperature Fluctuations for a w $=30 \mathrm{~mm}$ 42
10. Surface Temperature Fluctuations for $\mathrm{w}=9 \mathrm{~mm}$ 48
V. RECOMMENDATIONS 53
APPENDIX A SAMPLE CALCULATIONS 54
APPENDIX B UNCERTAINTY ANALYSIS 61
APPENDIX C TABLES 75
APPENDIX D SOFTWARE LISTING 115
LIST OF REFERENCES 125
INITIAL DISTRIBUTION LIST. 127

LIST OF FIGURES

2.1 Schematic of Entire Assembly 9
2.2 Simulated Circuit Card for the Horizontal Arrangement 10
2.3 Top View of Horizontally Arranged Components Chamber. 11
2.4 Chamber Assembly for the Vertical Arrangement 13
2.5 Heat Exchangers 14
2.6 Simulated Circuit Card for the Vertical Arrangement 15
2.7 Heating Element and Thermocouple Location 17
2.8 Flow Visualization Set-Up 19
3.1 Top View of the Enclosure With the Card Placed in Position. 21
3.2 Visualization With No Power in Planes 1, 2, and 3. 22
3.3 Visualization With No Power in Planes 4, 5, and 6. 23
3.4 Visualization With 1.1 W in Planes 1, 2, and 3 24
3.5 Visualization With 1.1 W in Planes 4, 5, and 6 25
3.6 Visualization With 3.0 W in Planes 1, 2, and 3 26
3.7 Visualization With 3.0 W in Planes 4, 5, and 6 27
3.8 Plot of Flux-Based Rayleigh Number Versus Nusselt Number 31
3.9 Plot of Temperature-Based Rayleigh Number Versus Nusselt Number 32
3.10 Plot of Flux-Based Rayleigh Number Versus Nusselt Number 34
3.11 Plot of Temperature-Based Rayleigh Number Versus Nusselt Number. 35
4.1 Side View Showing the Chamber Widths Used in the Experiment 38
4.2 Comparison of the Nondimensional Heat Transfer Measurements for Two Different Component Orientations 40
4.3 Plot of Nul versus Ra_{t} for Chamber Width $=9 \mathrm{~mm}$ 43
4.4 Location of Thermocouples Scanned for Measurement of Fluctuations 44
4.5 Temperature Fluctuations for Thermocouple No. 0 at Different Power Levels 45
4.6 Temperature Fluctuations for Thermocouple No. 12 at Different Power Levels 46
4.7 Temperature Fluctuations for Thermocouple No. 31 at Different Power Levels
4.8 Temperature Fluctuations for Thermocouple No. 0 at Different Power Levels 49
4.9 Temperature Fluctuations for Thermocouple No. 12 at Different Power Levels 50
4.10 Temperature Fluctuations for Thermocouple No. 31 at Different Power Levels 51

TABLE OF SYMBOLS AND ABBREVIATIONS

Symbol	Description	Units
A	Area	m^{2}
α	Thermal diffusivity	$\mathrm{m}^{2} / \mathrm{sec}$
β	Volumetric expansion coefficient	1/K
C_{p}	Specific heat	$\mathrm{J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
emf	Thermocouple voltage	volt
g	Acceleration of gravity	$\mathrm{m} / \mathrm{sec}^{2}$
Gr	Grashof number	Dimensionless
h	Heat transfer coefficient	$\mathrm{W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}$
k	Thermal conductivity	$\mathrm{W} / \mathrm{m}-{ }^{\circ} \mathrm{C}$
L	Characteristic length	m
L1	Component length in the vertical direction	m
L2	Summation of the ratios of the component fluid exposed areas to their perimeters	m
Nu	Nusselt number	Dimensionless
Nul	Nusselt number with length scale L1	Dimensionless
Nu2	Nusselt number with length scale L2	Dimensionless
v	Kinematic viscosity	$\mathrm{m}^{2} / \mathrm{sec}$
ω	Uncertainty in the variables	Various

Power	Power dissipated by the heaters	W
Pr	Prandtl number	Dimensionless
Sconv	Energy added to the fluid	W
$Q_{\text {in }}$	Energy input to the heaters	W
Qloss	Energy loss by conduction	W
Qnet	Net power dissipated by the heater	W
R_{c}	Total thermal resistance	${ }^{\circ} \mathrm{C} / \mathrm{W}$
R_{p}	Resistance of the precision resistor	ohms
Ra_{f}	Flux-based Rayleigh number	Dimensionless
Ra_{t}	Temperature-based Rayleigh number	Dimensionless
D	Density	$\mathrm{kg} / \mathrm{m}^{3}$
Tavg	Average of component temperature	${ }^{\circ} \mathrm{C}$
T_{b}	Back surface temperature of board	${ }^{\circ} \mathrm{C}$
T_{c}	Average heat exchanger temperature	${ }^{\circ} \mathrm{C}$
T_{f}	Average film temperature	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {s }}$	Back surface temperature of the component	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sink }}$	Average temperature of the heat exchangers	${ }^{\circ} \mathrm{C}$
V_{h}	Voltage Across the Heaters	Volts
$\mathrm{V}_{\text {in }}$	Input voltage	Volts
w	Chamber width	m
W	Unit of power	w

要

I. INTRODUCTION

A. STATEMENT OF THE PROBLEM

With the increase in circuit packaging density associated with the miniaturization of microelectronic components, heat dissipation has become a major problem in the design and construction of digital computers and high-power electronic equipment in general. Several alternatives to the solution of the problem have been studied in the past 10 years, including that of Chu [Ref. 1]. Among these, immersion cooling appears to be one of the most effective for achieving high heattransfer coefficients.

B. IMMERSION COOLING: ANALYTICAL AND EXPERIMENTAL STUDIES

From the construction of the first electronic digital computer, the solution to the problem of heat dissipation from high packaging density electronic equipment has not been easy. Even though very interesting forced convection methods have been studied and very frequently used (Chu [Ref. 1] describes several methods of air- and water-forced convection cooling), the hardware that has to be added to supply the additional power and to store and circulate the cooling liquid can be cumbersome in any application.

The direct immersion of the electronic circuitry into dielectric liquids improves its cooling capability significantly. Baker [Ref. 2] found liquid cooling by free convection to be more than three times as
effective as free convective air cooling of the same device. He made heat transfer measurements from thin-film tantalum nitride resistors evaporated on Corning 7059 glass substrates. The substrates were 1.0 by 2.6 by 0.12 cm . All resistors were rectangular, with their height (dimension parallel to the flow) one-half their base. The surface areas of the resistors were $0.0106,0.104,0.477$, and $2.00 \mathrm{~cm}^{2}$. Two liquids were used in the study: freon with a Prandtl number of 3.9 , and Dow Corning \#200 silicone dielectric liquid with a Prandtl number of 126. The results showed that the heat transfer coefficient is approximately proportional to the cube root of the reciprocal of viscosity. It was also found that the convection coefficient does increase significantly as the source size decreases. The free convection heat transfer coefficient for the smallest source was more than an order of magnitude greater than for the largest source operated under the same conditions.

In a following study, Baker [Ref. 3] also examined different cooling techniques, such as nucleate boiling, forced convection, and bubbleinduced mixing for cooling small heat sources.

Park and Bergles [Ref. 4] conducted experimental studies of natural convection from discrete flush-mounted rectangular heat sources on a circuit board substrate. Micro-electronic circuit elements were simulated with thin foil heaters supplied with DC power. Measurements were also made for protruding heaters of varying widths, in water and R-113. They found and documented the increase in heat transfer coefficient with decreasing width. This effect was greater in R-113 than in water. Also, for protruding heaters, the heat transfer
coefficients for the upper heaters in an array were found to be higher than those for the lower heaters. This behavior was not observed for flush-mounted heaters. As the distance between heaters increased, so did the heat transfer coefficients.

Chen, et al. [Ref. 5] made an experimental study of natural convection heat transfer in a liquid-filled rectangular enclosure with 10 protruding heaters from one vertical wall. The top surface of the enclosure maintained at a uniform temperature acted as the heat sink. All other surfaces, except the heater locations, were unheated. The enclosure was 16.7 cm in height, 2.3 cm in width, and 19.6 cm in depth (horizontal z-direction of the heaters). The 10 heaters were 0.8 cm high, 1.11 cm wide, and 19.6 cm deep. The vertical spacing between heaters was equal to the heater height. Distilled water and ethylene glycol were used as working fluids. Experimental results show that the bottom heater (heater 1), except for high Rayleigh number runs, has the highest heat transfer coefficient. The heat transfer coefficients at heaters 7,8 , and 9 are nearly the same and present the lowest values among the heaters. It was also shown that heat transfer coefficient decreases up to heater 7. At high Rayleigh numbers, the top heater (10) has the highest heat transfer coefficients. The flow visualization carried out indicates a core flow within the enclosure and a recirculating cell in the gap between heaters. Approximate measurements of the fluid velocity were provided from the particle traces in the flow visualization.

Keyhani, et al. [Ref. 6] experimentally studied the buoyancy-driven flow and heat transfer in a vertical cavity with discrete flush heat sources on one vertical wall while the other vertical wall was cooled at a constant temperature. This enclosure contained 11 alternatively unheated and flush-mounted rows of isoflux heated strips. The liquid was ethylene-glycol with a Prandtl number of 150.

To examine the flow structure, visualization experiments were conducted for several power inputs. Finely ground aluminum powder (5 to 20 microns in size) was used to visualize the flow. The observed flow for a power input of 10 watts was highly structured except for small regions near the end walls. A primary flow circulating from the hot wall to the cold wall, a secondary flow with the same sense of circulation as the primary flow, and a tertiary flow in the opposite direction of the secondary flow were observed in the photographs taken at this power level. At a higher power level of 40 watts, the flow pattern above the mid-height region of the cavity showed transition from laminar to turbulent flow along the surface with heaters. The downward flow along the cold wall was still laminar. For a fixed power input, the heat transfer coefficient generally decreased with increase in height (or heater number). The rate at which Nusselt number decreased with the increase in heater number was found to be a strong function of the heater location.

Kelleher, et al. [Ref. 7] and Lee, et al. [Ref. 8] studied experimentally and numerically the cooling by natural convection of a water-filled rectangular enclosure with a long heater protruding from one vertical
wall and conducted flow visualization and heat transfer measurements with the heater at three different elevations. They found the twodimensional flow to be dual-celled, consisting of a buoyancy-driven upper cell, in which the major part of the fluid motion takes place and which accounts for the majority of the convective heat transfer, and a shear-driven lower cell in which the fluid motion arises due to the viscous drag from the upper cell.

Liu, et al. [Ref. 9] used a three-dimensional finite difference method to study the natural convection cooling of an array of chips mounted on a vertical wall of a three-dimensional rectangular enclosure filled with a dielectric fluid Fluorinert FC 75. They found the long time solution to be oscillatory. Maximum chip temperatures were found on the top surfaces of the three top chips. However, these maximum temperatures did not all occur at the same time, but alternated among these three chips as time proceeded in a rather regular fashion. It was also observed that the bottom sink was quite ineffective in removing heat from the enclosure and that the convective circulation was essentially limited to the chip areas.

Joshi, et al. [Ref. 10] carried out an experimental investigation to study the natural convection cooling of a 3 by 3 array of heated protrusions in a rectangular enclosure filled with dielectric fluid FC-75. They observed that at low power levels (0.1 watts), the flow structure was largely determined by the thermal conditions at the enclosure surfaces. With increasing power levels (0.7 to 3.0 watts), an upward flow developed adjacent to each column of components. The flow away
from the elements became strongly three-dimensional and timedependent with increasing thermal inputs. Component surface temperatures were used to obtain a heat transfer correlation over the range of power levels examined.

Liu, et al. [Ref. 11] carried out a three-dimensional numerical study of immersion cooling of a chip array by laminar natural convection in a rectangular enclosure filled with a dielectric liquid. They determined the local temperature responses on the chip surfaces, their dynamic behaviors, and their dependence on the enclosure gap size. It was found that the temperature responses are decidedly oscillatory with wave forms ranging from simple to complex, and that maximum chip surface temperatures occur on the top row of chips for large gap sizes but oscillate among all three rows of chips for small gap sizes.

C. OBJECTIVES

The work reported here is a continuation of thesis research conducted at the Naval Postgraduate School by Pamuk [Ref. 12] and Benedict [Ref. 13]. The numerical studies by Liu, et al. [Ref. 9] and Liu, et al. [Ref. 11] were the motivation for some of the specific investigations carried out.

The objectives of the present investigation are twofold: The first is to examine the effect of bottom surface boundary condition on thermal transport in the natural convection cooling of a 3 by 3 array of horizontally arranged protruding elements on a vertical wall. The second objective is to examine heat transfer, fluid flow characteristics,
and the influence of the width of the chamber during the natural convection cooling of a 3 by 3 array of vertically arranged protruding elements on a vertical wall. Temperature fluctuation measurements were plotted and compared with existing numerical analysis of Liu, et al. [Refs. 9 and 11] and Benedict [Ref. 13]. For both studies, flow visualizations were also carried out.

II. EXPERIMENTAL SET-UP

A. GENERAL CONSIDERATIONS

Two different experimental configurations were used for the studies reported here. In the first, a 3 by 3 array of rectangular elements with the largest dimension aligned horizontally was examined. In the second study, the largest dimensions were in the vertical direction. The two experimental configurations are next described.

The details of the experimental procedures are available in Benedict [Ref. 13]. The Data Acquisition Programs were the same as used by Pamuk [Ref. 12] and Benedict [Ref. 13] with minor modifications in output format and number of channels. These programs are collected in Appendix D.

1. Experimental Set-Up for the Horizontal Arrangement

A schematic sketch of the arrangement is provided in Figure 2.1 (after Benedict [Ref. 13]). The configuration is the same as the one used by Joshi, et al. [Ref. 9] and Benedict [Ref. 13]. The distribution of the components and the top view of the chamber are illustrated in Figures 2.2 and 2.3 (both after Benedict [Ref. 13]).

This part of the thesis examines the effect of changing the enclosure bottom surface boundary condition on the overall thermal behavior of the system. A more detailed description of the experimental arrangement can be found in Benedict [Ref. 13].

Figure 2.1 Schematic of Entire Assembly

Figure 2.2 Simulated Circuit Card for the Horizontal Arrangement

Figure 2.3 Top View of Horizontally Arranged Components Chamber

2. Experimental Set-Up for the Vertical Arrangement

The chamber assembly, illustrated in Figure 2.4 was made of 19.05 mm plexiglass with dimensions of 241.13 mm length, 152.0 mm height, and 120.65 mm width. As in the first arrangement, the chamber was filled with FC-75, a dielectric fluid through tubing at the bottom of the chamber.

In both experimental configurations, two heat exchangers, one at the top and one at the bottom, were used (see Figure 2.1). The design of the exchangers for the first configuration is described in Joshi, et al. [Ref. 10]. In the second study, several modifications were made to reduce the heat transfer from the outside environment to the colder circulating water. The resulting design is seen in Figure 2.5. The external walls of both top and bottom heat exchangers were made of plexiglass. The walls acting as the top and bottom of the fluid-filled enclosure were aluminum plates 3 mm thick, chosen to provide an almost isothermal surface condition. Inlet and outlet headers were provided for flow distribution. Three thermocouples, symmetrically placed along the plate length, were used for the calculation of the average surface temperatures. The heat exchangers could be accessed easily to block one or more of the channels to reduce the coolant flow rates.

A 3 by 3 array of discrete protrusions, vertically arranged (see Figure 2.6), was mounted on a 19.05 mm thick plexiglass card. The card was slid into the chamber and was kept in location by plexiglass supports that prevented its linear movement as well as rotation.

Figure 2.4 Chamber Assembly for the Vertical Arrangement

Figure 2.5 Heat Exchangers
(a) Cross-Sectional View; (b) Isometric View; (c) Inlet and Outlet Headers

Figure 2.6 Simulated Circuit Card for the Vertical Arrangement

The chamber design allowed the replacement of the card in a simple way. The upper heat exchanger could be removed and the new card could be easily installed. This permits the installation of different card configurations (staggered, flush mounted, etc.) in the future without much additional effort. By moving the card back or forth, the chamber width could be changed. This was done in order to study the effect of this parameter in the overall heat transfer.

The heated components in both studies were aluminum blocks of 8 mm by 24 mm and 6 mm high (see Figure 2.7-after Benedict [Ref. 13]). The dimensions and geometry simulate approximately a 20 -pin dual-in-line-package. A nearly uniform heat flux condition was maintained at the base of each block by attaching a foil-type heater with a resistance of about 11 ohms. The foil heaters contained a network of Iconel foil mounted on a Kapton backing and were 23.6 mm by 7.6 mm in dimension and were bonded to the base of each aluminum block using a high thermal conductivity epoxy (Omega Bond 101).

Temperatures at the center of each fluid exposed component face were determined using .127 mm diameter copper-constantan thermocouples. Thermocouple locations on each heater are illustrated in Figure 2.7.

All the thermocouples were connected to an HP-3497 automatic data acquisition system controlled by an HP-9826 microcomputer. Power to the heaters was supplied by a $0-40$ volt, $0-1 \mathrm{~A}$ DC

Figure 2.7 Heating Element and Thermocouple Location
power supply. A simultaneous measurement of the overall voltage drop, along with the voltage drop across each heater, allowed the computation of the power dissipation through individual heaters.

Flow visualization was carried out with a 4 mw Helium-Neon laser for illumination. To produce a plane of light, a cylindrical lens was used (see Figure 2.8-after Benedict [Ref. 13]). The laser sheet illuminated magnesium particles (specific gravity of 1.74) that were added to the FC-75 (specific gravity of 1.76 at $25^{\circ} \mathrm{C}$). This technique allowed for the visualization of a single two-dimensional plane of the flow field. Time exposure photographs of the flow were obtained using a Nikon F-3 camera with a 50 mm lens, a MD-4 motor drive, and a MT-2 intervalometer.

TOP VIEW
Figure 2.8 Flow Visualization Set-Up

SIDE VIEW

III. RESULTS AND DISCUSSIONS FOR HORIZONTAL ARRANGEMENT

A. FLOW PATTERNS

Flow visualization was carried out in six vertical planes, seen in Figure 3.1 (after Benedict [Ref. 13], for the two different bottom boundary conditions: $20^{\circ} \mathrm{C}$ and insulated. The three-dimensional transport responses, across the range of power dissipation of 0.1 W to 3.0 W, were inferred from these visualizations. In the following, a detailed description of the observed flows is provided.

1. Flow Patterns for the Bottom Boundary at $20^{\circ} \mathrm{C}$

The flow patterns observed at several power dissipation levels from no dissipation to 3.0 W are collected in Figures 3.2 to 3.7. Visualization with no power (see Figures 3.2 and 3.3) was to examine the natural convection flow due only to the difference in temperature between the two heat exchangers, and its possible influence on the flow patterns, with the heaters turned on.

At no power, the flow consisted of a single clockwise cell that occupied the entire chamber. This overall flow was established as a result of the temperature differences between the enclosure walls. The three-dimensionality of the flow was evident from visualizations in the various planes.

At 0.1 W, the pattern observed at no power in Figures 3.2 and 3.3 was completely distorted and no remains of the strong clockwise

Figure 3.2 Visualization With No Power in Planes 1 (a), 2 (b), and 3 (c)

Figure 3.4 Visualization with 1.1 W in Planes 1 (a), 2 (b), and 3 (c)

${ }_{0}^{0}$
U

a
Figure 3.5 Visualization With $1.1 ~ W ~ i n ~ P l a n e s ~$

b

Figure 3.6 Visualization with 3.0 W in Planes 1 (a), 2 (b), and 3 (c)

flow were seen. Joshi, et al. [Ref. 10] at the same power level reported two very well defined large clockwise cells, one on each side of the central component column. The present visualization showed that the flow now was completely dominated by the relatively high temperature of the bottom heat exchanger. The effects of the buoyancy forces due to the power dissipation were small except in plane 1 (close to the heaters), where there was a well defined upflow.

In plane 2, the particle traces showed a decrease in velocity. Also, dark regions, as observed in Joshi, et al. [Ref. 10], were seen. These were, however, thinner and not well defined. These nearly quiescent regions appear due to the stable stratification produced by the bottom heat exchanger. Descending fluid from the top is unable to penetrate the colder layer of fluid at the bottom. In plane 3, a downflow resulted due to an increase in the density of the colder fluid, in contact with the upper heat exchanger, at $10^{\circ} \mathrm{C}$.

At l.1 W (see Figure 3.4), a well defined pattern could be observed in planes 1 and 2. Along the central column of heaters, the upflow was wider and stronger than near the adjacent columns. This flow was the result of the interaction of an upflow along the central column, a clockwise flow around the right column (heaters 1, 2, and 3), and a counterclockwise flow around the left column (heaters 7, 8, and 9). In plane 3, a downflow of cold liquid was seen. In Figure 3.5, flow patterns at 1.1 W in planes 4,5 , and 6 are illustrated. It is possible in these pictures to appreciate in a side view the strong upflow adjacent to the components. The basic difference with the flow
pattern found in the study by Joshi, et al. [Ref. 10] at the same power level is still that the inactive zone in the bottom of the chamber is not well defined.

With further increase in the power level, the flow in plane 1 exhibited stronger upflow near the components. The buoyancy forces generated by the power dissipation here were strong enough to extend their influence to planes 2 and 3 . At 3.0 W , a very thin, dark layer was still observed at the bottom of the chamber (see Figure 3.6). A view of the flow patterns in planes 4,5, and 6 is illustrated in Figure 3.7. This figure shows a buoyant fluid layer adjacent to the components. In the remaining chamber, the motion was completely random.

2. Flow Pattern With the Bottom Boundary Insulated

The flow pattern for this condition showed similar trends as discussed in section A.1. The induced flow due to the difference in temperature between the two heat exchangers was not appreciable.

B. HEAT TRANSFER MEASUREMENTS

Heat transfer measurements were made at power levels of 0.1, $0.7,1.1,1.5$, and 3.0 watts for the two bottom surface boundary conditions. The temperature at the top heat exchanger was maintained constant at $10^{\circ} \mathrm{C}$ in all experiments. Temperature and flux-based Rayleigh numbers (Ra_{t} and Ra_{f}) were calculated in a manner identical to that discussed in Joshi, et al. [Ref. 10] and plotted versus Nusselt number (Nul). These are defined in the Table of Symbols and Abbreviations.

1. Heat Transfer Measurements With the Bottom Boundary at $20^{\circ} \mathrm{C}$

Component surface temperature measurements at various power levels are collected in Tables 1 through 8 in Appendix C. The nondimensional heat transfer parameters in the form of Nusselt versus Rayleigh numbers are illustrated in Figures 3.8 and 3.9. In the same plots, the correlations found by Joshi, et al. [Ref. 10] were also plotted.

We can see that having the bottom heat exchanger at $20^{\circ} \mathrm{C}$ results in general in lower Nusselt numbers than those found by Joshi, et al. [Ref. 10] in the range of Rayleigh numbers considered. At higher power levels, when the temperature of the heaters was considerably higher than the bulk temperature of the dielectric fluid, the difference in Nusselt numbers is smaller than at lower power levels. The Nusselt number at a flux-based Rayleigh number of 10^{6} found by Joshi, et al. [Ref. 10] was 20.4, while the Nusselt number obtained here for the same Rayleigh number was 19. At lower power levels 0.1 W and 0.7 W , the differences in Nusselt number were greater, and the decrease in the heat transfer coefficient was significant. The Nusselt number found by Joshi, et al. [Ref. 10] was 10.5 at a flux-based Rayleigh number of 10^{6}, while the Nusselt obtained with the present configuration was 2.9.

At power levels of 0.1 W and 0.7 W , a small increase in the upper heaters' temperatures over the lower ones was observed. At higher power levels, the highest temperatures were found irregularly in different components.
Nul $=0.27 \mathrm{Raf}^{0.22}$
Joshi. et al. [Ref. 10]
Correlation found by Joshi, et al. [Ref.10] is plotted with a continuous line.
Figure 3.8 Plot of Flux-Based Rayleigh Number Versus Nusselt Number

Correlation found by Joshi, et al. [Ref.10] is plotted with a continuous line.
Figure 3.9 Plot of Temperature-Based Rayleigh Number Versus Nusselt Number

The component that presented the largest variations from the mean in the heat transfer coefficients was the upper component in the central column (heater 6). This is evidenced as deviations from the general trend of the obtained data. The variations (lower heat transfer coefficient at low power levels, and higher heat transfer coefficients at higher power levels) are expected because this component receives the influence of the combined upflowing streams (produced by the other heaters), as was observed and documented in the flow visualization results in Section A.1. The effect is greater at higher power levels when the component's temperature is substantially larger than the bottom heat exchanger temperature.
2. Heat Transfer Measurements With the Bottom Boundary Insulated

The results of the temperature measurements with the bottom boundary insulated and the reduced dimensionless parameters are collected in Tables 9 through 16 in Appendix C. In Figures 3.10 and 3.11, flux and temperature Rayleigh numbers versus Nusselt numbers were plotted. Correlations found by Joshi, et al. [Ref. 10] were also plotted for comparison. It was seen that having the bottom heat exchanger insulated improved the cooling at low power levels 10.1 W and 0.7 W) over that obtained with the bottom boundary maintained at $20^{\circ} \mathrm{C}$. This result is expected because now the temperature of the bottom boundary was $15^{\circ} \mathrm{C}$ at 0.1 W and $17^{\circ} \mathrm{C}$ at 0.7 W . At a power level of 3.0 W , no cooling improvement was observed. The temperature for the bottom boundary at 3.0 W was $22^{\circ} \mathrm{C}$.

