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ABSTRACT

Random Wave Forces on a Free-to-Surge Vertical Cylinder (May 1988)

Charles Blake Sajonia, B.S., University of Washington

Chairman of Advisory Committee: Dr. J. M. Niedzwecki

The principal objective of this research is to to gain insight into the appHcations

and limitations of the relative motion form of the Morison equation for the

prediction of hydrodynamic forces on a free-to-surge vertical cylinder in random

waves. Force transfer coefficients are estimated from experimental data using

regression with auto-regressive errors. The best-fit relative motion form of the

Morison equation resiilts in a root-mean-square error of 24% and a multiple

correlation coefficient of 0.71, over a 16 second time series. A high frequency force

component not accounted for in the Morison equation is quantified. Cross-spectra

are used to sKow that this residual force can not be dupHcated by the relative motion

Morison equation due to the lack of exphcit history terms. A force transfer model

contcdning explicit history terms is presented. The improvement in force prediction

with increasing memory is illustrated and a memory length is chosen that optimizes

the tradeoff between model complexity and goodness-of-fit. The new model reduces

the rms error from 24% to 9%, increases the multiple correlation coefficient from

0.71 to 0.83, and captures the high frequency force components not accounted for

in the Morison equation. A simple numerical simulation of a tension leg platform

is performed to illustrate the appHcation and limitations of the results.
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CHAPTER I

INTRODUCTION

A. The Relative Motion Morison Equation

The principle objective of this research is to gain insight into the appUcations

and limitations of the relative motion form of the Morison equation for the

prediction of hydrodynamic forces on a free-to-surge vertical cylinder in random

waves. In 1950 Morison, O'Brien, Johnson, and Schaaf (1950) presented an

empirical equation which describes the wave induced hydrodynamic loading on

a fixed vertical pile. Their equation, which is populariy known as the Morison

equation, can be expressed as

f^CdP^\u\u + Cmp'^a, (1.1)

where / is the force per unit length acting on the pile, Cd and Cm are force transfer

coefficients, u and a are the horizontal fluid particle velocity and acceleration, p is

the density ofi the fluid, and D is the diameter of the pile or cylinder. The total

wave induced force acting on the cyhnder is considered as the sum of a viscous drag

force component and an inertia component. When the structure moves in response

to hydrodynamic loads, Equation (1.1) is often modified by using relative velocities

and accelerations. The resulting equation is known as the relative motion or wave-

structuje interaction form of the Morison equation. This equation can be expressed

/ = Cdp-\u - i\{u - i) + Cap'^ia - i) + p'^a, (1.2)

Joumed model is ASCE Proceedings of the Waterway, Port, Coastal and Ocean

Engineering Division.
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where x and x are the velocity and acceleration of the cylinder, respectively, Ca is

the added mass coefficient defined as Ca = Cm — 1, and the last term is known as

the Froude-Krylov force which is the result of the local acceleration of the unsteady

flow,

A number of researchers, e.g. (Sarpkaya and Isaacson, 1981), have shown that

the force transfer coefficients Cd and Cm are not simple constants, but functions of at

least four parameters: cylinder roughness, Reynolds number, Keulegan-Carpenter

number, and time. Thus, the relative motion Morison equation is an engineering

approximation to a complex problem.

B. Flow History

Although the Morison equation contains only instantaneous or time averaged

parameters, the actual hydrodynamic force acting on a submerged body depends on

both the instantaneous and preceding flow conditions (HamiUton, 1972). However,

most investigators have ignored this history dependence in light of the many

other uncertainties in wave force calculations. Others, such as Keulegan and

Carpenter (1958) and Sarpkaya (1981) have corrected for this error by including an

instantaneous correction term. In periodic flow, the fluid particle kinematics change

with time, but the pattern is continually repeated. Since the preceding cycles are

identical, the history effects can be represented by an instantaneous correction term

instead of an expHcit history term. This approach was utifized by Keulegan and

Carpenter (1958) in a series of seiche-tank flow experiments. A "remainder force"

AjR was introduced to account for the differences between predicted and measured

forces on a submerged cylinder.