[^0]Figure 3.10 Plot of Flux-Based Rayleigh Number Versus Nusselt Number

Figure 3.11 Plot of Temperature-Based Rayleigh Number Versus Nusselt Number

Comparisons with the correlation obtained by Joshi, et al. [Ref. 10] show a decrease in the heat transfer coefficient when the lower boundary was insulated. This was evidenced by the lower Nusselt numbers at all power levels.

rv. RESULTS AND DISCUSSIONS FOR VERTICAL ARRANGEMENT

A. FLOW VISUALIZATION

The visualization for this experiment was tried for a chamber width of 9 mm . As was expected, there was almost no flow in the narrow gap between components and the front wall. A boundary layer-like behavior was observed on the vertical side faces of the components. The photography process was complicated because the thickness of the plane to be illuminated by the laser sheet for this chamber width was only 3 mm .

B. HEAT TRANSFER MEASUREMENTS

Component surface temperature measurements were made for chamber widths of 30 mm and 9 mm (see Figure 4.1). The power level range was 0.1 W to 3.0 W . Temperatures of the top and bottom boundaries were maintained constant at $10^{\circ} \mathrm{C}$. Plots of Nul versus Ra_{f} are provided for comparisons with data obtained by Benedict [Ref. 13].

1. Heat Transfer Measurement for $\mathbf{w}=\mathbf{3 0} \mathbf{~ m m}$

Tables 17 through 28 in Appendix C compile component surface temperature and resulting nondimensional heat transfer data for this gap size with increasing power levels. The mean values of the component averaged temperatures over the nine heated components were $13^{\circ} \mathrm{C}$ for 0.1 W and $47^{\circ} \mathrm{C}$ for 3.0 W . In the range 0.1 W to 1.1 W , the lowest $\mathrm{T}_{\text {avg }}$ levels were on the bottom-row components

Figure 4.1 Side View Showing the Chamber Widths Used in the Experiment
(components 1, 4, and 7). The observed tendency was that temperatures on specific locations on the components in the top row were higher than those in the same location on the components in lower rows. As was pointed out by Liu, et al. [Ref. 11], the possible reason for this might be that components in the top row are in contact with warmer liquid, and the upper-row components are located in the heated wake regions of the lower rows. Additionally, the stratified fluid away from the components, which feeds fluid toward the component rows, is also at higher temperature for the upper rows.

Analyzing individual components in the middle and lower rows, for all power levels, the minimum measured temperatures were on the bottom surfaces. This trend is also supported by Liu, et al. [Ref. 9]. On the top row components, the lowest temperatures were on either one of the vertical side faces. Maximum temperatures were found generally on the component surface facing the front chamber wall. Liu, et al. [Ref. 11] obtained numerically maximum temperatures in the surfaces facing upward and attributed this to the fact that the heated flow coming off the vertical surfaces reduced the heat transfer coefficient at the component top surface. At higher power levels, oscillations in temperature changed the locations of the maximum and minimum instantaneous values, but the general tendencies found earlier were still noticed.

In Figure 4.2, a plot of Nul versus Raf is seen. Data obtained from Benedict [Ref. 13] is also plotted. A linear least squares fit to the present measurements in Figure 4.2 was performed. This is given by:

$$
\begin{gather*}
\text { Nul }=0.28 \mathrm{Ra}_{\mathrm{f}}^{0.23} \text { in the range } 3 * 10^{8}<\mathrm{Ra}_{\mathrm{f}}<10^{10} \\
\text { and } 15<\operatorname{Pr}<30.2 \tag{4.1}
\end{gather*}
$$

and the one obtained with the data from Benedict [Ref. 13] was:

$$
\begin{gather*}
\text { Nul }=0.28 \mathrm{Ra}_{\mathrm{f}}^{0.22} \text { in the range } 10^{7}<\operatorname{Ra}_{\mathrm{f}}<2 * 10^{8} \\
\text { and } 15<\operatorname{Pr}<30.2 \tag{4.2}
\end{gather*}
$$

Comparisons between Equations 4.1 and 4.2 indicate that Nu appears not to depend on the orientation of the components in the range of $\mathrm{Raf}_{\mathrm{f}}$ and Pr considered. This is illustrated in Figure 4.2

2. Heat Transfer Measurement for $\mathbf{w}=9 \mathrm{~mm}$

In Tables 29 through 40 in Appendix C, component temperatures and resulting nondimensional heat transfer data are compiled. Decreasing the chamber width from 30 mm to 9 mm produced some increase in the average temperature of the components $\mathrm{T}_{\text {avg }}$. This behavior was expected considering that now the surface of both top and bottom heat exchangers has been reduced to 30 percent of its former value. The mean value of the component averaged temperatures over the nine heaters for a power of 0.1 W was $14.5^{\circ} \mathrm{C}, 1.5^{\circ} \mathrm{C}$ higher than the average temperature obtained with 30 mm width. For a dissipation level of 3.0 W , the mean value of the components' averaged temperature over the nine heaters was $51^{\circ} \mathrm{C}, 4.0^{\circ} \mathrm{C}$ higher than the average observed for the 30 mm width. The $\mathrm{T}_{\text {avg }}$ value increased from the bottom to the top row, as was also found for $\mathrm{w}=30 \mathrm{~mm}$.

Analyzing individual components on the bottom row (components 1,4 , and 7), minimum temperatures were found on the bottom surfaces.

Plots of Nu l versus Ra_{f} are illustrated in Figure 4.3. The correlation obtained for this chamber width was:

$$
\begin{gather*}
\mathrm{Nul}=0.073 \mathrm{Ra}_{\mathrm{f}}^{0.28} \text { in the range } 3 * 10^{8}<\mathrm{Ra}_{\mathrm{f}}<10^{10} \\
\text { and } 15<\operatorname{Pr}<30.2 \tag{4.3}
\end{gather*}
$$

This correlation indicates the expected decrease in Nul for the same Raf, when compared with Equation 4.1 for $\mathrm{w}=30 \mathrm{~mm}$.

C. TEMPERATURE FLUCTUATIONS IN STEADY STATE

Oscillations in component surface temperatures following achievement of nominally steady conditions were measured in the dissipation range of 0.1 W to 3.0 W . Three thermocouples were scanned at a rate of approximately three times per second for a period of 200 seconds. Plots of surface temperature variations were made in order to display the long-time temperature fluctuations and compare with results of Liu, et al. [Ref. 11] and Benedict [Ref. 13]. Figure 4.4 is a vertical arrangement diagram which portrays the location of the scanned thermocouples.

1. Surface Temperature Fluctuations for a $\mathbf{w}=\mathbf{3 0} \mathrm{mm}$

Temperature oscillations for this chamber width are illustrated in Figures 4.5 through 4.7. It was observed that at all power

Figure 4.4 Location of Thermocouples Scanned for Measurements of Fluctuations

Figure 4.5 Temperature Fluctuations for Thermocouple No. 0 at Different Power Levels

Figure 4.6 Temperature Fluctuations for Thermocouple No. 12 at Different Power Levels

Figure 4.7 Temperature Fluctuations for Thermocouple No. 31 at Different Power Levels
levels considered, there were no temperature fluctuations on the components in the lower row. Benedict [Ref. 13] documented with heat transfer measurement and flow visualizations that the stagnant fluid layer above the bottom heat exchanger prevented the penetration of warmer fluid, resulting in conduction-dominated transport for the bottom row of components.

At 0.1 W , a spread in temperature of less than $0.5^{\circ} \mathrm{C}$ was observed between the six thermocouples that were scanned. Increasing the power level to 0.7 W , oscillation amplitudes with a mean of $0.7^{\circ} \mathrm{C}$ were observed in component 6 . At 1.1 W , the amplitude increased to $0.8^{\circ} \mathrm{C}$. Benedict [Ref. 13] found that a component at the same relative location and power level in a horizontal arrangement had almost no oscillations. At 2.5 W , oscillations of about $1.6^{\circ} \mathrm{C}$ were found. At 3.0 W , oscillations rose to almost $1.7^{\circ} \mathrm{C}$ at the same location. Benedict [Ref. 13] found at 3.1 W for the equivalent thermocouple an amplitude of $0.85^{\circ} \mathrm{C}$.

2. Surface Temperature Fluctuations for $\mathbf{w}=9 \mathrm{~mm}$

Plots of temperature oscillations are illustrated in Figures 4.8 through 4.10. At 0.1 W , no fluctuations were found in any of the thermocouples scanned. At 0.4 W , fluctuations of $0.3^{\circ} \mathrm{C}$ were observed in the top row components. No fluctuations were observed in the middle and bottom row components.

Increasing the power dissipation level to 0.7 W , no fluctuations were observed in either the middle or the bottom rows, but

Figure 4.8 Temperature Fluctuations for Thermocouple No. 0 at Different Power Levels

Figure 4.9 Temperature Fluctuations for Thermocouple No. 12 at Different Power Levels

Figure 4.10 Temperature Fluctuations for Thermocouple No. 31 at Different Power Levels
fluctuations of $0.7^{\circ} \mathrm{C}$ were observed in the top row. At 1.1 W , fluctuations in the top-row components were about $0.9^{\circ} \mathrm{C}$. No fluctuations were observed at the middle and bottom rows. At 1.5 W , fluctuations of $0.2^{\circ} \mathrm{C}$ appeared in the components in the middle row and reached values of $1.1^{\circ} \mathrm{C}$ in the top-row components. At 3.0 W , the highest power level utilized in the experiments, fluctuation amplitudes on the top-row components were recorded at $2.0^{\circ} \mathrm{C}$. It is interesting to note that no significant increase in the amplitude of the fluctuations was observed when the chamber width was changed from 30 mm to 9 mm . Liu, et al. [Ref. 11] calculated temperature oscillations peak to valley of $8^{\circ} \mathrm{C}$ for the 9 mm chamber width. They attributed the increase in the oscillation amplitude to the fact that now the flow is highly confined.

V. RECOMMENDATIONS

The design of the present chamber can be improved in many ways to give more versatility in the following experiments. The recommended changes that can be made to software and hardware include:

- Placement of the blocks can be done by screwing or attaching them to the board in a different way to the one used until now, which is bonding the chips to the board with glue. This would allow the experimenter to change a defective heater or change the orientation of the chips for a different set of experiments, using the same board and the same equipment set-up.
- To avoid the flow of dielectric liquid to the back of the chamber through the gaps between the board and the chamber walls that can alter the heat transfer results or the flow visualization, a small diameter O-ring can be used. A groove should be engraved in the board to allow the O-ring installation.
- Temperature measurements within the fluid and on the board surfaces should also be performed.
- a Fast. Fourier Transform algorithm should be developed to perform frequency analysis on the surface temperature fluctuations data. In addition, improvements in the plotting programs can be made.
- With the present set-up, different combinations of heaters could be powered, row-wise or column-wise or staggered, instead of the entire array. This variation might help better to explain the heat transfer and flow characteristics of the chamber.

APPENDIX A

SAMPLE CALCULATIONS

A. CONVERSION OF THERMOCOUPLE VOLTAGES TO TEMPERATURES

(Channels 0 to 60 and 71 to 76 , in the data acquisition system)

$$
\begin{gathered}
\mathrm{T}=\mathrm{D} 1+\mathrm{D} 2 * \mathrm{Emf}+\mathrm{D} 3 * \mathrm{Emf}^{2}+\mathrm{D} 4 * \mathrm{Emf}^{3}+\mathrm{D} 5 * \mathrm{Emf}^{4} \\
+\mathrm{D} 6 * \mathrm{Emf}^{5}+\mathrm{D} 7 * \mathrm{Emf}^{6}+\mathrm{D} 8 * \mathrm{Emf}
\end{gathered}
$$

where D1 to D9 are the calibration coefficients of the Omega thermocouples and are: $0.10086091,25727.9,-767345.8,7802-5596$, $-9247486589,6.98 \mathrm{E} 11,-2.66 \mathrm{E} 13$, and 3.94 E 14 .

Calculating the temperature found in the thermocouple connected to channel 0 at 1.1 W gives:

$$
\begin{aligned}
\mathrm{Emf} & =0.995 \mathrm{E}-3 \mathrm{~V} \\
\mathrm{~T} & =24.48^{\circ} \mathrm{C}
\end{aligned}
$$

B. CALCULATION OF HEATER POWER

Channels 61 to 70 in the data acquisition system are used to measure the supply voltage (61) and voltage to the heaters.

$$
\text { Power }=\text { Emf } *(\text { Volt }- \text { Emf }) / \mathrm{Rp}
$$

Calculating the power dissipated by the heater \#3:

$$
\begin{gathered}
\text { Power }=3.408 *(4.085-3.408) / 2.07 \\
\text { Power }=1.114 \mathrm{~W}
\end{gathered}
$$

C. CALCULATION OF THE DIMENSIONLESS PARAMETERS

1. Calculation of the Block Faces Areas

Dimensions of the aluminum blocks are: length 24 mm , width 8 mm , and thickness 6 mm .

$$
\begin{aligned}
& \mathrm{A}_{\text {cen }}=24 \mathrm{~mm} * 8 \mathrm{~mm}=192 \mathrm{~mm}^{2}=1.92 \mathrm{E}-4 \mathrm{~m}^{2} \\
& \mathrm{~A}_{\text {lef }}=24 \mathrm{~mm} * 6 \mathrm{~mm}=144 \mathrm{~mm}^{2}=1.44 \mathrm{E}-4 \mathrm{~m}^{2} \\
& \mathrm{~A}_{\text {rig }}=24 \mathrm{~mm} * 6 \mathrm{~mm}=144 \mathrm{~mm}^{2}=1.44 \mathrm{E}-4 \mathrm{~m}^{2} \\
& \mathrm{~A}_{\text {top }}=6 \mathrm{~mm} * 8 \mathrm{~mm}=48 \mathrm{~mm}^{2}=4.8 \mathrm{E}-5 \mathrm{~m}^{2} \\
& \mathrm{~A}_{\text {bot }}=6 \mathrm{~mm} * 8 \mathrm{~mm}=48 \mathrm{~mm}^{2}=4.8 \mathrm{E}-5 \mathrm{~m}^{2} \\
& \mathrm{~A}_{\text {tot }}=\Sigma \mathrm{A}=576 \mathrm{~mm}^{2}=5.76 \mathrm{E}-4 \mathrm{~m}^{2} \\
& \mathrm{~T}_{\text {avg }}=\Sigma(\mathrm{T}(\mathrm{I}) * \mathrm{~A}(\mathrm{I})) / \mathrm{A}_{\text {tot }}
\end{aligned}
$$

Calculating for component 3 at 1.1 W :

$$
\begin{gathered}
\mathrm{T}_{\mathrm{avg}}=(27.67 * 1.92 \mathrm{E}-4+25.73 * 4.8 \mathrm{E}-5+26.08 \\
* 1.44 \mathrm{E}-4+26.69 * 4.8 \mathrm{E} 5) \quad / 5.76 \mathrm{E}-4 \\
\mathrm{~T}_{\mathrm{avg}}=26.63^{\circ} \mathrm{C}
\end{gathered}
$$

2. Calculation of the Temperatures at the Back of the Components

Due to problems in the placement of the thermocouples that measure the temperature at the heaters, these temperatures were calculated with a calibration curve for $w=30 \mathrm{~mm}$ from data obtained in Benedict [Ref. 13]. This calibration cannot be applied to the case where the width of the chamber is very small. In such a case, when $\mathrm{w}=9 \mathrm{~mm}$, a one-dimensional conduction analysis was applied to find the back temperature.

The best fit for the calibration points was:

$$
T(K)=14.003957 * \text { Power }+14.517501
$$

So, for 1.1 W ,

$$
\mathrm{T}=29.92^{\circ} \mathrm{C}
$$

3. To Calculate the Conduction Losses Through the Circuit Card

$$
\begin{aligned}
& \text { Qloss }=\Delta \mathrm{T} / \mathrm{Rc}=1 / \mathrm{N} \Sigma(\mathrm{~T}(\mathrm{I})-\mathrm{Tb}(\mathrm{~J})) / \mathrm{Rc} \\
& \mathrm{R}_{\mathrm{C}}=\mathrm{L} / \mathrm{kA} \\
& \mathrm{R}_{\mathrm{c}}=19.5 \mathrm{E}-3 /(0.195 * 8 \mathrm{E}-3 * 24 \mathrm{E}-3)=520.83 \mathrm{~K} / \mathrm{W} \\
& \mathrm{~L}=19.5 \mathrm{E}-3 \mathrm{~m} \\
& \mathrm{k}=0.195 \mathrm{~W} / \mathrm{m} . \mathrm{K} \text { (plexiglass conductivity [Ref. } 14]) \\
& \begin{array}{r}
\mathrm{A}=(24 \mathrm{E}-3 * 8 \mathrm{E}-3) \mathrm{m}^{2}=1.92 \mathrm{E}-4 \mathrm{~m}^{2}
\end{array} \\
& \begin{array}{r}
\text { Qloss }=(29.92-17.31) / 520.83 \\
\quad=0.024 \mathrm{~W}
\end{array}
\end{aligned}
$$

4. To Find the Average Sink Temperature

Channels 58, 59, and 60 in the bottom heat exchanger and channels 61,72 , and 73 in the top heat exchanger.

$$
\begin{aligned}
& \mathrm{T}_{\text {sink }}=1 / \mathrm{N}\left(\Sigma \mathrm{~T}_{\mathrm{tc}}+\Sigma \mathrm{T}_{\mathrm{bc}}\right) \\
& \mathrm{T}_{\text {sink }}=(10.05+10.1+10.02+10.11+10.12+10.13) / 6 \\
& \mathrm{~T}_{\text {sink }}=10.08^{\circ} \mathrm{C}
\end{aligned}
$$

To find the net power dissipated by the heater, $Q_{\text {net }}$:

$$
Q_{\text {net }}=\text { Power }- \text { Qloss }
$$

For 1.1 W and component 3 :

$$
\begin{aligned}
Q_{\text {net }} & =(1.1-0.024) \mathrm{W} \\
& =1.076 \mathrm{~W}
\end{aligned}
$$

To find the convection coefficient h (from Newton's law of cooling):

$$
\begin{aligned}
& \text { Qnet }=\mathrm{h} * \mathrm{~A}_{\text {tot }} * \Delta \mathrm{~T} \\
& \Delta \mathrm{~T}=\mathrm{T}_{\text {avg }}-\mathrm{T}_{\operatorname{sink}} \\
& \Delta \mathrm{T}=(26.63-10.08)^{\circ} \mathrm{C} \\
& \mathrm{~T}=16.55^{\circ} \mathrm{C} \\
& \mathrm{~h}=\text { Qnet }_{\text {net }} /(\text { Atot } * \Delta \mathrm{~T})
\end{aligned}
$$

5. For 1.1 W and Component 3

$$
\begin{aligned}
& \mathrm{h}=1.09 /(16.55 * 5.76 \mathrm{E}-4) \\
& \mathrm{h}=114.342 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
\end{aligned}
$$

6. To Calculate the Thermal Conductivity of the FC-75

$$
\mathrm{k}=\left(0.65-7.8947 \mathrm{E}-4 * \mathrm{~T}_{\mathrm{film}}\right) / 10
$$

where $T_{\text {film }}=\left(T_{\text {avg }}+T_{\text {sink }}\right) / 2$.
At 1.1 W and chip 3 :

$$
\begin{aligned}
& \mathrm{T}_{\text {film }}=(26.63+10.08)^{\circ} \mathrm{C} / 2 \\
& \mathrm{~T}_{\text {film }}=18.35^{\circ} \mathrm{C} \\
& \mathrm{k}=0.0645 \mathrm{~W} / \mathrm{m} \mathrm{~K}
\end{aligned}
$$

7. To Calculate the Vertical Length Based Nusselt Number, Nul

$$
\begin{aligned}
& \text { Nul }=\mathrm{h} * \mathrm{Ll} / \mathrm{k} \\
& \mathrm{Nul}=114.342 * 24 \mathrm{E}-3 / 0.0645 \\
& \mathrm{Nul}=42.54
\end{aligned}
$$

8. To Calculate the Ratio Area/Perimeter Based Nusselt Number, Nu2

$$
\begin{aligned}
& \mathrm{L} 2=\Sigma(\mathrm{A}(\mathrm{i}) / \mathrm{P}(\mathrm{i})) \\
& \mathrm{L} 2=(24 * 8) / 64+(2 * 8 * 6) /(2 * 14)+(2 * 24 * 6) /(2 * 60) \\
& \mathrm{L} 2=11.229 \mathrm{E}-3 \mathrm{~m} \\
& \mathrm{~L} 2=19.905
\end{aligned}
$$

9. To Calculate the Density of the FC-75, $\rho\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$

$$
\begin{aligned}
& \rho=\left(1.825-0.00246 * T_{\mathrm{film}}\right) * 1000 \\
& \rho=1779.86 \mathrm{Kg} / \mathrm{m}^{3}
\end{aligned}
$$

10. To Calculate the FC-75 Specific Heat, Cp (J/Kg K)

$$
\begin{aligned}
& \mathrm{Cp}=\left(.241111+3.7037 \mathrm{E}-4 * \mathrm{~T}_{\mathrm{film}}\right) * 4180 \\
& \mathrm{Cp}=1036.25 \mathrm{~J} / \mathrm{Kg} \mathrm{~K}
\end{aligned}
$$

11. To Calculate the FC-75 Viscosity, $v\left(\mathrm{~m}^{2} / \mathrm{s}\right)$

$$
\begin{aligned}
v= & \left(1.4074-2.964 \mathrm{E}-2 * \mathrm{~T}_{\text {film }}+3.8018 \mathrm{E}-4\right. \\
& \left.* \mathrm{~T}_{\mathrm{film}}{ }^{2}-2.7308 \mathrm{E}-6 * \mathrm{~T}_{\text {film }}{ }^{3}+8.1679 \mathrm{E}-9 * \mathrm{~T}_{\text {film }}{ }^{4}\right) \mathrm{E}-6 \\
v= & .97557 \mathrm{E}-6 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

12. To Find the FC-75 Thermal Expansion Coefficient, $\beta\left(K^{-1}\right)$

$$
\beta=0.00246 /\left(1.825-0.00246 * T_{\mathrm{film}}\right)
$$

For 1.1 W and component 3 :

$$
\beta=1.382 \mathrm{E}-3 \mathrm{~K}^{-1}
$$

13. To Calculate the FC-75 Thermal Diffusivity $\alpha\left(\mathrm{m}^{2} / \mathrm{s}\right)$

$$
\alpha=k / f * C p
$$

For 1.1 W and component 3 :

$$
\alpha=3.497 \mathrm{E}-8 \mathrm{~m}^{2} / \mathrm{s}
$$

14. To Calculate the Grashof Number

$$
\mathrm{Gr}=\mathrm{g} * \beta * \mathrm{I}^{3} * \Delta \mathrm{~T} / \mathrm{v}^{2}
$$

For 1.1 W and component 3 :

$$
\text { Gr - } 3255734.402
$$

15. To Calculate the Prandtl Number

$$
\begin{aligned}
& \operatorname{Pr}=v / \alpha \\
& \operatorname{Pr}=27.89
\end{aligned}
$$

16. To Find the Temperature Based Rayleigh Number

$$
\mathrm{Ra}=\mathrm{Gr} * \mathrm{Pr}
$$

For 1.1 W and component 3 :

$$
\mathrm{Ra}=9.08 \mathrm{E} 7
$$

17. To Calculate the Flux Based Rayleigh Number

$$
\begin{aligned}
& \mathrm{Ra}_{\mathrm{f}}=\mathrm{g} * \mathrm{~B} * 1^{4} * \mathrm{Q}_{\mathrm{net}} /\left(\mathrm{k} * v * \alpha * \mathrm{~A}_{\mathrm{tot}}\right) \\
& \mathrm{Ra}_{\mathrm{f}}=3.9 \mathrm{E} 9
\end{aligned}
$$

APPENDIX B

UNCERTAINTY ANALYSIS

The uncertainty analysis was done using the method of Kline and McClintock, presented in Holman [Ref. 15]. The calculations will be done for the end values 0.1 W and 3.0 W , for a chamber width of 30 mm .