Sarpkaya (1981) has also quantified AR in a series of one-dimensional periodic
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flow experiments. In addition, the limitations of the Morison equation were

illustrated by plotting the instantaneous values of Cd and Cyn- It was shown that

C^ and Cm exhibit large variations during a given cycle, particularly for values

of the Keulegan-Carpenter number between 8 and 25, and that accelerating and

decelerating flows, w^th identical absolute values of the corresponding fluid particle

kinematics, do not exert identical forces on the cylinder. These observations suggest

that \R is partly the result of neglecting the effects of flow history and partly due

to the other simplifications inherent in the Morison equation. Sarpkaya represented

the "remainder force" as an instantaneous correction term given by the Fourier

expansion proposed by Keulegan and Carpenter (1958), or

Ai? -: C3 cos(3^ - 03) ^ C5 cos[be -4>s) + ... + Cr, cos(n^ - (^^), (1.3)

where 9 = ^ . The use of odd harmonics was justified since the significant force

components occurred at the fundamental frequency and the 3rd and 5th harmonics.

The force transfer model proposed by Keulegan and Carpenter (1958) and Sarpkaya

(1981) is then the sum of Equations (1.1) and (1.3), or

/ = CdPj \u\u ^ Cmp'^a + C3 cos(3^ - 4>3) + C5 cos(5^ - <^5), (1-4)

where u = — C'cos^, i.e. the flow is periodic with a maximum velocity equal to

U. Although this model reduces the rms residual force by approximately 60%,

it has two limitations: (1) the four parameters which define the correction term

C's, C5, <i>3 and 05 have little physical significance, and (2) the flow is assumed to

be periodic. The experiments performed by Keulegan and Carpenter (1958) and

Sarpkaya (1981) prove that AR is not the result of the compHcations introduced in

wavy flow, e.g. the limitations of the wave theory employed to estimate the fluid





particle kinematics, the orbital fluid particle motion, etc. Therefore, attempts to

correct for this error by adjusting the wave theorj^ model may not lead to significant

improvement.

Bird and Mockros (1986) performed a series of 28 tests in which an instru-

mented cylinder was accelerated or decelerated in still water in order to estimate

the relative magnitude of the history force. Four cases were examined: (1) acceler-

ation from rest to a constant velocity, (2) deceleration from a constant velocity to

rest, (3) acceleration from one constant velocity to a higher constant velocity and

(4) reversal from a constant velocity to a similar constant velocity in the opposite

direction. The results verify the findings of Sarpkaya (1981) and suggest that the

relative magnitude of the history force is significant, and at times equal to the max-

imum added mass force during acceleration and over half the steady state drag force

during deceleration for the specific cases studied. The method employed by Bird

and Mockros (1986) to estimate the history force was somewhat arbitrary since it

was presumed that the Morison equation, with constant coefficients, can correctly

predict the instantaneous drag and inertia components. Bird and Mockros proposed

that the introduction of a history force term may account for an important feature

of the fluid dynamics and reduce the variabihty between measured and calculated

forces. The force subdivision approach was based on a discussion given by Hamilton

(1972). Hamilton suggested that the hydrodynamic force on a submerged body in

nonperiodic flow should be separated into three parts:

(1) the conventional drag component,

(2) the conventional inertia component, and

(3) an explicit history term.





C. Regression Analysis

Given the time varying force acting on a cylinder and the corresponding fluid

particle kinematics, force transfer coefficients may be estimated in a variety of ways.

The approach employed by most researchers in the past has been ordinary least

squares regression, e.g. Reid (1958), Aagaard and Dean (1969), and Wheeler (1970).

However, new statistical techniques are now available which are particularly suitable

for time series data (Newton, 1988). Therefore, a brief review of regression analysis

and an eJternative model fitting technique are presented.

Regression analysis is the fitting of an equation to a set of values. The

equation predicts the response vector y from a function of the regressor matrix

A' and parameter vector B, adjusting the parameters such that a measure of fit is

optimized. The method used to estimate the parameters is to minimize the sum

of the squares of the differences between the actual and predicted responses. In

matrix notation

y = XB + e, (1.5)

such that B minimizes

S{B)^{y-XBf{y-XB). (1.6)

This analysis is based on several assumptions, including: (1) that the expected value

of the errors (f ) is zero and (2) that the errors are uncorrelated across observations.

When regression is performed on time series data, the errors are often autocorre-

lated, violating the second assumption and perhaps the first. In this case there

are several new methods to estimate B. One such method is regression with auto-

regressive (AR) errors. This is an iterative procedure in which the following steps

are performed:
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(1) use ordinary least squaxes to find initial estimates of B and e,

(2) fit an AR model to e,

(3) create a new response vector z and regressor matrix W by applying the AR

filter of step (2) and

(4) return to step (1) using z and W instead of y and X.

This process is repeated until successive iterations result in the same value of AR

order. A more thorough discussion along with the software required to perform the

above analysis is given by Newton (1988).

D. U.S. Naval Academy Experimental Program

In order to gain insight into the apphcations and limitations of the relative

motion form of the Morison equation, a multiple phase experimental program was

conducted at the U.S. Naval Academy, Hydromechanics Laboratory (Shields and

Hudspeth, 1985). The results from the earHer phases are reported by Dawson

(1984) and Dawson, Wallendorf and Hill (1986). The data analyzed in this thesis

is the result of an extension of these experiments to include both relative motion

and random wave loading. The USNA test assembly was subjected to random

waves of approximate Bretschneider spectra with a significant wave height of 20

cm and a dominant wave period of 2.38 seconds. The maximum Reynolds number

was approximately 2 x 10^ and the maximum Keulegan- Carpenter number was

approximately 50.

The test assembly consisted of a smooth stainless steel rod of one meter length

and 2.54 cm diameter. The cylinder is attached to a free-to-surge aluminum

subcarriage which is supported on two linear bearings and restrained be elastic

springs. The test assembly is illustrated in Figure 1. Instrumentation used in the





experiments included a high frequency sonic transducer, a variable reluctance force

gage and a resistance wave staff. Instrument signals were passed through an analog

filter with 20 Hz cut-off frequency and an analog-to-digital converter before storing

on computer disk. The acquisition rate was 51.2 samples per second. The accuracy

of the measured surface elevation, surge displacement, and force are estimated to

be 0.02 cm, 0.02 cm, and 0.05 N, respectively (Dawson, Wallendorf and Hill, 1986).

The data is analyzed in the next chapter using time series analysis techniques.





Linear Bearings

Spring

Figure 1. Sketch of U.S. Naval Academy Test Assembly.





CHAPTER II

DATA ANALYSIS

A. Fluid Particle Kinematics

The first step in analyzing the USNA data is to estimate the fluid particle

kinematics from the measured surface elevation time series. This is accomplished

using harmonic analysis. The measured surface elevation is represented as an infinite

sum of small amphtude waves, with closely spaced frequencies, and random phase

angles
oo

nix, t) = "^An cos(fcna; - a;„t -f (f>n), (2.1)

n-1

where rj denotes the elevation of the water surface above the mean water level, An is

the amphtude of the nth wave component, and fc^, iVn, and <f)n are the corresponding

wave number, frequency, and phase (Borgman, 1972). The amphtudes An and phase

angles (f)n are calculated most efficiently using the fast Fourier transform (FFT)

algorithm. The horizontal velocity and acceleration at {x,z,t) are then given by

-^-^ sinhknh
n=l

and

aix.z.t) = > a;2 .
''\

,
^A„sm fcx - a;^< + <^n), (2.3)

^-^ smhknh
n=l

where the wave number and frequency are related through the dispersion relation

u;^ = yfc^tanhA;„/i. (2.4)

In Equations (2.1) through (2.3) the Fourier components are summed from

n = 1 to oo, however, wave records generally consist of discrete samples. A sampling
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interval of 1/lOth to 1 /20th of the dominant wave period is often recommended.

The highest frequency that can be used in the Fourier summation is then

/«=^, (2.5)

where At is the sampling interval. This frequency is known as the Nyquist

frequency. The dominant wave period of the USNA data is 2.38 seconds. A

sampling interval of approximately l/15th of the dominant wave period was chosen,

or At = 0.15624 seconds. Therefore, the Nyquist frequency is approximately 3.2

Hz. This sampling interval reduces the amotmt of data to be processed without

loss of any significant high frequency components. The spectral density estimates

before and after sampHng were compared to ensure that the measured spectra were

represented accurately.

B. Regression Model Formulation and Solution

Given the time varying force acting on the cylinder, and the corresponding

fluid particle kinematics and cylinder dispacement, force transfer coefficients can

be estimated using the regression with AR-errors technique described in Chapter 1.