A. UNCERTAINTIES IN THE NET POWER ADDED TO THE FLUID

$$
\begin{gathered}
\text { Qnet }=\text { Power }- \text { Qloss }^{\text {Power }=\operatorname{emf}(\mathrm{I}) *(\text { Volt }-\mathrm{emf}(\mathrm{I})) / \mathrm{Rp}} \\
\text { Power }=\mathrm{f}(\mathrm{emf(I)}, \text { Volt, Rp) } \\
\frac{\partial \text { Power }}{\partial \mathrm{emf}(\mathrm{I})}=\frac{\mathrm{Volt}-2 \cdot \mathrm{emf}(\mathrm{I})}{\mathrm{Rp}} \\
\frac{\partial \text { Power }}{\partial \text { Volt }}=\frac{\mathrm{emf}(\mathrm{I})}{\mathrm{Rp}} \\
\frac{\partial \text { Power }}{\partial \mathrm{Rp}}=-\frac{\mathrm{emf}(\mathrm{I}) \cdot(\mathrm{Volt}-\mathrm{emf}(\mathrm{I}))}{\mathrm{Rp} \mathrm{R}^{2}} \\
W_{\text {power }}=\left[\left(\frac{\partial_{\text {power }}}{\partial_{\text {emf }(\mathrm{II}}}\right)^{2} W_{\mathrm{emf}(\mathrm{II}}^{2}+\left(\frac{\partial_{\text {power }}}{\partial_{\text {volt }}}\right)^{2} W_{\text {Volt }}^{2}+\left(\frac{\partial_{\text {power }}}{\partial_{\mathrm{Rp}}}\right)^{2} W_{\mathrm{Rp}}^{2}\right]^{\frac{1}{2}}
\end{gathered}
$$

$$
W_{\mathrm{emf}}=0.001 \mathrm{~V}
$$

(by Resolution in the reading and precision of measuring devices)

$$
W_{\text {Volt }}=0.001 \mathrm{~V}
$$

(by Resolution in the reading and precision of measuring devices)

$$
W_{\mathrm{Rp}}=0.05 \Omega
$$

(including the added resistances)
For 0.1 W and chip 3:

$$
\begin{aligned}
\mathrm{emf}(\mathrm{I}) & =1.022 \mathrm{~V} \\
\mathrm{Volt} & =1.225 \mathrm{~V} \\
\mathrm{Rp} & =2.06 \Omega
\end{aligned}
$$

(measured resistance including resistances in the junctions, etc.)

$$
\begin{gathered}
\frac{\partial \text { Power }}{\partial \mathrm{emf}(\mathrm{l})}=-0.397 \\
\frac{\partial \text { Power }}{\partial \mathrm{Volt}}=0.496 \\
\frac{\partial \text { Power }}{\partial \mathrm{Rp}}=-0.0488 \\
W_{\text {power }}=\left[(-0.397)^{2} \cdot(0.001)^{2}+(0.496)^{2} \cdot(0.001)^{2}+(-0.0488)^{2} \cdot(0.05)^{2}\right]^{\frac{1}{2}}
\end{gathered}
$$

$$
\begin{gathered}
W_{\text {power }}=0.00252 \mathrm{~W} \\
\frac{W_{\text {power }}}{\text { Power }}=\frac{0.00252 \mathrm{~W}}{0.1 \mathrm{~W}}=2.5 \% \\
\Theta_{\text {loss }}=\frac{\Delta \mathrm{T}}{\mathrm{Rc}}
\end{gathered}
$$

where $\Delta \mathrm{T}$ is the difference in temperature between the back surface of the chip and the back of the board.

$$
\begin{gathered}
Q=f(\Delta T, R c) \\
\frac{\partial Q_{\text {loss }}}{\partial \Delta T}=\frac{1}{R c}=\frac{Q_{\text {loss }}}{\partial R c}=\frac{\Delta T}{R c^{2}}
\end{gathered}
$$

For 0.1 W and component 3 :

$$
\begin{gathered}
\frac{\partial Q_{\text {loss }}}{\partial \Delta \mathrm{T}}=\frac{1}{520.83 \mathrm{~K} / \mathrm{W}}=0.00192 \\
\frac{\partial Q_{\text {loss }}}{\partial R c}=-\frac{0.12^{\circ} \mathrm{K}}{(520.83)^{2}}=-4.424 \times 10^{-7}
\end{gathered}
$$

$$
W Q_{\text {loss }}=\left\lfloor\left(\frac{l}{R c}\right)^{2} W_{\Delta T}+\left(\frac{-\Delta T}{R^{2}}\right) W_{R c}\right\rfloor
$$

$$
W_{\Delta \mathrm{T}}=10 \%=0.012^{\circ} \mathrm{C}
$$

$$
\begin{gathered}
W_{\mathrm{Rc}}=10 \%=52.083 \mathrm{~K} / \mathrm{W} \\
W Q_{\text {loss }}=\left[\left(0.00192^{2} \cdot 0.012^{2}+\left(-4.424 \times 10^{-7}\right)^{2} \cdot(52.083)^{2}\right]^{\frac{1}{2}}\right. \\
W Q_{\text {loss }}=\left(5.352 \times 10^{-10}\right)^{\frac{1}{2}}=3.258 \mathrm{E}-5 \\
\frac{W Q_{\text {loss }}}{Q_{\text {loss }}}=0.14=14 \% \\
W Q_{\text {net }}=\left[\left(W_{\text {power }}\right)^{2}+\left(W Q_{\text {loss }}\right)^{2}\right]^{\frac{1}{2}} \\
W Q_{\text {net }}=\left[(0.00252)^{2}+\left(3.258 \times 10^{-5}\right)^{2}\right]^{\frac{1}{2}} \\
{\left[\frac{W Q_{\text {net }}}{Q_{\text {net }}}= \pm 2.5 \%\right.} \\
W Q_{\text {net }}= \pm 0.025 \mathrm{~W}
\end{gathered}
$$

${ }^{1}$ The uncertainties in the losses are relatively big, but they do not have a large effect on the final undertaking.

For 3.0 W and component 3 :

$$
\begin{gathered}
\text { emf(I) }=5.647 \mathrm{~V} \\
\mathrm{Volt}=6.762 \\
\mathrm{Rp}=2.06 \Omega \\
\frac{\partial \text { Power }}{\partial \mathrm{emf}(\mathrm{I})}=-2.2 \\
\frac{\partial \text { Power }}{\partial \mathrm{Volt}}=2.74 \\
\frac{\partial \text { Power }}{\partial \mathrm{Rp}}=1.484 \\
W_{\text {power }}=\left[(-2.2)^{2} \cdot(0.001)^{2}+(2.74)^{2} \cdot(0.001)^{2}+(1.484)^{2} \cdot(0.05)^{2}\right]^{\frac{1}{2}} \\
\frac{W_{\text {power }}}{}=0.74 \mathrm{~W} \\
\frac{W_{\text {power }}}{\text { power }}=\frac{0.074}{3.0}= \pm 2.5 \% \\
\frac{\partial Q_{\text {loss }}}{\partial \Delta \mathrm{T}}=\frac{1}{520.83} \mathrm{k} / \mathrm{w}=0.00192 \\
\frac{\partial Q_{\text {loss }}}{\partial \mathrm{Rc}}=-\frac{21.68}{(520.83)^{2}}=-7.993 \mathrm{E}-5 \\
\mathrm{~V}^{2}
\end{gathered}
$$

$$
W \mathbb{G}_{\text {loss }}=\left[\left(0.00192^{2} \cdot(2.168)^{2}+(-7.992 E-5)^{2} \cdot(52.083)^{2}\right]^{\frac{1}{2}}\right.
$$

$$
W Q_{\text {loss }}=0.059 \mathrm{~W}
$$

$$
\frac{W Q_{\text {loss }}}{Q_{\text {loss }}}=14.14 \%
$$

$$
\text { WQnet }=\left[\left(W_{\text {power }}\right)^{2}+\left(W Q_{\text {loss }}\right)^{2}\right]^{\frac{1}{2}}
$$

$$
\text { WQnet }=\left[(0.074)^{2}+(0.0059)^{2}\right]^{\frac{1}{2}}
$$

$$
W Q_{\text {net }}= \pm 0.0742 \mathrm{~W}
$$

$$
\frac{W Q_{\text {net }}}{Q_{\text {net }}}= \pm 2.5 \%
$$

B. UNCERTAINTY IN RAYLEIGH AND NUSSELT NUMBERS

 Starting with:$$
\begin{aligned}
& \text { Qnet }=\mathrm{h} \mathrm{~A}_{\text {tot }}\left(\mathrm{T}_{\text {avg }}-\mathrm{T}_{\text {sink }}\right) \\
& \mathrm{h}=\frac{Q_{\text {net }}}{\mathrm{A}_{\text {tot }}\left(\mathrm{T}_{\text {avg }}-T_{\sin k}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{h}=\mathrm{f}\left(\mathrm{Q}_{\text {net }}, \mathrm{A}_{\text {tot }}, \Delta \mathrm{T}\right) \\
& \frac{\partial \mathrm{h}}{\partial \mathrm{G}_{\text {net }}}=\frac{1}{\mathrm{~A}_{\text {tot }}(\Delta \mathrm{T})} \\
& \frac{\partial \mathrm{h}}{\partial \mathrm{~A}_{\text {tot }}}=\frac{\Theta_{\text {net }}}{\mathrm{A}_{\text {tot }}(\Delta \mathrm{T})^{2}} \\
& \frac{\partial \mathrm{~h}}{\partial \Delta \mathrm{~T}}=\frac{Q_{\text {net }}}{\mathrm{A}_{\text {tot }}(\Delta \mathrm{T})^{2}}
\end{aligned}
$$

for 0.1 W and component 3 :

$$
\begin{gathered}
\mathrm{A}_{\text {tot }}=5.76 \times 10^{-4} \mathrm{~m}^{2} \text { (for all components) } \\
\frac{\partial \mathrm{h}}{\partial \mathrm{Q}_{\text {net }}}=\frac{1}{\left(5.76 \times 10^{-4}\right)(3.02)}=574.87 \\
\frac{\partial \mathrm{~h}}{\partial \mathrm{~A}_{\text {tot }}}=\frac{0.1}{\left(5.76 \times 10^{-4}\right)(3.02)}=-99804.03 \\
\frac{\partial \mathrm{~h}}{\partial \Delta \mathrm{~T}}=-\frac{-0.1}{\left(5.76 \times 10^{-4}\right)(3.02)^{2}}=-19.035 \\
W \mathrm{~h}=\left[\left(\frac{\partial \mathrm{h}}{\partial \mathrm{Q}_{\text {net }}}\right)^{2} W \mathrm{Q}_{\text {net }}^{2}+\left(\frac{\partial \mathrm{h}}{\partial \Delta_{\text {tot }}}\right)^{2} W_{\mathrm{A}_{\text {tot }}^{2}}^{2}+\left(\frac{\partial \mathrm{h}}{\partial \Delta \mathrm{~T}}\right)^{2} \mathrm{~W}_{\Delta \mathrm{T}}^{2}\right]^{\frac{1}{2}}
\end{gathered}
$$

$$
\begin{gathered}
W Q_{\text {net }}= \pm 0.0025 \mathrm{~W} \\
W_{\mathrm{L}}= \pm 10^{-5} \mathrm{~m} \\
W_{\mathrm{A}}=\left[\left(10^{-5}\right)^{2}+\left(10^{-5}\right)^{2}\right]^{\frac{1}{2}}=1.4 \mathrm{IE}-5 \mathrm{~m}^{2} \\
W_{\Delta \mathrm{T}}= \pm 1 \%=0.03^{\circ} \mathrm{C} \\
\begin{array}{r}
W_{\mathrm{h}}=\left[(574.87)^{2} \cdot(0.0025)^{2}+(99804)^{2} \cdot(1.4 \mathrm{IE}-5)^{2}+(19.035)^{2} \cdot(0.03)^{2}\right]^{\frac{1}{2}} \\
W_{\mathrm{h}}=(2.065+0.019+.3260)^{\frac{1}{2}} \\
= \pm 2.09 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
\frac{W_{\mathrm{h}}}{\mathrm{~h}}=\frac{2.09}{57.487}= \pm 3.64 \%
\end{array}
\end{gathered}
$$

For 3.0 W and component 3 :

$$
\begin{gathered}
\frac{\partial \mathrm{h}}{\partial Q_{\text {net }}}=\frac{1}{\left(5.76 \times 10^{-4}\right)(38.38)}=45.52 \\
\frac{\partial \mathrm{~h}}{\partial \mathrm{~A}_{\text {tot }}}=\frac{3.0}{\left(5.76 \times 10^{-4}\right)^{2}(38.38)}=235597.84
\end{gathered}
$$

$$
\frac{\partial \mathrm{h}}{\partial \Delta \mathrm{~T}}=\frac{3.0}{\left(5.76 \times 10^{-4}\right)(38.38)^{2}}=3.536
$$

$$
W_{h}=\left[(45.52)^{2} \cdot(0.0742)^{2}+(235597.8)^{2} \cdot(1.4 \mathbb{E}-5)^{2}+(3.54)^{2} \cdot(.38)^{2}\right]^{\frac{1}{2}}
$$

$$
\begin{aligned}
& W_{\mathrm{h}}= \pm 4.92 \mathrm{w} / \mathrm{m}^{2} \mathrm{~K} \\
& \frac{W_{\mathrm{h}}}{\mathrm{~h}}=\frac{4.92}{135.7}=3.63 \%
\end{aligned}
$$

To find the uncertainty of Nusselt Number:

$$
\mathrm{Nu}=\frac{\mathrm{h}_{\mathrm{L}}}{\mathrm{k}}
$$

$$
N u=f(h, L, k)
$$

$$
\frac{\partial N u}{\partial h}=\frac{L}{k}
$$

$$
\frac{\partial N u}{\partial L}=\frac{h}{k}
$$

$$
\frac{\partial N u}{\partial k}=-\frac{h L}{k^{2}}
$$

Since the thermal properties of the FC-75 (dielectric liquid) are values that depend on film temperatures, it is considered that there are no uncertainties in these values.

$$
\mathrm{K}=\left(0.65-7.89474 \mathrm{E}-4 \cdot \mathrm{~T}_{\mathrm{fllm}}\right) / 10
$$

$$
\mathrm{T}_{\mathrm{film}}=\frac{\mathrm{T}_{\mathrm{avg}}+\mathrm{T}_{\sin \mathrm{k}}}{2}
$$

For 0.1 W and component 3 :

$$
\mathrm{K}=0.064 \frac{\mathrm{~W}}{\mathrm{~m} \mathrm{~K}}
$$

$$
\mathrm{T}_{\mathrm{film}}=11.51^{\circ} \mathrm{C}
$$

$$
\begin{gathered}
\frac{\partial \mathrm{Nu}}{\partial \mathrm{k}}=\frac{24 \times 10^{-3} \mathrm{~m}}{0.064 \mathrm{w} / \mathrm{m} \mathrm{~K}}=0.374 \\
\frac{\partial \mathrm{Nu}}{\partial \mathrm{k}}=\frac{57.487}{24 \times 10^{-3}}=2395.29 \\
\frac{\partial \mathrm{Nu}}{\partial \mathrm{k}}=\frac{57.487 \times 24 \times 10^{-3}}{(0.064)^{2}}=336.84 \\
W \mathrm{Nu}=\left[\left(\frac{\partial \mathrm{Nu}}{\partial \mathrm{~h}}\right)^{2} \mathrm{~Wh}^{2}+\left(\frac{\partial \mathrm{Nu}}{\partial \mathrm{~L}}\right)^{2} W_{\mathrm{L}}^{2}+\left(\frac{\partial \mathrm{Nu}}{\partial \mathrm{k}}\right)^{2} \mathrm{Wk} \mathrm{k}^{2}\right]^{\frac{1}{2}} \\
\mathrm{WNu}=\left[(0.374)^{2} \cdot(2.09)^{2}+(2395.29)^{2} \cdot\left(10^{-5}\right)^{2}\right]^{\frac{1}{2}}
\end{gathered}
$$

$$
W N u= \pm 0.78
$$

$$
\frac{W \mathrm{Nu}}{\mathrm{Nu}}=\frac{0.78}{21.55}=0.036=3.6 \%
$$

For 3.0 W and component 3 :

$$
\mathrm{k}_{\mathrm{f}}=0.0627 \frac{\mathrm{~W}}{\mathrm{mk}}
$$

$$
\mathrm{T}_{\text {film }}=29.2^{\circ} \mathrm{C}
$$

$$
\frac{\partial \mathrm{Nu}}{\partial \mathrm{~h}}=\frac{24 \times 10^{-3} \mathrm{~m}}{0.0627}=0.382
$$

$$
\frac{\partial \mathrm{Nu}}{\partial \mathrm{~L}}=\frac{135.7}{24 \times 10^{-3}}=5654.16
$$

$$
\mathrm{WNu}=\left[(0.382)^{2} \cdot(4.92)^{2}+(5654.16)^{2} \cdot\left(10^{-5}\right)^{2}\right]^{\frac{2}{2}}
$$

$$
W N u= \pm 1.88
$$

$$
\begin{gathered}
\frac{W N u}{N u}=\frac{1.88}{51.94}=3.62 \% \\
\mathrm{Ra}_{\mathrm{f}}=\mathrm{Gr}_{\mathrm{f}} \cdot \mathrm{Pr} \\
\mathrm{Gr}_{\mathrm{f}}=\frac{g \beta L^{4} Q_{\text {net }}}{\mathrm{k}_{\mathrm{f}} v^{2} \mathrm{~A}_{\text {tot }}}
\end{gathered}
$$

$$
\operatorname{Pr}=\frac{v}{\alpha}
$$

$$
\mathrm{Gr}_{\mathrm{f}}=\mathrm{f}\left(\mathrm{~g}, \beta, \mathrm{~L}^{4}, \mathrm{Q}_{\mathrm{net}}, \mathrm{k}_{\mathrm{f}}, \mathrm{v}^{2}, \mathrm{~A}_{\mathrm{tot}}\right)
$$

Consider fluid properties without uncertainties.

$$
\begin{aligned}
& \frac{\partial \mathrm{Gr}_{\mathrm{f}}}{\partial L^{4}}=\frac{g \beta Q_{\text {net }}}{k_{f} v^{2} A_{\text {tot }}} \\
& \frac{\partial \mathrm{Gr}_{\mathrm{f}}}{\partial Q_{\text {net }}}=\frac{g \beta L^{4}}{k_{f} v^{2} A_{\text {tot }}} \\
& \frac{\partial G r_{f}}{\partial A_{\text {tot }}}=\frac{g \beta L^{4} Q_{\text {net }}}{k_{f} v^{2} A_{\text {tot }}^{2}}
\end{aligned}
$$

For 0.1 W and component 3 :

$$
\begin{gathered}
\beta=0.00137 \mathrm{~K}^{-1} \\
\mathrm{k}_{\mathrm{f}}=0.064 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{k}} \\
v=1.11259 \mathrm{E}-6 \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
\frac{\partial \mathrm{Gr}_{\mathrm{f}}}{\partial \mathrm{~L}^{4}}=2.94 \mathrm{El} 3
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\partial \mathrm{Gr}_{f}}{\partial Q_{\text {net }}}=9.76 \mathrm{E} 7 \\
& \frac{\partial \mathrm{Gr}_{\mathrm{f}}}{\partial \mathrm{~A}_{\text {tot }}}=-1.69 \mathrm{El} 0 \\
& W G r_{f}=\left[\left(\frac{\partial \mathrm{Gr}_{f}}{\partial L^{4}}\right)^{2} W^{2} L^{4}+\left(\frac{\partial G r_{f}}{\partial Q_{\text {net }}}\right)^{2} W^{2} Q_{\text {net }}+\left(\frac{\partial \mathrm{Gr}_{f}}{\partial A_{\text {tot }}}\right)^{2} W A_{\text {tot }}\right]^{\frac{1}{2}} \\
& W \mathrm{Gr}_{\mathrm{f}}=\left[\begin{array}{l}
(2.94 \mathrm{El} 3)^{2} \cdot(5.5 \mathrm{E}-10)^{2}+(9.76 \mathrm{E} 7)^{2} \cdot(0.0025)^{2} \\
+(1.69 \mathrm{El} 0)^{2} \cdot(4.8 \mathrm{E}-7)^{2}
\end{array}\right]^{\frac{1}{2}} \\
& W \mathrm{Gr}_{\mathrm{f}}=[2.6 \mathrm{E} 8+5.9536 \mathrm{E} 10+6.5 \mathrm{E} 7]^{\frac{1}{2}} \\
& W_{\mathrm{Gr}_{\mathrm{f}}}= \pm 243569 \\
& \frac{W_{\text {Gr }_{f}}}{\text { Gr }_{f}}=\frac{243569}{9.67 \mathrm{E} 6}=2.5 \% \\
& W_{\text {Raf }_{f}}=2.5 \%
\end{aligned}
$$

For 3.0 W and component 3 :

$$
\beta=0.014 \mathrm{~K}^{-1}
$$

$$
v=0.80402 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$$
\mathrm{k}_{\mathrm{f}}=0.0627 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}
$$

$$
\frac{\partial \mathrm{Gr}_{\mathrm{f}}}{\partial \mathrm{~L}^{4}}=17.6 \mathrm{E} 15
$$

$$
\frac{\partial \mathrm{Gr}_{\mathrm{f}}}{\partial Q_{\text {net }}}=19.5 \mathrm{E} 7
$$

$$
\frac{\partial \mathrm{Gr}_{\mathrm{f}}}{\partial \mathrm{~A}_{\mathrm{tot}}}=1.0 \mathrm{El} 2
$$

$W G r_{f}=\left[(17.6 \mathrm{E} 15)^{2} \cdot(5.5 \mathrm{E}-10)^{2}+(19.5 \mathrm{E} 7)^{2} \cdot(0.0742)^{2}+(1.0 \mathrm{E} 12)^{2} \cdot(4.8 \mathrm{E}-7)^{2}\right]^{\frac{1}{2}}$

$$
W \mathrm{Gr}_{\mathrm{f}}=[9.3 \mathrm{El} 3+2.09 \mathrm{El} 4+2.38 \mathrm{El} 1]^{\frac{1}{2}}
$$

$$
\frac{W G r_{f}}{\mathrm{Gr}_{\mathrm{f}}}=\frac{17405183}{584920180}=2.9 \%
$$

$$
W_{\mathrm{Ra}_{\mathrm{f}}}=2.9 \%
$$

APPENDIX C

TABLES

TABLE 1

TEMPERATURE DATA FOR INPUT POWER 0.1 W BOTTOM BOUNDARY AT $20^{\circ} \mathrm{C}$

FESIJLTS ARE STORED IN FILE: 08Ú21455

```
AMRIENT TEMP : 24.3 C
YOLTMETER KEADING : 1.025 V
HEAT EXCHANGER TEMP.: 10-20 C
```

AIL TEMPERATURES ARE IN DEGREES CELCIUS
CENTER TOP RIGHT LEFT BOTTOM BACK

CHIP NOI: POWER	$17.46 E+00$ (WATTS):	$\begin{aligned} & 17.48 E+00 \\ & 10.01 E-02 \end{aligned}$	$17.48 \mathrm{E}+00$	$17.47 E+00$	$17.54 \mathrm{E}+00$	$18.04 \mathrm{E}+00$
$\begin{aligned} & \text { CHIF } 1102: \\ & \text { POWE } \end{aligned}$	$17.40 E+00$ (WATTS):	$\begin{aligned} & 17.44 E+00 \\ & 10.00 E-02 \end{aligned}$	17.47E+00	$17.41 E+00$	$17.47 E+00$	$17.36 E+00$
CHIF N10. POWER	$17-1 \geqslant E+00$ (WATTS):	$\begin{aligned} & 17.98 E+00 \\ & 99.84 E-03 \end{aligned}$	$17.16 E+00$	$17.22 E+00$	17.23E +00	$17.61 E+00$
CHIP HO 4 : POWER	$\begin{aligned} & 17.57 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 17.56 E+00 \\ & 98.84 E-03 \end{aligned}$	$17.44 E+00$	$15.60 \mathrm{~F}+00$	$17.48 E+00$	$17.89 E+00$
CHIF :NOS: POWER	$\begin{aligned} & 17.48 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 17.62 E+100 \\ & 99.24 E-03 \end{aligned}$	$17.56 E+10$	17.51E+00	$17.58 E+00$	17.92E+00
CHIP N06: POWER	$\begin{aligned} & 22.63 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 17.39 E+n 0 \\ & 99.12 E-03 \end{aligned}$	$17.43 E+100$	$17.38 \mathrm{E}+00$	$17.55 E+00$	$18.42 E+00$
IIP N07: FOWER	$\begin{aligned} & \text { 17. } 59 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 17.62 E+00 \\ & 10.04 E-02 \end{aligned}$	$17.60 E+100$	$17.55 E+00$	17.74E+00	18.32E+00
1.HIP N08: POWER	$\begin{aligned} & 17.58 E+00 \\ & (\text { WATTS): } \end{aligned}$	$\begin{aligned} & 17.64 E+00 \\ & 10.07 E-02 \end{aligned}$	$17.57 E+00$	$17.58 E+00$	17.60E+00	18.47E+170
CHIP NO9: POWER	$\begin{aligned} & 17.33 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 17.15 E+00 \\ & 99.32 E-03 \end{aligned}$	17.34E+10	17.30E +00	$17.36 \mathrm{E}^{\boldsymbol{t}}+00$	17.82E+00

AVERAGE HEAT EXCHAIIGERS TEMPERATURES:
BOTTCM:
$10.01 E+100$
19.97E+00

BACK PLAIIE TEMPERATURES ARE :
$T(55): \quad 17.81 E+00$
$T(56): \quad 18.09 E+100$ $T(57): \quad 17.54 E+00$ $T(72): \quad 18.33 E+00$ T(73): $18.43 \mathrm{E}+100$ $T(74): 18.91 E+00$ $T(75): \quad 18.07 E+00$ $T(76): \quad 18.40 E+00$ T(77): 18.29E+00

TABLE 2

TEMPERATURE DATA FOR INPUT POWER 0.7 W BOTTOM BOUNDARY AT $20^{\circ} \mathrm{C}$

AMBIENT TEMP : 24.4 C UOL TMETER READING: 3.218 V HEAT EXCHANGER TEMP.: $10-20 \mathrm{C}$						
ALL TEMPERATURES ARE IN DEGREES CELCIUS						
	CENTER	TOP	RIGHT	LEF T	BOTTOM	BACK
$\begin{aligned} & \text { CHIP H01: } \\ & \text { POWER } \end{aligned}$	$24.74 E+00$ (WATTS):	$\begin{gathered} 24.02 \mathrm{E}+00 \\ 70.97 \mathrm{E}-02 \end{gathered}$	23.96E +00	24.00E+00	24.09E+00	27.01E+00
$\begin{aligned} & \text { CHIP N02: } \\ & \text { POWER } \end{aligned}$	$\begin{aligned} & 24.7 \text { IE }+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 23.81 E+00 \\ 70.93 E-02 \end{gathered}$	23.96E+00	$23.54 E+00$	$23.80 E+00$	$26.56 \mathrm{E}+00$
$\begin{aligned} & \text { CHIP NO3: } \\ & \text { POWER } \end{aligned}$	$\begin{aligned} & 23.83 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 23.69 \mathrm{E}+00 \\ & 70.79 \mathrm{E}-02 \end{aligned}$	$23.59 E+00$	$23.55 E+60$	$23.60 E+00$	25.11E+00
CHIP MO4: POWER	$\begin{aligned} & 24.30 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{array}{r} 23.71 E+00 \\ 70.09 E-02 \end{array}$	$23.60 E+00$	$20.65 E+00$	$23.60 E+00$	$25.74 E+100$
$\begin{array}{r} \text { CHIP N05: } \\ \text { POWER } \end{array}$	$\begin{aligned} & 24.26 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 23.46 E+00 \\ & 70.38 E-02 \end{aligned}$	23.44E+00	$23.37 E+00$	$23.69 E+00$	$25.46 E+00$
CHIP NOS: POWER	$26.78 E+00$ (WATTS):	$\begin{gathered} 24.05 \mathrm{E}+00 \\ 70.26 \mathrm{E}-02 \end{gathered}$	23.44E+00	$23.51 E+00$	$24.08 \mathrm{E}+00$	$27.57 E+00$
IIP NO7: POWER	$\begin{aligned} & 24.96 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 24.47 E+00 \\ 71.19 E-02 \end{gathered}$	$24.02 \mathrm{E}+00$	$23.81 E+00$	$24.14 E+00$	$27.58 E+00$
CHIP NO8: POWER	$\begin{aligned} & 24.27 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 24.14 E+00 \\ & 71.40 E-02 \end{aligned}$	24.07E +00	$23.85 E+00$	$23.79 E+00$	$29.43 E+00$
CHIP N09: FOWER	$\begin{aligned} & 23.90 E+90 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 23.70 E+100 \\ 70.84 E-02 \end{gathered}$	$23.62 \mathrm{E}+00$	$23.50 \mathrm{E}+00$	$23.44 E+00$	$26.70 \mathrm{E}+00$
AVERAGE HEAT EXCHANGERS TEIMPERATURES: BOTTOM: $10.00 \mathrm{E}+00$ TOP: $20.00 \mathrm{E}+00$						
BACK PLANE TEMPERATURES ARE :						
$I(55): \quad 20.83 E+00$						
$T(57): \quad 20.72 \mathrm{E}+100$						
T(72): $21.38 \mathrm{E}+00$						
$T(73): 21.10 \mathrm{E}+00$						
T(74): $21.50 \mathrm{E}+00$						
$T(75): 21.03 E+00$						
$T(76): \quad 21.18 \mathrm{E}+00$						
	T(77): 21.	$23 E+00$				