The total force acting on the cylinder at time t may be considered as the linear

combination of three terms: (1) the drag component Fp given by

FD{t) =
p^l

\uiz,t)-i{t)\{u{z,t)-i{t)}dz, (2.6)

(2) the inertia component Fj given by

Frit) = p"^ I
^{a{z,t) - i{t)}dz, (2.7)

and (3) a force component resulting from the acceleration of the fluid by the cylinder,

Fjr given by

Frit) = p^m, (2-8)
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where h is the submerged length of the cylinder and V is the volume of displaced

fluid. The last term may be combined with the measured force acting on the cylinder

and denoted by F{t) to give

F{t) = CdFoit) + CmFiit). (2.9)

Equation (2.9) is now in the form of the regression model y = XB + e, where

X — {FdiFi) and B = {Cd, Cm) • The best linear unbiased estimate of B restdts

in:

Cd = 0.93 and Cm = 1.73.

A thorough time series analysis of the errors restdts in the following observations:

(1) the errors e are highly autocorrelated, (2) the cross-correlations between the

prewhitened error time series and the prewhitened cylinder velocity and surface

elevation time series are relatively smaU (less than 0.4), and (3) the cross-correlation

between the prewhitened error time series and the prewhitened measured force F is

large (approximately 0.8 at lag zero). Based on these observations one may conclude

that the errors are not the result of the extension of the Morison equation to include

relative motion, but are indicative of a systematic modeling error in the original

Morison equation. The primary source of this error is determined in the following

section.

C. The Best-Fit Relative Motion Morison Equation

Figure 2 compares the best-fit relative motion Morison equation with the

measured force over a 16 second reahzation. The Morison equation "tracks"

the measured time series fairly well, but underpredicts the rms force by 21%.
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The multiple correlation coefRcient, defined as

i?' = 1 - ^, (2.10)

where aj and (Xy are the sample variance of the errors and the measured force

reahzations, is 0.77. One can see qualitatively, that the predicted time series is

'"smooth", while the measured time series is somewhat "wiggly". This is due to the

presence of a series of high frequency force components that the Morison equation

lacks. This discrepancy is illustrated using the standardized spectral density, defined

as

In^i versus u = ^-^
(2.11)

for k = l,...,[^j -t- 1, where 5ii is the usual two-sided spectral density, a^ is the

sample variance, and n is the total number of observations (Newton, 1988). The

standardized two-sided spectral density estimates for both predicted and measured

forces are shown in Figure 3.

The high frequency residual force is readily apparent, with a peak at approxi-

mately five times the fundamental frequency. The cause of this error can be deter-

mined through cross-spectra analysis.

Recall that the drag and inertia components serve as the independent vectors

in the regression model, while the measured force is the dependent vector. Figures

4 and 5 show the cross-spectra of the independent and dependent vectors.

Figure 4 is a graph of the coherency spectrum Wi2{'^) which measures the rela-

tionship between the ampUtudes of the sinusoids in the two univariate reahzations

at frequency a;. The coherence is given by

W'„{„) = ^

l^'^'""
, (2.12)

^Si-i{u})S22{^)





14

-o
O)

00

1

1

1

1

^
#

J

^
OJ
+->

u
-5
O)
i-

f f
t 1

/ \
1 1

/ /

L

•

1 /

*

^

1

'<
.^^

5^

=3 d

o c
'^ 2

§^

S ^

ACtLSuaQ Le-*:i3ads pazipjepue^s





?
: ; :

/^
1 :

: : C '
" "

1 :^''"
; (i'^'^

^

:

: ^ ; J^y'
(1) /

: : ^ ;
^"

:

«=^ 6

oo

ADU8JaL|03





^^^^^^ . . r - - ">

1 1 1 ^1 i
* " ' '

1 1 ' y ' ^' ' '

! I ! • i' ! 'I

1 . . I 1 1 !•

I I ! > J > I ' I

• •II >/ 1 • / .

! 1 I ^ f I ) > •

1 1 ' ' \ ' ' '

1
1 ' • V ' ' '

'

I I
^ Jl ! I I

! . > ^i\ 1
"^

. 1

: : \ t<^ '

^''
'

1 / i\ .
OJ ,

1 . di 1 / 1 '• !^ ' '

: 5 :/-'* :

; ; 17 ; /: : ;

• 1 1 1 1

! ! !\ 1 % • •

1 \ 1 1 1

1 1 V 1 1^ 1 1

3SeLJd





17

where ^n and 522 are the usual two-sided univariate spectral densities, and S12 is

the complex cross-spectral density. Figure 5 is a graph of the phase spectrum (f>i2{u})

which measures how out of phase the frequency components for the univariate

reahzations tend to be. The phase is given by

0,.(u,) = tan-'-{«i4^}, (2.13)

where

Ci2(a;)-Re{5i2H} and q,2{^) = -lm{S,2H}

,

(2.14)

are the cospectrai density and the quadrature spectral density, respectively.

Two important observations can be made from the cross-spectra: (1) the

coherence is significant at both the fundamental and 5th harmonic, and (2) a

considerable phase shift exists between the fundamental and the 5th harmonic.

Since the relative motion Morison equation, which contains only instantaneous and

time averaged parameters, is able to capture the fundamental frequency component,

but not the 5th harmonic, one may conclude that the 5th harmonic lags the

fundamental frequency component. That is, the 5th harmonic is the result of flow

history. If this is true, then considerable improvement in force prediction can be

achieved through the use of a force transfer model containing lagged versions of

the independent vectors, i.e. history terms. Such a model is presented in the next

section.

D. A Force Transfer Equation with Memory

Recall that the regression model used to estimate the best-fit relative motion

Morison equation is

F{t) = CdFoit) + CmFiit). (2.15)
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Instead of the usued approach of using time averaged force transfer coefficients Cd

and Cjn-, consider F{t) as the sum of a filtered version of the drag component time

series plus a filtered version of the inertia component time series, or

oo oo

F(t)= Y. ^kFD{t-k)+ Y. ^kFi{t-k), (2.16a)

it=-c» fc=-oo

with the following constraints

Jo, iffc<0; Jo, iffc<0; ._ _,.

where a and are force transfer coefficient vectors, and / is the maximum lag used

in the model, i.e. / is a measure of the memory. Note that when / = Equation

(2.16) reduces to Equation (2.15), the relative motion Morison equation. Thus, the

instantaneous force acting on the cylinder is now represented by the superposition

of a filtered version of the drag component and a filtered version of the inertia

component, both containing only non-negative lags. In this thesis. Equation (2.16)

will be called the "force transfer filters". The improvement in force prediction, and

the tradeoff" between model complexity and goodness-of-fit is illustrated in the next

section.

E. Model Complexity vs. Goodness-of-Fit

Figures 6 through 10 illustrate the improvement in force prediction with

increasing memory. As the memory is increased, the error between rms forces is

reduced while the multiple correlation coefficient R^ is increased. These calcualtions

were performed on 27 reaUzations containing a total of 432 seconds of data

(approximately 180 waves). As is the case with most regression models, there

is a tradeoff between model complexity and goodness-of-fit. For the USNA data a
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ten lag memory was chosen as the optimal model. Using the force transfer filters

with / = 10 reduces the mean rms error from 24% to 9% while increasing the mean

multiple correlation coefficient from 0.71 to 0.83. Since the sampling interval is

At = 0.15624 seconds, the 10 lag memory corresponds to 1.5624 seconds. This can

be nondimensionalized by dividing by the dominant wave period T = 2.38 seconds

to give

At^ = 0.66.

Thus, the optimal model for the USNA data contains a memory equal to two thirds

of the dominant wave period.

In addition to decreasing the rms residual force by an average of 170%, the

force transfer filters capture the 5th harmonic not accounted for in the Morison

equation. These small amplitude, high frequency force components may govern the

fatigue analysis of offshore structures. As shown in Figure 11, the ten lag memory

force transfer filters duphcate the measured spectral density almost exactly.
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CHAPTER III

NUMERICAL SIMULATION

A. Tension Leg Platform Model

The purpose of this chapter is to provide a simple example of the apphcation of

the force transfer models discussed in Chapter 2. A tension leg platform is modeled

as a nonhnear, single degree of freedom system (SDOFS) by considering motion only

in the surge direction. Riser and tendon dynamics are neglected. Furthermore, it

is assimied that diffraction and reflection of the waves are neghgible. The equation

of motion is established by equating the sum of the inertia, damping, stiffness and

external forces at time ti'.

mxi + cxi + kx = Fi, (3-1)

where m is the mass of the platform and deck equipment, c is the damping, k is

the stiffness and F^ is the hydrodynamic force resulting from the fluid-structure

interaction.