TABLE 3

TEMPERATURE DATA FOR INPUT POWER 1.5 W BOTTOM BOUNDARY AT $20^{\circ} \mathrm{C}$

AMBIEITT TEIP : 24.4 C VOL TMETER READING: 4.7082 V HEAT EXCHANGER TEMP.: $10-20 \mathrm{C}$						
ALL TEIPERATURES ARE IN DEGREES CELCIUS						
	CENTER	TOP	RIGHT	LEFT	BOTTOM	BACK
CHIP NO1: POWER	$\begin{aligned} & 33.28 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 31.29 E+00 \\ 15.17 E-01 \end{gathered}$	$31.67 E+00$	$31.63 \mathrm{E}+00$	$31.81 E+00$	$37.53 \mathrm{E}+00$
CHIP NO2: POWER	$\begin{aligned} & 33.22 \mathrm{E}+00 \\ & \text { (HATTS): } \end{aligned}$	$\begin{aligned} & 31.21 E+1010 \\ & 15.16 E-01 \end{aligned}$	$31.50 \mathrm{E}+00$	$30.68 E+00$	$31.25 E+00$	$36.83 E+00$
$\begin{aligned} & \text { CHIP NO3: } \\ & \text { POHER } \end{aligned}$	$\begin{aligned} & 31 \cdot 23 E+00 \\ & (\text { WATTS): } \end{aligned}$	$\begin{aligned} & 31 \cdot 26 E+00 \\ & 15.13 E-01 \end{aligned}$	$30.39 E+00$	$30.76 E+00$	$30.63 E+00$	$34.16 E+00$
CHIP NO4: POWER	$\begin{aligned} & 33.05 E+00 \\ & \text { (HATTS): } \end{aligned}$	$\begin{aligned} & 31.52 E+00 \\ & 14.98 E-01 \end{aligned}$	$31.54 \mathrm{E}+100$	$27.88 \mathrm{E}+00$	$31.60 E+00$	$35.83 E+00$
CHIP NO5: POWER	$\begin{aligned} & 32.56 \mathrm{E}+00 \\ & (\text { WATTS): } \end{aligned}$	$\begin{aligned} & 30.25 E+00 \\ & 15.04 E-01 \end{aligned}$	$30.605+00$	$30.44 E+00$	$31.30 E+00$	$34.65 E+00$
CHIP NOG: POWER	$\begin{aligned} & 20.87 E+00 \\ & \text { (HATTS): } \end{aligned}$	$\begin{aligned} & 32.79 E+90 \\ & 15.01 E-01 \end{aligned}$	$30.75 E+00$	$31.13 E+01$	$32.43 E+00$	$43.50 E+00$
$\begin{aligned} & \text { P NOT: } \\ & \text { POWER } \end{aligned}$	$\begin{aligned} & 32.79 E+100 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 32.54 E=00 \\ & 15.21 E-01 \end{aligned}$	$31.83 E+00$	$31.29 E+100$	$31.97 E+00$	$38.83 \mathrm{E}+00$
CHIP NO8: POWER	$\begin{aligned} & 32.45 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 31.64 E+00 \\ & 15.25 E-01 \end{aligned}$	$31.72 E+00$	$31.46 E+00$	$31.25 E+30$	43.11E+00
CHIP HO9: POWER	$\begin{aligned} & 31.47 E+00 \\ & \text { (HATTS): } \end{aligned}$	$\begin{aligned} & 31 \cdot 25 E+00 \\ & 15.14 E-01 \end{aligned}$	$31.12 E+00$	$30.80 \mathrm{E}+00$	$31.01 E+00$	$37.41 E+70$
AUERAGE HEAT EXCHAIIGERS TEMPERATURES: BOTTOM: $10.09 E+00$ TOP: $20.04 \mathrm{E}+00$						

BACK. PLAHE TEMPERATURES ARE :
$T(55): 23.97 E+00$
$T(56): \quad 24.51 \mathrm{E}+100$
$T(57): \quad 25.06 \mathrm{E}+00$
T(72): $24.93 \mathrm{E}+00$
$T(73): \quad 24.57 \mathrm{E}+00$
$T(74): \quad 24.85 E+00$
$T(75): 25.10 E+00$
T(76): $24.49 E+00$
T(77): 24.61E+00

TABLE 4

TEMPERATURE DATA FOR INPUT POWER 3.0 W BOTTOM BOUNDARY AT $20^{\circ} \mathrm{C}$

RESULTS ARE STURED III FILE: 09041705

AIABIENT TEMP : 24.5 C
YOLTHETER READING : 6.601 V
HEAT EXCHANGER TEMP.: $10-20 \mathrm{C}$
ALL TEMPERATURES ARE IN DEGREES CELCIUS

	CENTER	TOP	RIGHT	LEFT	BOTTOM	BACl
CHIP NOI: POWER	$49 \cdot 47 E+00$ (WATTS):	$\begin{aligned} & 45.65 E+00 \\ & 29.74 E-01 \end{aligned}$	$46.44 E+00$	$46.13 E+00$	$45.76 E+00$	$56.26 E+00$
CHIP NO2: POWER	$\begin{aligned} & 48.99 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 45.37 E+00 \\ 29.73 E-01 \end{gathered}$	$46.33 E+00$	$44.51 E+00$	$46.02 E+00$	$56.02 \mathrm{E}+00$
CHIP NO3: POWER	$44.62 E+00$ (WATTS):	$\begin{aligned} & 45.57 E+00 \\ & 29.63 E-01 \end{aligned}$	$45.04 \mathrm{E}+00$	$44.58 \mathrm{E}+00$	$44.60 E+00$	$51.20 E+00$
CHIP N04: POWER	$\begin{aligned} & 49.59 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{array}{r} 46.17 E+00 \\ 29.38 E-01 \end{array}$	$46.77 E+00$	$42.62 E+00$	$46.97 E+00$	$54.89 E+50$
CHIP HO5: POWER	$\begin{aligned} & 48.69 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 43.92 E+00 \\ 23.51 E-01 \end{gathered}$	45.19E+00	$44.75 E+00$	$46.43 E+00$	$52.53 \mathrm{E}+00$
CHIP N06: POWER	$\begin{aligned} & 37.80 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 48.64 E+00 \\ 29.40 E-01 \end{gathered}$	$45.04 \mathrm{E}+00$	$45.78 \mathrm{E}+100$	$47.85 E+00$	$68.62 \mathrm{E}+00$
'IP N07: POHER	$\begin{aligned} & 51.18 E+00 \\ & \text { (HATTS): } \end{aligned}$	$\begin{aligned} & 48.27 E+00 \\ & 29.82 E-01 \end{aligned}$	$47.48 \mathrm{E}+00$	$46.51 E+00$	$47.28 E+00$	$58.60 \mathrm{E}+00$
CHIP N08: POWER	$\begin{aligned} & 48.09 E+00 \\ & \text { (HATTS): } \end{aligned}$	$\begin{aligned} & 47.95 E+00 \\ & 29.91 E-01 \end{aligned}$	$47.09 \mathrm{~F}+00$	$46.58 \mathrm{E}+90$	$45.99 E+00$	$67.94 E+00$
CHIP NO9: POWER	$44.97 E+00$ (WATTS):	$\begin{gathered} 45.78 \mathrm{E}+00 \\ 29.63 \mathrm{E}-01 \end{gathered}$	$45.57 \mathrm{E}+00$	45.11E+00	$44.78 \mathrm{E}+00$	58. $25 \mathrm{E}+00$

AVERAGE HEAT EXCHANGERS TEIAPERATURES:
BOTTOM:
TOP:
$10.98 \mathrm{E}+00$
$20.08 \mathrm{E}+00$

BACK PLAME TEMPERATURES ARE :
T(55): $\quad 31.46 E+00$ $T(56): \quad 32.62 \mathrm{E}+1 \mathrm{O}$ T(57): $34.30 E+00$ $T(72): \quad 33.38 E+00$ T(73): $\quad 32.78 E+00$ T(74): $33.27 E+00$ $T(75): 33.99 E+00$ T(76): 32.43E+01) $T(77): 32.42 E+00$

TABLE 5

 REDUCED DATA FOR INPUT POWER 0.1 W

 REDUCED DATA FOR INPUT POWER 0.1 W BOTTOM BOUNDARY AT $20^{\circ} \mathrm{C}$

 BOTTOM BOUNDARY AT $20^{\circ} \mathrm{C}$}THE RAW Enf DATA ARE FROIA THE FILE: THE PONER SETTING PER CHIP WAS:
0802145.5
0.1 H

DNET(W)
Tavg-ts
Hus
\%UHC IN Hu
99.93E-03
74.63E-01
29. 10E-01
13.42E-01

TEMPERATURE BASED RAYLEIGH NUMBER + E-7 IS: 139.72E-03
\% IINCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMMEER IS : 134. $16 \mathrm{E}-02$
FLUIX BASED RAYLEIGH NUMBER * E-8 IS: $406.58 \mathrm{E}-04$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 458.54E-05
99.84E-03
74.15E-01
23.25E-0 1
13.50E-01

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 138.74E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : 135.03E-02
FLUX BASED RAYLEIGH NUMBER * E-8 IS: 405.97E-04
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 458.97E-05
$99.54 E-03 \quad 71.59 E-01 \quad 30.24 E-01 \quad 13.93 E-01$
TEAFERATURE BASED RAYLEIGH NUMBER + E-7 IS: $133.57 \mathrm{E}-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :139.86E-02 FLU: EASED RAYLEIGH FHMBER * E-8 IS: $403.37 E-04$ \% UNLEERTAINTY IIN FLUX BASED RAYLEIGH NUMBER IS: $459.86 \mathrm{E}-05$
$98.64 \mathrm{E}-03 \quad 70.22 \mathrm{E}-01 \quad 30.52 \mathrm{E}-01 \quad 14.25 \mathrm{E}-01$
TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 130.83E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : $142.58 \mathrm{E}-02$
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $399.28 \mathrm{E}-04$
\% UHCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: $464.52 \mathrm{E}-05$
$99.04 \mathrm{c}-03 \quad 75.15 \mathrm{E}-01 \quad 28.64 \mathrm{E}-01 \quad 13.32 \mathrm{E}-01$
TELAFERATURE BASED RAYLEIGH NUMBER * E-7 IS: $140.78 E-0 \dot{3}$
\% IHACERTAINTY IH THE TEMPERATURE BASED RAY!EIGH NUMBER IS : $133.23 E-02$ FLUX BASED RAYLEIGH MUHBER * E-8 IS: $4133.22 E-04$
\% UACERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 462.64E-05
$98.92 \mathrm{E}-03$ 91.515-01 23.49E-01 10.93E-01
TEMPERATURE BASED RAYLEIGH NUMBER *E-7 IS: 174.75E-03
\% UINCERTAINTY IH THE TEHPERATURE BHSED RAYLEIGH NUMBER IC :103.29E-02 FLUY BASED RAYLEIGH NUMBER * E-8 IS: 410.50E-04
\% UNCERTAINIY IN FLUX BASED RAYLEIGH HUMBER IS: 453.23E-05

$10.02 \mathrm{E}-02$	$75.85 \mathrm{E}-01,28.72 \mathrm{E}-01,1320 \mathrm{E}-01$

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $142.13 E-03$
\% UHCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :132.01E-02
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $408.40 \mathrm{E}-04$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 457.14E-05
$10.05 \mathrm{E}-02 \quad 75.98 \mathrm{E}-01 \quad 28.75 \mathrm{E}-01 \quad 13.18 \mathrm{E}-01$
TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $142.45 E-03$
\% UFICERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : 131.78E-02
FLUX BASED RAYLEIGH IUMBER * E-8 IS: $409.59 E-04$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 455.89E-05
9
TEIAPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $136.42 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH HUMBER IS :137.15E-02 FLUX BASED RAYLEIGH NIMMBER * E-8 IS: $404.94 E-04$
\% UNCERTAINTY IN FLUK BASED RAYLEIGH NUMEER IS: 453.52E-05

TABLE 6

REDUCED DATA FOR INPUT POWER 0.7 W BOTTOM BOUNDARY AT $20^{\circ} \mathrm{C}$

THIE RAW Emf DATA ARE FROH THE FILE: 08021717 THE POHER SETTIHG PER CHIP WAS: 0.7 HATTS

CHIP
QNET (W)
Tavg-Ts
Hu
$70.20 \mathrm{E}-02 \quad 14.24 \mathrm{E}+00 \mathrm{n}+10.76 \mathrm{E}+00$
\%UHC IN Nu
$70.34 \mathrm{E}-02$
TEIPERATURE BASED RAYLEIGH NIJMBER * E-7 IS: 297.08E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :703.04E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $308.85 \mathrm{E}-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 231.59E-04
70.16E-02
$14.08 \mathrm{E}+00$
$10.88 \mathrm{E}+00$
71.16E-02

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 283.28E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :711.21E-03
FLUX BASED RAYLEIGH NUMBER * E-3 IS: 308. $10 \mathrm{E}-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 231.71E-04

$$
\begin{array}{lll}
70.03 \mathrm{E}-02 & 13.66 \mathrm{E}+00 & 11.18 \mathrm{E}+00
\end{array}
$$

73.32E-02

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $273.59 \mathrm{E}-03$
\% IINCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :732.84E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $306.03 \mathrm{E}-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 232.17E-04

$$
69.32 \mathrm{E}-02 \quad 13.10 \mathrm{E}+00 \quad 11.54 \mathrm{E}+00 \quad 76.47 \mathrm{E}-02
$$

TEMPERATURE BASED RAYLEIGH NIJMBER * E-7 IS: $260.80 \mathrm{E}-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMABER IS :764.36E-03
FLIJX BASED RAYLEIGH NUMBER * E-8 IS: $301.00 \mathrm{E}-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NIJMBER IS: 234.54E-04
69.61E-02
13.71E+00
$11.08 \mathrm{E}+00$
73.06E-02

TEITPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $274.81 \mathrm{E}-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : 730.23E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: 304.37E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 233.57E-04
$63.49 \mathrm{E}-02 \quad 14.67 \mathrm{E}+00 \quad 10.34 \mathrm{E}+00 \quad 68.30 \mathrm{E}-02$
TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 297.03E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :682.63E-03
FLUX BASED RAYLEIGH NIJMBER * E-8 IS: $307.22 \mathrm{E}-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 233.95E-04
$70.42 \mathrm{E}-02 \quad 14.32 \mathrm{E}+0 \mathrm{n} \quad 10.73 \mathrm{E}+00 \quad 69.95 \mathrm{E}-02$
TEMPERATURE BASED RAYLEIGH NUMBER + E-7 IS: $288.35 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : 699.10E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $310.07 E-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 230.88E-04
$70.53 \mathrm{E}-02 \quad 14.06 \mathrm{E}+00 \quad 10.96 \mathrm{E}+00 \quad 71.25 \mathrm{E}-02$
TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $282.84 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : 712.17E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: 310.07E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 230.19E-04

TEIAPERATURE BASED RAYLEIGH NUMPER * E-7 IS: $273.90 \mathrm{E}-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : 732.34E-03
FLUX BASED RAYLEIGH NUMBER *E-8 IS: $306.28 E-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 232.01E-04

TABLE 7

REDUCED DATA FOR INPUT POWER 1.5 W BOTTOM BOUNDARY AT $20^{\circ} \mathrm{C}$

THE RPIH Enf DATA AFE FROM THE FILE:
08030205 T'AE POWER SETTING PER CHIP WAS:
1.5 WATTS

CHIF

$14.84 \mathrm{E}-01 \quad 17.77 \mathrm{E}+0 \mathrm{O} \quad 18.26 \mathrm{E}+00 \quad 56.38 \mathrm{E}-02$
TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 372.79E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :563.37E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: 680.72E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 227.65E-04

TEMPERATURE BASED RAYLEIGH NUMBER + E-7 IS: 476.17E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : 460.08E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: 723.92E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 223.36E-04
QNET (IN)
Tavg-Ts
$22.08 E+00$
$14.90 E+00$
\%UNIC IH Nu

TEIPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 424.85E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :453.37E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: 722.22E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 225.19E-04

EMPERATURE BASED RAYLEIGH NUMBER + E-7 IS: 475.36E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :460.71E-03 FLIJX BASED RAYLEIGH NUMBER * E-8 IS: 719.11E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 225.28E-04
14.95E-01
20. $92 \mathrm{E}+00$
$15.68 \mathrm{E}+00$
47.92E-02

TEMFERATURE BASED RAYLEIGH NUIABER + E-7 IS: 453.60E-03
\% UNICERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : 478.68E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $711.25 E-03$
\% UHCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 225.71E-04

$14.81 E-01$	21
1	$04 E+00$

TEMPERATURE BASED RAYLEIGH NUMBER E-7 IS: 457.00E-03
\% UINCERTAINTY IN THE TEHPERATURE BASED RAYLEIGH NUMBER IS : 475.76E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $705.05 \mathrm{E}-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH IJUMBER IS: 228.02E-04
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 227.07E-04
14.87E-01
$21.15 E+00$
$15.42 \mathrm{E}+00$
$47.39 E-0 \hat{2}$
TEMCRATAIITY III THE TEMPERATURE BASED RAYLEICH NUMEER
\% IHACERTAINTY IN THE TEMFERATURE BASED RAYLEIGH NUMPER IS :473.39E-03
FLUX BASED RAYLEIGH NUMBER + E-8 IS: 708.81E-03
15.09E-01 21.76E+00
15. $20 \mathrm{E}+00$
46.06E-02
$14.97 \mathrm{E}-01 \quad 21.07 \mathrm{E}+00 \quad 15.58 \mathrm{E}+00 \quad 47.53 \mathrm{E}-02$

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 457.63E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : 475.23E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: 712.32E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 225.59E-04

REDUCED DATA FOR INPUT POWER 3.0 W BOTTOM BOUNDARY AT $20^{\circ} \mathrm{C}$

THE RAW Emf DATA ARE FROM THE FILE:
08041705 THE PUIVER SETTING PER CHIP WAS: 3.0 WATTS

QNET (W)
Tavg-Ts
Nu
29.42E-01
$35.28 \mathrm{E}+00$
17.97E+00
\%UNC IM Nu

IEIMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $936.63 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUHBER IS :276.00E-03
FLUX BASED RAYLEIGH NUMBER * E-B IS: $168.28 E-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 194.60E-04
TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $915.94 E-0.3$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH HUMBER IS :280.60E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $167.20 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUHBER IS: 194.65E-04
29.36E-01 $33.82 E+00 \quad 19.20 E+00 \quad 29.67 E-02$

IEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $85.2 .2 B E-03$
\% UNCERTAINTY IN THE TENPERATURE BASED RAYLEIGH NUMBER IS :296.05E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $163.66 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 195.00E-04

$$
29.06 E-01 \quad 35.66 E+00 \quad 18.05 E+00 \quad 2 B .14 E-02
$$

TEHPERATURE BASED RAYLEIGH NUMEER * E-7 IS: 915.27E-03
\% UNCERTAINTY IN THE TEIMPERATURE BASED RAYLEIGH NUMBER IS :2B0.75E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $165.19 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH HUMBER IS: 195.99E-04
23.13E-01
35.27E+00
$18.32 E+00$
28. $45 \mathrm{E}-02$

TEIAPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $901.52 \mathrm{E}-03$
\% UHEERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :283.B9E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $165.19 E-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 196.17E-04
$29.08 \mathrm{E}-01 \quad 32.37 \mathrm{E}+00 \quad 19.35 \mathrm{E}+00$
30.99E-02

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $804.05 \mathrm{E}-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH. NUMBER IS :309.31E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $159.62 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 196.B9E-04

$$
29.50 \mathrm{E}-01 \quad 37.54 \mathrm{E}+00 \quad 17.42 \mathrm{E}+00 \quad 26.74 \mathrm{E}-02
$$

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $981.44 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER ${ }^{\top}$ IS :266.69E-0.3 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $170.99 E-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 194.07E-04

$$
\text { 29.59E-01 } \quad 36.23 \mathrm{E}+00 \quad 18.09 \mathrm{E}+00 \quad 27.71 \mathrm{E}-02
$$

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $934.88 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :276.38E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: 169.15E-02
$\%$ UMCERTAIMTY IN FLUX BASED RAYLEIGH NUMBER IS: 193.51E-04
$29.37 \mathrm{E}-01 \quad 34.23 \mathrm{E}+01 \quad 18.9 \mathrm{BE}+00 \quad 29.32 \mathrm{E}-02$
TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 866. $10 \mathrm{E}-03$ \% INCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :292.51E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $164.42 \mathrm{E}-02$ \% UNCERTAINTY IN FLUX BASED RAYLEIGH NJMBER IS: . 194.95E-04

TABLE 9

TEMPERATURE DATA FOR INPUT POWER 0.1 W BOTTOM BOUNDARY INSULATED

```
    TMESE FESULTS AFEE STOFED IN FILE: 0822iこ55
            AMBIENT TEMF NAS: 23.0 C
            VOLTMETEF REARING INAS: 1.2134 V
            RATH TEMP WAS: 10 C-IHSUL
                ALL TEMPERATURES ARE IN DEGREES CELCIUS
            CENTER TOP RIGHT LEFT BOTTOM BACN
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CHIF 101 : PCLER & \[
\begin{aligned}
& \text { 15. SDE +00 } \\
& \text { (NATTS): }
\end{aligned}
\] & \[
\begin{aligned}
& 15.85 E+00 \\
& 10.08 E-02
\end{aligned}
\] & \(15.85 E+00\) & 15.82E+00 & \(15.87 E+00\) & \(16.36 E+00\) \\
\hline CHIF NO2: POWER & \[
\begin{aligned}
& 15.32 E+00 \\
& (\sim A T T S):
\end{aligned}
\] & \[
\begin{array}{r}
15.95 E+00 \\
10.07 E-02
\end{array}
\] & 15.98E+00 & \(15.87 E+00\) & \(15.95 E+00\) & \(16.44 E+00\) \\
\hline CHIP NO3: POWE & \[
\begin{aligned}
& \text { TE. } 7 \text { E+n0 } \\
& \text { WATTS): }
\end{aligned}
\] & \[
\begin{aligned}
& 15.66 E+00 \\
& 10.05 E-02
\end{aligned}
\] & \(15.78 E+00\) & \(15.825+00\) & \(15.86 E+30\) & 16.14E+00 \\
\hline CHIP NOA: POWEF & EATTS? & \[
\begin{aligned}
& 15.93 E+90 \\
& 99.49 E-03
\end{aligned}
\] & 15.72E+00 & i5.64E+00 & 15.71E+00 & 16.12E+90 \\
\hline \[
\begin{array}{r}
\text { CHIP } 105: \\
\text { PCOER }
\end{array}
\] & \[
\begin{aligned}
& \text { 15.7CE+1?? } \\
& \text { MATSS): }
\end{aligned}
\] & \[
\begin{aligned}
& 15.87 E+01 \\
& 93.83 E-0 ?
\end{aligned}
\] & \(15.84 E+00\) & 15.77E+00 & \(15.85 E+00\) & \(16.20 E+00\) \\
\hline CHIP NOS: POWEF & \[
\begin{aligned}
& \text { 17.9JE + } 170 \\
& \text { (WATIST: }
\end{aligned}
\] & \[
\begin{aligned}
& 15.73 E+0 \\
& 99.7 \Delta E-03
\end{aligned}
\] & 15.77E+00 & 15.71E+00 & \(12.78 E+00\) & 16.59E+100 \\
\hline \(\therefore\) - NOT: PCHER & \[
\begin{aligned}
& \text { 15. -5E-01 } \\
& \text { WATTS: }
\end{aligned}
\] & \[
\begin{aligned}
& 15.7 \mathrm{OE}+00 \\
& 10.11 \frac{1}{2}-02
\end{aligned}
\] & \(15.75 E+00\) & 15.71E+00 & \(15.84 E+00\) & 16.41E+0n \\
\hline ZHIF MO8: & 15.85E-00 (山HTTS): & \[
\begin{aligned}
& 15.36 E=00 \\
& 10.1 \Delta E-02
\end{aligned}
\] & 15.315-00 & \(15.82 \mathrm{E}+00\) & \(15.83 E+00\) & 16.56E+00 \\
\hline CHIP NOQ: FOWER & \[
\begin{aligned}
& 15.56 E+110 \\
& \text { (WATTS): }
\end{aligned}
\] & \[
\begin{aligned}
& 15.49 E+100 \\
& 10.05 E-02
\end{aligned}
\] & \(15.625+10\) & \(15.59 E+00\) & 15.64E+00 & i6. \(15 \mathrm{E}+10\) \\
\hline
\end{tabular}
    HEHT EICHANGERS TEMPERATURES:
            BOTTOM:
            TOP:
                RIGHT 
```

 BACk PLAIIE TEMFERATURES ARE :
 T(55): \(15.91 E+00\)
 Tr56 : \(15.41 \bar{E}+00\)
 \(T(57): 16.01 E+00\)
 T172): \(16.73 E+00\)
 T(73): 16.78E+110
 T(74): \(\quad 1 . .24 E+00\)
 T175): \(15.42 E+100\)
 T(76): \(16.75 E+00\)
 T(77): 16.69E+00
 TABLE 10

TEMPERATURE DATA FOR INPUT POWER 0.7 W BOTTOM BOUNDARY INSULATED

THESE FESULTS ARE STORED IN FILE: 08222257

> AMBIENT TEMP WAS: 21.7 C
> VOLTMETER READING WAS: 3.22 V
> BATH TEMP WAS: $10 \mathrm{C}-[1 / \mathrm{S}$

	CENTER	TOP	RIGHT	LEFT	BOTTOM	BACK
$\begin{aligned} & \text { CHIP NO1: } \\ & \text { POWER } \end{aligned}$	$23.67 E+00$ (WATTS):	$\begin{aligned} & 22 \cdot 96 E+00 \\ & 70.88 E-02 \end{aligned}$	$22.84 E+10$	$22.84 \mathrm{E}+00$	$22.85 E+00$	25.39E +00
CHIP NO2: POWER	$23.52 \mathrm{E}+00$ (WATTS):	$\begin{aligned} & 22.57 E+00 \\ & 70.83 E-02 \end{aligned}$	22.76E +100	$22.30 E+00$	$22.68 \mathrm{E}+00$	$25.39 E+00$
CHIP NO3: POHER	$\begin{aligned} & 22.90 E+00 \\ & (W A T T S): \end{aligned}$	$\begin{aligned} & 22.52 E+00 \\ & 70.63 E-02 \end{aligned}$	$22.51 \mathrm{E}+00$	$22.47 \mathrm{E}+00$	$22.24 E+00$	$24.00 \mathrm{E}+100$
CHIF NO4: POWER	$\begin{aligned} & 23.46 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 22.91 E+00 \\ & 69.39 E-02 \end{aligned}$	$22.73 \mathrm{E}+10$	$22.17 \mathrm{E}+00$	$22.67 \mathrm{E}+00$	$24.75 E+00$
CHIP NO5: POWER	$\begin{aligned} & 23 \cdot 20 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 22.20 E+00 \\ & 70.28 E-02 \end{aligned}$	$22.27 E+00$	$22.14 E+00$	$22.60 E+00$	$24.21 E+00$
CHIP MO6: POWER	$\begin{aligned} & 26.25 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 22.78 E+00 \\ & 70.15 E-02 \end{aligned}$	$22.23 E+00$	22.30E+00	$18.88 E+00$	$26.38 E+00$
$\begin{array}{r} \text { r - } \mathrm{P} \text { NO7: } \\ \text { POWER } \end{array}$	$\begin{aligned} & 23.35 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 23.15 E+00 \\ & 71.09 E-12 \end{aligned}$	$22.80 E+150$	$22.60 E+00$	22.93E+00	$25.70 \mathrm{E}+00$
CHIF 1108: POWER	$\begin{aligned} & 23.17 E+U 0 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 22.87 E+00 \\ & 71.30 E-02 \end{aligned}$	$22.85 E+00$	22.70E +60	$22.60 E+00$	$26.66 E+00$
$\begin{aligned} & \text { CHIF NOS: } \\ & \text { PDWER } \end{aligned}$	$\begin{aligned} & 22.70 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 22.48 E+00 \\ & 70.72 E-02 \end{aligned}$	$22.43 E+00$	$22.26 E+00$	$22.24 E+00$	$25.53 \mathrm{E}+00$

HEAT EXCHAMGERS TEITPERATURES:
BOTTOM:

$$
\begin{array}{cc}
\text { RIGHT } & \text { LEFT } \\
17.35 \mathrm{E}+00 & 17.36 \mathrm{E}+00 \\
10.29 \mathrm{E}+00 & 37.63 \mathrm{E}-01
\end{array}
$$

TOP:

BACK PLANE TEMPERATURES ARE :

$T(55):$	$19.34 E+00$
$T(56) \vdots$	$19.81 E+00$
$T(57) \vdots$	$19.74 E+00$
$T(72) \vdots$	$20.01 E+00$
$T(73) \vdots$	$71.30 E-01$
$T(74) \vdots$	$19.93 E+00$
$T(75) \vdots$	$19.59 E+00$
$T(76) \vdots$	$19.76 E+00$
$T(77) \vdots$	$19.88 E+00$

TABLE 11

TEMPERATURE DATA FOR INPUT POWER 1.1 W BOTTOM BOUNDARY INSULATED

THESE RESULTS ARE STORED IN FILE: 08231010

AHBIENT TEHP WAS: 21.33 C VOL TMETER READIMG WAS: 4.00 V BATH TEMP WAS: 10 C-IMS

ALL TEMPERATURES ARE IN DEGREES CELCIUS

	CENTER	TOP	RIGHT	LEF T	BOTTOM	BACK
CHIP NO1: POWER	$\begin{aligned} & 28.35 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 26.73 E+00 \\ 10.96 E-01 \end{gathered}$	27. 12E+00	27.11E+01	27.13E+00	$30.82 \mathrm{E}+100$
CHIP MO2:	$\begin{aligned} & 28.16 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 26.70 E+00 \\ 10.95 E-01 \end{gathered}$	$26.93 E+00$	$26.29 E+00$	26.90E+00	$30.97 E+0 n$
CHIP NO3: POWER	$26.96 E+00$ (WATTS):	$\begin{gathered} 26.97 E+00 \\ 10.93 E-01 \end{gathered}$	26.70E+00	$25.57 E+00$	26.26E+00	28.94E+100
$\begin{aligned} & \text { CHIP NO4: } \\ & \text { POWER } \end{aligned}$	$\begin{aligned} & 28.21 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 27.02 \mathrm{E}+00 \\ & 10.82 \mathrm{E}-01 \end{aligned}$	27.14E+100	$26.29 E+00$	27.07E+00	$30.17 E+00$
CHIP NO5: POWER	$27.75 E+00$ (WATTS):	$\begin{aligned} & 26.13 E+00 \\ & 10.87 E-01 \end{aligned}$	$26.25 E+00$	$26.09 E+00$	26.86E +00	$29.20 E+100$
CHIP N06: POWER	$\begin{aligned} & 27.17 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 27.20 E+00 \\ & 10.84 E-01 \end{aligned}$	$25.33 E+100$	$26.45 E+00$	$25.80 E+00$	$32.61 E+100$
©-P N07: POWER	$\begin{aligned} & 28.65 E+00 \\ & \text { (WATSS): } \end{aligned}$	$\begin{aligned} & 27.60 E+00 \\ & 10.99 E-01 \end{aligned}$	27.07E+80	$26.77 E+00$	$27.15 E+00$	$31.29 E+010$
CHIP NOB: POWER	$\begin{aligned} & 27.65 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 26.93 E+00 \\ & 11.02 E-01 \end{aligned}$	$27.08 \mathrm{E}+00$	$26.92 E+00$	$26.57 E+100$	$32.87 E+00$
$\begin{aligned} & \text { CHIP NOQ: } \\ & \text { POWER } \end{aligned}$	$\begin{aligned} & 26.81 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 26.55 E+100 \\ & 10.93 E-01 \end{aligned}$	$26.59 E+110$	$26.36 E+00$	26.23E+00	$31.29 E+00$

HEAT EXCHANGERS TEMPEFATURES:
BOTTOM:

RIGHT	LEFT
$18.43 E+00$	$18.43 E+100$
$10.21 E+00$	$97.25 E-01$

BACK PLANE TEMPERATURES ARE :

$T(55):$	$21.49 E+00$
$T(56) \vdots$	$22.00 E+00$
$T(57) \vdots$	$22.27 E+00$
$T(72) \vdots$	$22.32 E+00$
$T(73) \vdots$	$21.94 E+00$
$T(74) \vdots$	$22.22 E+00$
$T(75) \vdots$	$22.04 E+00$
$T(76) \vdots$	$21.97 E+00$
$T(77):$	$22.12 E+00$

TABLE 12

TEMPERATURE DATA FOR INPUT POWER 3.0 W BOTTOM BOUNDARY INSULATED

AMBIEMT TEMP WAS: WAS ${ }^{2}{ }^{2} 4.00 \mathrm{~V}$YOLTHETER READIHG WAS: 4.00 EATH TEMP WAS: 10 C-IHIS						
ALL TEIPERATURES ARE IN DEGREES CELCIUS						
	CENTER	TOP	RIGHT	LEFT	BOTTOM	BACK
CHIP NO1: POWER	$\begin{aligned} & 54.28 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 49.66 E+00 \\ & 30.12 E-01 \end{aligned}$	$50.72 \mathrm{E}+00$	$50.63 E+00$	$50.34 E+00$	$53.54 \mathrm{E}+00$
$\begin{aligned} & \text { CHIP NO2: } \\ & \text { POWER } \end{aligned}$	$\begin{aligned} & 53.84 E+100 \\ & \text { (HATTS): } \end{aligned}$	$\begin{aligned} & 49.73 E+00 \\ & 30.11 E-01 \end{aligned}$	$50.52 \mathrm{E}+00$	$48.65 E+00$	$50.06 E+00$	$60.06 \mathrm{E}+00$
CHIP NO3: POWER	$\begin{aligned} & 50.25 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 50.25 E+00 \\ & 30.06 E-01 \end{aligned}$	49. $56 E+00$	$49.03 E+00$	$47.98 E+00$	$55.22 \mathrm{E}+00$
$\begin{aligned} & \text { CHIF NO4: } \\ & \text { FOWER } \end{aligned}$	$\begin{aligned} & 53.56 E+00 \\ & \text { (HATTS): } \end{aligned}$	$\begin{gathered} 49.90 \mathrm{E}+00 \\ 29.77 \mathrm{E}-01 \end{gathered}$	$50.54 \mathrm{~F}+10$	$48.37 E+00$	$50.35 E+00$	58.19E+00
CHIF :105: POWER	$\begin{aligned} & 52 \cdot 76 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 47.84 E+000 \\ 29.89 E-01 \end{gathered}$	$48.71 E+00$	$48.29 E+00$	$49.81 E+00$	$55.75 \mathrm{E}+00$
$\begin{aligned} & \text { CHIP MO6: } \\ & \text { POWER } \end{aligned}$	$\begin{aligned} & 55.76 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{array}{r} 5 i .99 \mathrm{E}+100 \\ 29.78 \mathrm{E}-01 \end{array}$	$48.65 E+00$	49.14E+00	$50.78 \mathrm{E}+00$	$70.28 \mathrm{E}+00$
$\begin{aligned} & \text { - P HOW: } \\ & \text { POWER } \end{aligned}$	$\begin{aligned} & 55.44 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 51.67 E+00 \\ & 30.21 E-01 \end{aligned}$	$50.76 E+00$	$50.15 \mathrm{E}+00$	$50.57 \mathrm{E}+00$	$60.78 \mathrm{E}+90$
CHIP N08: POWER	$\begin{aligned} & 52 \cdot 46 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{gathered} 51 \cdot 07 E+90 \\ 30.30 E-01 \end{gathered}$	$51.00 E+00$	$50.88 \mathrm{E}+00$	$50.31 E+00$	$67.37 E+100$
CHIP N09: POWER	$\begin{aligned} & 50.77 E+00 \\ & \text { (WATTS): } \end{aligned}$	$\begin{aligned} & 50.34 E+00 \\ & 30.06 E-01 \end{aligned}$	49.91E+00	$49.40 E+00$	49.60E+00	$51.43 \mathrm{E}+00$
HEAT E	EXCHANGERS BOTTOM: TOP:	TEITPERATURES	$\begin{aligned} & \text { RIGH } \\ & 21.94 \\ & 11.02 \mathrm{E} \end{aligned}$	$\begin{array}{cc} T & \text { LEFT } \\ \mathrm{E}+00 & 21.96 \mathrm{E} \\ \mathrm{E}+10 & 98.81 \mathrm{E} \end{array}$	$\begin{array}{r} E+00 \\ E-01 \\ \hline \end{array}$	

BACK PLAME TEMPERATURES ARE :

$T(55):$	$32.74 \mathrm{E}+00$
$T(56) \vdots$	$34.26 \mathrm{E}+00$
$T(57) \vdots$	$36.45 \mathrm{E}+00$
$T(72) \vdots$	$35.41 \mathrm{E}+00$
$T(73) \vdots$	$34.76 \mathrm{E}+00$
$T(74) \vdots$	$35.18 \mathrm{E}+00$
$T(75) \vdots$	$35.96 \mathrm{E}+00$
$T(76) \vdots$	$34.28 \mathrm{E}+00$
$T(77):$	$34.30 \mathrm{E}+00$

TABLE 13

REDUCED DATA FOR INPUT POWER 0.1 W BOTTOM BOUNDARY INSULATED

GIET (W)
Tavg-Ts
Hu
\%UNC III Hu
10.09E-02
$58.34 \mathrm{E}-01$
37.56E-01
17.17E-01

TEIFPERATIJRE BASED RAYLEIGH HUMEER * E-7 IS: 107.04E-03
\% UHCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :171.73E-02 FLUX BASED RAYLEIGH NUMBER * E-8 IS: 402.00E-04 \% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 332.90E-05
$10.12 \mathrm{E}-02 \quad 59.41 \mathrm{E}-01 \quad 36.38 \mathrm{E}-01 \quad 16.87 \mathrm{E}-01$ TEMPERATURE BASED RAYLEIGH IUMBER * E-7 IS: 109.12E-1)3 \% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :168.66E-02 FLUX BAGFD RAYLEIGH NUMMBER * E-8 IS: $403.56 \mathrm{E}-04$ \% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 391.87E-05
10.06E-02
59.19E-01
35.91E-01
16.93E-01 TEMPERATURE EASED FAYLEIGH NUMBER * E-7 IS: $108.69 E-13$ \% UNCERTAINTY IN THE TEHPERATURE BASED RAYLEIGH NUMBER IS :163.28E-02 FLUX BASED RAYLEIGH NUMBER * E-9 IS: 401.14E-04 \% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 394.13E-05
$10.05 \mathrm{E}-02 \quad 60.09 \mathrm{E}-01 \quad 36.31 \mathrm{E}-01 \quad 16.67 \mathrm{E}-01$ TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $110.46 E-03$ \% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : $166.74 E-02$ FLUX BASED RAYLEIGH NUMBER * E-R IS: 401.11E-04 \% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 394.58E-05

99.33E-03 53.11E-01 37.11E-01 17.24E-01 TEMPERATURE BASED RAYLEIGH NUHBER * E-7 IS: $106.53 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :172.43E-02 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $395.51 \mathrm{E}-04$ \% UHCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 399.24E-05

$99.58 \mathrm{E}-03 \quad 53.05 \mathrm{E}-01 \quad 34.29 \mathrm{E}-01 \quad 15.89 \mathrm{E}-01$ TEMPERPTURE BASED RAYLEIGH NUMBER * E-7 IS: $116.29 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :158.90E-02 FLUX BASED RAYLEIGH NUMBER * E-8 IS: 398.81E-04
\% UNCERTAIMTY IN FLUX BASED RAYLEIGH NUMBER IS: 398.24E-05

TABLE 14

REDUCED DATA FOR INPUT POWER 0.7 W BOTTOM BOUNDARY INSULATED

THE RAlN Emf DATA ARE FROIH THE FILE: 08222257 THE POINER SETTING PER CHIP WAS: 0.7 WATTS

CHIP
70.55E-02
$12.88 \mathrm{E}+00$
$1.95 \mathrm{E}+00$
$77.82 \mathrm{E}-02$
TEMPERA TURE BASED RAYLEIGH NUMBER *E-7 IS: 255.86E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :777.86E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: 305.69E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 233.16E-04

TEMPERATURE BASED RAYLEIGH NUMBER *E-7 IS: $246.04 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :805.10E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $301.64 \mathrm{E}-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 235.11E-04

TABLE 15

REDUCED DATA FOR INPUT POWER 1.1 W BOTTOM BOUNDARY INSULATED

> THE RAW EMf DATA ARE FROM THE FILE: 18231010 THE FOWER SETTIHG PER CHIP WAS: 1.1 WATTS

DHET (H)
Tavg-Ts
Hu
\%UNC IN NU
10.84E-01
$17.53 E+00$
$13.52 E+00$
57.17E-122

TEMPERATURE BASED RAYLEIGH NUHBER + E-7 IS: $365.80 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :571.25E-03
FLUX BASED RAYLEIGH NUMBER * E-9 IS: $494.53 E-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 226.98E-04
$10.83 \mathrm{E}-01 \quad 17.19 \mathrm{E}+00 \quad 13.77 \mathrm{E}+00 \quad 58.29 \mathrm{E}-02$
TEMFERATURE BASED RAYLEIGH NUMBER * E-7 IS: $357.49 E-03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLE IGH NUHBER IS :582.43E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $432.30 \mathrm{E}-03$ \% UNCERTAINTY IN FLJX BASED RAYLEIGH NUMBER IS: 227.14E-04
10.81E-01
$16.77 E+00$
$14.09 E+00$
59.75E-02

TEMPERATURE BASED RAYLEIGH NIJMBER * E-7 IS: 347.17E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :597.04E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $489.01 \mathrm{E}-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 227.58E-04
10.70E-01
17.30E +00
$13.525+00$
57.93E-02

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $360.14 E-03$
\% UNICERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :578.80E-03 FLUX BASED RAYLEIGH NUNBER * E-8 IS: 487.09E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 229.85E-04
$10.75 \mathrm{E}-01 \quad 16.78 \mathrm{E}+00 \quad 14.00 \mathrm{E}+00 \quad 59.71 \mathrm{E}-02$
TEIAPERATIJRE BASED RAYLEIGH NIJMBER * E-7 IS: 347.42E-03
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :596.67E-03 FLUX BASED RAYLEIGH NUMBER + E-8 IS: 486.30E-03
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 228.88E-04

$10.87 \mathrm{E}-01 \quad 17.61 \mathrm{E}+00 \quad 13.50 \mathrm{E}+00 \quad 55.91 \mathrm{E}-02$
TEMPERATURE BASED RAYLEIGH NUMBER *E-7 IS: $367.76 E^{5} 03$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :568.68E-03 FLUX BASED RAYLEIGH HIJMBER * E-8 IS: $495.47 E-03$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 226.30E-04

TABLE 16

REDUCED DATA FOR INPUT POWER 3.0 W BOTTOM BOUNDARY INSULATED

THE RAW Emf [IATA ARE FROH THE I'ILE: 08231310 THE POWER SETTING PER CHIP WAS: 3.0 WATTS

ONET (W)
Tavg-Ts
Nu
\%UNC IN Nu
29.78E-01
41.31E+00
$16.01 E+00$
24.31E-02

TEIAPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $110.90 \mathrm{E}-02$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :242.30E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $177.54 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBFR IS: 202.57E-04
29.77E-01
$40.60 \mathrm{E}+00$
$16.28 \mathrm{E}+00$
24.74E-02

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 108.25E-02
\% UNCERTAINTY IN THE TEIPEERATURE BASED RAYLEIGH NUMBER IS :246.54E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $176.18 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 202.65E-04

$$
29.72 \mathrm{E}-01 \quad 39.13 \mathrm{E}+00 \quad 16.84 \mathrm{E}+00
$$

25.66E゙-02

TEIAPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $102.84 \mathrm{E}-02$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :255.82E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $173.21 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 203.01E-04

$$
29.42 \mathrm{E}-01 \quad 40.51 \mathrm{E}+00 \quad 16.12 \mathrm{E}+00 \quad 24.79 \mathrm{E}-02
$$

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 107.92E-02
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :247.08E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: 173.98E-02
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 205.02E-04

29.55E-01

$39.52 \mathrm{E}+00$
$16.59 E+00$
25.41E-02

TEIPPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 104.27E-02
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :253.28E-03
FLUX BASED RAYLE IGH NUliBER * E-8 IS: $172.94 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 204.15E-04

$$
29.44 E-01 \quad 41.15 E+00 \quad 15.99 E+00 \quad 24.42 E-02
$$

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: $110.27 E-02$
\% UNCERTAINTY IN THE TEHPERATURE BASED RAYLEIGH NUMBER IS :243.29E-03
FLUX BASED RAYLEIGH HUMBER * E-8 IS: $175.19 E-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 204.93E-04
29.87E-01
41.77E+00
$15.89 E+00$
24.05E-02

TEIAPERATURE BASED RAYLEIGH NUMBER *E-7 IS: $112.63 \mathrm{E}-2$
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :239.64E-03
FLUX BASED RAYLEIGH NUMBER * E-8 IS: 178.94E-02
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 201.94E-04
29.96E-01 $40.95 E+00 \quad 16.25 E+00$
24.53E-02

TEMPERATURE BASED RAYLE IGH NUMBER * E-7 IS: 109.55E-02
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS : $244.43 E-03$
FLUX BASED RAYLEIGH NUMBER * E-8 IS: $177.96 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 201.34E-04

TEMPERATURE BASED RAYLEIGH NUMBER * E-7 IS: 104.65E-02
\% UNCERTAINTY IN THE TEMPERATURE BASED RAYLEIGH NUMBER IS :252.60E-03 FLUX BASED RAYLEIGH NUMBER * E-8 IS: $174.11 \mathrm{E}-02$
\% UNCERTAINTY IN FLUX BASED RAYLEIGH NUMBER IS: 203.00E-04

TEMPERATURE DATA FOR INPUT POWER 0.1 W CHAMBER WIDTH $=30 \mathrm{~mm}$

```
    RESULTS ARE STORED IN FILE: 10161810
    EXPERIMENT CARRIED OUT AT
    AMBIENT TEMP (CELSIUS) OF: 24.33
    BATH TEMP : 10 C-10 C
    TEMPERATURE READINGS IN DEGREES CELSIUS
        CENIER 1OP RIGHT LEFT BOTIOM BACK
    CHIP NOI: 12.806 12.761 12.736 12.771 12.616 15.431
    POWER (WATIS): .0983
CHIP NO2: 12.954 12.894 12.591 12.861 12.816 15.438
    POWER (WATIS): .099
CHIP NO3: 13.093 12.956 00.000 12.986 13.076 15.451
    POWER (WATTS): .0996
CHIP NO4: 12.764 12.731 12.536 12.574 12.484 15.441
    POWER (HATTS): .0990
CHIP N05: 12.831 12.894 12.836 12.824 12.801 15.446
    POWER (HATTS): .0993
CHIP N06: 13.019 12.914 12.979 11.858 12.746 15.448
    POWER (WATTS): .0995
CHIP NO7: 12.689 12.686 12.706 12.684 12.559 15.445
POHER (WATTS): .0992 
CHIP NO8: 13.039 12.941 12.966 00.000 12.901 15.442
POWER (WATTS): .0990
CHIP N09: 13.256 13.114 12.834 13.144 13.144 15.445
POWER (WATTS): . 0992
HEAT EXCHANGERS TEMPERATURES: RIGHI CENTER LEFT
        BOTTOM:
        TOP:
\begin{tabular}{llr} 
RIGHI & CENTER & LEFT \\
09.967 & 10.012 & 09.997 \\
10.037 & 00.000 & 10.042
\end{tabular}
```

BACK PLANE TEHPERATURES :
T(55): 12.656
T(56): 12.961
1(57): 12.709
T(74): 13.131
1(75): 13.561
T(76): 13.671
T(77): 13.366
SOURCE VOLTAGE: 1.225
VOITAGE TO THE HEAIERS :

CHIP	* 1:	. 972
CHIP	*2:	1.027
CHIP	* 3 :	1.022
CHIP	4:	1.024
CHIP	*5:	958
CHIP	*6:	1.022
CHIP	*7:	1.023
CHIP	*8:	1.023
CHIP	9:	1.023

TABLE 18

TEMPERATURE DATA FOR INPUT POWER 0.7 W CHAMBER WIDTH $=30 \mathrm{~mm}$

```
    RESULIS ARE STORED IN FILE: 10170950
    EXPERIMENT CARRIED NUT AT
    AMBIENT TEMP (CELSIUS) OF: 24.78
    BAIH TEMP : \(10 \mathrm{C}-10 \mathrm{C}\)
    TEMPERATURE READINGS IN DEGREES CELSIUS
        CENTER TOP RIGHI LEFT BOTTOM BACK.
\(\begin{array}{lllllll}\text { CHIP NO1: } 21.48 & 21.22 & 21.08 & 21.31 & 20.01 & 24.28\end{array}\)
    POWER (NATTS): . 708
\(\begin{array}{lllllll}\text { CHIP NO2: } 22.18 & 21.50 & 18.45 & 21.41 & 20.88 & 24.34\end{array}\)
    POWER (WATTS): . 712
\(\begin{array}{llllll}\text { CHIP NO3: } 22.65 & 21.48 & 00.00 & 21.56 & 21.98 & 24.44\end{array}\)
    POWER (WATTS): . 719
\(\begin{array}{lllllll}\text { CHIP NO4: } 21.68 & 21.26 & 20.78 & 21.12 & 20.37 & 24.39\end{array}\)
    POWER (HATIS): . 715
\(\begin{array}{llllll}\text { CHIP N05: } 21.93 & 21.19 & 21.53 & 21.74 & 21.48 & 24.42\end{array}\)
    POWER (WATTS): . 718
\(\begin{array}{lllllll}\text { CHIP NOG: } 22.75 & 21.81 & 22.07 & 20.73 & 20.12 & 24.48\end{array}\)
    \(\begin{array}{lllll}\text { POWER (WATTS): }{ }_{2} .^{.721} & & \\ \text { NOT: } 21.14 & 20.83^{21.34} & 20.95 & 19.34 & 24.44\end{array}\)
    POWER (HATTS): . 719
\(\begin{array}{llllll}\text { CHIP N08: } 22.00 & 21.42 & 21.32 & 00.00 & 20.87 & 24.43\end{array}\)
    POWER (WAITS): . 718
CHIP NO9: 22.65 20.64 \(18.15 \quad 22.02 \quad 21.83 \quad 24.42\)
POWER (WATTS): . 717
HEAT EXCHANGERS TEMPERATURES: RIGHT CENIER LEFT
```