Following the derivation by Malaeb (1982), the stiffness is obtained by displac-

ing the platform an arbitrary distance in the surge direction (Figure 12).

Summing the horizontal forces gives

A;x = iV(ro4- Ar)sin^ (3.2)

where k is the stiffness in the x-direction due to an arbitrary surge displacement, N

is the number of tension legs, Tq is the pretension of each leg and AT is the increase

in tension per leg, given by

AT - kcAd, (3.3)





o

Q

0=^=0-'
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where kc is the equivalent stiffness per leg. In most cases AT is less than 20% of

the pretension Tq. The change in cable length Ad and the angle of inclination ip

are given by

A^ = Vd^ ^x^-d, (3.4)

Substituting equations (3.3) through (3.5) into Equation (3.2) gives

TV
k = {To + kcVd^ + x^ - k,d) . . (3.6)

Vd^ + x-^

Thus, the restoring force resulting from an arbitrary surge displacement is a function

of the magnitude of the displacement as well as the material properties, pretension,

and elongation of the tendons. The form of Equation (3.6) is that of a "hardening

spring'". When the surge displacement is small {x << d) Equation (3.6) can be

reduced to a linear function of x:

. = ^. (3.7)

The restoring force kx vs. x is plotted in Figure 13 using both Equations (3.6) and

(3.7) with kc = 7.0(10^) N/m, To = 4.8(10^) N, and d = 200 m. The data Hsted in

Table 1 are used for simulation purposes.
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Table 1. Typical TLP Data Based on Kirk and Etok (1979)

Structural Component Dimensions

Diameter of 4 corner columns 16 m

Diameter of 4 middle columns 3.5 m

i

Diameter of 2 cross braces 6 m

Spacing of corner columns 70 m

Draft, h 35 m

Total mass in air. m 5.4(10") kg

Fluid added mass in surge 3.3(10") kg

Cable stiffness per leg. kc 7.0(10") N/m

Pretension of each leg. Jq 10" - 10» N

Water depth 200 - 1000 m

Critical damping ratio. ( 0.00- 0.15

B. Solution Procedure

The nonlinear equation of motion can be solved using one of several direct

integration procedures. The Newmark-;^ method is chosen because of its well known

convergence and stability criteria (Newmark, 1962). The Newmark-^ equations are

used to determine the velocity and displacement of the structure at time t^^i based

on the corresponding values at time t^ and the acceleration at time <,-^i. Since the

value of the acceleration is not knov/n a priori, an iterative procedure is required.

The advantage of using such a procedure is that any nonhnearities, such as the

TLP stiffness given by Equation (3.6), can easily be included in the analysis. The





Newmark-^ equations are as follows:

i,+i = Xi + {1- j)xiAt + yxi+iAt (3.8)

and

Xi+-, =xi + iiAt + (0.5 - 0)xi{At)^ + (3£i+,{At)^ (3.9)

where 7 is taken as 0.5 to avoid spurious numerical damping and /S is taken as 0.126

to ensure numerical stability with convergence (Newmark, 1962). The assimied

value of x,^i is compared with the corresponding value calculated from the equation

of motion:

Xi^i = — (F^+i - cxi^.i - kxi+i). (3.10)m

Equations (3.8) through (3.10) are solved in an iterative manner until the assumed

and caJctdated values of Xi+i converge. The process is then repeated for subsequent

time steps.

In order to ensure numerical stability, a two-pass procedure is used wherein

the response of the TLP is first estimated using the relative motion form of the

Morison equation. The drag and inertia force components are then filtered and

superimposed using Equation (2.16) to obtain an adjusted force time series. This

time series is then used as input to the Newmark-^ algorithm, thus obtaining an

adjusted response time series (Figure 14).

C. Simulation Results

The results from two typical numerical simulation cases are presented in Figures

15 through 24. In case one, the random wave profile is scaled such that the maximum

wave height is approximately 10 meters. In case two, the same wave profile is used.
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Figure 14. Response Simulation Flow Chart.
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but scaled such that the maximum wave height is 30 meters. The force, surge,

and tension time series are plotted after both the first and second pass of the

Xewmark-^ algorithm. In both cases, the force transfer filters (2nd pass) result in

a substantial increase in high frequency force components. These components are

more pronounced when the wave height is small and the wave period is short. This

may be due to the phase shift resulting from the spacing of the columns. If the wave

length is equal to twice the column spacing (140 meters), then the restating forces

on opposing columns will partially cancel with one another. In all cases, the surge

response is smooth because of the large inertia of the TLP. Since the variation in

tension was represented as a function of the surge displacement by neglecting the

dynamics of the tension legs, the tension time series is also smooth. If the dynamics

of the tension legs were included by modeUng the TLP as a MDOFS, then these

high frequency force components should also occur in the tension time series. Such

an analysis could explain the tension leg "ringing" phenomenon observed in the

Button TLP model tests (Mercier, 1982).

Although, both cases produce similar results, the effect of the force transfer

filters is more pronounced in case two where the maximum wave height is much

greater than in case one. The principle limitation of the use of these filters is

that the scale effect is unknown at this time. Like the Morison equation, the

force transfer filters shoiild be calibrated for a specific design application, taking

into consideration the wave theory employed to estimate fluid particle kinematics,

the ocean wave design spectra, and the size, shape, and interaction of the various

structural components which comprise the platform.
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CHAPTER IV

CONCLUSIONS

In this study, experimental data were analyzed to gain insight into the appli-

cations etnd limitations of the relative motion form of the Morison equation for the

prediction of hydrodynamic forces on a free-to-surge vertical cylinder. A new force

prediction procedure was presented to account for the effects of flow history on the

instantaneous force. The following conclusions are made based upon this research:

(1) Small scale model tests suggest that the effect of flow history is significant in

the prediction of hydrodynamic forces.

(2) The relative motion form of the Morison equation can not duphcate the high

frequency force components measured in smaU scale model tests.

(3) In this study, the inclusion of explicit history terms captured the high frequency

force components, increased the multiple correlation coefficient from 0.71 to

0.83, and decreased the root-mean-square error from 24% to 9%.

(4) The procedure to include history terms can be incorporated into the response

simulation of more complex offshore structures such as the TLP.

The results from this research suggest that significant improvements in hy-

drodynamic force prediction can be obtained by including explicit history terms.

A strong research effort is required to determine the scale effect on these history

terms. Future research should include both large scale model tests and field data

analysis. The results may prove to be of great importance in the fatigue analysis of

off"shore structures and may explain some of the variability between measured and

calculated forces.
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APPENDIX A

NOMENCLATURE

An amplitude of nth wave component

a horizontal flmd particle acceleration

B regression parameter vector

Ca added mass coefficient

Cd drag coefficient

Cm inertia coefficient

C3, Cs remainder force Fourier coefficients

c structural damping coefficient

C12 cospectral density

D diameter

d length of tension leg at zero surge displacement

A(f change in length of tension leg

F ' total hydrodynamic force

Fp hydrodynamic drag component

Fj hydrodynajnic inertia component

Fp force resiilting from the acceleration of fluid

/ hydrodyneimic force per unit length

/o Nyquist frequency

g acceleration of gravity

h water depth

k structural stiffness

kc equivalent stiffness per tension leg
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kn wave number of nth wave component

/ maximum lag used in a filter i.e. memory length

m mass of structure

.V number of tension legs

9i2 quadrature spectral density

R"^ multiple correlation coefficient

AR remainder force i.e. error

T wave period

To pretension of each tension leg

AT increase in tension per tension leg

t time

At change in time

S{B) sum of the square of the errors

Sii, S22 univariate spectraJ density

5i2 complex cross-spectral density

u . horizontal fluid particle velocity

W12 coherency spectrum

X regressor matrix

I, X, X surge displacement, velocity, and acceleration

y response vector used in regression analysis

z elevation from mean water level

ajfe drag filter coefficients

^ Newmark-/9 parameter

/3jfe
inertia filter coefficient

7 Newmark-(5 parameter
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error time series

surface elevation time series

nondimensionalized time defined as ^
3.141...

fluid mass density

sample variance

phase angle of the nth wave component

phase spectrum

angle of incUnation in the xz plane

frequency given by ^^ for k = 1, . . . ,['^] + 1

frequency of the nth wave component

volume of displaced flmd
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APPENDIX B

TIME SERIES ANALYSIS SOFTWARE

The statistical analysis results reported in this thesis were obtained using

TIMESLAB. This computer program is essentially a time series analysis language

consisting of approximately 150 commands. The software is provided with the

text: TIMESLAB: A Time Series Analysis Laboratory (Newton, 1988). Some of

the features which were used in this research include: regression with AR-errors,

a test for white noise, auto- and cross-correlation, coherence and phase spectrum

estimation, nonparametric spectral density estimation, and a test for statistical

independence of two univariate realizations.