BOTTOH: TOP:

```
\begin{tabular}{ccr} 
RIGHT & CENIER & LEFT \\
09.922 & 10.017 & 09.972 \\
09.977 & 00.000 & 10.060
\end{tabular}
BACK PLANE TEMPERATURES :
T(55): 15.191
I(56): 15.611
T(57): 14.265
I(74): 15.651
T(75): 16.079
I(76): 16.521
T(77): 15.350
SOURCE VOLTAGE: 3.288
VOLTAGE TO THE HEAIERS :
\begin{tabular}{ll} 
CHIP \(1:\) & 2.610 \\
CHIP \(2 \vdots\) & 2.756 \\
CHIP \(3 \vdots\) & 2.743 \\
CHIP 4: & 2.747 \\
CHIP \(5:\) & 2.597 \\
CHIP \(6 \vdots\) & 2.741 \\
CHIP \(7 \vdots\) & 2.743 \\
CHIP & 2.744 \\
CHIP \(9:\) & 2.745
\end{tabular}
```


TEMPERATURE DATA FOR INPUT POWER 1.1 W CHAMBER WIDTH $=\mathbf{3 0} \mathbf{~ m m}$

```
    RESULTS ARE STORED IN FILE: 10171720
    EXPERIMENT CARRIED OUT AT
    AMBIENT TEMP (CELSIUS) OF: 25.94
    BATH TEMF: 10 C-10 C
    TEMPERATURE READINGS IN DEGREES CELSIUS
        CENTER IOP RIGHT LEFT BOTTOM BACK
CHIP NO1: 26.38 25.79 25.94 26.17 24.21 29.857
    POWER (WATTS): 1.092
CHIP NO2: 27.34 26.00 22.01 26.17 25.62 29.96
        POWER (WATTS): 1.099
CHIP NO3: 27.67 25.73 00.00
            26.08 26.69
        30.11
    POWER (WATIS): 1.1093
CHIP NO4: 26.74 26.07 25.51 25.00 24.85 30.02
    POWER (HATTS): 1.103
CHIP NO5: 29.78 25.86 26.40 26.71 26.35 
        POWER (WATTS): 1.107
CHIP NOG: 27.51 25.54 26.74 25.55 24.17 30.16
    POWER (WATTS): 1.113
CHIP HO7: 25.80 25.40 26.18 25.63 22.98 30.10
        POWER (WATIS): 1.109
CHIP HO8: 27.06 25.80 26.15 100.00 25.29 30.11
    POWER (HATIS): 1.109
CHIP NO9: 27.79 24.71 21.36 26.94 26.60 30.11
    POWER (HATTS): 1.110
HEAT EXCHANGERS TEMPERATURES:
        BOTTOM:
        TOP:
\begin{tabular}{rlr} 
RIGHT & CENIER & LEFT \\
09.924 & 10.015 & 09.987 \\
10.010 & 00.000 & 10.068
\end{tabular}
BACK FLAME TEMPERATURES :
T(55): 16.88
T(56): 17.48
T(57): 15.70
T(74): 17.57
T(75): 18.00
T(76): 18.49
T(77): 17.08
SOURCE VOLTAGE: 4.085
VOLTAGE TO THE HEATERS :
CHIP *1: 3.244
CHIP #2: 3.424
CHIP *3: 3.408
CHIP *4: 3.413
CHIP 5: 3.228
CHIP *6: 3.406
CHIP 67: 3.408
CHIP *8: 3.408
CHIP 9: 3.408
```


TEMPERATURE DATA FOR INPUT POWER 1.5 W CHAMBER WIDTH $\mathbf{=} \mathbf{3 0} \mathbf{~ m m}$

RESULTS ARE SIORED IN FILE: 10181020
EXPERIMENT CARRIED OUT AT
AMBIENT TEMP (CELSIUS) OF: 23.34
BATH TEMP : $10 \mathrm{C}-10 \mathrm{C}$
TEMPERATURE READINGS IN DEGREES CELSIUS

| HEAT EXCHANGERS TEHPERATURES: | RIGHT | CENTER | LEFT |
| :--- | :--- | :--- | :--- | ---: |
| BOTTOM: | 10.027 | 10.098 | 10.073 |
| TOP: | 10.108 | 00.000 | 10.126 |

BACK PLAIAE TEMPERATURES :
T(55): 19.59
T(56): 20.25
1(57): 17.80
T(74): 21.09
T(75): 20.76
T(76): 21.47
T(77): 19.69
SOURCE VOLTAGE: 4.767
VOLIAGE TO THE HEATERS :
CHIP *1: 3.787
CHIP *2: 3.997
CHIP *3: 3.979
CHIP 4: $\quad 3.983$
CHIP \#5: 3.767
CHIP 8 : $\quad 3.975$
CHIP *7: $\quad 3.979$
CHIP *8: $\quad 3.979$
CHIP 99: $\quad 3.979$
THESE RESULIS ARE HOW SIIJRED ON DISK 'FASTSCAN
FILE: 30MM1OR

TEMPERATURE DATA FOR INPUT POWER 2.5 W CHAMBER WIDTH $=30 \mathrm{~mm}$

```
    RESULTS ARE STORED IH FILE: 101823.38
    EXPERIMEHT CARRIED OUT AT
    AMBIENT TEMP (CELSIUS) OF: 23.17
    BATH TEHP : IO C
    TEMPERATURE READIHIGS IN DEGREES CELSIUS
        CENTER TOP RIGHT LEFT BOTTOM BACK
CHIP NO1: 42.47 41.80 41.39 42.04 37.20 49.73
    POWER (WATTS): 2.461 
    POWER (WATIS): 2.475
CHIP NO3: 44.77 41.10 00.00 41.43 42.66 50.28
    POWER (HATIS): 2.4985
CHIP NO4: 42.78 40.79 40.47 41.00 38.73 50.08
    POWER (WATTS): 2.485
CHIP NO5: 42.58 42.08 41.60 42.36 41.83 50.20
    PONER (WATTS): 2.494
CHIP NO6: 42.77 38.65 41.30 41.37 35.79 50.41
    POWER (WATTS): 2.507
CHIP NO7: 40.63 39.59 41.08 40.51 34.17 50.25
    POWER (WATTS): 2.497
CHIP NO8: 42.02 39.35 40.79 00.00 37.88 50.27
    POWER (WATTS): 2.498
CHIP NO9: 42.77 37.10 41.32 41.32 40.60
    POWER (WATTS): 2.496
\begin{tabular}{llrrr} 
HEAT EXCHANGERS TEMFERAIURES: & RIGHI & CENTER & LEFT \\
BOITOM: & & 10.020 & 10.110 & 10.065 \\
TOP: & 09.748 & 00.000 & 10.015
\end{tabular}
BACK. PLAINE TEHFERATURES :
T(55): 21.28
T(56): 22.30
T(57): 19.47
T(74): 23.34
T(75): 22.77
I(76): 23.81
T(77): 21.70
SOURCE VOLTAGE: 6.142
VOLTAGE TO THE HEAIERS :
CHIP * \(1: \quad 4.881\)
CHIP \(2: \quad 5.152\)
CHIP *3: 5.128
CHIP *: 5.135
CHIP *5: 4.859
CHIP \#5: 5.124
CHIP 7: 5.129
CHIP \&: 5.129
CHIP 9: 5.129
```


TEMPERATURE DATA FOR INPUT POWER 3.0 W CHAMBER WIDTH $=\mathbf{3 0} \mathbf{~ m m}$

```
    RESULIS ARE STORED IN FILE: }1023222
    EXPERIMENT CARRIED OUT AT
    AMBIENT TEMP (CELSIUS) OF: 22.83
    BATH TEMP : 10 C
        TEMPERATURE READINGS IN DEGREES CELSIUS
        CENTER TOP RIGHT LEFT BOTIOM BACK
CHIP NO1:: 50.66 49.62 49.07 49.97 43.61 5.7.87
    POWER (WATTS): 3.022
CHIP NO2: 52.71 47.72 49.42 49.42 46.37 58.10
    POWER (WATTS): 3.038
CHIP NO3: 52.51 48.65 00.00 47.22 49.87 58.53
    POWER (WATIS): 3.0672
CHIP NO4: 51.15 47.96 48.59 48.79 46.00 58.30
    POWER (WATTS): 3.051
CHIP NO5: 50.48 48.36 49.36 50.54 48.61 58.47
    POWER (HATTS): 3.053
CHIP NO6: 51.57 42.15 48.38 47.63 46.09 58.70
    POWER (WATTS): 3.079
CHIP NO7: 48.27 46.25 48.70 48.07 39.78 58.52
    POWER (WATTS): 3.066
CHIP N08: 49.10 45.58 48.05 00.00 44.02 58.53
    POWER (WATTS): 3.067
CHIP NO9: 50.71 41.39 43.01 43.01 45.34 58.49
    POWER (WATTS): 3.064
    HEAT EXCHANGERS IEMPERAIURES: RIGHI CENIER LEFT
        BOTIOH: 10.057 10.1EG 10.176
        TOP: 10.073 00.000 10.163
    BACK PLANE TEMPERATURES :
    I(55): 24.75
    T(56): 26.51
    T(57): 22.64
    T(74): 28.00
    T(75): 26.95
    T(76): 28.63
    T(77): 25.41
    SOURCE VOLTAGE: 6.807
VOLTAGE TO THE HEATERS :
CHIP A1: 5.411
CHIP *2: 5.712
CHIP *3: 5.685
CHIP *4: 5.692
CHIP 45: 5.385
CHIP *6: 5.680
CHIP *7: 5.685
CHIP *8: 5.685
CHIP 9: 5.586
```


REDUCED DATA FOR INPUT POWER 0.1 W CHAMBER WIDTH $=\mathbf{3 0} \mathbf{~ m m}$

```
THE RAIN [mf UAIA ARE FROH THE FILE: 10161810
THE FOWER SETTING PER CHIP WAS: 0.1 W
THE DISINHCE TO THE FRONI WALL WAS 30 MHI
CHIP OHET(H) Tavg-Ts Nul Nuz
    1 10 2.75 23.19 10.85
    FLUX BASED RAYLEJGH NUMPER * E-9 IS: . 31
    AVERAGE IEMPERAJURE: 12.861
    SIHKK TEMPERATURE: 10.104
```



```
    AVERAGE TEMPERATURE: 12.925
    SINK TEMFERATURE: 10.104
3
FLUX BASED RAYLEIGH NUMBER *E-9 IS: .31 AVERAGE TEMPERATURE: 13.144 SINK TEMPERATURE: 10.104
    AVERAGE TEMPERATURE: 12.734
    SIHK TEMPERATURE: 10.104
    FLUX .10 2.83 22.82 10.68
    FLUX BASED RAYLEIGH NUMBER * E-9 IS: . }3
    AVERAGE IEMPERAIURE: 12.934
    SINK TEMPERATURE: 10.104
6
    24.11 11.28
    FLUX BASED RAYLEJGH IHMMER * E-9 IS:
    AVERAGE TEMPERATURE: 12.788
    SINK TEMPEROTURE: 10.104
7
FLUX BASED RAYLEIGH HUMBER * E-9 IS: . 31 AVERAGE TEMPERATURE: 12.782
SIHK TEMPERATURE: 10.104
    AVERAGE TEMPERATURE: 13.089
    SIHK TEMPERAIURE: 10.104

\section*{REDUCED DATA FOR INPUT POWER 0.7 W CHAMBER WIDTH \(=\mathbf{3 0} \mathbf{m m}\)}

THE RAN EMf DATA ARE FROM THE FILE: 10170950
IHE POWER SETTIHG FER CHIF WAS: 0.7 W
THE DISTANCE TO THE FRONT WALL WAS 30 MM
```

CHIP QNEI(W) Tavo-Is Nul Nu2
1
FIUX BASED RAYLEIGH NUMBER * E-9 IS: 2.41
AVERAGE TEMPERATURE: 21.294
SINK IEMFERATIJRE: 10.073

```

2
FLUX BASED RAYLEJGH NUMRER AVERAGE IEMPERATURE: 20.990 SINK TEMPERATURE: 10.073

3
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 2.48 AVERAGE TEMPERATURE: 22.185 SINK TEMPERATURE: 10.073

4
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 2.44 AVERAGE TEMPERATIJRE: 21.273
SINK TEMFERATURE: 10.073
5
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 18.59 .46 AUF.RAGE IEMPERATURE: 21.783
SINK TEIAFERATURE: 10.073
6
FLUX BASED RAYLE IGH NHMBER * E-9 IS: 18.532 .48 AUERAGE TEMPEROTURE: 21.878 SIIK IEMPERATURE: 10.073

7
FLUX BASED RAYLEJGH NUHBER * E-9 IS: 2.45
AVERAGE IEMPERATURE: 21.066
SINK TEMPERATURE: 10.073

8
FLUX BASED RAYLEIGH NUHBER * E-9 IS: 2.46
AVERAGE TEMPERATURE: 21.685
SINK TEMPERATURE: 10.073
9
\(\begin{array}{llll}.71 & 11.16 & 41.64 & 19.48\end{array}\)
FI.UX BASED RAYLEIGH NUMBER * F.-9 IS: 2.44
AVERAGE TEMPERATURE: 21.235
SINK TEMPERATURE: 10.073

TABLE 25

\section*{REDUCED DATA FOR INPUT POWER 1.1 W CHAMBER WIDTH \(=\mathbf{3 0} \mathrm{mm}\)}

THE ROH Enf DATA ARE FROH THE FILE: \(101 / 1720\) THE FONER SETTING PER CHIP WAS: 1.1 H THE DISTANCE 10 THE FRONT WALL WAS 30 MM
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHIP & P OHET(N) & Tavg-Is & Nu l & & Nu 2 \\
\hline \multirow[t]{4}{*}{\(1 \begin{array}{r}1 \\ \\ \text { A } \\ \\ \text { S }\end{array}\)} & 1.08 & 16.00 & 44.33 & & 20.74 \\
\hline & FIUX BASED & RAYLEICH I & HUMBER * E-9 & IS: & : 3.93 \\
\hline & AVERAGE TEMP & PERAIURE: & 26.083 & & \\
\hline & SINK IEMPERA & RATURE: 10. & . 085 & & \\
\hline \multirow[t]{4}{*}{\({ }^{2}\)} & 1.09 & 15.48 & 46.12 & & 21.58 \\
\hline & FLUX BASED & RAYLEIGH N & NUHBER * E-9 & IS: & : 3.94 \\
\hline & AVERAGE TEMP & PERATURE: & 25.562 & & \\
\hline & SINK IEMPERA & ATURE: 10. & . 085 & & \\
\hline
\end{tabular}
\(\begin{array}{lllll}3 & 1.10 & 16.83 & 42.84 & 20.04\end{array}\)
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 4.03 AVERAGE TEMPERATURE: 26.917
SINK TEMPERAIURE: 10.085
\(4 \begin{array}{lllll}4 & 1.09 & 16.05 & 44.67 & 20.90\end{array}\)
FLUX BASED RAYLEIGH NUMBER *E-9 IS: 3.98 AVERAGE TEMPERATURE: 25.136
SINK IEMPERATURE: 10.085
5
FLUX BASED RAYLEIGH NUHPER * E-3 IS: 4.06 AVERAGE TEMPERATURE: 27.657
SIAK TEMPERAIURE: 10.085
6
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 4.03 AVERAGE TEMPERATURE: 26.509
SINK IEMPERATURE: 10.085
7
\(1.10 \quad 15.60 \quad 46.18 \quad 21.60\)
FLUX BASED RAYLEIGH HUMBER * E-9 IS: 3.98 AVERAGE TEMPERAIURE: 25.688
SINK TEMPERATURE: 10.085
8

AVERAGE TEMPERAIURE: 25.519
SINK TEMPERATURE: 10.085
9 FLUX BASED RAYLEIGH NUMRER 46.12 E-9 IS: 21.58
AUERAGE TEMPERATURE: 25.717
SIIJK TEMPERATURE: 10.085

\section*{REDUCED DATA FOR INPUT POWER 1.5 W CHAMBER WIDTH \(=\mathbf{3 0} \mathbf{~ m m}\)}
```

THE RAN Emf DATA ARE FROH THE FILE: 10211130
THE FOWER SETTING FER CHIP WAS: 1.5 W
THE DISTANCE TO THE FRONT WALL WAS 30 MM
CHIP ONET(W) Tavg-Ts Nul Nu2

| 1 | 1.52 | 22.39 | 44.65 | 20.89 |
| :--- | :--- | :--- | :--- | :--- | FIUX BASED RAYLEIGH NUMBER * E-9 IS: 5.94 AVERAGE TEHPERAIURE: 32.569 SINK IEMPERATURE: 10.180

```
\(2 \quad 1.53 \quad 21.80 \quad 46.10 \quad 21.57\)
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 5.94 AVERAGE TEMPERATURE: 31.978
SINK TEMPERATURE: 10.180
3
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 6.15 AVERAGE TEMPERATURE: 34.252
SINK TEMPERATURE: 10.180

4
\(1.54 \quad 22.27 \quad 45.37\)
21.23

FLUX BASED RAYLEIGH NUHBER * E-9 IS: 6.00 AVERAGE TEMPERATURE: 32.450
SIHK TEMFERATURE: 10.180
5
1.54
23.39
43.35
20.28

FLUX BASEU RAYLEIGH NUMBER * E-9 IS: 6.09 AVERAGE TEMFERATURE: 33.574 SINK TEMPERATURE: 10.180

6
\(1.55 \quad 22.51\)
\(45.06 \quad 21.08\)
FLUX BASED RAYLEIGH NUMBER *E-9 IS: 6.07 AVFRAGE IEMPERATURE: 32.788 SINK TEMPERATURE: 10.180
\(\begin{array}{lllll}7 & 1.54 & 21.66 & 46.86 & 21.92^{\top}\end{array}\)
FLUX BASED RAYLEJGH NUMBER * E-9 IS: 5.99 AVERAGE TEMPERATURE: 31.837
SINK TEMPERATURE: 10.180
8
\(\begin{array}{llll}1.54 & 22.30 & 45.54 & 21.30\end{array}\)
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 6.03 AVERAGE TEMPERATURE: 32.482 SINK IEMPERATURE: 10.180

9
1.54
\(20.60 \quad 49.26\)
23.05

FLUX BASED RAYLEIGH IIUMBER * E-9 IS: 5.92 AUERAGE TEMPERATURE: 30.782
SINK IEMPERATURE: 10.180

TABLE 27

\section*{REDUCED DATA FOR INPUT POWER 2.5 w CHAMBER WIDTH \(=30 \mathrm{~mm}\)}
```

IHE RAIN Emf DATA ARE FROM THE FILE: 10182338
THE POWER SETTING FER CHIP WAS: 2.5 W
THE DISTANCE TO THE FRONT WALL WAS 30 MM
CHIP OMET(W) Tavg-Is Nul Nu2
1

```

``` AVERAGE TEMPERATURE: 41.698 SINK TEMFERATURE: 10.087
```

2
$2.45 \quad 30.24 \quad 53.65 \quad 25.10$
FLUX BASED RAYLEJGH HUMBER * E-9 IS: 10.44 AVERAGE TEMFERATURE: 40.331
SINK TEMPERATURE: 10.087
3
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 10.86 AVERAGE TEMPERATIJRE: 43.113
SINK TEMPERATURE: 10.087
4
2.46
31.27
$52.14 \quad 24.39$
FIUX BASED RAYLEIGH NIMMBER * E-9 IS: 10.60
AVERAGE TEMPERATURE: 41.356
SINK TEMPERATURE: 10.087
5
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 10.74 AVERAGE TEMPERATURE: 42.277
SINK TEMPERATURE: 10.087
6
 AVERAGE TEMFERATURE: 41.225
SINK TEMFERAIURE: 10.087

7
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 10.52 AVERAGE TEMPERATURE: 40.189
SINK TEMPERATURE: 10.087
8
2.48
30.94
$52.97 \quad 24.78$
FLUX BASED RAYLEJGH NUMBER * E-9 IS: 10.62
AVERAGE TEMPERATURE: 41.023
SINK TEMPERAIURE: 10.087
9
$2.48 \quad 28.94 \quad 56.51 \quad 26.44$
FLUX BASED RAYLEIGH NHMBER *E-9 IS: 10.39
AVERAGE TEMPERATURE: 39.028
SIMK TEMPERATURE: 10.087

## REDUCED DATA FOR INPUT POWER 3.0 W CHAMBER WIDTH $=\mathbf{3 0} \mathbf{~ m m}$

THE RAIN Emf DATA ARE FROH1 THE RILE: 10191310
THE POWER SETTING PER CHIP WRS: 3.0 H THE DISTANCE TO THE FRONT WALL. WAS 30 MM

$2 \begin{array}{lllll}2.98 & 36.50 & 54.14 & 25.33\end{array}$
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 13.56 AVERAGE TEMPERATURE: 46.657 SINK IEMPERATURE: 10.154


$5 \quad 3.00 \quad 38.62 \quad 51.66 \quad 24.17$
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 13.98
AVERAGE TEMPERATURE: 48.777
SIAK IEMPERATURE: 10.154
6
FLUX BASED RAYLEJGH NUMBER * E-9 IS: 13.76 AUERAGE TEMPERATURE: 46.755 SINK TEMPERATURE: 10.154

8 3.01 36.62 RUMBER 54.55 E-9 IS: 25.52
FLUX BASED RAYLEIGH NUMBER 13.72
AVERAGE TEMPERATURE: 46.771
SINK TEMPERATURE: 10.154

9
$\begin{array}{llll}3.01 & 33.27 & 59.88 & 28.01\end{array}$
FLUX BASED RAYLEIGH NUMPER * E-9 IS: 13.23 AVERAGE TEMPERAIURE: 43.421
SINK IEMPERAIURE: 10.154

## TABLE 29

## TEMPERATURE DATA FOR INPUT POWER 0.1 W CHAMBER WIDTH $=9 \mathrm{~mm}$

RESULTS ARE STORED IN FILE: 11050029
EXPERIMENT CARRIED OUT AT
AMBIENT TEMP (CELSIUS) OF: 22.78
BATH TEMP : 10 C
TEMPERATURE READINGS IN DEGREES CELSIUS
CENTER TOP RIGHT LEFT BOTIOM BACK
$\begin{array}{lllllll}\text { CHIP NO1: } & 14.34 & 14.25 & 14.16 & 14.24 & 14.08 & 14.40\end{array}$
POWER (WATTS): . 097
$\begin{array}{lllllll}\text { CHIP NO2: } & 14.48 & 14.33 & 14.32 & 14.32 & 14.22 & 14.54\end{array}$
POWER (WATTS): .098
$\begin{array}{lllllll}\text { CHIP NO3: } & 14.58 & 14.53 & 14.49 & 14.48 & 14.54 & 14.64\end{array}$
POWER (WATIS): . 0989
$\begin{array}{lllllll}\text { CHIP NO4: } & 14.39 & 14.25 & 14.10 & 14.12 & 14.02 & 14.45\end{array}$
POWER (WATTS): . 099
$\begin{array}{lllllll}\text { CHIP NO5: } & 14.43 & 15.89 & 14.33 & 14.37 & 14.26 & 14.49\end{array}$
POWER (HATTS): . 039
$\begin{array}{lllllll}\text { CHIP NOG: } & 14.65 & 14.37 & 00.00 & 14.24 & 14.58 & 14.71\end{array}$
POWER (WATTS): . 099
$\begin{array}{lllllll}\text { CHIP NO7: } & 14.13 & 14.14 & 14.19 & 14.17 & 14.08 & 14.19\end{array}$
POWER (WATTS): . 039
$\begin{array}{lllllll}\text { CHIP NO8: } & 14.59 & 14.41 & 14.42 & 00.00 & 14.24 & 14.65\end{array}$
POWER (WATTS): . 099
$\begin{array}{lllllll}\text { CHIP NO9: } & 14.71 & 14.28 & 16.01 & 16.01 & 14.45 & 14.77\end{array}$
POHER (HATTS): . 093
HEAT EXCHANGERS TEMFERATURES: RIGHT CENTER LEFT BOITOM: $09.914 \quad 09.967 \quad 09.965$ $\begin{array}{llllllllll} & 00.000 & 10.392\end{array}$

## BACK PLANE TEMPERATURES :

T(55): 12.97
T(56): 13.12
T(74): 13.52
T(75): 13.83
I(76): 13.99
T(77): 13.25
SOURCE VOLTAGE: 1.219
VOLTAGE TO THE HEATERS :
CHIP $1: \quad .967$
CHIP *2: 1.021
CHIP *3: $\quad 1.015$
CHIP * 4: 1.017
CHIP *5: . 962
CHIP 6: 1.015
CHIP *7: $\quad 1.015$
CHIP *8: 1.015
CHIP 9: 1.016

## TEMPERATURE DATA FOR INPUT POWER 0.7 W CHAMBER WIDTH $=9 \mathrm{~mm}$