The TIMESLAB user can create files or "macros" containing commands.

The macros used to estimate and plot the best-fit relative motion form of the

Morison equation and the best-fit force transfer filters are provided below. Note

that FILTERS.MAC calls another macro, REGAR.MAC, which is not listed here.

REGAR.MAC'is provided as part of the TIMESLAB software package.





TIMESLAB macro to estimate and plot the best-fit relati
motion Morison equation and the best-fit force transfer
filters using regression with AR-errors.

yl = total force
x1 = drag component
x2 = inertia component
1 , j = t ime wi ndow
max lag = maximum lag

maxp=30
IF(maxp. le .ml , sk ip)
maxp=mi
;skip

y=EXTRACT(y1 . i . j

)

xnag=EXTRACT(x1. i.j)
x21ag=EXTRACT(x2. i ,j

)

X=<xl lag, x21ag>

m=2
MACRO(regar. start)
LABEL(yy )= 'Monson Equation'
MAXMIN(y , n, ymax1 , imax. ymi n1 , imi

n

MAXMIN(yy , n. ymax2

,

imax,ymin2, imi
yabs=ABS(yminl

)

ysave=y
y=y+yabs-t-ymaxl
ysavei=y
LABEL(y)=' '

MAXMIN( y

,

n.ymaxi . i max
,
ym i nl , i m i

n

PLOTS I ZE( 480. 120 . 55 . 30 . 8 . 10, 8 , 1

,

time=LINE( 101 .-0. 15624,0. 15624)
MACRO(error, start

)

LABEL( time)='Time (sec). Error=
PLOTON ,

PLOT( t ime,y,n,0, 16,ymin2
, ymax1

)

PLOT( t ime.yy , n,0. 16, ymin2 ,
ymaxi

)

PLOTOFF
Cd=beta[ 1

]

Cm=beta[2]
LIST(Cd,Cm)
PROMPTOFF

regression oarameters

instantaneous total force
instantaneous drag force
instantaneous inertia force
form regressor matrix

nstantaneous values

r#%; R2=@R2^'

1 ist drag and nertia coefficii

loop to get lagged values

1 = 1-1

lag= 1 -k
LIS"' -ag)
xl ;ag = E'^"'RAC':'( x !

, k . i )

x21ag=ExTRACT(x2,k, 1 )

X=<X.x1"ag,x21ag>
IF ( k ea . kmin, stop)
GOTO (loop)

stop end of loop
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y=ysave
CLEAN(x1lag,x21ag,k. 1 )

MACRO(regar .start

)

: regress with history te

LABEL(yy)= ' FTF with tf 1 ag^ Lag Memory
y = ysave-!
LABEL(y)=' '

MAXMIN(yy .n,ymax2, imax.ymin2. imin)
MACRO(error. start

)

LABEL( time) = 'Time (sec). Error=*'errff%; R2=@R2@'
PLOTON
PLCTI t ime. y .n.O. 16 . ymi p.2

,
ymax ' 1

PLOT( t ime. yy .n.O. 16
.
ymin2. ymaxi )

PLOTOFF
PL0T5I2E(O)

ultiple correlation

Measured Force
Predictea
length o-' arrays

PAUSE
tart

yrms=MMULT( ysave. ysave, 1

,

yrms= {yrms/n>#0.

5

yyrms =MMULT ( yy . yy . 1 . n , 1 )

yyrms= {yyrms/n} *C - 5

mrms =yrms[ 1 ]

prms =yyms[ 1]

clean( yrms.yyrms)
errorf {mrms-prms}/mrms* 10

rho>CORR( res. n, 30.0. 1 .se2.per

)

rho =CORR(y . n , 30 . . 1 . sy2,per )

R2= 1 .0-se2/sy2
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