```
 RESULTS ARE STORED IN FILE: 11062057
 EXPERIMENT CARRIED OUT AT
 AMBIENT TEMP (CELSIUS) OF: 20.61
 BATH TEMP : 10 C
 TEMPERATURE READINGS IN UEGREES CELSIIUS
 CENTER TOP RIGHT LEFT BOTTOM BNCK
CHIP NO1: 23.48 23.27 22.85 23.21 21.49 23.88
 POWER (WATIS): .696
CHIP NO2: 24.85 23.75 23.74 23.74 23.07 25.26
 POWER (WATIS): .701
CHIP NO3: 24.78 24.57 24.32 23.70 24.51 25.19
 POWER (WATIS): . }705
CHIP NO4: 23.92 22.97 22.82 22.78 21.97 24.32
 POWER (WATTS): .703
CHIP NO5: 24.77 23.82 24.12 24.42 23.69 25.17
 POWER (HATIS): . }70
CHIP NOE: 25.92 23.76 00.00 23.15 25.35 25.33
 POWER (WATIS): .703
CHIP NO7: 23.12 22.57 23.13 2. 22.84 21.02 23.53
 POHER (WATIS):
CHIP NO8: 24.84 23.90 23.94 00.00 22.83 25.25
 POWER (WATIS): .707
CHIP NO9: 25.78 22.75 19.26 23.34 24.30
POWER (WATIS): . }70
HEAT EXCHANGERS IEMPERATURES: RIGHT CENIER LEFT
BOTTOM: 09.972 10.070 10.088
TOF:
10.047 00.000 10.137
BACK PLAIJE TEMPERATURES :
T(55): 15.17
T(56): 15.45
1(74): 15.92
1(75): 15.99
1(76): 16.29
T(77): 15.68
SOURCE VOLIAGE: 3.259
VOLIAGE TO THE HEAIERS :
CHIP #1: 2.587
CHIP *2: 2.731
CHIP *3: 2.720
CHIP *4: 2.722
CHIP *5: 2.575
CHIP 6: 2.717
CHIP *7: 2.718
CHIP 88: 2.718
CHIP #9: 2.720
```


## TEMPERATURE DATA FOR INPUT POWER 1.1 W CHAMBER WIDTH $=9 \mathrm{~mm}$

```
 RESULTS ARE STURED IN FILE: 11022255
 EXPERIMENT CARRIED OUT AT
 AMBIENT TEMP (CELSIUS) OF: 21.11
 BATH TEMP : 10 C
 TEMPERATURE READINGS IN DEGREES CEISIUS
 CENTER TOP RIGHT LEFT BOTTOH BACK
 CHIP NO1: 28.92 28.61 28.26 28.57 25.77 29.87
 POWER (WATTS): 1.093
CHIP NO2: 31.27 29.86 29.60 29.60 28.52 29.97
 POWER (HATTS): 1.100
CHIP NO3: 30.49 30.42 30.02 28.65 30.37 30.08
 POWER (WATTS): 1.1071
CHIP NO4: 29.63 28.45 28.11 27.89 26.78 30.04
 POWER (WATTS): 1.104
CHIP NO5: 31.16 29.79 30.20 30.63 29.54
 POWER (WATTS): 1.107
CHIP NO6: 31.91 28.89 00.00 28.72 31.17 30.18
 POWER (WATTS): 1.114
CHIP NO7: 28.48 27.51 28.46 28.34 25.07 30.15
```



```
 POWER (WATTS): 1.111
CHIP NO9: 32.68 28.26 31.03 31.03 30.57 30.11
 POWER (HATTS): 1.110
HEAT EXCHANGERS TEMPERAIURES:
 BOTIOH:
 RIGHI
 IOP: 09.863 00.000 09.952
BACK PLANE IEMPERATURES :
T(55): 17.38
T(56): 17.58
T(74): 18.00
T(75): 18.02
T(76): 18.41
T(77): 17.63
SOURCE VOLTAGE: 4.086
VOLTAGE TO THE HEATERS :
CHIP *1: 3.244
CHIP 2: 3.425
CHIP *3: 3.411
CHIP 4: 3.413
CHIP #5: 3.229
CHIP 6: 3.406
CHIP *7: 3.407
CHIP 8: 3.408
CHIP #9: 3.409
```


## TEMPERATURE DATA FOR INPUT POWER 1.5 W CHAMBER WIDTH $=9 \mathrm{~mm}$

RESULTS ARE STORED IN FJLE: 11091225
EXPERIHENT CARRIED OUT AT
AMBIENT TEMP (CELSIUS) OF: 21.83
BATH TEMP : 10 C
TEMPERATURE READINGS IN DEGREES CELSIUS CENTER TOP RIGHI LEFT BOTTOH BACK $\begin{array}{lllllll}\text { CHIP NOI: } & 36.71 & 36.38 & 35.78 & 36.25 & 32.76 & 37.56\end{array}$
POWER (WATTS): 1.489
$\begin{array}{lllllll}\text { CHIP NO2: } & 38.97 & 36.79 & 37.06 & 37.06 & 35.88 & 39.83\end{array}$
POWER (WATTS): 1.497
$\begin{array}{lllllll}\text { CHIP NO3: } & 38.33 & 37.92 & 37.67 & 34.98 & 37.83 & 39.20\end{array}$
CHIP NO4: $\begin{array}{lllllll}37.06 & 35.37 & 35.16 & 34.59 & 33.41 & 37.92\end{array}$
POWER (HATTS): 1.504
$\begin{array}{lllllll}\text { CHIP NO5: } & 38.29 & 36.57 & 37.19 & 37.75 & 36.20 & 39.16\end{array}$
POWER (WATTS): 1.508
$\begin{array}{lllllll}\text { CHIP NOG: } & 39.40 & 35.38 & 00.00 & 34.97 & 38.23 & 40.27\end{array}$
POWER (HATTS): 1.516

CHIP NO7 :	34.94	33.67	35.04	34.46	30.18	35.81

POWER (HATIS): 1.512

CHIP N(E8:	38.18	35.83	36.98	00.00	34.50	39.05

POWER (WATIS): 1.512
$\begin{array}{lllllll}\text { CHIP NO9: } & 39.71 & 34.80 & 28.60 & 36.52 & 36.09 & 40.58\end{array}$
POWER (WATTS): 1.511
HEAT EXCHAHGERS TEMPERATURES: RIGHT CENTER LEFT $\begin{array}{llll}\text { BOTIOM: } & 09.828 & 09.977 & 10.040 \\ \text { TOF: } & 10.007 & 00.000 & 10.295\end{array}$
BACK PLANE TEMFERATURES :
T(55): 20.82
1(56): 21.73
T(74): 22.48
T(75): 22.33
T(76): 22.64
T(77): 21.31
-
SOURCE VOLTAGE: 4.771
VOLIAGE TO THE HEATERS :
CHIP *1: $\quad 3.789$
CHIP 2: 4.000
CHIP 3: 3.983
CHIP A4: 3.987
CHIP \#5: 3.772
CHIP 6: $\quad 3.979$
CHIP 87 : $\quad 3.981$
CHIP A8: 3.982
CHIP \&9: 3.983

## TEMPERATURE DATA FOR INPUT POWER 2.5 W CHAMBER WIDTH $=9 \mathrm{~mm}$

```
 RESULTS ARE STORED IN FILE: 11082020
 EXPERJMENT CARRIED OUT AT
 AMBIENT TEMP (CELSIUS) OF: 21.28
 BATH TEMP : 10 C
 TEMPERAIURE READINGS IN DEGREES CELSIUS
 CENTER TOP RIGHT LEFT BOTTOM BACK
CHIP NO1: 46.62 45.93 45.41 46.08 40.22 48.05
 POWER (WATIS): 2.504
CHIP NO2: 50.04 46.15 47.23 47.23 43.85 51.48
 POWER (WATIS): 2.520
CHIP NO3: 48.91 48.75 48.04 45.63 48.30 50.37
 POWER (WATTS): 2.5388
CHIP NO4: 47.00 43.52 44.22 42.84 41.35 48.45
 POWER (WATIS): 2.531
CHIP NO5: 48.77 46.6i 47.23 48.29 45.89 50.23
 POHER (WATTS): 2.538
CHIP N06: 49.99 44.34 00.00 44.08 48.13 51.45
 POWER (WATTS): 2.552
CHIP N07: 43.36 41.13 43.65 42.69 35.63 44.82
 MOWER (HATTS): 2. 2.544 47.09 00.00 43.17 50.32
```



```
 POWER (WATIS): 2.541
HEAT EXCHANGERS TEMPERAIURES: RIGHI CENIER LEFI
 BOTTOM: 09.859 10.037 10.110
 TOP: 09.803 00.000 10.073
 BACK PLAHE IEMPERATURES :
 T(55): 22.95
 T(56): 24.01
 T(74): 24.80
 1(75): 24.59
 1(76): 24.97
 I(77): 23.67
SOURCE VOLTAGE: 6.193
VOLTAGE TO THE HEATERS :
CHIP *1: 4.921
CHIP *2: 5.193
CHIP *3: 5.172
CHIP *4: 5.176
CHIP *5: 4.897
CHIP #6: 5.165
CHIP #7: 5.169
CHIP 88: 5.169
CHIP #9: 5.171
```


# TEMPERATURE DATA FOR INPUT POWER 3.0 W CHAMBER WIDTH $=9 \mathrm{~mm}$ 

```
 RESULTS ARE STORED IN FILE: 11072058
 EXPERIMENT CARRIED OUT AT
 AMBIENT TEMP (CELSIUS) OF: 21.00
 BATH TEMP : 10 C
 TEMPERATURE READINGS IN DEGREES CELSIUS
 CENTER TOP RIGHT LEFI BOTTOM BACK
CHIP NOI: 55.97 54.46 55.08 55.59 45.61 57.66
 POWER (WATIS): 2.938
CHIP NO2: 61.12 57.34 58.19 58.19 54.57 62.82
 POWER (WATTS):
CHIP NO3: 58.47 58.54 57.89 55.35 58.30
 POWER (WATTS): 2.9774
CHIP NO4: 57.35 53.88 54.52 54.33 49.46 59.05
 POWER (WATIS): 2.969
CHIP NO5: 58.98 57.68 58.44 59.12 56.79 60.69
 POWER (WATIS): 2.978
CHIP NOG: 61.17 55.49 00.00 55.89 59.33 62.89
 POWER (WATTS): 2.993
CHIP NO7: 52.97 51.59 53.54 53.26 43.41 54.68
 POWER (WATTS): 2.984
CHIP NO8: 60.57 57.20 59.10
 POWER (WATTS): 2.985
CHIP N09: 60.45 53.52 46.33 56.95 56.66 62.17
POWER (WATIS): 2.984
HEAT EXCHANGERS TEMPERAIURES: RIGHI CENIER LEFT
 BOTIOH: 09.783 10.022 10.176
 TOP: 09.816 00.000 10.063
BACK PLANE TEMPERATURES :
T(55): 32.35
T(56): 34.45
1(74): 35.59
T(75): 35.08
T(76): 35.20
T(77): 33.52
SOURCE VOLTAGE: 6.715
\begin{tabular}{ll}
UDLTAGE TO & THE HEATERS : \\
CHIP *1: & 5.339 \\
CHIP *2 & 5.633 \\
CHIP *3 & 5.611 \\
CHIP *4 & 5.615 \\
CHIP *5 & 5.314 \\
CHIP *6 & 5.603 \\
CHIP *7 & 5.608 \\
CHIP *8 & 5.607 \\
CHIP *9: & 5.608
\end{tabular}
```


## REDUCED DATA FOR INPUT POWER 0.1 W

## CHAMBER WIDTH $=9 \mathrm{~mm}$

```
THE RAW Emf DATA ARE FROM THE FILE: 11050029
THE FOHER SETTIHG FER CHIP WAS: 0.1 W
THE DISTANCE TO THE FRONT WALL WAS 9 MM
CHIP ONET(H) Tavg-Ts Nul Hu2
1 \begin{tabular}{lllll}
10 & 4.10 & 15.19 & 7.11
\end{tabular}
 FLUX BASED RAYLEIGH NUMBER * E-9 IS: . }3
 AUERAGE TEMTERATURE: 14.242
 SINK TEMPERATURE: 10.139
```

    FLUX BASED RAYLEJGH NUMBER * E-9 IS: . 31
    AVERAGE TEHIPERATURE: 14.221
    SINK TEMPERATURE: 10.139
    3
FIUX BASED RAYLEIGH NUMBER * E-9 IS:
6.75

AUERAGE TEMFERATLIRE: 14.525
SIHIK TEMPERATURE: 10.139
4
FLUX BASED RAYLEIGH NIMBER E-3 IS:
AVERAGE TEMPERATURE: 14.208
SINK TEMPERATURE: 10.139

5
FIUX BASED RAYLEIGH NUMBER * E-9 IS: . 31
AVERAGE TEMPERATURE: 14.497
SIAK TEMFERATURE: 10.139
6
FIUX RASED RAYLEIGH HUMBER *E-9 IS: . 31
AVERAGE TEMPEROTURE: 14.473
SINK TEMPERATURE: 10.139
7 . 10 4.01 $15.86 \quad 7.4$ Z
FLUX BASED RAYLEIGH NUMBER * E-9 IS: . 31 AVERAGE TEMPERATURE: 14.153
SINK TEMPERATURE: 10.139
8
FLUX BASED RAYLEIGH NUMBER *E-9 IS: .31
AUERAGE TEMPERATURE: 14.471
SIHK TEMFERATURE: 10.139

9
FLUX BASED RAYLEIGH IUMIER 14.00 EE-9 IS: ${ }^{6.55}$.
AUERAGE TEMPERATURE: 14.560 .
SIHK TEMFERATIJRE: 10.139

TABLE 36

## REDUCED DATA FOR INPUT POWER 0.7 W CHAMBER WIDTH $=9 \mathrm{~mm}$

```
THE RAH Emf DAIA ARE FROM THE FILE:
11062057
THE PONER SEITING PER CHIP WAS: 0.7 W
THE DISTANCE TO THE FRONT HALL HAS 9 MM
```


FLUX BASED RAYLEIGH NUMBER ${ }^{34}$ * E-9 IS: ${ }^{16.10} 2.43$
AUERAGE TEMPERATURE: 23.251
SIHK TEMPERATURE: 10.145
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 2.48
AUERAGE TEMPERATURE: 24.456
SINK TEMPERATURE: 10.145

FIUX BASED RAYIIE IGH NUMBER * E.9.9 15 : ${ }^{16.20} 2.44$
AVERAGE TEMPERATURE: 23.219
SINK IEMPERATURE: 10.145
5
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 2.48
AVERAGE IEMPERATURE: 24.451
SINK TEMPERATURE: 10.145

FIUX BASED RAYLEIGH NUHBER *E-9 IS: 2.50 AVERAGE TEMPERAIURE: 24.794
SINK TEMFERATURE: 10.145
7
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 2.44
AVERAGE TEMPERATURE: 22.933
SINK TEMPERATURE: 10.145
8
.70
14.17
$32.16 \quad 15.04$
FLUX BASED RAYLEIGH NUMBER *E-9 IS: 2.48
AVERAGE IEMPERATIJRE: 24.313
SINK IEMPERATURE: 10.145
9
.69
$13.12 \quad 34.64$
16.21

FLUX BASED RAYLEIGH NUMRER * E-9 IS: 2.45 AVERAGE TEMPERATURE: 23.266
SIAK. TEMPERATURE: 10.145

## REDUCED DATA FOR INPUT POWER 1.1 W CHAMBER WIDTH $=9 \mathbf{m m}$

THE RAH Emf DATA ARE FROM THE FILE:
THE FOWER SETIING PER CHIP WAS: 1.1 H
THE DISTANCE TO THE FRONT WALL WAS 9 MM

CHIP	P DNET(W)	Tavg- 1 s	Nul		Nu2
1	1.08	18.18	38.87		18.19
FLUX BASED RAYLEJGH NUMBER * E-9 IS: 4.02 AVERAGE TEMPERATURE: 28.377					
	SIHK IEMFERA	TURE: 10.	. 193		

2 1.08 $18.53 \quad 38.19 \quad 17.87$ FLUX BASED RAYLEIGH NUMBER * E-9 IS: 4.07 AVERACE TEMPERATURE: 28.825
SIHK IEMPERATURE: 10.193
$\begin{array}{lllll}3 & 1.09 & 19.71 & 36.38 & 17.02\end{array}$
FLUX BASED RAYLEIGH MUMBER *E-9 IS: 4.14
AVERAGE TEMPERATURE: 29.838
SINK TEMPERATURE: 10.193
$\begin{array}{lllll}4 & 1.09 & 18.29 & 33.06 & 18.28\end{array}$
FLUX BASED RAYLEIGH IUMBER E-9 IS: 4.07
AVERAGE TEMPERATLIRE: 28,480
SINK TEMPERATURE: 10.193
5
1.09
$20.35 \quad 35.26$
16.49

FLUX BASED RAYLEIGH NUMBER * E-9 IS: 4.17
AVERAGE TEMPERAIURE: 30.538
SIHK IEMFERATURE: 10.193
6
FLUX BASED RAYLEIGH NUMBER *E-9 IS: $\begin{array}{r}16.68 \\ 4.19\end{array}$ AUERAGE TEMPERAIURE: 30.429
SIHK TEMFERATURE: 10.193
$\begin{array}{lllll}7 & 1.10 & 17.88 & 40.23 & 18.82\end{array}$
FLUX BASED RAYLEIGH HUTABER * E-9 IS: 4.08
AUERAGE IEMPERATURE: 28.076
SINK TEMPERATURE: 10.193
$8 \quad 1.10 \quad 20.13 \quad 35.76 \quad 16.73$
FLUX BASED RAYLEJGH HUMBER * E-9 IS: 4.18
AVERAGE TEMPERATURE: 30.321
SIAK TEMPERATURE: 10.193
$\begin{array}{lllll}9 & 1.09 & 19.19 & 37.43 & 17.51\end{array}$
FLUX BASED RAYLEJGH HUHBER * E-9 IS: 4. 13
AVERAGE TEMPERATURE: 29.382
SIHK TEMPERATURE: 10.193

## REDUCED DATA FOR INPUT POWER 1.5 W CHAMBER WIDTH $=9 \mathrm{~mm}$

THE RAW Emf DATA ARE FROM THE FILE: 11091225
THE POWER SEITING PER CHIF WNS: 1.5 H
THE DISIANCE 10 THE FRONT WALL WAS 9 MH


2 1.47 $25.37 \quad 37.60 \quad 17.59$
FLUX BASED RAYLEIGH NUHBER * E-9 IS: 6.00 AVERAGE TEMPERATURE: 36.053 SINK IEMPERATURE: 10.186
$\begin{array}{lllll}3 & 1.49 & 27.17 & 36.12 & 16.90\end{array}$
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 6.13 AVERAGE TEMPERATURE: 37.353
SINK TEMPERATURE: 10.186
$\begin{array}{lllll}4 & 1.48 & 25.44 & 38.39 & 17.96\end{array}$
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 5.99
AVERAGE TEMPERATURE: 35.625
SINK TEMFPERATURE: 10.186
$\begin{array}{lllll}5 & 1.49 & 27.48 & 35.63 & 16.70\end{array}$
FLUK BASED RAYLEIGH NUMBER *E-9 IS: 6.15 AVERAGE TEMPERATURE: 37.664
SINK TEMPERATURE: 10.186
6
$1.49 \quad 27.26 \quad 36.16$
16.32

FLUX BASED RAYLEJGH NUMBER * E-9 IS: 6.17 AVERAGE TEMPERATURE: 37.450
SINK IEMPERATURE: 10.186


8
$1.49 \quad 27.02 \quad 36.36 \quad 17.01$
FLUX BASED RAYLEJGH NUMBER * E-9 IS: 6.13
AVERAGE TEMPERAIURE: 37.211
SINK TEMPERATURE: 10.186
$9 \quad 1.49 \quad 25.41 \quad 38.61 \quad 18.07$
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 6.02
AVERAGE IEMPERATURE: 35.592
SINK TEMFERATURE: 10.186

TABLE 39

## REDUCED DATA FOR INPUT POWER 2.5 W CHAMBER WIDTH $=9 \mathrm{~mm}$

```
THF. RAN Emf [IATA ARE FROH THE FILE: 11082020
IHE POWER SETTING FER CHIP WAS: 2.5 W
THE DISTAHCE TO THE FRONT WAIL WAS & MM
```


$\begin{array}{llll}2.49 & 35.23 & 46.82 & 21.90\end{array}$
FI.UX BASED RAYLEIGH NUMBER * E-9 IS: 11.20 AVERAGE TEMPERATURE: 45.503
SIAK TEMPERATURE: 10.271
3
FIUX BASED RAYLEJGH NUPABER * E-9 IS: 11.58 AVERAGE TEMPERATURE: 47.908 SINK TEMPERATURE: 10.271

4
$2.50 \quad 34.33$
$48.22 \quad 22.56$
FLUX BASED RAYLE IGH NUMBER * E-9 IS: 11.14 AVERAGE TEMPERATURE: 44.605 SINK TEMPERATURE: 10.271

5
2.50
37.68
$44.17 \quad 20.66$
FLUX BASED RAYLEJGH MHIBER *E-9 IS: 11.58 AUERAGE TEMPERATURE: 47.946
SIAK TEMPERATURE: 10.271
6
2.52 37.02
$45.18 \quad 21.14$
FIUX BASED RAYLEIGH HUMBER *E-9 IS: 11.56 AVERAGE IEHPERATURE: 47.287
SIAK TEMPERATURE: 10.271
$7 \begin{array}{llll}7 & 2.51 & 32.27 & 51.53 \\ 24 . \text { í }\end{array}$
FLUX BASED RAYLEJGH NUMBER *E-9 IS: 10.96
AVERAGE TEMPERATURE: 42.536
SIAKK TEMPERATURE: 10.271
8
$2.51 \quad 37.08$
$44.97 \quad 21.04$
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 11.53
AUERAGE TEMPERATURE: 47.355
SINK TEMPERATURE: 10.271
9
$\begin{array}{llll}2.51 & 33.79 & 49.19 & 23.01\end{array}$
FLUX BASED RAYLEIGH NUMBER *E-9 IS: 11.12 AVERAGE TEMPERATURE: 44.057
SIAK TEMPERATURE: 10.271

TABLE 40

## REDUCED DATA FOR INPUT POWER 3.0 W CHAMBER WIDTH $=9 \mathrm{~mm}$

THE RAW Emf DAIA ARE FROH THE FILE: ${ }^{11072058}$
THE FOWER SETTING PER CHIP WAS: 3.0 W

THE FOWER SETTING PER CHIP WAS: 3.0 W THE DISTANCE TO THE FRONT WALL WAS 9 MM


3
2.94
47.28
41.61
19.47

FLUX BASED RAYLEIGH NUMBER * E-9 IS: 15.04 AUERAGE TEMPERATIJRE: 57.639 SINK TEMFERATURE: 10.362

4

$$
\begin{array}{llll}
2.93 & 44.68 & 43.84 & 20.51
\end{array}
$$

FIUX BASED RAYLEIGH NUMBER E-9 IS: 14.61 AVERAGE TEMPERATURE: 55.040
SINK TEMPERATURE: 10.362
5
2.9448 .33
$40.74 \quad 19.06$
FLUX BASED RAYLEIGH NU\#BER * E-9 IS: 15.20 AVERAGE TEMPERATURE: 58.691 SINK TEIfPERATURE: 10.362

6
$2.96 \quad 48.31 \quad 40.97 \quad 19.17$
FI.UX BASED RAYLEIGH IUMBER * E-9 IS: 15.28 AVERAGE TEMPERATURE: 58.676 SINK TEMPERATURE: 10.362

7
$42.01 \quad 46.78$
21.89

FLUX BASED RAYLETGH NUMBER * E-9 IS: 14.29
AVERAGE TEMPERATURE: 52.372
SINK TEMPERATURE: 10.362
8
2.9548 .32
$40.44 \quad 18.92$
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 15.31
AVERAGE TEMPERATURE: 59.183
SINK TEMPERATURE: 10.362
9
2.95
$44.89 \quad 43.86 \quad 20.52$
FLUX BASED RAYLEIGH NUMBER * E-9 IS: 14.71 AVERAGE TEMPERATURE: 55.253 SINK TEMPERATURE: 10.362

## APPENDIX D

## SOFTWARE LISTING

```
++*++*+*+*+*+*+*+
```

\*+*+*++*+*+*+*+*+*+
EDITED BY LT E. TORRES. FROM ORIGINALS OF
EDITED BY LT E. TORRES. FROM ORIGINALS OF
PAMUK [REF.12] AND BENEDICT [REF. 13]

```
 PAMUK [REF.12] AND BENEDICT [REF. 13]
```




```
 THIS PROGRAM ANALYSES THE DATA READ FROM
```

    THIS PROGRAM ANALYSES THE DATA READ FROM
    A DATA FILE DESIGNATED BY THE OPERATOR. IT *
    A DATA FILE DESIGNATED BY THE OPERATOR. IT *
    REDUCES THE DATA TO CALCULHTIONS OF NET
    REDUCES THE DATA TO CALCULHTIONS OF NET
    POWER. FAYLEIGH NIMMBER AND NUSELT NUMBER. *
    POWER. FAYLEIGH NIMMBER AND NUSELT NUMBER. *
    I/ARIABLES USED ARE :
    I/ARIABLES USED ARE :
    EMF : VOLTAISE FROM THE THERMOCOUFLE'S
    EMF : VOLTAISE FROM THE THERMOCOUFLE'S
    POLLER : POWER DISSIFATED BY THE HEHTERS.
    POLLER : POWER DISSIFATED BY THE HEHTERS.
    T(I) : TEMPERATURE CONVERTED FROM THERMOCOIJ
    T(I) : TEMPERATURE CONVERTED FROM THERMOCOIJ
        FLES VOLTAGE.
        FLES VOLTAGE.
    TAVG : IS THE AVERAGE TEMPERATURE OF THE
    TAVG : IS THE AVERAGE TEMPERATURE OF THE
                        CHIP. IT IS OBTAIMED MULIIPLYING
                        CHIP. IT IS OBTAIMED MULIIPLYING
                THE TEMPERAIURE FOIHDD IM EACH FACE
                THE TEMPERAIURE FOIHDD IM EACH FACE
                    BY THE AREA AHID DIVIDIIIG B' THE TO-
                    BY THE AREA AHID DIVIDIIIG B' THE TO-
                        TAL AREA.
                        TAL AREA.
    Ts : CHIP RACK. SURFACE TEMPERATIJRE.
    Ts : CHIP RACK. SURFACE TEMPERATIJRE.
    T& 11m: FILM TEMPERATIJRE OF THE FC-75.
    T& 11m: FILM TEMPERATIJRE OF THE FC-75.
    DHET : SLECTRIC PDWER IHIHUS COHDHCTION IDSSES.
    DHET : SLECTRIC PDWER IHIHUS COHDHCTION IDSSES.
    TSINK: AVERAGE OF THE }6\mathrm{ THERMOCOUPLES III
    TSINK: AVERAGE OF THE }6\mathrm{ THERMOCOUPLES III
                THE UPPER AHD LDNER HEHT-EXCHGNGERS.
                THE UPPER AHD LDNER HEHT-EXCHGNGERS.
    NIJ1 : UERTICAL LENGTH BASED TUUSSELT NUMBER
    NIJ1 : UERTICAL LENGTH BASED TUUSSELT NUMBER
    HIU\imath\imath : AREA-PERIMETER BASED NUSSELT NUMBER.
    HIU\imath\imath : AREA-PERIMETER BASED NUSSELT NUMBER.
    ! OTHER VARIABLES ARE SELF EXPLANATORIES.
! OTHER VARIABLES ARE SELF EXPLANATORIES.
!
!
COH/CO/ DIT!
COH/CO/ DIT!
OIHEn+(75), Power(7),T(76), Tava(9),T:19)
OIHEn+(75), Power(7),T(76), Tava(9),T:19)
DIM Tt:Im(Э),One+(9),H(9),K(9),Rho)(Э),Cp(9)
DIM Tt:Im(Э),One+(9),H(9),K(9),Rho)(Э),Cp(9)
DIM N(9), Nu(9),Ra(9), Delt(9),A1+7(9), Pr(9)
DIM N(9), Nu(9),Ra(9), Delt(9),A1+7(9), Pr(9)
DIM Gr(9), Beta(9).Dpow(9),Dts('7).Rp(8)
DIM Gr(9), Beta(9).Dpow(9),Dts('7).Rp(8)
! SORRELATIDN FACTORS TO CCNUERT Ent TO DE'FREES CELSIUS.
! SORRELATIDN FACTORS TO CCNUERT Ent TO DE'FREES CELSIUS.
DATA D. 10085091.25727.?-767245.8.730_5596.
DATA D. 10085091.25727.?-767245.8.730_5596.
DATA -3247485539.6.78E11. -2.5FE13.3.34E14
DATA -3247485539.6.78E11. -2.5FE13.3.34E14
DATA 2.50.2.05,2.08.2.08.2.59.2.08.2.08.2.08.2.0\& \$
DATA 2.50.2.05,2.08.2.08.2.59.2.08.2.08.2.08.2.0\& \$
!
!
OEAD D1+1
OEAD D1+1
READ Rp1*)
READ Rp1*)
f
f
FRIIITER IS inI
FRIIITER IS inI
BEEP
BEEP
BEEP
BEEP
!
!
IHFIJT "ENTER THE MAME OF THE FILE CONTAINING DATA".Oidfiles
IHFIJT "ENTER THE MAME OF THE FILE CONTAINING DATA".Oidfiles
!
!
PRIMT USIHIG "10X,""THE QAW Emt DATA ARE FROH THE FILE: "".10A":01dfiles
PRIMT USIHIG "10X,""THE QAW Emt DATA ARE FROH THE FILE: "".10A":01dfiles
INPUT "EHTER THE POINER SETTING ".PowErS

```
INPUT "EHTER THE POINER SETTING ".PowErS
```

```
341
FRIMT UISING "9X."" THE FDWER SETTIIN- PER CHIP iNAS: "",l⿴囗":Powers
!
FRINT USING "IOx."*THE DISTANCE TO THE FRONT IWALL WAS 9 H/1 """
!
PRIHI
!
BEEF
BEEP
ASSIGN GFile TO Oldilles
 ENTER बF lle:Emf(t)
 !
```



```
 ! COHVERT Emf TO DECREES CELSIU:
```



```
 !
 Summ=|
 FOR J=0 In >
 Sum=5um+D(J)+Emf(I)}
 MEXT J
 T(I)=Sum
 HEKT I
 FOR I=71 T0 76
 Sum=0
 FOR J=0 TO ;
 Sum=Sum+D(J)+Emf!I)`J
 HEXT !
 I! I = = Sum
 MEXT I
 !
 CONUERT Emf TO POHER
 !++*+++*++++++++***+++++*++**
 j=1
 Volt=Emf(61)
 FOR I-62 T0 70
 Power(J)=Emf(I) +(Vol +-Enf(I)/RDII-52)
 j= i+i
 VEXT I
 !
 !+*+++*+++++*+t+4**+t+*+t+*+t+*+
 ! AREA OF THE BLOCH. FACES
 I
 Acen=1.A25-4
 Alet=1.44E-4
 Ar:J=1.44E-4
 A +OD=4.3E-c
 Hbot=4.3E-5 $
 Atot=5.76E-4
 !
```



```
 !CALCULATE THF AVERAGE TEMPERATURES OF THE BLOCK. FHCES.
 ! IF A THERMOCCUPIE IS FOUHD DPENED. IF SHOULII SE TAKEN OFF. +
 !
 Tavg(i)=(T(0)+Acen+T(I:+A+oD+T:2)*Ar1q+T())+A!et+T(4)+Atoot)/Atot
 Tavo(2)=(T(6)*Acen+T(7)*AtoD +T(\overline{8})*Ar1g+T(g)*Alet+T(10)*Hboti/Atot
```

740
750
760
770
780
790
800
850
852
853
860
830
831
890
391
910
311
321
930
940
950
960
970
980
990
1i) $00 \quad$ FOR $J=1$
FOR J=1 TO 3
1020
1020
1040
1041
1051
1060
1051
1062
1070
1080
11190
1100
1110
1120
1130
1131
1! 32
1141
1150
1.5
$1: 5$ 1154
1155
1150
1161
1170
1171
1173
1174
1175
1175
1180 PR
12世日 PRINT

```
Tavg(4)=(T(18)*Acen+T(19)*Atop +T(20)*Arıg+T(21)*Alef+T(22)*Abot)/Atot
Tavg(5)=(T(24)*Acen+T(25)*Atop+T(26)*Ar1g+Ti27)*Alef+T(29)*Ab,0t)/A tot
Tavg(6)=(T(30)*Acen+T(31)*Atop+T(33)*Alef+T(34)*Abot)/(Atot-Alef)
Tavg(7)=(T(36)*Acen+T(37)*Atop+T(38)*Ar13+T(39)*Alef +T(40)*Abot)/A tot
Tavg(8)=(T(42)*Acen+T(43)*Atop +T(44)*Ar10+T(46)*Abnt)/(Atot-Alet)
Tavg(9)=(T(48)*Acen+T(49)*Atop+T(50)*Ar1g+T(51)*Alef+T(52)*Abot)/A tot
!***
 RESISTANCE OF PLEXIGLASS. FOUND HITH A CONDUCTIVITY OF *
 0.195 W/m.K AND A LENGTH OF 13.5 MM.
!
Rc=520.83
!
 ! CHIP BACK SIJRFACE TEMPERATURES .
 Ts(1)=T(5)
 Ts(2)=T(11)
 TE(?)=T(17)
 Ts(4)=T(23)
 Ts(5)=T(29)
 Ts}(5)=T(35
 Ts(7)=T(41)
 Ts(8)=T(47)
 Is(9)=T(53)
 FOR J=1 10 3
 ssum=\ssum+Ts(J)
 NEXT J
 !
 Tsavg=Tssum/`
 !
```



```
 CONDUCTION LOS'S CALCULATION. *
 0105s3=(T(17)-T(75))/Rc
 Dlos55=(T(29)-T(55))/Rc
 2loss7=(T(41)-T(54))/Rc
 0loss=(0105s3+1) loss5+1)loss7)/3
 !
```



```
 ! AUERAGE SIHK TEMPERATURE CALCULATIUN *
```




```
 I TWO FHARACTERISTIC EHGTHS.WILL BE USED IOCALCULATE MUSSELT IHMARERS
 LI BASED IH THE VERTICAL DIMENSION OF THE CHIF ; &4, MH
 AND L2 ZASED IN THE SUMGTION OF THE GREASDIVIDED BY THE FERIMETER.
 I 1=2.40E-2
 *
 L}=12.+15.+24./60.1+2.+18.+5.,28.1+8,+24.154.)+.001
```



```
 ! TO PRINT THE OUTPIJT HEADINGS. *
 *******+4+4+4+4+*4***************
 PINT USING "3X.""CHIP DNET(W) Tavg-Ts Hul Hu2 "",10A"
```



```
1220
CALCULATION OF NET POWER. Nıs ANDD R.3.
!*
FOR J=1 TO 9
! CALCULATION OF Onet
Onet(J)=Power(J)-Qloss
!
! CALCULATION OF Tfilm
Tf:lm(J)=(Tavg(J)+Tsink)/2
!
! CALCULATIOH OF A DELTA TEIAPERATURE
Delt(J)= Tavg(.J)-Tsınk
!
! CALCULATION OF SONVECTION COEFFICIENT
H(J)=Qnet(J)/(Atot*Del + (J))
!
! CALCULATION OF FC-75 THERMAL SONDUCTIUITY.
K(J)=(.65-7.83474E-4*T&11m(J))/10
!
! CALCULATION OF FC-75 DENSITY
Rho(J)=(1.825-.00245*Tf_1m(J))*1000
!
! CALCULATION IJF FC-75 SPEEIFIC HEAT
Cp}(J)=(.241111+3.7037E-4*T+11m(J))*413
!
! CALCULATION UF FC-75 UISCOSITY
if(J)=1.4074-2.964E-2*Tfilm(J)+3.8018E-4*Tf11m(J)\cdot2-2.7308E-5+T+11m(J)\cdot3+8.
G*Tf_1m(J):4
H(J)=N(J)+1.E-5
!
! CALCULAIION OF THE COEFFICIENT OF THERMAL
! EXPANSION [BETA]
Beta(J)=.00246/(1.825-.00246*Tf11m(J))
I
! CALCULATION OF ALPHA
Alfa(J)=K(J)/(Fiho(.J)*Cp(J))
!
! CALCULHTIUN OF PRANDTL NUMBER.
Pr(J)=N(J)/Al+.a(J)
!
I CALCULATION OF NUSSELT NUMRERS
Nu1(J)=H(J)=L./K(J)
Huc(J)=H(J)*L2;K(J)
! CALSULATION OF GRASHOF NUMBER.
Gr(J)=9.81*Beta(J)*(L1*2)*Del+(J)/|!(j) 'c'
I
! SALCULATION GF RAYLEIGH IHJMBER.
Ra}(J)=\mp@subsup{G}{r}{}(J)*\operatorname{Pr}(,J)*1.5-
!
CALCULATION OF FIUX BASED RAYLEIGH NUMBER
Raf(J)=((9.81*Beta(J)*1.1*4*0net(J))/(K(J)*N(J)*Al+a(J)*Ato+i)*1.E-9
!
! * + * * * * * * + * * * + * * * * * * * * * * * * * * * * + * * * * * * * + t + * * * * * * *
PRINT USING "10X.D.1X.5(5X.DD.DD.)":J.Onet(J).Delt(.j),Nul(J).Nu21.j)
I
PRINT USING "12x," "FLUX BASED RAYLEIGH MUMBER * E-G IS: "".DDD.DD":Rair||
PRINI USING "12X,""AVERAGE TEMPERATURE:"".DDD.DUD":Tavgl.!)
```



1970 ASSIGN ar le TO .
1380 END

```
!++~+t+t+t*+t+*+t+**
! PROGRAM FASTSCAN
!PROGRAM TO SCAN THE THREE IJPPERMOST THERMOCOUPLE'S.
 IT SCANS 3 CHAIJNELS FOR TEMPERATURE VARIATION MEASUREMENTS.
 ! CHANNELS ARE 13.31 AND 49
 Ipass=599
 Pass=1)
 N=0
 DIM T1(599).V1(2).,Y1(599)
 DIM T2(599),V2(2),Y2(599)
 DII4 T3(599).V3(2).Y3(599)
 CLEAR 70'7
 CLEAR 72?
```



```
 ! THE THREE FILE NAMES THAI ARE REDUIRED FOL.LOHIIIC:
 ! ARE TD STORE THE READINGS FROM THREE THERMOCOUPLES.
 BEEP
 PRINTER IS 701
 BEEP
 INPUT "ENTER THE FIRST FILE NAME: ". Hew! l le ls
 IHPUT "ENTER THE SECOND FIIE NAME: ".Newtileこ$
 IMPUT "E|ITER THE THIRD FILE NPME: ". llewtile3%
 INPUT "EIHTER THE VOLTMETER READING: ".VS
 PRIHT USIHG "15X."" RESULTS ARE STOFED ON DISK FASTSCAN* "".10A"
 PRINT
 PRIHT USING "25X.""FILE: "". 10A":NewfilelS
 PRIIIT
 FRINT USING "25X,""FILE: "".10A":Hewfllez$
 PRINT
 FRIMT IJSING "25X.""FILE: "". 10A":Hewf1le3S
 PR IIIT
 WAIT I
 BEEP
 OUTPUT 7199:"AE!"
 WAIT 2
 BEEP
 OUTPIJT 722:"T4 FI RI PO ZO ISTI SOI ISTH"
 !
```



```
 ! LOOP NUMBER ONE *
```



```
 ! START SCANNING CHAINNEL * 13
```



```
 OUTPUT 709:"AF13 AL13"
 DUTPUT 70%:"AS"
 BEEP
 Tlmedatel = IIMEDATE
 FOR JJ=0 T0 IDass
 OUTPUT 722:"T3"
 ENTER 722:V11*)
 T1(Pass)=リ1(1)
 Pass=Pass+1
 N=N+1
 NEXT JI
 Timerjate2=iIMEDHTE
```



```
P355=0
1*+++++*+**+*++**++*++***
! LOOP NUMBER TWO
 +++++++*+->+++++** . + +++*++*+***
 START SCANHING CHANNEL 31
!
OUTPUT 709:"AF31 AL31*
OUTPUT 709:"AS"
BEEP
BEEP
FOR JJ=1) TO lpass
OUTPIJT フここ:*T3"
ENTER 722:V21+1
TZ(Pass)=v゙2111
Pass=F35s+:
NENT J!
JUTPUT 722:**AC31*
Pass=0
!
*******+***************
LOOF NUMBER THREE
START SCANNING: CHANNEL 49 *
++*++++++++++++++++++++++*+****
OUTPUT 709:"AFa9 AL49*
OUTPUT 709:"AS"
BEEP
BEEF
BEEP
FOR 'J=1] TO [pass
0リTPリリ゙っこここ"「3"
EITER 722:V31:1
T3:Pass!=\ \3(;)
D355=P35s+1
NEKT J,
 E:ID LOOPS
PRIMT USIHG "ISA."*THE TOTAL TIHE ELAPSED NSFCONDS:"".2:., IDND.DDI":To+al
2DI:IT
```



```
PF:IUT
```



```
PEINTEF I'.
```



```
 TRANSFES FIRST SLHN JATA
```



```
 TRANSFEFING THE SCAN DATA FROM CHANNNEL :?
 TO THE FILE. THIS FILE GILL BE USED ~. ITH
 ! THE PROGRAM "PLOT", TO MAKE A PLOT OF TEM-
 I PERATLRE US TIME.
 CREATE BDAT Newitle15.2n
 ASSIGN SFIle TO Hewtilels
 OUTPUT #F1l0:T11+1
 FOR I1=1] TO IDass
TIII)=.10086091+25727.9+TI(I1)-757345.8+T1(I1): 2+7.9002556+T1(I)
```

```
NEKT I
341 !+*********+***+*+***+****************
342 ! TRAINSFER SECOND SCAN DATA
344 !+*********+***+4+*+******************
345 ITRANSFERING DATA FROM CHANINEL 31*
346 !TO THE FILE
347 !***********************************
349 CREATE BDAT Newfileč3.20
350 ASSIGN GFIle TO Newflle2S
351 OUIPUT シF1le:T21+1
352 FOR I =0 10 Ipass
```



```
354
357
358
359
350
361
36र
363
354 CREATE BDAT Newflle\S. 20
365 ASSIGN QFile TO Neufile3S
356 OUTPUT AF 1le:T3(+)
357 FOR I I =1) i0 Ipass
358 T3(I_)=.10086091+25727.9*T3(I_)-767345.8*T3(I1) 2 +78(002556 +T3'I1)? ?
369 NEKT II
390 STOP
4 0 0 ~ E I I D ~
```


51) (IUXT そ̌a
510
5211
530
540
550
560
570
580
537
500
FILE NAME: PLOT
THIS FROGRAM PLOTS THE DATA ACOUIRED BY
PROGRAM "FASTSCAN".
PRINTER IS 705
BEEP
$X_{m 1 n}=0$
Ǩmax $=200$
BEEP
IREP ENTER MINIMUM AND HAXIMUM Y-VHLUES". Ymin. Yma:
BEEP
XSted $=21$
BEEP
Yミtep = . こ
BEEP
PFINT "IN:SPI:IF' 2010.2000.3000.70100:"
PRINT "SC 0.100.0.100:TL 2.0:"
Si $x=1001\left(x_{\text {max }}-X_{m+1}\right)$
S(y $=100 /\left(Y_{\text {max }}-Y_{\text {min }}\right)$
PRINT "PU 0.0 PD"
FOR $X_{a}=X_{m i n}$ TO Kmax STEP Xstep
$\therefore=(X a-x i m i n)+S f x$
PRINT "PA": ...".0: XT:"
HEXT Xa
PRIII! "PA 100.(1:PIJ:"
PRINT "P! PA IJ. 0 PD"
FOR $Y_{3}=Y_{m i n}$ TO Ymax. STEP Ystop
$Y=\left(Y_{3}-Y_{m} \mid n\right)+S f y$
FRINT "PA O.,":Y."YT"
NEXT Ya
PRINT "PA 0.100 TL 0
FOR Ya= Kmin TO Xmax STEP Xstep
$\therefore=(X a-K(m i n) * S f x$
PRINT "PA": X,". 100 : KT"
IIEXT Xa
PRINT "PA 100,100 P! $P A 100,0 F^{\circ} D "$
FDR $Y_{3}=Y_{m i n}$ TO $Y_{m a: ~ S T E P ~}^{\text {Step }}$
$Y=(Y a-Y m \perp n)+5 f_{y}$
PRINT "PD PA 100.". Y. "YT"
MEXT Ya
PRIHT "PA 100.100 PU"
PRINT "PA 0,-2 SR 1.5.2"
EDR Xa $=$ imin TO Kmax SiEP $x$ ster
$X=\left(X_{a}-x_{m+n}\right){ }^{\prime} 5+x$
FRIIT "PA": $\because$.". $0:$ "
PRIHT "PY PA 0.0"
FDR $!a=Y$ min TO Ymar STEP istep
IF $A B S(Y a)<1, E-5$ THEN $Y .3=0$
$y=\left|Y_{a}-y_{m i n}\right|+5 f y$
PRINT "PA 0.":Y.""
PRINT "CP -5,-.25:LB"; Y3:""
NEKT Ya
BEEP
$\bar{I} 11=0$
IF $I d I=1$ THEN

```
520 Xlabel's="T1me (sec)"
530
640
810 IF Sym=1 THEH PRINT "SM.""
O20 IF Sym=2 THEN PRINT "SM+"
830 IF Sym= 3 THEN PRIHT "SHo"
340 IF Md:1 THEN
850 FDR i=1 TO (Md-1)
S50 EHTER %File:只.Ya
371) NEMT I
330 END IF
390 FOR Xa=1 10 199 STEP . }333333
g00 ENTER %FIle:Ya
311) Ya=.100186091+25727.9+Ya-757345.3*Ya 2+78u02555+Ya*3
320 X=(共a-Xm1n)*'5f:
330 Y= (Yz-Ym1n) +Sfy
440 IF Sym>3 THEN PRINT "SM"
350 IF Sym>4 THEN PRIMT "SR 1.4.2.4"
960 PRINT "PA". X,Y."PD"
770 IF Sym.3 THENI PRINT "SR !.2.1.5"
9 8 0 ~ I F ~ S y m = 4 ~ T H E N ~ P R I N T ~ " I J C 2 . 4 . 3 9 . 0 . - 8 , - 4 . 0 . 0 . 9 . 4 . 0 . : " ~ "
790 IF SYm=5 THE:I PRINT "IJC3.0.39,-3,-5,-3.5,3.5,3,-6:
100! IF Sym=E THEH PRIHT "ICO.5.3.39.3.-8,-5,0.,.,Q:"
1010 IF Sym=7 THEN PRINT "HC0.-5.3.99.-3.3.5.9.-3..9:"
1020 NE\T Ka
102! FRINT "P!J"
1030 BEEF
1040 HSSIGit 9F1le TO *
1050 ENO
```


## LIST OF REFERENCES

1. Chu, R., "Heat Transfer in Electronic Systems," Proc. of the Eighth International Heat Transfer Conference, San Francisco, California, pp. 293-305, 1986.
2. Baker, E., "Liquid Cooling of Microelectronic Devices by Free and Forced Convection," Microelectronics and Reliability, vol. 11, pp. 213-222, April 1973.
3. Baker, E., "Liquid Immersion Cooling of Small Electronic Devices," Microelectronics and Reliability, vol. 12, pp. 163-173, 1973.
4. Park, K. A., and Bergles, A. E., "Natural Convection Heat Transfer Characteristics of Simulated Microelectronic Chips," Transactions of the ASME, Journal of Heat Transfer, vol. 109, pp. 90-96. February 1987.
5. Chen, I., Keyhani, M., and Pitts, D. R., "An Experimental Study of Natural Convection Heat Transfer in a Rectangular Enclosure with Protruding Heaters," paper presented at the National Heat Transfer Conference, Houston, Texas, 1988.
6. Keyhani, M., Prasad, V., and Cox, R., "An Experimental Study of Natural Convection in a Vertical Cavity with Discrete Heat Sources," ASME Paper No. 87-HT-76, 1987.
7. Kelleher, M., Knock, R. H., and Yang. K. T., "Laminar Natural Convection in a Rectangular Enclosure Due to a Heated Protrusion on One Vertical Wall-Part I: Experimental Investigation," Proc. 2nd ASME/JSME Thermal Engineering Joint Conference, Honolulu, Hawaii, pp. 169-177, 1987.
8. Lee, J. J., Liu, K. V., Yang, K. T., and Kelleher, M.D., "Laminar Natural Convection in a Rectangular Enclosure Due to a Heated Protrusion on One Vertical Wall-Part II: Numerical Simulations," Proc. 2nd ASME/JSME Thermal Engineering Joint Conference, Honolulu, Hawaii, pp. 179-185, 1987.
9. Liu, K. V., Kelleher, M. D., and Yang, K. T., "Three Dimensional Natural Convection Cooling of an Array of Heated Protrusions in an Enclosure Filled with a Dielectric Fluid," Proc. Int. Symposium on

Cooling Technology for Electronic Equipment, Honolulu, Hawaii, pp. 486-497; 1987.
10. Joshi, Y., Kelleher, M. D., and Benedict, T. J., "Natural Convection Immersion Cooling of an Array of Simulated Electronic Components in an Enclosure Filled with Dielectric Fluid," Proc. of the International Symposium on Heat Transfer in Electronic and Microelectronic Equipment, Dubrovnik, Yugoslavia, 1988.
11. Liu, K. V., Yang, K. T., Wu, Y. W., and Kelleher, M. D., "Local Oscillatory Surface Temperature Responses in Immersion Cooling of a Chip Array by Natural Convection in an Enclosure," Proc. of the Symposium on Heat and Mass Transfer in Honor of B. T. Chao, Univ. of Illinois, Urbana-Champaign, pp. 309-330, October 1987.
12. Pamuk, T., Natural Convection Immersion Cooling of an Array of Simulated Chips in an Enclosure Filled with Dielectric Fluid, Master's Thesis, Naval Postgraduate School, Monterey, California, December 1987.
13. Benedict, T., An Advanced Study of Natural Convection Immersion Cooling of a 3 by 3 Array of Simulated Components in an Enclosure Filled with Dielectric Liquid, Master's Thesis, Naval Postgraduate School, Monterey, California, June 1988.
14. Kreith, F., and Bohn, Marks, Principles of Heat Transfer, 4th ed., Table 11, p. 647.

## INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center ..... 2
Cameron Station
Alexandria, VA 22304-6145
2. Library, Code 0142 ..... 2
Naval Postgraduate School
Monterey, CA 93943-5002
3. Professor Y. Joshi, Code 69Ji ..... 2
Department of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943-5004
4. Professor M. D. Kelleher, Code 69Kk ..... 1
Department of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943-5004
5. Almirante Manuel Avendaño Galvis ..... 1
Comando Armada Nacional Bogota D. E. Colombia
6. Contralmirante Jorge Cadena Mutis ..... 1
Director Escuela Naval de Cadetes Cartagena Colombia
7. Department Chairman, Code 69 ..... 1
Department of Mechanical Engineering Naval Postgraduate School
Monterey, CA 93943-5004
8. Mr. Duane Embree ..... 1
Naval Weapons Support Center
Code 6042 ..... Crane, IN 47522
9. Mr. Joseph Clpriano ..... 1
Executive DirectorWeapons and Combat Systems DirectorateNaval Sea Systems Command
Washington, DC 20362-5101
10. Naval Engineering Curricular Officer, Code 34 ..... 1
Department of Mechanical Engineering Naval Postgraduate School
Monterey, CA 93943-5004
11. LT Edgardo I. Torres ..... 1
Apartado Aereo 2845
Cartagena Colombia

Thesis
T7621
c. 1

Torres
Natural convection cooling of a 3 by 3 array of rectangular protrusions in an enclosure filled with dielectric liquid.

Thesis
T7621 Torres
c. 1 Natural convection cooling of a 3 by 3 array of rectangular protrusions in an enclosure filled with dielectric liquid.


[^0]:    Correlation found by Joshi, et al. [Ref. 10l is plotted with a continuous line.

